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Preface 

Studying from this book will help both electrical technology and electrical 
engineering students learn circuit analysis with, it is hoped, less effort and more 
understanding. Since this book begins with the analysis of dc resistive circuits 
and continues to that of ac circuits, as do the popular circuit analysis textbooks, 
a student can, from the start, use this book as a supplement to a circuit analysis 
text book. 

The reader does not need a knowledge of differential or integral calculus 
even though this book has derivatives in the chapters on capacitors, inductors, 
and transformers, as is required for the voltage-current relations. The few problems 
with derivatives have clear physical explanations of them, and there is not a single 
integral anywhere in the book. Despite its lack of higher mathematics, this book can 
be very useful to an electrical engineering reader since most material in an electrical 
engineering circuit analysis course requires only a knowledge of algebra. Where there 
are different definitions in the electrical technology and engineering fields, as for 
capacitive reactances, phasors, and reactive power, the reader is cautioned and the 
various definitions are explained. 

One of the special features of this book is the presentation of PSpice, which 
is a computer circuit analysis or simulation program that is suitable for use on 
personal computers (PCs). PSpice is similar to SPICE, which has become the 
standard for analog circuit simulation for the entire electronics industry. Another 
special feature is the presentation of operational-amplifier (op-amp) circuits. Both 
of these topics are new to this second edition. Another topic that has been added 
is the use of advanced scientific calculators to solve the simultaneous equations 
that arise in circuit analyses. Although this use requires placing the equations 
in matrix form, absolutely no knowledge of matrix algebra is required. Finally, 
there are many more problems involving circuits that contain dependent sources 
than there were in the first edition. 

I wish to thank Dr. R. L. Sullivan, who, while I was writing this second edition, 
was Chairman of the Department of Electrical Engineering at the University of 
Florida. He nurtured an environment that made it  conducive to the writing of 
books. Thanks are also due to my wife, Lois Anne, and my son Mathew for their 
constant support and encouragement without which I could not have written this 
second edition. 

JOHN R. O'MALLEY 
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Chapter 1 

Basic Concepts 

DIGIT GROUPING 

To make numbers easier to read, some international scientific committees have recommended 
the practice of separating digits into groups of three to the right and to the left of decimal points, 
as in 64 325.473 53. No separation is necessary, however, for just four digits, and they are preferably 
not separated. For example, either 4138 or 4 138 is acceptable, as is 0.1278 or 0.127 8, with 4138 
and 0.1278 preferred. The international committees did not approve of the use of the comma to 
separate digits because in some countries the comma is used in place of the decimal point. This 
digit grouping is used throughout this book. 

INTERNATIONAL SYSTEM OF UNITS 

The Znterncrtionul Sq~stew of’ Units ( S l )  is the international measurement language. SI has nine base 
units, which are shown in Table 1-1 along with the unit symbols. Units of all other physical quantities 
are derived from these. 

Table 1-1 

Physical 
Quantity 

length 
mass 

time 

current 
t em per at u re 

amount of substance 
luminous intensity 
plane angle 
solid angle 

Unit 

meter 
kilogram 

second 

ampere 

kelvin 

mole 
candela 
radian 
steradian 

Symbol 

m 

kg 
S 

A 
K 
mol 
cd 
rad 
sr 

There is a decimal relation, indicated by prefixes, among multiples and submultiples of each base 
unit. An SI prefix is a term attached to the beginning of an SI unit name to form either a decimal 
multiple or submultiple. For example, since “kilo” is the prefix for one thousand, a kilometer equals 
1000 m. And because “micro” is the SI prefix for one-millionth, one microsecond equals 0.000 001 s. 

The SI prefixes have symbols as shown in Table 1-2, which also shows the corresponding powers 
of 10. For most circuit analyses, only mega, kilo, milli, micro, nano, and pico are important. The proper 
location for a prefix symbol is in front of a unit symbol, as in km for kilometer and cm for centimeter. 

ELECTRIC CHARGE 

Scientists have discovered two kinds of electric charge: posititye and negative. Positive charge is carried 
by subatomic particles called protons, and negative charge by subatomic particles called electrons. All 
amounts of charge are integer multiples of these elemental charges. Scientists have also found that charges 

1 
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Table 1-2 

Multiplier I Prefix 

10l8 

1012 

1 O6 

1 o2 
10' 

1015 

109 

I 03 

exa 
peta 
tera 

mega 
kilo 
hecto 
deka 

gigs 

Symbol 

E 
P 
T 
G 
M 
k 
h 
da 

Multiplier 

10.- ' 
10-2 

10-6 

10- l 2  
1 0 - 1 s  

10- l H  

10- 3 

10-9 

Prefix I Symbol 

deci 
centi 
milli 
micro 
nano 
pico 
femto 
atto 

I 

produce forces on each other: Charges of the same sign repel each other, but charges of opposite sign 
attract each other. Moreover, in an electric circuit there is cmservution of'ctzurye, which means that the 
net electric charge remains constant-charge is neither created nor destroyed. (Electric components 
interconnected to form at least one closed path comprise an electric circuit o r  nc)twork.) 

The charge of an electron or proton is much too small to be the basic charge unit. Instead, the SI 
unit of charge is the coulomb with unit symbol C. The quantity symbol is Q for a constant charge and 
q for a charge that varies with time. The charge of an electron is - 1.602 x 10 l 9  C and that of a proton is 
1.602 x 10-19 C. Put another way, the combined charge of 6.241 x 10l8 electrons equals - 1 C, and 
that of 6.241 x 10l8 protons equals 1 C. 

Each atom of matter has a positively charged nucleus consisting of protons and uncharged particles 
called neutrons. Electrons orbit around the nucleus under the attraction of the protons. For an 
undisturbed atom the number of electrons equals the number of protons, making the atom electrically 
neutral. But if an outer electron receives energy from, say, heat, i t  can gain enough energy to overcome 
the force of attraction of the protons and become afree electron. The atom then has more positive than 
negative charge and is apositiue ion. Some atoms can also "capture" free electrons to gain a surplus of 
negative charge and become negative ions. 

ELECTRIC CURRENT 

Electric current results from the movement of electric charge. The SI uni t  of current is the C I I I I ~ C ~ I - ~ ~  

with unit symbol A. The quantity symbol is I for a constant current and i for a time-varying current. If 
a steady flow of 1 C of charge passes a given point in a conductor in 1 s, the resulting current is 1 A. 
In general, 

Q( coulom bs) 

t( seconds) 
I(amperes) = 

in which t is the quantity symbol for time. 
Current has an associated direction. By convention the direction of current flow is in the direction 

of positive charge movement and opposite the direction of negative charge movement. In solids only 
free electrons move to produce current flow-the ions cannot move. But in gases and liquids, both 
positive and negative ions can move to produce current flow. Since electric circuits consist almost entirely 
of solids, only electrons produce current flow in almost all circuits. But this fact is seldom important in 
circuit analyses because the analyses are almost always at the current level and not the charge level. 

In a circuit diagram each I (or i) usually has an associated arrow to indicate the cwrwnt rc;fircmv 
direction, as shown in Fig. 1-1. This arrow specifies the direction of positive current flow, but not 
necessarily the direction of actual flow. If, after calculations, I is found to be positive, then actual current 
flow is in the direction of the arrow. But if  I is negative, current flow is in the opposite direction. 
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I 
L 

Fig. 1-1 

3 

Fig. 1-2 

A current that flows in only one direction all the time is a direct current (dc), while a current that 
alternates in direction of flow is an alternating current (ac). Usually, though, direct current refers only 
to a constant current, and alternating current refers only to a current that varies sinusoidally with time. 

A current source is a circuit element that provides a specified current. Figure 1-2 shows the circuit 
diagram symbol for a current source. This source provides a current of 6 A in the direction of the arrow 
irrespective of the voltage (discussed next) across the source. 

VOLTAGE 

The concept of voltage involves work, which in turn involves force and distance. The SI unit of work 
is the joule with unit  symbol J, the SI unit of force is the newton with unit symbol N, and of course the 
SI unit  for distance is the meter with unit symbol m. 

Work is required for moving an object against a force that opposes the motion. For example, lifting 
something against the force of gravity requires work. In general the work required in joules is the product 
of the force in newtons and the distance moved in meters: 

W( joules) = Qnewtons) x s (meters) 

where W, F ,  and s are the quantity symbols for work, force, and distance, respectively. 
Energy is the capacity to do work. One of its forms is potential energy, which is the energy a body 

has because of its position. 
The voltage diflerence (also called the potential dzflerence) between two points is the work in joules 

required to move 1 C of charge from one point to the other. The SI unit of voltage is the volt with unit 
symbol V. The quantity symbol is Vor U, although E and e are also popular. In  general, 

V(vo1ts) = 
W( joules) 

Q( coulombs) 

The voltage quantity symbol Vsometimes has subscripts to designate the two points to which the 
voltage corresponds. If the letter a designates one point and b the other, and if W joules of work are 
required to move Q coulombs from point b to a, then &, = W/Q. Note that the first subscript is the 
point to which the charge is moved. The work quantity symbol sometimes also has subscripts as in 
V,, = KdQ. 

If moving a positive charge from b to a (or a negative charge from a to b) actually requires work, 
the point a is positive with respect to point b. This is the voltagepolarity. In a circuit diagram this voltage 
polarity is indicated by a positive sign (+)  at point a and a negative sign ( - )  at point b, as shown in 
Fig. 1-3a for 6 V. Terms used to designate this voltage are a 6-V voltage or potential rise from b to a 
or, equivalently, a 6-V voltage or potential drop from a to b. 
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I f  the voltage is designated by a quantity symbol as in Fig. 1-3h, the positive and negative signs are 
reference polarities and not necessarily actual polarities. Also, if  subscripts are used, the positive polarity 
sign is at the point corresponding to the first subscript ( a  here) and the negative polarity sign is at the 
point corresponding to the second subscript ( h  here). I f  after calculations, K b  is found to be positive, 
then point a is actually positive with respect to point h, in agreement with the reference polarity signs. 
But if Vuh is negative, the actual polarities are opposite those shown. 

A constant voltage is called a dc ro/tciye. And a voltage that varies sinusoidally with time is called 
an cic idtaye.  

A uoltaye source, such as a battery or generator, provides a voltage that, ideally, does not depend 
on the current flow through the source. Figure 1-4u shows the circuit symbol for a battery. This source 
provides a dc voltage of 12 V. This symbol is also often used for a dc voltage source that may not be 
a battery. Often, the + and - signs are not shown because, by convention, the long end-line designates 
the positive terminal and the short end-line the negative terminal. Another circuit symbol for a dc voltage 
source is shown in Fig. 1-4h. A battery uses chemical energy to move negative charges from the attracting 
positive terminal, where there is a surplus of protons, to the repulsing negative terminal, where there is 
a surplus of electrons. A voltage generator supplies this energy from mechanical energy that rotates a 
magnet past coils of wire. 

Fig. 1-4 

DEPENDENT SOURCES 

The sources of Figs. 1-2 and 1-4 are incfepencfent sources. An independent current source provides a 
certain current, and an independent voltage source provides a certain voltage, both independently of 
any other voltage or current. In contrast, a dependent source (also called a controlld source) provides 
a voltage or current that depends on a voltage or current elsewhere in a circuit. In a circuit diagram, a 
dependent source is designated by a diamond-shaped symbol. For an illustration, the circuit of Fig. 1-5 
contains a dependent voltage source that provides a voltage of 5 Vl, which is five times the voltage V, 
that appears across a resistor elsewhere in the circuit. (The resistors shown are discussed in the next 
chapter.) There are four types of dependent sources: a voltage-controlled voltage source as shown in 
Fig. 1-5, a current-controlled voltage source, a voltage-controlled current source, and a current-controlled 
current source. Dependent sources are rarely separate physical components. But they are important 
because they occur in models of electronic components such as operational amplifiers and transistors. 

Fig. 1-5 
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POWER 

The rute at which something either absorbs or produces energy is the poit'er absorbed or produced. 
A source of energy produces or delivers power and a load absorbs it. The SI unit of power is the wutt 
with unit symbol W. The quantity symbol is P for constant power and p for time-varying power. If 1 J 
of work is either absorbed or delivered at a constant rate in 1 s, the corresponding power is 1 W. In 
general, 

W( joules) 

[(seconds) 
P(watts) = 

The power ubsorbed by an electric component is the product of voltage and current if the current 
reference arrow is into the positively referenced terminal, as shown in Fig. 1-6: 

P(watts) = V(vo1ts) x I(amperes) 

Such references are called associated references. (The term pussiw skgn convention is often used instead 
of "associated references.") If  the references are not associated (the current arrow is into the negatively 
referenced terminal), the power absorbed is P = - VZ. 

Fig. 1-6 Fig. 1-7 

If the calculated P is positive with either formula, the component actually uhsorhs power. But if  P 

The power output rating of motors is usually expressed in a power unit called the horsepoiwr (hp) 

Electric motors and other systems have an e@cicvq* ( 1 7 )  of operation defined by 

is negative, the component procltrces power it  is a source' of electric energy. 

even though this is not an SI unit. The relation between horsepower and watts is I hp = 745.7 W. 

power output 
Efficiency = ~ ~~~ ~ x 100% or = - P o ~ ~  x 100% 

power input P i n  

Efficiency can also be based on work output divided by work input. In calculations, efficiency is 
usually expressed as a decimal fraction that is the percentage divided by 100. 

The overall efficiency of a cascaded system as shown in Fig. 1-7 is the product of the individual 
efficiencies : 

ENERGY 

Electric energy used or produced is the product of the electric power input or output and the time over 
which this input or output occurs: 

W(joules) = P(watts) x t(seconds) 

Electric energy is what customers purchase from electric utility companies. These companies do not 
use the joule as an energy unit but instead use the much larger and more convenient kilowattltour (kWh) 
even though it is not an SI unit. The number of kilowatthours consumed equals the product of the power 
absorbed in kilowatts and the time in hours over which it is absorbed: 

W(ki1owatthours) = P(ki1owatts) x t(hours) 
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Solved Problems 

1.1 Find the charge in coulombs of ( a )  5.31 x 10" electrons, and ( h )  2.9 x 10" protons. 

(a)  Since the charge of an  electron is - 1.602 x 10- l 9  C, the total charge is 

-1.602 x IO-'"C 

1- 
5.31 x 1 O 2 ' m  s x  = -85.1 c 

(b) Similarly, the total charge is 

1.602 x 10- l 9  C 
= 4.65 kC 2.9 x 1022+ret-mKx - 

1- 

1.2 How many protons have a combined charge of 6.8 pC? 

Because the combined charge of 6.241 x protons is I C, the number of protons is 

6.241 x 10'8protons 
- = 4.24 x 10' protons 

I $  
6.8 x 10-12$?! x -___ 

1.3 Find the current flow through a light bulb from a steady movement of ( U )  60 C in 4 s, 
in 2 min, and 

Current is the rate of charge movement in coulombs per second. So, 

( h )  15 C 
(c) 10" electrons in 1 h. 

Q 6 0 C  

t 4 s  
(a)  I = -  =- = 15 C/S 15 A 

1 5 c  l* 

2& 60s 
(b )  I = - x - -  - 0.125 C / S  = 0.125 A 

1 0 2 2 ~  1 $ - 1.602 x to - ' "  C 
(c)  I = x ___- x = - 0.445 C/S = - 0.445 A 1P 3600 s 1- 

The negative sign in the answer indicates that the current flows in a direction opposite that of electron 
movement. But this sign is unimportant here and can be omitted because the problem statement does not 
specify the direction of electron movement. 

1.4 Electrons pass to the right through a wire cross section at the rate of 6.4 x 102' electrons per 
minute. What is the current in the wire? 

Because current is the rate of charge movement in coulombs per second, 

- 1  c I &  
X x = - 17.1 C s = - 17.1 A 

6.4 x 102'hetrun3 
I =  

1* 6.241 x 60s 

The negative sign in the answer indicates that the current is to the left, opposite the direction o f  electron 
movement. 

1.5 In a liquid, negative ions, each with a single surplus electron, move to the left at a steady rate of 
2.1 x to2' ions per minute and positive ions, each with two surplus protons, move to the right 
at a steady rate of 4.8 x l O I 9  ions per minute. Find the current to the right. 

The negative ions moving to the left and the positive ions moving to  the right both produce a current 
t o  the right because current flow is in a direction opposite that of negative charge movement and the same 
as that of positive charge movement. For a current to the right, the movement of electrons to the left is a 



CHAP. 13 BASIC CONCEPTS 7 

1.6 

1.7 

1.8 

1.9 

1.10 

negative movement. Also, each positive ion, being doubly ionized, has double the charge of a proton. So, 

2.1 x 1 0 2 0 ~  -1.602 x 10-19C I& 2 x 4.8 x 10”- 1.602 x lO-I9C 
- ~ ~ -  x - - _ _  - - ~ ~ - ~  I = - - - - - - x - - -  - - x - - + -  

1* lJ?k&VlT 60 s l* 1- 

l* 

60 s 
x -  = 0.817 A 

Will a 10-A fuse blow for a steady rate of charge flow through it  of 45 000 C/h? 

The current is 

x -  = 12.5 A 
45 000 c 

3600s 

which is more than the 10-A rating. So the fuse will blow. 

Assuming a steady current flow through a switch, find the time required for (a) 20 C to flow if 
the current is 15 mA, (h )  12 pC to flow if the current is 30 pA, and (c) 2.58 x 10’’ electrons to 
flow if the current is -64.2 nA. 

Since I = Q/t solved for t is t = Q / I ,  

20 
(a) t = - ---  = 1.33 x 103 s = 22.2 min 

15 1 0 - 3  

12 x 10-(j 

30 x 
( h )  t = = 4 x 105 s = 1 1 1  h 

2.58 1015- -1c 
( c )  t = X = 6.44 x 103 s = 1.79 h 

-64.2 x 10-9A 6.241 x 1 0 1 * ~  

The total charge that a battery can deliver is usually specified in ampere-hours (Ah). An 
ampere-hour is the quantity of charge corresponding to a current flow of 1 A for 1 h. Find the 
number of coulombs corresponding to 1 Ah. 

Since from Q = I t ,  1 C is equal to one ampere second (As), 

3600 s 
- 3600 AS = 3600 C 

A certain car battery is rated at  700 Ah at 3.5 A, which means that the battery can deliver 3.5 A 
for approximately 700/3.5 = 200 h. However, the larger the current, the less the charge that can 
be drawn. How long can this battery deliver 2 A? 

The time that the current can flow is approximately equal to the ampere-hour rating divided by the 
current: 

Actually, the battery can deliver 2 A for longer than 350 h because the ampere-hour rating for this smaller 
current is greater than that for 3.5 A. 

Find the average drift velocity of electrons in a No. 14 AWG copper wire carrying a 10-A current, 
given that copper has 1.38 x 1024 free electrons per cubic inch and that the cross-sectional area of 
No. 14 AWG wire is 3.23 x 10-3 in2. 



S 

1.1 I 

1.12 

1.13 

1.14 

1.15 

The a~w-age  drift ~~cloci ty  ( 1 ' )  cqu:ils the current di\,idcd by the product of the cross-sectional area a n d  
the electron density: 

I0 p' I 1j.d 0.0254 111 Ii2lCmim 

1 s 3.23 x 10 3j€8 1.38 x I o ' 4 e  .' 1 ) d  - 1.603 x 10 I "  q 
1' X 

= -3.56 x IW'm s 

The negative sign i n  the answer indicates that the electrons rnn\.'e in it direction opposite that o f  current 
f o w .  Notice the l ow \docity.  An electron t ra \ t ls  only 1.38 111 in 1 h, on the a\wage, e ~ ~ n  though the electric 
impulses produced by the electron inoi~cnient tra\el  at near the speed of light (2.998 x 10' m s). 

Find the work required to lift  ii 4500-kg elevator a vertical distance of 50 m. 

of the e l e~a to r .  Since this weight i n  nc\+'tons is 9.8 tinics the 11i;iss in kilograms, 
The ivork required is the product of the distance moved and the force needed t o  oL'crcome the weight 

1.I' = FS = (9.8 x 4500)(50)J = 3.2 MJ 

Find the potential energy in joules gained by a 180-lb man in climbing a 6-ft ladder. 

The potential energj' gained by the nian equals the work he had to d o  to climb the ladder. The force 
i n ~ ~ o l ~ x x i  is his u ~ i g h t ,  and the distance is the height of the ladder. The conwrsion factor from ureight in 
pounds t o  ;i force i n  newtons is 1 N = 0.225 Ib. Thus. 

1 I5 1 3 f i  0.0254 I l l  
11' = I X O J t i ,  x 6 y x  X X = 1.36 x 103 N111 = 1.46 k J  

0.22.5f l  IJY I Jd 

How much chemical energy must a 12-V car battery expend in  moLing 8.93 x 10'" electrons 
from its positive terminal to its negative terminal? 

The appropriate formula is 1.1'- Q I: Although the signs of Q and 1' ;ire important. obviously here the 
product of these quantities must be positive because energq is required to mo\'e the electrons. So,  the easiest 
approach is t o  ignore the signs of Q and I :  O r ,  i f  signs are used, I '  is ncgatiirc because the charge moves to 
;i niore negati\ c terminal, and of coiirhe Q is negative bec;iuse electrons h a w  ii negative charge. Thus, 

1.1' = Q I '  = 8.03 x 1o2"Am x ( -  I 2  V )  x 
6.34 

I f  moving 16 C of positive charge from point h to 
drop from point I (  to point h. 

w,',, 0.8 

- 1 c. 
= 1.72 x 10.' VC = 1.72 kJ 

x IolxLlwhmls 

point ( I  requires 0.8 J, find 1;,,,, the voltage 

In mobing from point ( I  t o  point b, 2 x 10'" electrons do 4 J of work. Find I ; , , , ,  the voltage drop 
from point ( I  to point 11. 

o n  u ' o r k  done O I I  charge. So.  It,,, = - 3  J. but It:,,, = -- Cl,, = 4 J .  Thus. 
Worh done h j *  the electron!, 15 cqui\ alcnt to / i c ~ c / t r t i w  work done 0 1 1  thc electron\, and \ oltage depends 

- 3 x I()'''- - I c 
The negative sign indicates that there is a ~ o l t a g c  rise from 11 to h instead of a ~ o l t a g c  drop. In othcr 
bords,  point h is more positi\e than point 1 1 .  
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1.16 Find y,h. the voltage drop from point II to point h, if 24 J are required to move charges of 
(a)  3 C, ( h )  -4  C, 

I f  24 J are required to motfe the charges from point ( I  to point h, then -24 J are required to move 
them from point h to point (1. In other words. 

and (c) 20 x 10" electrons from point N to point h. 

it;,, = -34 J.  So, 

The negative sign in the answer indicates that point 11 is more ncgative than point h 
rise from 11 to h. 

there is a voltage 

-24  J 6.241 x 10'H-eketm% 
X = 0.749 V - - Wu h 

Q 20 x 10'qsk&mmS -1c ((-1 Vah = 

1.17 Find the energy stored in a 12-V car battery rated at 650 Ah. 

From U' = QL' and the fact that 1 As = 1 C. 

3600 s 
W = 6 5 0 A $ x -  --x 1 2 V = 2 . 3 4 ~  1 0 " A s x  1 2 V = 2 8 . 0 8 M J  

1Y 

1.18 Find the voltage drop across a light bulb i f  a 0.5-A current flowing through i t  for 4 s causes the 
light bulb to give off 240 J of light and heat energy. 

Since the charge that flotvs is Q = I r  = 0.5 x 4 = 2 C, 

1.19 Find the average input power to a radio that consumes 3600 J in 2 min. 

36005 I* 
2min-  6 0 s  

X = 305 s = 30 W 

1.20 How many joules does a 60-W light bulb consume in 1 h ?  

From rearranging P = Wr and from the fact that 1 Ws = 1 J, 

3600 s 
U ' = P t = 6 0 W x  l $ ~ -  = 216000 WS = 216 kJ 

' Y  

1.21 How long does a 100-W light bulb take to consume 13 k J ?  

From rearranging P = W t ,  

w 1 3 0 0  

P 100 
= 130s  1 = ._ - -- - 

1.22 How much power does a stove element absorb i f  i t  draws 10 A when connected to a 1 15-V line'? 

P = C ' I = 1 1 5 x  1 0 W = I . l 5 k W  
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1.23 What current does a 1200-W toaster draw from a 120-V line? 

From rearranging P = V I ,  

1.24 Figure 1-8 shows a circuit diagram of a voltage source of Vvolts connected to a current source 
of I amperes. Find the power absorbed by the voltage source for 
( U )  V = 2 V ,  I = 4 A  

(b)  V = 3 V ,  1 = - 2 A  

( c )  V = - 6 V ,  I = - 8 A  

Fig. 1-8 

Because the reference arrow for I is into the positively referenced terminal for I.: the current ancl voltage 
references for the voltage source are associated. This means that there is a positive sign (or the absence of 
a negative sign) in the relation between power absorbed and the product of voltage and current: P = C'I. 
With the given values inserted, 

(U)  P = VZ = 2 x 4 = 8 W 

(b) P = v I = 3 ~ ( - 2 ) =  - 6 W  

The negative sign for the power indicates that the voltage source delivers rather than absorbs power. 
(c) P =  V I  = -6 x ( -8 )=48  W 

1.25 Figure 1-9 shows a circuit diagram of a current source of I amperes connected to an independent 
voltage source of 8 V and a current-controlled dependent voltage source that provides a voltage 
that in volts is equal to two times the current flow in amperes through i t .  Determine the power 
P ,  absorbed by the independent voltage source and the power P ,  absorbed by the dependent 
voltage source for (a)  I = 4 A, (b)  I = 5 mA, and (c) I = - 3  A. 

m"t9 - 21 

Fig. 1-9 

Because the reference arrow for I is directed into the negative terminal of the 8-V source. the 
P ,  = -81. For the dependent source, though, the voltage 

P ,  = 2 I ( I )  = 21'. With the given current 
power-absorbed formula has a negative sign: 
and current references are associated, and so the power absorbed is 
values inserted, 
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( a )  P ,  = -8(4) = -32 W and 
indicates that it  is producing power instead of absorbing it .  

( h )  P ,  = -8(5 x 10-3) = -40 x 10-3 W = -40mW 
P ,  = 2(5 x 10-3)2 = 50 x 10-6 W = 50 pW 

(c) P ,  = -8( -3) = 24 W P ,  = 2( - 3), = 18 W. The power absorbed by the dependent source re- 
mains positive because although the current reversed direction, the polarity of the voltage did also, and 
so the actual current flow is still into the actual positive terminal. 

P ,  = 2(4), = 32 W. The negative power for the independent source 

and 

1.26 Calculate the power absorbed by each component in the circuit of Fig. 1-10. 

I 6 V  

0.41 

Fig. 1-10 

Since for the 10-A current source the current flows out of the positive terminal, the power it absorbs 
is P ,  = - 16(10) = - 160 W. The negative sign iiidicates that this source is not absorbing power but rather 
is delivering power to other components in the circuit. For the 6-V source, the 10-A current flows into the 
negative terminal, and so P 3  = 22(6) = 132 W. Finally, 
the dependent source provides a current of 0.4(10) = 4 A. This current flows into the positive terminal 
since this source also has 22 V, positive at the top, across it. Consequently, P4 = 22(4) = 88 W. Observe that 

P ,  = -6(10) = -60 W. For the 22-V source, 

PI + P2 + P3 + P4 = - 160 - 60 + 132 + 88 = 0 W 

The sum of 0 W indicates that in this circuit the power absorbed by components is equal to the power 
delivered. This result is true for every circuit. 

1.27 How long can a 12-V car battery supply 250 A to a starter motor if the battery has 4 x 106 J of 
chemical energy that can be converted to electric energy? 

The best approach is to use t = W/P. Here, 

P = V l  = 12 x 250 = 3000 W 

And so 

w 4 x 106 

P 3000 
t = - - = -  = 1333.33 s = 22.2 min 

1.28 Find the current drawn from a 115-V line by a dc electric motor that delivers 1 hp. Assume 
100 percent efficiency of operation. 

From rearranging P = M and from the fact that 1 W/V = 1 A, 

P 

I/ 115V IJqf  
x-- - 6.48 W/V = 6.48 A I = - =  1.w 745.7w 



1.29 Find the efficiency of operation of an electric tnotor that delikxrs I hp izrhile absorbing an input 
of 900 W. 

1.30 What is the operating efficiency of a fully loaded 2-hp dc electric motor that draws 19 A at 
100 V ?  (The power rating of a motor specifies the output power and not the input power.) 

Since the input power is 

P,,, = C'I = 100 x 19 = 1900 w 
the efficiency is 

1.31 Find the input pobver to a fully loaded 5-lip motor that operates at 80 percent etticienc!,. 

For almost 2111 calculations. the cflicicncj, is better cxprcsscd iis ;I dccimal fraction th i i t  is the percentage 
1 1  = P,,,,! PI,,,  diyided by 100. hrhich is 0.8 here. Then from 

P(,,,( 5Jy.f 745.7 w 
p = -  - - X = 4.66 k W  

' '1  0.8 I h Q -  

1.32 Find the current drawn by a dc electric motor that delivers 2 hp while operating at 85 percent 
efficiency from a 110-V line. 

From P = C'I = '1, 

1.33 Maximum received solar power is about I kW in'. I f  solar panels, which conkert solar energy to 
electric energy, are 13 percent efficient, h o w  many square inoters of solar cell panels are needed 
to supply the power to a 1600-W toaster? 

The power from each square meter of solar panels is 

P,,,,, = '/PI,, = 0.13 x 1000 = 130 w 
So, the total solar panel area needed is 

I ni' 

I 3 0 N  
Area = 1600AVx = 12.3 I l l '  

1.34 What horsepower must an electric motor develop to piimp water up 40 ft  at the rate of 2000 
gallons per hour (gal"h) if the pumping system operates at 80 percent efficiency'? 

One way to solve for the power is to use the work done by the pump i n  1 h ,  ~vhich is the Lveight of the 
water lifted in 1 h times the height through which i t  is lifted. This work divided bj. the time taken is the 
power output of the pumping system. And this power divided by the cfiicicncy is the input power t o  the 
pumping system, which is the required output poucr of the electric motor. Some nccdcd da ta  arc that I p l  
of water uv5gtis 8.33 Ib, and that 1 hp = 5 5 0  ( f t .  Ib) s. Thus. 
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1.35 

1.36 

1.37 

1.38 

Two systems are in cascade. One operates with an efficiency of 75 percent and the other with an 
efficiency of 85 percent. If the input power is 5 kW, what is the output power'? 

Pou, = t / l~j2Pin  = 0.75(0.85)(5000) W = 3.19 kW 

Find the conversion relation between kilowatthours and joules. 

The approach here is to convert from kilowatthours to watt-seconds, and then use the fact that 
1 J =  1 WS: 

1 kWh = 1000 W x 3600 s = 3.6 x 10' WS = 3.6 MJ 

For an electric rate of 7#i/kilowatthour, what does i t  cost to leave a 60-W light bulb on for 8 h ?  

The cost equals the total energy used times the cost per energy uni t :  

An electric motor delivers 5 hp while operating with an efficiency of 85 percent. Find the cost for 
operating it continuously for one day (d) if the electric rate is 6$ kilowatthour. 

product of this energy and the electric rate is the total cost: 
The total energy used is the output power times the time of operation, all divided by the efficiency. The 

6c 0 . 7 4 5 7 w  2 4 M  

0.85 1 k J M  1).d I& 
x x = 6 3 2  = $6.32 

1 
Cost = 5 W X  l-cyx x 

Supplementary Problems 
1.39 Find the charge in coulombs of ( U )  6.28 x 102' electrons and ( h )  8.76 x 10" protons. 

A ~ I s .  (0) - 1006 C,  ( h )  140 C 

1.40 How many electrons have a total charge of - 4  nC'? 

Ans. 2.5 x 10" electrons 

1.41 Find the current flow through a switch from a steady movemcnt of ( U )  90C in 6s .  ( h )  900C in 
20 min, and (c)  4 x electrons in 5 h. 

A m .  (a )  15 A, ( h )  0.75 A, ( ( 8 )  3.56 A 

1.42 A capacitor is an electric circuit component that stores electric charge. If a capacitor charges at a steady rate to 
10 mC in 0.02 ms, and if it discharges in 1 p s  at a steady rate, what are the magnitudes of the charging and 
discharging currents? 

Ans. 500 A, 10 000 A 

1.43 In a gas, if doubly ionized negative ions move to the right at a steady rate of 3.62 x 10" ions per minute and if 
singly ionized positive ions move to the left at a steady rate of 5.83 x 10" ions per minute, find the current to 
the right. 

Ans. -3.49 A 

1.44 Find the shortest time that 120 C can flow through a 20-A circuit breaker without tripping i t .  

Ans. 6 s 
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1.45 If a steady current flows to a capacitor, find the time required for the capacitor to ( ( I )  charge to 2.5 mC if the 
current is 35 mA, ( c )  store 9.36 x 10'- electrons if thc 
current is 85.6 nA. 

(b )  charge to 36 pC if the current is 18 pA, and 

Ans. (a) 71.4 ms, (b)  2 p, (c) 20.3 d 

1.46 How long can a 4.5-Ah, 1.5-V flashlight battery deliver 100 mA? 

Ans. 45 h 

1.47 Find the potential energy in joules lost by a 1.2-Ib book in falling off a desk that is 3 I in high. 

Ans. 4.2 J 

1.48 How much chemical energy must a 1.25-V flashlight battery expend in producing a current flow of 130 mA 
for 5 min? 

Ans. 48.8 J 

1.49 Find the work done by a 9-V battery in moving 5 x 102" electrons from its positive terminal to its negative 
terminal. 

Ans. 721 J 

1.50 Find the total energy available from a rechargeable 1.25-V flashlight battery with a 1.2-Ah rating. 

Ans. 5.4 kJ 

1.51 If all the energy in a 9-V transistor radio battery rated at 0.392 Ah is used to lift a 150-lb man. how high in feet 
will he be lifted? 

Ans. 62.5 ft 

1.52 If a charge of - 4  C in moving from point a to point h gives up 20 J of energy, what is CL,? 

Ans. -5  V 

1.53 Moving 6.93 x 1019 electrons from point h to point ( I  requires 98 J of work. Find LLb. 

Ans. -8.83 V 

1.54 How much power does an electric clock require if i t  draws 27.3 mA from a 110-V line? 

Ans. 3 W 

1.55 Find the current drawn by a 1OOO-W steam iron from a 120-V line. 

Ans. 8.33 A 

1.56 For the circuit of Fig. 1 - 1  1 ,  find the power absorbed by the current source for ( L J )  1.' = 4 V. I = 2 mA; 
(b) V = - 50 V, I = - 150 pA; (c) V = 10 mV, I = - 15 m A; 

Ans. (a) -8 mW, (b )  -7.5 mW, (c) 150 ,uW, ( d )  9.6 mW 

( d )  V = - 1 20 mV, I = 80 m A. 

Fig. 1-1 1 
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1.57 For the circuit of Fig. 1-12, determine P , ,  P , ,  P , ,  which are powers absorbed, for 
20 mA, and ( c )  I = - 3  A. 

Ans. 

(a)  I = 2 A, (b )  I = 

( a )  P ,  = 16 W, P ,  = -24  W, P ,  = -20 W; (b )  P ,  = 0.16 W, P ,  = -2.4 mW, P ,  = -0.2 W; 
(c) P ,  = -24  W, P ,  = -54  W, P 3  = 30 W 

I 8 V  I 

0' 61 

1 ov 

Fig. 1-12 

1.58 Calculate the power absorbed by each component in the circuit of Fig. 1-13. 

Ans. P ,  = 16 W, P ,  = -48 W, P ,  = -48  W, P ,  = 80 W 

Fig. 1-13 

1.59 Find the average input power to a radio that consumes 4500 J in 3 min. 

Ans. 25 W 

1.60 Find the voltage drop across a toaster that gives off 7500 J of heat when a 13.64-A current flows through 
i t  for 5 s. 

Ans. 110 V 

1.61 How many joules does a 40-W light bulb consume in 1 d? 

Ans. 3.46 MJ 

1.62 How long can a 12-V car battery supply 200 A to a starter motor if the battery has 28 MJ of chemical energy 
that can be converted to electric energy? 

Ans. 3.24 h 

1.63 How long does i t  take a 420-W color TV set to consume (a)  2 kWh and (b)  15 kJ? 

Ans. ( U )  4.76 h, ( h )  35.7 s 
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1.64 Find the current drawn by a 110-V dc electric niotor that d e l i ~ ~ s  2 hp. Assume 100 percent efficicncq of 
operation . 

Ans. 13.6 A 

1.65 Find the efficiency of operation of an electric motor that delivers 5 hp while absorbing an input of 4190 W. 

Ans. 89 percent 

1.66 What is the operating efficiency of a dc electric motor that delivers 1 hp while drawing 7.45 A from a 115-V 
line? 

Ans. 87 percent 

1.67 Find the current drawn by a 100-V dc electric motor that operates at 85 percent efficiency while delivering 
0.5 hp. 

Ans. 4.39 A 

1.68 What is the horsepower produced by an automobile starter motor that draws 250 A from a 12-V battery while 
operating at an efficiency of 90 percent'? 

Ans. 3.62 hp 

1.69 What horsepower must an electric motor de\vAop to operate a pump that pumps water at a rate of 23 000 
liters per hour (Lih) up a vertical distance of 50 m if the efficiency of the pump is 90 percent'? The gravitational 

, force on 1 L of water is 9.78 N. 

Ans. 4.86 hp 

1.70 An ac electric motor drives a dc electric voltage generator. I f  the motor operates at an efficiency of 90 percent 
and the generator at an efficiency of 80 percent, and if the input power to the motor is 5 kW, find the output 
power from the generator. 

Ans. 3.6 kW 

1.71 Find the cost for one year (365 d )  to operate a 20-W transistor F M - A M  radio 5 h a day if electrical energqr 
costs 8$/'kilowatthour. 

Ans. $2.92 

1.72 For a cost of $5, how long can a fully loaded 5-hp electric motor be r u n  if the motor operates at an efficienc) of 
85 percent and if the electric rate is 6c'kilowatthour'? 

Ans. 19 h 

1.73 If  electric energy costs 6$'kilowatthour, calculate the utility bill for one month for operating eight 100-W 
light bulbs for 50 h each, ten 60-W light bulbs for 70 h each, one 2-kW air conditioncr for 80 h. one 3-kW 
range for 45 h, one 420-W color TV set for 180 h. and one 300-W refrigerator for 75 h. 

Ans. $28.5 1. 



Chapter 2 

Resistance 

OHM’S LAW 

In flowing through a conductor, free electrons collide with conductor atoms and lose some kinetic 
energy that is converted into heat. A n  applied Froltage will cause them to regain energy and speed, but 
subsequent collisions will s l o ~  them down again. This speeding up and sloiving doiz n occurs continually 
as free electrons move among conductor atoms. 

Resistcrncc) is this property of materials that opposes or resists the nio\ ement of electrons and makes 
it necessary to apply a voltage to cause current to flo~v. The SI u n i t  of resistance is the o h  hith symbol 
R, the Greek uppercase letter omega. The quantity symbol is R.  

In metallic and some other types of conductors, the current is proportional to the applied voltage: 
Doubling the voltage doubles the current, tripling the voltage triples the current. and s o  on. I f  the applied 
voltage I/ and resulting current I have associated references, the relation betkveen I’and I is 

v (volts) 
{(amperes) = 

R( ohms) 

in which R is the constant of proportionality. This relation is kno\vn a s  Olirii’s hi.. For time-varying 
voltages and currents, 

From Ohm’s law it is evident that, the greater the resistance, the less the current for any applied 
voltage. Also, the electric resistance of a conductor is 1 R if an applied koltage of 1 V causes a current 
of 1 A to flow. 

The inverse of resistance is often useful. I t  is called c’o}illilc.tciiic*c’ and its quantit), sy111bOI is G. The 
SI unit  of conductance is the sicwicrzs u.ith symbol S, \i.hich is replacing the popular non-SI uni t  r i l l i o  

with symbol U (inverted omega). Since conductance is the incerse of resistance. G = I R.  I n  terms of 

i = 1 3  R .  And for nonassociated references, I = - I ’  R or i = - r  R.  

conductance. Ohm’s law is 

hat the greater which shows 
voltage. 

{(amperes) = G(sie1iiens) x V(volts) 

he conductance of ;i conductor, the greater the current for any applied 

RESISTIVITY 

The resistance of a conductor of uniform cross section is directly proportional to the length of the 
conductor and inversely proportional to the cross-sectional area. Resistance is also a function of the 
temperature of the conductor, a s  is explained in the next section. At a fixed temperature the resistance 
of a conductor is 

where 1 is the conductor length in meters and A is the cross-sectional area in square meters. The constant 
of proportionality p, the Greek lowercase letter rho, is the quantity symbol for wsi s t i r i t j~ ,  the factor that 
depends on the type of material. 

The SI unit  of resistivity is the o l i m - r i i c ~ t u  with unit symbol R.m. Table 2-1 sholvs the resistivities 
of some materials at 20 C. 

A good conductor has a resistivity close to 10 R.m. Silver, the best conductor. is too expensii-e 
for most uses. Copper is a common conductor, a s  is aluminum. Materials N i t h  resistivities greater than 
10’ C2.m are in.virkrtor..v. They can provide physical support without significant current leakage. Also, 

17 
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Resistivity (l2.m at 20' C) 

1.64 x 10-fl 
1.72 x 10-' 
2.83 x 10-' 
12.3 x to- '  

49 x 10-fl 

I Material Material 

Nichrome 
Silicon 
Paper 
Mica 
Quartz 

Silver 
Copper, annealed 
Aluminurn 
Iron 
Constant an 

Table 2-1 

Resistivity (Qrn at 20 C) 

100 x 10-H  

2500 
1 0 ' O  

5 x 10" 

101' 

insulating coatings on wires prevent current leaks between wires that touch. Materials with resistivities 
in the range of 10-4 to 10-7 Q.m are semiconductors, from which transistors are made. 

The relationship among conductance, length, and cross-sectional area is 

A 
G = O -  

1 

where the constant of proportionality 0, the Greek lowercase sigma, is the quantity symbol for 
conductivity. The SI unit of conductivity is the siemens per meter with symbol S m  ~ ' .  

TEMPERATURE EFFECTS 

The resistances of most good conducting materials increase almost linearly with temperature over 
the range of normal operating temperatures, as shown by the solid line in Fig. 2-1. However, some 
materials, and common semiconductors in particular, have resistances that decrease with temperature 
increases. 

If the straight-line portion in Fig. 2-1 is extended to the left, it crosses the temperature axis at a 
temperature To at which the resistance appears to be zero. This temperature To is the infcmwi zero 
resistance temperuture. (The actual zero resistance temperature is -273 'C.) If To is known and if the 
resistance R ,  at another temperature T, is known, then the resistance R ,  at another temperature T2 is, 
from st raight-line geometry, 

Table 2-2 has inferred zero resistance temperatures for some common conducting materials. 
A different but equivalent way of finding the resistance R ,  is from 

R2 = RlC1 + %(T2 - T1)I 

R I  4' 

TI 

Fig. 2-1 

T 
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Table 2-2 
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Table 2-3 

19 

Material 

Tungsten 
Copper 

Aluminum 
Silver 
Constan tan 

Inferred 
zero resistance 

temperature ( C) 

- 202 
- 234.5 
- 236 
- 243 
- 125 000 

Material 
Temperature coefficient 

("C - I at 20°C) 

Tungsten 
Copper 
Aluminum 
Silver 
Constan tan 
Carbon 

0.0045 
0.003 93 
0.003 91 
0.0038 
O.OO0 008 

- 0.0005 

where u l ,  with the Greek lowercase alpha, is the temperature coeflcient of resistance at the temperature 
Tl. Often T, is 20-C. Table 2-3 has temperature coefficients of resistance at 20°C for some common 
conducting materials. Note that the unit of CI is per degree Celsius with symbol "C-  '. 

RESISTORS 

In  a practical sense a resistor is a circuit component that is used because of its resistance. 
Mathematically, a resistor is a circuit component for which there is an algebraic relation between its 
instantaneous voltage and instantaneous current such as the voltage-current relation for a 
resistor that obeys Ohm's law--a linear resistor. Any other type of voltage-current relation ( c  = 4i2 + 6 ,  
for example) is for a nonlineur resistor. The term "resistor" usually designates a linear resistor. Nonlinear 
resistors are specified as such. Figure 2-2u shows the circuit symbol for a linear resistor, and Fig. 2-2b 
that for a nonlinear resistor. 

t' = iR, 

RESISTOR POWER ABSORPTION 

Substitution from I/ = I R  into 
of resistance: 

P = VI  gives the power absorbed by a linear resistor in terms 

Every resistor has a power rating, also called wattage rating, that is the maximum power that the resistor 
can absorb without overheating to a destructive temperature. 

NOMINAL VALUES AND TOLERANCES 

Manufacturers print resistance values on resistor casings either in numerical form or in a color code. 
These values, though, are only nominal ualues: They are only approximately equal to the actual 
resistances. The possible percentage variation of resistance about the nominal value is called the tolerance. 
The popular carbon-composition resistors have tolerances of 20, 10, and 5 percent, which means that 
the actual resistances can vary from the nominal values by as much as +_ 20, +_ 10, and +_ 5 percent of 
the nominal values. 
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Color Number Color 

Black 0 Blue 

Brown 1 Violet 

Red U Gray 
Orange  3 White 

Yellow 4 Gold 
Green 5 Silver 

7 
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Number 

6 

7 

8 

9 

0.1 

0.0 1 

COLOR CODE 

The most popular resistance color code has nominal resistance values and tolerances indicated by 
the colors of either three or four bands around the resistor casing, as shown in Fig. 2-3. 

First Second Number of zeros 
digit digit or multiplier Tolerance 

Fig. 2-3 

Each color has a corresponding numerical value as specified in Table 2-4. The colors of the first 
and second bands correspond, respectively, to the first two digits of the nominal resistance value. Because 
the first digit is never zero, the first band is never black. The color of the third band, except for silver 
and gold, corresponds to the number of zeros that follow the first two digits. A third band of silver 
corresponds to a multiplier of 10 ’, and a third band of gold to a multiplier of 10 ’. The fourth band 
indicates the tolerance and is either gold- or silver-colored, or is missing. Gold corresponds to a tolerance 
of 5 percent, silver to 10 percent, and a missing band to 20 percent. 

OPEN AND SHORT CIRCUITS 

An open circuit has an infinite resistance, which means that i t  has zero current flow through i t  for 
any finite voltage across i t .  On a circuit diagram it  is indicated by two terminals not connected to 
anything 

A short circuit is the opposite of an open circuit. I t  has zero voltage across i t  for any finite current 
flow through it. On a circuit diagram a short circuit is designated by an ideal conducting wire a wire 
with zero resistance. A short circuit is often called a short. 

Not all open and short circuits are desirable. Frequently, one or the other is a circuit defect that 
occurs as a result of a component failure from an accident or the misuse of a circuit. 

no path is shown for current to flow through. A n  open circuit is sometimes called an o p n .  

INTERNAL RESISTANCE 

Every practical voltage or current source has an intc~rnal resistunce that adversely affects the operation 
of the source. For any load except an open circuit, a voltage source has a loss of voltage across its 
internal resistance. And except for a short-circuit load, a current source has a loss of current through 
its internal resistance. 
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In a practical voltage source the internal resistance has almost the same effect as a resistor in series 
with an ideal voltage source, as shown in Fig. 2-4u. (Components in series carry the same current.) In  
a practical current source the internal resistance has almost the same effect as a resistor in parallel with 
an ideal current source, as shown in Fig. 2-4h. (Components in parallel have the same voltage across 
them.) 

Practical voltage source 
- 3  c-------- 

Internal I 
resistance I 

I 
I 

Practical current source 
r--------- - 7  

Terminals 
resistance current 

source 
I 
I 

Solved Problems 

2.1 If an oven has a 240-V heating element with a resistance of 24Q,  what is the minimum rating 
of a fuse that can be used in the lines to the heating element? 

T h e  fuse must be able t o  carry the current of the heating element: 

2.2 What is the resistance of a soldering iron that draws 0.8333 A at 120 V'? 

C' 120 

I 0.8333 
R = = = 144R 

2.3 A toaster with 8.27 sl of resistance draws 13.9 A. Find the applied Lroltage. 

V = I R = 1 3 . 9 ~ 8 . 2 7 = 1 1 5 V  

2.4 What is the conductance of a 560-kQ resistor? 

I 1 
G = - =  S = 1.79 p S  

R 560 x 1 0 3  

2.5 What is the conductance of an ammeter that indicates 20 A when 0.01 V is across i t ?  
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2.6 

2.7 

2.8 

2.9 

2.10 

2.1 1 

RESISTANCE [CHAP. 2 

Find the resistance at 20°C of an annealed copper bus bar 3 m in length and 0.5 cm by 3 cm in 
rectangular cross section. 

The cross-sectional area of the bar is (0.5 x 1 O P 2 ) ( 3  x 10-') = 1.5 x l O P 4  m2. Table 2-1 has the 
resistivity of annealed copper: 1.72 x I O - '  R.m at 20 C. So, 

1 (1.72 x 10-8)(3) 
R = p - = -  - - n = 344pn 

A 1.5 x 10-4 

Finc the resistance of an aluminum wire that has a length of 1000 m and a diameter of 
1.626 mm. The wire is at 20°C. 

Thecross-sectional area of the wire is nr', in which r = 4 2  = 1.626 x lOP31'2 = 0.813 x 10-3 m. From 
Table 2-1 the resistivity of aluminum is 2.83 x 10-* 0.m. So, 

I (2.83 x 10-8)(1000) 

A n(0.813 x 10-3)2 
R = p - = _______.__ - - 13.6R 

The resistance of a certain wire is 15 0. Another wire of the same material and at the same 
temperature has a diameter one-third as great and a length twice as great. Find the resistance of 
the second wire. 

The resistance of a wire is proportional to the length and inversely proportional to the area. Also, the 
area is proportional to the square of the diameter. So, the resistance of the second wire is 

15 x 2 
R = - -  - 270R 

( 1/3)2 

What is the resistivity of platinum if a cube of it 1 cm along each edge has a resistance of 10 $2 
across opposite faces? 

From R = p l / A  and the fact that A = 10-2 x = 10-4 m2 and 1 = 10-' m, 

R A  (10 x 10-6x10-4) 
= 10 x 10-8R.m 

10- 
p = - - - = -  

1 

A 15-ft length of wire with a cross-sectional area of 127 cmils has a resistance of 8.74 il at 20°C. 
What material is the wire made from? 

The material can be found from calculating the resistivity and comparing it with the resistivities given 
in Table 2-1. For this calculation it  is convenient to use the fact that, by the definition of a circular mil, the 
corresponding area in square inches is the number of circular mils times n,'4 x 10-6. From rearranging 
R = p l / A ,  

A R  [127(n/4 x 10-6)#](8.74R) 1,K 0.0254m 
x - x  = 12.3 x 10-'R.m __ _ _  - 

1 5K 1 2 y t  12 
y = - =  

I 

Since iron has this resistivity in Table 2-1, the material must be iron. 

What is the length of No. 28 AWG (0.000 126 in2 in cross-sectional area) Nichrome wire required 
for a 24-0 resistor at 20°C? 

From rearranging R = p l / A  and using the resistivity of Nichrome given in Table 2-1, 

A R  (0.000 126 &)(24$) 0 . 0 2 5 4 ~ d  0.0254 m 
X--X-- I=---- - - 1.95 m 

0 l o o x  1 0 - 8 ~ t l f  
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2.12 A certain aluminum wire has a resistance of 5 R at 20°C. What is the resistance of an annealed 
copper wire of the same size and at the same temperature'? 

For the copper and aluminum wires, respectively, 

I I 

A A 
R = p , -  and 5 = pa - 

Taking the ratio of the two equations causes the length and area quantities to divide out. with the result 
that the ratio of the resistances is equal to the ratio of the resistivities: 

Then with the insertion of resistivities from Table 2-1, 

1.72 x 1 O P 8  

2.83 x l ops  
R =  x 5 = 3.04 R 

2.13 A wire 50 m in length and 2 mm2 in cross section has a resistance of 0.56 iz. A 100-m length of 
wire of the same material has a resistance of 2 R at the same temperature. Find the diameter of 
this wire. 

From the data given for the first wire, the resistivity of the conducting material is 

R A  0.56(2 x lop') 
p =--= = 2.24 x 1 O P 8  R.m 

1 50 

Therefore the cross-sectional area of the second wire is 

p l  (2.24 x 10-8)(100) 

R 2 
/I=-= = 1.12 x 10-'m2 

and, from A = ~ ( d / 2 ) ~ ,  the diameter is 

d = 2 4  = 2 / F  1.12 x 10-' = 1.19 x l O P 3  m = 1.19 mm 

2.14 A wire-wound resistor is to be made from 0.2-mm-diameter constantan wire wound around a 
cylinder that is 1 cm in diameter. How many turns of wire are required for a resistance of 50 iz 
at 20°C? 

The number of turns equals the wire length divided by the circumference of the cylinder. From 
pl/A and the resistivity of constantan given in Table 2-1, the length of the wire that has a resistance of 50 R is 

R = 

R A  R n r 2  507r(0.1 x 10-3)2 
= 3.21 m = __ = __._ = .._______- 

P P  49 x 10-8 

The circumference of the cylinder is 2nr, in which 
number of turns is 

r = 10-2/2 = 0.005 m, the radius of the cylinder. So. the 

3.2 1 
- = 102 turns 

I 
27rr 27r(0.005) 

2.15 A No. 14 AWG standard annealed copper wire is 0.003 23 in2 in cross section and has a resistance 
of 2.58 mR/ft at 25T.  What is the resistance of 500 ft of No. 6 AWG wire of the same material 
at 25"C? The cross-sectional area of this wire is 0.0206 in2. 
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Perhaps the best approach is to calculate the resistance of a 500-ft length of the No. 14 AWG wire, 

(2.58 x 10-3)(500) = 1.29R 

and then take the ratio of the two 
divide o u t ,  with the result that 

R = /,Ii A equations. Since the resistivities and lengths arc the same, they 

R 0.003 23 0.003 23 
- - or R =  x 1.29 = 0.202 R 

1.29 0.0206 0.0206 

2.16 The conductance of a certain wire is 0.5 S. Another wire of the same material and at  the same 
temperature has a diameter twice as great and a length three times as great. What is the 
conductance of the second wire? 

The conductance of a wire is proportional to the area and inversely proportional to the length. Also, 
the area is proportional to the square of the diameter. Therefore the conductance of the second wire is 

0.5 x 2’ 

3 
G=- = 0.667 S 

2.17 Find the conductance of 100 ft of No. 14 AWG iron wire, which has a diameter of 64 mils. The 
temperature is 20 C. 

sistikity of iron can be obtained from Table 2-1. Thus, 
The conductance formula is G = aA,il, in which a = 1,’p and A = n(d 2)’. Of course, the re- 

2.18 The resistance of a certain copper power line is 100 R at 20 C. What is its resistance when the 
sun heats up the line to 38 C? 

From Table 2-2 the inferred absolute zero resistance temperature of copper is -234.5 C, which is T ,  
and in the formula 

Tl = 20 C. So, the wire resistance at 38 C is 
R ,  = R l (  T, - 7;)) ( T, - To). Also, from the given data. T2 = 38 C, R ,  = 100 R, 

T2 - TO 38 - (-234.5) 
x 100 = I07 R R - R = _____ 

2 -  
T, - T,  20 - (-234.5) 

2.19 When 120 V is applied across a certain light bulb, a 0.5-A current flows, causing the temperature 
of the tungsten filament to increase to 2600-C. What is the resistance of the light bulb at the 
normal room temperature of 20’C? 

120/0.5 = 240 R. And since from Table 2-2 the inferred 
zero resistance temperature for tungsten is -202 C, the resistance at 20 C is 

The resistance of the energized light bulb is 

2.20 A certain unenergized copper transformer winding has a resistance of 30 R at 20 C. Under rated 
operation, however, the resistance increases to 35 R. Find the temperature of the energized 
winding. 

The formula R ,  = R,(T2 - T))i(Tl - q)) solved for & becomes 
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From the specified data, 
so, 

R 2  = 35 R, T, = 20 C, and R I  = 30 Q. Also, from Table 2-2, To = -234.5 C .  

35[20 - ( - 234.5)] 
- 234.5 = 62.4 C T2 = _ _  - ~ 

30 

2.21 The resistance of a certain aluminum power line is 150 R at 20°C. Find the line resistance when 
the sun heats up the line to 42°C. First use the inferred zero resistance temperature formula and 
then the temperature coefficient of resistance formula to show that the two formulas are equivalent. 

From Table 2-2 the zero resistance temperature of aluminum is -236 C. Thus, 

From Table 2-3 the temperature coefficient of resistance of aluminum is 0.003 91 C - '  at 20 C. So, 

R2 = R l [ l  + - Tl)] = l50[l + 0.003 91(42 - 20)] = 163 R 

2.22 Find the resistance at 35°C of an aluminum wire that has a length of 200 m and a diameter of 1 mm. 

The wire resistance at 20 C can be found and used in the temperature coefficient of resistance formula. 
(Alternatively, the inferred zero resistance temperature formula can be used.) Since the cross-sectional area 
of the wire is n(d12)~, where d = 10-3 m, and since from Table 2-1 the resistivity of aluminum is 
2.83 x 10-8 R.m, the wire resistance at 20 C is 

The only other quantity needed to calculate the wire resistance at 35 C is the temperature coefficient of 
resistance of aluminum at 20'C. From Table 2-3 i t  is 0.003 91 C-  ' .  So, 

R ,  = R1[1 + 4T2 - Tl)] = 7.21[1 + 0.003 91(35 - 20)] = 7.63 R 

2.23 Derive a formula for calculating the temperature coefficient of resistance from the temperature 
Tl of a material and To, its inferred zero resistance temperature. 

In R , = R , [ l  + a , ( T 2 - T 1 ) ]  select T,= To. Then R,=OR,  by definition. The result is 0 =  
R,[1 + a,(T, - T,)], from which 

1 
r1 =- 

Tl - To 

2.24 Calculate the temperature coefficient of resistance of aluminum at 30 C and use i t  to find the 
resistance of an aluminum wire at 70°C if the wire has a resistance of 40 R at 30'C. 

From Table 2-2, aluminum has an inferred zero resistance temperature of -236-C. With this value 
inserted, the formula derived in the solution to Prob. 2.23 gives 

1 

30 - (-236) 

R2 = R l [ 1  + rl(T2 - Tl)]  = 40[1 + 0.003 759(70 - 30)] = 46 R 

= 0.003 7 5 9 ° C '  - 
1 

T1 - To 
r30 = ~ - 

so 

2.25 Find the resistance of an electric heater that absorbs 2400 W when connected to a 120-V line. 

From P = V2i/R, 
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2.26 Find the internal resistance of a 2-kW water heater that draws 8.33 A. 

From P = 12R,  
P 2000 

I 2  8.33' 
= 28.8 R R =  - =  

2.27 What is the greatest voltage that can be applied across a &W, 2.7-MR resistor without causing 
it to overheat? 

From P = V 2 , / R ,  
r- V = RP = ,/(2.7 x 106)($) = 581 V 

2.28 If a nonlinear resistor has a voltage-current relation of 
when energized by 61 V? Also, what power does i t  absorb? 

I/= 312 + 4, what current does it draw 

Inserting the applied voltage into the nonlinear equation results in  61 = 31' + 4, from which 

61 - 4  
= 4.36 A 

Then from P = V l ,  

P = 61 x 4.36 = 266 W 

2.29 At 20°C a pn junction silicon diode has a current-voltage relation of I = 10- 14(e,40v - 1). What 
is the diode voltage when the current is 50 mA? 

From the given formula, 

50 x 1 0 - 3  = 1 0 - 1 4 ( ~ 4 0 ~  - 1)  

Multiplying both sides by I O l 4  and adding I to both sides results in 

50 x 10" + 1 = e4OV 

Then from the natural logarithm of both sides, 

V = $n(50 x 10" + 1) = 0.73 V 

2.30 What is the resistance range for ( U )  a 10 percent, 470-0  resistor, and (h )  a 20 percent, 2.7-MR 
resistor? (Hint :  10 percent corresponds to 0.1 and 20 percent to 0.2.) 

( U )  The resistance can be as much as 0.1 x 470 = 47 C! from the 4 7 0 4  nominal value. So, the resistance 
can be as small as 

( h )  Since the maximum resistance variation from the nominal value is 0.2(2.7 + 10') = 0.54 MR, the 
resistance can be as small as 2.7 - 0.54 = 2.16 MR or as great as 

470 - 47 = 423 R or as great as 470 + 47 = 517 Q. 

2.7 + 0.54 = 3.24 MR. 

2.31 A voltage of 110 V is across a 5 percent, 20-kQ resistor. What range must the current be in'! 
(Hint:  5 percent corresponds to 0.05.) 

The resistance can be as much as 0.05(20 x 103) = 103 R from the nominal value, which means that 
the resistance can be as small as 20 + 1 = 21 kR. Therefore, the current 
can be as small as 

20 - 1 = 19 kQ or as great as 

I10 
= 5.24 mA ~._____ 

21 1 0 3  

or as great as 

110 

19 x 103 
= 5.79 mA 
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2.32 What are the colors of the bands on a 10 percent, 5.6-0 resistor? 

Since 5.6 = 56 x 0.1, the resistance has a first digit of 5, a second digit of 6, and a multiplier of 0.1. 
From Table 2-4, green corresponds to 5, blue to 6, and gold to 0.1. Also, silver corresponds to the 10 percent 
tolerance. So, the color bands and arrangement are green-blue-gold-silver from an end to the middle of the 
resistor casing. 

2.33 Determine the colors of the bands on a 20 percent, 2.7-Mi2 resistor. 

The numerical value of the resistance is 2 700 OOO, which is a 2 and a 7 followed by five zeros. From 
Table 2-4 the corresponding color code is red for the 2, violet for the 7, and green for the five zeros. Also, 
there is a missing color band for the 20 percent tolerance. So, the color bands from an end of the resistor 
casing to the middle are red-violet-green-missing. 

2.34 What are the nominal resistance and tolerance of a resistor with color bands in the order of 
green-blue-yellow-silver from an end of the resistor casing toward the middle? 

From Table 2-4, green corresponds to 5, blue to 6, and yellow to 4. The 5 is the first digit and 6 the 
second digit of the resistance value, and 4 is the number of trailing zeros. Consequently, the resistance is 
560 OOO R or 560 kR. The silver band designates a 10 percent tolerance. 

2.35 Find the resistance corresponding to color bands in the order of red-yellow-black-gold. 

of gold corresponds to a 5 percent tolerance. So, the resistance is 24 0 with a 5 percent tolerance. 
From Table 2-4, red corresponds to 2, yellow to 4, and black to 0 (no trailing zeros). The fourth band 

2.36 If a 12-V car battery has a 0.04-0 internal resistance, what is the battery terminal voltage when 
the battery delivers 40 A? 

The battery terminal voltage is the generated voltage minus the voltage drop across the internal 
resistance : 

V = 12 - I R  = 12 - 40(0.04) = 10.4 V 

2.37 If a 12-V car battery has a 0.14 internal resistance, what terminal voltage causes a 4-A current 
to flow into the positive terminal? 

The applied voltage must equal the battery generated voltage plus the voltage drop across the internal 
resistance: 

V = 12 + I R  = 12 + q O . 1 )  = 12.4 V 

2.38 If a 10-A current source has a 100-0 internal resistance, what is the current flow from the source 
when the terminal voltage is 200 V ?  

The current flow from the source is the 10 A minus the current flow through the internal resistance: 

Supplementary Problems 
2.39 What is the resistance of a 240-V electric clothes dryer that draws 23.3 A ?  

Ans. 10.3 C? 
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2.40 I f  a voltmeter has 500 kR of internal resistance, find the current flow through i t  when i t  indicates 86 V. 

Ans. 172 pA 

2.41 I f  an ammeter has 2 mR of internal resistance, find the voltage across it when it indicates 10 A. 

Ans. 20 mV 

2.42 What is the conductance of a 39-R resistor'? 

Ans. 25.6 mS 

2.43 What is the conductance of a voltmeter that indicates 150 V when 0.3 mA flows through it? 

A m .  2 pS 

2.44 Find the resistance at 20 C of an annealed copper bus bar 2 m long and 1 cm by 4 cm in rectangular cross 
sect ion. 

Am. 86 pQ 

2.45 What is the resistance ofan annealed copper wire that has a length of 500 m and a diameter of0.404 mm? 

Ans. 67.1 R 

2.46 The resistance of a wire is 25 R. Another wire of the same material and at the same temperature has a 
diameter twice as great and a length six times as great. Find the resistance of the second wire. 

A m .  37.5 R 

2.47 What is the resistivity of tin if a cube of it  10 cm along each edge has a resistance of 1.15 pR across opposite 
faces,? 

A m .  11.5 x 10-8 R.m 

2.48 A 40-m length of wire with a diameter of 0.574 mm has a resistance of 75.7 R at 20 C. What material is 
the wire made from'? 

'4 ns. CO n s t a n tan 

2.49 What is the length o f  No. 30 AWG (10.0-mil diameter) constantan wire at 20 C required for a 200-R resistor'? 

Ans. 20.7 m 

2.50 I f  No. 29 AWG annealed copper wire at 20 C has a resistance of 83.4 R per loo0 ft, what is the resistance 
per 100 ft  of Nichromc wire of the same size and at the same temperature? 

Ans. 485 Q per 100 ft 

2.51 A wire with a resistance of 5.16 Q has a diameter of 45 mils and a length of 1000 ft. Another wire of the 
same material has a resistance of 16.5 R and a diameter of 17.9 mils. What is the length of this second wire 
if  both wires are at the same temperature'? 

Ans. 506 ft  

2.52 A wirewound resistor is to be made from No. 30 AWG (10.0-mil diameter) constantan wire wound around 
a cylinder that is 0.5 cm in diameter. How many turns are required for a resistance of 25 R at 20 C? 

Ans. 165 turns 

2.53 The conductance of a wire is 2.5 S. Another wire of the same material and at the same temperature has a 
diameter one-fourth as great and a length twice as great. Find the conductance of the second wire. 

Am. 78.1 mS 
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2.54 Find the conductance of 5 m of Nichrome wire that has a diameter of 1 mm. 

Ans. 157 mS 

2.55 If an aluminum power line has a resistance of 80 R at 3 0 T ,  what is its resistance when cold air lowers its 
temperature to - 10cC? 

Ans. 68 R 

2.56 If the resistance of a constantan wire is 2 MR at - 150FC, what is its resistance at 200-C'? 

Ans. 2.006 MR 

2.57 The resistance of an aluminum wire is 2.4 R at -5°C. At what temperature will i t  be 2.8 R?  

Ans. 33.5"C 

2.58 What is the resistance at 90-C of a carbon rod that has a resistance of 25 R at 2O'C? 

Ans. 24.1 R 

2.59 Find the temperature coefficient of resistance of iron at 20'C if iron has an inferred zero resistance 
temperature of - 162°C. 

Ans. 0.0055"C- ' 
2.60 What is the maximum current that a 1-W, 56-kR resistor can safely conduct'? 

Ans. 4.23 mA 

2.61 What is the maximum voltage that can be safely applied across a i-W, 91-R resistor? 

Ans. 6.75 V 

2.62 What is the resistance of a 240-V, 5600-W electric heater? 

Ans. 10.3 R 

2.63 A nonlinear resistor has a voltage-current relation of I/ = 212 + 31 + 10. Find the current drawn by this 
resistor when 37 V is applied across it. 

Ans. 3 A 

2.64 If a diode has a current-voltage relation of 1 = 10- 14(eJ0v - l),  
is 150 mA? 

what is the diode voltage when the current 

Ans. 0.758 V 

2.65 What is the resistance range for a 5 percent, 75-kR resistor? 

Ans. 71.25 to 78.75 kR 

2.66 A 12.1-mA current flows through a 10 percent, 2.7-kR resistor. What range must the resistor voltage be in'? 

Ans. 29.4 to 35.9 V 

2.67 What are the resistor color codes for tolerances and nominal resistances of (a )  10 percent, 0.18 R; ( h )  5 
percent, 39 kR; and (c) 20 percent, 20 MR? 

Ans. (a) Brown-gray-silver-silver, (h )  orange-white-orange-gold, ( c )  red-black-blue-missing 

2.68 Find the tolerances and nominal resistances corresponding to color codes of (a)  brown-brown-silver- 
gold, (b)  green-brown-brown-missing, and ( c )  blue-gray-green-silver. 

Am. (a) 5 percent, 0.1 1 R;  (h )  20 percent, 510 R; (c) 10 percent, 6.8 MR 
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2.69 A battery provides 6 V on open circuit and i t  provides 5.4 V when delivering 6 A. What is the internal 
resistance of the battery? 

Ans. 0.1 R 

2.70 A 3-hp automobile electric starter motor operates at 85 percent efficiency from a 12-V battery. What is the 
battery internal resistance if the battery terminal voltage drops to 10 V when energizing the starter motor? 

Ans .  7.60 mR 

2.71 A short circuit across a current source draws 20 A. When the current source has an open circuit across it ,  
the terminal voltage is 600 V. Find the internal resistance of the source. 

Ans. 30 R 

2.72 A short circuit across a current source draws 15 A. If a 10-Q resistor across the source draws 13 A, what is 
the internal resistance of the source? 

Ans. 65 R 



Chapter 3 

Series and Parallel DC Circuits 

BRANCHES, NODES, LOOPS, MESHES, SERIES- AND PARALLEL-CONNECTED 
COMPONENTS 

Strictly speaking, a branch of a circuit is a single component such as a resistor or a source. 
Occasionally, though, this term is applied to a group of components that carry the same current, especially 
when they are of the same type. 

A node is a connection point between two or more branches. On a circuit diagram a node is sometimes 
indicated by a dot that may be a solder point in the actual circuit. The node also includes all wires 
connected to the point. In other words, it includes all points at the same potential. If a short circuit 
connects two nodes, these two nodes are equivalent to and in fact are just a single node, even if two 
dots are shown. 

A loop is any simple closed path in a circuit. A mesh is a loop that does not have a closed path in 
its interior. No components are inside a mesh. 

Components are connected in series if they carry the same current. 
Components are connected in p a r d e l  if the same voltage is across them. 

KIRCHHOFF’S VOLTAGE LAW AND SERIES DC CIRCUITS 

Kirchhofl’s ooltaye law, abbreviated KVL, has three equivalent versions: At any instant around a 

The algebraic sum of the voltage drops is zero. 

The algebraic sum of the voltage rises is zero. 

The algebraic sum of the voltage drops equals the algebraic sum of the voltage rises. 

In all these versions, the word “algebraic” means that the signs of the voltage drops and rises are 
included in the additions. Remember that a voltage rise is a negative voltage drop, and that a voltage 
drop is a negative voltage rise. For loops with no current sources, the most convenient KVL version is 
often the third one, restricted such that the voltage drops are only across resistors and the voltage rises 
are only across voltage sources. 

In the application of KVL, a loop current is usually referenced clockwise, as shown in the series 
circuit of Fig. 3-1, and KVL is applied in the direction of the current. (This is a series circuit because 
the same current I flows through all components.) The sum of the voltage drops across the resistors, 
Vl + V2 + V3, is set equal to the voltage rise V’across the voltage source: V, + V2 + V3 = V’. Then the 
I R  Ohm’s law relations are substituted for the resistor voltages: 

loop, in either a clockwise or counterclockwise direction, 

1. 

2.  

3. 

V’= Vl + V2 + V3 = I R ,  + I R ,  + I R ,  = I(Rl  + R ,  + R 3 )  = I R ,  

from which I = Vs/RT and 
connected resistors. Another term used is equivalent resistance, with symbol Re, .  

R ,  = R ,  + R ,  + R , .  This R ,  is the total resistance of the series- 

R I  RZ 

Fig. 3-1 
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From this result it should be evident that, in general, the total resistance of series-connected resistors 
(series resistors) equals the sum of the individual resistances: 

R , =  R I  + R 2  + R 3  + a * .  

Further, if the resistances are the same ( R ) ,  and if there are N of them, then 
current in a series circuit is easier using total resistance than applying K V L  directly. 

R ,  = NR. Finding the 

If a series circuit has more than one voltage source, then 

I(R1 + R2 + R3 + * a * )  = Vs, + + V‘s1 + * * a  

in which each V’ term is positive for a voltage rise and is negative for a voltage drop in the direction of I .  

source is not known and there is no formula for it. 
KVL is seldom applied to a loop containing a current source because the voltage across the current 

VOLTAGE DIVISION 

The voltage division or voltage divider rule applies to resistors in series. It gives the voltage across 
any resistor in terms of the resistances and the total voltage across the series combination-the step of 
finding the resistor current is eliminated. The voltage division formula is easy to find from the circuit 
shown in Fig. 3-1. Consider finding the voltage V,. By Ohm’s law, V, = ZR,. Also, Z = 
V’/(R, + R ,  + R 3 ) .  Eliminating Z results in 

In general, for any number of series resistors with a total resistance of RT and with a voltage of Vs across 
the series combination, the voltage V’ across one of the resistors R ,  is 

This is the formula for the voltage division or divider rule. For this formula, Vs and V, must have 
opposing polarities; that is, around a closed path one must be a voltage drop and the other a voltage 
rise. If both are rises or both are drops, the formula requires a negative sign. The voltage Vs need not 
be that of a source. I t  is just the total voltage across the series resistors. 

KIRCHHOFF’S CURRENT LAW AND PARALLEL DC CIRCUITS 

Kirchhofi’s current k m ~ ,  abbreviated KCL, has three equivalent versions: 

The algebraic sum of the currents leaving a closed surface is zero. 

The algebraic sum of the currents entering a closed surface is zero. 

The algebraic sum of the currents entering a closed surface equals the algebraic sum of those leaving. 

At any instant in a circuit, 

1. 

2. 

3. 

The word “algebraic” means that the signs of the currents are included in the additions. Remember that 
a current entering is a negative current leaving, and that a current leaving is a negative current entering. 

In almost all circuit applications, the closed surfaces of interest are those enclosing nodes. So, there 
is little loss of generality in using the word “node” in place of “closed surface” in each KCL version. 
Also, for a node to which no voltage sources are connected the most convenient KCL version is often 
the third one, restricted such that the currents entering are from current sources and the currents leaving 
are through resistors. 
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In  the application of KCL, one node is selected as the groirnci or rc~fi.wncv or c h t i m  nod>, which is 
often indicated by the ground symbol ( =k ). Usually, the node at the bottom of the circuit is the ground 
node, as shown in the parallel circuit of Fig. 3-2. (This is a parallel circuit because the same voltage 2,' 
is across all circuit components.) The voltages on other nodes are almost always referenced positive with 
respect to the ground node. At  the nongrounded node in the circuit shown in Fig. 3-2, the sum of the 
currents leaving through resistors, I ,  + I ,  + I , ,  equals the current I ,  entering this node from the current 
source: I = GV Ohm's law relations for the resistor 
currents results in 

I ,  + I ,  + I ,  = I,. The substitution of the 

I s = I l  + f 2 + 1 3 = G 1 V + G 2 V + G 3 V = ( G l  + G , + G , ) V = G , . V  

from which 
ductance of the circuit. Another term used is equicalent conductuncc), with symbol G,, . 

V = Is/GT and G,. = G ,  + G, + G, = 1 / R ,  + 1,'R, + 1 / R 3 .  This G, is the totiil con- 

d= 
Fig. 3-2 

From this result i t  should be evident that, in general, the total conductance of parallel-connected 
resistors (parallel resistors) equals the sum of the individual conductances: 

G,. = G ,  + G2 + G3 + * * .  

If the conductances are the same (G), and if there are N of them, then Gl,  = N G  and R,. = l/G,. = 
1/NG = R / N .  Finding the voltage in a parallel circuit is easier using total conductance than applying 
KCL directly. 

R ,  = 1 #  G,. = Sometimes working with resistances is preferable to conductances. Then from 
l /(G, + G ,  + G, + * * . ) ,  

An important check on 
resistance of the parallel 

For the special case 

1 

I / R ,  + 1/R2 + 1/R, + * *  

R,. = 

calculations with this formula is that R ,  must always be less than the least 
resistors. 
of just two parallel resistors, 

So, the total or equivalent resistance of two parallel resistors is the product of the resistances divided 
by the sum. 

The symbol 11 as in R,IIR, indicates the resistance of two parallel resistors: 
( R ,  + R 2 ) .  It is also sometimes used to indicate that two resistors are in parallel. 

If a parallel circuit has more than one current source, 

R I  IiR, = R , R 2  

(G, + G2 + G3 + . * * ) V  = I,, + Is2 + I,, + * * .  

in which each I ,  term is positive for a source current entering the nongrounded node and is negative 
for a source current leaving this node. 

KCL is seldom applied to a node to which a voltage source is connected. The reason is that the 
current through a voltage source is not known and there is no formula for it. 
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CURRENT DIVISION 

The current division or current divider rule applies to resistors in parallel. I t  gives the current through 
any resistor in terms of the conductances and the current into the parallel combination----the step of 
finding the resistor voltage is eliminated. The current division formula is easy to derive from the circuit 
shown in Fig. 3-2. Consider finding the current I , .  By Ohm’s law, I ,  = G 2 K  Also, V = 
Is’(Gl  + G ,  + G3). Eliminating Vresults in 

In general, for any number of parallel resistors with a total conductance G, and with a current I ,  entering 
the parallel combination, the current I ,  through one of the resistors with conductance G, is 

This is the formula for the current division or divider rule. For this formula, I ,  and I ,  must be 
referenced in the same direction, with I ,  referenced away from the node of the parallel resistors that I ,  
is referenced into. If both currents enter this node, then the formula requires a negative sign. The current 
I ,  need not be that of a source. It  is just the total current entering the parallel resistors. 

For the special case of two parallel resistors, the current division formula is usually expressed in 
resistances instead of conductances. If the two resistances are R ,  and R,, the current I ,  in the resistor 
with resistance R ,  is 

R2 
s -  - - I ,  

I - -  G I - 1 l R  L - - I  - 
G ,  + G, - 1/R, + 1/R, R ,  + R ,  1 -  

In general, as this formula indicates, the current flowing in one of two parallel resistors equals the 
resistance of the other resistor divided by the sum of the resistances, all times the current flowing into 
the parallel combination. 

KILOHM-MILLIAMPERE METHOD 

The basic equations V =  R I ,  I = G K  P = V I ,  P = V 2 / R ,  and P = 12R are valid, of 
course, for the units of volts (V), amperes (A), ohms (a), siemens (S), and watts (W). But they are equally 
valid for the units of volts (V), milliamperes (mA), kilohms (kQ), millisiemens (mS), and milliwatts (mW), 
the use of which is sometimes referred to as the kilohm-milliampere method. In this book, this second set 
will be used almost exclusively in the writing of network equations when the network resistances are in the 
kilohm range, because with i t  the writing of powers of 10 can be avoided. 

Solved Problems 
3.1 Determine the number of nodes and branches in the circuit shown in Fig. 3-3. 

Dots 1 and 2 are one node, as are dots 3 and 4 and also dots 5 and 6, all with connecting wires. Dot 
7 and the two wires on both sides are another node, as are dot 8 and the two wires on both sides of it. So, 
there are five nodes. Each of the shown components A through H is a branch-eight branches in all. 
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3.2 

3.3 

3.4 

3.5 

Fig. 3-3 Fig. 3-4 

Which components in Fig. 3-3 are in series and which are in parallel? 

Components F ,  G, and H are in series because they carry the same current. Components A and B, being 
connected together at both ends, have the same voltage and so are in parallel. The same is true for components 
C, D, and E---they are in parallel. Further, the parallel group of A and B is in series with the parallel group 
of C, D, and E ,  and both groups are in series with components F ,  G, and H .  

Identify all the loops and all the meshes for the circuit shown in Fig. 3-4. Also, specify which 
components are in series and which are in parallel. 

There are three loops: one of components A ,  E, F ,  D, and C;  a second of components B, H ,  G ,  F ,  and 
E ;  and a third of A,  B, H ,  G, D, and C. The first two loops are also meshes, but the third is not because 
components E and F are inside it. Components A,  C, and D are in series because they carry the same current. 
For the same reason, components E and F are in series, as also are components B, H ,  and G. No components 
are in parallel. 

Repeat Prob. 3.3 for the circuit shown in Fig. 3-5. 

The three loops of components A ,  B, and C ;  C, D, and E; and F ,  D, and B are also meshes-the only 
meshes. All other loops are not meshes because components are inside them. Components A,  B, D, and E 
form one of these other loops; components A ,  F ,  and E another one; components A,  F ,  D, and C a third; 
and components F ,  E, C, and B a fourth. The circuit has three meshes and seven loops. No components are 
in series or in parallel. 

What is Vacross the open circuit in the circuit shown in Fig. 3-6? 

The sum of the voltage drops in a clockwise direction is, starting from the upper left corner, 

6 0 - 4 0 +  I/- 1 0 + 2 0 = 0  from which I/= -3OV 

I n  the summation, the 40 and 10 V are negative because they are voltage rises in a clockwise direction. The 
negative sign in the answer indicates that the actual open-circuit voltage has a polarity opposite the shown 
reference polarity. 

. 
F 

Fie. 3-5 

I p l  
Fig. 3-6 

4 O V  
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3.6 

3.7 

3.8 

3.9 

3.10 

Find the unknown voltages in the circuit shown in Fig. 3-7. Find Vl first. 

The basic KVL approach is to use loops having only one unknown voltage apiece. Such a loop for V, 
includes the 10-, 8-, and 9-V components. The sum of the voltage drops in a clockwise direction around 
this loop is 

10 - 8 + 9 - V1= 0 from which V,  = I 1  v 
Similarly, for V2 the sum of the voltage drops clockwise around the top mesh is 

V2 + 8 - 10 = 0 from which V 2 = 2 V  

Clockwise around the bottom mesh, the sum of the voltage drops is 

-8 + 9 + v, = 0 from which V,= - l v  

The negative sign for C< indicates that the polarity of the actual voltage is opposite the reference polarity. 

Fig. 3-7 

What is the total resistance of 2-, 5-, 8-, 10-, and 17-R resistors connected in series? 

The total resistance of series resistors is the sum of the individual resistances: R ,  = 2 + 5 + 8 + 10 + 
17 = 42 R. 

What is the total resistance of thirty 6-R resistors connected in series? 

The total resistance is the number of resistors times the common resistance of 6 R:  R,. = 30 x 6 = 180 R. 

What is the total conductance of 4-, 10-, 16-, 20-, and 24-S resistors connected in series? 

The best approach is to convert the conductances to resistances, add the resistances to get the total 
resistance, and then invert the total resistance to get the total conductance: 

R ,  = + + + + = 0.504 R 

and 

A string of Christmas tree lights consists of eight 6-W, 15-V bulbs connected in series. What 
current flows when the string is plugged into a 120-V outlet, and what is the hot resistance of 
each bulb? 

The total power is P ,  = 8 x 6 = 48 W. From P ,  = V I ,  thecurrent is I = P I / V =  48'120 = 0.4 A. 
And from P = 1 2 R ,  the hot resistance of each bulb is R = P/'12 = 6/0.42 = 37.5 R. 
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3.11 A 3-V, 300-mA flashlight bulb is to be used as the dial light in a 120-V radio. What is the resistance 
of the resistor that should be connected in series with the flashlight bulb to limit the current'? 

across the series resistor. 
The current is the rated 300 mA. Consequently. the resistance is 

Since 3 V is to be across the flashlight bulb, there will be 120 - 3 = 117 V 
1171'0.3 = 390 R. 

3.12 A person wants to move a 20-W FM-AM transistor radio from a junked car with a 6-V battery 
to a new car with a 12-V battery. What is the resistance of the resistor that should be connected 
in series with the radio to limit the current, and what is its minimum power rating? 

2016 = 3.33 A. The resistor, being in series, has the same current. 
Also, it  has the same voltage because R = 6 3.33 = 1.8 R. With the same voltage 
and current, the resistor must dissipate the same power as the radio, and so has a 20-W minimum power 
rating. 

From P = V l ,  the radio requires 
12 - 6 = 6 V. As a result, 

3.13 A series circuit consists of a 240-V source and 12-, 20-, and 16-R resistors. Find the current out 
of the positive terminal of the voltage source. Also find the resistor voltages. Assume associated 
references, as should always be done when there is no specification of references. 

The current is the applied voltage divided by the equivalent resistance: 

240 

12 + 20 + 16 
I=-- = 5 A  

Each resistor voltage is this current times the corresponding resistance: VI2 = 5 x 12 = 60 V, 
V,, = 5 x 20 = 100 V, and V,,  = 5 x 16 = 80 V. As a check, the sum of the resistor voltages is 
60 + 100 + 80 = 240 V, the same as the applied voltage. 

3.14 A resistor in series with an 8-Q resistor absorbs 100 W when the two are connected across a 60-V 
line. Find the unknown resistance R. 

The total resistance is 8 + R, and thus the current is 60/(8 + R). From 12R = P ,  

which simplifies to R 2  - 20R + 64 = 0. The quadratic formula can be used to find R .  Recall that for the 
equation ax2 + bx + c = 0, this formula is 

-b  & , / b 2  - 4ac 

2a 
X =  

so -(-2O) f J(-20), - 4f1)(64) 20 f 12 
___. - - 16R or 4 R _____- R =  - 

2(1) 2 

A resistor with a resistance of either 16 or 4 R will dissipate 100 W when connected in series with an 8-R 
resistor across a 60-V line. 

This particular quadratic equation can be factored without using the quadratic formula. By in- 
spection, R 2  - 20R + 64 = (R - 16)(R - 4) = 0, frotn which R = 16 R or R = 4 R, the same as 
before. 

3.15 Resistors R I ,  R , ,  and R ,  are in series with a 100-V source. The total voltage drop across R ,  and 
R 2  is 50 V, and that across R, and R ,  is 80 V. Find the three resistances if the total resistance 
is 50 SZ. 

The current is the applied voltage divided by the total resistance: 1 = 100,150 = 2 A. Since the voltage 
100 - 50 = 50 V across R , .  By Ohm's law, R ,  = 50,'2 = across resistors R ,  and R, is 50 V, there must be 
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3.16 

3.17 

3.18 

3.19 

3.20 

25 Q. Resistors R ,  and R ,  have 80 V across them, leaving R ,  = 
20,2 = 1OQ. The resistance of R ,  is the total resistance minus the resistances of R ,  and R,: R ,  = 

100 - 80 = 20 V across R , .  Thus, 

50 - 10 - 2 5  = 1 5 0 .  

What is the maximum voltage that can be applied across the series combination of a 150-$2, 2-W 
resistor and a 100-0, 1-W resistor without exceeding the power rating of either resistor? 

I = ;‘q:R = , h / F O  = 0.1 15 A. 
That for the 100-Q resistor is v/l/loo = 0.1 A. The maximum current cannot exceed the lesser of these two 
currents and so is 0.1 A. For this current, 

From P = 1 2 R ,  the maximum safe current for the 1504 resistor is 

V =  ] ( R I  + R,) = 0.1(150 + 100) = 25 V. 

In a series circuit, a current flows from the positive terminal of a 180-V source through two 
resistors, one of which has 30 $2 of resistance and the other of which has 45 V across it. Find the 
current and the unknown resistance. 

The 30-Q resistor has 180 - 45 = 135 V across it and thus a 135/30 = 4.5-A current through it. 
The other resistance is 45/4.5 = 10 R. 

Find the current and unknown voltages in the circuit shown in Fig. 3-8. 

from the voltage sources in the direction of 1 is 
the total resistance: I = 15/50 = 0.3 A. By Ohm’s law, 
L:, = -0.3 x 6 = - 1.8 V, 
and C’, have negative signs because the references for these voltages and the reference for 1 are not associated. 

The total resistance is the sum of the resistances: 10 + 15 + 6 + 8 + 1 1  = 50 Q. The total voltage rise 
12 - 5 + 8 = 15 V. The current 1 is this voltage divided by 

V, = 0.3 x 15 = 4.5 V, 
V, = -0.3 x 1 1  = -3.3 V. The equations for V, 

V ,  = 0.3 x 10 = 3 V, 
V, = 0.3 x 8 = 2.4 V, and 

Find the voltage V,, in the circuit shown in Fig. 3-8. 

V,, is the voltage drop from node a to node h, which is the sum of the voltage drops across the 
components connected between nodes U and h either to the right or to the left of node a. I t  is convenient 
to choose the path to the right because this is the direction of the current found in the solution 
of Prob. 3.18. Thus, 

I = 0.3-A 

v,, = (0.3 X 15) + 5 + (0.3 X 6) + (0.3 X 8) - 8 = 5.7 V 

Note that uti ZR drop is alwaysposiiiue in the direction of Z. A voltage reference, and that of V, in particular 
here, has no effect on this. 

Find I I , ,  and V in the circuit shown in Fig. 3-9. 

5 v  a I5 R 10 R 
- 

- 
V? + v , -  + + 

Fig. 3-8 Fig. 3-9 
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3.2 1 

3.22 

3.23 

Since the 90-V source is across the 10-R resistor, I ,  = 90/10 = 9 A. Around the outside loop in a 
This is equal to the clockwise direction, the voltage drop across the two resistors is (25 + 15)I, = 401,. 

sum of the voltage rises across the voltage sources in this outside loop: 

401, = -30  + 90 from which I, = 60/40 = 1.5 A 

The voltage V is equal to the sum of the drops across the 25-Q resistor and the 30-V source: V =  
(1.5 x 25) + 30 = 67.5 V. Notice that the parallel 10-R resistor does not affect I, .  I n  general, resistors in 
parallel with voltage sources that have zero internal resistances (ideal voltage sources) do not affect currents 
or voltages elsewhere in a circuit. They do, however, cause an increase in current flow in these voltage sources. 

A 90-V source is in series with five resistors having resistances of 4, 5, 6, 7, and 8 R. Find the 
voltage across the 6-R resistor. (Here “voltage” refers to the positive voltage, as it will in later 
problems unless otherwise indicated. The same is true for current.) 

By the voltage division formula, the voltage across a resistor in  a series circuit equals the resistance of 
that resistor times the applied voltage divided by the total resistance. So, 

6 v, = x 9 0 =  18V 
4 + 5 + 6 + 7 + 8  

Use voltage division to determine the voltages V4 and V5 in the circuit shown in Fig. 3-8. 

The total voltage applied across the resistors equals the sum of the voltage rises from the voltage sources, 
preferably in a clockwise direction: 12 - 5 + 8 = 15 V. The polarity of this net voltage is such that it 
produces a clockwise current flow. In this sum the 5 V is negative because i t  is a drop, and rises are being 
added. Put another way, the polarity of the 5-V source opposes the polarities of the 12- and 8-V sources. 
The V, voltage division formula should have a positive sign because V, is a drop in the clockwise direction-it 
opposes the polarity of the net applied voltage: 

8 

10+ 1 5 + 6 + 8 +  1 1  50 
x I S = -  x 1 5 = 2 . 4 V  

8 v, = 

The voltage division formula for V, requires a negative sign because both V, and the net source voltage 
are rises in the clockwise direction: 

1 1  

50 
Vs = -- x 15 = -3.3 V 

Find the voltage Kb across the open circuit in the circuit shown in Fig. 3-10. 

it has zero volts across it.) Consequently, voltage division can be used to obtain V , .  The result is 
The 10-0 resistor has zero current flowing through it because it is in series with an open circuit. (Also, 

60 
x 1 0 0 = 6 0 V  V, = ~ 

60 + 40 
Then, a summation of voltage drops around the right-hand half of the circuit gives 0 - 30 + K b  + 
10 - 60 = 0. Therefore, &, = 80 V. 

40 R 10 R 30 V 
- 

M +  W-O + * 

T 
v,, 
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3.24 For the circuit of Fig. 3-11, calculate I and the power absorbed by the dependent S O \ I I C C  

4 - 0  resistor gives 
is 4.5(41) = 181. Then by KVL, 

A good first step is to solve for the controlling quantity V,  in terms of I .  Applying O h i n ' ,  I:IU t o  11ic 

V, = 41. Consequently, in the direction of I ,  the voltage riso across thc dcpcriclcnt \ ~ ~ [ I I L Y  

I = 24/(- 12) = - 2  A 41 + 21 - 181 = 24 and so 

The negative sign indicates that the 2-A current flows counterclockwise, opposite the reftrcncc ditcc.tior) l o r  I 

formula has a negative sign: 
Since the current and voltage references for the dependent source are not associatcd, tlic p o ~ c i  c ~ t ~ ~ t r :  I K ~  

P = -4.5Vl(I) = -4.5(41)(1) = - 1812 

But 
dependent source is supplying power instead of absorbing it. 

1 = - 2  A, and so P = -18(-2)2 = -72 W. The presence of the negatikc ~ g i i  tiicaii\ [ i i , , t  i h c  

4 R  2 Q  I 

Fig. 3-11 

3.25 In the circuit of Fig. 3-11, determine the resistance "seen" by the independent voltagu M I U I L C  

out of the positive terminal of the source: 
The resistance "seen" by the source is equal to the ratio of the source voltage to rhc cwr rcn f  t h : i i  t l(, ,n\ 

The negative sign of the resistance is a result of the action of the dependent sourcc. I t  inc l ic . i~c~ 1 1 1 , i t  t h c  
remainder of the circuit supplies power to the independent source. Actually, it  is the dcpcndlvt ~ . t ' ! ~ ~ ~ ~ ~ ~  : i lo t ic '  

that supplies this power, as well as the power to the two resistors. 

3.26 Find Vl in the circuit of Fig. 3-12. 

First observe that no current flows in the single wire connecting the two halves of I ~ I S  c ' i t 'c~i t i l .  I \  

evident from enclosing either half in a closed surface. Then only this single wire would cro\z I1114 '>iiif;icc. 

and since the sum of the currents leaving any closed surface must be zero, the current in l l i i j  i ~ i r i '  i i i i i \ (  hc 
zero. From another point of view, there is no return path for a current that would llou i n  t h t \  \ t i ~ c  

16Q I ,  

Fig. 3-12 
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- 13 Q 
h O  il 

From KVL applied to the left-hand half of the circuit, 161, + 4V1 = 24. And for the right-hand half 
of the circuit, Ohm's law gives 

V1 = -O.511(4) = -211 or I1 = -O.SVl 

Then, substituting for I ,  in the KVL equation produces 

lq -O.5Vl )  + 4V1 = 24 and so V 1 =  -6V 

9n 
( b  

15 v 
i 

3.27 Calculate I and K b  in the circuit of Fig. 3-13. 

Because of the open circuit between nodes a and 6 ,  the middle branch has no effect on the current I .  
Consequently, I can be obtained by applying KVL to the outside loop. The total resistance of this loop 
is 2 + 8 + 5 + 9 = 24 Q. And in the direction of I ,  the sum of the voltage rises from voltage sources 
is 100 + 20 = 120 V. So, 1 = 120/24 = 5 A. 

From the summing of voltage drops across the right-hand branch, the voltage drop, top to bottom, 
across the middle branch is V,, = 50 - 30 = 20 V because there 
is zero volts across the 10-S2 resistor. 

5(5 )  - 20 + 5(9) = 50 V. Consequently, 

* l a o V  
T 

20v 

9 0  

Fig. 3-13 

3.28 Determine the voltage drop &, across the open circuit in the circuit of Fig. 3-14. 

Because of the open circuit, no current flows in the 9-a and 1 3 4  resistors and so there is zero volts 
across each of them. Also, then, all the 6-A source current flows through the 10-0 resistor and all the 8-A 

10 Q 5 Q  
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source current flows through the 5-R resistor, making 
spectively. so, I/ab, the voltage drop from node Q to h, is from summing voltage drops, 

V, = -6( 10) = -60 V and V' = 8 ( 5 )  = 40 V, re- 

4, = V, + V2 + 0 - 15 + 0 = -60 + 40 - 15 = - 3 5  v 
The 4-, 11-, 9-, 18-, and 13-f l  resistors have no effect on this result. 

3.29 Find the unknown currents in the circuit shown in Fig. 3-15. Find I , ,  first. 

The basic KCL approach is to find closed surfaces such that only one unknown current flows across 
each surface. In Fig. 3-15, the large dashed loop represents a closed surface drawn such that I ,  is the only 
unknown current flowing across it. Other currents flowing across it are the 10-, 8-, and 9-A currents. I ,  and 
the 9-A currents leave this closed surface, and the 8-A and 10-A currents enter it. By KCL, the sum of the 
currents leaving is zero: 1 + 9 - 8 - 10 = 0, or 1 , = 9 A. I, is readily found from summing the currents 
leaving the middle top node: I ,  + 8 - 
9 = 0, and 

I ,  - 8 - 10 = 0, or 1, = 18 A. Similarly, at the right top node, 
10 - I, - I ,  = 10 - 9 - 1 = 0, I ,  = 1 A. Checking at the left top node: as i t  should be. 

3.30 Find I for the circuit shown in Fig. 3-16. 

Since 1 is the only unknown current flowing across the shown dashed loop, i t  can be found by setting 
to zero the sum of the currents leaving this loop: I - 16 - 8 - 9 + 3 + 2 ~ 10 = 0. from which 
1 = 38 A. 

3.31 Find the short-circuit current I ,  for the circuit shown in Fig. 3-17. 

The short circuit places the 100 V of the left-hand voltage source across the 20-Q resistor, and it places 
the 200 V of the right-hand source across the 25-R resistor. By Ohm's law, and 
I, = -200/25 = - 8  A. The negative sign occurs in the I, formula because of nonassociated references. 

I ,  = 100 20 = 5 A 

0 - - - - - - - - - -  \ 
0 16 A \ 

20 R II I:  25 R 

Fig. 3-16 Fig. 3-17 
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From K C L  applied at the top middle node, I, = I, + I ,  = 5 - 8 = - 3  A. Of course the negative sign in 
the answer means that 3 A actually flows up through the short circuit, opposite the direction of the I, 
current reference arrow. 

3.32 Calculate I/ in the circuit of Fig. 3-18. 

The short circuit places all 36 V of the voltage source across the 20-kQ resistor. So, by Ohm's 
law, I, = 36/20 = 1.8 mA. (The kilohm-milliampere method was used in finding I, .) Applying KCL to the 
top middle node gives 

1, = 1 ,  + 101, = 1.8 + 101, and therefore I, = -0.2 mA 

Finally, by Ohm's law, 

3.33 Find the total conductance and resistance of four parallel resistors having resistances of 1, 0.5, 
0.25, and 0.125 R. 

The total conductance is the sum of the individual conductances: 

1 1  1 1 

1 0.5 0.25 0.125 
GT = - + - + - + - - - 1 + 2 + 4 + 8 = 1 5 S  

The total resistance is the inverse of this total conductance: R T  = l/GT = 1/15 = 0.0667 R. 

3.34 Find the total resistance of fifty 200-R resistors connected in parallel. 

The total resistance equals the common resistance divided by the number of resistors: 200/50 = 4 R. 

3.35 A resistor is to be connected in parallel with a 10-kR resistor and a 20-kR resistor to produce a 
total resistance of 12 kSZ. What is the resistance of the resistor? 

Assuming that the added resistor is a conventional resistor, no added parallel resistor will give a total 
resistance of 12 kR because the total resistance of parallel resistors is always less than the least individual 
resistance, which is 10 kQ. With transistors, however, it is possible to make a component that has a negative 
resistance and that in parallel can cause an increase in total resistance. Generally, however, the term resistor 
means a conventional resistor that has only positive resistance. 

3.36 Three parallel resistors have a total conductance of 1.75 S. If two of the resistances are 1 and 2 SZ, 
what is the third resistance? 

The sum of the individual conductances equals the total conductance: 

+ 4 + G ,  = 1.75 or G3 = 1.75 - 1.5 = 0.25 S 

The resistance of the third resistor is the inverse of this conductance: R ,  = l/G, = 1/0.25 = 4 R. 
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3.37 

3.38 

3.39 

3.40 

3.4 1 

3.42 

Without using conductances, find the total resistance of two parallel resistors having resistances 
of 5 and 20 R. 

The total resistance equals the product of the individual resistances divided by the sum: R ,  = 
(5 x 20)/(5 + 20) = 100/25 = 4 R. 

Repeat Prob. 3.37 for three parallel resistors having resistances of 12, 24, and 32 R. 

equivalent resistance is 
One approach is to consider the resistances two at a time. For the 12- and the 24-R resistances, the 

12 x 24 288 
12 + 24 36 

= 8 R  - _ _ _ _ -  - 

This combined with the 32-R resistance gives a total resistance of 

8 x 32 256 

8 + 32 40 
R ------=-=(j6.4R T -  

A 60-W, a 100-W, and a 200-W light bulb are connected in parallel across a 120-V line. Obtain 
the equivalent hot resistance of this combination from the individual hot resistances of the bulbs. 

From R = V 2 / P ,  the individual resistances are 1202,1'60 = 240 R, 1202/100 = 144 R, and 
1202/200 = 72 R. The 72- and 1 4 4 4  resistances have an equivalent resistance of (72 x 144)/(72 + 144) = 
48 R. The equivalent resistance of this and the 240-R resistance is the total equivalent hot resistance: 
(240 x 48)/(240 x 48) = 40 R. As a check, from the total power of 360 W, R, = V 2 / P  = 12021360 = 40 R. 

Determine RT in 

241112 = (24 x 12)/(24 + 12) = 8. This adds to the 4: 
(12 x 6)/(12 + 6) = 4. Thus, 

R, = (4 + 24((12)/(6. 

It is essential to start evaluating inside the parentheses, and then work out. By definition, the term 
4 + 8 =  12. The expression reduces to 12116, which is 

R,. = 4 R. 

Find the total resistance R ,  of the resistor ladder network shown in Fig. 3-19. 

To find the equivalent resistance of a ladder network by combining resistances, always start at the end 
opposite the input terminals. At this end, the series 4- and 8-R resistors have an equivalent resistance of 
12 R. This combines in parallel with the 24-R resistance: (24 x 12)/(24 + 12) = 8 R. This adds to the 3 and 
the 9 R of the series resistors for a sum of 8 + 3 + 9 = 20 R. This combines in parallel with the 5-R 
resistance: (20 x 5)/(20 + 5) = 4 0. R, is the sum of this resistance and the resistances of the series 16- and 
14-R resistors: R, = 4 +  16 + 14 = 34 R. 

In the circuit shown in Fig. 3-20 find the total resistance R ,  with terminals a and 6 (a )  
open -ci rcu i t ed, and (6) short -ci rcu i t ed . 

16 52 352 852 4052 

14 52 952 10 52 
Fig. 3-1 9 Fig. 3-20 
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3.43 

3.44 

(a)  With terminals a and h open, the 40- and 90-R resistors are in series, as are the 60- and 10-R 
resistors. The two series combinations are in parallel; so 

(40 + 90x60 + 10) 

40 + 90 + 60 +% R, = = 45.5 R 

(b) For terminals a and b short-circuited, the 40- and 60-0  resistors are in parallel, as are the 90- and 10-R 
resistors. The two parallel combinations are in series, making 

40 x 60 90 x 10 

40+  60 9 0 +  10 
R T = p  +------- - 3 3 R  

A 90-A current flows into four parallel resistors having resistances of 5, 6,  12, and 20 Q. Find the 
current in each resistor. 

The total resistance is 
1 

R -  = 2 R  
- 1/5 + 1/6 + 1/12 + 1/20 

This value times the current gives the voltage across the parallel combination: 
Ohm’s law, 

2 x 90 = 180 V. Then by 
I,, = 180/20 = 9 A. I ,  = 180/5 = 36 A, I ,  = 180/6 = 30 A, I , ,  = 180/12 = 15 A, and 

Find the voltage and unknown currents in the circuit shown in Fig. 3-21. 

8s 

Fig. 3-21 

Even though it  has several dots, the top line is just a single node because the entire line is at the same 
potential. The same is true of the bottom line. Thus, there are just two nodes and one voltage V .  The total 
conductance of the parallel-connected resistors is G = 6 + 12 + 24 + 8 = 50 S. Also, the total current 
entering the top node from current sources is 190 - 50 + 60 = 200 A. This conductance and current can be 
used in the conductance version of Ohm’s law, I/= l / G  = 200,’50 = 4 V. 
Since this is the voltage across each resistor, the resistor currents are I, = - 12 x 4 = 
-48 A, I ,  = - 8  x 4 = -32 A. The negative signs are the result of non- 
associated references. Of course, all the actual resistor currents leave the top node. 

Note that the parallel current sources have the same effect as a single current source, the current of 
which is the algebraic sum of the individual currents from the sources. 

I = GI.: to obtain the voltage: 
1 = 6 x 4 = 24 A, 

I ,  = 24 x 4 = 96 A, and 

3.45 Use current division to find the currents I ,  and I ,  in the circuit shown in Fig. 3-21. 

sum of the conductances is 6 + 12 + 24 + 8 = 50 S. By the current division formula, 
The sum of the currents from current sources into the top node is 190 - 50 + 60 = 200 A. Also, the 

12 

50 
I , = - -  x 200=  - 4 8 A  and 

24 

50 
I 3 = -  x 2OO=96A 

The formula for I ,  has a negative sign because I ,  has a reference into the top node, and the sum of the 
currents from current sources is also into the top node. For a positive sign, one current in the formula must 
be into a node and the other current must be out of the same node. 
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3.46 A 90-A current flows into two parallel resistors having resistances of 12 and 24 Cl. Find the current 
in the 24-R resistor. 

The current in the 2442 resistor equals the resistance of the other parallel resistor divided by the sum 
of the resistances, all times the input current: 

12 
12 + 24 

124 = x 90 30 A 

As a check, this current results in a voltage of 30 x 24 = 720 V, which is also across the 12-52 resistor. 
Thus, I , ,  = 720/12 = 60 A, and I , ,  + I , ,  = 30 + 60 = 90 A, which is the input current. 

3.47 Calculate V, and V2 in the circuit of Fig. 3-22. 

source current is, in terms of V , ,  
right-hand node gives 

A good first step is to solve for the controlling current I in terms of V,  : I = V,  5. Thus, the dependent 
3(v1/5) = 0.6V1, directed downward. Then, KCL applied at the top 

from which v, = 1ov Vl v, - + - + 0.6P'I = 9 
5 10 

The voltage drop across the 12-R resistor is 9(12) = 108 V.  Finally, K V L  applied around the outside 
V2 = 108 + 10 = 118 V. Observe that the 12-R resistor has no effect on Vl ,  but i t  does have loop results in 

an effect on V,. 

3.48 Calculate I and Vin the circuit of Fig. 3-23. 

The source current of 40 mA flows into the parallel resistors. So, by current division, 

x 40 = 32 mA 
20 

I = - - - - -  
20 + 5 

Then by KVL, 
effect on the current-source voltage, it has no effect on the resistor current I .  

V =  -900 + 32(5) = -740 V. Observe that although the voltage-source voltage has an 

3.49 Use voltage division twice to find Vl in the circuit shown in Fig. 3-24. 

voltage division used with the equivalent resistance to the right of the 16-R resistor. This resistance is 
Clearly, V, can be found from V, by voltage division. And V, can be found from the source voltage by 

(54 + 18x36) 

54+  18+36  
= 2 4 R  

By voltage division, 

24 18 
V, = ___ x 80 = 48 V and V 1 = = - ~ 4 8 = 1 2 V  

16 + 24 54+  18 

A common error in finding V, is to neglect the loading of the resistors to the right of the V, node. 
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3.50 Use current division twice to  find I ,  in the circuit shown in Fig. 3-25. 

Obviously I ,  can be found from l 2  by current division. And, if the total resistance of the bottom three 
branches is found, current division can be used to find I ,  from the input current. The needed total resistance is 

20 x 5 

20 + 5 
6 + -  = 1 0 n  

By the two-resistance form of the current division formula, 

8 20 
I2 = ____ x 3 6 =  16A and I ,  =- x 16 = 12.8 A 

10 + 8 20 + 5 

Supplementary Problems 
3.51 Determine the number of nodes, branches, loops, and meshes in the circuit shown in Fig. 3-26. 

Ans. 6 nodes, 8 branches, 7 loops, 3 meshes 

3.52 Find V , ,  V,, and V, for the circuit shown in Fig. 3-26. 

A ~ s .  V, = 26 V, V2 = -21 V, V, = 2 V 

3.53 Four resistors in series have a total resistance of 500 Q. If three of the resistors have resistances of 100, 150, 
and 200 Q, what is the resistance of the fourth resistor? 

Ans. 50Q 

13 V 18 V 1s v 

Fig. 3-26 
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3.54 Find the total conductance of 2-, 4-, 8-, and 10-S resistors connected in series. 

Ans. 1.03 S 

3.55 A 6O-W, 120-V light bulb is to be connected in series with a resistor across a 277-V line. What is the resistance 
and minimum power rating of the resistor required if the light bulb is to operate under rated conditions? 

Ans. 3 1 4 0 ,  78.5 W 

3.56 A series circuit consists of a dc voltage source and 4-, 5-, and 6-C! resistors. I f  the current is 7 A, find the 
source voltage. 

Ans. 105 V 

3.57 A 12-V battery with a 0 .3 -0  internal resistance is to be charged from a 15-V source. If the charging current 
should not exceed 2 A, what is the minimum resistance of a series resistor that will limit the current to this 
safe value? 

Ans. 1.2 R 

3.5% A resistor in series with a 100-R resistor absorbs 80 W when the two are connected across a 240-V line. 
Find the unknown resistance. 

Ans. 20 or 5 0 0 R  

3.59 A series circuit consists of a 4-V source and 2-, 4-, and 6-R resistors. What is the minimum power rating of 
each resistor if the resistors are available in power ratings of 5 W, 1 W, and 2 W? 

Ans. P ,  = i W ,  P ,  = i  W, P ,  = 1 W 

3.60 Find V,, in the circuit shown in Fig. 3-27. 

Ans. 2 0 V  

I0 2 0  25 V 

. .  
411 I0 v 15‘V 

Fig. 3-27 

3.61 Use voltage division to find the voltage V‘ in the circuit shown in Fig. 3-27. 

Ans. - 8  V 

3.62 A series circuit consists of a 100-V source and 4-, 5-, 6-, 7-, and 8-R resistors. Use voltage division to 
determine the voltage across the 6-R resistor. 

Ans. 20 V 

3.63 Determine I in the circuit of Fig. 3-28. 

Ans. 3 A 

3.64 Find V across the open circuit in the circuit of Fig. 3-29. 

Ans. -45  V 
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2 Q  6 R  

= 12v -r 

Y 
Fig. 3-28 

3 kR 10 kR 
r 4 mA 0 

+ 
5 kR 1.' - 

---r 8ov 

Fig. 3-29 

3.65 Find the indicated unknown currents in the circuits shown in Fig. 3-30. 

Ans. I, = 2A, I, = -6A,  I, = - S A ,  I, = 3 A  

(a)  
Fig. 3-30 

3.66 Find the short-circuit current I in the circuit shown in Fig. 3-31. 

Ans. 3 A 

49 

f 

Fig. 3-31 
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3.67 

3.68 

3.69 

3.70 

3.7 1 

3.72 

3.73 

3.74 

3.75 

Fig. 3-32 

Calculate V, in the circuit of Fig. 3-32. 

Ans. 96 V 

What are the different resistances that can be obtained with three 442 resistors? 

A m .  1.33, 2, 2.67, 4, 6, 8, and 12 R 

A 100-R resistor and another resistor in parallel have an equivalent resistance of 75 R. What is the resistance 
of the other resistor? 

Ans. 300R 

Find the equivalent resistance of four parallel resistors having resistances of 2, 4, 6, and 8 R. 

Ans. 0.96 R 

Three parallel resistors have a total conductance of 2 mS. If two of the resistances are 1 and 5 kR, what is 
the third resistance? 

Ans. 1.25 kR 

The equivalent resistance of three parallel resistors is 10 R. If two of the resistors have resistances of 40 and 
60 R, what is the resistance of the third resistor? 

Ans. 17.1 R 

Determine R T  in R T  = (241148 + 24))IlO. 

Ans. 8 R 

Determine R T  in R T  = (611 12 + 10)140)))(6 + 2). 

Ans. 4.8 R 

Find the total resistance R ,  of the resistor ladder network shown in Fig. 3-33. 

Ans. 26.6 kR 

I5 kR 6 kR 3 kR 

6 k f l  2 k f l  S kR 

Fig. 3-33 
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3.76 Repeat Prob. 3.75 with all resistances doubled. 

Ans. 53.2 kR 

3.77 In the circuit shown in Fig. 3-34, find R ,  with terminals a and 6 (a) open-circuited, and (b )  short- 
circuited. 

Ans. (a) 18.2 R, (b) 18.1 R 

Fig. 3-34 

3.78 A 15-mA current flows into four parallel resistors having resistances of 4, 6, 8, and 12 kR. Find each resistor 
current. 

Ans. I ,  = 6 mA, I, = 4 mA, I, = 3 mA, I,, = 2 mA 

3.79 Repeat Prob. 3.78 with all resistances doubled. 

Ans. Same currents 

3.80 Find the unknown currents in the circuit shown in Fig. 3-35. 

Ans. I, = -10 A, I, = -8 A, I, = 6 A, I, = -2 A, I ,  = 12 A 

S A  

Fig. 3-35 

3.81 Find R ,  and R ,  for the circuit shown in Fig. 3-36. 

Ans. R ,  = 20 R, R, = 5 R 

R 

Fig. 3-36 

3.82 In the circuit shown in Fig. 3-36, let 
new current in the R ,  resistor. 

Ans. 1.33 A 

R ,  = 6 R and R ,  = 12 Q. Then use current division to find the 
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3.83 A 60-A current flows into a resistor network described by 
10-R resistor. 

RT = 40)1(12 + 40)jlO). Find the current in the 

Ans. 32A 

3.84 A 620-V source connected to a resistor network described by 
resistor. What is R ?  

RT = 50 + RI120 provides 120 V to the 20-R 

Ans. 30R 

3.85 Find I in the circuit shown in Fig. 3-37. 

Ans. 4 A 

I ?  n 40R 
T 

10 n 

5 5  n 

- VI 
i * - 

Fig. 3-37 Fig. 3-38 

3.86 In the circuit shown in Fig, 3-38 there is a 120-V, 60-W light bulb. What must be the supply voltage V, for 
the light bulb to operate under rated conditions? 

Ans. 205 V 

3.87 In the circuit of Fig. 3-39, calculate I and also the power absorbed by the dependent source. 

Ans. 2 A, 560 W 

Fig. 3-39 

3.88 Use voltage division twice to find the voltage V in the circuit shown in Fig. 3-40. 

Ans. 36 V 

Fig. 3-40 
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25 kR 

60 kR 

53 

3.89 In the circuit shown in Fig. 3-41, use current division twice to calculate the current 1 in the load resistor 
R L  for (a) R L  = 0 R, (b) R L  = 5 Q, and (c) R L  = 20 R. 
Ans. (a) 16A, (b)  9.96 A, (c) 4.67 A 

8 R  

Fig. 3-41 

3.90 Use repeated current division in finding I in the circuit of Fig. 3-42. 

Ans. 4 mA 

- 

Fig. 3-42 



Chapter 4 

DC Circuit Analysis 

CRAMER’S RULE 

A knowledge of determinants is necessary for using Cramer’s rule, which is a popular method for 
solving the simultaneous equations that occur in the analysis of a circuit. A determinant is a square 
arrangement of numbers between two vertical lines, as follows: 

at ,  at2 a13 

a 2 t  a 2 2  a 2 3  

a31 a32 a33  

in which each a is a number. The first and second subscripts indicate the row and column, respectively, 
that each number is in. 

A determinant with two rows and columns is a second-order determinant. One with three rows and 
columns is a third-order determinant, and so on. 

Determinants have values. The value of the second-order determinant 

1:;; :;:I 
is a l l a t 2  - a21a12,  which is the product of the numbers on the principal diagonal minus the product of 
the numbers on the other diagonal: 

a1 1 \ - 

a22 a21 

For example, the value of 

is 8(-4) - 6(-2) = -32 + 12 = -20. 
A convenient method for evaluating a third-order determinant is to repeat the first two columns to 

the right of the third column and then take the sum of the products of the numbers on the diagonals 
indicated by downward arrows, as follows, and subtract from this the sum of the products of the numbers 
on the diagonals indicated by upward arrows. The result is 

For example, the value of 

2 - 3  4 
6 10 8 
7 - 5  9 

54 
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280 -80 -162 { 
180 -168 -120 

is 180 - 168 - 120 - (280 - 80 - 162) = - 146. 
Evaluations of higher-order determinants require other methods that will not be considered here. 
Before Cramer’s rule can be applied to solve for the unknowns in a set of equations, the equations 

must be arranged with the unknowns on one side, say the left, of the equal signs and the knowns on 
the right-hand side. The unknowns should have the same order in each equation. For example, I ,  may 
be the first unknown in each equation, 1, the second, and so on. Then, by Cramer’s rule, each unknown 
is the ratio of two determinants. The denominator determinants are the same, being formed from the 
coefficients of the unknowns. Each numerator determinant differs from the denominator determinant in 
only one column. For the first unknown, the numerator determinant has a Jirst column that is the 
right-hand side of the equations. For the second unknown,-the numerator determinant has a second 
column that is the right-hand side of the equations, and so on. As an illustration, for 

I, = 

CALCULATOR 

1011 - 212 - 413 = 32 
-211 + 1212 - 913 = -43 
-411 - 912 + 1513 = 13 

32 -2 -4 10 32 -4 10 -2 32 
-43 12 -9 -2 -43 -9 -2 12 -43 

10 -2 - 4  10 -2 -4 10 -2 -4  
-2 12 -9 12 -9 -2 12 -9 

13 -9 15 I 1, = 1-4 13 151 I, = 1-4 -9 131 

-4 -9 15 I 1:: -9 1 5 1  -9 

SOLUTIONS 

Although usi-ig Cramer’s rule is popular, a much better way to solve the simultaneous equations of 
interest here is to use an advanced scientific calculator. No programming is required, the equations are 
easy to enter, and solutions can be obtained just by pressing a single key. Typically the equations must 
be first placed in matrix form. But no knowledge of matrix algebra is required. 

To be placed in matrix form, the equations must be arranged in exactly the same form as for using 
Cramer’s rule, with the unknowns being in the same order in each equation. Then, three matrices are 
formed from these equations. As an illustration, for the following previously considered equations, 

1011 - 212 - 413 = 32 
-211 + 1212 - 91, = -43 
-411 - 91, + 1513 = 13 

the corresponding matrix equation is 

Incidentally, a matrix comprising a single column is usually referred to as a oector. 
The elements of the three-by-three matrix are just the coefficients of the unknowns and are identical 

to the elements in the denominator determinant of Cramer’s rule. The adjacent vector has elements that 
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are the unknowns being solved for, and the vector on the right-hand side has elements that consist of 
the right-hand sides of the criginal equations. 

The elements of the vector on the right-hand side and the elements of the coefficient matrix are then 
entered into a calculator. The exact method of entering the elements depends on the calculator used but 
should be simple to do. Typically, the solutions are returned in ti vector, and they appear in the same 
order as the corresponding qilantity symbols in the vector of unknowns. 

The calculator method cannot be too strongly recommended. The decrease in errors and the time 
saved wil l  quickly compensate the user for the little additional cost that was required to purchase such 
a calculator. The calculator should also be capable of solving simultaneous equations that have complex, 
instead of just real, coefficients, as will be required later for the analysis of sinusoidally excited circuits. 

~ 

SOURCE TRANSFORMATIONS 

Dependitig on the type of analysis, a circuit with either no voltage sources or no current sources 
may be preferable. Because a circuit may have an undesired type of source, it is convenient to be able 
to transform voltage sources to equivalent current sources, and current sowces to equivalent voltage 
sources. For a transformation, each voltage source should have a .sivies internal resistance, and each 
current source a pirullel  internal resistance. 

Figure 4-lu shows the transformation from a voltage source to an equivalent current source. and 
Fig. 4-lh the transformation from a current source to an equivalent voltage source. This equivalence 
applies only to the external circuit connected to these sources; The voltages and currents of this external 
circuit-will be the same with either source. internally, the sources are usualiy not equivalent. 

R R 

Fig. 4-1 

A s  shown. in the transformation c f a  voltage source to an e q u i v a h t  current source, the same resistor 
is in parallel with the current source, and the source current equals the original source voltage divided 
by thc resistance of this resistor. The current source arrow is directed toward the terminal nearest the 
positive terminal of the voltage source. In the transformation from a current source to an equivalent voltage 
source, the same resistor is in series with the voltage source, and the source voltage equals the original 
source current times the resistance of this resistor. Thepositive terminal of the voltage Source is nearest 
the terminal toward which the arrow of the current source is directed. This same procedure applies to 
the transformations o f  dependent sources. 

MESH ANALYSIS 
~ In  r z i e s h  c t n c r / i x i ,  K V L  is amlied with mesh currents, which are currents assigned to meshes, and 
preferably referenced to flow clockwise, as shown in Fig. 4-211. 

K V L  is applied to each mesh, one at a time, using the fact that ir! the direction of a current I ,  the 
voltage drop across a resistor is IR ,  as shown in Fig. 4-26. The voltage drops across ?he resistors taken 
in the direction of the mesh currents are set equal to the voltage rises across the voltage sources. As afi 
illustration, in the circuit shown in Fig. 4-21r, around mesh 1 the drops across resistc;rs R !  and R ,  are 
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R I  R2 
I I 

Fig. 4-2 

I , R ,  and ( I ,  - Z 2 ) R 3 ,  respectively, the latter because the current through R ,  in the direction of I ,  is 
I ,  - I , .  The total voltage rise from voltage sources is V, - V,, in which r/; has a negatikre sign because 
it is a voltage drop. So, the mesh equation for mesh 1 is 

I i R ,  + (11 - 1 2 ) R 3  = V'1 - V3 or (RI + R 3 ) I i  - R,I,  V1 - V3 

Notice that R ,  + R,, the coefficient of I , ,  is the sum of the resistances of the resistors in mesh 1. 
This sum is called the self-resistance of mesh 1. Also, -R, ,  the coefficient of I , ,  is the negative of the 
resistance of the resistor that is common to or mutual to meshes 1 and 2. R ,  is called the r w u d  resistance. 
In mesh equations, mutual resistance terms always have negative signs because the other mesh currents 
always flow through the mutual resistors in directions opposite to those of the principal mesh currents. 

It is easier to write mesh equations using self-resistances and mutual resistances than it is to directly 
apply KVL. Doing this for mesh 2 results in 

-R3II + ( R ,  + R3)Zl = V3 - Vz 

In a mesh equation, the voltage for a voltage source has a positive sign if the voltage source aids 
the flow of the principal mesh current--that is, if this current flows out of the positive terminal- because 
this aiding is equivalent to a voltage rise. Otherwise, a source voltage has a negative sign. 

For mesh analysis, the transformation of all current sources to voltage sources is usually preferable 
because there is no formula for the voltages across current sources. If, however, a current source is 
positioned at the exterior of a circuit such that only one mesh current flows through it, that current 
source can remain because the mesh current through it is known it  is the source current or the negative 
of it, depending on direction. KVL is not applied to this mesh. 

The number of mesh equations equals the number of meshes minus the number of current sources, 
if there are any. 

LOOP ANALYSIS 

Loop analysis is similar to mesh analysis, the principal difference being that the current paths selected 
are loops that are not necessarily meshes. Also, there is no convention on the direction of loop currents; 
they can be clockwise or counterclockwise. As a result, mutual terms can be positive when KVL is 
applied to the loops. 

For loop analysis, no current source need be transformed to a voltage source. But each current 
source should have only one loop current flowing through it so that the loop current is known. Also, 
then KVL is not applied to this loop because the current source voltage is unknown. 

Obviously, the loops for the loop currents must be selected such that every component has at least 
one loop current flowing through it. The number of these loops equals the number of meshes if the 
circuit is planar---that is, if the circuit can be drawn on a flat surface with no wires crossing. In general, 
the number of loop currents required is B - N + 1, where B is the number of branches and N is the 
number of nodes. 
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If the current through only one component is desired, the loops should be selected such that only 
one loop current flows through this component. Then, only one current has to be solved for. In contrast, 
for mesh analysis, finding the current through an interior component requires solving for two mesh 
currents. 

NODAL ANALYSIS 

For nodal analysis, preferably all voltage sources are transformed to current sources and all 
resistances are converted to conductances. KCL is applied to all nodes but the ground node, which is 
often indicated by a ground symbol at the bottom node of the circuit, as shown in Fig. 4-3a. As mentioned 
in Chap. 3, almost always the bottom node is selected as the ground node even though any node can 
be. Conventionally, voltages on all other nodes are referenced positive with respect to the ground node. As 
a consequence, showing node voltage polarity signs is not necessary. 

I I I 1 I 

12 

Fig. 4-3 

In nodal analysis, KCL is applied to each nongrounded node, one at a time, using the fact that in 
the direction of a voltage drop r! the current in a resistor is G K  as shown in Fig. 4-3b. The currents 
leaving a node through resistors are set equal to the currents entering the node from current sources. 
As an illustration, in the circuit shown in Fig. 4-3a, the current flowing down through the resistor with 
conductance G, is G, V , .  The current to the right through the resistor with conductance G ,  is G3( V, - Vz). 
This current is equal to the conductance times the voltage at the node at which the current enters the 
resistor minus the voltage at the node at which the current leaves the resistor. The quantity (V,  - V2) is, 
of course, just the resistor voltage referenced positive at the node at which the current enters the resistor 
and negative at the node at which the current leaves the resistor, as is required for associated references. 
The current entering node 1 from current sources is I ,  - I , ,  in which I ,  has a negative sign because i t  
is actually leaving node 1. So, the nodal equation for node 1 is 

Gl V ,  + G3(V1 - V;) = 11 - 1 3  or ( G ,  + G3)Vl - GIP', = 1,  - I 3  

Notice that the V, coefficient of G ,  + G ,  is the sum of the conductances of the resistors connected 
to node 1. This sum is called the self-conductance of node 1. The coefficient of V2 is - G 3 ,  the negative 
of the conductance of the resistor connected between nodes 1 and 2. G ,  is called the mutual conductance 
of nodes 1 and 2. Mutual conductance terms always have negative signs because all nongrounded node 
voltages have the same reference polarity-all are positive. 

It is easier to write nodal equations using self-conductances and mutual conductances than it is to 
directly apply KCL. Doing this for node 2 results in 

-GIP', + (G2 + G3)V2 = 12 + 1 3  

The transformation of all voltage sources to current sources is not absolutely essential for nodal 
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analysis, but is usually preferable for the shortcut approach with self-conductances and mutual 
conductances. The problem with voltage sources is that there is no formula for the currents flowing 
through them. Nodal analysis, though, is fairly easy to use with circuits having grounded voltage sources, 
each of which has a terminal connected to ground. Such voltage sources give known voltages at their 
nongrounded terminal nodes, making it unnecessary to apply KCL at these nodes. Other voltage 
sources-floating voltage sources-can be transformed to current sources. 

The number of nodal equations equals the number of nongrounded nodes minus the number of 
grounded voltage sources. 

DEPENDENT SOURCES AND CIRCUIT ANALYSIS 

Mesh, loop, and nodal analyses are about the same for circuits having dependent sources as for 
circuits having only independent sources. Usually, though, there are a few more equations. Also, positive 
terms may appear in the circuit equations where only negative mutual resistance or conductance terms 
appear for circuits having no dependent sources. Almost always, a good first step in the analysis of a 
circuit containing dependent sources is to solve for the dependent source controlling quantities in terms 
of the mesh or loop currents or node voltages being solved for. 

Solved Problems 
4.1 Evaluate the following determinants: 

(a)  The product of the numbers on the principal diagonal is 
other diagonal is 
product: 

(b) Similarly, the value of the second determinant is 

1 x 4 = 4, and for the numbers on the 
- 2  x 3 = -6. The value of the determinant is the first product minus the second 

4 - (-6) = 10. 
- 5( -8) - 7(6) = 40 - 42 = - 2. 

4.2 Evaluate the following determinant: 

8 -9  4 
3 -2  1 
6 5 - 4  

One method of evaluation is to repeat the first two columns to the right of the third column and then 
find the products of the numbers on the diagonals, as indicated: 

-48 40 108 

64 -54 60 

The value of the determinant is the sum of the products for the downward-pointing arrows minus 
the sum of the products for the upward-pointing arrows: 

(64 - 54 + 60) - ( -48 + 40 + 108) = -30 
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4.3 Use Cramer's rule to solve for the unknowns in 

5k'i + 41'5 = 31 
-4Vl + SV, = 20 

The first unknown C', equals the ratio o f  two determinants. The denominator determinant has elements 
that are the coefficients of ifl and Cl,. The numerator determinant differs only in having the first column 
replaced by the right-hand sides of the equations: 

= 3 v  
1 ;;) :I 31(8) - 20(3) - 168 

- - C' = - 

' I -: 5 ( 8 )  - ( -4)( '4)  56 

The denominator determinant for C; has the same kalue of 56. In the numerator determinant 
the second column. instead of the first, is replaced by the right-hand sides of the equations: 

1 -: - 5(20) - ( - 4 ) ( 3 l J  224 

56 56 56 
= 4 v  - - ~~ - v2 = - 

4.4 Use Cramer's rule to solve for the unknowns in 

1011 - 21, - 41, 10 

-21 ,  + 121, - 61, = -34 

-41, - 61, + 1413 = 40 

All three unknowns have the same denominator dctcrminant o f  coefficients. hich evaluates to 

192 360 56 

1680 - 48 - 48 - (192 + 360 + 56) 976 

In the numerator determinants. the right-hand sides of  the equdtions replace the first column 
for I , ,  the second column for I,. and the third column for I,: 

10  -2  - 4  1'1' -:: ::I 
1-4 40 I4 -976 

= - 1  A - 
1952 

976 976 976 
- ~ = ' A  I , =  - 

40 - 6  
- 

10 - 2  10 

1 -2  12 -34 

2928 

976 
= 3 A  - - 

4.5 Transform the voltage sources  shown in Fig. 4-4 to current sources. 

( U )  The current of the equivalent current source equals the broltage of the original \roltage sourcc dittided 
by the resistance: 21 ' 3  = 7 A. The current direction is tokvard node (1 because the positivc terminal 
of the voltage source is toward that node. The parallel resistor is the same 3-R resistor of the 
original voltage sourcc. The equivalent current source is shoivn in Fig. 4-511. 
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-L 
"'T 

40V = -r 

(h )  The current of the current source is 40/'8 = 5 A. I t  is directed toward node h because the positive 
terminal of the voltage source is toward that node. The parallel resistor is the same 8-R resistor of the 
voltage source. Figure 4-5h shows the equivalent current source. 

The current of the current source is with a direction toward node a because the positive 
terminal of the voltage source is toward that node. The parallel resistor is the same 2-R resistor of the 
voltage source. Figure 4-5c shows the equivalent current source. 

( c )  81 1/2 = 41 

4.6 Transform the current sources shown in Fig. 4-6 to voltage sources. 

(4 
Fig. 4-6 
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The voltage of the equivalent voltage source equals the current of the original current source times 
the resistance: 5 x 4 = 20 V. The positive terminal is toward node a because the direction of the 
current of the original current source is toward that node. Of course, the source resistance remains 4 R, 
but is in series instead of in parallel. Figure 4-7a shows the equivalent voltage source. 

The voltage is 6 x 5 = 30 V, positive toward node b because the direction of the current of the 
original current source is toward that node. The source resistance is the same 5 R, but is in series. The 
equivalent voltage source is shown in Fig. 4-76. 
The voltage is 31, x 6 = l81,, positive toward node a because the direction of the current of the 
current source is toward that node. The source resistance is the same 6 R but is in series. The equivalent 
voltage source is shown in Fig. 4-7c. 

(4 
Fig. 4-7 

Find the currents down through the resistors in the circuit shown in Fig. 4-8. Then transform 
the current source and 242 resistor to an equivalent voltage source and again find the resistor 
currents. Compare results. 

By current division, the current down through the 2-R resistor is 

x 16 = 12A 
6 

__- 

2 + 6  

The remainder of the source current (16 - 12 = 4 A) flows down through the 6-R resistor. 
Transformation of the current source produces a voltage source of 16 x 2 = 32 V in series with a 2-i2 

resistor, all in series with the 6-R resistor, as shown in the circuit of Fig. 4-9. In this circuit, the same 
current flows through both resistors. The 6-R resistor current is the same as for the 
original circuit, but the 2 - 0  resistor current is different. This result illustrates the fact that although a 
transformed source produces the same voltages and currents in the circuit exterior to the source, the voltages 
and currents inside the source usually change. 

32/(2 + 6) = 4 A 

Fig. 4-8 Fig. 4-9 
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4.8 For the circuit of Fig. 4-10, use repeated source transformations to obtain a single mesh circuit, 
and then find the current I .  

5R 5R I 4 R  5R I 

Fig. 4-10 Fig. 4-1 I 

The first step is to transform the voltage source and series resistor into a current source and parallel 
resistor. The resistance does not change, but the source current is directed upward. The 
5-R resistor from the source transformation is in parallel with the 20-R resistor. Consequently, the combined 
resistance is ( 5  x 20)/(5 + 20) = 4 R .  The next step is to transform the 7.5-A current source and the parallel 
4-52 resistor into a series voltage source and resistor. The resistance remains the same, and the voltage of 
the voltage source is 4(7.5) = 30 V, positive upward, as shown in the circuit of Fig. 4-1 1, which is a single 
mesh circuit. 

from which the currznt I can be obtained 
by applying the quadratic formula: 

37.5/5 = 7.5 A 

The KVL equation for this circuit is 31' + 91 - 30 = 0, 

- 9 It ,/9' - 4(3X - 30) 
I =  

2(3) 

The solutions are I = 2 A and I = - 5  A. Only the I = 2 A is physically possible. The current must 
be positive since in the circuit of Fig. 4-1 1 there is only one source, and current must flow out of the positive 
terminal of this source. 

4.9 Find the mesh currents in the circuit shown in Fig. 4-12. 

The self-resistance of mesh 1 is 5 + 6 = 11 R, and the resistance mutual with mesh 2 is 6 R. The sum 
of the source voltage rises in the direction of I, is 62 - 16 = 46 V. So, the mesh 1 KVL equation 
is 111, - 61, = 46. 

No K V L  equation is needed for mesh 2 because I ,  is the only current flowing through the 4-A current 
source, with the result that I ,  = - 4  A. The current I, is negative because its reference direction is down 
through the current source, but the 4-A source current actually flows up. Incidentally, a KVL equation 
cannot be written for mesh 2 without introducing a variable for the voltage across the current source because 
this voltage is unknown. 

The substitution of I ,  = - 4  A into the mesh 1 equation results in 

22 

11 
1111 - 6( -4) = 46 and I , = - = 2 A  

Fig. 4-12 
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4.10 Determine the mesh currents in the circuit shown in Fig. 4-13. 

The self-resistance of mesh 1 is 6 + 4 = 10 R, the mutual resistance with mesh 2 is 4 R, and the sum 
of the source voltage rises in the direction of I ,  is 40 - 12 = 28 V. So, the mesh 1 K V L  equation is 

the mutual resistance is 4 $2, and the sum 
-41, + 

Placing the two mesh equations together shows the symmetry of coefficients (here -4) about 

1011 - 412 = 28. 
Similarly, for mesh 2 the self-resistance is 4 + 12 = 16 SZ, 

of the voltage rises from voltage sources is 24 + 12 = 36 V. These give a mesh 2 K V L  equation of 
161, = 36. 

the principal diagonal as a result of the common mutual resistance: 

1011 - 412 = 28 

-411 + 161, = 36 

A good way to solve these two equations is to add four times the first equation to the second equation to 
eliminate 1,. The result is 

148 

36 
401, - 41, = 112 + 36 from which 1 1  =---=4.11 A 

This substituted into the second equation gives 

52.44 
16 

-4(4.11) + 161, = 36 and 1, =- = 3.28 A 

4.11 Obtain the mesh currents in the circuit of Fig. 4-14. 

Fig. 4-14 

A good first step is to solve for the controlling quantity V, in terms of the mesh current I , .  
V’ = 41,. and consequently the voltage of the dependent source is 0.5Vx = 0.5(41,) = 21,. Then, Clearly, 

the application of K V L  to the meshes gives 

(8 + 6)11 - 612 - 312 = - 120 

and (6 + 2 + 4)1, - 611 = 120 - 60 
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In matrix form, these simplify to 
14 - 8  I ,  - 120 

1 - 6  1 2 1 L l . j l l  601 
4 

In the matrix of coefficients, the lack of symmetry about the principal diagonal is the result of the action 
of the dependent source. The solutions can be obtained by using Cramer's rule or. prcfcrably, by using a 
calculator. The mesh currents are I ,  = -8 A and I, = 1 A. 

4.12 Find the mesh currents in the circuit shown in 

4 f l  6 f l  

Fig. 4- 15. 

Fig. 4-1 5 

4 f l  6 Q  

13 v 

Fig. 4-16 

One analysis approach is t o  transform the 13-A current source and parallcl 5-R resistor into a voltage 

The self-resistance of mesh 1 is 4 + 5 = 9 52, and that of mcsh 2 is 6 + 5 = 1 1  R. The mutual 
for 

source, as shown in the circuit of Fig. 4-16. 

resistance is 5 R. The voltage rises from sources arc 
mesh 2. The corresponding mesh equations are 

75 - 65 = 10 V for mesh 1 and 65 -- 13 = 52  V 

91, - 51, = 10 

-51, + 111, = 52 

Multiplying the first equation by 5 and the second by 9 and then adding them eliminates I , :  

518 

- 74 
1 - = 7 A -2512 + 991, = 50 + 468 from which -i- 

This substituted into the first equation produces 

10 + 3s 

9 
91, - 5(7) = I O  or  I ,  = = _ S A  

From the original circuit shown in Fig. 4-15, the current through the current source is I ,  - I, = 13 A. 
and so 

I , = 1 2  - 1 3 = 7 - 1 3 = - 6 A  

Another approach is to use the so-called szrpc~r.nic~.s/i nw//ioci. which IS applicable when ;i circuit 
contains internal current sources. Mesh currents are used, but for each internal current source, K V L  is 
applied to the loop that would be a mesh if the current source were removed. For the circuit of Fig. 4-15, 
this loop (supermesh) comprises the 5-R and 6-R resistors and the 13-V source. The K V L  equation 
is comprises two equations 
with three unknowns. The required third equation can be obtained by applying K C L  to either node o f  the 
current source, or, more simply, by noting that the current up through the current source in terms o f  mesh 
currents is 1, - I,. This current must, of course, be equal to the 13 A of the source. So. the ttvo K V L  
equations are augmented with the single K C L  equation 

5(1, - ZI) + 61, = - 13. This, with the mesh 1 equation of 91, - 51, = 75, 

1, - 1 ,  = 13. In matrix form these equations are 

The solutions are the same as obtained before: I ,  = 5 A, l 2  = 7 A, and I, = -6 A.  
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In general, for the supermesh approach, the K V L  equations must be augmented with K C L  equations, 
the number of which is equal to the number of internal current sources. 

4.13 Find the mesh currents in the circuit shown in Fig. 4-17. 

Fig. 4-17 

The self-resistances are 3 + 4 = 7 R for mesh 1, 4 + 5 + 6 = 15 R for mesh 2, and 6 + 7 = 
13 $2 for mesh 3. The mutual resistances are 4 R for meshes 1 and 2, 6 R for meshes 2 and 3, and 0 R for 
meshes 1 and 3. The aiding source voltages are 42 + 25 = 67 V for mesh 1, -25 - 57 - 70 = 

- 152 V for mesh 2, and 70 + 4 = 74 V for mesh 3. So, the mesh equations are 

Notice the indicated symmetry of the mutual coefficients about the principal diagonal, shown as a dashed 
line. Because of the common mutual resistances, this symmetry always occurs---unless a circuit has dependent 
sources. Also, notice for each mesh that the self-resistance is equal to or greater than the sum of the mutual 
resistances because the self-resistance includes the mutual resistances. 

By Cramer's rule, 

1 0 74 13 I -7240 
= - 8  A I - __________~  - -~ - 

1 74 - 6  131 4525 

7 - 4  905 I - 4  15 

905 905 
2 -  

I ,  = - - - - = 5 A  

0 - 6  

7 - 4  

1810 

905 905 
= 2 A  - __- l 3  = - 

4.14 Find the mesh currents in the circuit shown in Fig. 4-18. 

The self-resistances are 3 + 4 + 5 = 12 R for mesh 1, 
8 = 18 R 
meshes 1 and 3. The aiding source voltages are 
112 V 

5 + 6 + 7 = 18 52 for mesh 2, and 6 + 4 + 
for mesh 3. The mutual resistances are 5 R for meshes 1 and 2,6 R for meshes 2 and 3, and 4 S2 for 

74 + 15 + 23 = 150 - 100 - 74 = -24 V for mesh 1, 
for mesh 2, and 100 - 191 - 15 = - 106 V for mesh 3. So, the mesh equations are 

121, - 5 1 2  - 413 -24 

- 5 1 ,  + 181, - 61, = 112 

-41, - 612 + 181, = -106 

For a check, notice the symmetry of the coefficients about the principal diagonal. 
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4 0  loo v 

3 R  

By Cramer’s rule, 

-24 - 5  - 4  
112 18 - 6  

-106 - 6  18 

12 - 5  - 4  
I ,  = 

1 - 5  18 
- 4  - 6  

12 - 5  -24 
- 5  18 112 

- 4  - 6  -106 
I ,  = 

2478 

- 
Fig. 4-18 

12 -24 - 4  
1 - 5  112 

- 4  -106 9912 

2478 2478 2478 
= 4 A  -- - 4956 

I ,  = - -- - - 2 A  - - 

- 12 390 --- - - - 5  A 
2478 

4.15 Use mesh analysis in determining the power absorbed by the dependent voltage source in the 
circuit of Fig. 4-19. 

In terms of mesh currents, the dependent source controlling quantity I ,  is I ,  = I ,  - I , .  So, the 
dependent source provides a voltage of 201, = 20(1, - I , ) .  In writing mesh equations for a circuit that 
has dependent sources, a good approach is to temporarily ignore the dependent sources, write the mesh 

14 V 13 R 

I 
3 

7 v  

1 1  Q 

Fig. 4-19 
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equations using the self- and mutual-resistance approach, and then add the dependent source expressions 
to the pertinent equations. The result of doing that here is 

701, - 3512 - 151, + 2O(f ,  - I,) = 10 + 16 

-351 ,  + 641, - 181, = 7 - 16 - 20 

- 1511 - 181, + 4613 - 2q11 - I , )  = 20 - 14 

which simplify to 
90 - 5 5  - 1 5  I ,  [ - 3 5  6; --18][ 46 I ,  1 2 ]  = [-in] 

- 35 

The solutions are I ,  = 0.148 A, I ,  = -0.3 A, and I ,  = 0.256 A. Finally, the power absorbed by the 
dependent source is equal to the source voltage times the current flow into the positive-referenced 
terminal : 

P = 20(f, - I 2 ) ( I ,  - 1 3 )  = 2q0.148 + 0.3)(0.148 - 0.256) = -0.968 W 

4.16 Use mesh analysis in finding Vo in the circuit of Fig. 4.20. 

Fig. 4-20 

As always for a circuit containing dependent sources, a good first step is to solve for the dependent 
source controlling quantities in terms of the quantities being solved for, which are mesh currents here. 
Obviously, I ,  = I ,  - I ,  and V, = 51, .  So, the dependent current source provides a current of 
1.51, = 1.5(11 - I , )  and the dependent voltage source provides a voltage of 6V0 = q51,) = 301,. 

The K V L  equation for mesh 1 is (10 + 40)1, - 401, + 301, = 20. Preferably, K V L  should not be 
applied to meshes 2 and 3 because of the dependent current source that is in these meshes. But a good 
app~oach to use is the supermesh method presented in Prob. 4.12. Applying K V L  to the mesh obtained by 
deleting this current source gives the equation -301, + 4q12 - I , )  + 51,  + 51, = 0. The necessary third 
independent equation, 1.5(11 - 1 2 )  = I ,  - I , ,  is obtained by applying K C L  at a terminal of the dependent 
current source. These three equations simplify to, in matrix form, 

Then Cramer's rule or, preferably, a calculator can be used to obtain the current 1 ,  = 0.792 A. Finally. 
V, = 5 1 ,  = 5(0.792) = 3.96 V. 

4.17 Use loop analysis to find the current flowing to the right through the 5-kQ resistor in the circuit 
shown in Fig. 4-21. 

Three loop currents are required because the circuit has three meshes. Only one loop current should 
flow through the S k i 2  resistor so that only one current needs to be solved for. The paths for the two other 
loop currents can be selected as shown, but there are other suitable paths. 
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0 -13 13.5 
26 16 - 1 5  
0 -15  19.5 

18.5 -13  13.5 
-13 16 -15  I 13.5 -15 19.5 

69 

1326 
= 2 m A  - - 

663 

26 V 

Fig. 4-21 

As has been mentioned, since working with kilohms is inconvenient, a common practice is to drop 
those units--to divide each resistance by 1000. Hut then the current answers nil1 be in milliamperes. With 
this approach, and from self-resistances, mutual resistances, and aiding source \roltages, the loop equations are 

18.51, - 131, + 13.51, = 0 

-1311 + 161, - 151, = 26 

0 13.51, - 151, t 19.51, = 

Notice the symmetry of the 1 coefficients about the principal diagonal, just as for mesh equations. R u t  there 
is the difference that some of these coefficients are positive. This is the result of two loop currents flowing 
through a mutual resistor in the same direction- something that cannot happen in mesh analysis if all mesh 
currents are selected in the clockwise direction, as is conventional. 

From Cramer's rule, 

4.18 Use loop analysis to find the current down through the 8-Q resistor in the circuit shown i n  Fig. 
4-22. 

Because the circuit has three meshes, the analysis requires three loop currents. The loops can be selected 
as shown, with only one current I ,  flowing through the 8-R resistor so that only one current needs to be 

6 f l  

8 V  

10 n 

6 V  

Fig. 4-22 
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solved for. Also, only one loop current should flow through the 7-A source so that this loop current is 
known, making it unnecessary to apply KVL to the corresponding loop. There are other ways of selecting 
the loop current paths to satisfy these conditions. 

The self-resistance of the first loop is 6 + 8 = 14R,  and the resistance mutual with the second 
loop is 6 R. The 7-A current flowing through the 6 - 0  resistor produces a 42-V drop in the first 
loop. The resulting loop equation is 

1411 + 612 + 42 = 8 or 1411 612 = -34  

The 6 coefficient of 1, is positive because 1, flows through the 6-51 resistor in the same direction 
as 1 , .  

For the second loop, the self-resistance is 6 + 10 = 16 R, of which 6 R is mutual with the first loop. 
The second loop equation is 

611 + 161, + 42 = 8 + 6 or 611 + 161, = -28 

The two loop equations together are 

1411 + 612 = -34  

611 + 161, = -28 

Multiplying the first equation by 8 and the second by - 3  and then adding them eliminates I , :  

188 

94 
1121, - 181, = -272 + 84 from which I 1  = = - 2 A  

4.19 Two 12-V batteries are being charged from a 16-V generator. The internal resistances are 0.5 and 
0 .8R for the batteries and 2 R  for the generator. Find the currents flowing into the positive 
battery terminals. 

The arrangement is basically parallel, with just two nodes. If the voltage at the positive node with 
respect to the negative node is called V ,  the current flowing away from the positive node through the sources is 

V - 1 2  V -  12 V -  16 

0.5 0.8 2 
+- +-=O 

Multiplying by 4 produces 

8 V - 96 + 5V - 60 + 2 V - 32 = 0 or 1 5 V =  188 and 
188 

15 
V = - ~ ~ -  = 12.533 V 

Consequently, the current into the 12-V battery with 0.5-0 internal resistance is (12.533 - 12),10.5 = 1.07 
A, and the current into the other 12-V battery is (12.533 - 12)/0.8 = 0.667 A. 

4.20 Determine the node voltages in the circuit shown in Fig. 4-23, 

+ 
Fig. 4-23 
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Using self-conductances and mutual conductances is almost always best for getting the nodal equations. 
and the mutual conductance is 8 S. The sum of the 

36 + 48 = 84 A. So, the node 1 KCL equation is 

No KCL equation is needed for node 2 because a grounded voltage source is connected to it, making 
V2 = - 5  V. Anyway, a K C L  equation cannot be written for this node without introducing a variable for 
the current through the 5-V source because this current is unknown. 

44 

13 

The self-conductance of node 1 is 
currents from current sources into this node is 

5 + 8 = 13 S, 

13Vl - SV2 = 84. 

The substitution of V2 = - 5  V into the node 1 equation results in 

13V, - 8 ( - 5 ) = 8 4  and V, = - = 3 . 3 8 V  

4.21 Find the node voltages in the circuit shown in Fig. 4-24. 

-L 

Fig. 4-24 

The self-conductance of node 1 is 6 + 4 = 10 S. The conductance mutual with node 2 is 6 S, and the 
57 - 15 = 42 A. So, the node 1 KCL equation is 

6 + 8 = 14 S, the mutual conductance is 6 S, and the sum 
39 + 15 = 54 A. These give a node 2 K C L  equation of 

Placing the two nodal equations together shows the symmetry of the coefficients ( - 6  here) about the 

sum of the currents into node 1 from current sources is 
lOV1 - 6Vz = 42. 

Similarly, for node 2 the self-conductance is 
of the input currents from current sources is 
-6Vl + 14Vz = 54. 

principal diagonal as a result of the same mutual conductance coefficient in both equations: 

1OVI - 6V2 = 4 2  

-6Vl + 14V2 = 54 

Three times the first equation added to five times the second eliminates V , .  The result is 

396 

52 
- 18Vz + 7OVz = 126 + 270 from which V2 = - = 7.62 V 

This substituted into the first equation gives 

87.7 

10 
lOV1 - 6(7.62) = 42 and Vl = - = 8.77 V 

4.22 Use nodal analysis in finding I in the circuit of Fig. 4-25. 

The controlling quantity 1 in terms of node voltages is I = V2/6. Consequently, the dependent current 
source provides a current of 0.51 = O S (  V2/6) = V2/12, and the dependent voltage source provides a voltage 
of 121 = 12(V2/6) = 2V2. 
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- 
Fig. 4-25 

Because of the presence of the dependent sources. i t  maq be best to apply K C L  at nodes 1 
and 2 on a branch-to-branch basis instead o f  attempting to use ;i shortcut method. Doing this g i ~ e s  

- c ;  Vl 1 ; - i 2  1 , -  1; 1 ,  I ,  - 21,  
E - 6  ;i 11 d + +  = 6  

18 
+ +  

12 12 6 6 6 

These simplify to 

3 c; - 3 1'; = - 7' and -31; + 5 1 ,  = I08 

Adding these equations eliminates 1.; and rcsults i n  21; = 36 or 1; = I8 V. Fin:ill~, 

l; 18 
I =  = = 3 A  

6 6  

4.23 Find the node voltages in the circuit shown in Fig. 4-26. 

65 A 

n 

1, 

Fig. 4-26 

+ 
Fig. 4-27 

One analysis approach is to transform the voltage source and series resistor to a current source and 
parallel resistor, as shown in the circuit of Fig. 4-27. 

The self-conductance of node 1 is 4 + 5 = 9 S, and that of node 2 is 5 + 6 = 1 1  S. The mutual 
conductance is 5 S. The sum of the currents into node 1 from current sources is 75 - 65 = 10 A. and 
that into node 2 is 65 - 13 = 52 A.  Thus, the corresponding nodal equations arc 

91; - 51; = 10 

- 5 q  + 1 1  1; = 52  

Except for V's instead of l ' s ,  these are the same equations :is for Prob. 4.12. Consequently, the answers are 
the same: 

From the original circuit shown in Fig. 4-26. the 13-V source mahes 1; 13 V more negatiive than 
V, = 5 V and V2 = 7 V. Circuits having such similar equations are called d i w 1 . v .  

V2: l ' ~ = V ~ - 1 3 = 7 - 1 3 = - 6 V .  
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Another approach is to apply the so-called supertzotk ni~~tlroci ,  which is applicable for the nodal analyses 
of circuits that contain floating voltage sources. ( A  voltage source is floating if  neither terminal is connected 
to ground.) For this method, each floating voltage source is enclosed in a separate loop, or closed surface, 
as shown in Fig. 4-26 for the 13-V source. Then K C L  is applied to each closed surface as well as to the 
nongrounded nodes to which no other voltage sources are connected. 

For the circuit of Fig. 4-26, K C L  can be applied to node 1 in the usual fashion. The result 
is 9V1 - SV, = 75. For a supernode, it  is best not to use any shortcuts but instead to consider each branch 
current. For the supernode shown this gives 6V2 + 5(V3 - V , )  = - 13. Another independent equation is 
needed. I t  can be obtained from the voltage drop across the floating voltage source: V2 - V, = 13. So, the 
two K C L  equations are augmented with a single K V L  equation. In matrix form these equations are 

The solutions are, of course, the same: V, = 5 V, V2 = 7 V, and V3 = -6  V. 

the number of which is equal to the number of floating voltage sources. 
In general, for the supernode approach, the K C L  equations must be augmented with K V L  equations, 

4.24 Use nodal analysis to obtain the node voltages V, and Vz in the circuit of Fig. 4-28. 

The controlling current 1, expressed in terms of node voltages is I ,  = (V ,  - 6V2),’40. So, the dependent 
1.51, = 1.5(V1 - 6V2)/40. Applying K C L  to nodes 1 and 2 produces current source provides a current of 

V1 - 20 V, - V2 Vl - 6V2 V2 - V1 1.5(Vi - 6V2) V2 
_____ +----+ 0 and - - ~ - . +  - - = o  

10 5 40 5 40 5 

These simplify to 

13V1 - 14V2 = 80 and -9.5Vl + 251/, = 0 

which have solutions of V, = 10.4 V and V2 = 3.96 V, as can easily be obtained. 
The circuit of Fig. 4-28 is the same as that of Fig. 4-20 of Prob. 4.16 in which mesh analysis 

was used. Observe that nodal analysis is easier to apply than mesh analysis since there is one less equation 
and the equations are easier to obtain. Often, but not always, one analysis method is best. The ability to 
select the best analysis method comes mostly from experience. The first step should always be to check the 
number of required equations for the various analysis methods: mesh, loop, and nodal. 

4.25 Obtain the nodal equations for the circuit shown in Fig. 4-29. 

13 S 
The self-conductances are 3 + 4 = 7 S for node 1, 4 + 5 + 6 = 15 S for node 2, and 6 + 7 = 

for node 3. The mutual conductances are 4 S for nodes 1 and 2, 6 S for nodes 2 and 3, and 0 S for 
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4 s  6s 

I - 
Fig. 4-29 

nodes 1 and 3. The currents flowing into the nodes from current sources are 42 + 25 = 67 A 
-25 - 57 - 70 = - 152 A for node 2, and 70 + 4 = 74 A 

for node 1, 
for node 3. So, the nodal equations are 

7V1 - 41/, - 0V3 = 67 

-4Vl + ISV, - 6V3 = -152 

OV, - 6V2 + 13V3 = 74 

Notice the symmetry of coefficients about the principal diagonal. This symmetry always occurs for circuits 
that do not have dependent sources. 

Since this set of equations is the same as that for Prob. 4.13, except for having V's instead of 
I's, the answers are the same: V, = 5 V, V, = -8 V, and L\ = 2 V. 

4.26 Obtain the nodal equations for the circuit shown in Fig. 4-30, 

150 A 191 A 

The self-conductances are 3 + 4 + 5 = 12 S for node 1, 5 + 6 + 7 = 18 S for node 2, and 6 + 
for node 3. The mutual conductances are 5 S for nodes 1 and 2, 6 S for nodes 2 and 3, and 

150 - 100 - 74 = - 24 A for 
for node 2, and 100 - 191 - 15 = - 106 A for node 3. So, the nodal 

4 + 8 = 18 S 
4 S for nodes 1 and 3. The currents into the nodes from current sources are 
node 1, 
equations are 

74 + 15 + 23 = 112 A 

12V1 - 51/ ,  - 41/, = -24 

-5V, + l8V, - 6V3 = 112 

-4V, - 6V2 + 18V3 = -106 

As a check, notice the symmetry of the coefficients about the principal diagonal. 

V,  = -2V,  V, = 4 V ,  and V3 = -5V.  
Since these equations are basically the same as those in Prob. 4.14, the answers are the same: 
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-27 33 -45 
-52 64 -73 

18 -92 46 

7 5  

4.27 Figure 4-31 shows a transistor with a bias circuit. If I ,  = 501, and if VBE = 0.7 V, find byE. 

3 k l l  

700 cl 

9 v  

Fig. 4-31 

Perhaps the best way to find V,, is to first find I ,  and I , ,  and from them the voltage drops across the 
1.5-kR and 250-R resistors. Then, use KVL on the right-hand mesh and obtain V,, from 9 V minus these 
two drops. 

I ,  can be found from the two left-hand meshes. The current through the 250-R resistor is I, + I ,  = 
501, + I, = 51I,, giving a voltage drop of (5II,)(ZO). This drop added to V,, is the drop across the 700-0 
resistor. Thus, the current through this resistor is C0.7 + (511,)(250)]/700. From KCL applied at the 
left-hand node, this current plus I ,  is the total current flowing through the 3-kR resistor. The voltage drop 
across this resistor added to the drop across the 700-R resistor equals 9 V, as is evident from the outside loop: 

From this, I, = 75.3 pA. So, I, = 501, = 3.76 mA and 

V,, = 9 - 15001, - 250(I, + I , )  = 2.39 V 

Supplementary Problems 
4.28 Evaluate the following determinants: 

Ans. (a) - 18, (6) 1708 

4.29 Evaluate the following determinants: 

(4 

An$. ( U )  23 739, (b) -26 022 

16 0 -25 

13 21 -18 
-32 15 -19 

4.30 Use Cramer’s rule to solve for the unknowns in 

161, - 121, = 560 

- 121, + 2112 = -708 
(b) 

Ans. (a) V, = -2 V, V, = 4 V; (b) I, = 17 A, I, = -24 A 
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4.31 Without using Cramer's rule or the matrix-calculator approach, solve for the unknowns in 

441, - 281, = -704 

-281 ,  + 3711 = 659 

62V, - 42 I = 694 

-421.; + 77E: = 161 
( h )  

( h )  I', = 20 V, C.; = 13 V 

(4 

Ans. (a) I ,  = -9 A,  I, = 1 1  A ;  

4.32 Use Cramer's rule to solve for the unknowns in 

26k; - 111'; - 9k; = -166 

1963 

-9C; - 231; + 561.; = -2568 

-- 1 1  V1 + 451.; - 2 3 V 3  = 

Ans. V, = - 1 1  V, r/; = 21 V. V, = -39 V 

4.33 What is the current-source equivalent of a 12-V battery with 3 0.542 internal resistance'? 

Atr.~. I = 24 A, R = 0.5 R 

4.34 What is the voltage-source equivalent of a 3-A current source in parallel with ;I 2-kR resistor'? 

Ans. V =  6 kV,  R = 2 kR 

4.35 Use repeated source transformations in obtaining I in the circuit of Fig. 4-32. 

Ans. 2 A 

Fig. 4-32 

4.36 Find the mesh currents in the circuit shown in Fig. 4-33. 

Ans. I ,  = 3 A, I ,  = - 8 A .  I ,  = 7 A 

4.37 Solve for the mesh currents in the circuit shown in Fig. 4-34. 

Ans. I ,  = 5 m A ,  1,  = - 2 m A  

7 A  

U A  20 v 

2 kS1 7 k f l  

24 V 

Fig. 4-33 Fig. 4-34 
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F 8 V  

4.38 Repeat Prob. 4.37 with the 24-V source changed to - 1 V. 

Ans. I ,  = 7mA, I ,  = 1 mA 

4.39 Two 12-V batteries in parallel provide current to a light bulb that has a ,,ot resistance of 0.5 R. If the 
internal resistances are 0.1 and 0.2 R, find the power consumed by the light bulb. 

Ans. 224 W 

4.40 Determine I ,  in the circuit of Fig. 4-35. 

Ans. -4.86mA 

4.41 Calculate the mesh currents in the circuit of Fig. 4-36. 

Ans. I ,  = 2mA, I ,  = -3mA, I ,  = 4 mA 

4.42 Find the mesh currents in the circuit shown in Fig. 4-37. 

Ans. I ,  = -2mA, 1, = 6mA, I ,  = 4mA 

10 k f l  48 v 
$1' 

4 kR 8 kf l  
0 

Fig. 4-37 

3attery 
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4.43 Double the voltages of the voltage sources in the circuit shown in Fig. 4-37 and redetermine the mesh 
currents. Compare them with the original mesh currents. 

Ans. I ,  = -4mA, I ,  = 12 mA, I ,  = 8 mA, double 

Double the resistances of the resistors in the circuit shown in Fig. 4-37 and redetermine the mesh currents. 
Compare them with the original mesh currents. 

Ans. I ,  = - 1 mA, I ,  = 3 mA, I ,  = 2 mA, half 

Repeat Prob. 4.42 with the three voltage-source changes of 176 to 108 V, 112 to 110 V. and 48 to 66 V. 

Ans.  I ,  = 3 mA, I ,  = 4 mA, I ,  = 5 mA 

For a certain three-mesh circuit, the self-resistances are 20, 25, and 32 R for meshes 1, 2, and 3, respectively. 
The mutual resistances are 10 R for meshes 1 and 2, 12 SZ for meshes 2 and 3, and 6 R for meshes 1 and 3. 
The aiding voltages from voltage sources are -74, 227, and -234 V for meshes 1,  2, and 3, respectively. 
Find the mesh currents. 

4.44 

4.45 

4.46 

Ans.  I ,  = -3A,  I ,  = 5A,  I ,  = - 6 A  

Repeat Prob. 4.46 for the same self-resistances and mutual resistances, but for aiding source voltages of 
146, -273, and 182 V for meshes 1, 2, and 3, respectively. 

Ans. I ,  = 5A,  I ,  = -7A,  I ,  = 4 A  

Obtain the mesh currents in the circuit of Fig. 4-38. 

Ans. I ,  = -0.879 mA, I, = -6.34 mA, I, = - 10.1 mA 

4.47 

4.48 

4 kR 60 V 

I 1 I 
Fig. 4-38 

4.49 Determine the mesh currents in the circuit of Fig. 4-39. 

Ans. I ,  = -3.26mA, I ,  = -1.99mA, I ,  = 1.82mA 
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4.50 

4.5 1 

4.52 

4.53 

4.54 

4.55 

4.56 

Use loop analysis to find the current flowing down through the 6-R resistor in the circuit shown in Fig. 4-33. 

Ans. 1 1  A 

Use loop analysis to find the current flowing to the right through the 8-kR resistor in the circuit shown in 
Fig. 4-37. 

Ans. 2mA 

Use loop analysis to find the current I in the circuit shown in Fig. 4-40. 

Ans. 0.375 A 

Fig. 4-40 

Obtain the node voltages in the circuit shown in Fig. 4-41. 

A ~ s .  V,  = - 8 V ,  V 2 = 3 V ,  V , = 7 V  

Find the node voltages in the circuit shown in Fig. 4-42. 

Ans. V, = 5 V, V2 = -2 V 

18 A 

n 

Fig. 4-41 

=- 
Fig. 4-42 

Double the currents from the current sources in the circuit shown in Fig. 4-42 and redetermine the node 
voltages. Compare them with the original node voltages. 

Ans. V, = l O V ,  V2 = -4V,  double 

Double the conductances of the resistors in the circuit shown in Fig. 4-42 and redetermine the node voltages. 
Compare them with the original node voltages. 

Ans. V, = 2.5 V, V, = - 1 V, half 
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4.57 Repeat Prob. 4.54 with the 24-A source changed to - 1 A. 

Ans. V, = 7 V, V, = 1 V 

4.58 Find V, for the circuit shown in Fig. 4-43. 

A ~ s .  -50 V 

251 0.3 V 

+ 

1 1 

Fig. 4-43 

4.59 

4.60 

4.61 

4.62 

Fig. 4-44 

Find V in the circuit shown in Fig. 4-44. 

Ans. 180 V 

Calculate the node voltages in the circuit of Fig. 4-45. 

A ~ s .  V, -63.5 V, V, = 105.9 V 

I 12 mA 

* .  30kR 1 
Fig. 4-45 

Find the voltages V, ,  V,, and V3 in the circuit shown in Fig. 4-46. 

Ans. V, = S V ,  V, = - 2 V ,  V3 = 3 V  

Find the node voltages in the circuit shown in Fig. 4-47. 

Ans. V, = -2V.  V, = 6V,  V, = 4 V  
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176 A 

V1 

4.63 

4.64 

4.65 

4.66 

4.67 

32 A 0 ZJ S 

100 A 

> 8  S 

I- 

Fig. 4-46 
- 

24 A 

48 A 

Fig. 4-47 

Repeat Prob. 4.62 with the three current-source changcs of 176 to 108 A. 112 to 110 A, and 48 to 66 A. 

A m .  C; = 3 V,  I', = 4 V, v3 = 5 V 

For a certain four-node circuit, including ;i ground node, the self-conductances are 40, 50. and 64 S for 
nodes 1 ,  2, and 3. respectively. The tnutual conductances are 20 S for nodes 1 and 2, 24 S for nodes 2 and 
3, and 12 S for nodes 1 and 3. Currents flowing i n  current sources connected to these nodes are 74 A awajs 
from node 1 ,  227 A into node 2, and 234 A iiu'ay from node 3.  Find the node \ultagcs. 

AHX. C; = - 1.5 V, V2 = 2.5 V, C; = - -3  V 

Repeat Prob. 4.64 for the same self-conductanccs and mutual conductances, but for source currents of 292 A 
into node I ,  546 A away from node 2, and 364 A into node 3. 

At1.s. P', = 5 V, V, = - 7 V. k:3 = 4 V 

In  the circuit shown in Fig. 4-48, find if I,. = 301, and I,;,.. = 0.7 V. 

Aits. 3.68 V 

4 kR 

1 kR 

Fig. 4-48 

Repeat Prob. 4.66 with the dc voltage source changed to 9 V and the collector rcsistor changed from 2 kR 
to 2.5 kR. 

Atis. 2.89 V 
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INTRODUCTION 

Network theorems are often important aids for network analyses. Some theorems apply only to 
linear, bilateral circuits, or portions of them. A lineur electric circuit is constructed of linear electric 
elements as well as of independent sources. A linear electric element has an excitation-response relation 
such that doubling the excitation doubles the response, tripling the excitation triples the response, and 
so on. A bilateral circuit is constructed of bilateral elements as well as of independent sources. A bilateral 
element operates the same upon reversal of the excitation, except that the response also reverses. Resistors 
are both linear and bilateral if they have voltage-current relations that obey Ohm’s law. On the other 
hand, a diode, which is a common electronic component, is neither linear nor bilateral. 

Some theorems require deactivation of independent sources. The term deactioation refers to replacing 
all independent sources by their internal resistances. In other words, all ideal voltage sources are replaced 
by short circuits, and all ideal current sources by open circuits. Internal resistances are not affected, nor 
are dependent sources. Dependent sources ure never deuctiuateci in the upplicution of unjq theorem. 

THEVENIN’S AND NORTON’S THEOREMS 

ThPuenin’s and Norton’s theorems are probably the most important network theorems. For the 
application of either of them, a network is divided into two parts, A and B, as shown in Fig. 5-la, with 
two joining wires. One part must be linear and bilateral, but the other part can be anything. 

Thevenin’s theorem specifies that the linear, bilateral part, say part A, can be replaced by a 
Thkvenin equiualent circuit consisting of a voltage source and a resistor in series, as shown in Fig. 
5-lb, without any changes in voltages or currents in part B. The voltage VTh of the voltage source is 
called the Theuenin voltuye, and the resistance R,, of the resistor is called the ThPcenin resistance. 

As should be apparent from Fig. 5-lh, VTh is the voltage across terminals U and h if  part B is replaced 
by an open circuit. So, if the wires are cut at terminals a and h in either circuit shown in Fig. 5-1, and 
if a voltmeter is connected to measure the voltage across these terminals, the voltmeter reading is VTh. 

This voltage is almost always different from the voltage across terminals U and h with part B connected. 
The Thevenin or open-circuit voltage I/Th is sometimes designated by Vac. 

With the joining wires cut, as shown in Fig. 5-2a, R,, is the resistance of part A with all independent 
sources deactivated. In other words, if all independent sources in part A are replaced by their internal 
resistances, an ohmmeter connected to terminals a and h reads Thevenin’s resistance. 

82 



CHAP. 51 DC EQUIVALENT CIRCUITS, NETWORK THEOREMS 83  

4- R , ,  

.4 

Independent sources 
deactivated 

Independent sources 
deactivated 

If in Fig. 5-2a the resistors in part A are in a parallel-series configuration, then R T h  can be obtained 
readily by combining resistances. If, however, part A contains dependent sources (remember, they are 
not deactivated), then, of course, resistance combination is not applicable. But  in this case the approach 
shown in Fig. 5-2b can be used. An independent source is applied, either voltage or current and of any 
value, and R T h  obtained from the resistance “seen” by this source. Mathematically, 

So, if a source of voltage V,  is applied, then I ,  is calculated for this ratio. And if a source of current 
I ,  is applied, then V,  is calculated. The preferred source, if any, depends on the configuration of part A. 

Thevenin’s theorem guarantees only that the voltages and currents in part B do not change when 
part A is replaced by its Thevenin equivalent circuit. The voltages and currents in the Thevenin 
circuit itself are almost always different from those in the original part A ,  except at terminals a and b 
where they are the same, of course. 

Although R T h  is often determined by finding the resistance at terminals a and h with the connecting 
wires cut and the independent sources deactivated, i t  can also be found from the current I s ,  that flows 
in a short circuit placed across terminals N and b, as shown in Fig. 5-3u. As is apparent from Fig. 5-3b, 
this short-circuit current from terminal N to h is related to the Thevenin voltage and resistance. 
Specifically, 

so, R T h  is equal to the ratio of the open-circuit voltage at terminals a and h and the short-circuit 
current between them. With this approach to determining R T h ,  no sources are deactivated. 

b 

Fig. 5-3 

From r/Th = Is$,,, it is evident that the Thevenin equivalent can be obtained by determining 
any two of the quantities VTh, I,,, and RTh. Common sense dictates that the two used should be the 
two that are the easiest to determine. 

The Nortorz cvpircrlcnt circwit can be derived by applying a source transformation to the Thevenin 
equivalent circuit, as illustrated in Fig. 5-4u. The Norton equivalent circuit is sometimes illustrated as 
in Fig. 5-4h, in which R, = R T h .  Notice that, if  a short circuit is placed across 
terminals N and h in the circuit shown in Fig. 5-4h, the short-circuit current I s ,  from terminal a to h is 

I ,  = I /Th’RTh  and 
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equal to the Norton current I , .  Often in circuit diagrams, the notation I , ,  is used for the source current 
instead of I , .  Also, often R,, is used for the resistance instead of R N .  

In  electronic circuit literature, an electronic circuit with a load is often described as having an output 
resistance R,,,. If  the load is disconnected and if the source at the input of the electronic circuit is replaced 
by its internal resistance, then the output resistance R,,, of the electronic circuit is the resistance “looking 
in” at the load terminals. Clearly, it is the same as the Thevenin resistance. 

An electronic circuit also has an input resistance R,,, which is the resistance that appears at the 
input of the circuit. In  other words, it is the resistance “seen” by the source. Since an electronic circuit 
typically contains the equivalent of dependent sources, the input resistance is determined in the same 
way that a Thevenin resistance is often obtained by applying a source and determining the ratio 
of the source voltage to the source current. 

MAXIMUM POWER TRANSFER THEOREM 

The rnuxiniuni power triinsfir theorem specifies that a resistive load receives maximum power from 
a linear, bilateral dc circuit if the load resistance equals the Thevenin resistance of the circuit as 
“seen” by the load. The proof is based on calculus. Selecting the load resistance to be equal to the circuit 
Thevenin resistance is called mitchin~j the resistances. With matching, the load voltage is VTh ‘2, and 
SO the power consumed by the load IS ( b$h/f2)2jRTh = V;,)4RT,. 

SUPERPOSITION THEOREM 

The superposition theorem specifies that, in a linear circuit containing several independent sources, 
the current or voltage of a circuit element equals the alyehrczic .SZIIN of the component voltages or currents 
produced by the independent sources acting alone. Put another way, the voltage or current contribution 
from each independent source can be found separately, and then all the contributions algebraically added 
to obtain the actual voltage or current with all independent sources in the circuit. 

not to dependent ones. Also, i t  applies only to 
finding voltages and currents. In  particular, i t  cannot be used to find power in dc circuits. Additionally, 
the theorem applies to each independent source acting alone, which means that the other independent 
sources must be deactivated. In  practice, though. i t  is not essential that the independent sources be 
considered one at a time; any number can be considered simultaneously. 

Because applying the superposition theorem requires several analyses, more work may be done than 
with a single mesh, loop, or nodal analysis with all sources present. So, using the superposition theorem 
in a dc analysis is seldom advantageous. I t  can be useful, though, in the analyses of some of the 
operational-amplifier circuits of the next chapter. 

This theorem applies only to independent sources 

MILLMAN’S THEOREM 

Millnzun’s theorenz is a method for reducing a circuit by combining parallel voltage sources into a 
single voltage source. It is just a special case of the application of Thevenin’s theorem. 



CHAP. 5 )  DC E Q U I V A L E N T  CIRCUITS, NETWORK T H E O R E M S  85 

Figure 5-5 illustrates the theorem for only three parallel voltage sources. but the theorem applies 
to any number of such sources. The derivation of Millman's theorem is simple. If the voltage sources 
shown in Fig. 5-511 are transformed to current sources (Fig. 5-5h) and the currents added, and if the 
conductances are added, the result is a single current source of G1 I ;  + G, I >  + G,t; i n  parallel with a 
resistor having a conductance of G 1  + G, + G, (Fig. 5 - 5 . ) .  Then. the transformation of this current 
source to a voltage source gives the final result indicated i n  Fig. 5-Srl.  I n  general, for ,1' parallel voltage 
sources the Millman voltage source has a Lroltage of 

and the Millman series resistor has a resistance of 

Note from the voltage source formula that. if  all the sources have the same voltage, this voltage is 
also the Millman source voltage. 

Y-A AND A-Y TRANSFORMATIONS 

Figure 5-6cr shows a Y (wye) resistor circuit and Fig. 5-6h a A (delta) resistor circuit. There are other 
names. If the Y circuit is drawn in the shape of a T, it is also called a T (tee) circuit. And if  the A circuit 
is drawn in the shape of a n, i t  is also called a I7 (pi) circuit. 

C 

B 
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I t  is possible to transform a Y to an equivalent A and also a A to an equivalent Y. The corresponding 
circuits are equivalent only for voltages and currents exterrzul to the Y and A circuits. Internally, the 
voltages and currents are different. 

Transformation formulas can be found from equating resistances between two lines to a A and a Y 
when the third line to each is open. This equating is done three times, with a different line open each 
time. Some algebraic manipulation of the results produces the following A-to-Y transformation formulas: 

Also produced are the following Y-to-A transformation formulas: 

RARE + RARc + RBR, R2 = - RARB + RA& + RBRL R ,  = RARE + + RBR, R I  = 
RB RC RA 

Notice in the A-to-Y transformation formulas that the denominators are the same: R ,  + R 2  + 
R 3 ,  the sum of the A resistances. In the Y-to-A transformation formulas, the numerators are the 
same: the sum of the different products of the Y resistances taken two at a 
time. 

Drawing the Y inside the A, as in Fig. 5-7, is a good aid for remembering the numerators of the 
A-to-Y transformation formulas and the denominators of the Y-to-A transformation formulas. For each 
Y resistor in the A-to-Y transformation formulas, the two resistances in each numerator product are 
those of the two A resistors adjacent to the Y resistor being found. In the Y-to-A transformation formulas, 
the single Y resistance in each denominator is that of the Y resistor opposite the A resistor being found. 

If it happens that each Y resistor has the same value R, ,  then each resistance of the corresponding 
A is 3R,,  as the formulas give. And if each A resistance is RA, then each resistance of the corresponding 
Y is R J 3 .  So, in this special but fairly common case, 

RARE + R A  Rc + RB R,, 

RA = 3 R ,  and, of course, R ,  = R J 3 .  

C 

Fig. 5-7 

BRIDGE CIRCUITS 

As illustrated in Fig. 5-8a, a bridge resistor circuit has two joined A’s or, depending on the point of 
view, two joined Y’s with a shared branch. Although the circuit usually appears in this form, the forms 
shown in Fig. 5-8b and c are also common. The circuit illustrated in Fig. 5-8c is often called a luttice. 
If a A part of a bridge is transformed to a Y, or a Y part transformed to a A, the circuit becomes 
series-parallel. Then the resistances can be easily combined, and the circuit reduced. 

A bridge circuit can be used for precision resistance measurements. A Wheutstone bridge has a center 
branch that is a sensitive current indicator such as a galvanometer, as shown in Fig. 5-9. Three of the 
other branches are precision resistors, one of which is variable as indicated. The fourth branch is the 
resistor with the unknown resistance R ,  that is to be measured. 
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( b  1 
Fig. 5-8 

R2 

R4 

d 
Fig. 5-9 

For a resistance measurement, the resistance R ,  of the variable resistor is adjusted until the 
galvanometer needle does not deflect when the switch in the center branch is closed. This lack of deflection 
is the result of zero voltage across the galvanometer, and this means that, even with the switch open, 
the voltage across R ,  equals that across R , ,  and the voltage across R 3  equals that across R, .  In this 
condition the bridge is said to be balanced. By voltage division, 

RXV -- - R3V and R2 v 

Taking the ratio of the two equations produces the bridge balance equation: 

-- - R l V  
RI + R 3  R 2 + R x  RI + R 3  R 2 + R ,  

Presumably, R ,  and R 3  are known standard resistances and a dial connected to R ,  gives this resistance 
so that R x  can be solved for. Of course, a commercial Wheatstone bridge has dials that directly indicate 
R ,  upon balance. 

A good way to remember the bridge balance equation is to equate products of the resistances of 
opposite branch arms: R , R ,  = R2R3. Another way is to equate the ratio of the top and bottom 
resistances of one side to that of the other: R , / R ,  = R 2 / R x .  

Solved Problems 
5.1 A car battery has an open-circuit terminal voltage of 12.6 V. The terminal voltage drops to 

10.8 V when the battery supplies 240 A to a starter motor. What is the Thevenin equivalent circuit 
for this battery? 
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The Thevenin voltage is the 12.6-V open-circuit voltage (VTh = 12.6 V). The voltage drop when 
the battery supplies 240A is the same drop that would occur across the Thevenin resistor in the 
Thevenin equivalent circuit because this resistor is in series with the Thevenin voltage source. From 
this drop, 

12.6 - 10.8 
= 7.5 mR 

240 
RTh = 

5.2 Find the Thevenin equivalent 
when delivering 400 mA and a 

circuit for a dc power supply that has a 30-V terminal voltage 
27-V terminal voltage when delivering 600 mA. 

For the Thevenin equivalent circuit, the terminal voltage is the Thevenin voltage minus the drop 
across the Thevenin resistor. Consequently, from the two specified conditions of operation, 

VTh - (400 x 10-3)R~h = 30 

VTh - (600 x 10-3)R~h = 27 

Subtracting, 

-(400 X 1 0 - 3 ) R ~ h  + (600 X lo - ' ) )RTh = 30 - 27 
3 

RTh r __-- = 15Q from which 
200 10-3 

This value of R T h  substituted into the first equation gives 

i'$h - (400 x 10-3)(15) = 30 or VTh = 36 v 

5.3 Find the Thevenin equivalent circuit for a battery box containing four batteries with their 
positive terminals connected together and their negative terminals connected together. The 
open-circuit voltages and internal resistances of the batteries are 12.2 V and 0.5 R, 12.1 V and 
0.1 R, 12.4 V and 0.16 R, and 12.4 V and 0.2 R. 

The first step is to transform each voltage source to a current source. The result is four ideal current 
sources and four resistors, all in parallel. The next step is to add the currents from the current sources and 
also to add the conductances of the resistors, the effect of which is to combine the current sources into a 
single current source and the resistors into a single resistor. The final step is to transform this source and 
resistor to a voltage source in series with a resistor to obtain the Thevenin equivalent circuit. 

The currents of the equivalent sources are 

12.1 12.4 124 
- = 24.4 A -- - 121 A - = 77.5 A - - -=62A 
12.2 

0.5 0.1 0.16 0.2 

which add to 

24.4 + 121 + 77.5 + 62 = 284.9 A 

The conductances add to 

1 1 1 1  

0.5 0.1 0.16 0.2 
- + ~- + __ + ~ = 23.25 S 

From 

5.4 Find 
28 V 

this current and conductance, the Thevenin voltage and resistance are 

I 284.9 1 

G 23.25 23.25 
VTh = - = ~ = 12.3 V and R T h  = ~ = 0.043 R 

the Norton equivalent circuit for the power supply of Prob. 5.2 if the terminal voltage is 
instead of 27 V when the power supply delivers 600 mA. 
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For the Norton equivalent circuit, the load current is the Norton current minus the loss of current 
through the Norton resistor. Consequently, from the two specified conditions of operation, 

28 
IN - - = 600 x 10-3 

R N  

Subtracting, 

30 28 
- -- + - = 400 x 10-3 - 600 x 10-3 

RN R N  

or _ _ -  - -200 x 10-3 from which R, = 2- = 10Q 
R N  200 x 1 0 - 3  

Substituting this into the first equation gives 

30 

10 
I, - - = 400 10-3  and so I N  = 3.4 A 

5.5 What resistor draws a current of 5 A when connected across terminals a and b of the circuit 
shown in Fig. 5-10? 

Fig. 5-10 

A good approach is to use Thevenin's theorem to simplify the circuit to the Thevenin equivalent 
of a VTh voltage source in series with an R,, resistor. Then the load resistor R is in series with these, and 
Ohm's law can be used to find R :  

'T h from which R = ~ - R T h  
'T h 5:- 

RTh + 5 

The open-circuit voltage at terminals a and b is the voltage across the 2 0 4  resistor since there is 
0 V across the 6-R resistor because no current flows through i t .  By voltage division this voltage is 

VTh ___ 2o x100=80V 
20 + 5 

R T h  is the resistance at terminals a and b with the 100-V source replaced by a short circuit. This short 

With VTh and R T h  known, the load resistance R for a 5-A current can be found from the previously 
circuit places the 5- and 2 0 4  resistors in parallel for a net resistpce of 51120 = 4 R. So, R T h  = 6 + 4 = 10 Q 

derived equation: 
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5.6 In the circuit shown in Fig. 5-11, find the base current 1, if 1, = 301,. The base current is 
provided by a bias circuit consisting of 54- and 9.9-kR resistors and a 9-V source. There is a 
0.7-V drop from base to emitter. 

1 I- 

I 
Fig. 5-1 1 

One way to find the base current is to break the circuit at the base lead and determine the Thevenin 
equivalent of the bias circuit. For this approach i t  helps to consider the 9-V source to be two 9-V sources, 
one of which is connected to the 1.6-kQ collector resistor and the other of which is connected to the 54-kR 
bias resistor. Then the bias circuit appears as illustrated in Fig. 5-12a. From it, the voltage &, is, by voltage 
division, 

9.9 

9.9 + 54 
VTh = ____ x 9 = 1.394V 

Replacing the 9-V source by a short circuit places the 54- and 9.9-k0 resistors in parallel for an R T h  of 

9.9 x 54 

9.9 + 54 
R,, = --- -- = 8.37 k 0  

and the circuit simplifies to that shown in Fig. 5-12b. 

emitter resistor, 
From K V L  applied to the base loop, and from the fact that I, + I, = 311, flows through the 540-0 

1.394 = 8.371,  + 0.7 + 0.54 x 311, 

from which 
0.694 

25.1 
I, = - = 0.0277 mA = 27.7 pA 

Of course, the simplifying kilohm-milliampere method was used in some of the calculations. 

54 kR 

at 

9.9 kfl  

- - 

1.394 V 

3 I 

I 6E 
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5.7 Find the Thevenin equivalent circuit at  terminals a and b of the circuit with transistor model 
shown in Fig. 5-13. 

I ,  = 10/1000 A = 10 mA. Substituting in for I ,  gives 
The open-circuit voltage is 500 x 301, = 15 OOOI,, positive at terminal h. From the base circuit, 

VTh = 15000(10 x w3) = 150V 

The best way to find R T h  is to deactivate the independent 10-V source and determine the resistance 
at terminals U and b. With this source deactivated, 301, = 0 A, which means that 
the dependent current source acts as an open circuit-it produces zero current regardless of the voltage 
across it .  The result is that the resistance at terminals a and b is just the shown 500 R. 

The Thevenin equivalent circuit is a 500-R resistor in series with a 150-V source that has its positive 
terminal toward terminal h, as shown in Fig. 5-14. 

I ,  = 0 A, and so 

C 500 n 
A v r 

Fig. 5-13 Fig. 5-14 

5.8 What is the Norton equivalent circuit for the transistor circuit shown in Fig. 5-15? 

Fig. 5-15 

A good approach is to first find Is,, which is the Norton current I , ;  next find V,,, which is the 
Thevenin voltage V T h ;  and then take their ratio to obtain the Norton resistance R,, which is the same 

Placing a short circuit across terminals a and b makes V, = 0 V, which in turn causes the dependent 
voltage source in the base circuit to be a short circuit. As a result, I ,  = 1/2000 A = 0.5 mA. This short 
circuit also places 0 V across the 40-kR resistor, preventing any current flow through it. So, all the 251, = 
25 x 0.5 = 12.5 mA current from the dependent current source flows through the short circuit in a direction 
from terminal b to terminal a: 

V, = ( -251,)(40 OOO) = 
- 1061B. This substituted into the K V L  equation for the base circuit produces an equation in which I ,  is 
the only unknown: 

as R T h .  

I , ,  = I ,  = 12.5 mA. 
The open-circuit voltage is more difficult to find. From the collector circuit, 

1 = 20001, + O.O004V, = 20001, + 0.0004( - 1061,) = 1600IB 

SO, 1, = 1/1600 A = 0.625 mA, and V, = - 1061, = - 106(0.625 x l O P 3 )  = -625 V. The result is that 
V,, = 625 V, 

In the calculation of R,, signs are important when, as here, a circuit has dependent sources that can 
cause R ,  to be negative. From Fig. 5-3h, R T h  = R ,  is the ratio of the open-circuit voltage referenced positive 

positive at terminal h. 
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at terminal U and the short-circuit current referenced from terminal U to terminal b. Alternatively, both 
references can be reversed, which is convenient here. So, 

625 
= 50 kR VOC 

I , ,  12.5 10-3 
R ---= N -  

The Norton equivalent circuit is a 50-kR resistor in parallel with a 12.5-mA current source that is directed 
toward terminal h, as shown in Fig. 5-16. 

Fig. 5-16 

5.9 Directly find the output resistance of the circuit shown in Fig. 5-15. 

applied at the output LJ and h terminals. From Ohm's law applied to the base circuit, 
Figure 5-17 shows the circuit with the 1-V independent source deactivated and a I-A current source 

0.0004 V, 

2000 
1 - -2 x 10-7~.  H -  

Nodal analysis applied to the top node of the collector circuit gives 

+ 251, = 1 v,. 
40 000 

or 

upon substitution for I , .  The solution is 
with the 
used. 

Vc = 50000 V, and so R,,, = R,, = 50 kR. This checks 
R ,  = R,,  = Voc,'Isc approach was R ,  = R,, answer from the Prob. 5.8 solution in which the 

C a 
CI CI 
v W 

+ 

40 kR vc 

E - 
n d n - 

b 
Fig. 5-17 

5.10 Find the Thevenin equivalent of the circuit shown in Fig. 5-18. 

too v 

Fig. 5-18 
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The Thevenin or open-circuit voltage, positive at terminal a, is the indicated V plus the 30 V of 
the 30-V source. The 8-22 resistor has no effect on this voltage because there is zero current flow through it 
as a result of the open circuit. With zero current there is zero voltage. Vcan be found from a single nodal 
equation: 

V -  100 V 

10 40 
+ - + 20 = 0 

Multiplying by 40 and simplifying produces 

5V = 400 - 800 from which V =  -8OV 

So, 
Figure 5-19a shows the circuit with the voltage sources replaced by short circuits and the current source 

by an open circuit. Notice that the 5-R resistor has no effect on R T h  because it  is shorted, and neither does 
the 4-R resistor because i t  is in series with an open circuit. Since the resistor arrangement in  Fig. 5-19a is 
series-parallel, R T h  is easy to calculate by combining resistances: 

VTh = - 80 + 30 = -50 V. Notice that the 5-R and 4-R resistors have no effect on VTh. 

R T h  = 8 + 4011 10 = 16 R. 
Figure 5-19b shows the Thevenin equivalent circuit. 

10 fl 16 R 

(a) 
Fig. 5-19 

The fact that neither the 5-22 nor the 4 - 0  resistor has an effect on VTh and R T h  leads to the 
generalization that resistors in parallel with ideal voltage sources, and resistors in series with ideal current 
sources, have no effect on voltages and currents elsewhere in a circuit. 

5.11 Obtain the Thevenin equivalent of the circuit of Fig. 5-20a. 

VTh = 0 v because the circuit does not contain any independent sources. For a 
determination of R T , ,  it  is necessary to apply a source and calculate the ratio of the source voltage to the 
source current. Any independent source can be applied, but often a particular one is best. Here, if a 12-V 
voltage source is applied positive at terminal a, as shown in Fig. 5-20b, then I = 12/12 = 1 A, which is 
the most convenient current. As a result, the dependent source provides a voltage of 81 = 8 V. So, by KCL, 

By inspection, 

12 12 1 2 - 8  

12 6 4 
I ,  = - + - + ___ = 4 A  

Finally, 
v, 12 

4 4 
RTh = -- = - - -322 

4 R  4 R  

h 
(6) 

Fig. 5-20 
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5.12 For the circuit of Fig. 5-21, obtain the Thevenin equivalent to the left of the a-b terminals. 
Then use this equivalent in determining 1. 

12 R 

m 

= 8f2+ 161 

- - 
b 

Fig. 5-21 

The Thevenin equivalent can be obtained by determining any two of VTh, R T h ,  and lSc.  By inspection, 
it appears that the two easiest to determine are VT, and 

If the circuit is opened at the a-b terminals, all 24A of the independent current source must 
flow through the 10-R resistor, making V, = lO(24) = 240 V. Consequently, the dependent current source 
provides a current of O.OSV,  = 0.05(240) = 12 A, all of which must flow through the 12-R resistor. As a 
result, by KVL, 

VTh = 4, = - 12(12) + 240 = 96 V 

Because of the presence of the dependent source, R T h  must be found by applying a source and 
determining the ratio of the source voltage to the source current. The preferable source to apply is a current 
source, as shown in Fig. 5-22a. If this source is 1 A, then V, = lO(1) = 10 V, and consequently the 
dependent current source provides a current of 0.05( 10) = 0.5 A. Since this is one-half the source current, 
the other half must flow through the 12-R resistor. And so, by KVL, 

V,  = 0.5(12) + l(10) = 16 V 

Then, 

Figure 5-226 shows the Thevenin equivalent connected to the nonlinear load of the original circuit. The 
current 1 is much easier to calculate with this circuit. By KVL, 

161 + 812 + 161 = 96 or 1’ + 41 - 12 = 0 

I - 
h V 

b 

(4 
Fig. 5-22 

Applying 

Only the 
Thevenin 

the quadratic formula gives 

- 4 & J 1 6 + 4 8  - 4 & 8  
I =  - or -6  A -- - 2 A  - 

2 2 

2-A current is physically possible because current must flow out of the positive terminal of the 
voltage source, which means that 1 must be positive. So, I = 2 A.  
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5.13 Figure 5-23a shows an emitter-follower circuit for obtaining a low output resistance for resistance 
matching. Find R,,, . 

Because the circuit has a dependent source but no independent sources, R,,, must be found by applying 
a source at the output terminals, preferably a 1-A current source as shown in Fig. 5-238. 

From KCL applied at the top node, 

V V 

1000 250 
-- 501, + - = 1 

But from Ohm's law applied to the 1-kR resistor, 
becomes 

I, = - V/lOOO. With this substitution the equation 

V 
50 -__ + - = 1  

!-.- 1000 ( l&) 250 

from which 
resistor in the circuit. 

V =  18.2 V. Then Rou, = 1//1 = 18.2 R, which is much smaller than the resistance of either 

5.14 Find the input resistance Ri, of the circuit shown in Fig. 5-24. 

Fig. 5-24 

Since this circuit has a dependent source but no independent sources, the approach to finding the input 
resistance is to apply a source at the input. Then the input resistance is equal to the input voltage divided 
by the input current. A good source to apply is a 1-A current, as shown in Fig. 5-25. 

I 

I + I I I 

1 2 5  R A hv 
Fig. 5-25 
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By nodal analysis, 

V V 
- _  1.51 + - = 1 
25 50 

But from the right-hand branch, 1 = v50. With this substitution the equation becomes 

V v v  
- _  1 . 5 - + - =  1 
25 50 50 

the solution to which is V = 33.3 V. So, the input resistance is 

v 33.3 
R .  = -- = ~ = 33.3 Q 

I n  1 1 

5.15 Find the input resistance of the circuit shown in Fig. 5-24 if the dependent current source has a 
current of 51 instead of 1.51. 

For a 1-A current source applied at the input terminals, the nodal equation at the top node is 

V V 
-- 5 1 + - = 1  
25 50 

But, from the right-hand branch, 1 = v50. With this substitution the equation is 

v v v  
-- 5 - + - = 1  
25 SO SO 

from which 
A negative resistance may be somewhat disturbing to the mind when first encountered, but it is physically 

real even though it takes a transistor circuit, an operational amplifier, or the like to obtain it. Physically, a 
negative input resistance means that the circuit supplies power to whatever source is applied at the input, 
with the dependent source being the source of power. 

V = -25 V. Thus, the input resistance is Rin  = -25/1 = -25 R. 

5.16 Figure 5-26a shows an emitter-follower circuit for obtaining a large input resistance for resistance 
matching. The load is a 30-0 resistor, as shown. Find the input resistance Ri, .  

Because the circuit has a dependent source and no independent sources, the preferable way to find Ri, 
is from the input voltage when a 1-A current source is applied, as shown in Fig. 5-26b. Here, Is = 1 A, and 
so the total current to the parallel resistors is 1, + 1001, = 1011, = 101 A, and the voltage V is 

V = 101(2501/30) V = 2.7 k V  

The input resistance is Rin  = l('1 = 2.7 kn, which is much greater than the 30 Q of the load. 

I A  

Fig. 5-26 
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5.17 What is the maximum power that can be drawn from a 12-V battery that has an internal resistance 
of 0.25 R? 

A resistive load of 0.25 R draws maximum power because it has the same resistance as the Thevenin 
or internal resistance of the source. For this load, half the source voltage drops across the load, making the 
power 62/0.25 = 144 W. 

5.18 What is the maximum power that can be drawn by a resistor connected to terminals a and h of 
the circuit shown in Fig. 5-15? 

In the solution to Prob. 5.8, the Thevenin resistance of the circuit shown in Fig. 5-15 was found to 
be 50 kR and the Norton current was found to be 12.5 mA. So, a load resistor of 50 kR absorbs maximum 
power. By current division, half the Norton current flows through it, producing a power of 

(F x 10-3)2(50 x 103) = 1.95 W 

5.19 In the circuit of Fig. 5-27, what resistor R ,  will absorb maximum power and what is this power? 

U 
n 
v 

I01 
40 R 

n - W 

h 
Fig. 5-27 

For maximum power transfer, R,* = R,, and 

If R L  is replaced by an open circuit, then the current 1 is, by current division, 

P,,, = V;,/(4Rrh). So, i t  is necessary to obtain the 
Thevenin equivalent of the portion of the circuit to the left of the a and h terminals. 

I = - - - -  40 x 8 = 6.4A 
40 + 10 

Consequently, the dependent voltage source provides a voltage of lO(6.4) = 64 V. Then, by KVL, 

V,, = VTh = 64 + lO(6.4) = 128 v 
I t  is convenient to use the short-circuit current approach in determining Rrh,  I f  a short circuit 

is placed across terminals a and 6, all components of the circuit of Fig. 5-27 are in parallel. Consequently, 
the voltage drop, top to bottom, across the 10-R resistor of 101 is equal to the - 101 voltage drop across 
the dependent voltage source. Since the solution to 101 = - 101 is 1 = 0 A, there is a zero voltage 
drop across both resistors, which means that all the 8 A of the current source must flow down through the 
short circuit. So, I s ,  = 8 A and 

Thus, R L  = 16 R for maximum power absorption. Finally, this power is 
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5.20 In  the circuit of Fig. 5-28, what resistor R ,  will absorb maximum power and what is this power? 

6 R  U 

h 
Fig. 5-28 

I t  is, of course, necessary to obtain the Thevenin equivalent to the left of the a and h terminals. The 
Thevenin voltage VTh will be obtained first. Observe that the voltage drop across the 4-0 resistor is V,, 
and that this resistor is in series with an 8-R resistor. Consequently, by voltage division performed in a reverse 
manner, the open-circuit voltage is VTh = V,, = 3 v X .  Next, with R ,  removed, applying KCL at the node 
that includes terminal a gives 

3Vx - 90 V, 

6 4 
+ - - 0.125Vx = 0 . __ ~ _ _  

the solution to which is V,, = 3Vx = 3(24) = 72 V. 
By inspection of the circuit, it should be fairly apparent that it is easier to use I,, to obtain 

R T h  than it is to determine R T h  directly. If a short circuit is placed across terminals U and h, then 
V, = 0 V, and so no current flows in the 4-R resistor and there is no current flow in the dependent 
current source. Consequently, 

V, = 24 V. So, 

I , ,  = 90/6 = 15 A. Then, 

which is the resistance that R, should have for maximum power absorption. Finally, 

V:, 722 
P,,, = __ - - ___ = 270 W 

4 R ~ h  4(4.8) 

5.21 Use superposition to find the power absorbed by the 12-52 resistor in the circuit shown in Fig. 5-29. 

1 
I l- 

Fig. 5-29 

Superposition cannot be used to find power in a dc circuit because the method applies only to linear 
quantities, and power has a squared voltage or current relation instead of a linear one. To illustrate, the 
current through the 12-Q resistor from the 100-V source is, with the 6-A source replaced by an open 
circuit, 5.5562 x 12 = 370 W. With the voltage 
source replaced by a short circuit, the current through the 1 2 4  resistor from the 6-A current source is, by 
current division, 2* x 12 = 48 W. So, if superposition 
could be applied to power, the result would be for the power dissipated in the 12-R 
resistor. 

100/(12 + 6) = 5.556 A. The corresponding power is 

[6/(12 + 6)](6) = 2 A. The corresponding power is 
370 + 48 = 4 1 8  W 
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Superposition does, however, apply to currents. So, the total current through the 12-R resistor 
5.556 + 2 = 7.556 A, and the power consumed is which is much different than is 

the 418 W found by erroneously applying superposition to power. 
7.5562 x 12 = 685 W, 

5.22 In the circuit shown in Fig. 5-29, change the 100-V source to a 360-V source, and the 6-A current 
source to an 18-A source, and use superposition to find the current I .  

Figure 5-30a shows the circuit with the current source replaced by an open circuit. Obviously, the 
component I, of I from the voltage source is I, = -360/(6 + 12) = -20 A. Figure 5-306 shows the circuit 
with the voltage source replaced by a short circuit. By current division, I,, the current-source component 
of I, is I, = [12/(12 + 6)](18) = 12 A. The total current is the algebraic sum of the current compo- 
nents: I = I ,  + I ,  = -20 + 12 = -8 A. 

6 R Iv 6 R Ic 

5.23 For the circuit shown in Fig. 5- 18, use superposition to find VTh referenced positive on terminal a. 

Clearly, the 30-V source contributes 30 V to VTh because this source, being in series with an open circuit, 
cannot cause any currents to flow. Zero currents mean zero resistor voltage drops, and so the only voltage 
in the circuit is that of the source. 

Figure 5-31a shows the circuit with all independent sources deactivated except the 100-V source. Notice 
that the voltage across the 40-R resistor appears across terminals a and b because there is a zero voltage 
drop across the 8-R resistor. By voltage division this component of VTh is 

40 
VTh” =- x 100 = 80 V 

4 0 +  10 

Figure 5-31b shows the circuit with the current source as the only independent source. The voltage 
across the 40-R resistor is the open-circuit voltage since there is a zero voltage drop across the 8-R resistor. 
Note that the short circuit replacing the 100-V source prevents the 5-R resistor from having an effect, and 
also it places the 40- and 10-SZ resistors in parallel for a net resistance of 40)110 = 8 R. So, the component 
of VTh from the current source is VThC = - 20 x 8 = - 160 V. 

10 n 8 R  10 R 

Fig. 5-31 
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VTh is the algebraic sum of the three components of voltage: 

VTh=30+80- 1 6 0 ~  -5OV 

Notice that finding V,, by superposition requires more work than finding it by nodal analysis, as 
was done in the solution to Prob. 5.10. 

5.24 Use superposition to find VTh for the circuit shown in Fig. 5-15. 

dependent. Only one source is independent. The superposition theorem does not apply to dependent sources. 
Although this circuit has three sources, superposition cannot be used since two of the sources are 

5.25 Use Millman’s theorem to find the current flowing to a 0.2-0 resistor from four batteries operating 
in parallel. Each battery has a 12.8-V open-circuit voltage. The internal resistances are 0.1, 0.12, 
0.2, and 0.25 il. 

Millman resistance is the inverse of the sum of the conductances: 
Because the battery voltages are the same, being 12.8 V, the Millman voltage is VM = 12.8 V. The 

1 

1/0.1 + 1/0.12 + 1/0.2 + 1/0.25 
R M  = - i2 = 36.6 mQ 

Of course, the resistor current equals the Millman voltage divided by the sum of the Millman 
and load resistances: 

12.8 
I = - - - -  vM - - = 54.1 A 

R M  + R 0.2 + 0.0366 

5.26 Use Millman’s theorem to find the current drawn by a 5-Q resistor from four batteries operating 
in parallel. The battery open-circuit voltages and internal resistances are 18 V and 1 0, 20 V and 
2 Q, 22 V and 5 0, and 24 V and 4 0. 

The Millman voltage and resistance are 

(1)(18) + (1/2)(20) + (1/5)(22) + (1/4M24) - 19.7 ____- VM = 
1 + 1/2 + 1/’5 + 1/4 

I R - __ ___.___ - - 0.513 C! 
1 + 1/2 + 1/5 + 1/4 

M -  

The current is, of course, the Millman voltage divided by the sum of the Millman and load resistances: 

19.7 
- - 3.57 A I = - - - -  VM 

R M +  R 0.513 + 5 

5.27 Use Millman’s theorem to find I for the circuit shown in Fig. 5-32. 

Fig. 5-32 
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The Millman voltage and resistance are 

1 

1/50 + 1/25 + 1/40 + 1/10 
RM = = 5.41 R 

And so 
- 20.27 

5.41 + 25 
- - -0.667 A I = - - - -  VM 

RM + R 

5.28 Transform the A shown in Fig. 5-33a to the Y shown in Fig. 5-33b for 
and (b)  R ,  = 20 R, R ,  = 30 R, and R ,  = 50 R. 

(a)  For A resistances of the same value, 

(b)  The denominators of the R ,  formulas are the same: 
numerators are products of the adjacent resistor resistances if the Y is placed inside the A: 

(a) R I  = R ,  = R ,  = 36 R, 

R ,  = R J 3 .  So, here, R A  = R ,  = R ,  = 36,13 = 12 R. 
R ,  + R ,  + R 3  = 20 + 30  + 50 = 100 R. The 

R , R ,  - 20 x 50 -- R , R ,  - 30 x 50 

100 1 00 100 100 100 100 
R - - = = = 6 Q  RE = ~ - = 15R R ,  = - - - 10R 

R , R ,  20 x 30 
A -  

B I C -/"h"i, 
( b )  

Fig. 5-33 

5.29 Transform the Y shown in Fig. 5-33b to the A shown in Fig. 5-33a for (a) R A  = RE = R ,  = 5 R, 
and (b)  R A  = 10 R, R E  = 5 R, R ,  = 20 R. 
(a) For Y resistances of the same value: 

(6) The numerators of the RA formulas are the same: R A R E  + R,Rc + R,R,  = 10 x 5 + 10 x 20 + 
5 x 20 = 350. The denominators of the RA formulas are the resistances of the Y arms opposite the A 
arms if the Y is placed inside the A. Thus, 

RA = 3R,.  So, here, R ,  = R ,  = R ,  = 3 x 5 = 15 R. 

5.30 Use a A-to-Y transformation in finding the currents I , ,  I , ,  and I ,  for the circuit shown in Fig. 5-34. 

The A of 15-R resistors transforms to a Y of 1513 = 5-R resistors that are in parallel with the Y of 
20-0 resistors. I t  is not obvious that they are in parallel, and in fact they would not be if the resistances for 
each Y were not all the same value. When, as here, they are the same value, an analysis would show that the 
middle nodes are at the same potential, just as if a wire were connected between them. So, corresponding 



I02 DC 

30 V 

4 O V  
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4 Q  
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15 Q 

Fig. 5-34 

( b  1 
Fig. 5-35 

resistors of the two Y's are in parallel, as shown in Fig. 5-35a. The two Y's can be reduced to the single Y 
shown in Fig. 5-35b, in which each Y resistance is With this Y replacing the A-Y combination, 
the circuit is as shown in Fig. 5-35c. 

51120 = 4 R. 

With the consideration of I, and I, as loop currents, the corresponding K V L  equations are 

30=  181, + 101, and 40 = 101, + 221, 

the solutions to which are I, = 0.88 A and 
node, 

I, = 1.42 A. Then, from K C L  applied at the right-hand 
I, = - I ,  - I, = -2.3 A. 

5.31 Using a Y-to-A transformation, find the total resistance R ,  of the circuit shown in Fig. 5-36, 
which has a bridged-T attenuator. 

Fig. 5-36 
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R2 800 fl 

425 R 

3.4 kR 3.4 kR I kR 

0 

( b )  

Fig. 5-37 

Figure 5-37a shows the T part of the circuit inside a A as an aid in finding the A resistances. From the 
Y-to-A transformation formulas, 

200(200) + 200( 1600) + 200( 1600) 680 000 
R = 3.4 kR - R I  = R ,  = - 

200 200 

680 000 

1 600 
R,=------- = 425 R 

As a result of this transformation, the circuit becomes series-parallel as shown in Fig. 5-37b, and the 
total resistance is easy to find: 

R ,  = 3400(1(800((425 + 340011 1000) = 3400(( 1050 = 802 Q 

5.32 Find I for the circuit shown in Fig. 5-38 by using a A-Y transformation. 

I 8 0  

1% v 

Fig. 5-38 

The bridge simplifies to a series-parallel configuration from a transformation of either the top or bottom 
A to a Y, or the left- or right-hand Y to a A. Perhaps the most common approach is to transform one of 
the A’s to a Y, although the work required is about the same for any type of transformation. Figure 5-390 
shows the top A enclosing a Y as a memory aid for the transformation of this A to a Y. All three Y formulas 
have the same denominator: 14 + 10 + 6 = 30. The numerators, though, are the products of the re- 
sistances of the adjacent A resistors: 

10 x 14 14 x 6 6 x 10 

30 30 30 
R A  = ____ = 4.67 R R B  = - = 2.8 R R ,  = ___ = 2 R  

With this transformation the circuit simplifies to that shown in Fig. 5-39h in which all the resistors are 
in series-parallel. From it, 

196 
I =  = 1 2 A  

8 + 4.67 + (2.8 + 1.6)[1(2 + 20) 
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1% v 

( b )  

Fig. 5-39 

5.33 In  the circuit shown in Fig. 5-38, what resistor R replacing the 2 0 4  resistor causes the bridge to 
be balanced? Also, what is I then? 

For balance, the product of the resistances o f  opposite bridge arms are equal: 

16 

14 
R x 14 = 1.6 x 10 from which R = - = 1.14SZ 

With the bridge in balance, the center arm can be considered as an open circuit because i t  carries no 
current. This being the case, and because the bridge is a series-parallel arrangement, the current 1 is 

= 13.5 A 
196 

8 + (14 + 1.6)1,(10 + 1.14) 
________ I =  

Alternatively, the center arm can be considered to be a short circuit because both ends of i t  are at  the same 
potential. From this point of view, 

196 

8 + 14/110 + 1.61'1.14 
I = -  ___ - - 13.5 A 

which is, of course, the same. 

5.34 The slide-wire bridge shown in Fig. 5-40 has a uniform resistance wire that is 1 m long. I f  balance 
occurs with the slider at 24cm from the top, what is the resistance of R,? 

Let R,, be the total resistance of the resistance wire. Then the resistance from the top of the wire to the 
slider is (24/100)R,, = 0.24R,,. That from the slider to the bottom of the wire is (76,10O)R,. = 0.76R,,. So, 
the bridge resistances are 0.24R,., 0.76Rw,, 30 SZ, and R, .  These inserted into the bridge balance equation give 

100 v 

Fig. 5-40 

ter 
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Supplementary Problems 
5.35 A car battery has a 12.1-V terminal voltage when supplying 10 A to the car lights. When the starter motor 

is turned over, the extra 250 A drawn drops the battery terminal voltage to 10.6 V. What is the Thevenin 
equivalent circuit of this battery? 

Ans. 6 mR, 12.16 V 

5.36 In full sunlight a 2- by 2-cm solar cell has a short-circuit current of 80 mA, and the current is 75 mA for a 
terminal voltage of 0.6 V. What is the Norton equivalent circuit? 

Ans. 120 R, 80 mA 

5.37 Find the Thevenin equivalent of the circuit shown in Fig. 5-41. Reference V,, positive toward terminal a. 

Ans. 12 R, 12V 

I 1 1 o h  

Fig. 5-41 

5.38 In the circuit shown in Fig. 5-41, change the 5-A current source to a 7-A current source, the 1242 resistor 
to an 18-R resistor, and the 48-V source to a 96-V source. Then find the Norton equivalent circuit with the 
current arrow directed toward terminal U. 

Ans. 12.5 R, 3.24 A 

5.39 For the circuit shown in Fig. 5-42, find the Norton equivalent with I, referenced positive toward terminal L J .  

Ans. 4 R, - 3  A 

6 R  412 

I 1 
a 

Fig. 5-42 

5.40 Find the Norton equivalent of the circuit of Fig. 5-43. Reference I ,  up. 

Ans. 8 0, 8 A 
40 R 

Fig. 5-43 
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2 v -+: 

5.41 Determine the Norton equivalent of the circuit of Fig. 5-44. Reference I ,  up. 

t 16 

B 

.4ns. 78 R, 1.84 A 

[CHAP. 5 

Fig. 5-44 

5.43 In the transistor circuit shown in Fig. 5-46, find the base current I ,  if I,-  = 401,. There is a 0.7-V drop from 
base to emitter. 

Ans. 90.1 pA 

1 
n 9v1 

Fig. 5-46 

3 kR B IS C 

Fig. 5-47 

5.44 Find the Thevenin equivalent of the transistor circuit shown in Fig. 5-47. Reference V,,, positive toward 
terminal a. 

Ans. 5.88 kR, -29.4 V 
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5.45 Find f in the circuit shown in Fig. 5-48, which contains a nonlinear element having a V-f relation of V =  31’. 
Use Thevenin’s theorem and the quadratic formula. 

Ans. 2 A 

4 f l  3R I 

Fig. 5-48 

5.46 Find the Thevenin equivalent of the circuit of Fig. 5-49. Reference V,, positive toward terminal a. 

Ans. 18.7 R, 26 V 

16 R f 8 R  

:b 

Fig. 5-49 

5.47 Obtain the Thevenin equivalent of the circuit of Fig. 5-50. 

Ans. - 1.5 0, 0 V 
4 R  2.5 R 

Fig. 5-50 

5.48 Find the input resistance at terminals 1 and 1’  of the transistor circuit shown in Fig. 5-51 if a 2-kR resistor 
is connected across terminals 2 and 2‘. 

Ans. 88.1 kR 

I B  1 kfl E - *o-=--.: 0 2  

5 kR 

- 0 2’ C 

Fig. 5-51 
1‘0 
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5.49 Find the output resistance at terminals 2 and 2' of thc transistor circuit shown in Fig. 5-51 if a source with 
a I-kR internal resistance is connected to terminals 1 and 1'.  In  finding the output resistance remember to 
replace the source by its internal resistance. 

Ans. 32.6 R 

5.50 Find the input resistance at terminals 1 and 1' of the transistor circuit shown in Fig. 5-52 if a 5-kR load 
resistor is connected between terminals 2 and 2'. from collector to emitter. 

Ans. 760 R 

l e  I kf l  C 
A * 0 2  

- + , B  
10 

+ 

0.003Vc. 20 kR V C  

E - 
I '  0 0 - 0 2' 

Fig. 5-52 

5.51 Find the output resistance at terminals 2 and 2' of the transistor circuit shown in Fig. 5-52 if a source with 
a 50042 internal resistance is connected to terminals 1 and 1'. 

Ans. 100 kQ 

5.52 What resistor connected between terminals I( and h in the bridge circuit shown in Fig. 5-53 absorbs maximum 
power and what is this power'? 

Ans. 2.67 kQ, 4.25 mW 

20 v 

Fig. 5-53 

5.53 What will be the reading of a zero-resistance ammeter connected across terminals U and h of the bridge 
circuit shown in Fig. 5-53'? Assume that the ammeter is connected to have an upscale reading. What will 
be the reading if a 1-kR resistor is in series with the ammeter? 

Ans. 2.52 mA. 1.83 mA 

5.54 Some solar cells are interconnected for increased power output. Each has the specifications given in Prob. 
5.36. What area of solar cells is required for a power output of 1 W'? Assume a matching load. 

Ans. 20.8 cm2 

5.55 In  the circuit of Fig. 5-54, what resistor R,. will absorb maximum power, and what is this power? 

Ans. 3.33 R, 480 W 
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5.56 

5.57 

5.58 

5.59 

5.60 

5.6 1 

5.62 

5.63 

Fig. 5-54 

In the circuit of Fig. 5-55, what resistor connected across terminals LI and h will absorb maximum power, 
and what is this power? 

Ans. 100 kR, 62.5 pW 

6 k R  1 

Fig. 5-55 

For the circuit shown in Fig. 5-41, use superposition to find the contribution of each source to V,, if i t  is 
referenced positive toward terminal N .  

Ans. 32 V from the 48-V source, -20 V from the 5-A source 

For the circuit shown in Fig. 5-42, use superposition to find the contribution of each source to the current 
in a short circuit connected between terminals U and h. The short-circuit current reference is from terminal 
U to terminal h. 

Ans. 5 A from the 60-V source, - 8  A from the 8-A source 

In the circuit shown in Fig. 5-48, replace the nonlinear resistor with an open circuit and use superposition 
to find the contribution of each source to the open-circuit voltage referenced positive at the top. 

Ans. 13.2 V from the 22-V source. 9.6 V from the 4-A source 

An automobile generator operating in parallel with a battery energizes a 0.8-R load. The open-circuit voltages 
and internal resistances are 14.8 V and 0.4 R for the generator, and 12.8 V and 0.5 R for the battery. Use 
Millman’s theorem to find the load current. 

Ans. 13.6 A 

For the automobile circuit of Prob. 5.60 use superposition to find the load current contribution from each 
source. 

Ans. 8.04 A from the generator, 5.57 A from the battery 

Transform the A shown in Fig. 5-56u to the Y in Fig. 5-56b for 

Ans. RA = 667 R, R ,  = 2 kR, R ,  = 1 kR 

R ,  = 2 kQ, R ,  = 4 kR, and R ,  = 6 kR. 

Repeat Prob. 5.62 for R ,  = 8 R, R ,  = 5 R, and R ,  = 7 R. 

Ans. R A  = 2 R, R ,  = 1.75 R, R ,  = 2.8 R 
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Transform the Y shown in Fig. 5-566 to the A in Fig. 5-56u for 

Ans. R ,  = 44.4 R, R 2  = 37 R, R, = 55.5 R 

R A  = 12 R, R ,  = 15 R, and R, = 18 R. 

Repeat Prob. 5.64  for R A  = 10 kR, R, = 18 kR, and R,. = 12 kR. 
Ans. R ,  = 28.7 kR, R, = 43 kR, R, = 51.6 kR 

For the lattice circuit shown in Fig. 5-57, use a A-Y transformation to find the V that makes 1 = 3 A. 

Ans. 177 V 

400 
Fig. 5-57 

f 

400 
Fig. 5-57 

50 fl 

Use a A-Y transformation to find the currents in the circuit shown in Fig. 5-58. 

Ans. I ,  = 7.72A, I, = -0.36A, I ,  = -7.36A 

Use a A-to-Y transformation in finding the voltage V that causes 2 A to flow down through the 3-R resistor 
in the circuit shown in Fig. 5-59. 

Ans. 17.8 V 

Fig. 5-58 Fig. 5-59 
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5.70 
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I n  the lattice circuit shown in Fig. 5-57, what resistor substituted for the top 40-R resistor causes zero current 
flow in the 50-R resistor? 

Am. 90 R 

If in the slide-wire bridge shown in Fig. 5-40, balance occurs with the slider at 67 cm from the top, what is 
the resistance R,? 

Ans. 14.8 R 

Use a A-Y transformation to find 1 in the circuit shown in Fig. 5-60. Remember that for a A-Y transformation, 
only the voltages and currents external to the A and Y do not change. 

Ans. 0.334 A 

2 R  

100 v 

- 
Fig. 5-60 

In the circuit of Fig. 5-61, what resistor R ,  will absorb maximum power, and what is this power? 

Ans. 12 R, 192 W 

96 V 

R L  

Fig. 5-61 

In the circuit of Fig. 5-62, what resistor R ,  will absorb maximum power, and what is this power? 

Ans. 30 R, 1.48 W 

120 v 1 
I 3 0 R V R  

Fig. 5-62 



Chapter 6 

Operational-Amplifier Circuits 

INTRODUCTION 

Operational ampliJiers, usually called op umps, are important components of electronic circuits. 
Basically, an op amp is a very high-gain voltage amplifier, having a voltage gain of 100000 or more. 
Although an op amp may consist of more than two dozen transistors, one dozen resistors, and perhaps 
one capacitor, it may be as small as an individual resistor. Because of its small size and relatively simple 
external operation, for purposes of an analysis or a design an op amp can often be considered as a 
single circuit element. 

Figure 6- lu  shows the circuit symbol for an op amp. The three terminals are an inverting input 
terminal a (marked -), a noninverting input terminal h (marked +), and an output terminal I'. But a 
physical operational amplifier has more terminals. The extra two shown in Fig. 6- lh  are for dc power 
supply inputs, which are often + 15 V and - 15 V. Both positive and negative power supply voltages 
are required to enable the output voltage on terminal c' to vary both positively and negatively with 
respect to ground. 

Fig. 6-1 

OP-AMP OPERATION 

The circuit of Fig. 6-2u, which is a model for an op amp, illustrates how an op amp operates as a 
voltage amplifier. As indicated by the dependent voltage source, for an open-circuit load the op amp 
provides an output voltage of L', = A(u+ - c-), which is A times the difference in input voltages. This 
A is often referred to as the open-loop coltu(je gain. From A(u+ - K ) ,  observe that a positive voltage t i  + 

applied to the noninverting input terminal b tends to make the output voltage positive, and a positive 
voltage U -  applied to the inverting input terminal n tends to make the output voltage negative. 

The open-loop voltage gain A is typically so large (100 000 or more) that it can often be approximated 
by infinity (x), as is shown in the simpler model of Fig. 6-2h. Note that Fig. 6-2h does not show the 
sources or circuits that provide the input voltage U +  and 2 1 -  with respect to ground. Instead, just the 
voltages U + and c -  are shown. Doing this simplifies the circuit diagrams without any loss of information. 

In Fig. 6-2a, the resistors shown at the input terminals have such large resistances (megohms) as 
compared to other resistances (usually kilohms) in a typical op-amp circuit, that they can be considered 
to be open circuits, as is shown in Fig. 6-2h. As a consequence, the input currents to an op amp are 
almost always negligibly small and assumed to be zero. This approximation is important to remember. 

The output resistance R ,  may be as large as 75 R or more, and so may not be negligibly small. 
When, however, an op amp is used with negative-feedback components (as will be explained), the effect 
of R ,  is negligible, and so R ,  can be replaced by a short circuit, as shown in Fig. 6-2h. Except for a few 
special op-amp circuits, negative feedback is always used. 

112 
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The simple model of Fig. 6-2b is adequate for many practical applications. However, although not 
indicated, there is a limit to the output voltage: It cannot be greater than the positive supply voltage or 
less than the negative supply voltage. In fact, it may be several volts less in magnitude than the magnitude 
of the supply voltages, with the exact magnitude depending upon the current drawn from the output 
terminal. When the output voltage is at either extreme, the op amp is said to be saturated or to be in 
saturation. An op amp that is not saturated is said to be operating linearly. 

Since the open-loop voltage gain A is so large and the output voltage is limited in magnitude, the 
voltage U ,  - U -  across the input terminals has to be very small in magnitude for an op amp to operate 
linearly. Specifically, i t  must be less than 100 pV in a typical op-amp application. (This small voltage is 
obtained with negative feedback, as will be explained.) Because this voltage is negligible compared to the 
other voltages in a typical op-amp circuit, this voltage can be considered to be zero. This is a valid 
approximation for any op amp that is not saturated. But if an op amp is saturated, then the voltage 
difference U ,  - v -  can be significantly large, and typically is. 

Of less importance is the limit on the magnitude of the current that can be drawn from the op-amp 
output terminal. For one popular op amp this output current cannot exceed 40 mA. 

The approximations of zero input current and zero voltage across the input terminals, as shown in 
Fig. 6-3, are the bases for the following analyses of popular op-amp circuits. In addition, nodal analysis 
will be used almost exclusively 
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Fig. 6-3 

POPULAR OP-AMP CIRCUITS 

Figure 6-4 shows the inverting ampliJier, or simply inverter. The input voltage is ui and the output 
U ,  = Gvi in which G is a negative constant. So, the output voltage U ,  voltage is U,. As will be shown, 

is similar to the input voltage ui but is amplified and changed in sign (inverted). 

Fig. 6-4 

As has been mentioned, it is negatioe feedback that provides the almost zero voltage across the input 
terminals of an op amp. T o  understand this, assume that in the circuit of Fig. 6-4 vi is positive. Then a 
positive voltage appears at the inverting input because of the conduction path through resistor Ri . As 
a result, the output voltage v, becomes negative. Because of the conduction path back through resistor 
R,, this negative voltage also affects the voltage at the inverting input terminal and causes an almost 
complete cancellation of the positive voltage there. If the input voltage vi had been negative instead 
then the voltage fed back would have been positive and again would have produced almost complete 
cancellation of the voltage across the op-amp input terminals. 

This almost complete cancellation occurs only for a nonsaturated op amp. Once an op  amp becomes 
saturated, however, the output voltage becomes constant and so the voltage fed back cannot increase 
in magnitude as the input voltage does. 

In every op-amp circuit in this chapter, each op amp has a feedback resistor connected between the 
output terminal and the inverting input terminal. Consequently, in the absence of saturation, all the op 
amps in these circuits can be considered to have zero volts across the input terminals. They can also be 
considered to have zero currents into the input terminals because of the large input resistances. 

The best way to obtain the voltage gain of the inverter of Fig. 6-4 is to apply KCL at the inverting 
input terminal. Before doing this, though, consider the following. Since the voltage across the op-amp 
input terminals is zero, and since the noninverting input terminal is grounded, it  follows that the inverting 
input terminal is also effectively at ground. This means that all the input voltage vi is across resistor Ri  
and that all the output voltage U, is across resistor R,. Consequently, the sum of the currents entering 
the inverting input terminal is 

So, the voltage gain is G = -(R,/Ri), which is the negative of the resistance of the feedback 
resistor divided by the resistance of the input resistor. This is an important formula to remember for 
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analyzing an op-amp inverter circuit or for designing one, (Do not confuse this gain G of the inverter 
circuit with the gain A of the op amp itself.) 

It should be apparent that the input resistance is just R i .  Additionally, although the load resistor 
R ,  affects the current that the op amp must provide, it has no effect on the voltage gain. 

The summing amplzjier, or summer, is shown in Fig. 6-5. Basically, a summer is an inverter circuit 
with more than one input. By convention, the sources for providing the input voltages v g ,  q,, and U ,  are 
not shown. If  this circuit is analyzed with the same approach used for the inverter, the result is 

Rf ) c, = - (< P a  + - t'b + - cc Rf Rf 
R b  Rc 

For the special case of all the resistances being the same, this formula simplifies to 

L', = - ( L I a  + t'b + Oc) 

There is no special significance to the inputs being three in number. There can be two, four, or more 
inputs. 

4 
Fig. 6-5 

Figure 6-6 shows the noninverting voltage amplzjier. Observe that the input voltage ui is applied at 
the noninverting input terminal. Because of the almost zero voltage across the input terminals, ci is also 
effectively at the inverting input terminal. 
is 

Consequently, the KCL equation at the inverting input terminal 

which results in 

0 
+ 

" I 

I -- 
Fig. 6-6 
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Since the voltage gain of 1/(1 + R,-/R,) does not have a negative sign, there is no inversion 
with this type of amplifier. Also, for the same resistances, the magnitude of the voltage gain is slightly 
greater than that of the inverter. But the big advantage that this circuit has over the inverter is a much 
greater input resistance. As a result, this amplifier will readily amplify the voltage from a source that 
has a large output resistance. In contrast, if an inverter is used, almost all the source voltage will be lost 
across the large output resistance of the source, as should be apparent from voltage division. 

The bufer amplijier, also called the colfagr follower or unity-gain ampl@t.r, is shown in Fig. 6-7. I t  
is basically a noninverting amplifier in which resistor R, is replaced by an open circuit and resistor R ,  
by a short circuit. Because there is zero volts across the op-amp input terminals, the output voltage is 
equal to the input voltage: 15, = u i .  Therefore, the voltage gain is 1. This amplifier is used solely because 
of its large input resistance, in addition to the typical op-amp low output resistance. 

Fig. 6-7 

There are applications, in which a voltage signal is to be converted to a proportional output current 
such as, for example, in driving a deflection coil in a television set. If the load is floating (neither end 
grounded), then the circuit of Fig. 6-8 can be used. This is sometimes called a itoltcrge-to-c,urrent conwrter. 
Since there is zero volts across the op-amp input terminals, the current in resistor R, is i, = ili/Ra, and 
this current also flows through the load resistor R,. Clearly, the load current i, is proportional to the 
signal voltage ci. 

The circuit of Fig. 6-8 can also be used for applications in which the load resistance R ,  varies but 
the load current i, must be constant. ci is made a constant voltage and ci and R ,  are selected such that 
vJR ,  is the desired current i,. Consequently, when R ,  varies, the load current i, does not change. Of 
course, the load current cannot exceed the maximum allowable op-amp output current, and the load 
voltage plus the source voltage cannot exceed the maximum obtainable output voltage. 

CIRCUITS WITH MULTIPLE OPERATIONAL AMPLIFIERS 

Often, op-amp circuits are cascuckci, as shown, for example, in the circuit of Fig. 6-9. In a cascade 
arrangement, the input to each op-amp stage is the output from a preceding op-amp stage, except, of 
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course, for the first op-amp stage. Cascading is often used to improve the frequency response, which is 
a subject beyond the scope of the present discussion. 

Because of the very low output resistance of an op-amp stage as compared to the input resistance 
of the following stage, there is no loading of the op-amp circuits. In other words, connecting the op-amp 
circuits together does not affect the operation of the individual op-amp circuits. This means that the 
overall voltage gain G, is equal to the product of the individual voltage gains that 
is, GT = G;G,.G,. . . . 

To verify this formula, consider the circuit of Fig. 6-9. The first stage is an inverting amplifier, the 
second stage is a noninverting amplifier, and the last stage is another inverting amplifier. The output 
voltage of the first inverter is -(6/2)ci = - 3 ~ , ,  which is the input to the noninverting amplifier. 
The output voltage of this amplifier is (1 + 4/2)( - 3vi) = - 9ci. And this is the input to the inverter 
of the last stage. Finally, the output of this stage is U ,  = - 9 c i (  - 10/5) = 18c,. So, the overall voltage 
gain is 18, which is equal to the product of the individual voltage gains: 

If a circuit contains multiple op-amp circuits that are not connected in a cascade arrangement, 
then another approach must be used. Nodal analysis is standard in such cases. Voltage variables are 
assigned to the op-amp output terminal nodes, as well as to other nongrounded nodes, in the usual 
manner. Then nodal equations are written at the nongrounded op-amp input terminals to take 
advantage of the known zero input currents. They are also written at the nodes at which the voltage 
variables are assigned, except for the nodes that are at the outputs of the op amps. The reason for this 
exception is that the op-amp output currents are unknown and if nodal equations are written at these 
nodes, additional current variables must be introduced, which increases the number of unknowns. 
Usually, this is undesirable. This standard analysis approach applies as well to a circuit that has just a 
single op amp. 

Even if multiple op-amp circuits are not connected in cascade, they can sometimes be treated as if 
they were. This should be considered especially if the output voltage is fed back to op-amp inputs. Then 
the output voltage can often be viewed as another input and inserted into known voltage-gain formulas. 

G , ,  G,, G,, . . . ; 

G, = ( - 3 ) ( 3 ) ( - 2 )  = 18. 

Solved Problems 
6.1 Perform the following for the circuit of Fig. 6-10. Assume no saturation for parts (a )  and (h). 

(a) Let R, = 12 kR, V ,  = 2 V, and k$ = 0 V. Determine V,  and I,. ( h )  Repeat part (a )  for 
R, = 9 k 0 ,  V, = 4 V ,  and Vb = 2 V .  (c) Let I/a = 5 V  and v b  = 3 V  and determine the 
minimum value of R,  that will produce saturation if the saturation voltage levels are V,  = 
- +14 V. 
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Fig. 6-10 

Since for 
obtain V,.  

V, = 0 V the circuit is an inverter, the inverter voltage-gain formula can be used to 

I/ , = --( 1; 2) = -8 v 

I = - a - _ s -  , 2  - -2.67mA 

Then KCL applied at the output terminal gives 

Because of the zero voltage across the op-amp input terminals, 
at the inverting op-amp input terminal, 

I/_ = = 2 V. Then, by KCL applied 

4 - 2  V , - 2  +-=o 
3 9 

The solution is 
as regards V ,  and is a noninverting amplifier as regards V,, the output voltage is 

V,  = -4 V. Another approach is to use superposition. Since the circuit is an inverter 

V , =  -;(4)+(1 +$)(2)= - 1 2 + 8 =  -4V 

With V, known, KCL can be applied at the output terminal to obtain 

4 - 4 - 2  
1 = - - + ____- = - 1.67 mA 
" 4  9 

By superposition, 

Since R ,  must be positive, the op amp can saturate only at the specified -14-V saturation voltage 
level. So, 

- 14 = 3 - 0.667Rf 

the solution to which is R ,  = 25.5 kR. This is the minimum value of R ,  that will produce saturation. 
Actually the op amp will saturate for R ,  2 25.5 kR. 

6.2 Assume for the summer of Fig. 6-5 that R, = 4 kR. Determine the values of R,, R,, and R ,  that 
will provide an output voltage of U ,  = - ( 3 v ,  + 50, + 20,). 

First, determine R,. The contribution of U, to U ,  is -(R,/R,)u,. Consequently, for a voltage gain of - 3 
and with R ,  = 4 kn, 

- R , =  - 3  and thus R , =  12kR 
4 

Next, determine R b .  The contribution of t'b to U, is -(Rf/Rb)Ub. So, with 
voltage gain of - 5 ,  

R ,  = 12 kR and for a 

12 
= -5  and therefore R ,  = - = 2.4 kR 

12 

Rb 5 
-- 
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6.3 

Finally, the contribution of U, to U, is -(R,/Rc)tl, .  So, with R ,  = 12 kQ and for a voltage gain of -2,  

= - 2  which gives R C = 6 k R  
12 

RC 

- _  

In the circuit of Fig. 6-1 1, first find V ,  and I ,  for 
saturation levels of 

Va = 4 V. Then assume op-amp voltage 
for linear operation. I/o = & 12 V and determine the range of 

Fig. 6-11 

Because this circuit is a summer, 

V,  = - [?(4) + ?( - lO)] = 8 V and I ,  = A + = 1.47 mA 

Now, finding the range of V,  for linear operation, 

+ 1 2 =  -[~(V,)+y(-lo)-J= - 3 K + 2 0  

Therefore, 
greater than (20 - 12)/3 = 2.67 V:  

V, = (20 f 12)/3. So, for linear operation, V, must be less than (20 + 12)/3 = 10.7 V and 
2.67 V < V,  < 10.7 V. 

6.4 Calculate l/o and I ,  in the circuit of Fig. 6-12. 

12 v - 

T 

I I 

& 
Fig. 6-12 

Because of the zero voltage drop across the op-amp input terminals, the voltage with respect to ground 
at the inverting input terminal is the same 5 V that is at the noninverting input terminal. With this 
voltage known, the voltage V, can be determined from summing the currents flowing into the inverting 
input terminal : 

1 2 - 5  - 6 - 5  & - 5  
2 4 12 

+-+- = o  

Thus, V, = -4 V. Finally, applying KCL at the output terminal gives 

- 4  - 4 - 5  
I ,  = - + ~ - 

6 12 
- - 1.42 mA 
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6.5 In the circuit of Fig. 6-13a, a 10-kQ load resistor is energized by a source of voltage U, that has 
an internal resistance of 90 kiZ. Determine u L ,  and then repeat this for the circuit of Fig. 6-13h. 

90 kR 

Voltage division applied to the circuit of Fig. 6-13a gives 

10 

10 + 90 
L I L  = ___ U, = 0.1 L), 

So, only 10 percent of the source voltage reaches the load. The other 90 percent is lost across the 
internal resistance of the source. 

For the circuit of Fig. 6-13b, no current flows in the signal source because of the large op-amp 
input resistance. Consequently, there is a zero voltage drop across the source internal resistance, and 
the entire source voltage appears at the noninverting input terminal. Finally, since there is zero volts 
across the op-amp input terminals, vL = L',. So, the insertion of the voltage follower results in an 
increase in the load voltage from 0.10, to U,. 

Note that although no current flows in the 90-kQ resistor in the circuit of Fig. 6-136, there is 
current flow in the 10-kR resistor, the path for which is not evident from the circuit diagram. For a 
positive v L ,  this current flows down through the 10-kR resistor to ground, then through the op-amp 
power supplies (not shown), and finally through the op-amp internal circuitry to the op-amp output 
terminal. 

6.6 Obtain the input resistance R i ,  of the circuit of Fig. 6-14a. 

The input resistance R i ,  can be determined in the usual way, by applying a source and obtaining the 
ratio of the source voltage to the source current that flows o u t  of the positive terminal of the source. 
Figure 6-146 shows a source of voltage V,  applied. Because of the zero current flow into the op-amp 
noninverting input terminal, all the source current I, flows through R,,  thereby producing a voltage 
of l ,R ,  across it, as shown. Since the voltage across the op-amp input terminals is zero, this voltage is 
also across R ,  and results in a current flow to the right of l s R f / R , .  Because of the zero current flow 

R f  R r  

Fig. 6-14 
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6.7 

6.8 

into the op-amp inverting input terminal, this current also flows up through Rb, resulting in a voltage 
across it of IsRfRb/Ra,  positive at the bottom. Then, KVL applied to the left-hand mesh gives 

5 and so R .  = - - -  - -  I s R  f R b  K + O + - = O  
Ra I n  4 Ra 

The input resistance being negative means that this op-amp circuit will cause current to flow into the 
positive terminal of any voltage source that is connected across the input terminals, provided that the 
op amp is not saturated. Consequently, the op-amp circuit supplies power to this voltage source. But, 
of course, this power is really supplied by the dc voltage sources that energize the op amp. 

For the circuit of Fig. 6-14a, let R ,  = 6 kR, R ,  = 4 kR, and R,  = 8 kR, and determine 
the power that will be supplied to a 4.5-V source that is connected across the input terminals. 

From the solution to Prob. 6.6, 

Therefore, the current that flows into the positive terminal of the source is 4.5/3 = 1.5 mA. Consequently, 
the power supplied to the source is 4.5(1.5) = 6.75 mW. 

Obtain an expression for the voltage v, in the circuit of Fig. 6-15. 

R 
0 
+ I 

R 
CF 

R 
+ 

+ "I - 
== 

Fig. 6-15 

Clearly, in terms of U + ,  this circuit is a noninverting amplifier. So, 

U, = (1 + ?)U+ 
The voltage U +  can be found by applying nodal analysis at the noninverting input terminal. 

U1 - U +  02 - U +  v 3 - v +  

R R R 
+- +-=O from which U +  = +(U1 + 1'2 + U 3 )  

Finally, substituting for U +  yields 

From this result it is evident that the circuit of Fig. 6-15 is a noninverting summer. The number of inputs 
is not limited to three. In general, 

in which n is the number of inputs. 
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6.9 In the circuit of Fig. 6-15, assume that R,  = 6 kR and then determine the values of the other 
resistors required to obtain U ,  = 2(v ,  + u2 + u3).  

From the solution to Prob. 6.8, the multiplier of the voltage sum is 

1 

- ( I  +;;)=* 3 
the solution to which is R ,  = 1.2 kR 

As long as the value of R is reasonable, say in the kilohm range, it does not matter much what the 
specific value is. Similarly, the specific value of RL does not affect U, provided RL is in the kilohm range or 
greater. 

6.10 Obtain an expression for the voltage gain of the op-amp circuit of Fig. 6.16. 

+ 
Fig. 6-16 

Superposition is a good approach to use here. If Lj,  = 0 V, then the voltage at the noninverting input 
terminal is zero, and so the amplifier becomes an inverting amplifier. Consequently, the contribution of c, 
to the output voltage uo is -(R,/R,)u,. On the other hand, if U, = 0 V, the circuit becomes a noninverting 
amplifier that amplifies the voltage at the noninverting input terminal. By voltage division, this voltage is 
Rrub/(Rb + R J .  Therefore, the contribution of c,, to the output voltage c, is 

Finally, by superposition the output voltage is 

This voltage-gain formula can be simplified by the selection of resistances such that R,/'R, = Rb/R, .  
The result is 

in which case the output voltage U, is a constant times the difference t',, - t', of the two input voltages. This 
constant can, of course, be made 1 by the selection of R ,  = R, .  For obvious reasons the circuit of Fig. 
6-16 is called a diference amplfier. 

6.11 For the difference amplifier of Fig. 6-16, let 
and R, to obtain U ,  = 4(u, - U,). 

R, = 8 kR and then determine values of R, ,  R , ,  

From the solution to Prob. 6.10, the contribution of -4u, to t1, requires that 
Ra = 2 kC2. For this value of R ,  and for 

R,/Ra = 8 / R a  = 4, and 
so R ,  = 8 kR, the multiplier of i'b becomes 

R,. 4 
- or ----(I RC + p ) = 4  

Rb + Rc R ,  + R ,  5 
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Inverting results in 

1 
- R ,  - - - 5 

R b  - + I = -  
Rc 4 R c  4 

or 

Therefore, 
of the design process. So, if R ,  is selected as 1 kR, then 
so on. 

R, = 4R,  gives the desired response, and obviously there is no unique solution, as I s  typical 
R ,  = 4 kR. And for R ,  = 2 kR, R, = 8 kR, and 

6.12 Find V ,  in the circuit of Fig. 6-17. 

I- 
+ 

Fig. 6-17 

By nodal analysis at the noninverting input terminal, 

V+ V+ - V ,  V+ - 6 
- + ____ 

12 8 6 
+- = o  

which simplifies to V,  = 3Vt - 8. But by voltage division, 

And so, 

V,  = 3(5V,) - 8 from which V , = 8 V  

6.13 For the op-amp circuit of Fig. 6-18, calculate K. Then assume op-amp saturation voltages of 
- + 14 V, and find the resistance of the feedback resistor R ,  that will result in saturation of the op 
amp. 

- 
Fig. 6-18 
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By voltage division, 

x 5 = 2 v  
4 v+ = I_ 

4 + 6  

Then since V- = V+ = 2 V, the node-voltage equation at the inverting input terminal is 

5 - 2  v - 2  

3 12 
+ -0 = 0 which results in v,= - lov 

Now, R ,  is to be changed to obtain saturation at one of the two voltage saturation levels. From KCL 
applied at the inverting input terminal, 

So, 
voltage level of - 14 V. Consequently, 
R ,  that gives saturation. There is saturation for 

R ,  = 2 - V,. Clearly, for a positive resistance value of R,, the saturation must be at the negative 
R ,  = 2 - ( -  14) = 16 kQ. Actually, this is the minimum value of 

R ,  2 16 kQ. 

6.14 For the circuit of Fig. 6-19, calculate the voltage V ,  and the current I , .  

6 V  

16 kR 

- 
Fig. 6-19 

In Fig. 6-19, observe the lack of polarity references for I/_ and V+. Polarity references are not essential 
because these voltages are always referenced positive with respect to ground. Likewise the polarity reference 
for V, could have been omitted. 

By voltage division, 
12 v+ = v- = ___ V,  = 0.6V0 

12 + 8 

With V- = 0.6V,, the node-voltage equation at the inverting input terminal is 

6 - 0.6V0 V, - 0.6V0 
_____ + = 0 which simplifies to V,= 12v 

4 16 

The current I ,  can be obtained from applying KCL at the op-amp output terminal: 

12 12 12 - 0.6(12) 

10 8 + 1 2  16 
I o = - + - -  + ______ - - 2.1 mA 

6.15 Determine V ,  and I ,  in the circuit of Fig. 6-20. 

The voltage V, can be found by writing nodal equations at the inverting input terminal and at the V,  
node and using the fact that the inverting input terminal is effectively at ground. From summing currents 
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20 kR 

I 

2 v  

-- 
I 

Fig. 6-20 

into the inverting input terminal and away from the V, node, these equations are 

- 0  2 Vl -+-+-- Vl Vl Vl - K and - + - = o  
10 20 20 5 4 

which simplify to 

V,  = - 4 v  and l O V 1 - - 5 V , = O  

Consequently, 

V,=21 / ,=2( -4 )=  - 8 V  

Finally, I, is equal to the sum of the currents flowing away from the op-amp output terminal through 
the 8-kR and 4-kR resistors: 

-8 - 8 - ( - 4 )  
Z o = - - +  = -2mA 

8 4 

6.16 Find 6 in the circuit of Fig. 6-21. 

* 
Fig. 6-21 

de-voltage equation at the V, node is The n 

1 4  

which upon multiplication by 40 becomes 27V1 - 5V,  = 40. Also, by voltage division, 

7.5 

7.5 + 2.5 
V+ = -____ V1 = 0.75V1 
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Further, since the op amp and the 9-kil and 3-kil resistors form a noninverting amplifier, 

= (1 + P)(0.75V1) = 3V1 or vl=;V, ' 

Finally, substitution for V,  in the node-voltage equation yields 

and so v,= 1ov 

6.17 Determine in the circuit of Fig. 6-22. 

6 kR 

12 kR 

X V  

- . 
Fig. 6-22 

Since V- = 0 V, the node-voltage equations at the Vl and inverting-input terminal nodes are 

V1 Vl Vl - 8 V1 - V,  v1 vo -+-+-  +-=O and - + - = o  
2 4  8 6 4 12 

Multiplying the first equation by 24 and the second equation by 12 gives 

251/, - 42/, = 24 and 3v1 + & = o  
from which V,  can be readily obtained: V,  = - 1.95 V. 

6.18 Assume for the op  amp in the circuit of Fig. 6-23 that the saturation voltages are 

saturation of the op amp. 

Consequently, 
14/4 = 3.5 V. The resistance of R, that will result in this voltage can be obtained by using voltage division: 

Vo = 
R ,  = 6 kQ. Then determine the maximum resistance of R, that results in the 

The circuit of Fig. 6-23 is a noninverting amplifier, the voltage gain of which is G = 1 + 6/2 = 4. 
V+ = 

14 V and that 

V ,  = 4V+, and for saturation at the positive level (the only saturation possible), 

10 

10 + R ,  
V+ = x 4.9 = 3.5 or 49 = 35 + 3 .5R,  

4.9 v 

- 
Fig. 6-23 



CHAP. 6 )  OPERATIONAL-AMPLIFIER CIRCUITS 127 

and thus 

14 

3.5 
R ,  = - = 4 kR 

This is the maximum value of resistance for R ,  for which there is saturation. Actually, saturation occurs 
for R ,  I 4 kR. 

6.19 In the circuit of Fig. 6-23, assume that 
must be for the op amp to operate in the linear mode. Assume saturation voltages of 

R ,  = 2 kR, and then find what the resistance of R ,  
= _+ 14 V. 

With R ,  = 2 kR, the voltage V+ is, by voltage division, 

v+ = ___ x 4.9 = 4.08 V 
10+2  

Then for V,  = 14 V, the output voltage equation is 

14 = 4.08 1 + .-I = 4.08 + 2.04Rf ( 3 
Therefore, 

14 - 4.08 
R ,  = ~ = 4.86 kR 

2.04 

Clearly, then, for V,  to be less than the saturation voltage of 14 V, the resistance of the feedback resistor 
R ,  must be less than 4.86 kR. 

6.20 Obtain the Thevenin equivalent of the circuit of Fig. 6-24 with VTh referenced positive at 
terminal a. 

1.5 V 
1 

I L h + 
Fig. 6-24 

By inspection, the part of the circuit comprising the op amp and the 2.5-kR and 22.5-kR resistors is a 
noninverting amplifier. Consequently, 

Since VTh = Kb,  the node voltage equation at terminal a is 



128 0 PER A TI O N  A L- A M PL I FI ER CIRCUITS 

If a short circuit is placed across terminals a and b, then 

Consequently. 
VT, 3 R,, = - = - = 0.571 kR 
I,, 5.25 

6.21 Calculate I/, in the circuit of Fig. 6-25. 

4 v  

4 kR 
1 

I kQ 

1 

i 

18 kR 
b 

20 kR 

[CHAP. 6 

Fig. 6-25 

Although nodal analysis can be applied, it is simpler to view this circuit as a summer cascaded with a 
noninverting amplifier. The summer has two inputs, V,  and 4 V. Consequently, through use of the summer 
and noninverting voltage formulas, 

V , =  - ( L x 4 + 7 V , ) ( I + y ) =  3.5 4 -32-7V, 

so, 
SV, = -32 and v,= - 4 v  

6.22 Find l/o in the circuit of Fig. 6-26. 

The circuit of Fig. 6-26 can be viewed as two cascaded summers, with V,  being one of the two inputs 
to the first summer. The other input is 3 V. Then, the output V, of the first summer is 

3 v  1 I 

6 kQ 

12 kR 24 kR 

2 kQ 

+ 
Fig. 6-26 



CHAP. 61 OPERATIONAL-AMPLIFIER CIRCUITS I29 

The output V, of the second summer is 

V, = -[?(-2) + SV,] = 6 - 2V1 

Substituting for Vl gives 

K = 6  - 2(-18 - 21/ , )=6 + 36 + 4K 
Finally, V,  = - = - 14 V. 

6.23 Determine in the circuit of Fig. 6-27. 

+ 
Fig. 6-27 

In this cascaded arrangement, the first op-amp circuit is an inverting amplifier. Consequently, the 
-(6/2)( - 3) = 9 V. For the second op amp, observe that V- = V+ = 2 V. Thus, op-amp output voltage is 

the nodal equation at the inverting input terminal is 

9 - 2  v , - 2  
+-----=O and so v,= - 1 2 v  

2 4 

Perhaps a better approach for the second op-amp circuit is to apply superposition, as follows: 

V , =  -:(9)+(1 +4)(2)=  - 1 8 + 6 =  -12V 

6.24 Find Vlo and Vzo in the circuit of Fig. 6-28. 

8 V  40 kR 
v, 0 

4 v  

100 kR 
- - 

, n 

Fig. 6-28 
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Before starting the analysis, observe that because of the zero voltages across the op-amp input terminals, 
V2- = 4 V. The two equations needed to relate the the inverting input voltages are 

output voltages can be obtained by applying KCL at the two inverting input terminals. These equations are 
V, - = 8 V and 

4-V2, 4 4 - 8  +-+-- - 0  and ~___ +-+-=o  8 - V1, 8 - V2, 8 - 4 

10 20 40 50 100 40 

These equations simplify to 

4V1, + 2VZ0 = 52  and 2 v 2 ,  = 2 

The solutions to these equations are V,,  = 12.5 V and V,, = 1 V. 

6.25 For the circuit of Fig. 6-29, calculate V,,, V,,, I , ,  and I,. Assume that the op-amp saturation 
voltages are If: 14 V. 

4 kR 
... 

3 k R  I 

12 kR 

=!= 
Fig. 6-29 

Observe that op amp 1 has no negative feedback and so is probably in saturation, and it is saturated 
at 14 V because of the 5 V applied to the noninuerfing input terminal. Assume this is so. Then this 14 V is 
an input to the circuit portion containing op amp 2 ,  which is an inverter. Consequently, V,, = 
-(3/12)(14) = -3.5 V. And, by voltage division, 

1 7  
1 L  

V1- = (-3.5) = -2 .625  V 
12 + 4 

Since this negative voltage is applied to the incertiny input of op amp 1, both inputs to this op amp tend 
to make the op-amp output positive. Also, the voltage across the op-amp input terminals is not approximately 
zero. For both of these reasons, the assumption is confirmed that op amp 1 is saturated at the positive 
saturation level. Therefore, V, ,  = 14 V and V,, = -3.5 V. Finally, by KCL, 

-3.5 -3 .5  . 

3 4 + 1 2  
1 - + ---__ = -1.39mA 14 

and 2 -  1 -- = 1.17mA ' - 12 

Supplementary Problems 
6.26 Obtain an expression for the load current i, in the circuit of Fig. 6-30  and show that this circuit is a 

voltage-to-current converter, or a constant current source, suitable for a grounded-load resistor. 

Ans. i, = - o i / R ;  i, is proportional to L ' ~  and is independent of R ,  
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6.27 

6.28 

6.29 

6.30 

OPERATIONAL-AMPLIFIER CIRCUITS 

* 
Fig. 6-30 

Find V, in the circuit of Fig. 6-31. 

Ans. - 4  V 
J 

6 k R  

12 kR 10 kR 1 

131 

Fig. 6-31 

Assume for the summer of Fig. 6-5 that 
result in an output voltage of t’,, = -(8c, + 4 4  + 6~7,). 

Ans. R,  = 6 kfl ,  R ,  = 8 kR, R ,  = 48 kR 

In the circuit of Fig. 6-32, determine V,  and I ,  for 

Ans. -5 V, -0.625 mA 

Repeat Prob. 6.29 for V, = 16 V and V, = 4 V. 

Ans. 10 V, 1.08 mA 

R ,  = 12 kR, and obtain the values of R,, R,, and R, that will 

V, = 6 V and V, = 0 V. 

16 kR 24 kR 

v. 

4 
Fig. 6-32 
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6.31 For the circuit of Fig. 6-32, assume that the op-amp saturation voltages are Ifr 14 V and that 
Determine the range of V,  for linear operation. 

Ans. 

V, = 0 V. 

-6.67 V < V,  < 12 V 

6.32 For the difference amplifier of Fig. 6-16, let R ,  = 12 kR, and determine the values of R,, R,, and R ,  to ob- 
tain 

Ans. R,  = 6 kR; R ,  and R ,  have resistances such that R ,  = 2R,  

v,  = vb - 20,. 

6.33 In the circuit of Fig. 6-33, let 

A m .  7.2 V, 1.8 mA 

V,  = 4 V and calculate V, and I,. 

6.34 

6.35 

* 
Fig. 6-33 

For the op-amp circuit of Fig. 6-33, find the range of V,  for linear operation if the op-amp saturation voltages 
are V, = + 1 4 V .  

Ans. -7.78 V < V,  < 7.78 V 

For the circuit of Fig. 6-34, calculate V,  and I ,  for 

Ans. -12  V, -7.4 mA 

V,  = 0 V and V, = 12 V 

1 6 k R  r K I I  
( 3 k R  I " T  * 

Fig. 6-34 

6.36 Repeat Prob. 6.35 for V, = 4 V and I$ = 8 V. 

Ans. 8 V, 3.27 mA 

6.37 Determine V,  and I, in the circuit of Fig. 6-35 for 

Ans. 

V,  = 1.5 V and V, = 0 V. 

- 1 1  V, -6.5 mA 
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Fig. 6-35 

6.38 Repeat Prob. 6.37 for V,  = 5 V and V, = 3 V. 

Ans. -5.67 V, -3.42 mA 

6.39 Obtain V,  and I, in the circuit of Fig. 6-36 for 

Ans. 10.8 V, 4.05 mA 

V,  = 12 V and V, = 0 V. 

K 

6.40 Repeat Prob. 6.39 for V,  = 4 V and V, = 2 V. 

Ans. - 14.8 V, - 7.05 mA 

6.41 In the circuit of Fig. 6-37, calculate V,  if V,  = 4 V 

Ans. -3.10 V 

I33 

* 
Fig. 6-37 
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6.42 

d- 

8 V +  

6.43 

0 
+ 

v o  

- 
0 

6.44 

6.45 

6.46 

6.47 

6.48 
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Assume for the circuit of Fig. 6-37 that the op-amp saturation voltages are 
minimum positive value of V,  that will produce saturation. 

V ,  = & 14 V. Determine the 

Ans. 18.1 V 

Assume for the op-amp in the circuit of Fig. 6-38 that the saturation voltages are 
that 

Ans.  R ,  2 7 kR 

V ,  = f 14 V and 
R ,  = 12 kR. Calculate the range of values of R ,  that will result in saturation of the op amp. 

Assume for the op-amp circuit of Fig. 6-38 that 
are 

Ans. 

R ,  = 10 kR and that the op-amp saturation voltages 
V,  = & 13 V. Determine the range of resistances of R ,  that will result in linear operation. 

0 R 5 R ,  2 8.625 kR 

Obtain the Thevenin equivalent of the circuit of Fig. 6-39 for 
V,, positive toward terminal a .  

Ans. 5.33 V, 1.33 kR 

V,  = 4 V and R ,  = 8 kR. Reference 

Fig. 6-39 

Repeat Prob. 6.45 for V,  = 5 V and R ,  = 6 kR. 

Ans. 6.1 1 V, 1.33 kR 

Calculate V ,  in the circuit of Fig. 6-40 with R ,  replaced by an open circuit. 

A m .  8 V 

Repeat Prob. 6.47 for R ,  = 4 kR. 

Ans.  -4.8 V 
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6.49 

6.50 

6.51 

1.5 V 

v v v  I 4 k R  

+ 
Fig. 6-40 

Calculate V,  in the circuit of Fig. 6-41 for 

Ans. 1.2 V 

V,  = 2 V and V, = 0 V. 

2 kR 

4 v  

Fig. 6-41 

Repeat Prob. 6.49 for V,  = 3 V and V, = 2 V. 

Ans. 2.13 V 

Determine V,, and V,, in the circuit of Fig 6-42. 

Ans. V,, = 1.6 V, V,, = 10.5 V 

5 v  

$10 kR 

+ 

v, 0 

- 2.5 V 

- 
4 + 

Fig. 6-42 
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PSpice DC Circuit Analysis 
INTRODUCTION 

PSpice, from MicroSim Corporation, is a computer program that can be used on many personal 
computers (PCs) for the analyses of electric circuits. PSpice is a derivative of SPICE which is a circuit 
simulation program that was developed in the 1970s at the University of California at Berkeley. SPICE 
is an acronym for Simulation Program with Integrated Circuit Eruphasis. PSpice was the first derivative 
of SPICE that was suitable for use on PCs. PSpice and SPICE, which are similar in use, are both used 
extensively in industry. There are various versions of each. 

Principally, only the creation of a PSpice circuit file (also called source file) is presented in this 
chapter. (But much of this material applies as well to the creation of a SPICE circuit file.) This creation 
requires the use of a text editor. Typically there are two text editors that can be used, one of which is 
in what is called the PSpice Control Shell. 

The PSpice Control Shell is a menu system that includes a built-in text editor. The Control Shell 
can be run by simply typing PS at the DOS prompt (perhaps C>) ,  and then pressing the Enter key. 
After a few seconds, a menu appears. Menu items can be selected by using either the keyboard, mouse, 
or arrow keys to move horizontally and vertically within the menus. Running PSpice interactively using 
the Control Shell requires some study, at least for most PSpice users. The MicroSim Corporation has 
a User’s Guide that includes an explanation of the Control Shell, among many other features. And there 
are circuit analysis textbooks that explain its use. But no explanation will be given here. 

Instead of editing via the Control Shell, some PSpice users may prefer to use an ASCII text editor, 
assuming one has been installed to be accessed from PSpice. In this case, the first step to utilizing PSpice 
might be at the DOS prompt to type C D  PSPICE and then press the Enter key to change to the PSpice 
directory. Then, depending on the particular ASCII text editor, the next step may be to just type ED 
EEL.CIR and enter it. The ED is the code for edit, and EEL.CIR is the name of the circuit file. Another 
name such as EE.CIR is as suitable, but the extension .CIR must be included. Now the editing process 
can be begun and the circuit file created. 

After the creation of the circuit file, the computer must be instructed to run the PSpice program 
with the particular circuit file. If the Control Shell is being used, then the Analysis menu item can be 
selected for doing this. If i t  is not being used, then all that is necessary is to type PSPICE followed by 
the name of the circuit file. The computer then runs the program and places the results in an output file 
that has the same name as the circuit file except that the extension .OUT replaces the extension .CIR. 

Assuming no error notification, the final step is to print the output file. If the Control Shell is being 
used, this printing can be obtained via the Quit menu item. I f  it  is not being used, then the printout can 
be obtained by typing PRINT followed by the name of the output file. 

BASIC STATEMENTS 

A specific PSpice circuit file will be presented before a general consideration of the basic statements. 
Below is the circuit file for the circuit of Fig. 7-1. 

V I  

136 
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CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-1 
V1 1 0  8 
R1 1 2  4 
I1 0 2  5 
R2 2 0  6 
R3 2 3  7 
R4 3 4  9 
V2 0 4  8 
R5 3 0 10 
I2 3 0  6 
. END 

In this circuit file, the first line, which is called a title line, identifies the circuit being analyzed. The 
last line is an .END line and is required complete with the period. The lines in between define the circuit, 
with one component per line. Each of these lines begins with a unique component name, the first letter 
of which identifies the type of component. Following each name are the numbers of the two nodes 
between which the component is connected, And following these node numbers is the electrical value of 
the component. 

If PSpice is run with this circuit file, the following appears in the output file: 

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 
(1) 8.0000 ( 2 )  8.4080 (3) -16.0690 (4) -8.0000 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 

v1 
v2 

1.020E-01 
8.965E-01 

TOTAL POWER DISSIPATION -7.99E+00 WATTS 

This printed output includes node voltages and voltage-source currents. The directions of these 
currents are into thefirst speciJied nodes of the voltage sources. The specified total power dissipation is 
the total power provided by the two voltage sources. Since this power is negative, these sources absorb 
the indicated 7.99 W. The E designates a power of 10, as often does a D in a SPICE output. In a SPICE 
output, though, the total power dissipation is the net power generated by ull the independent sources, 
both voltage and current. 

Now consider PSpice circuit file statements in general. The first line in the circuit file must be a title 
statement. Any comments can be put in this line. For future reference, though, it is a good idea to identify 
the circuit being analyzed. No other such line is required, but if another is desired, one can be obtained 
by starting the line with an asterisk (*) in column 1. Although not recommended, the title line can be 
left blank. But the circuit description (the component lines) cannot start in the first line. 

Between the title line and the .END line are the component or element lines, which can be in any 
order. Each consists of three fields: a name field, a node field, and a value field. Spaces must appear 
between the fields and also between the node numbers within the node field. The number of spaces is 
not critical. 

In the name field the first letter designates the type of component: R for resistor, V for independent 
voltage source, and I for independent current source. The letters do not have to be capitalized, Each R, 
V, or I designator is followed by some label to identify the particular component. A label can consist 
of letters as well as numbers, with a limit of seven in SPICE. 

Each node field comprises two nonnegative integers that identify the two nodes between which the 
particular circuit component is connected. For a resistor, it does not matter which node label is placed 
first. For a voltage source, the first node label must be the node at which the voltage source has its 
positive polarity marking. For a current source, the first node label must be for the node at which the 
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current enters the current source. Note that this node arrangement pertains when positive voltages or 
currents are specified, as is usual. If negative values are specified, the node arrangement is reversed. 

As regards node numbers, there must be a 0 node. This is the node which PSpice considers to be 
the ground node. The other nodes are preferably identified by positive integers, but these integers need 
not be sequential. 

of the component in ohms, volts, or 
amperes, whichever applies. The resistances must be nonzero. Note that the values must not contain 
commas. 

A comment can be inserted in a component line by placing a semicolon after the value field, then 
the comment is inserted after the semicolon. 

As another illustration, consider the circuit of Fig. 7-2. A suitable circuit file is 

The value field is simply the value positive or negative 

C I R C U I T  F I L E  FOR THE C I R C U I T  O F  F I G .  7 - 2  
V1 4 0 2 E 3  
R 1  4 9 3 0 K  
R 2  0 9 40MEG 
I1 0 9 70M 
. END 

4 30kR 9 

v1 

R I  I 

* 2 k V  70 mA 

- 
Fig. 7-2 

In this circuit file, observe the use of suffix letters in the value field to designate powers of 10. The 
2E3 for the V1 statement could as well be 2 K .  Following is a complete listing of PSpice suffix letters 
and scale factors. 

F 1 0 - 1 5  U 1 0 - 6  MEG 106 

P 1 0 - 1 2  M 10-3 G 1 o9 
N 10-9 K 103 T 10l2 

These suffix letters do not have to be capitalized; PSpice makes no distinction between uppercase 
and lowercase letters. 

DEPENDENT SOURCES 

All four dependent sources are available in PSpice. Their identifiers are E for a voltage-controlled 
voltage source, F for a current-controlled current source, G for a voltage-controlled current source, and 
H for a current-controlled voltage source. 

For an illustration of dependent source statements, consider the circuit of Fig. 7-3, and the 
corresponding circuit file below. 

In Fig. 7-3 the two “dummy” voltage sources VD1 and VD2, with zero in the value field, are needed 
because of the PSpice requirement that for a current to be a controlling quantity, i t  must flow through 
an independent voltage source. If no such source is present, then a “dummy” voltage source of zero 
volts must be inserted. The voltage is made zero to avoid affecting the circuit operation. The 0 need not 
be specified, though, because PSpice will use a default of 0 V. 
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G1 30 V 

Fig. 7-3 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-3 
G1 O 1 4 0 8 M  
R1 1 0 6K 
VD1 2 1 0 
R2 3 2 12K 
H1 3 4 VD2 2K 
R3 4 5 17K 
R4 5 0 12K 
F1 4 0 VD1 3 
R5 4 6 13K 
El 6 7  5 0  3 
R6 8 7 15K 
VD2 0 8 0 
R7 7 9 14K 
VS 9 0 30 . END 

For each dependent source statement, the first two nodes specified are the nodes between which the 
dependent source is positioned. Further, the arrangement of these nodes is the same as for an independent 
source with regard to voltage polarity or current direction. 

For a voltage-controlled dependent source, there is a second pair of specified nodes. These are the 
nodes across which the controlling voltage occurs, with the first node being the node at which the 
controlling voltage is referenced positive. For a current-controlled dependent source, there is an 
independent voltage source designator instead of a second pair of nodes. This is the name of the 
independent voltage source through which the controlling current flows from the first specified node of 
the voltage source to the second. The last field in each dependent source statement is for the scale factor 
or multiplier. 

PSpice does not have a built-in component for an ideal operational amplifier. From the model shown 
in Fig. 6-2b, though, it should be apparent that all that is required to effectively obtain an ideal op amp 
is a single voltage-controlled voltage source with a huge voltage gain, say 500 000 or more. If a nonideal 
op amp is desired, resistors can be included as shown in Fig. 6-2a. 

.DC AND .PRINT CONTROL STATEMENTS 

So far, the only voltages and currents obtained have been node voltages and independent voltage 
source currents. Obtaining others requires the inclusion of a .DC control statement, and also a .PRINT 
statement in the source file. 
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I f  a circuit had, say, a 30-V dc voltage source named V l ,  a suitable .DC control statement would be 

.DC V1 30 30 1 

(V1 was selected for purposes of illustration, but any independent voltage or current source can be 
used as a .DC control statement.) Note that two value specifications are necessary, which are both 30 
here. The reason for having two of them is to allow for a variation in voltage. If, for example, three 
analyses were desired, one for V1 = 30 V, another for V1 = 35 V, and a third for V1 = 40 V, the 
statement would be 

.DC V 1  30 40 5 

where 30 is the first voltage variation, 40 is the last one, and 5 is the voltage increment between 
the variations. 

Now, suppose it is desired to obtain the voltage on node 4 with respect to ground, the voltage across 
nodes 2 and 3 with node 2 referenced positive, the voltage across resistor R6 with the positive reference 
at the first specified node of that resistor, and the current through resistor R2 with the reference direction 
of the current being into the first specified node of that resistor. The required .PRINT statement would be 

.PRINT DC V ( 4 )  V ( 2 , 3 )  V ( R 6 )  I(R2) 

When a .PRINT statement is used, only the voltages and currents specified in that statement will 
appear in the output. 

The DC must be included in the .PRINT statement to specify the type of analysis. Further, although 
optional, a DC specification is often included in each dc independent source statement between the node 
and value fields as in, for example, 

V1 3 4 DC 10. 

With some versions of SPICE, only currents flowing through voltage sources can be specified as in, 
for example, I(V2). Also, voltages must be specified across nodes and not components. 

RESTRICTIONS 

PSpice requires a dc path to ground from each node. This is seldom a problem for dc circuits, but 
must be considered for some other circuits, as will be seen. Resistors and voltage sources (and also 
inductors) provide dc paths, but current sources (and capacitors) do not. A resistor of huge resistance 
can always be inserted between a node and ground to provide a dc path. The resistance should be large 
enough that the presence of the resistor does not significantly affect the circuit operation. 

Each node must have at least two circuit components connected to it. This restriction poses a slight 
problem at an open circuit. One simple solution is to insert a resistor of huge resistance across the open 
circuit. 

Finally, PSpice will not allow a loop of voltage sources (or of inductors). The insertion of a resistor 
in series with one of the voltage sources will eliminate this problem. The resistance should be small 
enough that the presence of the resistor does not significantly affect the circuit operation. 

Solved Problems 
7.1 Repeat Prob. 4.11 using PSpice. Specifically, find the mesh currents I ,  and I ,  in the circuit of 

Fig. 4- 14. 

Figure 7-4 is Fig. 4-14 (redrawn and labeled for PSpice). Such a circuit will be referred to as a PSpice 
circuit. Following are the corresponding circuit file and the printed output obtained from running PSpice 
with this circuit file. Observe that are in agreement with 
the answers to Prob. 4.1 1 .  

I ,  = I ( R 1 )  = -8  A and I, = I(R3) = 1 A 



CHAP. 73 PSPlCE DC CIRCUIT ANALYSIS 141 

I R1 3 
i 

R 3  4 

- 
0 

Fig. 7-4 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-4 
El 1 0 4 5 0.5 
R1 1 2  8 
R2 2 3  6 
v1 3 0 120 
R3 2 4  2 
R4 4 5  4 
V2 5 0 60 
.DC V1 120 120 1 
.PRINT DC I(R1) I(R3) . END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

v1 1 (R1) I(R3) 
1.200E+02 -8.000E+00 1.000E+00 

7.2 Repeat Prob. 4.15 using PSpice. Specifically, find the power absorbed by the dependent source 
in the circuit of Fig. 4-19. 

Figure 7.5 is the PSpice circuit corresponding to the circuit of Fig. 4-19. 

14 V 13 R 

0 

Fig. 7-5 

Since PSpice does not provide a power output except for the total power produced by independent 
voltage sources, the power absorbed by the dependent source must be calculated by hand after PSpice is 
used to obtain the voltage across the dependent source and the current flowing into the positive terminal 
of this source. 

In the following circuit file, observe in the V 2  statement (V2 5 0 - 16) that node 5 is the first 
specified node, which in turn means that the specified voltage must be negative since node 5 is not the 
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positive node. Node 5 should be the first specified node because the controlling current I ,  fous into i t .  
Remember that a controlling current must flow through an independent Lroltage source. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-5 
R1 1 0 20 
v1 2 1 10 
R2 2 3 15 
H1 3 4 V2 20 
R3 4 5 35 
V2 5 0 -16 
V3 4 6 20 
R4 6 7 18 

R5 8 0 11 
R6 2 9 13 
V6 9 7 14 
.DC V1 10 10 1 
.PRINT DC V(H1) I(H1) . END 

v5 a 7  7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The power absorbed by the dependent source can be obtained from the printed output: 

P V(H1) x I(H1) = 8.965(-0.108) -0.968 W 

which agrees with the answer to Prob. 4.15. 

7.3 Repeat Prob. 4.22 using PSpice. Specifically, determine the current I in the circuit of Fig. 4-25. 

Figure 7-6 is the PSpice circuit corresponding to the circuit of Fig. 4-35. This PSpice circuit. though, 
has an added dummy voltage source VD. I t  is the current in this source that is the controlling current for 
the two dependent sources. Again, remember that a controlling current must flow through an independent 
voltage source. 

Below is the corresponding circuit file along with the printed output obtained when this file is run 
with PSpice. The output I (R3)  = 3 A agrees with the answer to Prob. 4.22. 

Fig. 7-6 
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CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-6 
F1 0 1 VD 0.5 
R1 1 0 12 
R2 1 2  6 
I1 1 2  6 
R3 2 3  6 
VD 3 0 
H1 2 4 VD 12 
R4 4 0 18 
.DC I1 6 6 1 
.PRINT DC I(R3) . END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I1 1 ( R 3  1 

6.000E+00 3.000E+00 

- w 

R1 3 6 

+v, 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-7 
v1 1 0 10 
R1 1 2 5K 
R2 2 3 8K 
El 3 4  6 0  2 
v2 4 0 
F1 6 0 V2 3 
R3 6 0 10K 
v3 2 5 20 
R4 5 6 6K 
.DC V1 10 10 1 
.PRINT DC I(R1) I(R4) I(R3) 
. END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
v1 1 (RI 1 1 (R4) 1 ( R 3  1 

1.000E+01 -3.260E-03 -1.989E-03 1.823E-03 

- 
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7.5 Repeat Prob. 5.11 using PSpice. In other words, obtain the Thevenin equivalent of the circuit 
of Fig. 5-20a. 

Figure 7-8 is the PSpice circuit corresponding to the circuit of Fig. 5-20a. This PSpice circuit has a 
dummy voltage source V1 inserted for sensing the controlling citrrent I .  

1 4 R  2 

0 

Fig. 7-8 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-8 
H1 1 0 V1 8 
R1 1 2  4 
R2 2 0  6 
R3 2 3 12 
v1 3 0 
.TF V(2,O) V1 . END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 
0.0000 (1) 0.0000 ( 2 )  0.0000 ( 3 )  

* * * *  SMALL-SIGNAL CHARACTERISTICS 

V(2,O) / V 1  = -2.500E-01 

INPUT RESISTANCE AT V1 = 9.600E+00 

OUTPUT RESISTANCE AT V(2,O) = 3.000E+00 

Above is the corresponding circuit file along with the PSpice output. In  the circuit file a .TF statement 
has been included to obtain the Thevenin resistance. The format of this statement is 

.TF (output variable) (independent source) 

The resulting output consists of three parts: 

1. The ratio of the output variable to the specified source quantity. For example, in the case in which the 
independent source provides an input voltage and the output is the output voltage, this ratio is the 
voltage gain of the circuit. 

2. The second is the resistance “seen” by the independent source. I t  is the ratio of the source voltage to 
the source current flowing out of the positive source terminal with the other independent sources 
deactivated. In  an electronic circuit, this resistance may be the input resistance. 

3. The final output part consists of the output resistance at the terminals of the output variable, 
and includes the resistance of any resistor connected across these terminals. For the present case, this 
output resistance is the Thevenin resistance, which is the desired quantity. 

The voltage gain and the input resistance parts of the output are not of interest. The printed output resistance 
of 3 R, the Thevenin resistance, agrees with the answer to Prob. 5.1 1. The Thevenin voltage is zero, of course, 
as is specified by the printed node 2 voltage. 
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7.6 Repeat Prob. 5.46 using PSpice. Specifically, obtain the Thevenin equivalent of the circuit of Fig. 
5-49 to the left of terminals U and h. 

Figure 7-9 is the PSpice circuit corresponding to the circuit of Fig. 5-49. A resistor R3 has been inserted 
across the open circuit at terminals a and h to satisfy the PSpice requirement that at least two components 
must be connected to each node. However, the resistance of R3 is so large that the presence of this resistor will 
not significantly affect the circuit operation. 

Below is the corresponding circuit file along with the resulting output. A .TF statement has been included 
in the circuit file to obtain the Thevenin resistance. No .DC or .PRINT statements have been included 

V2 4 flrl Q a  

10 v 

I 

' b  3 

H1 81 

8 Q  - O h  
0 R4 5 

Fig. 7-9 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-9 
R1 1 0 16 
V1 1 2 -48 
R2 2 3 16 
H1 0 3 V1 8 
v2 4 2 10 
R3 4 5 lOMEG 
R4 5 0  8 
.TF V(4,5) V1 . END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 
(2) 16.0000 (3) -16.0000 (4) 26.0000 (1) -32.0000 

(5) 20.80E-06 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 

v1 
v2 

2.000E+00 
-2.6OOE-06 

TOTAL POWER DISSIPATION 9.60E+01 WATTS 

****  SMALL-SIGNAL CHARACTERISTICS 

V (4,5) /V1 = -3.3 3 3E-01 

INPUT RESISTANCE AT V1 = 2.400E+01 

OUTPUT RESISTANCE AT V(4,5) = 1.867E+01 
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because the node voltages will be printed out automatically. Observe that node voltage 4 is essentially the 
same as the voltage across terminals 4 and 5, the Thevenin voltage, because the voltage drop across resistor 
R4 is negligible. The obtained node 4 voltage value of 26 V and the output resistance value of 18.67 R, which 
are the Thevenin quantities, agree with the answers to Prob. 5.46. 

Repeat the first part of Prob. 6.13 using PSpice. Specifically, compute V, in the circuit of Fig. 6-1 8. 

Figure 6-18 is redrawn in Fig. 7-10u, for convenience. Figure 7-10b shows the corresponding PSpice 
circuit. Observe that the op amp has been deleted, and a model for it included. This model El  is simply a 
voltage-controlled voltage source connected across the terminals that were the op-amp output terminals. 
The 106 voltage gain of this source is not critical. 

Following is the corresponding circuit file along with the pertinent part of the output obtained 
when PSpice is run with this circuit file. Here, which is the same as the answer to 
the first part of Prob. 6.13. 

V, = V(4) = - 10 V, 

5 v  

0 

(b) 
Fig. 7-10 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 7-10b 
v1 1 0  5 
R1 1 2 6K 
R2 2 0 4K 
R3 1 3 3K 
RF 3 4 12K 
R4 4 0 20K 
El 4 0 2 3 lMEG . END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 
(1) 5.0000 (2) 2.0000 ( 3 )  2.0000 (4) -10.0000 
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7.8 Repeat Prob. 6.20 using PSpice. Specifically, obtain the Thevenin equivalent of the circuit of 
Fig. 6-24. 

Figure 7-1 l u  is the samc as Fig. 6-24, and is included here for convenience. Figure 7-1 l h  is the 
corresponding PSpice circuit in which the op amp has been replaced by a model E l  that is a voltage- 
controlled voltage source. 

Below is the corresponding circuit file along with the pertinent portion of the output file. Node 
voltage is the Thevenin voltage, and the output resistance of 571.4 R is the Thevenin resistance. 
Both values agree with the answers to Prob. 6.20. 

V(3) = 3 V 

RI 

1 kR 

I ' T  
I I 1 0 

0 h 

(b)  
Fig. 7-11 

CIRCUIT FILE FOR FIG. 7-llb 
v1 1 0 1.5 
R1 1 3 1K 
R2 2 0 2.5K 
R3 2 4 22.5K 
El 4 0 1 2 lMEG 
R4 4 3 4K 
R5 3 0 2K 
.TF V(3) V1 
. END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 
(1) 1.5000 (2) 1.5000 (3) 3.0000 (4 ) 15.0000 

OUTPUT RESISTANCE AT V(3) = 5.714E+02 
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7.9 Repeat Prob. 6.24 using PSpice. Specifically, obtain the voltages Vl ,  and V2, in the circuit of Fig. 
6-28. 

Figure 7-12u is the same as Fig. 6-28 and is included solely for convenience. Figure 7-12h is the 
corresponding PSpice circuit in which the two op amps have been replaced by models El and E2, which 
are voltage-controlled voltage sources. 

Following is the corresponding circuit file and the pertinent part of the output file. The results 
of V(3) = V,,  = 12.5 V and V(4) = V,, = 1 V agree with the answers to Prob. 6.24. 

V I  

0 

(b)  
Fig. 7-12 
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C I R C U I T  F I L E  FOR THE C I R C U I T  O F  F I G .  7 - 1 2 b  
V 1  1 0  8 
R 1  1 0 IOMEG 
R 2  2 5 4 0 K  
R 3  3 2 1 0 K  
R 4  2 4 2 0 K  
R 5  4 5 5 0 K  
R 6  5 0 lOOK 
R 7  6 0 lOMEG 
V2 6 0  4 
E l  3 0 1 2 lMEG 
E 2  4 0 6 5 lMEG 
. END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 
( 1 )  8 .0000 ( 2 )  ' 8.0000 ( 3 )  1 2 . 5 0 0 0  ( 4 )  1 . 0 0 0 0  

(5) 4 . 0 0 0 0  ( 6 )  4 . 0 0 0 0  

Supplementary Problems 
7.10 Use PSpice to compute I,, in the circuit of Fig. 4-28. 

Ans. -0.333 A 

7.11 Use PSpice to determine I in the circuit of Fig. 4-45. 

Ans. -3.53 mA 

7.12 Use PSpice to find the Thevenin voltage at terminals a and h in the circuit of Fig. 5-44. Reference VTh 
positive at terminal U.  

Ans. 143.3 V 

7.13 Use PSpice to obtain V, in the circuit of Fig. 6-21 

Ans. l O V  

7.14 Use PSpice to find V ,  in the circuit of Fig. 6-22. 

Ans. - 1.95 V 

7.15 Use PSpice to determine V, ,  and V,, in the circuit of Fig. 6-42. 

Ans. 1.6 V, 10.5 V 

7.16 Without using PSpice, determine the output corresponding to the following circuit file. 

C I R C U I T  F I L E  FOR PROB. 7 . 1 6  
v1 1 0 1 2  
RI 1 2  2 
R2  2 3  3 
v 2  3 0 1 0  
R 3  2 4  4 
v3 0 4 2 0  
.DC V 1  1 2  1 2  1 
. P R I N T  DC I ( R 1 )  
. END 

Ans. 4 A 
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7.17 Without using PSpice, determine the output corresponding to the following circuit file. 

CIRCUIT FILE FOR PROB. 7.17 
V1 1 0 27 
R1 1 2  3 
R2 2 3  4 
V2 3 0 29 
R3 2 4  5 
R4 4 5  6 
v3 0 5 53 
I1 0 4  5 
.DC V1 27 27 1 
.PRINT DC I(R3) 
. END 

Ans. 4 A 

7.18 Without using PSpice, determine the output corresponding to the following circuit file. 

CIRCUIT FILE FOR PROB. 7.18 
v1 1 0 45 
R1 1 2 3 
R2 2 3 2 
R3 3 0 4 
R4 2 0 2.4 
G1 0 2 2 3 0.25 
.DC V1 45 45 1 
.PRINT DC V(R2) . END 

Ans. 6 V  

7.19 Without using PSpice, determine the output corresponding to the following circuit file. 

CIRCUIT FILE FOR PROB. 7.19 
I1 0 1  4 
R1 1 2  5 
v1 2 0 
R2 1 0 20 
H1 3 1 V1 5 
R3 3 0  8 
.DC 11 4 4 1 
.PRINT DC I(R1) 
. END 

Ans. 1.6 A 

7.20 Without using PSpice, determine the output corresponding to the following circuit file. 

CIRCUIT FILE FOR PROB. 7.20 
F1 0 1 V1 0.5 
R1 1 0  6 
R2 1 2  3 
I1 1 2  6 
R3 2 3  9 
H1 3 0 V1 6 
v1 2 4 
R4 4 0  3 
.DC I1 6 6 1 
.PRINT DC I(R4) 
. END 

[CHAP. 7 

Ans. 3 A 
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7.21 Without using PSpice, determine the output corresponding to the following circuit file. 

CIRCUIT FILE FOR PROB. 7.21 
v1 1 0 20 
R1 1 2 6K 
R2 2 3 3K 
V2 3 4 40 
R3 4 5 2K 
V3 5 0 60 
R4 4 6 8K 
V4 7 6 30 
R5 7 8 5K 
V5 0 8 45 
R6 2 9 9K 
V6 9 7 15 
.DC V1 20 20 1 
.PRINT DC I(R4) I(R3) I(R5) 
. END 

Ans.  I(R4) = 6.95 mA, I(R3) = - 14.6 mA, I(R5) = 10.0 mA 

7.22 Without using PSpice, determine the output corresponding to the following circuit file. 

CIRCUIT 
I1 0 1 
R1 1 0 
R2 1 2 
I2 2 1 
I3 2 0 
R3 2 0 
R4 2 3 
R5 3 0 
R6 1 3 
.DC I1 
. PRINT 
. END 

FILE FOR PROB. 7.22 
60 
0.14286 
0.2 
22 
34 
0.25 
0.16667 
0.16667 
0.125 
60 60 1 

DC V ( 2 )  

Ans. - 2  V 

7.23 Without using PSpice, determine the output corresponding to the following circuit file. (Hinr:  Consider an 
op-amp circuit.) 

CIRCUIT 
v1 1 0 
R1 1 2 
v2 0 3 
R2 3 2 
R3 2 4 
El 4 0 
.DC V1 
. PRINT 
. END 

FILE FOR PROB. 7.23 
6 
4K 
15 
6K 
12K 
0 2 l M E G  
6 6  1 

DC V(4) 

Ans.  12 V 
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7.24 Without using PSpice, determine the output corresponding to the following circuit file. (Hint :  Consider an 
op-amp circuit.) 

CIRCUIT FILE FOR PROB. 7.24 
v1 1 0  9 
R1 1 2 9K 
R2 2 0 18K 
R3 2 3 12K 
R4 4 0 6K 
R5 4 3 3K 
El 3 0 2 4 lMEG 
.DC V1 9 9 1 
.PRINT DC V(3) 
. END 

Ans. 12 V 



Chapter 8 

Capacitors and Capacitance 

INTRODUCTION 

A capacitor consists of two conductors separated by an insulator. The chief feature of a capacitor 
is its ability to store electric charge, with negative charge on one of its two conductors and positive 
charge on the other. Accompanying this charge is energy, which a capacitor can release. Figure 8-1 
shows the circuit symbol for a capacitor 

+t---O 
Fig. 8-1 

CAPACITANCE 

Capacitance, the electrical property of capacitors, is a measure of the ability of a capacitor to store 
charge on its two conductors. Specifically, if the potential difference between the two conductors is V 
volts when there is a positive charge of Q coulombs on one conductor and a negative charge of the same 
amount on the other, the capacitor has a capacitance of 

where C is the quantity symbol of capacitance. 
The SI unit of capacitance is the furad, with symbol F. Unfortunately, the farad is much too large 

a unit for practical applications, and the microfarad (pF) and picofarad (pF) are much more common. 

CAPACITOR CONSTRUCTION 

One common type of capacitor is the parallel-plate capacitor of Fig. 8-2a. This capacitor has two 
spaced conducting plates that can be rectangular, as shown, but that often are circular. The insulator 
between the plates is called a dielectric. The dielectric is air in Fig. 8-2a, and is a slab of solid insulator 
in Fig. 8-2h. 

? 

Fig. 8-2 

P 

I Dielectric I - 1 
T 

I +  + + + I  

I -  - - - 

I 

Fig. 8-3 

A voltage source connected to a capacitor, as shown in Fig. 8-3, causes the capacitor to become 
charged. Electrons from the top plate are attracted to the positive terminal of the source, and they pass 
through the source to the negative terminal where they are repelled to the bottom plate. Because each 
electron lost by the top plate is gained by the bottom plate, the magnitude of charge Q is the same on 

153 
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both plates. Of course, the voltage across the capacitor from this charge exactly equals the source voltage. 
The voltage source did work on the electrons in moving them to the bottom plate, which work becomes 
energy stored in the capacitor. 

For the parallel-plate capacitor, the capacitance in farads is 

A 

d 
c = E 

where A is the area of either plate in square meters, d is the separation in meters, and E is the 
permittioitjq in farads per meter (F/m) of the dielectric. The larger the plate area or the smaller the plate 
separation, or the greater the dielectric permittivity, the greater the capacitance. 

The permittivity E relates to atomic effects in the dielectric. As shown in Fig. 8-3, the charges on the 
capacitor plates distort the dielectric atoms, with the result that there is a net negative charge on the 
top dielectric surface and a net positive charge on the bottom dielectric surface. This dielectric charge 
partially neutralizes the effects of the stored charge to permit an increase in charge for the same voltage. 

The permittivity of vacuum, designated by col is 8.85 pF,/m. Permittivities of other dielectrics are 
related to that of vacuum by a factor called the dielectric c'onstmt or relrtizv perrzzittiztitjq, designated by 
E,.  The relation is E = E , E ~ .  The dielectric constants of some common dielectrics are 1.0006 for air, 2.5 
for paraffined paper, 5 for mica, 7.5 for glass, and 7500 for ceramic. 

TOTAL CAPACITANCE 

The total or equivalent capacitance (C, or Ceq) of parallel capacitors, as seen in Fig. 8-4u, can be 
found from the total stored charge and the Q = CV formula. The total stored charge QT equals the 
sum of the individual stored charges: QT = Q, + Q ,  + Q,. With the substitution of the appropriate 
Q = CV for each Q, this equation becomes C T V =  C, V + C, V + C,K Upon division by r! i t  
reduces to Because the number of capacitors is not significant in this derivation, 
this result can be generalized to any number of parallel capacitors: 

C,. = C, + C, + C,. 

c,, = c ,  + c', + c, + c, + . . *  

So, the total or equivalent capacitance of parallel capacitors is the sum of the individual capacitances. 

I - I  

For series capacitors, as shown in Fig. 8-4h, the formula for the total capacitance is derived by 
substituting Q/C for each V in the K V L  equation. The Q in each term is the same. This is because the 
charge gained by a plate of any capacitor must have come from a plate of an adjacent capacitor. The 
K V L  equation for the circuit shown in Fig. 8-4h is V'= V,  + V, + V,. With the substitution of the 
appropriate Q/C for each r/: this equation becomes 

1 1 1 1  
_ _  Q Q Q Q  - - - . - - +  - - +  ~- or - +-+--- 
c,. c,  c2 c, c,. c ,  c, c, 
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upon division by Q. This can also be written a s  

1 
CT = 

I C ,  + l!#C2 + liC, 

Generalizing, 

which specifies that the total capacitance of series capacitors equals the reciprocal of the sum of the 
reciprocals of the individual capacitances. Notice that the total capacitance of series capacitors is found 
in the same way as the total resistance of parallel resistors. 

For the special case of N series capacitors having the same capacitance C, this formula simplifies 
to CT = C l N .  And for two capacitors in series i t  is CT = C,C2~’(C1 + C2). 

ENERGY STORAGE 

As can be shown using calculus, the energy stored in a capacitor is 

w,. = $CI/Z 

where Wc is in joules, C is in farads, and I/ is in volts. Notice that this stored energy does not depend 
on the capacitor current. 

TIME-VARYING VOLTAGES AND CURRENTS 

In dc resistor circuits, the currents and voltages are constant -never varying. Even if switches are 
included, a switching operation can, at most, cause a voltage or current to jump from one constant level 
to another. (The term “jump” means a change from one value to another in zero time.) When capacitors 
are included, though, almost never does a voltage or a current jump from one constant level to another 
when switches open or close. Some voltages or currents may initially jump at switching, but the jumps 
are almost never to final values. Instead, they are to values from which the voltages or currents change 
esponentially to their final values. These voltages and currents vary with time 

Quantity symbols for time-varying quantities are distinguished from those for constant quantities 
by the use of lowercase letters instead of uppercase letters. For example, r and i are the quantity symbols 
for time-varying voltages and currents. Sometimes, the lowercase t ,  for time, is shown as an argument 
with lowercase quantity symbols as in r ( t )  and i(t). Numerical values of 1’ and i are called inst(rntu7zeorrs 
iwlires, or instcintcrneoirs i d t c r y e s  and cirr’vents, because these values depend on (vary with) exact instants 
of time. 

As explained in Chap. 1, a constant current is the quotient of the charge Q passing a point in a wire 
and the time T required for this charge to pass: I = Q/T The specific time T is not important because 
the charge in a resistive dc circuit flows at a steady rate. This means that doubling the time T doubles 
the charge Q, tripling the time triples the charge, and so on, keeping I the same. 

For a time-varying current, though, the value of i usually changes from instant to instant. So, finding 
the current at any particular time requires using a very short time interval At. If Aq is the small charge 
that flows during this time interval, then the current is approximately Aq A t .  For an exact value of 

they are tinicwirrj~iny. 

current, this quotient must be found in 

This limit, designated by dy id t ,  is called 

he limit as At approaches zero (Ar + 0): 

. . 4 4 
I =  ]lm - = -  

L j t + o  At (it 

the dcriiwtiiv of charge with respect to time. 
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CAPACITOR CURRENT 

A n  equation for capacitor current can be found by substituting q = Cc into i = d q / d t :  

But C is a constant, and a constant can be factored from a derivative. The result is 

with associated references assumed. If the references are not associated, a negative sign must be 
included. This equation specifies that the capacitor current at any time equals the product of the 
capacitance and the time rate of change of voltage at that time. But the current does not depend on the 
value of voltage at that time. 

If a capacitor voltage is constant, then the voltage is not changing and so do/& is zero, making the 
capacitor current zero. Of course, from physical considerations, if a capacitor voltage is constant, no 
charge can be entering or leaving the capacitor, which means that the capacitor current is zero. With a 
voltage across it and zero current flow through it, the capacitor acts as an open circuit: a capacitor is 
cin open circuit to clc. Remember, though, it is only after a capacitor voltage becomes constant that the 
capacitor acts as an open circuit. Capacitors are often used in electronic circuits to block dc currents 
and voltages. 

Another important fact from i = C dc /d t  or i E CAtl/At is that a capacitor voltage cannot jump. 
If, for example, a capacitor voltage could jump from 3 V to 5 V or, in other words, change by 2 V in 
zero time, then Ac would be 2 and At would be 0, with the result that the capacitor current would be 
infinite. An infinite current is impossible because no source can deliver this current. Further, such a 
current flowing through a resistor would produce an infinite power loss, and there are no sources of 
infinite power and no resistors that can absorb such power. Capacitor current has no similar restriction. 
I t  can jump or even change directions, instantaneously. Capacitor voltage not jumping means that a 
capacitor voltage immediately after a switching operation is the same as immediately before the operation. 
This is an important fact for resistor-capacitor ( R C )  circuit analysis. 

SINGLE-CAPACITOR DC-EXCITED CIRCUITS 

When switches open or close in a dc RC circuit with a single capacitor, all voltages and currents 
that change do so exponentially from their initial values to their final constant values, as can be shown 
from differential equations. The exponential terms in a voltage or current expression are called transient 
t e r m  because they eventually become zero in practical circuits. 

t = 0 s. In Fig. 8-51 the 
initial value is greater than the final value, and in Fig. 8-5h the final value is greater. Although both 
initial and final values are shown as positive, both can be negative or one can be positive and the other 
negative. 

The voltages and currents approach their final values asymptotically, graphically speaking, which 
means that they never actually reach them. As a practical matter, however, after five time constants 
(defined next) they are close enough to their final values to be considered to be at them. 

Time constunt, with symbol z, is a measure of the time required for certain changes in voltages and 
currents. For a single-capacitor RC circuit, the time constant of the circuit is the product of the 
capacitance and the Thevenin resistance as ‘Iseen” by the capacitor: 

RC time constant = z = R,,C 

Figure 8-5 shows these exponential changes for a switching operation at 

The expressions for the voltages and currents shown in Fig. 8-5 are 

c( t )  = r ( x )  + [ u ( O + )  - r(lx)]e-t’T v 
i(r) = i(x) + [ i ( O + )  - i ( x ~ ) ] e - ‘ ~ ~  A 
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Fig. 8-5 

for all time greater than zero (t  > 0 s). In  these equations, ~ ( 0 + )  and i ( O + )  are initial values 
immediately after switching; u(m) and i(m) are final values; e = 2.718, the base of natural logarithms; 
and z is the time constant of the circuit of interest. These equations apply to all voltages and currents 
in a linear, RC, single-capacitor circuit in which the independent sources, if any, are all dc. 

By letting t = 7 in these equations, i t  is easy to see that, in a time equal to one time constant, 
the voltages and currents change by 63.2 percent of their total change of r( x) - ~ ( 0  + ) or i( x) - i(0 + ). 
And by letting t = 57, it is easy to see that, after five time constants, the voltages and currents change 
by 99.3 percent of their total change, and so can be considered to be at their final values for most 
practical purposes. 

RC TIMERS AND OSCILLATORS 

An important use for capacitors is in circuits for measuring time- timers. A simple timer consists 
of a switch, capacitor, resistor, and dc voltage source, all in series. At the beginning of a time interval 
to be measured, the switch is closed to cause the capacitor to start charging. At the end of the time 
interval, the switch is opened to stop the charging and “trap” the capacitor charge. The corresponding 
capacitor voltage is a measure of the time interval. A voltmeter connected across the capacitor can have 
a scale calibrated in time to give a direct time measurement. 

As indicated in Fig. 8-5, for times much less than one time constant, the capacitor voltage changes 
almost linearly. Further, the capacitor voltage would get to its final value in one time constant if the 
rate of change were constant at its initial value. This linear change approximation is valid if the time to 
be measured is one-tenth or less of a time constant, or, what amounts to the same thing, if the voltage 
change during the time interval is one-tenth or less of the difference between the initial and final voltages. 

A timing circuit can be used with a gas tube to make an oscillator - a  circuit that produces a repeating 
waveform. A gas tube has a very large resistance-approximately an open circuit---for small voltages. 
But at a certain voltage it  will fire or, in other words, conduct and have a very low resistance ~ approx- 
imately a short circuit for some purposes. After beginning to conduct, it will continue to conduct even 
if its voltage drops, provided that this voltage does not drop below a certain low voltage at which the 
tube stops firing (extinguishes) and becomes an open circuit again. 

The circuit illustrated in Fig. 8-6a is an oscillator for producing a sawtooth capacitor voltage as 
shown in Fig. 8-6b. If the firing voltage V‘ of the gas tube is one-tenth or less of the source voltage V’, 
the capacitor voltage increases almost linearly, as shown in Fig. 8-6h, to the voltage V‘, at which time 
T the gas tube fires. If the resistance of the conducting gas tube is small and much less than that of the 
resistor R ,  the capacitor rapidly discharges through the tube until the capacitor voltage drops to VE, the 
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R " 1  

Gas 
tube 

0 
0 

0 vFIAA V& 
T 2T 

extinguishing voltage, which is not great enough to keep the tube conducting. Then the tube cuts off. 
the capacitor starts charging again, and the process keeps repeating indefinitely. The time T for one 
charging and discharging cycle is called a period. 

Solved Problems 
8.1 Find the capacitance of an initially uncharged capacitor for which the movement of 3 x 10" 

electrons from one capacitor plate to another produces a 200-V capacitor voltage. 

C = Q l K  From the basic capacitor formula in which Q is in coulombs. 

8.2 What is the charge stored on a 2-pF capacitor with 10 V across it'? 

From C = QiiK 

Q = CV = (2  x 10-6)(10)C = 20pC 

8.3 What is the change of voltage produced by 8 x 10' electrons moving from one plate to the other 
of an initially charged 10-pF capacitor? 

this equation, AQ is the change in stored charge and A V  is the accompanying change in boltage. From this, 
Since C = Q / V  is a linear relation, C also relates changes in charge and voltage: C = A Q i A V  In  

-1c 
= 128V 

-8 x l O 9 - t A s M m r  
- x  

C 10 x l o p ' ?  F 6.241 x 10"& 

8.4 Find the capacitance of a parallel-plate capacitor if the dimensions of each rectangular plate is 
1 by 0.5 cm and the distance between plates is 0.1 mm. The dielectric is air. Also, find the 
capacitance if the dielectric is mica instead of air. 

The dielectric constant of air is so close to 1 that the permittivity of vacuum can be used for that of 
air in the parallel-plate capacitor formula: 

A (8.85 x 10-12)(10-2)(0.5 x 10-2) 
F = 4.43 pF C = - = ____-___________ 

d 0.1 10-3 

Because the dielectric constant of mica is 5, a mica dielectric increases the capacitance by a factor of 
C = 5 x 4.43 = 22.1 pF. 5 :  
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8.5 Find the distance between the plates of a 0.01-pF parallel-plate capacitor if  the area of each plate 
is 0.07 m2 and the dielectric is glass. 

From rearranging C = r:A (1 and using 7.5 for the dielectric constant of glass, 

cA 7.5(8.85 x 10--'2)(0.07) 

C 0.01 x 
( I = - =  -- m = 0.465 mm 

8.6 A capacitor has a disk-shaped dielectric of ceramic that has a 0.5-cm diameter and is 0.521 mm 
thick. The disk is coated on both sides with silver, this coating being the plates. Find the 
capacitance. 

With the ceramic dielectric constant of 7500 in the parallel-plate capacitor formula, 

A 

(1 0.521 x 10-3 

7500(8.85 x 10-'2)[n: x (0.25 x 10-2)2] 
C = [ ;  = F = 2500 pF 

8.7 A 1-F parallel-plate capacitor has a ceramic dielectric 1 mm thick. If the plates are square, find 
the length of a side of a plate. 

Because each plate is square, a length 1 of a side is 1 = , A. From this and C = CA 'd, 

I =  R = J I 1 1 I 1 - . ) = 1 2 3 m  
7500(8.85 x 10-l2) 

Each side is 123 m long or, approximately, 1.3 times the length of a football field. This problem 
demonstrates that the farad is an extremely large unit. 

8.8 What are the different capacitances that can be obtained with a 1-  and a 3-pF capacitor? 

0.75 /IF in series 
The capacitors can produce 1 and 3 /tF individually; 1 + 3 = 4 /IF in parallel; and ( 1  x 3)'( 1 + 3) = 

8.9 Find the total capacitance C, of the circuit shown in Fig. 8-7. 

0 1 1 I 
Fig. 8-7 

At  the end opposite the input, the series 30- and 60-pF capacitors have a total capacitance of 30 x 
60/(30 + 60) = 20 pF. This adds to the capacitance of the parallel 25-pF capacitor for a total of 45 /IF to 
the right of the 90-pF capacitor. The 45- and 90-pF capacitances combine to 45 x 90,'(45 + 90) = 30 pF. 
This adds to the capacitance of the parallel 10-CIF capacitor for a total of 30 + 10 = 40 pF to the right 
of the 60-pF capacitor. Finally. 

60 x 40 

60 + 40 
c T = - -  - 24 jiF 
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8.10 A 4-pF capacitor, a 6-pF capacitor, and an 8-pF capacitor are in parallel across a 300-V source. 
Find (a )  the total capacitance, (b)  the magnitude of charge stored by each capacitor, and (c) the 
total stored energy. 

(U) Because the capacitors are in parallel, the total or equivalent capacitance is the sum of the individual 
capacitances: 

(h )  The three charges are, from 
and 

(c) The total capacitance can be used to obtain the total stored energy: 

C,. = 4 + 6 + 8 = 18 pF. 

Q = CV, (4 x 10-')(300) C = 1.2 mC, (6  x 10-')(300) C = 1.8 mC, 
(8  x 10-')(300) C = 2.4 mC for the 4-, 6-, and 8-pF capacitors, respectively. 

W = $C, .V2 = 0.5(18 x 10-h)(300)2 = 0.81 J 

8.11 Repeat Prob. 8.10 for the capacitors in series instead of in parallel, but find each capacitor voltage 
instead of each charge stored. 

(a) Because the capacitors are in series, the total capacitance is the reciprocal of the sum of the 
reciprocals of the individual capacitances: 

1 

1/4 + 116 + 1/8 
cr = = 1.846 pF 

(h )  The voltage across each capacitor depends on the charge stored, which is the same for each capacitor. 
This charge can be obtained from the total capacitance and the applied voltage: 

Q = C ,  V = (1.846 x 10-6)(300) C = 554 pC 

From V = Q/C,  the individual capacitor voltages are 

554 x to- '  554 x 10-' 554 x 10-h 
____- = 138.5 V = 92.3 V = 69.2 V 
4 x 10-h 6 x 10-6 8 x 10-' 

for the 4-, 6-, and 8-pF capacitors, respectively. 

(c) The total stored energy is 

W = $ C , V 2  = O.S(l.846 x 10-6)(300)2 J = 83.1 mJ 

8.12 A 24-V source and two capacitors are connected in series. If  one capacitor has 20 jtF of capacitance 
and has 16 V across it, what is the capacitance of the other capacitor? 

across it .  Also, the charge on i t  is the same as that 
on the other capacitor: 

By K V L ,  the other capacitor has 24 - 16 = 8 V 
Q = C V =  (20 x IO-')(16) C = 320pC. So, C = Q,'V= 320 x 10-"8 F = 40 pF. 

8.13 Find each capacitor voltage in the circuit shown in Fig. 8-8. 

The approach is to find the equivalent capacitance, use i t  to find the charge, and then use this charge 
to find the voltages across the 6- and 12-pF capacitors, which have this same charge because they are in 
series with the source. 

Fig. 8-8 
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At the end opposite the source, the two parallel capacitors have an equivalent capacitance of 5 + 1 = 

6 CIF. With this reduction, the capacitors are in series, making 

1 

1/6 + 1/12 + 1,16 C. - -________ = 2.4 pF r -  

The desired charge is 

Q = CV = (2.4 x 10-h)(lOO) C = 240 /tC 

which is the charge on the 6-pF capacitor as well as on the 12-pF capacitor. From I.'= Q C, 

240 x 10-' 

12 x lo-h 
I/ = 2ov 240 x 10-6 

6 x 10-6 
2 -  

I/ - = 40 v 
1 -  

and, by KVL, V3 = 100 -- V, - V2 = 40 V. 

8.14 Find each capacitor voltage in the circuit shown in Fig. 8-9. 

20 pF 

r - i h  

Fig. 8-9 

A good analysis method is to reduce the circuit to a series circuit with two capacitors and the voltage 
source, find the charge on each reduced capacitor, and from i t  find the voltages across these capacitors. 
Then the process can be partially repeated to find all the capacitor voltages in the original circuit. 

The parallel 20- and 40-pF capacitors reduce to a single 60-pF capacitor. The 30- and 70-pF 
capacitors reduce to a 30 x 70/(30 + 70) = 21-pF capacitor in parallel with the 9-pF capacitor. So, all 
three of these capacitors reduce to a 21 + 9 = 30-pF capacitor that is in series with the reduced 
60-pF capacitor, and the total capacitance at the source terminals is 30 x 60,'(30 + 60) = 20 pF. The desired 
charge is 

Q = CTV = (20 x 10-')(4OO)C = 8 mC 

This charge can be used to obtain V, and V,: 

8 x 1 O - j  

60 x 10-6 30 x 

8 x 10-3 v, = = 133V and V, = = 267 V 

Alternatively, 

the charge on the 9-pF capacitor: 

V, = 400 - V, = 400 - 133 = 267 V. 
The charge on the 30-pF capacitor and also on the series 70-pF capacitor is the 8 m C  minus 

8 x 10-3 - (9 x 1 0 3 2 6 7 )  C = 5.6 mC 

Consequently, from V = Q/C,  

5.6 10-3 5.6 x 10-3 

30 x 10-6 70 x 10-h 
V3 = = 187V and V, = = 8 0 V  

As a check V3 + V, = 187 + 80 = 267 V = V2 
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8.15 A 3-pF capacitor charged to 100 V is connected across an uncharged 6-pF capacitor. Find the 
\,oltage and also the initial and final stored energies. 

L * =  Q C. Initiallj, the charge on the 
3-pF capacitor is Q = CV = (3  x 1 0  ")( 100) C = 0.3 mC. When the capacitors are connected together. this 
charge distributes over the two capacitors, but does n o t  change. Since the same voltage is across both 
capacitors. they are in parallel. So, 

The charge and capacitance are needed to find the voltage from 

C,  = 3 + 6 = 9 pF. and 

The initial energy is all stored by the 3-pF capacitor: :c'V2 = 0.5(3 x 10-h)( 100)' J = 15 mJ. The final 
energy is stored by both capacitors: 0.W x 10- 'N33.3)' J = 5 mJ. 

8.16 Repeat Prob. 8.15 for an added 2-ka series resistor in the circuit. 

The resistor has no effect on the final voltage, which is 33.3 V, because this voltage depends only on 
the equivalent capacitance and the charge stored, neither of which are affected by the presence of the resistor. 
Since the final voltage is the same, the final energy storage is the same: 5 mJ. Of course, the resistor has no 
effect on the initial 15 mJ stored. The resistor will. however. slow the time taken for the koltage to reach its 
final value, which time is five time constants after the switching. This time is zero if the resistance is zero. 
The presence of the resistor also makes i t  easier to account for the 10-mJ decrease in stored energy it  is 
dissipated in the resistor. 

8.17 A 2-pF capacitor charged to 150 V and a I-pF capacitor charged to 50 V are connected together 
with plates of opposite polarity joined. Find the voltage and the initial and final stored energies. 

. 
other. The initial charges are 
50 1tC 
two charges: 

Because of the opposite polarity connection, some of the charge on one capacitor cancels that on the 
( 1  x 10- ')(50) C = 

for the I-pF capacitor. The final charge distributed o i c r  both capacitors is the difference of these 
(2  x 10-")( 150) C = 300 /tC for the 2-pF capacitor and 

300 - 50 = 250 pC. I t  produces a boltage of 

The initial stored energy is the sum of the energies stored by both capacitors: 

0.5(2 x 10 ")( 150)' + 0.5( 1 x 10- ")(50)' = 23.8 mJ 

The final stored energy is 

i C ,  Vf .  = 0.5(3 x 10- ")(83.3)' J = 10.4 mJ 

8.18 What is the current flowing through a 2-pF capacitor when the capacitor voltage is 10 V ?  

change of capacitor voltage and r i o t  the voltage value, and this rate is not given. 
There is not enough information to find the capacitor current. This current depends on the rate of 

8.19 If the voltage across a 0.1-pF capacitor is 3000f V, find the capacitor current. 

Since the time derivative of 30001 is 3000. 
The capacitor current equals the product of the capacitance and the time deri\rati\re of the voltage. 

11 1' 

d t 
i = C ~ = (0.1 x 10 ")(3000) A = 0.3 mA 

which is a constant value. 
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The capacitor current can also be found from i = C Av/Ar 
I f  Ar is taken as, say, 2 s, from 0 to 2 s, the corresponding AV is 

because the voltage is increasing linearly. 
3OOOAt = 3000(2 - 0) = 6000 V. SO. 

Ail (0.1 x 10-h)(6000) 

Ar 2 
A = 0.3 mA i = C - =  _____ 

8.20 Sketch the waveform of the current that flows through a 2-pF capacitor when the capacitor 
voltage is as shown in Fig. 8-10. As always, assume associated references because there is no 
statement to the contrary. 

Graphically, the d r  d r  in is the s h p e  of the voltage graph. For straight lines this slope 
is the same as AtTiAr. For this voltage graph, the straight line for the interval of t = 0 s to t = 1 /is has 
a slope of (20 - 0)/(1 x 10-' - 0) V , s  = 20 MV,is, r = 1 /is minus the voltage 
at r = 0 s, divided by the time at r = 0 s. As a result, during this time 
interval the current is 

From t = 1 !is to t = 411s. the voltage graph is horizontal, which means that the slope and, 
consequently, the current are zero: 

For the time interval from t = 4 p s  to r = 6 / i s ,  the straight line has a slope of (-20 - 20); 
(6 x 10-6 - 4 x 10-') V's = -20 MVls. This change in voltage produces a current of i = C dtlidr = 
(2  x 10-6)(-20 x 10') = -40 A.  

Finally, from r = 6 i t s  to t = 8 i t s ,  the slope of the straight line is [0 - ( - 2 0 ) ] 4 8  x 1 O P 6  - 
6 x lO-') V,is = 10 MV s i = C (ir dr = (2  x 10-')(10 x 10') = 20 A. 

Figure 8-11 is a graph of the capacitor current. Notice that, unlike capacitor voltage, capacitor 
current can jump, as i t  does at 1.4. and 6 i t s .  In  fact, at 6 /is the current reverses direction instantaneously. 

i = C d r  tlt 

which is the voltage at 
t = 1 /is minus the time at 

i = C (li? (it = (2  x 10-')(20 x 10') = 40 A. 

i = 0 A. 

and the capacitor current is 

1 M 

Fig. 8-10 Fig. 8-11 

8.21 Find the time constant of the circuit shown in Fig. 8-12. 

30 kfl  9 kfl 

Fig. 8-12 
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The time constant is T = R,,C, where R , ,  is the Thevenin resistance at the capacitor terminals. 
Here, 

R T h  = 8 + 201’(9 + 701130) = 8 + 201130 = 20 kR 
and so the time constant is T = RT,C = (20 x 103)(6 x top6)  = 0.12 s. 

8.22 How long does a 20-pF capacitor charged to 150 V take to discharge through a 3-MR resistor? 
Also, at what time does the maximum discharge current occur and what is its value? 

The discharge is considered to be completed after five time constants: 

5r = 5RC = 5(3 x 106)(20 x 10-6) = 3 0 0 s  

Since the current decreases as the capacitor discharges, it has a graph as shown in Fig. 8-Sa 
with a maximum value at the time of switching, t = O S  here. I n  this circuit the current has an 
initial value of because initially the capacitor voltage of 150 V, which cannot 
jump, is across the 3-MR resistor. 

150/(3 x to6) A = 50 pA 

8.23 At a 100-V source is switched in series with a 1-kR resistor and an uncharged 2-pF 
capacitor. What are (a )  the initial capacitor voltage, (h)  the initial current, ( c )  the initial rate of 
capacitor voltage increase, and ( d )  the time required for the capacitor voltage to reach its 
maximum value? 

t = 0 s, 

( U )  

( h )  

(c) 

Since the capacitor voltage is zero before the switching, i t  is also zero immediately after the switching a 
capacitor voltage cannot jump: 

By KVL,  at the 100 V of the source is all across the 1-kR resistor because the capacitor 
voltage is 0 V. Consequently, 

As can be seen from Fig. 8-5h, the initial rate of capacitor voltage increase equals the total change in 
capacitor voltage divided by the circuit time constant. In this circuit the capacitor voltage eventually 
equals the 100 V of the source. Of course, the initial value is 0 V. Also, the time constant is T = RC = 

103(2 x 10-’) s = 2 ms. So, the initial rate ofcapacitor voltage increase is 100/(2 x 10-3) = 50 000 Vis. 
This initial rate can also be found from 

v(O+) = 0 V. 

r = O +  s 
i ( O + )  = 100/103 A = 100 mA. 

i = C dtl/dr evaluated at t = O +  s: 

i ( O + )  100 x 10-3 
= 50 000 Vjs - -  

dll 

dr c 2 x 
( O + )  = - 

(d) I t  takes five time constants, 5 x 2 = lOms, for the capacitor voltage to reach its final value 
of 100 v. 

8.24 Repeat Prob. 8.23 for an initial capacitor charge of 50 pC. The positive plate of the capacitor is 
toward the positive terminal of the 100-V source. 

(a) The initial capacitor voltage is 

( b )  At t = O +  s, the voltage across the resistor is, by KVL,  the source voltage minus the initial 
capacitor voltage. This voltage difference divided by the resistance is the initial current: i ( O + )  = 
(100 - 25)/103 A = 75 mA. 

(c) The initial rate of capacitor voltage increase equals the total change in capacitor voltage divided by 
the time constant: 

(d) The initial capacitor voltage has no effect on the circuit time constant and so also not on the time 
required for the capacitor voltage to reach its final value. This time is 10 ms, the same as for the circuit 
discussed in Prob. 8.23. 

V =  Q/C = (50 x 10-6),42 x 1 O P 6 )  = 25 V. 

75/(2 x top3) = 37 500 Vjs. 

8.25 In  the circuit shown in Fig. 8-13, find the indicated voltages and currents at t = O +  s, imme- 
diately after the switch closes. The capacitors are initially uncharged. Also, find these voltages 
and currents “a long time” after the switch closes. 
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At t = O +  s, the capacitors have 0 V across them because the capacitor voltages cannot jump from 
the 0-V values that they have at t = 0- s, immediately before the switching: v l ( O + )  = 0 V and 
v4(O+) = 0 V. Further, with 0 V across them, the capacitors act like short circuits at with the 
result that the 100 V of the source is across both the 2 5 4  and 50-R resistors: v,(O+) = v3(O+)  = 100 V. 
Three of the initial currents can be found from these voltages: 

t = O +  s, 

0 100 100 

10 25 50 
i,(O+) = - = 0 A i ,(O+) = -- = 4 A i,(O+) = = 2 A 

The remaining initial current, iz(O+),  can be found by applying K C L  at the node at the top of the 1-pF 
capacitor: 

i , (O+) = i 3 ( O + )  - i , ( O + )  = 4 - 0 = 4 A 

A "long time" after the switch closes means more than five time constants later. At  this time the capacitor 
voltages are constant, and so the capacitors act like open circuits, blocking i z  and i,: i z (  Y-) = is( rc ) = 0 A. 
With the I-pF capacitor acting like an open circuit, the 1042 and 25-R resistors are in series across the 100-V 
source, and so P,( Y-) = 
10 x 2.86 = 28.6 V, and c 3 ( r u )  = 0 x 50 = 0 V. Finally, from the right- 
hand mesh, 

il(cx;) = i3 (cc)  = 100/35 = 2.86 A. From the resistances and the calculated currents, 
U,(=) = 25 x 2.86 = 71.4 V, 

u4(Yj) = 100 - t ' 3 ( r u )  = 100 - 0 = 100 v 

8.26 A 2-pF capacitor, initially charged to 300V,  is discharged through a 270-kR resistor. What is 
the capacitor voltage at 0.25 s after the capacitor starts to discharge? 

(270 x 103)(2 x 10-6) = 0.54 s, 
voltage is 

The voltage formula is U = v(a) + [ u ( O + )  - ~ ( z ) ] e - '  '. Since the time constant is T = RC = 

u ( O + )  = 300 V, and the final capacitor 
it follows that the equation for the capacitor voltage is 

the initial capacitor voltage is 
v(m) = 0 V, 

o(t) = 0 + (30 - 0 ) ~ - f / 0 . 5 4  = 300e-1.85f V for r 2 O s  

From this, ~(0.25) = 300e- '~85(0~25) = 189 V. 

8.27 Closing a switch connects in series a 200-V source, a 2-MR resistor, and an uncharged 0.1-CIF 
capacitor. Find the capacitor voltage and current at 0.1 s after the switch closes. 

The voltage formula is L' = U ( = )  + [ u ( O + )  - ~ ( m ) ] e - ~ " .  Here, z1( x) = 200 V, t l (O+) = 0 V, and 
T = (2 x 106)(0.1 x 10-6) = 0.2 S. SO,  

o(t) = 200 + [ O  - 200]e-f/0.2 = 200 - 200e-5f V for r > O s  

Substitution of 0.1 to t gives ~(0.1): 

u(O.1) = 200 - 2004-0 = 78.7 V 

Similarly, i = i (m)  + [ i ( O + )  - i ( c ~ ) ] e - ~ ' ~ ,  in which i ( O + )  = 200,'(2 x 10') A = 0.1 mA. 

for r > O s  

i(z) = 0 A, 
and of course T = 0.2 s. With these values inserted, 

i(t) = 0 + (0.1 - O)rP5'  = O.le-'' mA 
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From this, i(O.l)  = O.lr 
resistor at 

' mA = 60.7 p A .  This current can also be found by using the boltage across the 
t = 0.1 s: i(O.l)  = (200 - 78.7) (2  x 10') A = 60.7 pA. 

8.28 For the circuit used in Prob. 8.27, find the time required for the capacitor voltage to reach 50 V. 
Then find the time required for the capacitor voltage to increase another 50 V, from 50 to 100 V. 
Compare times. 

it is only necessary to substitute 50 for u ( l )  and solve for t :  
0.75. 

From the solution to Prob. 8.27. " ( t )  = 200 - 200e 5' V.  To find the time at which the voltage is 50 V, 
50 = 200 - 2 0 0 ~ - ~ '  or e - 5 r  = 1501200 = 

The exponential can be eliminated by taking the natural logarithm of both sides: 

In e - 5 r  = In 0.75 from which - 5t = - 0.288 and t = 0.288 5 s = 57.5 ms 

The same procedure can be used to find the time at which the capacitor voltage is 100 V:  100 = 
200 - 2 0 0 ~ - ~ '  or P - ~ '  = 100/200 = 0.5. Further, 

t = 0.693 5 s = 138.6 ms In u -  " = In 0.5 from which -5 t  = -0.693 and 

The voltage required 57.5 ms to reach 50 V, and 138.6 - 57.5 = 81.1 ms to increase another 50 V, 
which verifies the fact that the rate of increase becomes less and less as time increases. 

8.29 In the circuit shown in Fig. 8-14, the switch closes at 
if ~ ~ ( 0 )  = 100 V. 

t = 0 s. Find r ,  and i for > 0 s 

300 v 2.5 mF 

Fig. 8-14 

All that are needed for the 1' and i formulas are r , ( O +  ). vC( x ) ,  i ( O + ) ,  i( x), and 7 = R,,C. Of 
course, because the capacitor voltage cannot jump. The voltage r(.( x )  is the same as 
the voltage across the 60-R resistor a long time after the switch closes, because at this time the capacitor 
acts like an open circuit. So, by voltage division, 

r.,(O+) = 100 V 

Also, i( x )  = r,( x )  60 = 180160 = 3 A.  I t  is easy to obtain i (0+)  from 11(0+), *hich can be solved 
for using a nodal equation at the middle top node for the time t = O +  s:  

L'(O+) - 300 t ? ( O + )  r1(0+) - 100 
-~ -~ -- - +  --+ 

~ --- - = o  
40 60 16 

from which P ( O + )  = 132 V. So, 
terminals is 16 + 601140 = 40Q the time constant is r = RC = 492.5 x = 0.1 s. 

i ( O + )  = 132 60 = 2.2 A. Since the Thevenin resistance at the capacitor 

With these quantities substituted into the r and I formulas, 

l ~ , . ( t ) = t ' C ( ^ / _ ) + [ r ~ , . ( O + " ~ x ) ] c ~ - ' ' =  180+(100- 180)r-"" = 180-80u 1°'V for r > O s  

i ( t )  = i ( x )  + [ i ( O + )  - I ( X ) ] Y  " = 3 + (2.2 - 3)e 'Of = 3 - 0.80. ' O r  A for ( > O S  

8.30 The switch is closed at t = 0 s in the circuit shown in Fig. 8-15. Find i for t > 0 s. The capacitor 
is initially uncharged. 
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The quantities i (0+ 1, i( x ), and r are needed for the current formula 

i = I (  1 ) + [ i (0  + ) - i( x )]0 

At t = 0 +  s, the short-circuiting action of the capacitor prevents the 20-mA current source from 
affecting i (0+) .  Also, i t  places the 6-kQ resistor in parallel with the 60-kR resistor. Consequently, by current 
division, 

i(O + ) = (-A-)(---) 100 = 0.2 mA 
60 + 6 40 + 61'60 

in which the simplifying kilohm-milliampere method is used. 

circuit and so neglected in the calculations. By nodal analysis. 
After five time constants the capacitor no longer conducts current and can be considered to be an open 

(& + k0 + i6)VI( z )  - z )  = 40 - :(,r1( x ) + (/(, + x ) = -20 

from which 

to find the time constant: 

r l ( x )  = -62.67 V. So, i( x )  = -62.67 (60 x 10") A = - 1.04 mA. 
The Thevenin resistance at the capacitor terminals is (6 + 401160)' (40 + 20) = 20 kR. This can be used 

T = R,,C = (20 x 103)(50 x 10 " )  = 1 s 

Now that i (O + ). i( x ), and T are knoum, the current i can be found: 

i = - 1.04 + [0.2 - ( - 1.04) ]~ ~ = - 1.04 + 1.24~)- '  niA for r > O s  

8.31 After a long time in position 1, the switch in the circuit shown in Fig. 8-16 is thrown to position 
2 at (a) Find the equations for 2 9  

for t L 0 s. (h )  Find z'at t = 5 s and at t = 40 s. (c) Make a sketch of r for 0 s i t 2 80 s. 

( U )  At the time that the sitritch is thrown to position 2, the initial capacitor koltage is 20 V. the same 
as immediately before the switching; the final capacitor boltage is 7 0 V ,  the voltage of the source 
in the circuit; and the time constant is (20 x 10')(2 x 10-') = 40 s. Consequently, while the switch is 
in position 2, 

t = 0 s for a duration of 30 s and then returned to position 1. 

1' = 70 + (20 - 7 0 ) ~ - ' 4 0  = 70 - 50c , -" ."25f  v 

20 v 70 V 

Fig. 8-16 



CAPACITORS AND CAPACITANCE [CHAP. 8 

Of course, the capacitor voltage never reaches the "final voltage" because a switching operation 
interrupts the charging, but the circuit does not "knou '' this ahead of time. 

When the switch is returned to position 1, the circuit changes, and so the equation for 1' changes. 
The initial voltage at this switching can be found bq substituting 30 for t in the equation 
for t~ that was just calculated: r(30) = 70 - 50t. " 0 2 5 ( 3 0 )  = 46.4 V. The final capacitor voltage is 
20 V,  and the time constant is ( 5  x 10(')(2 x 10 -(') = 10 s. For these values. the basic voltage formula 
must be modified since the switching occurs at r = 30 s instead of at t = O +  s. The modified 
formula is 

r = 30-s 

C(f) = r ( x )  + [1.(30+) - l - ( x ) ] e - ( l  3 " ) r  v for t 2 30s 

The f - 30 is necessary in the exponent to account for the time shift. With the values inserted into this 
formula, the capacitor voltage is 

for r 2 30s 

( h )  For t' at the first voltage equation must be used because i t  is the one that is \falid for the 
first 30 s: For 1' at t = 40 s. the second equation must be used 
because i t  is the one that is valid after 30 s :  

Figure 8-17 shows the voltage graph which is bascd on the two kvltage equations. The voltage 
rises exponentially to 46.4 V at t = 30 s. heading toward 70 V. After 30 s, the voltage decays 
exponentially to the final value of 20 V, reaching it at 80 s, five time constants after the switch 
returns to position 1 .  

t = 5 s, 
t'(5) = 70 - 50u-(' 02'( ' )  = 25.9 V.  

~ ( 4 0 )  = 20 + 26.4t.-" 1 ( 4 " - 3 " )  = - .  '9 7 V . 

( c )  

0 10 20 30 40 50 60 70 80 t ( s )  

Fig. 8- 17 

8.32 A simple RC timer has a switch that when closed connects in series a 300-V source, a 16-MR 
resistor, and an uncharged 10-pF capacitor. Find the time between the closing and opening of 
the switch if the capacitor charges to 10 V during this time. 

Because 10 V is less than one-tenth of the final voltage of 300 V, a linear approximation can be used. 
In this approximation the rate of voltage change is considered to be constant at its initial value. Although 
not needed, this rate is the quotient of the possible total \coltage change of 3 0 0 V  and the time constant 
of RC = (16 x 10h)(10 x 10 ') = 160 s. Since the voltage that the capacitor charges to is 1 30th of the 
possible total voltage change, the time required for this charging is approximately 1 30th of the time 
constant: 

This time can be found more accurately, but with more effort, from the Loltage formula. For 
it, P ( O + )  = 0 V, r ( x )  = 300 V, and z 160 s. With these values inserted, the capacitor voltage equa- 
tion is c = 300 - 300c.-' l'". For t' = 10 V, i t  becomes 10 = 300 - 300e-' l''', from which r = 

160 In(300'290) = 5.42 s. The approximation of 5.33 s is within 2 percent of this formula \ d u e  of 5.42 s. 

t E 1601'30 = 5.33 s. 

8.33 Repeat Prob. 8.32 for a capacitor voltage of 250 V. 

The approximation cannot be used since 2 5 0 V  is more than one-tenth of 3OOV. The exact formula 
must be used. From the solution to Prob. 8.32, I' = 300 - 300c.-' " O .  For 1 %  = 250 V, i t  becomes 
250 = 300 - 300e-' "". t = 160 ln(300150) = 287 s. By comparison. the linear approx- 
imation gives 

which simplifies to 
r = (2501300)(160) = 133 s, which is considerably in error. 
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8.34 For the oscillator circuit shown in Fig. 8-18, find the period of oscillation if the gas tube fires at 
9 0 V  and extinguishes at 1OV. The gas tube has a 50-0 resistance when firing and a 10lO-R 
resistance when extinguished. 

1 Mfl 

Fig. 8-1 8 

When extinguished, the gas tube has such a large resistance (10'' R) compared to the 1-MR resistance 
of the resistor that i t  can be considered to be an open circuit and neglected during the charging time of the 
capacitor. During this time, the capacitor charges from an initial 10 V toward the 1000 V of the source, but 
stops charging when its voltage reaches 90V. at which time the tube fires. Although this voltage change 
is the initial circuit action is as if  the total voltage change will be 1000 - 10 = 990 V. 
Since 80 V is less than one-tenth of 990 V, a linear approximation can be used to find the proportion that 
the charging time is of the time constant of t 2 = 80'990, 
from which 

When the tube fires, its 50-Q resistance is so small compared to the I-MR resistance of the 
resistor that the resistor can be considered to be an open circuit and neglected along with the voltage source. 
So, the discharging circuit is essentially an initially charged 2-jtF capacitor and a 5042 resistor, until the 
voltage drops from the 90-V initial voltage to the 10-V extinguishing voltage. The time constant of this 
circuit is just (2 x 10-')(5O) s = 0.1 ms. This is so short compared to the charging time that the discharging 
time can usually be neglected even if five time constants are used for the discharge time. I f  an exact analysis 
is made, the result is a time of 0.22 ms for the capacitor to discharge from 90 to 10 V. 

as compared to the exact- 
method result of T =  0.168 52 + 0.000 22 = 0.168 74 s or 0.169 s to three significant digits. Note that the 
approximate result is within about 4 percent of the actual result. This is usually good enough, especially in 
view of the fact that in the actual circuit the component values probably differ from the specified values by 
more than this. 

90 - 10 = 80 V, 

10h(2 x 10-6) = 2 s. The proportionality is 
t = 1601990 = 0.162 s. If an exact analysis is made, the result is 0.168 52 s. 

In summary, by approximations the period is T =  0.162 + 0 = 0.162 s, 

8.35 Repeat Prob. 8.34 with the source voltage changed from 1000 V to 100 V. 

During the charge cycle the capacitor charges toward 100 V from an initial 10 V, the same as if the 
total voltage change will be is 
considerably more than one-tenth of 90 V, a linear approximation is not valid. The exact method must be 
used. For this, V ( X )  = 100 V, P ( O + )  = 10 V. and 

100 - 10 = 90 V. Since the actual voltzge change of 90 - 10 = 80 V 

t = 2 s. The corresponding voltage formula is 

t' = 100 + (10 - 100)e-' ' = 100 - 90c)-' ' V 

The desired time is found by letting c = 90 V, and solving for t :  
to 
in the solution to Prob. 8.34, is negligible compared to this time. 

90 = 100 - 9Oe-' ', which simplifies 
t = 2 In (90/10) = 4.39 s. This is the period because the discharge time, which is the same as that found 

Supplementary Problems 
8.36 What electron movement between the plates of a 0.1-pF capacitor produces a 110-V change of voltage? 

Ans. 6.87 x 10l3 electrons 
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8.37 

8.38 

8.39 

8.40 

8.4 1 

8.42 

8.43 

8.44 

8.45 

8.46 

8.47 

I f  the movement of 4.68 x 10" electrons between the plates of ;I capacitor produces ;i 150-V change in 
capacitor voltage. find the capacitance. 

Ans .  0.5 jtF 

What change in voltage of a 20-pF capacitor is produced bq ;i moicincnt of 9 x 10" electron\ bctLtcen 
plates '? 

Ans.  7.21 V 

A tubular capacitor consists of two sheets of aluminum foil 3 cm wide and I m long, rolled i n t o  a tube uith 
separating sheets of waxed paper of the same s i m  What is the capacitancc i f  the papcr 15 0.1 nim thick and 
has a dielectric constant of 3.5? 

Ans.  9.29 nF 

Find the area for each plate of a 10-pF parallel-plate capacitor that has a ceramic dielectric 0.5 mni thick. 

Ans.  0.0753 m2 

Find the thickness of the mica dielectric of ;I 10-pF parallel-plate capacitor i f  the area ofeach plate I S  10 

Ans .  0.443 mm 

m'. 

Find the diameter of a disk-shaped 0.001-pF capacitor that has a ceramic dielectric 1 mm thick. 

Ans.  4.38 mm 

What are the different capacitances that can be obtained with ;I I - l iF capacitor. ;i 2 -1tE capacitor, and  a 
3-pF capacitor? 

Ans .  0.545 pF, 0.667 jtF, 0.75 pF, 1 pF. 1.2 pF. 2 pE', 2.2 p F .  2.75 pF, 3 pF.. 3.67 p E .  J p E .  5 pt. 6 

Find the total capacitance C,  o f  the circuit shown in Fig. 8-19. 

Ans.  2.48 jtF 

A 5-, a 7-, and a 9-pF capacitor are in parallel across ii 200-V source. E.ind the magnitude of charge stored 
by each capacitor and the total energy stored. 

Ans.  Q S  = 1 mC, Q ,  = 1.4 mC, Qc, = 1.8 mC. 0.42 J 

A 6-, a 16-, and a 48-pF capacitor are in scries uith a 180-V source. Find the ~ o l t a g c  ;icro\s each capacitor 
and the total energy stored. 

Ans.  Vh = 120 V, Vlh = 45 V. 1.& = 15 V, 64.8 mJ 

Two capacitors are in series across ;i 50-V source. I f  one is a I-pF capacitor i t i t l i  16 V across i t ,  what is 
the capacitance of the other? 

Ans. 0.471 pF 
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8.48 Find each capacitor voltage in the circuit sho\sn i n  Fig. 8-20. 

Ans. V1 = 2OOV, 1; = l 0 0 V .  1; = 40V, I; = 60 I '  

300 pF 1200 pF 

300 v 

Fig. 8-20 

8.49 

8.50 

8.51 

8.52 

8.53 

8.54 

8.55 

8.56 

800 pF 

A O.1-pF capacitor charged to 100 V and a 0.2-pF capacitor charged to 60 V are connected together with 
plates of the same polarity joined. Find the voltage and the initial and final stored energies. 

Ans. 73.3 V, 860 jiJ, 807 1 t J  

Repeat Prob. 8.49 for plates of opposite polarity joined. 

Ans. 6.67 V. 860 ,uJ, 6.67 p J  

Find the voltage across a O.l-pF capacitor when the capacitor current is 0.5 mA. 

Ans .  There is not enough information to determine a unique \value. 

Repeat Prob. 8.51 i f  the capacitor Lroltage is 6 V :it 

Of course. assume associated references. 
t = 0 s and i f  the 0.5-mA capacitor current is constant. 

Ans. 6 + 5000t V 

I f  the voltage across a 2-pF capacitor is 200t V for t 5 I s, 
for r 2 5 s, find the capacitor current. 

A m .  

200 V for 1 s 5 t I 5 s, and 3200 - 6001 V 

0.4 mA for f < 1 s, 0 A for 1 s -=c t < 5 s. - 1.3 mA for t > 5 s 

Find the time constant of the circuit shown in Fig. 8-21. 

Ans. 60 ps 

6 R  4 ki l  9 kfl 

Fig. 8-21 Fig. 8-22 

Find the time constant of the circuit shown in Fig. 8-22. 

Ans. 66.3 ms 

How long does it  take a 10-pF capacitor charged to 2 0 0 V  to discharge through a 160-kQ resistor, and 
what is the total energy dissipated in the resistor'? 

Ans. 8 s, 0.2 J 
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8.57 ,At the closing of a switch connects in series a 150-V source, a 1.6-kR resistor, and the parallel 
combination of a I-kR resistor and an uncharged 0.2-pF capacitor. Find ( a )  the initial capacitor 
current, ((1) the time 
required for the capacitor voltage t o  reach its final talue. 

,4tis. ( ( I )  93.8 mA, ( h )  0 A and 57.7 mA, (c) 57.7 1,: ( t l )  0.61 5 ms 

t = 0 s, 

( h )  the initial and final I-kR resistor currents, (c) the final capacitor voltage, and 

8.58 Repeat Prob. 8.57 for a 200-V source and an initial capacitor voltage of 50 V opposed in polarity to that 
of the source. 

.4ns. ( ( I )  43.8 mA, ( h )  50 mA and 76.9 mA, ( L ’ )  76.9 V, ((1) 0.615 ms 

8.59 In the circuit shown in Fig. 8-23, find the indicated voltages and currents at 
the switch closes. Notice that the current source is active in the circuit before the switch closes. 

f = O +  s, immediately after 

i , ( O + )  = -0.106 A A m .  i ’ , (O+ ) = (’,(o+ = 20 v 
i , ( O + )  = 1 A 
i z ( O + )  = 0.106A 

i,(O + ) = 0.17 A 
i , ( O + )  = 63.8 rnA 

8.60 

8.6 1 

8.62 

8.63 

8.64 

I A  

Fig. 8-23 

In  the circuit shown in Fig. 8-23, find the indicated voltages and currents a long time after the switch closes. 

Aw. l , , (  Y,) = 22.2 V 
I?,( x ) = 25.6 V 

i l (x)  = 1.11 A 
i2( X )  = 0 A 

i3( X )  = -0.1 1 I A 
i 4 ( X )  = 0.1 1 1  A 

i 5 ( X )  = 0 A 

A 0.1-pF capacitor, initially charged to 230 V. is discharged through a 3-MSZ resistor. Find the capacitor 
voltage 0.2 s after the capacitor starts to discharge. 

Ans. 118 V 

For the circuit described in Prob. 8.61, how long does it take the capacitor to discharge to 40 V? 

Ans. 0.525 s 

Closing a switch connects in series a 300-V source, a 2.7-MR resistor, and a 2-pF capacitor charged to 
50 V with its positive plate toward the positive terminal of the source. Find the capacitor current 3 s after the 
switch closes. Also, find the time required for the capacitor voltage to increase to 250 V. 

Arts. 53.1 pA, 8.69 s 

The switch is closed at 
is initially uncharged. 

Arts. 

c = 0 s in the circuit shown in Fig. 8-24. Find I‘ and i for t > 0 s. The capacitor 

60( 1 - e - ” )  V, 1 - 0 . 4 ~  ~ ” mA 
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8.65 

8.66 

8.67 

8.68 

8.69 

8.70 

30 kR 30 kR 

Fig. 8-24 

Repeat Prob. 8.64 for t ( O + )  = 20 V 

Ans. 

and for the 60-kR resistor replaced by a 70-kQ resistor. 

63 - 43e- 1 . 9 6 r  V, 0.9 - 0.253e- 1 . 9 h '  mA 

After a long time in position 1,  the switch in the circuit shown in Fig. 8-25 is thrown to position 2 for 2 s. 
after which it  is returned to position 1. Find 1' for 

Ans. -200 + 300t.-0." V for 0 s 5 r 5 2 s; 100 - 54.4F0.2"-1 '  = 100 - 8 1 . l c ~ - " . ~ '  V for r 2 2 s 

t 2 0 s. 

0.5MS1 1 2 1 M R  

Fig. 8-25 

After a long time in position 2, the switch in the circuit shown in Fig. 8-25 is thrown at 
1 for 4 s, after which it  is returned to position 2 .  Find 1' for 

Ans. 100 - 300e-0.2' V for 0 s 5 t 4 s; -200 + 1 6 S e - 0 . " ' ~ 4 '  = -200 + 246c>-O." V for t 2 4 s 

t = 0 s to position 
t 2 0 s. 

A simple RC timer has a 50-V source, a switch, an uncharged I-jiF capacitor, and a resistor, all in series. 
Closing the switch and then opening i t  5 s later produces a capacitor voltage of 3 V. Find the resistance of 
the resistor. 

Ans. 83.3 MR approximately, 80.8 MR more exactly 

Repeat Prob. 8.68 for a capacitor voltage of 40 V. 

Ans. 3.1 1 MR 

. 

In the oscillator circuit shown in Fig. 8-18, replace the I-MQ resistor with a 4.3-MR resistor and the 1000-V 
source with a 150-V source and find the period of oscillation. 

Ans. 7.29 s 



Chapter 9 

Inductors, Inductance, and PSpice 
Transient Analysis 

INTRODUCTION 

The following material on inductors and inductance is similar to that on capacitors and capacitance 
presented in Chap. 8. The reason for this similarity is that, mathematically speaking, the capacitor and 
inductor formulas are the same. Only the symbols differ. Where one has 1 3 ,  the other has i ,  and vice 
versa; where one has the capacitance quantity symbol C, the other has the inductance quantity symbol 
L ;  and where one has R ,  the other has G. It  follows then that the basic inductor voltage-current formula 
is that the energy stored is iL i2  instead of ~ C V ’ ,  that, inductor 
currents, instead of capacitor voltages, cannot jump, that inductors are short circuits. instead of open 
circuits, to dc, and that the time constant is LG = L / R  instead of C R .  Although it is possible to 
approach the study of inductor action on the basis of this duality, the standard approach is to use 
magnetic flux. 

17 = L di/dt in place of i = C d c / d t ,  

This chapter also includes material on using PSpice to analyze transient circuits. 

MAGNETIC FLUX 

Magnetic phenomena are explained using nztrynetic-Pus, or just flux, which relates to magnetic lines 
of force that, for a magnet, extend in continuous lines from the magnetic north pole to the south pole 
outside the magnet and from the south pole to the north pole inside the magnet, as is shou,n in Fig. 
9-la. The SI unit of flux is the ~ d ~ v - ,  with unit symbol Wb. The quantity symbol is Ct, for a constant 
flux and 4 for a time-varying flux. 

I -- -I 
\ I  

Current flowing in a wire also produces flux, as shown in Fig. 9- 1 h. The relation between the direction 
of flux and the direction of current can be remembered from one version of the r i ~ j h t - h z d  mle. I f  the 
thumb of the right hand is placed along the wire in the direction of the current flow, the four fingers of 
the right hand curl in the direction of the flux about the wire. Coiling the wire enhances the flux, as does 
placing certain material, called ferromuynetic muterid, in and around the coil. For example, a current 
flowing in a coil wound on an iron cylindrical core produces more flux than the same current flowing 
in an identical coil wound on a plastic cylinder. 

Permeability, with quantity symbol p, is a measure of this flux-enhancing property. I t  has an SI unit  
of henryper meter and a unit symbol of H/m. (The henry, with uni t  symbol H, is the SI unit  of inductance.) 
The permeability of vacuum, designated by p o ,  is 0 . 4 ~  pH/’m. Permeabilities of other materials are related 

174 
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to that of vacuum by a factor called the reluticc pernzeuhility, with symbol p r .  The relation is p = p ,po .  
Most materials have relative permeabilities close to 1 ,  but pure iron has them in the range of 6000 to 
8000, and nickel has them in the range of 400 to 1000. Permalloy, an alloy of 78.5 percent nickel and 
21.5 percent iron, has a relative permeability of over 80 000. 

If a coil of N turns is linked by a $ amount of flux, this coil has a flux linkage of N#L Any change 
in flux linkages induces a voltage in the coil of 

. AN$ d d 4  r =  Iim ~ = - ( N $ ) = N -  
A t - 0  At d t  d t  

This is known as Furuduy’s luw. The voltage polarity is such that any current resulting from this 
voltage produces a flux that opposes the original change in flux. 

INDUCTANCE AND INDUCTOR CONSTRUCTION 

For most coils, a current i produces a flux linkage iV4 that is proportional to i. The equation relating 
N +  and i has a constant of proportionality L that is the quantity symbol for the inductance of the coil. 
Specifically, Li = iV+ and L = N +  i. The SI unit of inductance is the henry?, with unit symbol H.  A 
component designed to be used for its inductance property is called an inductor. The terms “coil” and 
“choke” are also used. Figure 9-2 shows the circuit symbol for an inductor. 

The inductance of a coil depends on the shape of the coil, the permeability of the surrounding 
material, the number of turns, the spacing of the turns, and other factors. For the single-layer coil shown 
in Fig. 9-3, the inductance is approximately L = N 2 p A / l ,  where N is the number of turns of wire, A 
is the core cross-sectional area in square meters, 1 is the coil length in meters, and p is the core 
permeability. The greater the length to diameter, the more accurate the formula. For a length of 10 times 
the diameter, the actual inductance is 4 percent less than the value given by the formula. 

Fig. 9-2 

Core 6 d 
Fig. 9-3 

INDUCTOR VOLTAGE AND CURRENT RELATION 

Inductance instead of flux is used in analyzing circuits containing inductors. The equation relating 
inductor voltage, current, and inductance can be found from substituting ZV4 = Li into t ‘ =  

d ( N $ ) / d t .  The result is t‘ = L dildt, with associated references assumed. If the voltage and current 
references are not associated, a negative sign must be included. Notice that the voltage at any instant 
depends on the rate of change of inductor current at that instant, but not at all on the value of current 
then. 

is that if an inductor current is constant, not changing, then 
the inductor voltage is zero because dijilt = 0. With a current flowing through it, but zero voltage 
across i t ,  an inductor acts as a short circuit: A n  inductor is U short circuit to dc. Remember, though, that 
i t  is only after an inductor current becomes constant that an inductor acts as a short circuit. 

The relation L’ = L di id t  2r LAi,’At also means that an inductor current cannot jump. For a jump to 
occur, Ai would be nonzero while At was zero, with the result that Ai/At would be infinite, making the 
inductor voltage infinite. In  other words, a jump in inductor current requires an infinite inductor voltage. 
But, of course, there are no sources of infinite voltage. Inductor voltage has no similar restriction. It can 
jump or even change polarity instantaneously. Inductor currents not jumping means that inductor 

One important fact from 1’ = L d i /d t  
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currents immediately after a switching operation are the same as immediately before the operation. This 
is an important fact for RL (resistor-inductor) circuit analysis. 

TOTAL INDUCTANCE 

The total or equivalent inductance (LT or Leq) of inductors connected in series, as in the circuit shown 
U, = u1  + u2 + u 3 .  Substituting from 

di di di di 

dt dt dt  dt 

in Fig. 9-4a, can be found from KVL: U = L di /d t  results in 

L T - = L 1 - + + 2 - + + 3 -  

which upon division by di/dt reduces to 
significant in this derivation, the result can be generalized to any number of series inductors: 

LT = L ,  + L2 + L,. Since the number of series inductors is not 

LT = L ,  + L2 + L3 + L, + * * a  

which specifies that the total or equivalent inductance of series inductors is equal to the sum of the 
individual inductances. 

The total inductance of inductors connected in parallel, as in the circuit shown in Fig. 9-46, can be 
L’ = L,di,/dt, and substitut- found starting with the voltage-current equation at the source terminals: 

ing in is  = i ,  + i ,  + i,: 
d 

dt 
i ’ = L T - ( i ,  + i 2 + i , ) = L T  

Each derivative can be eliminated using the appropriate di/dt  = u/L: 

1 1 1 1  + - - + -  -_- - - - 
L ,  Ll L2 L,  

which can also be written as 

1 L 
IIL, + 1/L, + 1/L, T -  

Generalizing, 

1 
L ,  = 

1/L,  + 1/L, + 1/L, + 1/L, +- 
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which specifies that the total inductance of parallel inductors equals the reciprocal of the sum of the recip- 
rocals of the individual inductances. For the special case of N parallel inductors having the same induct- 
ance L, this formula simplifies to L T  = L,L,I(L, + L,). 
Notice that the formulas for finding total inductances are the same as those for finding total resistances. 

LT = L/N .  And for two parallel inductors i t  is 

ENERGY STORAGE 

As can be shown by using calculus, the energy stored in an inductor is 

wL = f Li2 

in which wL is in joules, L is in henries, and i is in amperes. This energy is considered to be stored 
in the magnetic field surrounding the inductor. 

SINGLE-INDUCTOR DC-EXCITED CIRCUITS 

When switches open or close in an RL dc-excited circuit with a single inductor, all voltages and 
currents that are not constant change exponentially from their initial values to their final constant values, 
as can be proved from differential equations. These exponential changes are the same as those illustrated 
in Fig. 8-5 for capacitors. Consequently, the voltage and current equations are the same: 11 = P( x) + 
[ v ( O + )  - v(x)]e-" '  V and i = i(x) + [ i ( O + )  - i(cc)]e-"A. The time constant 5 ,  though, is different. 
It is t = L/R,h, in which RTh is the circuit Thevenin resistance at the inductor terminals. Of course, 
in one time constant the voltages and currents change by 63.2 percent of their total changes, and after 
five time constants they can be considered to be at their final values. 

Because of the similarity of the RL and RC equations, i t  is possible to make RL timers. But, 
practically speaking, RC timers are much better. One reason is that inductors are not nearly as ideal as 
capacitors because the coils have resistances that are seldom negligible. Also, inductors are relatively 
bulky, heavy, and difficult to fabricate using integrated-circuit techniques. Additionally, the magnetic 
fields extending out from the inductors can induce unwanted voltages in other components. The problems 
with inductors are significant enough that designers of electronic circuits often exclude inductors entirely 
from their circuits. 

PSPICE TRANSIENT ANALYSIS 

The PSpice statements for inductors and capacitors are similar to those for resistors but instead of 
an R, they begin with an L for an inductor and a C for a capacitor. Also, nonzero initial inductor currents 
and capacitor voltages must be specified in these statements. For example, the statement 

L1 3 4 5M IC = 6M 

specifies that inductor L1 is connected between nodes 3 and 4, that its inductance is 5 mH, and that 
it has an initial current of 6 mA that enters at node 3 (the first specified node). The statement 

C 2  7 2 8U IC = 9 

specifies that capacitor C2 is connected between nodes 7 and 2, that its capacitance is 8 pF, and that 
it has an initial voltage of 9 V positive at node 7 (the first specified node). 

For PSpice to perform a transient analysis, the circuit file must include a statement having the form 

.TRAN TSTEP TSTOP UIC 

in which TSTEP and TSTOP specify times in seconds. This statement might be, for example, 

. T R A N  0 . 0 2  4 UIC 
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in which 0.02 corresponds to TSTEP, 4 to TSTOP, and UIC to UIC, which means bbuse initial 
conditions.” The TSTEP of 0.02 s is the printing or plotting increment for the printer output, and the 
TSTOP of 4 s is the stop time for the analysis. A good value for TSTOP is four or five time constants. 
For the specified TSTEP and TSTO-P times, the first output printed is for the second 
for t = 0.02 s, the third for t = 0.04 s, and so on up to the last one for t = 4 s. 

The .PRINT statement for a transient analysis is the same as that for a dc analysis except that 
TRAN replaces DC. The resulting printout consists o f  a table of columns. The first column consists of 
the times at which the outputs are to be specified, as directed by the specifications of the .TRAN statement. 
The second column comprises the values of the first specified output quantity in the .PRINT statement, 
which values correspond to the times of the first column. The third column comprises the values of the 
second specified output quantity, and so on. 

With a plot statement, a plot of the output quantities versus time can be obtained. A plot statement 
is similar to a print statement except that it begins with .PLOT instead of .PRINT. 

Improved plots can be obtained by running the graphics postprocessor Probe which is a separate 
executable program that can be obtained with PSpice. Probe is one of the menu items of the Control 
Shell. If the Control Shell is not being used, the statement .PROBE must be included in the circuit file 
for the use of Probe. Then, the PROBE mode may be automatically entered into after the running of 
the PSpice program. 

With Probe, various plots can be obtained by responding to the menus that appear at the bottom 
of the screen. These menus are fairly self-explanatory and can be mastered with a little experimentation 
and trial-and-error. 

For transient analysis, PSpice has five special time-dependent sources, only two of which will be 
considered here : the periodic-pulse SOUI’CO and the pi~c.c.,r.i,\.c.-line~~I’ SOLII’CV. 

Figure 9-5 shows the general form of the pulse for the periodic-pulse source. This pulse can be 
periodic, but does not have to be and will not be for present purposes. The parameters signify V1 for 
the initial value, V2 for the pulsed value, T D  for time delay, TR for rise time, T F  for fall time, PW for 
pulse width, and PER for period. For a pulse voltage source V l  that is connected between nodes 2 and 
3, with the positive reference at node 2, the corresponding PSpice statement has the form 

r = 0 s, 

V1 2 3 PULSE(V1, V 2 ,  TD, TR, TF, PW, PER) 

The commas do not have to be included. Also, if  a pulse is not periodic, no PER parameter is 
specified. PSpice then assigns a default value, which is the TSTOP value in the .TRAN statement. 

VS 

V 2  

VI  

I 
PER t l  

I 

I / I \ L’ I 
I 4 I 

I 

TD-I-TR-I-PW-I-TTF-I I t :  I I 1  
I I I I - ,  

TI T? T3 T4 

Fig. 9-5 

If a zero rise or fall time is specified, PSpice will use a default value equal to the TSTEP value in 
the .TRAN statement. Since this value is usually too large, nonzero but insignificant rise and fall times 
should be specified, such as one-millionth of a time constant. 

The piecewise-linear source can be used to obtain a voltage or a current that has a waveform 
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comprising only straight lines. I t  applies, for example, to the pulse of Fig. 9-5. The corresponding PSpice 
statement for it  is 

V 1  2 3 PWL(0, V l ,  T 1 ,  V l ,  T 2 ,  V 2 ,  T 3 ,  V 2 ,  T 4 ,  V 1 )  

Again, the commas are optional. The entries within the parentheses are in pairs specifying the corners 
of the waveform, where the first specification is time (0, T1, T2, etc.) and the second is the voltage at 
that time ( V l ,  V2, V3, etc.). The times must continually increase, even if by very small increments-no 
two times can be exactly the same. I f  the last time specified in the PWL statement is less than TSTOP 
in the .TRAN statement, the pulse remains at its last specified value until  the TSTOP time. 

PWL statements can be used to obtain sources of voltage and current that have a much greater 
variety of waveforms than those that can be obtained with PULSE statements. However, PULSE 
statements apply to periodic waveforms while PWL statements do not. 

Solved Problems 
9.1 

9.2 

9.3 

9.4 

9.5 

Find the voltage induced in a 50-turn coil from a constant flux of 104 Wb, and also from a 
changing flux of 3 Wb's. 

A constant flux linking a coil d"iies not induce any voltage---only a changing flux does. A changing flux 
of 3 Wb s induces a voltage of I' = N (id, ( it = 50 x 3 = 150 V. 

What is the rate of change of flux linking a 200-turn coil when 50 V is across the coil? 

1' = ,V l id, d t :  This rate of change is the (id, d t  in 

(id, - I' 50 

ti t  N 200 
= 0.25 Wb s - -- - __ - _  

Find the number of turns of a coil for which a change of 0.4 Wb,k of flux linking the coil induces 
a coil voltage of 20 V. 

This number of turns is the ,Y in 1' = N (iq t i t :  

1' 20 

(id, ((11 0.4 
N = __- = - = 50 turns 

Find the inductance of a 100-turn coil that is linked by 3 x l O P 4  Wb when a 20-mA current 
flows through it. 

The pertinent formula is L I = .V4. Thus, 

IVd, lOO(3 x 10-5) 

I 20 1 0 - 3  
L = - - =  - - = 1.5 H 

Find the approximate inductance of a single-layer coil that has 300 turns wound on a plastic 
cylinder 12 cm long and 0.5 cm in diameter. 

The relative permeability of plastic is so nearly 1 that the permeability of vacuum can be used in the 
inductance formula for a single-layer cylindrical coil: 

L = - - -  =---- 
N2pA 3002(0.4n x 10-')[7r x (0.25 x 10-2)2] 

H = 18.5 p H  
1 13 " 1n-2 
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9.6 

9.7 

9.8 

9.9 

9.10 

9.1 1 

Find the approximate inductance of a single-layer 50-turn coil that is wound on a ferromagnetic 
cylinder 1.5 cm long and 1.5 mm in diameter. The ferromagnetic material has a relative perme- 
ability of 7000. 

N'pA 502(7000 x 0.4n x 10-')[n x (0.75 x 10-3)2] 
H = 2.59 mH L = ___ = ________- 

1 1.5 x to- '  

A 3-H inductor has 2000 turns. H o w  many turns must be added to increase the inductance to 5 H? 

In general, inductance is proportional to the square of the number of turns. By this proportionality, 

5 N 2  

3 20002 
o r - - - 

So, 2582 - 2000 = 582 turns must be added without making any other changes. 

Find the voltage induced in a 150-mH coil when the current is constant at 4 A. Also, find the 
voltage when the current is changing at a rate of 4 A/s. 

4 Als, 
If the current is constant, diidt = 0 and so the coil voltage is zero. For a rate of change of di d t  = 

di 

dt 
~1 = L - = (150 x tOP3)(4) = 0.6 V 

Find the voltage induced in a 200-mH coil at 
30 mA at t = 2 ms to 90 mA at t = 5 ms. 

t = 3 ms if the current increases uniformly from 

Because the current increases uniformly, the induced voltage is constant over the time interval. The rate 
of increase is Ai/Ar, where Ai is the current at  the end of the time interval minus the current at the beginning 
of the time interval: 90 - 30 = 60 mA. Of course, Ar is the time interval: 

Ai 

5 - 2 = 3 ms. The voltage is 

(200 x 10-3)(60 x 10-3) 
= 4 v  for 2 ms < i < 5 ms L ' =  L - -  = _ _ - ~ _ _ _ _ _ _  

At 3 x 10-3 

What is the inductance of a coil for which a changing current increasing uniformly from 30 mA 
to 80 mA in 100 p s  induces 50 mV in the coil? 

Because the increase is uniform (linear), the time derivative of the current equals the quotient of the 
current change and the time interval: 

di Ai 80 x 10P3 - 30 x l O P 3  

dt At 100 x 10-6 
~ - 500A,/s _ _  - - -  _ _  - _  - - - -  

Then, from t' = L di idt .  

Ll 50 x 10-3 
L = - - =  H = l00pH 

dildt 500 

Find the voltage induced in a 400-mH coil from 0 s to 8 ms when the current shown in Fig. 9-6 
flows through the coil. 

for the various 
time intervals. For  the first millisecond, the current decreases uniformly from 0 A to -40 mA. So, the slope 
is (-40 x 10-3 - O)/( 1 x 10- 3, = -40 A, s, which is the change in current divided by the corresponding 
change in time. The resulting voltage is For the next three 
milliseconds, the slope is L' = 

The approach is to find di,/cit, the slope, from the graph and insert i t  into t' = L d i , d t  

t' = L dildt  = (400 x 10-3)( -40) = - 16 V.  
[20 x 10-3 - ( -40  x 10-3)]/(3 x 10-3) = 20 A, s  and the voltage is 
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Fig. 9-6 Fig. 9-7 

(400 x 10-3)(20) = 8 V. 
that the slope is zero. Consequently, the voltage is zero: 
is (0 - 20 x 10-3)/(Z x l O P 3 )  = -10A s 

instantaneously change polarity. 

For the next two milliseconds, the current graph is horizontal. which means 
1' = 0 V. For the last two milliseconds, the slope 

Figure 9-7 shows the graph of voltage. Notice that the inductor voltage can jump and can even 
and 1' = (400 x 10-')(-10) = -4 V.  

9.12 Find the total inductance of three parallel inductors having inductances of 45, 60, and 75 mH.  

9.13 Find the inductance of the inductor that when connected in parallel with a 40-mH inductor 
produces a total inductance of 10 mH. 

As has been derived, the reciprocal of the total inductance equals the sum of the reciprocals 
of the inductances of the individual parallel inductors: 

1 1 1  I 
__ - - + -  from which - = 0.075 and L = 13.3 mH 
10 40 L L 

9.14 Find the total inductance L ,  of the circuit shown in Fig. 9-8. 

5 mH 9 mH 

8 m H  
I 

Fig. 9-8 

30 m H  

The approach, of course, is to combine inductances starting with inductors at the end opposite the 
terminals at which L ,  is to be found. There, the parallel 70- and 30-mH inductors have a total inductance 
of 70(30)/(70 + 30) = 21 mH. This adds to the inductance of the 9-mH series inductor: 21 + 9 = 30 mH. 
This combines with the inductance of the parallel 60-mH inductor: 60(30),1(60 + 30) = 20 mH. And, finally, 
this adds with the inductances of the series 5- and 8-mH inductors: L, = 20 + 5 + 8 = 33 mH. 
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9.15 Find the energy stored in a 200-mH inductor that has 10 V across it. 

the voltage, and there is no way of finding this current from the specified voltage. 
Not enough information is given to determine the stored energy. The inductor current is needed, not 

9.16 A current 

At 

i = 0.32t A flows through a 150-mH inductor. Find the energy stored at 

and so the stored energy is 

t = 4 s. 

r = 4 s the inductor current is i = 0.32 x 4 = 1.28 A, 

w = kLi' = 0.5(150 x 10-")(1.28)' = 0.123 J 

9.17 Find the time constant of the circuit shown in Fig. 9-9. 

50 kR 14 kR 

I 30 kR 50 mH 1 
Fig. 9-9 

The time constant is L R , , ,  where is the Thevenin resistance of the circuit at the inductor 
terminals. For this circuit. 

RTh = (50 + 30)/120 + 14 + 7511 150 = 80 kR 

and so T = (50 x 10- 3 ,  (80 x 103) s = 0.625 11s. 

9.18 What is the energy stored in the inductor of the circuit shown in Fig. 9-9? 

( 5 7  = 5 x 
0.625 = 3.13 11s) for the inductor current to become constant and so for the inductor to be a short circuit. 
The current in this short circuit can be found from Thcvcnin's resistance and voltage. The Thevenin 
resistance is 80 kR, as found in the solution to Prob. 9.17. The Thevenin voltage is the voltage across 
the 20-kR resistor if the inductor is replaced by an open circuit. This voltage will appear across the open 
circuit since the 14-, 7 5 ,  and 150-kQ resistors will  not carry any current. By voltage division, this voltage is 

The inductor current is needed. Presumably, the circuit has been constructed long enough 

20 

20 + 50 + 30 
'Ih = -~ x 100=2ov  

Because of the short-circuit inductor load, the inductor current is 
the stored energy is 0.5(50 x 10 "(0.25 x 10 3 ) 2  J = 1.56 nJ.  

b'rh ( R I h  + 0) = 20 80 = 0.25 mA, and 

9.19 Closing a switch connects in series a 20-V source, a 2-Q resistor, and a 3.6-H inductor. How long 
does it take the current to get to its maximum value, and what is this value? 

The current reaches its maximum value five time constants after the switch closes: 5L,iR = 
5(3.6)/2 = 9 s. Since the inductor acts as a short circuit at that time, only the resistance limits the 
current: i(lr,) = 2012 = 10 A. 

9.20 Closing a switch connects in series a 21-V source, a 3-i1 resistor, and a 2.4H inductor. Find (a )  the 
initial and final currents, ( h )  the initial and final inductor voltages, ar?d ( c )  the initial rate of 
current increase. 
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(a)  Immediately after the switch closes, the inductor current is OA because it  was OA immediately 
before the switch closed, and an inductor current cannot jump. The current increases from O A  
until i t  reaches its maximum value five time constants after the switch closes. 
Then, because the current is constant, the inductor becomes a short circuit, and so i( x )  = I 'R  = 

Since the current is zero immediately after the switch closes, the resistor voltage is 0 V, which means, 
by KVL,  that all the source voltage is across the inductor: The initial inductor voltage is 21 V. Of 
course, the final inductor voltage is zero because the inductor is a short circuit to dc after fi\e time 
constants. 

As can be seen from Fig. 8-5h, the current initially increases at a rate such that the final current value 
would be reached in one time constant if the rate did not change. This initial rate is 

(5  x 2.4 3 = 4 s) 

21 3 = 7 A .  

(h)  

( c )  

I ( x )  - i (0+)  7 - 0 
-- = 8.75 A s - 

5 0.8 

Another way of finding this initial rate, which is di dt at r = 0 + ,  is from the initial inductor 
voltage: 

P,(O+) 31 -- di di 

dt  (it 
t J , ( O + )  = L-(O+)  o r  - ( O + )  = - 2.4 = 8.75 A s 

9.21 A closed switch connects a 120-V source to the field coils of a dc motor. These coils have 6 H 
of inductance and 30Q of resistance. A discharge resistor in parallel with the coil limits the 
maximum coil and switch voltages at the instants at which the switch is opened. Find the 
maximum value of the discharge resistor that will prevent the coil voltage from exceeding 300 V. 

because the inductor part of the coils 
is a short circuit. Immediately after the switch is opened, the current must still be 4 A because an  inductor 
current cannot jump-the magnetic field about the coil will change to produce whatever coil voltage is 
necessary to maintain this 4 A. In fact, if the discharge resistor were not present, this voltage would become 
great enough-thousands of volts- to produce arcing at the switch contacts to provide a current path to 
enable the current to decrease continuously. Such a large voltage might be destructilre to the switch contacts 
and to the coil insulation. The discharge resistor provides an  alternative path for the inductor current, which 
has a maximum value of 4 A. T o  limit the coil voltage to 300 V, the maximum value of discharge resistance 
is 300,/4 = 7 5  R. Of course, any value less than 75 R will limit the voltage to less than 300  V, but a smaller 
resistance will result in more power dissipation when the switch is closed. 

With the switch closed, the current in the coils is 120 30 = 4 A 

9.22 In the circuit shown in Fig. 9-10, find the indicated currents a long time after the switch has been 
in position 1. 

i ,  = 0 A. This 
short circuit also places the 18-R resistor in parallel with the 12-R resistor. Together they have a total 
resistance of 18(12)/(18 + 12) = 7.2 R. This adds to the resistance of the series 6.8-R resistor to produce 

The inductor is, of course, a short circuit, and shorts out the 20-R resistor. As a result, 
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7.2 + 6.8 = 14 R at the source terminals. So, the source current is 140114 = 10 A. By current division, 

18 

12 + 18 
x 1 0 = 6 A  i ,  = - _ _ _  

12 

12 + 18 
i ,  = ___ x 1 0 = 4 A  and 

9.23 For the circuit shown in Fig. 9-10, find the indicated voltage and currents immediately after the 
switch is thrown to position 2 from position 1, where it has been a long time. 

As soon as the switch leaves position 1, the left-hand side of the circuit is isolated, becoming a series 
circuit in which i, = 140/(6.8 + 12) = 7.45 A. In the other part of the circuit, the inductor current cannot 
jump, and is 4 A, as was found in the solution to Prob. 9.22: i, = 4 A. Since this is a known current, i t  can 
be considered to be from a current source, as shown in Fig. 9-11. Remember, though, that this circuit is 
valid only for the one instant of time immediately after the switch is thrown to position 2. By nodal analysis, 

1' 1' - 50 
-- + __I + 4 = 0  from which L' = -20.9 V 
20 6 +  18 

And 
This technique of replacing inductors in a circuit by current sources is completely general for 

an analysis at an instant of time immediately after a switching operation. (Similarly, capacitors can be 
replaced by voltage sources.) Of course, if  an inductor current is zero, then the current source carries 0 A 
and so is equivalent to an open circuit. 

i, = t-,120 = -20.9/20 = - 1.05 A. 

18 R 

4 A  

Fig. 9-11 

9.24 A short is placed across a coil that at the time is carrying 0.5 A. If the coil has an inductance of 
0.5 H and a resistance of 2 0, what is the coil current 0.1 s after the short is applied? 

The current equation is needed. For the basic formula i = i( z) + [ i ( O + )  - i( x ) ] K '  ', the initial 
current is i ( O + )  = 0.5 A because the inductor current cannot jump, the final current is i( z )  = 
0 A because the current will decay to Lero after all the initially stored energy is dissipated in the resistance. 
and the time constant is T = L'R = O.S12 = 0.25 s. So. 

i(t) = 0 + (0.5 - O ) t - r o  2 s  = OSe-"'A 

and i(O.l)  = O . ~ U - " ' ~  = 0.335 A. 

9.25 A coil for a relay has a resistance of 30 0 and an inductance of 2 H. If the relay requires 250 mA 
to operate, how soon will i t  operate after 12 V is applied to the coil? 

i ( O + )  = 0 A, For the current formula, i( z) = 12/30 = 0.4 A, and 

i = 0.4 + (0 - 0.4)e-'" = 0.4(1 - e - l s r )  A 

z = 2/30 = 1 i 15 s. So, 

The time at which the current is 
for t :  

250 mA = 0.25 A can be found by substituting 0.25 for i and solving 

r -  151 - 0.25 = 0.4( 1 - e -  ' ") or - 0.375 

Taking the natural logarithm of both sides results in 

In 0.375 from which - 15t = -0.9809 and I n  e -  1 5 '  = t = 65.4 ms 
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50 v 

185 

- 
-+: 

= 20 v 
- 

9.26 For the circuit shown in Fig. 9-12, find U and i for t > 0 s if at  t = 0 s the switch is thrown 
to position 2 after having been in position 1 for a long time. 

The switch shown is a make-before-break switch that makes contact at the beginning of position 2 
before breaking contact at position 1. This temporary double contacting provides a path for the inductor 
current during switching and prevents arcing at the switch contacts. To find the voltage and current, it  is 
only necessary to get their initial and final values, along with the time constant, and insert these into the 
voltage and current formulas. The initial current i (O+)  is the same as the inductor current immediately 
before the switching operation, with the switch in position 1 :  i (O+)  = 50/(4 + 6) = 5 A. When the switch 
is in position 2, this current produces initial voltage drops of 5 x 6 = 30 V and 14 x 5 = 70 V across the 
6- and 14-R resistors, respectively. By KVL, 30 + 70 + u ( O + )  = 20, L(O+)  = = -80 V. For 
the final values, clearly ~ ( m )  = 0 V and i(m) = 20/(14 + 6) = 1 A. The time constant is 4/20 = 0.2 s. 
With these values inserted, the voltage and current formulas are 

from which 

o=O+(-80-O)e- ' '0 .2  = -80e-5'V for t > O S  

j = 1 + (5  - l)e-''o.2 = 1 + 4e-5' A for t 2 0 s  

li 
10 I1 

- 
- Fig. 9-12 

9.27 For the circuit shown in Fig. 9-13, find i for t 2 0 s if the switch is closed at 
being open for a long time. 

t = 0 s 

+ - 45v 

after 

A good approach is to use the Thevenin equivalent circuit at the inductor terminals. The Thevenin 
resistance is easy to find because the resistors are in series-parallel when the sources are deacti- 
vated: R,, = 10 + 301160 = 30 R. The Thevenin voltage is the indicated I/ with the center branch removed 
because replacing the inductor by an open circuit prevents the center branch from affecting this voltage. By 
nodal analysis, 

V - 9 0  V-(-45) + = o  from which V = 4 5 V  
30 60 

So, the Thevenin equivalent circuit is a 3042 resistor in series with a 45-V source, and the polarity 
of the source is such as to produce a positive current i. With the Thevenin circuit connected to the 
inductor, it should be obvious that i ( O + )  = 0 A, i(m) = 45/30 = 1.5 A, 7 = (120 x 10-3)/30 = 4 x 
10-3 s, and i = 1.5 - 1.5e-2"0' A 
for t 2 0 s. 

1/7 = 250. These values inserted into the current formula result in 

9.28 In the circuit shown in Fig. 9-14, switch S, is closed at t = 0 s, and switch S ,  is opened at 
t = 3 s. Find i(2) and i(4), and make a sketch of i for t 2 0 s. 

Two equations for i are needed: one with both switches closed, and the other with switch S1 closed 
and switch S ,  open. At the time that S ,  is closed, i ( O + )  = 0 A, and i starts increasing toward a final value 
of i(m) = 6/(0.1 + 0.2) = 20 A. The time constant is 1.2/(0.1 + 0.2) = 4 s. The 1.2-0 resistor does not affect 
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I I  L 10.55 A 10.55 A I I  - 

1 1 1 1 1 1 1  
0 I 2 3 4 5 6 7  t ( S )  

Fig. 9-14 Fig. 9-15 

the current or time constant because this resistor is shorted by switch S , .  So, for the first three seconds, 
i = 20 - 20e-"4 A, and from this, i(2) = 20 - 20u-' 

After switch Sz opens at t = 3 s, the equation for i must change because the circuit changes as a result 
of the insertion of the 1.242 resistor. With the switching occurring at f = 3 s instead of at f = 0 s, the 
basic formula for i is i = i( 3 c )  + [i(3 + ) - i( x )]e-'* ~ 3 ,  ' A. The current i(3 +)  can be calculated from the first 
i equation since the current cannot jump at i( x )  
= 61(0.1 + 1.2 + 0.2) = 4 A With thesc values inserted, the current formula is 

= 7.87 A.  

f = 3 s:  i ( 3 + )  = 20 - 2 0 K 3  ' = 10.55 A .  Of course, 
and T = 1.211.5 = 0.8 s. 

i = 4 + (10.55 - 4)e-"-3'0.8 = 4 + 6 . 5 5 p - l  ,'(' 3' A for f23S 

from which i(4) = 4 + 6.5% 2 5 ( 4 - 3 )  = 5.88 A. 
Figure 9-15 shows the graph of current based on the two current equations. 

9.29 Use PSpice to find the current i in the circuit of Fig. 9-16. 

12 v 1.5 H 

Fig. 9-16 

The time constant is 5 = L / R  = 1.5/6 = 0.25 s. So, a suitable value for TSTOP in the .TRAN statement 
is 45 = 1 s because the current is at approximately its final value then. The number of time steps will be 
selected as only 20, for convenience. Then, TSTEP in the .TRAN statement is TSTOP 20 = 0.05 s. Even 
though the initial inductor current is zero, a UIC specification is needed in the .TRAN statement. Otherwise, 
only the final value of 2 A will be obtained. A .PLOT statement will be included to obtain a plot. Because 
a table of values will automatically be obtained with this plot, no .PRINT statement is needed. Probe will 
also be used to obtain a plot to demonstrate the superiority of its plot. Following is a suitable circuit file. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 9-16 
V1 1 0 DC 12 
R1 1 2  6 
L1 2 0 1.5 

.PLOT TRAN I(L1) 

. PROBE 

. END 

.TRAN 0.05 1 urc 
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When PSpice is run with this circuit file, the plots of Figs. 9-17a and 9-17h are obtained from 
the .PLOT and .PROBE statements, respectively. The Probe plot required a little additional effort 
in responding t o  the menus at the bottom of the screen. The first column at the left-hand side of 
Fig. 9-17u gives the times at  which the current is evaluated, and the second column gives the current tralues 
at these times. The values are plotted with the time axis being the vertical axis and the current axis the 
horizontal axis. The Probe plot of Fig. 9-17h is obviously superior in appearance, but i t  does not contain 
the current ~ ~ a l u e s  explicitly at the karious times as does the table with the other plot. But ~ a l u c s  can bc 
obtained from the Probe plot by using the cursor feature which is included in the menus. 

TIME 1 (L1) 
( * I  ---------- 0.0000E+00 5.0000E-01 1.0000E+00 1.5000E+00 2.0000E+00 

O.OOOE+OO 
5.000E-02 
1.000E-01 
1.500E-01 
2.000E-01 
2.500E-01 
3.000E-01 
3.500E-01 
4.000E-01 
4.500E-01 
5.000E-01 
5.500E-01 
6.000E-01 
6.500E-01 
7.000E-01 
7.500E-01 
8.000E-01 
8.500E-01 
9.000E-01 
9.500E-01 
1.000E+00 

2 .  0A 

1.278E-06 
3.618E-01 
6.588E-01 
9.022E-01 
1.101E+00 
1.264E+00 
1.398E+00 
1.507E+00 
1.596E+00 
1.670E+00 
1.730E+00 
1.779E+OO 
1.819E+00 
1.852E+00 
1.879E+00 
1.901E+00 
1.919E+00 
1.933E+OO 
1.945E+00 
1.955E+00 
1.963E+00 

* 
* 

* .  
. *  

* 
* .  * 

. *  

. *  * 
* 
* 
* .  
* .  
* .  
* .  
* .  
*. 
*. 
*. 

I 

I , ' +  . . . . . . . . . . . .  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

---------t--------+--------t-------- -+ 
0 . 0 s  0 . 2 s  0 . 4 s  0 . 6 s  0 . 8 s  1 . 0 s  

0 I ( L 1 )  
T ime 

(b) 

Fig. 9-1 7 
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9.30 In the circuit of Fig. 9-18, the switch is moved to position 1 at 
at 
by using PSpice. 

t = 0 s and then to position 2 
u(0) = 20 V. Find U for t 2 0 s by hand and also t = 2 s. The initial capacitor voltage is 

Fig. 9-18 

The time constant is 

T = RC = (100 x 1 0 3 ~ 1 0  x 10-6)  = 1 s 

Also, u(0) = 20 V, and for the switch in position 1 the final voltage is t ( z )  = 100 V. Therefore, 

tqf)  = I,'( X )  + [L~(O)  - I,'( ~ ) ] e - '  ' = 100 + (20 - 100)6' = 100 - 80e-I V O s i r  1 2 s  

At t = 2 S ,  

~ ( 2 )  = 100 - 80e-' = 89.2 V 

So, for t 2 2 s, 
For the PSpice circuit file, a suitable value for TSTOP is 5 s, which is three time constants after the 

second switching. This time is not critical, of course, and perhaps a preferable time would be 6 s, which is 
four time constants after the second switching. But 5 s will be used. The number of time steps is not critical 
either. For convenience, 20 will be used. Then, 

v(r) = 89.2e-"-" = 6 5 8 . 9 ~ ~ '  V. 

TSTEP = TSTOP/20 = 5 / 2 0  = 0 . 2 5  S 

To obtain the effects of switching, a PULSE source will be used, with 0 V being one value and 100 V the 
other. The time duration of the 100 V is 2 s, of course. Alternatively, a PWL source could be used. A .PRINT 
statement will be included to generate a table of values, and a .PROBE statement to obtain a plot. Following 
is a suitable circuit file. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 9-18 
V1 1 0 PULSE(0, 100, 0, lU, lU, 2) 
R1 1 2 lOOK 
c1 2 0 1ou IC = 20 
. T W N  0.25 5 UIC 
.PRINT TRAN V(C1) 
.PROBE V(C1) . END 

If a PWL source were used instead of the PULSE source, the V1 statement would be 

v1 1 0 PWL(0 0 1u 100 2 100 2.000001 0) 

The V(C1) specification is included in the .PROBE statement so that Probe will store the V(2) node voltage 
under this name. Alternatively, this specification could be omitted and a trace of V(2) specified in the Probe 
mode. 

When PSpice is run with this circuit file, the .PRINT statement generates the table of Fig. 9-190, and 
the .PROBE statement generates Fig. 9-1%. Notice that the voltage value at t = 2 s is 89.2 V, which 
completely agrees with the value obtained by hand. 
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TIME V W )  
0.000E+00 2.000E+01 
2.500E-01 3.766E+01 
5.000E-01 5.144E+01 
7.500E-01 6.2213+01 
l.OOOE+OO 7.0573+01 
1.250E+00 7.709E+01 
1.500E+00 8.216E+01 
1.750E+00 8.611E+01 
2.000E+00 8.9203+01 
2.250E+00 6.951E+01 
2.500E+00 5.4133+01 
2.750E+00 4.213E+01 
3.000E+00 3.2823+01 
3.250E+00 2.5543+01 
3.500E+00 1.989E+01 
3.750E+00 1.5483+01 
4.000E+00 1.206E+01 
4.250E+00 9.386E+00 
4.500E+00 7.310E+00 
4.750E+00 5.689E+00 
5.000E+00 4.429E+00 

(4 
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Supplementary Problems 
9.31 Find the voltage induced in a 500-turn coil when the flux changes uniformly by 16 x 1 O P 5  W b  in 2 ms. 

Ans. 40 V 

Find the change in flux linking an  800-turn coil when 3.2 V is induced for 6 ms. 

Ans. 24 pWb 

9.32 
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9.33 

9.34 

9.35 

9.36 

9.37 

9.38 

9.39 

9.40 

9.4 1 

9.42 

9.43 

9.44 

9.45 

What is the number of turns of a coil for which a flux change o f  40 x 10 '' W b  in 0.4 ms induces 70 V in 
the coil? 

Ans. 700 turns 

Find the flux linking a 500-turn, 0.1-H coil carrying a 2-mA current. 

Ans. 0.4 pWb 

Find the approximate inductance of a single-layer, 300-turn air-core coil that is 3 in long and 0.25 in in 
diameter. 

Ans. 47 p H  

Find the approximate inductance of a single-layer 500-turn coil that is wound on a ferromagnetic cylinder 
that is 1 in long and 0.1 in in diameter. The ferromagnetic material has a relative permeability of 8000. 

Ans. 0.501 H 

A 250-mH inductor has 500 turns. How many turns must be added to increase the inductance to 400 m H ?  

Ans. 132 turns 

The current in a 300-mH inductor increases uniformly from 0.2 to  1 A in 0.5 s. What is the inductor voltage 
for this time? 

Ans. 0.48 V 

If a change in current in a 0.2-H inductor produces a constant 5-V inductor voltage, how long does the 
current take to increase from 30 to  200 mA? 

Ans. 6.8 ms 

What is the inductance of a coil for which a changing current increasing uniformly from 150 to 275 mA in 
300 ps induces 75 mV in the coil'? 

Ans. 180 pH 

Find the voltage induced in a 200-mH coil from 0 to 5 ms when a current i described as follows flows 
through the coil: i = 250t A for  0 s l  r l  I ms, i = 250mA for 1 ms I t I 2 ms, and i = 416 - 
83 OOOt mA for 2 ms I t I 5 ms. 

Ans. c =  5 0 V f o r O s < r < 1 m s ;  O V f o r  1 m s < t < 2 m s ;  - 1 6 . 6 V f o r 2 m s < t < 5 m s  

Find the total inductance of four parallel inductors having inductances of 80, 125, 200, and 350 mH. 

Ans. 35.3 m H  

Find the total inductance of a 40-mH inductor in series with the parallel combination of a 60-mH inductor, 
an  80-mH inductor. and a 100-mH inductor. 

Ans. 65.5 m H  

A 2-H inductor, a 4 3 0 4  resistor, and a 50-V source have been connected in series for a long time. What is 
the energy stored in the inductor? 

Ans. 13.5 mJ 

A current 

Ans. 2.82 J 

i = 0.56t A flows through a 0.5-H inductor. Find the energy stored at t = 6 s. 



CHAP. 91 INDUCTORS, INDUCTANCE, AND PSPICE TRANSIENT ANALYSIS 191 

9.46 

9.47 

9.48 

9.49 

9.50 

9.51 

9.52 

9.53 

What is the energy stored by the inductor in the circuit shown in Fig. 9.20 i f  R = 20R? 

Ans. 667 mJ 

R 6 R  

Fig. 9-20 

Find the time constant of the circuit shown in Fig. 9-20 for R = 90 Q. 

Ans. 4.21 ms 

How long after a short circuit is placed across a coil carrying a current of 2 A does the current go to zero 
if the coil has 1.2 H of inductance and 40 R of resistance? Also, how much energy is dissipated? 

Ans. 0.15 s, 2.4 J 

A switch closing connects in series a 10-V source, an 8.242 resistor, and a 1.2-H inductor. How long does 
the current take to reach its maximum value, and what is this value? 

Ans.  732 ms, 1.22 A 

In closing, a switch connects a 100-V source with 5 R of internal resistance across the parallel combination 
of a 20-Q resistor and a 0.4-H inductor. What are the initial and final source currents, and what is the initial 
rate of inductor current increase? 

Ans.  4 A, 20 A, 200 Ak 

I n  the circuit shown in Fig. 9-21, the switch is thrown at 
the indicated currents at 

Ans.  i , ( O + )  = 3.57 A,  i , (O+)  = 0 A, il(x) = 2.7 A, i2(z) = 2.43 A 

t = 0 s from an open position to position 1. Find 
t = O +  s and also at a long time later. 

- .-., . 
T 

1 
-14ov f 

Fig. 9-21 

In the circuit shown in Fig. 9-21, the switch is thrown at 
been a long time. Find the indicated currents at t = O +  s and also at a long time later. 

Ans.  i , ( O + )  = -5.64 A, i2(0+) = 2.43 A, il(.cl) = -3.43 A, i 2 ( x )  = -3.09 A 

t = 0 s to position 2 from position 1 where it has 

A switch closing at 
Find the inductor voltage and current for 

Ans.  c = 40e-500' V, i = 4(1 - e - 5 0 0 ' )  A 

t = 0 s connects a 20-mH inductor to a 40-V source that has 10 Q of internal resistance. 
t > 0 s. 
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9.54 A switch closing at 
200 mH of inductance and 5 R of resistance. Find the coil voltage for t > 0 s. 

Ans. 

t = 0 s connects a 100-V source with a 1 5 4  internal resistance to a coil that has 

25 + 75e- ' ' O r  V 

9.55 A coil for a relay has a resistance of 20 R and an inductance of 1.2 H. The relay requires 300 mA to operate. 
How soon will the relay operate after a 20-V source with 5 R of internal resistance is applied to the coil? 

Ans. 22.6 ms 

9.56 For the circuit shown in Fig. 9-22, find i as a function of time after the switch closes at t = 0 s. 

Ans. 0.04(1 - e - 5 0 0 r )  A 

M V =  

Fig. 9-22 

9.57 Assume that the switch in the circuit shown in Fig. 9-22 has been closed a long time. Find i as a function 
of time after the switch opens at 

Ans. 0.04e- '''' A 

t = 0 s. 

9.58 In the circuit shown in Fig. 9-23, the switch is thrown to position 1 at t = 0 s after being open a long time. 
Then it is thrown to position 2 at 

Ans. 5 q 1  - e-"" ) A  for 0 s i t I 2.5 s; -20 + 31.1e-0.05'r-2.5)A for t 2 2.5 s 

t = 2.5 s. Find i for t 2 0 s. 

1.5 R I 2 0.5 R 

Fig. 9-23 

9.59 Obtain the expression for the response for t 2 0 s corresponding to the following circuit file. Also, from 
this expression, determine the 11th value that will be printed. 

CIRCUIT FILE FOR PROB. 9.59 
v1 1 0 120 
R1 1 2 40K 
C1 2 0 SOU IC = 30 
.TR?iN 0.25 10 UIC 
.PRINT TRAN V(C1) 
. END 

Ans. 120 - 90e-'." V, 94.2 V 
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9.60 Obtain the expression for the response for 
this expression, determine the 9th value that will be printed. 

t 2 0 s corresponding to the following circuit file. Also, from 

CIRCUIT FILE FOR PROB. 9.60 
V1 1 0 60 
R1 1 2 20 
L1 2 0 2 IC = -2 
.TRAN 0.02 0.5 UIC 
.PRINT TRAN I(R1) . END 

Ans. 3 - 5e-  'Of A, 1.99 A 

9.61 Obtain the expressions for the response for 
these expressions, determine the 17th value that will be printed. 

t 2 0 s corresponding to the following circuit file. Also, from 

CIRCUIT FILE FOR PROB. 9.61 
V1 1 0 PULSE(0, 120, 0, lU, lU, 20M) 
R1 1 2 300 
R2 2 0 600 
C1 2 0 50U IC = -50 
.TRAN 2M 50M UIC 
.PRINT TRAN V(C1) . END 

Ans. 80 - 130e-'00'V for 0 s 5 t 5 0.02 s; 62.4e-100'f-0.02'V for t 2 0.02 S;  18.8 v 

9.62 Obtain the expressions for the response for t 2 0 s corresponding to the following circuit file. Also, from 
these expressions, determine the 13th value that will be printed. 

CIRCUIT FILE FOR PROB. 9.62 
I1 0 1 PWL(0 0 1U 0.1 0.032 0.1 0.032000001 0) 
R1 1 0 300 
R2 1 2 200 
R3 2 0 500 
L1 2 0 4 IC = -30M 
.TRAN 0.004 0.08 UIC 
.PRINT TRAN I(L1) . END 

Ans. 60 - 90e-62.Sr mA for 0 s 5 t I 32 ms; 47.8e-62.5"-0.032) mA for t 2 32 ms; 17.6 mA 



Chapter 10 

Sinusoidal Alternating Voltage and Current 

INTRODUCTION 

In  the circuits considered so far, the independent sources have all been dc. From this point on, the 
circuits have Lilter.r2atin~-i.urrenl (ac) sources. 

An ac voltage (or ac current) varies .sinusoiddl~* with time, as shown in Fig. 10-lu. This is a periodic. 
voltage since i t  vzries with time such that i t  continually repeats. The smallest nonrepeatable portion of 
a periodic waveform is a q d e ,  a d  the duration of a cycle is the p r i o d  7' of the wave. The reciprocal 
of the period, and the number of cycles in a pericd, is the.fi.c.ciireric:~,, which has a quantity symbolf:  

The SI unit of frequency is the hertz, with unit  symbol Hz. 

Fig. 10-1 

In these definitions, notice the terms W L I I Y  and wiwjimu. They do not refer to the same thiiig. A 
wave is a varying voltage or current, but a waveform is a graph of such a voltage o r  current. Often, 
however, these terms are used interchangeably.. 

Although t h e  sine ~ ~ i i w ~  of Fig. 10-la is by r'ar the most common periodic wave, there are other 
cornmm ones: Figure 10-lh shows a square wave, Fig. 10-lc. a sawtooth wave, and Fig. 10-ld a triangular 
wave. The dashed lines at both ends indicate that the waves have no beginnings and no ends, as is strictly 
required for periodic waves. But,  of course, all practical voltages and currents have beginnings and ends. 
When a wave is obviously periodic, these dashed lines are often omitted. 

The voltage waveforms shown in Fig. 10-~LI  and h are negative or below the time axis for part of 
each period. During these times, the corresponding voltages have polarities opposite the reference 
polarities. Of course, when the waveforms are above the time axis, these voltages have the same polarities 
as the references. For similar graphs of currents, the currents flow in the current reference directions 
when the waveforms are above the time axis, and in opposite directions when the waveforms are below 
that axis. 

194 



CHAP. 101 SINUSOIDAL ALTERNATING VOLTAGE AND CURRENT I95 

SINE AND COSINE WAVES 

Figure 10-2 shows the basics of an ac generator or alternator for generating a sinusoidal voltage. 
The conductor, which in practice is a coil of wire, is rotated by a steam turbine or by some other source 
of mechanical energy. This rotation causes a continuous change of magnetic flux linking the conductor, 
thereby inducing a sine wave voltage in the conductor. This change of flux, and so the induced voltage, 
varies from zero when the conductor is horizontal to a maximum when the conductor is vertical. 
If f = 0 s corresponds to a time when the conductor is horizontal and the induced voltage is increasing, 
the induced voltage is where Vm is the peak value or amplitude, sin is the operation 
designator for a sine wave, tot is the argument, and CO is the quantity symbol for the radian.frequency of 
the voltage. (Some authors use the terms "angular velocity" or "angular frequency" instead of radian 

c = Vm sin tot, 

frequency.) The SI unit of radian frequency is radian per second, and the unit symbol is rad/s. 
frequencyf and the radian frequency c u  are related by 

0 = 27Tf 

Fig. 10-2 

The 

The radian in radian per second is an SI angular unit, with symbol rad, and i t  is an alternative to 
degrees. A radian is the angle subtended by an arc on the circumference of a circle if  the arc has a length 
equal to the radius. Since the circumference of a circle equals 271r, where r is the radius, it follows that 
27~ rad equals 360" or 

360" 180" 
l r a d = - - -  - = 57.3" 

27T 71 

This relation is useful for converting from degrees to radians and from radians to degrees. Specifically, 

71 
Angle in radians = ~ x angle in degrees 

180" 

180" 
Angle in degrees = - x angle in radians and 

71 

But, of course, a scientific calculator will perform either conversion at the press of a key. The waveform 
of sin cot has the shape shown in Fig. 10-la. In  each cycle it varies from 0 to a positive peak or maximum 
of 1 ,  back to 0, then to a negative peak or minimum of - 1, and back to 0 again. For any value of the 
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argument cot, sin cot can be evaluated with a calculator operated in the radians mode. Alternatively, the 
argument can be converted to degrees and the calculator operated in the more popular decimal degrees 
mode. For example, sin (7t/6) = sin 30" = 0.5. 

The abscissa of a graph of a sine wave can be expressed in radians, degrees, or time. Sometimes, 
when time is used, it is in fractions of the period 7', as in Fig. 10-la. Usually, determining what the 
fractions should be is obvious from the corresponding proportions of a cycle. 

u1 = 20 sin 377t V. The peak value or 
amplitude is 20 V because sin 377t has a maximum value of 1. The radian frequency is o = 377 rad/s, 
which corresponds to f = to/2n = 60 Hz, the frequency of the electrical power systems in the United 

Consider the graphing of one cycle of a specifc ac voltage: 

I6 7 
2lr 

3M)' 

16.7 f (ms) 

-20 - 
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States. The period is T =  1/60 = 16.7 ms. A cycle of this voltage can be plotted by substituting, into 
20 sin 377t, different times for t from the time interval of t = 0 s t = 16.7 ms. Figure 10-3u shows 
the results of evaluating this sine wave at 21 different times and drawing a smooth curve through the 
plotted points. For comparison purposes, all three abscissa units seconds, radians, and degrees- are 
shown. 

Figure 10-3b shows a graph of one cycle of 2 y 2  = 20 sin (377t + 30 ) V. Notice that the argu- 
ment is the sum of two terms, the first of which is in radians and the second of which is 
in degrees. Showing such an addition is common despite the fact that before the terms can be added, 
either the first term must be converted to degrees or the second term must be converted to radians. The 
30" in the argument is called the phase an&. 

The cosine wat'e, with designator cos, is as important as the sine wave. Its waveform has the same 
shape as the sine waveform, but is shifted 90' -a fourth of a period ahead of i t .  Sine and cosine waves 
are so similar that the same term "sinusoid" is applied to both as well as to phase-shifted sine and cosine 
waves. Figure 10-3c is a graph of t i 3  = 20 sin (377t + 90r) = 20 cos 377t V. Notice that the values of 
the cosine wave u j  occur one-fourth period earlier than corresponding ones for the sine wave i s 1 .  

to 

377t + 30" 

Some sine and cosine identities are important in the study of ac circuit analysis: 

sin (-x) = -sin N 

sin (x - 90") = -cos x 

cos ( -x)  = cos .Y sin (s + 90 ) = cos .U 

cos (.U - 90') = sin s cos (.U + 90 ) = -sin -U 

1 - cos 2 s  

2 
sin (x f 180") = -sin ?c COS (.U f 180") = - COS s sin' .x = 

1 + cos 2x 
cos2 x = ~- -~ 

2 
sin (x + y) = sin .Y cos y + sin J' cos .U 

sin (.U - y) = sin s cos J' - sin J' cos x 

cos (x + J,) = cos s cos J' - sin .X sin J* 

cos (-U - y) = cos .Y cos y + sin N sin J' 

sin x = sin (x & N x 360") and COS x = COS (.U f N x 360') for any integer N 

PHASE RELATIONS 

Sinusoids of the same frequency have phase rdntions that have to do with the angular difference of 
the sinusoidal arguments. For example, because of the added 30' in its argument, 27' = 
20 sin (377t + 30") V by 30'. Alternatively, r 1  lays il2 by 
30". This means that the peaks, zeros, and other values of r 2  occur earlier than those of r 1  by a time 
corresponding to 30". Another but less specific way of expressing this phase relation is to say that P~ 

and t i 2  have a 30" phase diflerence or that they are 30" out of phase. Similarly, the cosine wave r3  leads 
the sine wave c 1  by 90" or cl  lags c3 by 90". They have a phase difference of 90'; they are 90" out of 
phase. Sinusoids that have a 0" phase difference are said to be in phase. Figure 10-4a shows sinusoids 
that are in phase, and Fig. 10-4h shows sinusoids that are 180° out of phase. 

of the last section Ieads tll = 20 sin 377t V 

( b )  
Fig. 10-4 
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The phase difference between two sinusoids can be found by subtracting the phase angle of one from 
that of the other, provided that both sinusoids have either the sine form or the cosine form, and that 
the amplitudes have the same sign both positive or both negative. Additionally, of course. the two 
sinusoids must have the same frequency. 

AVERAGE VALUE 

The average value of a periodic wave is a quotient of area and time--- the area being that between 
the corresponding waveform and the time axis for one period, and the time being one period. Areas 
above the time axis are positive, and areas below are negative. The areas must be algebraically added 
(signs must be included) to obtain the total area between the waveform and time axis for one period. 
(The average value of a periodic wave is always assumed to be calculated over a period unless otherwise 
specified.) 

The average value of a sinusoid is zero because over one period the positive and negative areas 
cancel in the sum of the two areas. For some purposes, though, a nonzero "average" is used. By definition, 
i t  is the average of a positive half-cycle. From calculus, this average is times the peak value. 2, n = 0.637 

RESISTOR SINUSOIDAL RESPONSE 

If a resistor of R ohms has a voltage 1' = V, sin (tot + 0 )  across it,  the current is, by Ohm's 
law, I ,  = V, R. Notice that 
the current is in phase with the voltage. To repeat, 11 rc>sistor cwrrent crrid iwltci~go circ iri phci.se. (The 
references are, of course, assumed to be associated.) 

Instantaneous resistor power dissipation varies with time because the instantaneous voltage and 
current vary with time, and the power is the product of the two. Specifically. 

i = i' R = ( V,!'R) sin ( to t  + 0) .  The multiplier V, R is the current peak I,: 

which shows that the peak power is 
From the identity 

P,,, = V,,I,,,, and i t  occurs each time that sin (tot  + 0 )  = 1. 
sin' s = ( 1  - cos 2 s ) ,  2, 

which is a constant plus a sinusoid of twice the frequency o f  the voltage and current. This instantaneous 
power is zero each time that the voltage and current are zero, but it is never negative because the positive 
first term is always equal to or greater than the second term, which is negative half the time. The fact 
that the power is never negative means that a resistor never delivers power to a circuit. Rather, i t  
dissipates as heat all the energy it receives. 

because the average 
value of the second term is zero. From 

The average power supplied to a resistor is just the first term: P,, = V,I,, 2, 
V,, = I,,,R, 

V,I, V,", I,",R p =---= __ 
2 2R 2 d\ 

These formulas differ from the corresponding dc formulas by a factor of i .  

EFFECTIVE OR RMS VALUES 

Although periodic voltages and currents vary with time, it is convenient to associate with them 
specific values called t$~ctiro L Y ~ / L I L ~ . S .  Effective voltages are used, for example, in the rating of electrical 
appliances. The 120-V rating of an electric hair dryer and the 240-V rating of an electric clothes dryer 
are effective values. Also, most ac ammeters and voltmeters give readings in effective \dues.  
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By definition, the effective value of a periodic voltage or current ( Kfr or I , , , )  is the positii1cJ dc voltage 
P,, = V:,, R and P,, = Zf,,R. or current that produces the same average power loss in a resistor: 

Since for a sinusoidal voltage the average power loss is P,, = V i l  2R,  

-- 
Similarly, I,, , = I , /  Lli 2 = 0.707I,, . So, thc cfli+;ctii*e vciliicl qf N siniisoicld w l t a y c  or current equuls the 
peak d u e  dicided bJ* v/2. 

Another name for effective value is root izieun square (rms) .  The corresponding voltage and current 
notations are V,,, and I , , , ,  which are the same as V,,, and I,,,. This name stems from a procedure for 
finding the effective or rms value of any periodic voltage or current--- not just sinusoids. As can be derived 
using calculus, this procedure is to 

1. 

2.  

3 .  

Unfortunately, except for square-type waves, finding the area in step 2 requires calculus. Incidentally, if  
this procedure is applied to a sawtooth and a triangular wave, the result is the same effective value-- -the 

/- 
peak value divided by \,# 3. 

r 

Square the periodic voltage or current. 

Find the average of this squared wave over one period. Another name for this average is the i i i~un.  

Find the positive square root of this average. 

INDUCTOR SINUSOIDAL RESPONSE 

If an inductor of L henries has a current i = I ,  sin (cot + 0) flowing through i t ,  the voltage across 
the inductor is 

di d 

nt dt 
I' = L -  = L - [ I , ,  sin (tot + O ) ]  = COLI,, cos (cot + 0) 

The multiplier toLI, is the peak voltage VnI: V, = roLZ, and I ,  = Vm!'(oL. From a comparison 
of I ,  = V,/cuL and I ,  = V m / R ,  clearly tuL has a current-limiting action similar to that of R. 

The quantity COL is called the inductire rwictancv of the inductor. Its quantity symbol is X , :  

x, = COL 

It has the same ohm unit  as resistance. Unlike resistance, though, inductive reactance depends on 
frequency-the greater the frequency the greater its value and so the greater its current-limiting action. 
For sinusoids of very low frequency, approaching 0 Hz or dc, an inductive reactance is almost zero, 
which means that an inductor is almost a short circuit to such sinusoids, in agreement with dc results. 
At  the other frequency extreme, for sinusoids of very high frequencies, approaching infinity, an inductive 
reactance approaches infinity, which means that an inductor is almost an open circuit to such sinusoids. 

From a comparison of the inductor current and voltage sinusoids, i t  can be seen that the inductor 
voltage leads the inductor current bq* 90 or the inductor current lugs  the inductor idtugc' hjy 90". 

The instantaneous power absorbed by an inductor is 

p = ui = [ V, cos (tot + 0)][Z, sin (tot + O ) ]  = V,Z, cos (tot + 0) sin (tot + 0) 

which from sine and cosine identities reduces to 

V m  I m  p = ~ sin (2tot + 20) = V,,,I,,, sin ( 2 0 ~  + 20) 
2 

This power is sinusoidal at twice the voltage and current frequency. Being sinusoidal, its average 
value is zero-u sinusoidallj* excited incluctor uhsorhs zero uileru{je p o ~ + c r .  I n  terms of energy, at the times 
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when p is positive, an inductor absorbs energy. And at the times when p is negative, an inductor returns 
energy to the circuit and acts a s  a source. Over ii period. i t  delivers just a s  much energy as i t  receives. 

CAPACITOR SINUSOIDAL RESPONSE 

I f  ~i capacitor of c' farads has a voltage 1 1  = l i l t  sin (co t  + 0) across i t ,  the capacitor current is 

t i r  t i  
= c' 

tlr t i t  
i = c' [ 1 i l l  sin ( c t ) t  + O)] = cl)CI cos (rot + 

The multiplier cuCP;, is the peak current I , , , :  C;, I,,,  = 1 wC. So, a capacitor has 
;i current-limiting action similar to that of ;i resistor. with 1 ( ~ I C  corresponding to R. Because of this, 
some electric circuits books define c*trptrc*itiro r * o t ~ r t r t ~  ;is I (fK'. However, almost all electrical engineering 
circuits books include a negative sign and define capacitive reactance a s  

I,,,  = cf)CI.;,, and 

The negative sign relates to phase shift, ;is will be explained in Chap. 12. Of course, the quantity 
sjmbol for capacitive reactance is X , .  and the unit is the ohm. 

Because I r t K  is inversely proportional to frequency, the greater the frequency the greater the current 
for the same kroltage peak. For high-frequency sinusoids, a capacitor is almost a short circuit, and for 
loLt-frequency sinusoids approaching 0 H7 or dc, ii capacitor is almost an open circuit. 

From ;i comparison of the capacitor lroltage and current sinusoids, i t  can be seen that the twpircitor 
(arrorit I r w l . s  the> c~rrptrc~itor iwltcr<go 90 , or tho cvrptrcitor r-oltcigc l q L \  t/io cvrptrcitor currotit bj? 90 . This 
is the opposite of the inductor voltage and current phase relation. 

The instantaneous pouw absorbed by ;i capacitor is 

1 ; I t  I In  p = 1.i = [ i;,l sin ( ( p ) r  -t 0) ] [11 ,1  cos ( ( ! I t  + O)] = sin ( h t  + 2 0 )  
3 

the same iis for an inductor. The instantaneous punw absorbed is sinusoidal at tuice the voltage 
and current frequency and has ;i x r o  aL'erage value. So. ( I  c t r p i e + i t o r  trh,wr.h.s zoiw trwrtrlgr~ ~ O N Y I * .  Over a 
period a capacitor delitws just ;is much energy a s  i t  absorbs. 

Solved Problems 
10.1 Find the periods o f  periodic voltages that have frequencies o f  ( 1 1 )  0.2 Hz, ( h )  12 kHz, and ( ( U )  

4.2 MHz.  

( t r )  From 7 = 1 1 .  7 = 1 0.2 = 5 s 

( h )  Similarly, 

((,) 

T = I (12 x IO') s = 83.3 / i s  

7 = 1 (4.2 x 10") s = 238 ns 

10.2 Find the frequencies of periodic currents that have periods of ( ( I )  SO ps, ( h )  42 ms, and (c) I h. 

( ( I )  From f = I 7: f = 1 ( 5 0  x 10 " )  H /  -- 20 k H /  

(h l  Sirnilarlj, f = 1 (-12 x I0 - 3 )  = 23.8 H/ 

2.78 x I0 ' f { /  = 0.278 InH/ 
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10.3 What are the period and frequency of a periodic voltage that has 12 cycles in 46 ms? 

The period is the time taken for one cycle, which can be found by dividing the 12 cycles into the time 
that i t  takes for them to occur (46 ms): T = 461 12 = 3.83 ms. Of course, the frequency is the reciprocal 
of the period: .f' = 1/(3.83 x 10-3) = 261 Hz. Alternatively, but what amounts to the same thing, the 
frequency is the number of cycles that occur in 1 s: f = 12,1'(46 x 10-3) = 261 Hz. 

10.4 Find the period, the frequency, and the number of cycles shown for the periodic wave illustrated 
in Fig. 10-5. 

Fig. 10-5 

The wave has one positive peak at 2 11s and another positive peak at 14 / i s ,  between which times there 
T = 14 - 2 = 12 / i s ,  and the frequency is .f = 1 jT = 1,'(12 x 10-h) Hz = is one cycle. So, the period is 

83.3 kHz. There is one other cycle shown---from - 10 to 2 { is .  

10.5 Convert the following angles in degrees to angles in radians: (a )  49", (h) - 130", and (c) 435". 

(a) 49" x 71 = 0.855 rad 
180' 

71 
(h )  -130 x __-- = -2.27 rad 

180- 

(c) 435- x -? = 7.59 rad 
180 

10.6 Convert the following angles in radians to angles in degrees: (a )  n/18 rad, (h) -0.562 rad, and 
(c) 4 rad. 

180" 
-0.562 x __ = -32.2' (b)  

71 

1 803 
(c) 4 x ---=229" 

II 
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10.7 Find the periods and frequencies of sinusoidal currents that have radian frequencies of 
(a) 9n rad/s, (b) 0.042 rad/s, and (c) 13 Mrad/s. 

From f = o/2n  and T = llf,  

( b )  f = 0.042/2n Hz = 6.68 mHz, 

( U )  f = 9 ~ / 2 ~  = 4.5 Hz, T = 114.5 = 0.222 s 

T = 1 (6.68 x 10-3) = 150 s 

(c) f = 13 x 106/2n HZ = 2.07 MHz, T = I'(2.07 x 10') s = 0.483 11s 

10.8 Find the radian frequencies of sinusoidal voltages that have periods of ( U )  4 s, ( h )  6.3 ms, 
and (c) 7.9 i t s .  

From o = 27rf = 2n/T 

(a) o = 2n/4 = 1.57 rad/s 

(b) o = 2n/(6.3 x 1 O P 3 )  = 997 rad/s 

(c) CO = 2n/(7.9 x 10-6) rad/s = 0.795 Mrad/s 

10.9 Find the amplitudes and frequencies of (a) 42.1 sin (377t + 30') and ( h )  - 6.39 cos ( 105r - 20 ). 

(a) The amplitude is the rnaynirude of the multiplier: 142.1 I = 42.1. Note the vertical lines about 42.1 for 
designating the magnitude operation, which removes a negative sign, if there is one. The radian frequency 
is the multiplier of t :  

(b)  Similarly, the amplitude is 1 - 6.39 1 = 6.39. The radian frequency is 10s rad , 's, from whichf= ( 1 1  2n = 

105/2n Hz = 15.9 kHz. 

377 rad/s. From it, and = t0/2n, the frequency is f = 377 2~ = 60 HI. 

10.10 Find the instantaneous value of 1' = 70 sin 400nt V at t = 3 ms. 

Substituting for f :  v(3 ms) = 70 sin ( 4 0 0 ~  x 3 x 10-3) = 70 sin 1 . 2 ~  V. Sincc the 1 . 2 ~  sinusoidal argu- 
ment is in radians, a calculator must be operated in the radians mode for this etaluation. The result is 
-41.1 V. Alternatively, the angle can be converted to degrees, 1 . 2 ~  x 180 x = 216 , and a calculator 
operated in the more popular decimal degrees mode: ~ ( 3  ms) == 70 sin 216 = -41.1 V. 

10.11 A current sine wave has a peak of 58 mA and a radian frequency of 90 rad s. Find the 
instantaneous current at t = 23 ms. 

From the specified peak current and frequency, the expression for the current is i = 58 sin 90r mA. 
For t = 23 ms, this evaluates to 

i(23 ms) = 58 sin (90 x 23 x 10 - 3 )  = 58 sin 2.07 = 50.9 mA 

Of course, the 2.07 in radians could have been converted to degrees; 
58 sin 118.6" evaluated. 

2.07 x 180 7~ = 118.6 , and then 

10.12 Evaluate (a) U = 200 sin (3393t + n/7) V and ( h )  i = 67 cos (3016r - 42 ) mA at t =  1.1 ms. 

From substituting 1.1 x I O p 3  for t ,  

u(l.1 ms) = 200sin (3393 x 1.1 x 10-3 + n/7) = 200 sin 4.18 = - 172 V 

Operating a calculator in the radians mode is convenient for this calculation because both parts of the 
sinusoidal argument are in radians. 

(b) J ( l . 1  ms)=67cos(3016 x 1.1 x 1 0 - 3 - 4 2 ' ) = 6 7 c o s ( 1 9 0  - 4 2  ) =  -56.9mA 

Note that the first term was converted from radians to degrees so that i t  could be added to the second 
term. Alternatively, the second term could have been converted to radians. 

(a) 

10.13 Find expressions for the sinusoids shown in Fig. 10-6. 
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( b )  
Fig. 10-6 

The sinusoid shown in Fig. 10-611 can be considered to be either a phase-shifted sine wake or  a 
phase-shifted cosine wave- i t  does not make any difference. For the selection o f  a phase-shifted sine wave, 
the general expression is since the peak kalue is shown as 13. The radian frequency 
CL) can be found from the period. One-fourth of a period occurs in the 15-ms time interval from - 5 to 10 ms, 
which means that t o  = 2n T = 271 (60 x 10p3) = 104.7 radis. From the 
zero value at  and the fact that the waveform is going from negative to positive then, just as  a 
sine wave does for a zero argument, the argument can be zero at this time: 104.7(-5 x 10-3) + 8 = 0, 
from which 0 = 0.524 rad = 30 . The result is 

Now consider the equation for the current shown in Fig. 10-6h. From ('1 = 2nf = 2n(60) = 377 rad, s 
and the peak value of 10 mA, with the arbitrary selection of a phase-shifted 
cosine wave. The angle 8 can be determined from the zero value at For this value of m, the 
phase-shifted cosine argument can be 1.5n rad because at  1 . 5 ~  rad = 270' a cosine waveform is zero and 
going from negative to positive, as  can be seen from Fig. 10-3c. So, for tor = 0.7 ~ the argument can 
be from which i = 10 cos (377r + 0.8n) = 

10 cos (377t + 144') mA. 

1' = 12 sin (cl,? + 0). 

T = 4 x 15 = 60 ms. and so 
t = -5  ms 

1' = 12 sin (l04.7r + 0.524) = 12 sin (l04.7r + 30 ) V. 

i = locos (377r + 0) mA, 
tor = 0.7~. 

cot + 8 = 0.7~ + 0 = 1.5n, If = 0 . 8 ~  rad = 144 . The result is 

10.14 Sketch a cycle of 1% = 30 sin (754t + 60 ) V 
abscissa units of time, radians, and degrees. 

A fairly accurate sketch can be made from the initial value, the peaks of 30 and -30 V, and the times 
at  which the waveform is zero and at  its peaks. Also needed is the period, which is T =  2n (0  = Zn 754 = 

8.33 ms. The initial value can be found by substituting 0 for r in the argument. The result is 1 3  = 

30 sin 60 = 26 V. The waveform is zero for the first time when the argument is n radians since sin n = 0. 
This time can be found from the argument with the 60 converted to n 3 radians: from 
which t = 2.78 ms. The next zero is half a period later: 2.78 + 8.3312 = 6.94 ms. The positive peak for 
this cycle occurs at  a time when the sinusoidal argument is n 2: 754t + ni3 = ~ / 2 ,  from which t = 

0.694 ms. The negative peak is half a period later: t = 0.694 + 8.33 2 = 4.86 ms. The radian units for these 
times can be found from (I)? = 754t = 240~r. Of course, the corresponding degree units can be found by 
converting from radians to degrees. Figure 10-7 shows the sinusoid. 

for the period beginning at t = 0 s. Have all three 

754r + n f 3  = n, 

Fig. 10-7 
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10.15 What is the shortest time required for a 2.1 krad ‘s sinusoid to increase from zero to four-fifths 
of its peak value? 

For convenience, the expression for the sinusoid can be considered t o  be I;,, sin (3.1 x I O 3 f ) .  The time 
required for this ~ v a v c  to equal 0.8 1 ;,, can be found from I sin (2.1 x 1 0 3 r )  = 0.8 I;,], urhich simplifies 
to sin (2.1 x 10-‘t) = 0.8. This can be c\~alu:tted for t by taking the in\.crsc sine, callcd the trri*.cinc~, of both 
sides. This operation c;iuscs the sin operation to be cancclcd. Ica\,ing the argument. On a calculator. the 
arcsine may bt: designated by “sin I ”  or  “iisin.” Taking the arcsinc of both sides produces 

sin [sin (2.1 x I 0 3 r ) J  = sin 0 .8  

which simplifies to 2. I x 10-3t = sin ’ 0.8, from \+ hich 

sin 0.8 0.9273 

2.1 x 2.1 x 1O3 
1 =  - - s = 0.442 111s 

The 0.9273 is, of course, in radians. 

10.16 If 50 V is the peak voltage induced i n  the conductor of the alternator shown i n  Fig. 10-2, find 
the voltage induced after the conductor has rotated through an angle of 35 from its vertical 
position. 

When the conductor is in ;i \wticiil position, the induced voltage is a maximum i n  magnitude, but can 
be either positive or ncgatikc The \.ertical position can. for conxniencc, be considered to correspond to 0 . 
Then, since the induced ~ ~ o l t a g c  is sinusoidal. and since thc cosine w;i\’e hits ;t peak a t  0 . the i~oltagc can 
be considered to be r = & 5 0  cos 0. in  bvhich 0 is the angle of the conductor froin the iwtical. So. lv i th  
the conductor at 35 from the iwtical, the induced voltage is 1 3  = & 5 0  cos 35 = _+-I1 V. 

10.17 I f  the conductor i n  the alternator shmvn in Fig. 10-2 is rotating at 60 Hz, and if  the induced 
voltage has a peak of 20 V, find the induced Lroltage 20 ms after the conductor passes through a 
horizontal position if the voltage is increasing then. 

if t = 0 s corresponds to the 
time at which the conductor is in the specified horimntal position. This is the \ oltage expression because 
the induced voltage is sinusoidal, 20 V is specified as the peak, 377 rad s corresponds to 60 H I ,  and sin to t  

is zero at  

The simplest expression for the induced boltage is r = 20 sin 3771 V 

t = 0 s and is increasing. So.  

~ ( 2 0  x 10-3) = 20 sin (377 x 20 x 10- ‘) = 20 sin 7.54 = 20 sin 432 = 19 V 

10.18 Find the periods of ( U )  7 - 4 cos (4001 + 30’ ), ( h )  3 sin’ 4t, and ( ( 8 )  4 cos 3t sin 3f. 

(a )  The expression 7 - 4 cos (4001 + 30 ) is ;i sinusoid of - 4  cos (4001 + 30 ) ”riding” on a con- 
stant 7. Since only the sinusoid contributes t o  the \xri:itions of the w a \ ~ ,  only i t  determines the 
period: T = 2 ~ c  

Because of the squiire, i t  is not immediatelj ob\ious \+(hiit the period is. The identity sin‘ .u = 

( 1  - cos 2s ) , f2  

= 3n 400 s = 15.7 nis. 

( h )  
can be used to eliminate the square: 

From the cosine u’a\re portion, the period is 

Because of the product of the sinusoids in 
the period can be determined. The idcntity 
this by setting 

T = 2~1,8(!) = 2n 8 = 0.785 s. 

sin (.u + \ * )  = sin .u cos j. + sin \ %  cos .u 
( ( 8 )  

4 cos 3t sin 31, sonic simplification must be done before 
can be used for 

j l  = .Y. The rcsult is 

sin (s + s) = sin s cos .u + sin s cos .Y or sin 2.u = 2 sin s cos .Y 
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from which sin x cos .Y = (sin 2.x)i2. Here, s = 3t, and so 

sin(2 x 3t) 
4 cos 3t sin 3t = 4 [ 1 = 2 sin 61 

From this, the period is T = 2n/w = 2n/6 = 1.05 s. 

10.19 Find the phase relations for the following pairs of sinusoids: 

(a )  U = 60 sin (377t + 50”) V, 

(h)  t’, = 6.4 sin (7.lnt + 30”) V, c2 = 7.3 sin (7.Int - 10’) V 

(c )  t’ = 42.3 sin (400t + 60”) V, i = -4.1 sin (400t - 50”) A 

(a) There is no phase relation because the sinusoids have different frequencies. 

(b) The angle by which r l  leads U, is the phase angle of i l l  minus the phase angle of 11,: ang i t l  - ang t’ ,  = 
30’ - ( -  10’) = 40”. Alternatively, i1, lags c 1  by 40 . 

(c) The amplitudes must have the same sign before a phase comparison can be made. The negative sign 
of i can be eliminated by using the identity -sin N = sin (s +_ 180“). The positive sign in & is more 
convenient because, as will be seen, it leads to a phase difference of the smallest angle, as is generally 
preferable. The result is 

i = 3 sin (754t - loo) A 

i = -4.1 sin (400t - 50“) = 4.1 sin (400r - 50 + 180 ) = 4.1 sin (400t + 130^) A 

The angle by which L’ leads i is the phase angle of 1 3  minus the phase angle of 
i: ang 1‘ - ang i = 60“ - 130” = -70 . The negative sign indicates that t l  lags, instead of leads, i by 
70‘. Alternatively, i leads r by 70‘. If the negative sign in & had been used, the result would have been 
that 11 leads i by 290“, which is equivalent to -70 because 360 can be subtracted from (or added to) 
a sinusoidal angle without affecting the value of the sinusoid. 

10.20 Find the angle by which 

Before a phase comparison can be made, both amplitudes must have the same sign, and both sinusoids 
must be of the same form: either phase-shifted sine waves or phase shifted cosine waves. The negative sign 
of i, can be eliminated by using the identity -cos s = cos (-U & 180 ). At this point i t  is not clear whether 
the positive or negative sign is preferable, and so both will be kept: 

i ,  = 3.1 sin (754t - 20‘) mA leads i, = -2.4 cos (754f + 30‘) mA. 

i, = 2.4 cos (754t + 210 ) = 2.4 cos (754r - 150 ) mA 

Both of these phase-shifted cosine waves can be converted to phase-shifted sine waves by using the 
identity cos x = sin (s + 90 ): 

i ,  = 2.4 sin (754t + 300’) = 2.4 sin (754r - 60’) mA 

Now a phase angle comparison can be made: i, leads I, by 
expression, or by 
40” lead is preferable to a -320“ lead. But both are equivalent. 

-20 - 300 = -320 from the first i, 
from the second i, expression. Being smaller in magnitude, the -20” - (-60 ) = 40- 

10.21 Find the average values of the periodic waveforms shown in Fig. 10-8. 

The waveform shown in Fig. 10-8a is a sinusoid “riding” on top of a constant 3 V. Since the average 
value of the sinusoid is zero, the average value of the waveform equals the constant 3 V. 

The average value of the waveform shown in Fig. 10-8b, and of any waveform, is the area under the 
waveform for one period, divided by the period. Since for the cycle beginning at the waveform 
is at 8 V for half a period and is at 1 V for the other half-period, the area underneath the curve for this one 
cycle is, from the height-times-base formula for a rectangular area, 8 x 772 + 1 x 7)’2 = 4.5T. So, the 
average value is 4.5T/T= 4.5 V. Note that the average value does not depend on the period. This is 
generally true. 

t = 0 s, 
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The cycle of the waveform shown in Fig. 10-8c beginning at t = 0 s is a triangle with a height of 10 
and a base of T. The area under the curve for this one cycle is, from the triangular area formula of one-half 
the height times the base, 0.5 x 10 x T = 5T. And so the average value is 5T T =  5 V. 

10.22 What are the average values of the periodic waveforms shown in Fig. 10-9? 

- .-, 
I 

For the cycle starting at t = 0 s, 
is at - 3  A for the next half-period. So, the area for this cycle is 
average value is 

The i, waveform shown in Fig. 10-9h has a complete cycle from 
the area under the curve is 
- 4  x 2 = -8. The algebraic sum of these areas is 
results in an average value of 215 = 0.4 A. 

the i ,  waveform shown in Fig. 10-9t~ is at 8 A for half ;i period and 
and the 

to t = 5 s. For the first 2 s 
-2  x 1 = -2. And for the last 2 s i t  is 

which divided by the period of 5 

8(7', 2)  + ( -  3)( T 2)  = 3.57 ,  

t = 0 s 
2.5T/T= 2.5 A. 

6 x 2 = 12. For the next second it  is 
12 - 2 - 8 = 2. 

10.23 What is the average power absorbed by a circuit component that has a voltage i* = 
flows t h r o u g h  it'? As- 6 sin (377t + 10') V 

sume associated references since there is no statement to the contrary. 
across it when a current i = 0.3 sin (377t - 20 ) A 

The average power is, of course, the average value of the instantaneous power p :  

p = ui = [6 sin (377t + 10')][0.3 sin (377t - 20 )I = 1.8 sin (377t + 10 ) sin (377r - 20 ) W 

This can be simplified using a sine-cosine identity derived by subtracting cos (.U + J-) = cos Y cos J* - 

sin x sin y from cos (x - p) = cos .Y cos y + sin .Y sin y. The result is the identity sin .U sin J' = 

O.S[cos (x - y) - cos (x + y)]. Here, .Y = 377r + 10 and J = 377t - 20 . So. 

p = O.S[l.S COS (377t + 10 - 377t + 20-) - 1.8 COS (377t + 10 + 377t - 20 )] 

= 0.9 COS 30" - 0.9 COS (754t - 10 ) W 
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10.24 

10.25 

10.26 

10.27 

Since the second term is a sinusoid, and so has an average value of zero, the average power equals the 
first term: 

P,,  = 0.9 COS 30 = 0.779 W 

Note in particular that the average power is nut equal to the product of the average voltage 
(OV) and the average current (OA),  nor is i t  equal to the product of the effective value of voltage 
(6/,/2) and the effective value of current (0.3,1, 2). 

- r 

If the voltage across a single circuit component is 
through it of i = 34.1 sin (400t + 10^) mA, 
assumed, what is the component? 

Vm/Im = 40,'(34.1 x 1 0 - 3 ) R  = 1.17 kR. 

L' = 40 sin (400t + 10') V for a current 
and if the references are associated, as should be 

Since the voltage and current are in phase, the component is a resistor. The resistance is R = 

The voltage across a 62-R resistor is 
plot one cycle of the voltage and current waveforms on the same graph. 

From i = ri'R, i = [?O sin (2007rt + 30 )]I62 = 0.484 sin (200nt + 30 ) A. Of course, the period is 
T = 2n/w = 27r/2007r s = 10 ms. For both waves, the curves will be plotted from the initial, peak, and zero 
values and the times at which they occur. At t = 0 s, i = 0.484 sin 30" = 
0.242 A. The positive peaks of 30 V and 0.484 A occur at a time t ,  corresponding to 60" since the sinusoidal 
arguments are 90" then. From the proportionality t ,  = 10/6 = 1.67 ms. 
Of course, the negative peaks occur at a half-period later, at 1.67 + 5 = 6.67 ms. The first zero values occur 
at a time corresponding to 150' because the sinusoidal arguments are 180' then. Using a proportionality 
again, this time is (150/360)( 10) = 4.17 ms. The next zeros occur one half-period later, at 4.17 + 5 = 
9.17 ms. The voltage and current waveforms are shown in Fig. 10-10. The relative heights of the voltage and 
current peaks should not be of concern, because they are in different units. 

11 = 30 sin (2007rt + 30") V. Find the resistor current and 

L' = 30 sin 30" = 15 V and 

t,/T = 60"/360", the peak time is 

30 V 

15 V 
0.242 A 

(ms) 

- 

-30 V 

Fig. 10-10 

A 30-Q resistor has a voltage of U = 170 sin (377t + 30") V 
dissipation of the resistor? 

across it. What is the average power 

Find the average power absorbed by a 2 . 7 4  resistor when the current 
30") A flows through i t .  

i = 1.2 sin (377t + 

P,,  = i I i R  = 0.5(1.2)2(2.7) = 1.94 W 
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10.28 

10.29 

10.30 

10.31 

10.32 

10.33 
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What is the peak voltage at a 120-V electric outlet? 

is \ ' 2  times the effective value, the peak voltage at the outlet is ,,,h x 120 = 170 V. 

The 120 V is the effective value of the sinusoidal voltage at the outlet. Since for a sinusoid the peak 
!-- 

What is the reading of an ac voltmeter connected across a 680-0 resistor that has a current 
of i = 6.2 cos (377r - 20") mA 

The voltmeter reads the effective value of the resistor voltage, which can be found from Ieff  and R. 
Since V ,  = l ,R ,  then Vm/&! = (lm/J2)(R) or V,,, = I,& So, 

flowing through i t ?  

Veff = C(6.2 x 10-3)/k/'2](680) = 2.98 V 

What is the reading of an ac voltmeter connected across a 10-R resistor that has a peak power 
dissipation of 40 W? 

V, = 

J'p,R = vm = 20 V. The effective or rms voltage, which is the voltmeter reading, is Vm,',,'2 = 

The peak voltage V, can be found from the peak power: P ,  = V J ,  = V i / R ,  from which 
7 

20/,/5 = 14.1 V. 

What is the expression for a 240-Hz sine wave of voltage that has an rms value of 120 V ?  

the sine wave is 

'-- 
Since the peak voltage is 120 x t/ 2 = 170 V and the radian frequency is 2n x 240 = 1508 radis. 

L' = 170 sin 1508t V. 

Find the effective value of a periodic voltage that has a value of 20 V for one half-period 
and - 10 V for the other half-period. 

= 100 for 
the second half-period. The next step is to find the average of the squares from the area divided by the 
period: (400 x T /2  + 100 x T /2) /T  = 250. The last step is to find the square root of this average: 

V,,, = J250 = 15.8 V. 

The first step is to square the wave. The result is 400 for the first half-period and ( -  

+.I 

Find the effective value of the periodic current shown in Fig. 10-1 la. 

n 
4 6 

Fig. 10-11 
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The first step is to square the U':I\T, ivhich has ;i period of 8 s. 'The squared w,;ii'c is shou 11 i n  1:ig. 
10-1 1 h. The next step is to find the average of the squared wave, ivhich can be found b! dividing thc arcs 
by the period: [16(3) + 9(6 - 4)] 8 = 8.25. The last step is l o  lind the square root of this avcragc: I , , ,  = -- 

8.25 = 2.87 A. 

10.34 Find the reactances of a 120-mH inductor at ( U )  0 Hz (dc), ( h )  40 rad s. (c) 60 Hz, and ( t l )  
30 kHz. 

From X ,  = COL = 27cfL 

( U )  

( h )  X I ,  = 40(120 x 10- ') = 4.8 SZ 

(c) X I *  = 2~(60)(120 x 10 ') = 45.2 SZ 

( d )  

X,< = 27c(0)( 120 x 10 3 )  = 0 !2 

X I ,  = 2 ~ ( 3 0  x 10')( 120 x 10 .3) R -- 22.6 kQ 

10.35 Find the inductances of the inductors that have reactances of ( ( I )  5 R at 377 rad s, ( h )  1.2 kR at 
30 kHz, and (c.) 1.6 MR at 22.5 Mhz. 

Solving for L in X ,  = ( t ) L  results in 

L = 51'377 H = 13.3 mH 

L = (1.2 x 1O3) (27c x 30 x 1O3) H = 6.37 niH 

L = (1.6 x 106) ( 2 ~  x 22.5 x 10") H = 11.3 i11H 

I, = 'Y,, ( 1 1  = A',, 2nf.  So, 

(a) 

( h )  

(c) 

10.36 Find the frequencies at which ;L 250-mH inductor has rt';ict;inces of 30 R and 50 kR. 

From X ,  = C ~ ) L  = 2nfL, the frequencj is f = X ,  2nI,, and s o  

so x 10 
~ H/ = 31.8 h H /  -~ 

30 
f' - - 19.1 H /  and f r  = 

27c x 250 x 10 2i I  x 250  x 10 

10.37 What is the voltage across a 30-mH inductor that has a 40-mA, 60-H7 currcnt fo\vtng through i t ?  

The specified current is, of course. the cfTcctiLc wluc,  and the desired ioltagc IS the eITccti\c \ a luc  of 
voltage, although not specifically stated. I n  general. the ac current and ~ o l t a g e  i ~ i l u c ~  gi\cii arc ctlccti\c 

values unless otherwise specified. Because 
So, here. 

X , ,  = b;,, I,". i t  follows that 
V,,, = ICTfX,, = (40 x 10- 'N2n x 60)(30 x 10 ') = 0.452 V.  

A', = ( I , , ,  \ 2)  (I,,, \ 21 = l c l l  111 ,  

10.38 The voltage r = 30 sin (2007rr + 30 ) V is across an inductor that has a reactance of 62 R. Find 
the inductor current and plot one cycle of the voltage and current on the siime graph. 

the current lags the voltage by 90 , 
The current peak equals the i ~ l t a g c  peak diiided by the reactance: I,,, = 30 62 = 0.383 A .  And. since 

i = 0.484 sin (200nr + 30 - 90 ) = 0.483 sin (200nr - 60 ) A 

The voltage graph is the saine as that shourii in Fig. 10-10. The current graph for these \allies. t l i~ugh .  
differs from that in Fig. 10-10 by a shift right by a time corresponding to 90°, U hich tlmc 1s c>nc-fourth of ;I 

period: 10 4 = 2.5 ins. The wxccforms arc shonn in Fig. 10-12. 
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I 30 V 

15 v 

-0.4 I9 A 

-30 V r 
Fig. 10-12 

10.39 Find the voltages across a 2-H inductor for the following currents: 
(a) 10 A, 
references because there is no statement to the contrary. 

( U )  

(b)  10 sin (377t + 10 ) A, and ( c )  10 cos (lO't - 20') A. As always, assume associated 

The inductor voltage is zero because the currcnt is a constant and the time derivative of a constant 
is zero: I' = 2 d( 10) dr = 0 V. From another point o f  view, the reactance is 0 Q because the frequency 
is 0 Hz, and SO 

The voltage peak equals the currcnt peak times the reactance of 377 x 2 = 754 Q: 
V", = I , , X ,  = 1q0) = 0 V. 

( h )  

= I,X,. = 10 x 754 V = 7.54 kV 

Since the voltage leads the current by 90 and since sin ( Y + 90 ) = cos s, 

I' = 7.54 sin (377t + 10 + 90 ) = 7.54 cos (377t + 10 ) kV 

(c) Similarly, Vm = f m X ,  = tO(10' x 2)  V = 0.2 MV. and 

I' = 0.2 COS ( 104t - 20 + 90 ) = 0.1 COS ( t04r + 70 ) M V  

10.40 Find the reactances of a 0.1-pF capacitor at ( N )  0 Hz (dc), ( h )  377 radi's, (c) 30 kHz, and 
(d) 100 MHz. 

From X c  = - 1 '(IK = - 1 2i~/'C, 

- 1  

2r(100 x tO'X0.1 x to-') 
( d )  x, = - Q = - 15.9 mQ 

10.41 Find the capacitances of capacitors that have a reactance of -5OOQ at 
and (c) 22.5 MHz. 

(CI) 377 radis, ( h )  10 kHz, 

Solving for C in X,- = - 1 (oC results in C = - 1 (oxc = - 1 (27c.1 x X c ) .  So. 

- I  
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- 1  

27r( 10 x 103)( - 500) 
( h )  c = F = 0.0318 jtF 

- 1  

2 ~ ( 2 2 . 5  x lob)(-500) 
( c )  c=------ F = 14.1 pF 

10.42 Find the frequencies at which a 2-pF capacitor has reactances of -0.1 and -2500 0. 

From X,. = - 1 i(oC = - 1 27r/C, the frequency is f =  - l/(Xc x 2nC). So, 

- 1  - 1  
.I; = HZ = 796 kHz and fz = = 31.8 HZ 

-0.1 x 27c x 2 x 10-h -2500 x 271 x 2 x 10-6 

10.43 What current flows through a O.1-pF capacitor that has 200 V at 400 Hz across it? 

Although not specifically stated, i t  should be understood that the effective capacitor voltage is specified 

are divided by v’’2, the 
r-- 

and the effective capacitor current is to be found. If both sides of I ,  = ( L V ,  
result is I,!, 2 = d I ’ ,  2 or I,,, = wCK,,. So, 

- - 

Iefr = 2n(400)(0.1 x 10-6)(200) A = 50.3 mA 

10.44 What is the voltage across a capacitor that carries a 120-mA current if the capacitive reactance 
is -230 R?  

From the solution to Prob. 10.43, I,,, = (r)CK,, or V,,, = I,,,( 1 , ’ d ‘ ) .  Since l /oC is the nzaynirude of 
V,,, = I e f C I X C ( .  capacitive reactance, the effective voltage and current of a capacitor have a relation of 

Consequently, here, V,,, = (120 x 10-‘))( -2301 = 27.6 V. 

10.45 The voltage t- = 30 sin (200nt + 30 ) V is across a capacitor that has a reactance of -62 Q. 

V, I ,  = 1 itoC = IX,.), the current peak equals the voltage peak divided by the magnitude of 
I ,  = 30 1-621 = 0.484 A. And, since the current leads the voltage by 90‘. 

Find the capacitor current and plot one cycle of the voltage and current on the same graph. 

capacitive reactance: 
From 

i = 0.484 sin (2007rr + 30 + 90‘) = 0.484 cos (2007rt + 30 ) A 

Notice that the current sinusoid has the same phase angle as the voltage sinusoid, but, because of the 
90 lead, is a phase-shifted cosine wave instead of the phase-shifted sine wave of the voltage. 

The voltage graph is the same as that in Fig. 10-10. The current graph differs from that in 
Fig. 10-10 by a shift left by a time corresponding to 90°, which time is one-fourth of a period: 1014 = 
2.5 ms. The waveforms are shown in Fig. 10-13. 

30 V 

0.484 A 
0.419 A 

15 V 

(ms) 

-30 V 

Fig. 10-13 
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10.46 What currents flow through a 2-pF capacitor for voltages of ( U )  c = 5 sin (377t + 10 ) V and 
( h )  = 12 cos (104t - 207 v? 
(a) The current peak equals coC times the voltage peak: 

I ,  = wCV, = 377(2 x 10-')(5) A = 3.77 mA 

Also, because the capacitor current leads the capacitor voltage by 90 and the voltage is a phase-shifted 
sine wave, the current can be expressed as a phase-shifted cosine wave with the same phase angle: 
i = 3.77 cos (377r + 10 ) mA. 

(b) The current peak is 

I ,  =  to^^, = 1072 x 10-6)(12) = 0 . 2 4 ~  

Also, the current leads the voltage by 90 . As a result, 

i = 0.24cos(104r - 20 + 90 ) = 0.24cos(104t + 70 ) A  

Supplementary Problems 
10.47 Find the periods of periodic currents that have frequencies of (u )  1.2 mHz, ( h )  2.31 kHz, and (c') 

16.7 MHz. 

Ans. ( U )  833 S, (b)  433 p s ,  (c) 59.9 ns 

10.48 What are the frequencies of periodic voltages that have periods of (a) 18.3 ps. (h )  42.3 s. and (c) 1 d? 

Ans. (a) 546 GHz (gigahertz- i.e., 10' Hz), (h )  23.6 mHz, (c) 11.6 pHz 

10.49 What are the period and frequency of a periodic current for which 423 cycles occur in 6.19 ms? 

Ans. 14.6 p, 68.3 kHz 

10.50 Convert the following angles in degrees to angles in radians: (a) -40L, ( h )  - 1123-, and (c) 78 . 

Ans. (a) -0.698 rad, (h )  - 19.6 rad, (c)  1.36 rad 

10.51 Convert the following angles in radians to angles in degrees: (a) 13.4 rad, ( b )  0.675 rad, and (c )  
- 11.7 rad. 

Ans. (a)  768", (6) 38.7', (c) -670 

10.52 Find the periods of sinusoidal voltages that have radian frequencies of (a) 12077 radis, ( b )  0.625 rad/s, 
and (c) 62.1 kradp. 

Ans. (a) 16.7 ms, (b)  10.1 s, (c) 101 ps 

10.53 Find the radian frequencies of sinusoidal currents that have periods of (a) 17.6 p s ,  ( b )  4.12 ms, and (c) 
1 d. 

Ans. (a)  357 kradls, (b) 1.53 krad/s, (c) 72.7 prad/s 

10.54 What are the amplitudes and frequencies of (a )  - 63.7 cos (754t - SO') and (h)  429 sin (4000t + 1 S')? 

Ans. (a )  63.7, 120 Hz; (b) 429, 637 Hz 

10.55 Find the instantaneous value of i = 80 sin 500r mA at (a )  t = 4 ms and (b)  r = 2.1 s. 

Ans. (a)  72.7 mA, (b) 52 mA 
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10.56 

10.57 

10.58 

10.59 

10.60 

10.6 1 

10.62 

10.63 

10.64 

10.65 

10.66 

10.67 

What is the frequency of a sine w a ~ c  of \oltngc ifrhich has a 45-V peak a n d  LLhich continuouslq iiicrca\cs 
from 0 V at r = 0 s to 24 V at r = 46.2 ins? 

Ans. I .94 Hz 

I f  a voltage cosine wave has a peak txlue of 30 V at 
voltage to decrease from 20 to 17 V,  find the troltiige a t  

t = 0 s, and if i t  takes it ininimum of 0.123 s for t h i x  
t = 4.12 s. 

Ans. 19.3 V. 

What is the instantaneous value of i = 13.2 cos (3771 + SO ) mA 

Ans. ( U )  - 10 mA. ( h )  7.91 mA 

at ( ( I )  t = -42.1 ms and ( h )  t = 6.3 s? 

Find an expression for a 400-Hz sinusoidal current that has a 3.3-A positikc peak at 

Ans. 

I = -0.45 ins. 

i = 2.3 cos (800nf + 64.8 ) A 

Find an expression for a sinusoidal troltage that is 0 V at 

peak of 15 V at 

Ans. I' = 15 sin ( 1 0 3  + 49.1 ) V 

r = -8.13 ms. after which i t  increases to ;I 

t = 6.78 ms. 

What is the shortest time required for it 3.3-krad s sinusoid to incrcasc from tL+o-lifthx to four-lifths of its 
peak value'? 

Ans. 120 /is 

I f  43.7 V is the peak voltage induced in the conductor of the alternator shourii in  Fig. 10-2. find thc ~ o l t a g c  
induced after the conductor has rotatcd through an iiiigle of 43 from its hori/orital position. 

Ans. k29.8 V 

If  the conductor of the alternator in Fig. 10-2 is rotating :it 400 H/, and i f  the induced taltage ha\ ;I 23-V 
peak, find the induced voltage 0 23 m5 after the conductor pasws throiigh its Lcrtical position 

Ans. _+ 19.3 V 

Find the periods of ( U )  4 + 3 sin (800m - 15 ). 

Ans. (a) 2.5 ms, ( h )  I 1  1 ms, ( c )  196 nis 

( h )  8.1 cos2 9711, and ( c )  8 sin 16r cos 16t. 

Find the phase relations for the following pairs of sinusoids: 

( U )  t' = 6 sin (301 - 40 ) V. 

( h )  t', = -8 sin (401 - 80 ) V. 

( ( 8 )  i l  = 4 cos (70r - 40 ) mA. 

( d )  I' = - 4  sin (451 + 5 ) V. 

Ans. (a) I' leads i by 20 . 

i = 10 sin (30r - 71 3) inA 

= -- 10 sin (40r - 50 ) V 

I ,  = -6  cos (70r + 80 ) mA 

i = 7 cos (45r + 80 ) mA 

( h )  [ j l  lags r Z  by 30 . ( c s )  i ,  leads i, by 60 , ( t l )  I '  leads i b j  15 

Find the average value of a half-Lvave rectified sinusoidal voltage that has a peak of 12 V.  This wxvc consists 
only of the positive half-cycles of the sinusoidal voltage. I t  is zero during the times that the siriuscidal is 
negative. 

Ans. 3.82 V 

Find the average values of the periodic haLeforms shobn in Fig. 10-111. 

Ans. (LI) 3 . 5 ,  ( h )  4, ( c )  15 
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( b )  

Fig. 10-14 

10.68 What is the average power absorbed by a circuit component that has a voltage 
a current 

Ans. 50 W 

I' = 10 V across i t  when 
i = 5 + 6 cos 33r A flows through i t ' ?  

10.69 Find the average power absorbed by a circuit component that has a voltage 
across it  when a current 

Ans. 149 mW 

r = 20.3 cos (754t - 10 ) V 
i = 15.6 cos (7541 - 30 ) mA flows through it. 

10.70 What is the conductance of a resistor that has a voltage 
current flows through it? 

I' == 50.1 sin (200nr + 30 ) V across i t  when a 
i = 6.78 sin (200nt + 30 ) mA 

Ans. 135 ,US 

10.71 If the voltage 

Ans. 

I'  = 150 cos (377r + 45 ) V is across a 33-kR resistor, what is the resistor current'? 

i = 4.55 cos (377r + 45 ) mA 

10.72 Find the average power absorbed by an 82-R resistor that has a voltage 
it. 

L? = 31 1 cos (3771 - 45 ) V across 

.4ns. 590 W 

10.73 What is the average power absorbed by ;i 910-R resistor that has a current 
flowing through i t ?  

Ans. 43.3 mW 

i=9.76 sin (7541 - 36 ) mA 

10.74 Find the average power absorbed by a resistor having a voltage 
and a current flowing through it. 

( 5  = 87.7 cos (400nr - 15 ) V across i t  
i = 2.72 cos (400nr - 15 ) mA 

Ans. 119 m W  

10.75 What is the reading of an ac ammeter that is in series with a 4 7 0 4  resistor that has a voltage 
150 cos (377t + 30 ) V 

L' = 

across i t ?  

Atis. 226 mA 

10.76 What is the reading of an  ac ammeter that is in series with a 270-R resistor that has a peak power dissipation 
of 10 W'? 

Atis. 136 mA 
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10.77 

10.78 

10.79 

10.80 

10.81 

10.82 

10.83 

10.84 

10.85 

10.86 

10.87 

10.88 

10.89 

10.90 

What is the expression for a 400-Hz current cosine wave that has an effective value of 13.2 niA? 

Ans. i = 18.7 cos 8007ct mA 

Find the effective value of I' = 3 + 2 sin 4r V. ( H i n t :  Use a sinusoidal identity in finding the average value 
of the squared voltage.) 

Ans. 3.32 V 

Find the effective value of a periodic current that has a value o f  40 mA for turo-thirds of a period and 25 mA 
for the remaining one-third of the period. Would the effective value be different i f  the current were -25 mA 
instead of 25 mA for the one-third period'? 

Ans. 35.7 mA. no 

Find the effective value of a periodic current that in a 20-ms period has a value of 0.761 A for 4 ms, 0 A for 
2 ms, -0.925 A for 8 ms, and 1.23 A for the remaining 6 ms. Would the effectikte kdue be different if  the 
time segments were in seconds instead of in milliseconds'? 

Ans. 0.955 A. no 

Find the reactances of a 180-mH inductor at ( U )  754 radis, ( h )  400 Hz, and (c) 250 kHz. 

Ans. ( U )  136 R, (h )  452 R, (c) 283 kR 

Find the inductances of the inductors that have reactances of ( U )  72.1 R at 754 rad s, (h )  11.9 R at 12 kHz, 
and (c) 42.1 k f l  at 2.1 MHz. 

Ans. ( U )  95.6 mH, ( h )  158 pH,  ( ( 8 )  3.19 mH 

What are the frequencies at which a 120-mH inductor has reactances of ( U )  45 R and 

Ans. (a)  59.7 Hz, ( h )  129 kHz 

( h )  97.1 kR? 

What current flows through an 80-mH inductor that has 120 V at 60 Hz across i t '?  

Ans. 3.98 A 

What is the inductance of the inductor that will draw a current of 250 mA when connected t o  a 120-V, 
60-Hz voltage source'? 

Ans. 1.27 H 

What are the currents that flow in a 500-mH inductor for voltages of (a )  1 1  = 170 sin (4001 + n 6) V 
( b )  t' = I56 COS (10001 + 10 ) V? 

and 

Ans. (a)  i = 0.85 sin (4001 - 60 ) A ,  ( h )  i = 0.312 sin (1000r + 10 ) A 

Find the reactances of a 0.25-pF capacitor at ( U )  754 rad/s, (h )  400 Hz, and (c) 2 MHz. 

Ans. (a)  -5.31 kR, ( h )  - 1.59 kR, (c) -0.318fl 

Find the capacitances of the capacitors that have reactances of ( U )  -700 R at 377 rad s, 
400 Hz, and (c) - 1.23 kR at 25 kHz. 

Ans. ( a )  3.79 pF, ( h )  0.884 pF, ( ( 8 )  5.18 nF 

( h )  -450 R at 

Find the frequency at which a O.1-pF capacitor and a 120-mH inductor have the same magnitude of reactance. 

Ans. 1.45 kHz 

What is the capacitance of a capacitor that draws 150 mA when connected to a 100-V, 400-Hz voltage source? 

Ans. 0.597 p F  
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10.91 What are the currents that flow in a 0.5-pF capacitor for capacitor voltages of (a) L' = 190 sin (3771 + 15 ) V 
and 

Ans. 

(b) t' = 200 cos (lOOOt - 40") V? 

( a )  i = 35.8 cos (377t + 15') mA, (6) i = 0.1 cos (1000t + 50") A 

10.92 What are the voltages across a 2-pF capacitor for currents of (a) i = 7 sin (754t + 15 ) mA and 
( b )  i = 250 cos (103t - 30") mA? 

Ans. ( U )  L' = 4.64 sin (754t - 75") V, (b)  c = 125 sin (103t - 30') V 



Chapter 11 

Complex Algebra and Phasors 

INTRODUCTION 

The best way to analyze almost all ac circuits is by using complex algebra. Complex algebra is an 
extension of the algebra of real numbers---the common algebra. In complex algebra, though, complex 
numbers are included along with their own special rules for addition, multiplication, subtraction, and 
division. As is explained in Chaps. 12 and 13, in ac circuit analysis, sinusoidal voltages and currents are 
transformed into complex numbers called phasors; resistances, inductances, and capacitances are 
transformed into complex numbers called impedances; and then complex algebra is applied in much the 
same way that ordinary algebra is applied in dc circuit analysis. 

A scientific calculator will operate on complex numbers as readily as on real numbers. But still i t  
is important to know how to perform the various operations on complex numbers without the use of a 
calculator. 

IMAGINARY NUMBERS 

The common numbers that everyone uses are real numbers. But these are not the only kind of 
numbers. There are also imaginary numbers. The name “imaginary” is misleading because it  suggests 
that these numbers are only in the imagination, when actually they are just as much numbers as the 
common real numbers. Imaginary numbers were invented when it became necessary to have numbers 
that are square roots of negative numbers (no real numbers are). This inventing of numbers was not 
new since it had been preceded by the inventions of noninteger real numbers and negative real numbers. 

Imaginary numbers need to be distinguished from real numbers because different rules must be 
applied in the mathematical operations involving them. There is no one universally accepted way of 
representing imaginary numbers. In the electrical field, however, it is standard to use the letter j, as in 
j2, jO.01, and -j5.6. 

The rules for adding and subtracting imaginary numbers are the same as those for adding and 
subtracting real numbers except that the sums and differences are imaginary. To illustrate, 

j 3  + j 9  = j12 j12.5 - j3.4 = j9.1 j6.25 - j8.4 = - j2.15 

The multiplication rule, though, is different. The product of two imaginary numbers is a real number 
that is the negative of the product that would be found if the numbers were real numbers instead. For 
example, 

jZ(j6) = - 12 j4( -j3) = 12 -j5( - j4) = - 20 

Also, jl(j1) = - 1, from which j l  = fi. Likewise, j 2  = 0, 
be shown by starting with (j1)2 = j l ( j l )  = - 1 
ting. As an illustration, ( j l )3  = j l ( j1)2 = j l(-  1) = -jl 

being imaginary, is the same as if the numbers were both real. For example, 

j 3  = J-9. and so forth. 
Sometimes powers ofjl appear in calculations. These can have values of 1,  - 1, j l ,  and - j l ,  as can 

and then progressively multiplying by j l  and evalua- 

The product of a real number and an imaginary number is an imaginary number that, except for 
30’5) = j l 5  and 

In the division of two imaginary numbers, the quotient is real and the same as if  the numbers were 

and ( j l )4  = j l ( j l ) 3  = j l ( - j l )  = 1. 

-j5.  l(4) = -j20.4. 

real. As an illustration, 

j20 -- and - -0.2 _ -  - 2  j 8  
j 4  -jlOO 

21 7 
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A convenient memory aid for division is to treat thej’s as if they are numbers and to divide them out as in 

d16 - 8 8  

This should be viewed as a memory aid only, becausej just designates a number as being imaginary 
and is not a number itself. However, treatingj as a number in division, as well as in the other mathematical 
operations, is often done because of convenience and the fact that it does give correct answers. 

If an imaginary number is divided by a real number, the quotient is imaginary but otherwise the 
same as for real numbers. For example, 

4 

j2.4 
___- 

j16 
- = j4  and - -j4 
4 - 0.6 

The only difference if the denominator is imaginary and the numerator is real is that the quotient is the 
negative of the above. To illustrate, 

The basis for this rule can be shown by multiplying a numerator and denominator by j l ,  as in 

225 225 x j l  j225 
= -1.45 - - __ -- - 

j 5  j 5  x j l  - 5  

Multiplying to make the denominator real, as here, is called rutionuliziny. 

COMPLEX NUMBERS AND THE RECTANGULAR FORM 

If a real number and an imaginary number are added, as in 3 + j 4 ,  or subtracted, as in 6 - J S ,  the 
result is considered to be a single complex number in rectunyulur form. Other forms of complex numbers 
are introduced in the next section. 

A complex number can be represented by a point on the conzples plune shown in Fig. 11.1. The 
horizontal axis, called the reul uxis, and the vertical axis, called the inzuyinarj~ usis, divide the complex 

Imaginary axis 
-4 + j4  

0 i4 

2nd quadrant J 3  1 
J l  J2  1 

1 s t quad rant 

0 
4 + j2 

-* - j 3  -J21 - j 3  

4th quadrant -j4 + 3rd quadrant 

Fig. 11-1 
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plane into four quadrants, as labeled. Both axes have the same scale. The points for real numbers art' 
on the real axis because a real number can be considered to be a complex number with a zero imaginar) 
part. Figure 11-1 has four of these points: - 5 ,  - 1,  2, and 4. The points for imaginary numbers are on 
the imaginary axis because an imaginary number can be considered to be a complex number with a zero 
real part. Figure 11-1 has four of these points:j3,jl,  -j2, and -j4. Other complex numbers have nonzero 
real and imaginary parts, and so correspond to points off the axes. The real part of each number gives 
the position to the right or  to the left of the vertical axis, and the imaginary part gives the position 
above or below the horizontal axis. Figure 11-1 has four of these numbers, one in each quadrant. 

In Fig. 11-1 the complex numbers 4 + j 2  and 4 - .j2 have the same real part, and they also have the 
same imaginary part -except for sign. A pair of complex numbers having this relation are said to be 
conjugates: 4 + j 2  is the conjugate of 4 - ,j2, and also 4 - j 2  is the conjugate of 4 + ,j2. Points for conjugate 
numbers have the same horizontal position but opposite vertical positions, being equidistant on opposite 
sides of the real axis. If lines are drawn from the origin to these points, both lines will have the same 
length, and, except for sign, the same angle from the positive real axis. (Angles are positive if  measured 
in a counterclockwise direction from this axis, and negative if measured in a clockwise direction.) These 
graphical relations of conjugates are important for the polar form of complex numbers presented in the 
next section. 

The rectangular form is the only practical form for addition and subtraction. These operations 
are applied separately to the real and imaginary parts. As an illustration, ( 3  + j 4 )  + (2 + j 6 )  = 

5 + j l 0  
In the multiplication of complex numbers in the rectangular form, the ordinary rules of algebra are 

used along with the rules for imaginary numbers. For example, 

and (6 - j7)  - (4 - j2)  = 2 - j5. 

(2 +j4)(3 + j 5 )  = 2(3) + 2(j5) +j4(3) +j4( j5)  = 6 + j 1 0  + j 1 2  - 20 = - 14 +,j22 

It follows from this multiplication rule that if a complex number is multiplied by its conjugate, the 
product is real and is the sum of the real part squared and the imaginary part squared. To illustrate, 

(3 +j4)(3 -j4) = 3(3) + 3( -j4) +j4(3) +j4(  -j4) = 9 -j12 +j12 + 16 = 9 + 16 = J2 + 4' = 25 

In the division of complex numbers in rectangular form, the numerator and denominator are first 
multiplied by the conjugate of the denominator to make the denominator real, or rationalized, so that 
the division will be straightforward. As an example of this operation, consider 

10 +j24  (10 +j24)(6 -j4) 156 +j104 156 +j104 - - - - 3 + ) 2  __ - _ _ _ _ ~ _ _ ~  - - - -- - 
6 + j4  (6 +j4)(6 - j4) 62 + 42 52 

POLAR FORM 

The polur form of a complex number is a shorthand for the csponc~ntiul.fi,r.ni. Polar or exponential 
forms are usually the best forms for multiplying and dividing, but are not useful for adding and subtracting 
unless done graphically, which is rarely done. Typically, though, a scientific calculator can add and 
subtract complex numbers in polar form as well as in rectangular form. The exponential form is AL.'', 
where A is the magnitude and 0 is the ungle of the complex number. Also, e = 2.718 . . . is the base of 
the natural logarithm. The polar shorthand for A d e  is A B  as in -8eJh0 = 

-8/60.'. Although both forms are equivalent, the polar form is much more popular because it  is easier 
to write. 

cjJo = cos 0 + 
j sin 0. As an illustration, 7yJ3O = 7/30' = 7 cos 30 +.j7 sin 30 = 6.06 +j3 .5 .  This use of Euler's 
identity not only shows that a number such as is a complex number, but also gives a 
method for converting a number from exponential or polar form to rectangular form. 

4eJ4' = 4/45' and in 

That a number such as 5ej60 is a complex number is evident from Eukr :r idmtitjy: 

A d o =  A,@ 
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Another use of Euler's identity is for deriving formulas for converting a complex number from 
rectangular form to the exponential and polar forms. Suppose that x and y are known in .Y + j j ? ,  
and that A and 0 are to be found such that x + j y  = AeJ' = Ak. By Euler's identity, .x + j y  = 

A cos 8 + j A  sin 8. Since two complex numbers are equal only if the real parts are equal and if the 
imaginary parts are equal, it follows that y = A sin 0. Taking the ratio of these 
equations eliminates A :  

x = A cos 0 and 

1 y  from which 8 =  tan- - 
/sin 8 I' 
/cos 0 .x x 
-- - tan 8 = - 

(Note that if x is negative, 180" must be either added to or subtracted from 0.) So, 0 can be found from 
the arctangent of the ratio of the imaginary part to the real part. With 0 known, A can be found by 
substituting 8 into either x = A cos 0 or into 

Another popular way of finding A is from a formula based on squaring both sides of A cos 8 = s 
and of A sin 8 = y and adding: 

y = A sin 8. 

cos' 8 + sin' O = ~ ' ( ~ 0 s '  0 + sin2 0) = x2 + y2 

But since, from trigonometry, cos20 + sin2 0 = 1, it follows that A2 = x 2  + y2 and A = 

Jx2 + y2. So, the magnitude of a complex number equals the square root of the sum of the squares of 
the real and imaginary parts. Most scientific calculators have a built-in feature for converting between 
rectangular and polar forms. 

This conversion can also be understood from a graphical consideration. Figure 11-2u shows a 
directed line from the origin to the point for the complex number x + j y .  As shown in Fig. 11-2h, this 
line forms a right triangle with its horizontal and vertical projections. From elementary trigonom- 
etry, x = A cos 0, y = A sin 0, and A = p+ y 2 ,  in agreement with the results from Euler's 
identity. Often this line, instead of the point, is considered to correspond to a complex number because its 
length and angle are the amplitude and angle of the complex number in pokr  form. 

Real axis 

( a  1 

Fig. 11-2 

As has been mentioned, the conjugate of a complex number in rectangular form differs only in the 
sign of the imaginary part. In polar form this difference appears as a difference in sign of the angle, as 
can be shown by converting any two conjugates to polar form. For example, 6 + j S  = 7.8lL39.8- 
and its conjugate is 

As stated, the rectangular form is best for adding and subtracting, and the polar form is often best 
for multiplying and dividing. The multiplication and division formulas for complex numbers in polar 
form are easy to derive from the corresponding exponential numbers and the law of exponents. The 
product of the complex numbers AeJe and Be"#' is (Aeie)(Bej4) = which has a magnitude A B  
that is the product of the individual magnitudes and an angle 8 + 4 that, by the law of exponents, is 
the sum of the individual angles. In polar form this is 

6 - j 5  = 7.81/-39.8'. 

A& x B b  = AB/O + 4. 
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For division the result is 

So, the magnitude of the quotient is the quotient A / B  of the magnitudes, and the angle of the quotient 
is, by the law of exponents, the difference 8 - 4 of the numerator angle minus the denominator angle. 

PHASORS 

By definition, a phasor is a complex number associated with a phase-shifted sine wave such that, 
if the phasor is in polar form, its magnitude is the effective (rms) value of the voltage or current 
and its angle is the phase angle of the phase-shifted sine wave. For example, V = 3/45" V 
is the phasor for U = 3 f i  sin (377t + 45") V and I = 0.439/-27" A is the phasor for i = 

0.621 sin (754t - 27") A. Of course, 0.621 = a ( 0 . 4 3 9 ) .  
Note the use of the boldface letters V and I for the phasor voltage and current quantity symbols. 

It is conventional to use boldface letter symbols for all complex quantities. Also, a superscript asterisk 
is used to designate a conjugate. As an illustration, if V = -6 + j l O  = 11.7/121" V, then V* = 
-6  - j l O  = 11.7/- 121" V. The magnitude of a phasor variable is indicated by using lightface, and the 
magnitude of a complex number is indicated by using parallel lines. For example, if  I = 3 +j4 = 

5/53.1" A, then I = 13 +j4I = (5/53.1"1 = 5 A. 
A common error is to equate a phasor and its corresponding sinusoid. They cannot be equal because 

the phasor is a complex constant, but the sinusoid is a real function of time. In short, i t  is uirong to 
write something like 

Phasors are usually shown in the polar form for convenience. But the rectangular form is just as 
correct because, being a complex number, a phasor can be expressed in any of the complex number 
forms. Not all complex numbers, though, are phasors-just those corresponding to sinusoids. 

There is not complete agreement on the definition of a phasor. Many electrical engineers use the 
sinusoidal peak value instead of the effective value. Also, they use the angle from the phase-shifted cosine 
wave instead of the sine wave. 

One use of phasors is for summing sinusoids of the same frequency. If each sinusoid is 
transformed into a phasor and the phasors added and then reduced to a single complex number, this 
number is the phasor for the sum sinusoid. As an illustration, the single sinusoid corresponding to v = 
3 sin (2t + 30") + 2 sin (2t - 15") V can be found by adding the corresponding phasors, 

3/30" = 3 f i  sin (or + 30"). 

3 2 4.64 
V = - L O O  + --/-15" = --/12.2"V 

3 3 $ 
and then transforming the sum phasor to a sinusoid. The result is c = 4.64sin (2t + 12.2") V. This 
procedure works for any number of sinusoids being added and subtracted, provided that all have the 
same frequency. 

Notice that using f i  did not contribute anything to the final result. The $ was introduced in 
finding the phasors, and then deleted in transforming the sum phasor to a sinusoid. When the problem 
statement is in sinusoids and the answer is to be a sinusoid, it is easier to neglect the t./z and use phasors 
that are based on peak values instead of rms values. 

Phasors are sometimes shown on a complex plane in a diagram called aphasor diagram. The phasors 
are shown as arrows directed out from the origin with lengths corresponding to the phasor magnitudes, 
and arranged at angles that are the corresponding phasor angles. Such diagrams are convenient for 
showing the angular relations among voltages and currents of the same frequency. Sometimes they are 
also used for adding and subtracting, but not if accuracy is important. 

Another diagram, called a funicular diagram, is more convenient for graphical addition and 
subtraction. In this type of diagram the adding and subtracting are the same as for vectors. For adding, 
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the arrows of the phasors are placed end to end and the sum phasor is found by drawing an arrow from 
the tail of the first arrow to the tip of the last. I f  a phasor is to be subtracted, its arrow is rotated 180 
(reversed) and then added. 

Solved Problems 

11.1 Perform the following operations: 

(a) The rules for adding and subtracting imaginary numbers are the same as for adding and subtracting 
real numbers, except that the result is imaginary. So, 

j 2  + j3 - j6 - j8 = j5 - j14 = -j9 

(b )  The numbers can be multiplied two at a time, with the result 

[ j2( - j3)] u4( - j6)] = 6( 24) = 144 

Alternatively, j l  can be factored from each factor and a power of j l  found times a product of real 
numbers: 

j2( -j3X j4M -j6) = ( jU4[2( - 3)(4)( - 6)] = 1( 144) = 144 

The denominator can be made real by multiplying the numerator and denominator by j l ,  and then 
division performed as if the numbers were real-except that the quotient is imaginary: 

(c) 

= -j4 j l  - U j l )  - 
1 

j0.25 j0.25( j l )  - 0.25 

Alternatively, since l/jl = -jl,  

(d )  For convenience, the j's can be considered to be numbers and divided out: 

j l O O  IjclOO 
= 12.5 - _ _ _ _  - 

-8 

11.2 Add or subtract as indicated, and express the results in rectangular form: 

(a) (6.21 + j3.24) + (4.13 -j9.47) 

(6) (7.34 - j1.29) - (5.62 + j8.92) 

(c) (-24 + j12) - (-36 - j16) - (17 -j24) 

The real and imaginary parts are separately added or subtracted: 

(6.2 1 + j3.24) + (4.13 - j9.47) = (6.2 1 + 4.13) + j(3.24 - 9.47) = 10.34 - j6.23 

(7.34 - j1.29) - (5.62 + j8.92) = (7.34 - 5.62) - j(1.29 + 8.92) = 1.72 -j10.21 

( - 2 4 + j 1 2 ) - ( - 3 6 - j 1 6 ) - ( 1 7 - j 2 4 ) = ( - 2 4 +  36- 1 7 ) + j ( 1 2 +  1 6 + 2 4 ) =  -5  +j52 

(a) 

(b) 

(c) 

11.3 Find the following products and express them in rectangular form: 

(a) (4 + j2)(3 + j4 )  (6) (6 + j2)(3 - j5)(2 - j3) 
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In the multiplication of complex numbers in rectangular form, the ordinary rules of algebra are used 
along with the rules for imaginary numbers: 

(a) 

(h )  

(4 + j2)(3 + j4) = 4(3) + 4(j4) +j2(3) +j2( j4)  = 12 + j16 + j 6  - 8 = 4 +j22 

I t  is best to multiply two numbers at a time: 

(6 + j2)(3 - j5)(2 - j3) = [6(3) + 6( -j5) + j2(3) + j2( -j5)](2 - j3) = (18 - j30 + j 6  + 10)(2 - j3) 

= (28 - j24)(2 - j3) = 28(2) + 28( -j3) + ( -j24)(2) + ( -j24)( -j3) 

= 56 - j84 - j48 - 72 = - 16 - j132 

Multiplying three or more complex numbers in rectangular form usually requires more work than does 
converting them to polar form and multiplying. 

11.4 Evaluate 

14+J3 -j2 5 -j2 - j6 I 
The value of this second-order determinant equals the product of the elements on the principal diagonal 

minus the product of the elements on the other diagonal, the same as for one with real elements: 14:r 5:;6( = (4 + j3)(5 - j6)  - (-j2)(-j2) = 20 - j24 + j l 5  + 18 + 4 = 42 - j9  

11.5 Evaluate 
4 + j 6  -j4 -2 

-j4 6 + j 1 0  -3 
- 2  -3 2 + j l  

The evaluation of a third-order determinant with complex elements is the same as for one with real 
elements: 

= ( 4  +j6)(6 +j10)(2 + j l )  + (-j4)(-3)(-2) + (-2)(-j4)(-3) - (-2N6 +jl0)(-2) 
- (-3)(-3)(4 + j6) - (2 +jl)(-j4)(-j4) 

= - 1 4 8 + j l 1 6 - j 2 4 - j 2 4 - 2 4 - j 4 0 - 3 6 - j 5 4 +  3 2 + j 1 6 =  -176- j l0  

Although this procedure is straightforward, i t  is difficult to do without making errors. Using a calculator 
is much better. 

11.6 Find the following quotients in rectangular form: 

1 14 + j5 
(b) ____ 0.2 + j0.5 4 - j l  

For division in the rectangular form, the numerator and denominator should be multiplied by the 
conjugate of the denominator to make the denominator real. Then the division is straightforward. Doing 
this results in 

0.2 - j0.5 0.2 - j0.5 0.2 - j0.5 0.2 0.5 

0.2 +j0.5 0.2 - j0.5 0.22 + O S 2  0.29 0.29 0.29 

1 4 + j 5  4 + j l  51 + j34  

4 - j l  4 + j l  17 

- - - j- = 0.69 - j1.72 
1 

(a) ____ x ____ = 

(b) -x--- - = 3 + j 2  
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11.7 Convert the following numbers to polar form: 

( U )  6 + j 9  ( h )  -21.4 + j 3 3 . 3  ( c )  -0.521 -j1.42 (d) 4.23 +j4.23 

If  a calculator is used that does not have a rectangular-to-polar conversion feature, then a complex 

and 0 = number s + j y  can be converted to its equivalent Ab with the formulas 
tan-'  (y/.x). With this approach 

A = l,is2 + y 2  

6 + j 9  = v'/62 + 92 /tan- ' (9/6) = 10.8/56.3' 

-21.4 +j33.3 = ,,'( -21.4)2 + 33.32 /tan-' [33.3/( -21.4)l = 39.6/122.7" 
Typically, a calculator will give tan-'  (-33.3/21.4) = -57.3", which differs from the correct angle by 
180". For such a calculator, this error of 180" always occurs in a rectangular-to-polar form conversion 
whenever the real part of the complex number is negative. The solution, of course, is to change the 
calculator angle by either positive or negative 180", whichever is more convenient. 

-0.521 -j1.42 = v1(-0.521)2 + ( -  1.42)2/tan-' r -  1.42/(-0.521)7 = 1.51/- 110 
Again, because the real part is negative, a calculator may not give an angle of - 110-, but 
tan ' (1.42/0.521) = 70", instead, 

4.23 + j4.23 = v/4.232 + 4.232 /tan - ' (4.2314.231 = $(4.23)/tan- * 1 = 5.98/45" 
As can be generalized from this result, when the magnitudes of the real and imaginary parts are equal, 
the polar magnitude is ,,h times this magnitude. Also, the angle is 45' if the number is in the first 
quadrant of the complex plane, 135' if i t  is in the second, - 135' if i t  is in the third, and -45- if i t  is 
in  the fourth. 

11.8 Convert the following numbers to rectangular form: 

(a) 10.2/20" (b )  6.41/-30' ( c )  - 142/-80.3" (d) 142/-260.3" (e) - 142/-440.3" 

can be used: 

(a )  

(b )  

( c )  

( d )  

(e) 

If a calculator is used that does not have a polar-to-rectangular conversion feature, then Euler's identity 

10.2/20' = 10.2 cos 20 + j10.2 sin 20' = 9.58 + j3.49 

6.41/- 30" = 6.41 cos ( -  30") + j6.41 sin ( -  30") = 5.55  -j3.21 

- 142/-80.3' = - 142cos(-80.3') -j142sin(-80.3") = -23.9 + j l 4 0  

142/-260.3' = 142 cos (-260.3 ) + j142 sin (-260.3") = -23.9 + j140 

- 142/-440.3' = - 142 cos (-440.3 ) - j142 sin (-440.3') = -23.9 + j140 

Parts (c) and ( d )  show that an angular difference of 180" corresponds to multiplying by - 1. And parts 
A/O & 180' = 

A,& = A cos 0 + j A  sin 0. With this approach 

( c )  and (e) show that an angular difference of 360' has no effect. So, in general, 
-Ab and A/O & 360- = Ab. 

11.9 Find the following products in polar form: 

( U )  (3/25°)(4/-60")(-5/1200)( -6/-210') (b)  (0.3 +jO.4)(-5 +j6)(7/35')( - 8  - j 9 )  

( a )  When all the factors are in polar form, the magnitude of the product is the product of the individual 
magnitudes along with negative signs, if any, and the angle of the product is the sum of the individual 
angles. So, 

(3/25")(4/-60")(-5/120")(-6/-210') = 3(4)(-5)(-6)/25" - 60" + 120" - 210" = 360/-125" 

( b )  The numbers in rectangular form must be converted to polar form before being multiplied: 

(0.3 +jO.4)(-5 + j6)(7/35'N-8 - j9)  = (0.5/53.1°)(7.81/129.80)(7~o)(12.04/- 131.6") 

= 0.5(7.81)(7)(12.04)/53.1" + 129.8' + 35" - 131.6' = 329186.3" 

11.10 Find the quotients in polar form for ( U )  (8 1/45")/(3/16") and (b)  (-9.1/20")/( -4  + j7) .  
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(a) When the numerator and denominator are in polar form, the magnitude of the quotient is the quotient 
of the magnitudes, and the angle of the quotient is the angle of the numerator minus the angle of the 
denominator. So, 

(b)  The denominator should be converted to polar form as a first step: 

9.1 
- 

- 9.1/20" - 9.1,@' 
-- - - - --/20" - 119.7' = - l.l3/-99.7' = 1.13/-99.7' + 180" = 1.13180.3' 
-4 + j 7  8.06/119.7 8.06 

11.1 1 Find the following quotient: 
(1 .2/35°)3(4.2/ - 20")6 

(2.1/-10°)4(-3 +j6)' 

Since each exponent of a number indicates how many times the number is to be multiplied by itself, 
the effect of an exponent is to raise the number magnitude to this exponent and to multiply the number 
angle by this exponent. Thus, 

1.2'(4.2)'/3(35 ) - 6(20') 
_______________~ - - 

(1.2/35")'(4.2/ - 20")' 

(2.1/- 10")4(-3 +j6)' (2.1/- 10")4(6 .71b ' )5  2.14(6.71)'/4(-10 ) + 5(117') 

(1 .2/35')'(4.2/ - 20")' - - 

1.73(5489)/- 15 9.49 x 103/-- 15' 

19.4( 13 584 )/543 = 2.64 x 10'&" 
= 0.0359/ - 558-  = 0.0359/ - 198 = - 0.0359/ - 18' - - 

11.12 Find the corresponding phasor voltages and currents for the following: 

(a) U = j 2 ( 5 0 )  sin (377t - 35") V ( c )  11 = 83.6 COS (400t - 15') V 

(6) 
A phasor in polar form has a magnitude that is the effective value of the corresponding sinusoidal 

voltage or current, and an angle that is the phase angle of the sinusoid if it is in phase-shifted sine-wave 
form. So, 

i = d ( 9 0 . 4 )  sin (754t + 48") mA (d )  i = 3.46 cos (81% + 30n) A 

(a )  L' = f i ( 5 0 )  sin (377t - 35') V .--) V = 50/-35' V 

(b) i = J2(90.4) sin (754t + 48") mA -P I = 90.4/48' mA 

(c) c = 83.6 cos (400t - 15") = 83.6 sin (400t - 15" + 90'') = 83.6 sin (400t + 75') V 

+ V = (83 .6 /J5)h0  = 59.1/75" V 

(d) i = 3.46 cos (813  + 30") = 3.46 sin (815t + 30" + 90') = 3.46 sin (815t  + 120") A 

+ I = (3.46/>)/1" = 2.45/120" A 

11.13 Find the voltages and currents corresponding to the following phasor voltages and currents (each 
sinusoid has a radian frequency of 377 rad/s): 

(a) V = 2 0 b " V  (6) I = 1O.2/-4l0mA (c) V = 4 - j 6 V  (d) I = -3 + j l  A 

a phase angle that is the phasor angle, and a peak value that is the 3 times the phasor magnitude. Thus, 

(a)  V = 20&' V .+ c = 2 0 3  sin (377t + 35O) = 28.3 sin (377t + 35') V 

If a phasor is in polar form, the corresponding voltage or current is a phase-shifted sine wave that has 

(b) I = 10.2/-41" mA 

(c) V = 4 - j6  = 7.21/-56.3' V .+ 

+ i = J2(10.2) sin (377t - 41') = 14.4 sin (377t - 41') mA 

t' = fi(7.21) sin (377t - 56.3") = 10.2 sin (377r - 56.3") V 

( d )  I = -3  + j l  = 3.16/161.6' A .--) i == J2(3.16) sin (377t + 161.6") = 4.47 sin (377t + 161.6') A 
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11.14 Find a single sinusoid that is the equivalent of each of the following: 

( 1 1 )  6.23 sin tot  + 9.34 cos tot 

( h )  5 sin (4t - 20 ) + 6 sin (4t + 45 ) - 7 cos (4t - 60 ) + 8 cos (4t + 30 ) 

(c) 5 sin 377r + 6 cos 754t 

A phasor approach can be used since the terms are sinusoids. The procedure is to find the phasor 
corresponding to each sinusoid, add the phasors to obtain a single complex number, and then find the 
sinusoid corresponding to this number. Preferably the phasors ;ire based on peak values because there is 

no advantage in introducing a factor o f t  2 since the problems statements are in sinusoids and the answers 
are to be in sinusoids. Thus, 

( L I )  6.23 sin cut + 9.34 cos cut -+ 6.23b + 9.34/90 = 1 1.2/56.3 ---* 1 1.2 sin (cot + 56.3 ) 

( h )  5 sin (4 t  - 20 ) + 6 sin (4t + 45 ) - 7 cos (4t - 60 ) + 8 cos (4t + 30 ) 

---t 5/ - 20 + 6/45 - 7/30 + 8/120 = 6.07/100.7 = - 6.O7/-79.3 -P - 6.07 sin (4t - 79.3 ) 

(c) The sinusoids cannot be combined because they have different frequencies. 

11.15 For the circuit shown in Fig. 11-3, find [is if r 1  = 10.2 sin(754f + 30 ) V, P~ = 
i y 3  = 16.1 cos (754t - 25 ) V. 14.9 sin (754t - 10 ) V. and 

By KVL.  = - r 2  + rj = 10.2 sin (754t + 30 ) - 14.9 sin (754t - 10 ) + 16.1 cos (754t - 25 ) V 
The sum sinusoid can be found by using phasors: 

I 

\ &  t' c -  t -  

-+ rs = 22.3 sin (754r + 87.5 ) V 

Since the problem statement is in sinusoids and the final result is a sinusoid. finding the solution would 
have been slightly easier using phasors based on peak rather than rms values. 

Fig. 11-3 Fig. 11-4 

11.16 In the circuit shown in Fig. 11-4, voltmeters V h l ,  and V M ,  have readings of 40 and 30 V. 
respectively. Find the reading of voltmeter I'M3. 

I t  is tempting t o  conclude that, by KVL,  the reading of \roltmeter V M ,  is the sum of the readings of 
voltmeters V M 1  and V M 2 .  But this is lr-rony because KVL applies to phasor voltages and not to the rms 
voltages of the voltmeter readings. The rms voltages, being positive real constants, do not halve the angles 
that the phasor voltages have. 

For the phasors required for K V L ,  angles must be associated with the given rms voltages. One angle 
can be arbitrarily selected because only the magnitude of the sum is desired. I f  0 is selected for the resistor 
voltage phasor, this phasor is 4010 V and then that for the inductor voltage must be 30@ V. The inductor 
voltage phasor has a 90 greater angle because this voltage leads the current by 90 , but the resistor voltage 
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is in phase with the current. By KVL, the phasor voltage for the source is 40 + 30/90<' = 40 +j30 = 

50/36.9V, which has an rms value of 50V. So, the reading of voltmeter V M ,  is 50V, and not 
the that might at first be supposed. 30 + 40 = 70 V 

11.17 Find us for the circuit shown in Fig. 11-5. 

The voltage us can be determined from 
By Ohm's law, 

U, = C, + til, + c, after these component voltages are found. 

L'R = C0.234 sin (3000t - 10")](270) = 63.2 sin (3000t - 10') V 

The inductor voltage U, leads the current by 90' and has a peak value of wL = 300q120 x lOP3) = 360 
times the peak value of the current: 

c, = 360(0.234) sin (3000t - 10 + 90°) = 84.2 sin (3000t + 80') V 

The capacitor voltage tic lags the current by 90' and has a peak value that is 
6 x 10-6) = 55.6 

l/toC = 1/(3000 x 
times the peak value of the current: 

t i c  = 55.6(0.234) sin (3000t - 10 - 90') = 13 sin (3000t - 100') V 

Phasors, which are conveniently based on peak values, can be used to find the sum sinusoid: 

Vs = V, + V, + Vc = 63.2/- 10" + 84.2/80' + 13/- 100" = 95.2/38.4" V 

+ c, = 95.2 sin (3000t + 38.4-) V 

270 ll 120 mH 

Fig. 11-5 Fig. 11-6 

11.18 Find is for the circuit shown in Fig. 11-6. 

By Ohm's law, 
The current is can be determined from is = i, + i, + i, after these component currents are found. 

. 150 sin (2500t - 34") 

10 
= = 15 sin (2500t - 34") A 

The inductor current i, lags the voltage by 90' and has a peak value that is 
lop,) = 1/15 

l /oL= 1/(2500 x 6 x 
times the peak value of the voltage: 

. 
I ,  = 

150 sin (2500t - 34" - 90°) 

15 
= 10 sin (2500t - 124") A 

The capacitor current i, leads the voltage by 90" and has a peak value that is toC = 2500(20 x 
10-6) = 0.05 times the peak value of the voltage: 

i, = 0.05( 150) sin (2500t - 34" + 90') = 7.5 sin (2500r + 56') A 

Phasors, which are conveniently based on peak values, can be used to find the sum sinusoid: 

I, = I, + I, + I, = 15/-34" + lO / -  124' + 7.5(56" = 15.21-43.5' A + is = 15.2 sin (25001 - 43.5') A 
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11.19 I f  two currents have phasors of lO,@ and 7/30" mA, what is the angle and rms value of the 
current that is the sum of these currents? Solve by using a funicular diagram. Check the answer 
by using complex algebra. 

Figure 11-7 shows the tail of the 7-mA phasor at the tip of the 10-mA phasor, as required for vector 
addition. The sum phasor, extending from the tail of the 10-mA phasor to the tip of the 7-mA phasor, has 
a length corresponding to approximately 16.5 mA and an angle of approximately 13'. In comparison, the 
result from complex algebra is 

104. + 7/30' = 10 + 6.06 + j 3 . 5  =1 i6.06 + j3.5 = 16.4/12.3: mA 

which is, of course, considerably more accurate than the graphical result. 

Synchronous motor current phasor 

16.5/13" mA 

7/30' mA 

Fig. 1 1-7 Fig. 1 1-8 

11.20 A synchronous motor draws a 9-A current from a 240-V, 60-Hz source. A parallel induction 
motor draws 8 A. If the synchronous motor current leads the applied voltage by 20", and if the 
induction motor current lags this voltage by 30", what is the total current drawn from the source? 
Find this current graphically and algebraically. 

The choice of the reference phasor-the one arranged horizontally at 0' -is somewhat arbitrary. The 
voltage phasor or either current phasor could be used. In  fact, no phasor has to be at 0 , but i t  is usually 
convenient to have one at this angle. In Fig. 11-8 the synchronous motor current phasor is arbitrarily 
positioned horizontally, and the induction motor current phasor at its tip is positioned at an angle of -50" 
with it since there is a phase angle difference between the two currents. Also shown 
is the sum phasor, which has a measured length corresponding to 15.4 A. In comparison, from complex 
algebra, 

I = 9 / 3  + 8/-50 = 9 + 5.14 - j6.13 = 14.14 - j6.13 = 15.4/-23.4 A 

I = ) I ]  = 115.4/-23.4'1 = 15.4 A 

20' - ( -  30') = 50 

and 

in agreement with the graphical result to three significant digits. Usually, agreement to only two significant 
digits should be expected because of the comparative lack of accuracy with the graphical approach. 

Supplemen tar y Problems 
11.21 Perform the following operations: 

-jlOO 8 
(a)  j 6  - j7 + j 4  - j 8  + j9 (h) (j2)'( -j3)(j7)( -jS)(jO.9) (c) ___ (4 -- 

5 - j4  

Ans. (a)j4, (h )  -604.8, (c) -j20, ( d )  j 2  
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6 + j 5  -j2 -4 
Evaluate -j2 10 - j8 -6  

-4 -6  5 - j 6  
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. 

11.22 

11.23 

1 1.24 

11.25 

1 1.26 

11.27 

11.28 

11.29 

11.30 

Evaluate 

Perform the following operations and express the results in rectangular form: 

(a)  

(h)  

(c) 

Ans. (a) 9.8 + j1.65, (6) 8.45 + j3.33, (c) -29 + j28 

(4.59 + j6.28) + (5.21 - j4.63) 

(8.21 + j4.31) - (4.92 - j6.23) - (-5.16 + j7.21) 

3 + j 4  - 5 + j6 - 7 + j8  - 9 + j l 0  - 1 1  

10- j2  - 2 + j l  -3 - j4  
-2 + j l  9 - j8  - 6 + j 2  . 
-3 - j4  - 6 + j 2  12-j4 

Find the following products and express them in rectangular form: 

(4 (6 - j7N4 +j2)  

(b) 

( c )  

Ans. (a) 38 - j16, (b) 429 - jl17, ( c )  - 1504 + j2272 

(5 + j l  )( - 7 - j4)( - 6 + j9) 

(-2 + j6M-4 - j4)(-6 + j8)(7 + j3) 

Find the following products and express them in rectangular form: 

(a) (4 + j3)2(4 - j3)2 (b) (0.6 - j0.3)2( - 2 + j4)3 

Ans. (a) 625, (b) 18 - j36 

6 - j 8  2 - j 3  

- 4 + j 2  - 5 + j 9  
Evaluate 

Ans. 44 + j78 

Find the following quotients in rectangular form: 

Ans. (a) 0.588 + j2.35, (b )  -0.976 - j1.22, (c) 1.07 + j0.2 

Convert each of the following to polar form: 

(a) 8.1 + j l l  (c) -33.4 +j14.7 (e) 16.2 +j16.2 

(b) 16.3 -j12.2 (d) -12.7 -j17.3 (f)  -19.1 +j19.1 

Ans. (a) 13.7/53.6", (b) 20.4/- 36.8", (c) 36.5/156", (d) 21.51- 126", (e) 22.9/45", ( f )  27/135" 

Convert each of the following to rectangular form: 

(a) 11.8/51" (c) 15.8/215" (e) - 16.91-36" 

(b) 1 3 . 7 M "  (d) 27.4/-73" (f) -24.1/-1200" 

Ans. (a) 7.43 + j9.17, (b) - 10.8 + j8.43, (c) - 12.9 -j9.06, (d) 8.01 - j26.2, (4) - 13.7 + j9.93, 
(f)  12.1 + j20.9 
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11.31 Perform the following operations and express the results in polar form: 

( 1 1 )  

( h )  

( c )  

Ans. ( ( I )  6.95/9.51 , ( h )  46.5/- 1.14 , ((.) 41.4/- 126 

6.31 - 18.23 + 7.14/23.1 - 8.92/-47.5 

45.7/- 34.6 - 68.9/- 76.3 - 4 8 . 9 m  

-56.l/-49.8 + 73.1/-74.3 - 8 - j6 

11.32 Find the following products in polar form: 

( U )  (5.21/-36.1 ) ( 0 . 1 4 1 m  )( -6.31:'- 116 )( 1 . 7 2 m  ) 

( h )  ( 5  + j3)( -6 + /1)(0.23/ - 17.1 ) 

(c )  (0.2 - j0.5)(1.4 - j0.72)( -2.3 + j1.3)( - 1.62 - j1.13) 

.4ns. (LO 7.971- 12.1 , ( h )  - 8 . 1 6 b  , (c)  4.431-90 

11.33 Find the following quotients in polar form: 

26.1137.; 
( ( a )  ---_____ 

38.91 - 14.1 - 7.12123.1 -4.91 - j5.32 

4.13 - j3.21 
( h )  -_____- 

173/62.1 

Ans. ( ( 1 )  4.45/76.?. . 0.735/--61 . - 3.61/- 9.5 

11.34 Find the following quotients in polar form: 

(6.2 1 - j9.23)( - 7.2 1 + j3.62)(2 1.3135.1 ) 
( U )  -_ -~ ~ _ _  - 

( - 14.1 + j6.82)( 6.97,& -)( IO.2/  - 4 1 ) 

(6/-45 ) (3  - j X )  - ( - 7  + j4)(8 - ,4)(3.62/70 ) 

(-4.1 + j2)(3.4 + j6.1)(1 l,/-27 ) 
( h )  

,4 ns. ( ( 1 )  1.721-48.8 . 0.6651 - 4.14 

11.35 Find the following quotient in polar form: 

(-6.29/-70.1 )4(8.4/17 ) ' ( (x.1/44 ) '  ' 
(13.4/- 16 )'( -62.9/- 107 ) ( 0 . 7 2 9 b  )' ' 

. -  - -  __ - - __ 

.4n.s. 260/80.6 

11.36 Find the corresponding phasor voltages and currents of the following in polar form: 

( I J )  ( t l )  

( h )  ( e )  

(c) 

61.1/-56 V 

r = I '(42.1) sin (400r - 30 ) V 

i = \ j(36.9) sin (6000r + 72 ) A 1 

r = -64.3 sin (3771 - 34 ) V 

i = -38.1 cos ( 7 5 4  - 72 ) A 

1' = -86.4 cos ( 6 7 2  + 34 ) V 

Aw. ( U )  V = 42.11-30 V, ( h )  I = 36.9/72 A. (c* )  V = -45.5/-34 V, (d )  I = - 2 6 . 9 k  A, ( e )  V = 

11.37 Find the voltages and currents corresponding to the following phasor voltages and currents (each sinusoid 
has a radian frequency of 754 radis): 

(a) V = 15.1/62'V (c.) V = -14.3/-69.7 V (e) V = -7 - j8  V 

(h)  I = 9.62/-31 A (d) I = 4 - j 6 A  ( f )  1 = -8.96 + j7.61 A 

Ans. (U) 1 1  = 21.4 sin (754t + 62 ) V 

(h)  i = 13.6sin(754r - 31 ) A  

(c) L' = -20.2 sin (7541 - 69.7 ) V 

(rl) I = 10.2 sin (754r - 56.3 ) A 

(c)  1' = - 15 sin (754t + 48.8 ) V 

( f ) i = - 16.6 sin (754t - 40.3 ) A 
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11.38 

1 1.39 

1 1.40 

11.41 

1 1.42 

1 1.43 

11.44 

Find a single sinusoid that is the equivalent of each of the following: 

( U )  

( h )  

(c.) 

Ans. 

7.21 sin oit + I 1.2 cos (of 

-8.63 sin 377f - 4.19 cos 377r 

4.12 sin (64t - 10-) - 6.23 sin (64t - 35 ) + 7.26 cos (64t - 35 ) - 8.92 cos (64f + 17 ) 

(a)  13.3 sin (to? + 57.2 ), ( h )  -9.59 sin (377r + 25.9 ), (c) 5.73 sin (64r + 2.75 ) 

In Fig. 11-9, find i, if i ,  = 14.6 sin (3771 - 15 ) mA, 2 ,  = 21.3 sin (377t + 30') mA, and i, = 

13.7 cos (377t + 15") mA. 

Ans. i, = -27.7 cos (377t + 88.3") mA 

i l  / / 

Fig. 1 1-9 Fig. 11-10 

In the circuit shown in Fig. 11-10, ammeters A ,  and A ,  have readings of 4 and 3 A. respectively. What is 
the reading of ammeter A,? 

Ans. 2.65 A 

A current flows through a 3.3-kQ resistor in series with a 0.5-pF capacitor. 
Find the voltage across the series combination. Of course, as always, assume associated references when, as 
here, there is no statement to the contrary. 

Ans. 

i = 0.621 sin (400t + 30 ) mA 

r = 3.72 sin (4001 - 26.6 ) V 

A voltage 
current flowing into this parallel combination. 

Ans. 

1' = 240 sin (400r + 10 ) V is across a 6 8 0 4  resistor in parallel with a 1-H inductor. Find the 

i = 0.696 sin (400t - 49.5 ) A 

A current 
inductor, and a 20-pF capacitor. Find the voltage across the series combination. 

A m .  

i = 0.248 cos (377r - 15 ) A flows through the series combination of a 9 1 4  resistor, a 120-mH 

L' = 31.3 sin (377t + 31.2 ) V 

The voltage is across the parallel combination of a 10-kR resistor, a 100-mH 
inductor, and a 10-pF capacitor. Find the total current i, flowing into the parallel combination. Also, find 
the inductor current i, and compare peak values of i,, and iT. 

Ans. 
times the input current peak. 

1' = 120 sin (1000r + 20 ) V 

i, = 0.012 sin (1000t + 20') A and i ,  = 1.2 sin (1000t - 70') A. The inductor current peak is 100 



Chapter 12 

Basic AC Circuit Analysis, 
Impedance, and Admittance 

INTRODUCTION 

In  the analysis of an ac circuit, voltage and current phasors are used with resistances and reactances 
in much the same way that voltages and currents are used with resistances in the analysis of a dc circuit. 
The original ac circuit, called a tiriicJ-clornirin c i r u ~ i t ,  is transformed into a plicrsor-clonzcrirz circuit that has 
phasors instead of sinusoidal voltages and currents, and that has reactances instead of inductances and 
capacitances. Resistances remain unchanged. The phasor-domain circuit is the circuit that is actually 
analyzed. I t  has the advantage that the resistances and reactances have the same ohm unit and so can 
be combined similarly to the way that resistances can be combined in a dc circuit analysis. Also, the 
analysis of the phasor-domain circuit requires no calculus, but only complex algebra. Finally, all the dc 
circuit analysis concepts for finding voltages and currents apply to the analysis of a phasor-domain 
circuit, but, of course, complex numbers are used instead of real numbers. 

PHASOR-DOMAIN CIRCUIT ELEMENTS 

The transformation of a time-domain circuit into a phasor-domain circuit requires relations between 
the voltage and current phasors for resistors, inductors, and capacitors. First, consider obtaining this 
relation for a resistor of R ohms. For a current i = I , ,  sin ( C M  + O), the resistor voltage is, of 
course, I -  = RI,,, sin (wr + O), with associated references assumed. The corresponding phasors are 

\ -  
- 

Dividing the voltage equation by the current equation eliminates I , , ,  0, and , 2 and produces a relation 
between the voltage and current phasors: 

This result shows that the resistance R of a resistor relates the resistor voltage and current phasors 
( R  = c ? / i ) .  Because of this similarity, the 

1' i = R is 
in the same way that i t  relates the resistor voltage and current 
relation 
represented in the original time-domain circuit. Figure 12-1 shows this. 

V/I = R can be represented in a phasor-domain circuit in the same way that 

i 0 . -  I v -  
o--+ + 0 T 0 -  +m Q 

R R 
Fig. 12-1 

Next, consider an inductor of I, henries. As shown in Chap. 10, for a current i = I ,  sin (tat + O ) ,  
I '  = cuL1, cos ( ( o r  + 0) = coLf, sin (tut + 0 + 90 ). The corresponding phasors the inductor voltage is 

are 

tuL1, 
and V = - - - / O  + 90" V l r n  I =  F B  A 

\' 2 45 
232 
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Dividing the voltage equation by the current equation results in a phasor relation of 

2.1' 

This result of oL /90" in polar form is j o L  
as defined in Chap. 10, then 

in rectangular form. Since tuL is the inductive reactance X , ,  

V 
I 
- = j o L  =jx, 

Note that j o L  relates the inductor voltage and current phasors in the same way that R relates the 
resistor voltage and current phasors. Consequently, j o L  has a similar current-limiting action and the 
same ohm unit. In addition, because of itsjl multiplier, i t  produces a phase shift of 90" 01 = 1/90"). 

From the resistor discussion and the similarity of V/I = R and V/I = j o L ,  the time-domain 
circuit to phasor-domain circuit transformation for an inductor, as shown in Fig. 12-2, should be 
apparent. The usual inductor circuit symbol is used in the phasor-domain circuit, but it  is associated 
with j o L  ohms instead of with the L henries of the original time-domain circuit. The inductor voltage 
and current are transformed, of course, into corresponding phasors. 

L 

Fig. 12-2 

joL 

The same approach can be used for a capacitor. For 
of C farads has a current of i = wCV, sin (cot + 0 + 90'). 

and 

and I v=-k Vm v 
h 

a voltage U = V, sin (cot + 
The corresponding phasors 

0), a capacitor 
are 

As defined in Chap. 10, - l /oC is the reactance X ,  of a capacitor. Therefore, 

(Remember that many circuits books have capacitive reactance defined as X ,  = l/oC, in which 
case V/I = - j X c . )  The -jl/wC quantity has a current-limiting action similar to that of a resistance. In 
addition, the -jl multiplier produces a -90" phase shift. 

Figure 12-3 shows the time-domain circuit to phasor-domain circuit transformation for a capacitor. 
In the phasor-domain circuit the conventional capacitor circuit symbol is used, but it is associated 
with -jl/wC ohms instead of with the C farads of the original time-domain circuit. 

V V 
I +I/- i 

I \  0 + 0 -  
4 + I / -  

I \  0 
C 

Fig. 12-3 

2 1  
W C  
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AC SERIES CIRCUIT ANALYSIS 

A method for analyzing a series ac circuit can be understood from a simple example. Suppose that 
the sinusoidal current i is to be found in the series circuit shown in Fig. 12-4cr, in which the source has 
a radian frequency of cu = 4 rad/s. The first step is to draw the corresponding phasor-domain circuit 
shown in Fig. 12-4b, in which the current and voltages are replaced by corresponding phasors, the 
inductance is replaced by 

jwL = j4(2) = j8  l'2 

and the capacitance is replaced by 

- j l  - j l  
= -j4Q __- - --_ - 

UC 4(1116) 

The resistance, of course, is not changed. 

The next step is to apply K V L  to this phasor-domain circuit. Although it is not obvious, K V L  
applies to voltage phasors as well as to voltages because it applies to the sinusoidal voltages, and these 
sinusoids can be summed using phasors. (For similar reasons, KCL applies to the current phasors of 
phasor-domain circuits.) The result of applying K V L  is 

The third step is to substitute for the V's using V, = 40/20 , VR = 61. V, = j81, and 
V, = -j4I. With these substitutions the K V L  equation becomes 

4 0 m "  = 61 + j81 - j41 = (6 +j4)I 

from which - = 5.547/- 13.7 A 
4 0 m "  4ObO' 

6 + j4 7.21 1/33.7 
I = - - - -  - 

and i = 5 . 5 4 7 3  sin (4t - 13.7") = 7.84 sin (4t - 13.7 ) A 

IMPEDANCE 

The K V L  analysis method of the last section requires much more work than is necessary. Some of 
the initial steps can be eliminated by using impecfunce. Impedance has the quantity symbol Z and the 
unit ohm (Q). For a two-terminal circuit with an input voltage phasor V and an input current phasor 
I, as shown in Fig. 12-5, the impedance Z of the circuit is defined as 

V 

For this impedance to exist, the circuit cannot have any independent sources, although i t  can have 
any number of dependent sources. This impedance is often called the total or cqtr i i&vi t  irzipecimcv. I t  
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1 

Fig. 12-5 

is also called the input irnpeduncv, especially for a circuit that has dependent sources or transformers. 
(Transformers will be discussed in Chap. 16.) 

In general, and not just for series circuits, 

Z = R + j X  

in which R,  the real part, is the rc,si.stunc'e and X ,  the imaginary part, is the reuc'tunce of the impedance. 
For the series phasor-domain circuit shown in Fig. 12-4h, X = 8 - 4 = 4 R. For this 
circuit, the resistance R depends only on the resistance of the resistor, and the reactance X depends only 
on the reactances of the inductor and capacitor. But for a more complex circuit, R and X are usually 
both dependent on the individual resistances and reactances. 

Being a complex quantity, impedance can be expressed in polar form. From complex algebra, 

R = 6 R and 

Z = R + j X  = R2 + X 2 / t a n p '  ( X , R r  

in which \/R2 + X 2  = IZI = 2 is the magnitude of impedance and tan- '  (XI 'R)  is the angle of 
impedance. 

the impedance angle is the angle by which the input voltage 
leads the input current, provided that this angle is positive. If i t  is negative, then the current leads the 
voltage. A circuit with a positive impedance angle is sometimes called an inhrcfii7e circuit because the 
inductive reactances dominate the capacitive reactances to cause the input current to lag the input 
voltage. Similarly, a circuit that has a negative impedance angle is sometimes called a capucitiw circuit. 

Because impedances relate to voltage and current phasors in the same way that resistances relate 
to dc voltages and currents, it follows that impedances can be combined in the same way as resistances. 
Consequently, the total impedance Z7 of electrical components connected in series equals the sum of 

As should be evident from Z = V/I, 

the impedances of the individual components: 

z,. = 2, + z, + z, + 
And, for two parallel components with impedances Z ,  and 

Often, the T subscript in Z, is omitted. 
The total impedance of an ac circuit is used in the same way as the total resistance of a dc circuit. 

For example, for the circuit shown in Fig. 12-4a, the first step after drawing the phasor-domain circuit 
illustrated in Fig. 12-4h is to find the impedance of the circuit at the terminals of the source. This being 
a series circuit, the total impedance is equal to the sum of the individual impedances: 

Z = 6 + j(8 - 4) = 6 + j4 = 7.21 1/33.7" R 

Then, this is divided into the voltage phasor of the source to obtain the current phasor: 

40@ = 5.547/- 13.7 A I =  = -  ~-~ 

V 

Z 7.21 1/33.7 

And, of course, the current i can be found from its phasor I, as has been done. 
An impedance diagram is an aid to understanding impedance. This diagram is constructed on an 

impedance plane which, as illustrated in Fig. 12-6, has a horizontal resistance axis designated by R and 
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i st quadrant 

’1 -z 

/ 

I 
I 
I 
I 
I 

I \ I  I \ I  7 

h (0) 
I 
I 
I 

4th quadrant 

Fig. 12-6 
I 3rd quadrant 

a vertical reactance axis designated by j X .  Both axes have the same scale. Shown is a diagram 
of Z,  = 6 + j 5  = 7.81/39.8 R Z2 = 8 - j6 = IO/-36.9 51 for a capac- 
itive circuit. An inductive circuit has an impedance diagram in the first quadrant and a capacitive circuit 
has one in the fourth quadrant. For a diagram to be in either the second or third quadrant, a circuit 
must have a negative resistance, which may occur if a circuit contains dependent sources. 

An it7ipeikrticv tr’icit i~jle is often a more convenient graphical representation. The triangle contains 
vectors corresponding to R ,  jX, and Z, with the vector forjX drawn at the end of the R vector and the 
vector for Z drawn a s  the sum of these two vectors, a s  in Fig. 12-711. Figure 12-7h shows an impedance 
triangle for and Fig. 12-7c one for 

for an inductive circuit and 

Z = 6 + j8  = 10/53.1 R Z = 6 - j 8  = 10/-53.1 52. 

6 0  

VOLTAGE DIVISION 

-j8 R 

I 

The voltage division or divider rule for ac circuits should be apparent from this rule for dc circuits. 
Of course, voltage phasors must be used instead o f  voltages and impedances instead of resistances. So, 
for a series circuit energized by an applied voltage with phasor V,, the voltage phasor V, across a 
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component with impedance Z, is 

2, 

2,. 
v, = --vs 

in which Z, is the sum of the impedances. A negative sign must be included if V, and V, do  not 
have opposing polarities. 

A C  PARALLEL CIRCUIT ANALYSIS 

A method for analyzing a parallel ac circuit can be illustrated by a simple example. Suppose that 
the sinusoidal voltage o is to be found in the parallel circuit shown in Fig. 12-8a. With the techniques 
presented so far, the first step in finding U is to draw the corresponding phasor-domain circuit shown in 
Fig. 12-8b, using the source frequency of 5000 rad/s. The next step is to apply KCL to this circuit: 

I, = I, + I, + I, 

The third step is to substitute for the I's, using Is = lOE", I, = V/lOOO, I, = V/j2500, and I, = 
V/( -jlOOO). With these substitutions, the equation becomes 

V V V 
lobo = - + 7 + 7 

1000 52500 --jlOOO 

which simplifies to lobo = (0.001 +j0.0006)V 

from which - lob" V = 8.6/-31'kV 
1 O&" 

V =  
0.001 + jO.OOO6 - 0.00 1 166/31" 

The corresponding voltage is 

o = 8.6& sin (5000t - 3 1 ") = 12 sin (5000t - 3 1 ") kV 

Since this voltage lags the input current, the circuit is capacitive. This is the result of the capacitive 
reactance being smaller than the inductive reactance-directly opposite the effect for a series circuit. 

ic 

0.2 p F  

( b )  
Fig. 12-8 
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ADMITTANCE 

The analysis method of the 
quantity symbol Y and the unit 

last section can be improved upon by using ud?iittunw, which has the 
siemens (S). By definition, admittance is the reciprocal of impedance: 

1 

Z 
Y =  

From this i t  follows that 

I = YV 

Also, it follows that the admittance of a resistor is Y = 1/R = G, 
l/jcoL = -jl /oL, and that of a capacitor is Y = I/( -jl/tuC) = jcuC. 

of a dc resistive circuit. Consequently, admittances of purullel components can be added: 

that of an inductor is Y = 

Being the reciprocal of impedance, the admittance of an ac circuit corresponds to the conductance 

Y, = Y ,  + Y, + Y, + * . .  + Y, 

In general, and not just for parallel circuits, 

Y = G + j B  

in which G, the real part, is the conductance and B, the imaginary part, is the siisceptunw of the 
admittance. For the parallel phasor-domain circuit shown in Fig. 12-8h, 

1 1 1 
y= - -  +7 + = 0.001 + j0.0006 S 

1000 52500 -jlOOO 

from which B = 0.0006 S. For this simple parallel circuit, the conductance G 
depends only on the conductance of the resistor, and the susceptance B depends only on the susceptances 
of the inductor and capacitor. But for a more complex circuit, both G and B usually depend on the 
individual conductances and susceptances. 

Being a complex quantity, admittance can be expressed in polar form. From complex algebra, 

G = 0.001 S and 

Y = G + jB = J'G2 + B2/tan- (BIG) 

in which JG2 + B2 = IY I = Y is the magnitude and tan- ( B I G )  is the angle of admittance. 
Since admittance is the reciprocal of impedance, the angle of an admittance is the negative of the 

angle for the corresponding impedance. Consequently, an admittance angle is positive for a capacitive 
circuit and negative for an inductive circuit. Also, B, the susceptance, has these same signs. 

The total admittance of an ac circuit is used in the same way as the total conductance of a dc circuit. 
To illustrate, for the circuit shown in Fig. 12-8a, the first step after drawing the phasor-domain circuit 
illustrated in Fig. 12-86 is to find the admittance of the circuit at the terminals of the source. As has 
been found, Y = 0.001 +j0.0006 = 0.001 166/31 S. Then, this is divided into the current phasor to 
obtain the voltage phasor: 

- V = 8.6/-31 k V  
I 1 o@ v = - z  
Y 0.001 166/31" 

Finally, the voltage U can be determined from its phasor V, as has been done. 
As should be expected from the discussion of an impedance diagram, there is an udniittuncv cliuyrurii 

that can be constructed on an admittance plane that has a horizontal conductance axis G and a vertical 
susceptance axisjB. There is also an admittance triungle that is used similarly to the impedance triangle. 
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CURRENT DIVISION 

Current division applies to ac phasor-domain circuits in the same way as to dc resistive circuits. So, 
if a parallel phasor-domain circuit has a current phasor I, directed into it, the current phasor I, for a 
branch that has an admittance Y, is 

in which Y T  is the sum of the admittances. A negative sign must be included if Ix and I, do not have 
opposite reference directions into one of the nodes. For the special case of two parallel branches with 
impedances Z ,  and Z,, this formula reduces to 

in which I ,  is the current phasor for the 2, branch. 
For convenience, from this point on the word "phasor" in voltage phasor and current phasor will 

often be omitted. That is, the V's and 1's will often be referred to as voltages and currents, respectively, 
as is common practice. 

Solved Problems 

12.1 Find the total impedance in polar form of a 0.5-H inductor and a series 20-R resistor at 
(h )  10 Hz, and (c) 10 kHz. 

The total impedance is 

(a) 0 Hz, 

Z = R + j o L  = R + j2nfL. 

(a) For .f = 0 Hz, 

Z = 20 + 27~(0)(0.5) = 20 = 20b'  R 

The impedance is purely resistive because 0 Hz corresponds to dc, and an inductor is a short 
circuit to dc. 

(b)  For f = 10Hz, 

Z = 20 + j2n( 10)(0.5) = 20 + J3 1.4 = 37.2/57.5" R 

(c) For f = 10 kHz, 

Z = 20 +j2n(104)(0.5) = 20 +j3.14 x 104 R = 31.4/89.96" kR 
At 10 kHz the reactance is so much larger than the resistdnce that the resistance is negligible 
for most purposes. 

12.2 A 20042 resistor, a 150-mH inductor, and a 2-pF capacitor are in series. Find the total impedance 
in polar form at 400 Hz. Also, draw the impedance diagram and the impedance triangle. 

The total impedance is 

-jl -jl 

2nfC 2n(400)(2 x 10-6) 
Z = R +j27cfL + ___ = 200 + j2n(40)(150 x 10-3) + 

= 200 +j377 -j199 = 200 +j178 = 268/41.7" R 
The impedance diagram is shown in Fig. 12-9a and the impedance triangle is shown in Fig. 12-9b. In 

the impedance diagram, the end point for the Z arrow is found by starting at the origin and moving up the 
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Fig. 12-9 

vertical axis to j377 R (jXL), then moving horizontally right to over 200 R ( R ) ,  and finally moving vertically 
down by 199 R, the magnitude of the capacitive reactance ( [ X c l ) .  The impedance triangle construction is 
obvious from the calculated R = 200 R and X = 178 R. 

12.3 A 20oO-ll resistor, a 1-H inductor, and a 0.Ol-pF capacitor are in series. Find the total impedance 
in polar form at ( U )  5 krad/s, (6) 10 krad/s, and (c) 20 krad/s. 

So, The formula for the total impedance is Z = R + jtoL - jl/coC. 

j l  
( U )  Z = 2000 + jSOOO(1) - - ~-~ ~ = 2000 - j l 5  000 R = 15.1/-82.4' kQ 

WOO( 10- ') 

j l  
10 000( 10 - 8 )  

20 Ooq10-8) 

(b) Z = 2000 + j l O O O O ( l )  - =; 2000Q = 2 b C k Q  

(c) z = 2000 +j20 000(1) - j1 
= 2000 +j15 000R = 15.1/82.4' kf2 

Notice that for CO = 10 krad/s in part (h), the impedance is purely resistive because the inductive and 
capacitive terms cancel. This is the resonunt rudiun,fruquency of the circuit. For lower frequencies, the circuit 
is capacitive, as is verified in part (a). For higher frequencies, the circuit is inductive, as is verified in part (c). 

12.4 A coil energized by 120 V at 60 Hz draws a 2-A current that lags the applied voltage by 40" 
What are the coil resistance and inductance? 

The magnitude of the impedance can be found by dividing the rms voltage by the rms cur- 
2 = 120/2 = 60 R. The angle of the impedance is the 40' angle by which the voltage leads the current. 

Z = 6 0 b '  = 46 + j38.6 Q. From the real part, the resistance of the coil is 46 Q, and from 
the 

rent: 
Consequently, 
the imaginary part, the reactance is 38.6 Q. Since COL is the reactance, and 
inductance is 

(o  = 2n(60) = 377 rad/s, 
L = 38.6/377 = 0.102 H. 

12.5 A load has a voltage of V = 120/30" V and a current of I = 30/50" A at a frequency of 
400 Hz. Find the two-element series circuit that the load could be. Assume associated references, 
of course. 

The impedance is 

_ _ _ _ ~  - - 4/-20' = 3.76 -j1.37 R v 120/30" z = - =  
I 30LO 



CHAP. 12) BASIC AC CIRCUIT ANALYSIS.  IMPEDANC'F., A N D  ADMITTANCF. 24 1 

Because the imaginary part is negative. the circuit is capacitiw. which nic;tns t ha t  thc t w o  series clcrnents 
are a resistor and a capacitor. The real part is the resistance of thc resistor: 1< = 3.76 Q. The imaginary 
part is the reactance of the capacitor, - 1 (d' = -- 1.37. from Izhich 

1 1 c = -  ~ = E' = 791 / t E  
1 . 3 7 ~ ~  I .37(3n)(400) 

12.6 A 20-52 resistor is in series with a O.l-pF capacitor. At  what radian frequency are the circuit 
voltage and current out of phase by 40 '? 

A good approach is to find the reactance from the impcdancc angle and the resistance, and then find 
the radian frequency from the reactance and the capacitance. The impedance ~tngle has ;I magnitude of 40 
because this is the phase angle difference between the voltage and the current. Also, the angle is negative 
because this is a capacitive circuit. So, 0 = -40 ' .  A s  should be apparent from the impedance triangle 
shown in Fig. 12-7cr, and also from the complex algebra presentation, rcactance and resistance are related 
by the tangent of the impedance angle: = 30 tan (-40 ) = - 16.8 R. Finally, 
from X, = - l,i'toC, 

X = R tan 0. l-lcrc. 

- 1  - I  
(!) = -- - = - -~ - ~ rad s = 0.596 Mrad s 

CX,. 10 '( - 16.8) 

12.7 A 200-mH inductor and a resistor in series draw 0.6 A when 130 V at 100 H L  is applied. Find 
the impedance in polar form. 

The magnitude of the impedance can be found by dividing the voltage bq the current: Z = 

12010.6 = 200Q. The angle of the impedance is 0 = sin as is evident from the impedance 
triangle shown in Fig. 12-7a. Hcrc, 

(A',, Z), 

x,, 2n( 100)(0.2) 
= 0.2n and so 0 = sin 0 . 2 ~  = 38.9 - - - 

Z 200 

The impedance is Z = 200i38.9 Q. 

12.8 What capacitor in series with a 750-52 resistor limits the current to 0.2 A when 240 V at 400 H7 is 
applied? 

When the capacitor is in the circuit, the impedance has a magnitude of Z = 1'1 = 340 0.2 = 1700 R. 
R' + X' .  I f  both sides are squared and S sol\ed 

~-~ 

This is related to the resistance and reactance by 
for, the result is 

Z = 

-- 
X 2 = Z Z - R 2 + X =  $ \ Z ' - R '  

The negative sign must be selected because the circuit is capacitive and therefore has a negatixc reactance. 
Substituting for 2 and R gives 

____ - ____ - ~ - 
X - \  Z' - R 2  = - \  12002 - 750' = -937Q 

Finally, since X = - 1 #(d'- 

- I  - I  

(IIX 2 ~ ( 4 0 0 ) (  - 937) 
C = __ = - - ~  F = 0435  . - r iF  

Incidentally, another way of finding X is from the impedance magnitude times the sine o f  the impedance 
angle: 
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12.9 A capacitor is in series with a coil that has 1.5 H of inductance and 5 52 of resistance. Find the 
capacitance that makes the combination purely resistive at 60 Hz. 

For the circuit to be purely resistive, the reactances must add to zero. And since the reactance of the 
inductor is 2~(60)(  1.5) = 565 R, the reactance of the capacitor must be - 565 Q. From X,. = - 1 wC, 

- 1  
- F = 4.69 / t F  - -~ - - 

I 
C =  - 

(f lXc 3~(60)(  - 565) 

12.10 Three circuit elements in series draw a current of 1Osin (400r + 70 ) A  in response to an 
applied voltage of 50 sin (400t + 15 ) V. I f  one element is a 16-mH inductor, what are the two 
other elements ? 

The unknown elements can be found from the impedance. I t  has a magnitude that is equal to the voltage 
peak divided by the current peak: Z = 50'10 = 5 R, and an angle that is the voltage phase angle minus 
the current phase angle: Z = 5/-55 = 2.87 - 
j4.1 Q. The real part must be produced by a 2.87-R resistor. The third element must be a capacitor because 
the imaginary part, the reactance, is negative. Of course, the capacitive reactance plus the inductive reactance 
equals the impedance reactance: 

U = 15-  - 7 0  = - 5 5  . Therefore. the impedance is 

- 1  

400c 
+ 400(16 x 1W3) = -4.1 ___ from which C = 238 /tF 

12.11 Find the input impedance at 5 kradis of the circuit shown in Fig. 12-10~1. 

The first step is to use jwL, -jl:'toC, and phasors to construct the corresponding phasor-domain 
circuit that is shown in Fig. 12-10b along with a source of l &  A. The presence of the dependent source 
makes it necessary to apply a source to find Z,,, and the best source is a current source of 14 A because with 
it ,  Z,, = V I n ~ l ~  = V, , .  Note that the controlling voltage for the dependent source IS the voltage drop 
across the resistor and capacitor: 

v = - (  14 )( 100 - 1100) = - 100 + / loo  v 
The initial negative sign is required because the voltage and current references are not associated. By K V L ,  

V,, = (lb )( 100) + (lb )( -1100) + 3( - 100 + jlO0) + ( l &  )( j60) 

= 100 -jl00 - 300 +j300 + j60  = -200 + j260 = 338/1'8 V 

Finally, Z,, = V,, = 3 3 8 m  R. 

12.12 A 240-V source is connected in series with two components, one of which has an impedance 
of 80/60" 52. What is the impedance of the other component if the current that flows is 2 A and if i t  
leads the source voltage by 40 ? 
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Since the total impedance is the sum of the known and unknown impedances, the unknown impedance 
is the total impedance minus the known impedance. The total impedance has a magnitude of 

V 240 

1 2  
z,.= = = 120R 

and an angle of -40 , the angle by which the voltage leads the current. (This angle is negative because 
the voltage lags, instead of leads, the current.) Therefore, the total impedance is 2, = 120/-40" R. 
Subtracting the known impedance of 80/60' R results in the desired impedance: 

Z = 120/-40 - 80/60 = 91.9 - j77.1 - (40 + j69.3) = 51.9 -j146.3 = 155/-70.5' Q 

12.13 Find the total impedance of two parallel components that have impedances of Z,  = 

300/30' R and Z, = 400/- 50' R. 

The total impedance is the product of the individual impedances divided by the sum: 

Z , Z ,  (30O/3oL')(400/- 50') 120 000[-20L 
= 2221- 3.2" R - - z,. - ____ - ~. - 

Z ,  + Z, 300@ + 400/-50 540/-16.8" 
I -  

12.14 Find the total impedances at 1 kradp of a 1-H inductor and a 1-pF capacitor connected in series 
and also in parallel. 

The inductor and capacitor impedances are 

- j l  jUL =jlooql)  = j1ooon and __ - - = - j l o o o Q  - j l  

toc 1ooqlO-6) 

The total impedance of the elements in series is the sum of the individual impedances: 
OR, which is a short circuit. For the two in parallel, the total impedance is 

2 =jlO00 -jl000 = 

j 1 OOO( - j  1000) 

jlooo-jlooo 0 

1 o6 z ='  - ----xR 

which is an open circuit. 

12.15 What capacitor and resistor connected in series have the same total impedance at 400 rad/s as a 
10-pF capacitor and a 500-Cl resistor connected in parallel? 

At  400 rad,/s, the impedance of the 10-pF capacitor is 

- j l  
- - -j250R -.i 1 

oC 400(10 x 10-6) 

The total impedance of the parallel combination is, of course, the product of the individual impedances 
divided by the sum: 

For the series resistor and capacitor to have this impedance, the resistor resistance must be lWQ, the real 
part, and the capacitor reactance must be -200R, the imaginary part. So, R = 100Q and by the 
capacitor reactance formula, 

- 1  - 1  1 

t u c  400c 200(400) 
= -200R from which C = -  F = 12.5 pF - - 

12.16 What two circuit elements connected in series have the same total impedance at 4 krad/s as the 
parallel combination of a 50-pF capacitor and a 2-mH coil with a 10-Cl winding resistance? 
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The impedance of the coil is 

10 + j4OOq2 x 10-3) = 10 + j8  = 12.8/38.7 Q 

and that of the capacitor is 

- j l  
= - j5  = 5/-90" Q 

4Ooo(50 x lo-") 

The impedance of the parallel combination is the product of these impedances divided by the sum: 

= 6.13/ -- 68" = 2.29 - j5.69 R 
(12.8/38.7")(5/-90") 64/- 51.3" 

10 + j 8  - j 5  10.44/16.7' 
- - 

To produce an impedance of 2.29 - j5.69 Q, the two series components must be a resistor that has a resistance 
of 2.29 Q and a capacitor that has a reactance of -5.69 R. Since X ,  = - l/oC, 

- 1  - 1  c=-= F = 4 4 p F  
C O X ,  4000( - 5.69) 

12.17 For the circuit shown in Fig. 12-1 1, find the indicated unknown phasors and the corresponding 
sinusoids. The frequency is 60 Hz. Also, find the average power delivered by the source. 

I 12 fl J16 fl 

Fig. 12-1 1 

Since this is a series circuit, the current can be found first and then used to find the voltages: 

- 61-53.1- A 
v 12010" 120100 

I = - =  - 
2 12 +j16 20/53.1" 

The resistor and inductor voltage drops are the products of this current and the individual impedances: 

V, = (6/-53.1-)(12) = 72/-53.1 V 

V, = (6/ - 53.1 "Njl6) = (6/ - 53.1 ")( 16/90') = 96136.9" V 

The radian frequency needed for the corresponding sinusoids is o = 2n(60) = 377 radi's. The peak values 
of the sinusoids are, of course, the magnitudes of the corresponding phasors times \h. Thus, 

i = 6, 2 sin (377r - 53.1^) = 8.49 sin (377t - 53.1 ) A 

c R  = 7 2 f i  sin (377t - 53.1') = 102 sin (377t - 53.1 ') V 

r1, = 96,,'T sin (377t + 36.9") = 136 sin (377t + 36.9') V 

Since the average power absorbed by the inductor is zero, the average power delivered by the source 
is the same as that absorbed by the resistor, which is 1 2 R  = 62 x 12 = 432 W. 

12.18 Find the current and unknown voltages in the circuit shown in Fig. 12-12a. 

The first step is to draw the corresponding phasor-domain circuit shown in Fig. 12-12b using 
the o = 4000 rad/s of the source. Since sinusoidal results are desired, it is best to use phasors based on 
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3.6 kR 3.6 k f l  j4.8 kf l  

( a  1 ( b )  

Fig. 12-12 

peak rather than on rms values. That is why the source in Fig. 12-12h has a voltage of 140/- 10' V instead 

of 99/- 10" V (99 = 140/\/2). The current is 

_______ - _________ - 140121_0 A = 36.111 1.9 mA 
V 140/- 10 

I = - = - -  
Z 3600 +j4800 -j6250 3881/-21.9 

This current can be used to obtain the voltage phasors: 

V, = (0.0361/11.9 )(3600) = 130/11.9 V 

V,, = (0.036111 1.9 )(4800/90 ) = 173110' V 

V,. = (0.0361/11.9 )(6250/-90 ) = IS / -78 .1  V 

The corresponding sinusoidal quantities arc 

i = 36.1 sin (4000f + 11.9 ) mA 

i i R  = 130 sin (4000f + 11.9 ) V 

I*,, = 173 sin (40001 + 102 ) = 173 cos (40001 + 12 ) V 

r(,  = 225 sin (4000r - 78.1 ) V 

12.19 A voltage 100/30' V is applied across a resistor and inductor that are in series. I f  the resistor rms 
voltage drop is 40 V, what is the inductor voltage phasor? 

A funicular diagram is useful here. Since the resistor toltagc is in phase with the current. and the 
inductor voltage leads the current by 90 , the phasor funicular diagram is a right triangle, as s h m n  in Fig. 
12-1 3. This particular diagram is useful only for finding the phasor magnitude and the wkrriw phasor angular 
relations, the latter because the phasors are not at the correct angles. By Pythagoras' theorem, 1;~ = 

t/'1002 - 40' = 91.7 V. The shown angle 0 is 0 = tan- '  (91.7 40) = 66.4 . The angle of the resistor toltage 
is less than the source voltage angle by this 66.4^: 4 = 30 - 66.4 = -36.4 . The angle of the inductor 
voltage is, of course, 90 greater than the resistor voltage angle: 90 + ( -  36.4 ) = 53.6 . So. the inductor 
voltage phasor is V,, = 91.7/53.6 V 

V K  = 4 0 k  V 

Fig. 12-13 
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12.20 In a phasor-domain circuit, 220/30 V is applied across two series components, one of which is 
a 2042 resistor and the other of which is a coil with an impedance of 40kO Q. Use current to 
find the individual component voltage drops. 

The current is 

Each component voltage drop is the product of the current and the component impedance: 

V, = (3.72j16.6 )(20) = 74116.6 V 

V, = (3.72j16.6 )(40/20 ) = 149/36.6 V 

12.21 Repeat Prob. 12.20 using voltage division. 

the applied voltage and the impedances: 
Voltage division eliminates the step of finding the current. Instead, the voltages are found directly from 

R 20 

Z, 59.2113.4 

2, 40/20 

2, 59.2113.4 

v - - - v  - - -- x 2 2 O B  = 74116.6 V H -  

x 220LO = 149/36.6 V v, = - v, = 

12.22 A phasor-domain circuit has 2 0 O b  V applied across three series-connected components having 
impedances of 20/15, 30/-40 , and 40/50 Q. Use voltage division to find the voltage drop V 
across the component with the impedance of 40m" Q. 

12.23 Use voltage division to find V,, V,, and V, in the circuit shown in Fig. 12-14. 

since this impedance is purely resistive, the circuit is in r ~ ~ s o ~ i m ~ ~ .  By the voltage division formula, 
For voltage division, the total impedance Z is needed: Z = 20 +j1000 - jl000 = 20 R. Incidentally, 

20 v - x loo&) = loo@ v 
- 20 

jlOO0 

20 
V ,  = __ x 100@ = (50/90 )(100/30 ) = 50OOm V 

- j 1 000 

20 
v,. = x loo@ = (50/-90 )( 100@ ) = 50001- 60 V 

Notice that the rms inductor and capacitor voltages are 50 times greater than the rms source voltage. This 
voltage rise, although impossible in a dc resistive circuit, is common in a series resonant ac circuit. 

12.24 Use voltage division to find the voltage V in the circuit shown in Fig. 12-15. 

Because the two voltage sources are in series, they produce a net applied voltage that is the sum of the 
individual source voltages: which is the voltage needed for the 
voltage division formula. The series components that V is across have a combined impedance of Z = 
50 - j60 + j70 = 50 + j l 0  = 51jl1.3 Q. The total circuit impedance is 

V, = 90/60 + loo@ = 184/44.2' V, 

Z ,  = 30 + j40 + 50 - j60 +j70  + 80 = 160 + j50 = 168/17.4 Q 
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20 R 30 R j40 R 50 R 

Fig. 12-14 Fig. 12-15 

Now, all the quantities have been calculated that are needed for the voltage division formula, which is 

x 184/44.2' = -55.8/38.1^ V v =  - - v  - -_____ 
168/17.4 

Z 

Z, 
S -  
1 

The negative sign is required in the formula because the reference polarity of V does not oppose the polarities 
of the sources. 

12.25 Find the current I in the circuit shown in Fig. 12-16. 

I 10 R I5 R - 
+ 

+ + 

v2 j20 R VI -j30 R 

- - 

Fig. 12-16 

The current can be found by dividing the voltage by the total impedance, and this imped nce can b 
found by combining impedances starting- at the end of-the circuit opposite the source. There, the series 
resistor and capacitor have a combined impedance of 15 - j30 = 33.5/ -63.4' R. This can be combined in 
parallel fashion with the j20 R of the parallel inductor: 

= 37.2160.3' = 18.5 + j32.3 R 
j20(33.5[ - 63.4') 671126.6" 

18/-33.7^ 
___ - ___-_ - 

j20 + 15 - j30 

This plus the 1OR of the series resistor is the total impedance: 

Z = 10 + 18.5 +j32.3 = 43.1148.6O R 

Finally, the current I is 

1oo/20" = 2.32/-28.6" A 
V 

I = - =  
Z 43.1/48.6" 

12.26 Use voltage division twice to find V ,  in the circuit shown in Fig. 12-16. 

Voltage division can be used to find V, from the source voltage, and used again to find V ,  from V , .  
For the calculation of V,, the equivalent impedance to the right of the 10-R resistor is needed. I t  
is 37.2/60.3' = 18.5 +j32.3 R, as was found in the solution to Prob. 12-25. By voltage division, 

3 720180.3 

10 + 18.5 +j32.3 43.1148.6 
x 100/20" = __-__- = 86.4/32 V v -______- 

3 7.2/60.3 
2 -  
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And, by voltage division again, 

- j30 

15 - j30 
V - I_--- x 8 6 . 4 D  = _____ - 

33.51- 63' 
1 -  

12.27 Derive expressions for the conductance and the susceptance of an admittance in terms of the 
resistance and reactance of the corresponding impedance. 

In general, 

Rationalizing, 

Since Y = G + jB, 

Notice from 
both functions of the resistance and reactance. Also, 
ever, B = -1,iX if R = O .  

G = R / ( R 2  + X 2 )  and B = - X / ( R 2  + X 2 )  that the conductance and the susceptance are 
B # 1 X. How- G # l ' R  except if X = 0. And, 

12.28 The impedance of a circuit has 2 Q of resistance and 4 Q of reactance. What are the conductance 
and susceptance of the admittance? 

The expressions developed in the solution to Prob. 12.27 can be used: 

But, in general, i t  is easier to use the inverse of impedance: 

1 1 1 

Z 2 + j4 4.47j63.4 
y , - = - - =  = 0.2241 - 63.4 = 0.1 - j0.2 S 

The real part is the conductance: G = 0.1 S; the imaginary part is the susceptance: B = -0.2 S. 

12.29 Find the total admittances in polar form of a 0.2-pF capacitor and a parallel 5.142 resistor at 
frequencies of ( U )  0 Hz, (h )  100 kHz, and (c) 40 MHz. 

( U )  For I'= 0 Hz, 
The total admittance is Y = G + j ( K  = 1 / R  + j27tj'C. 

Y = li5.1 + j2n(0)(0.2 x l O - " )  = 0.196 = 0.196b S 

( h )  For f =  100kHz, 

Y = 115.1 +jZn(100 x t03)(0.2 x 10--') = 0.196 +j0.126 = 0.2331327 S 

( c )  For f= 40 MHz, 

Y = 1'5.1 +j2n(40 x 106)(0.2 x 10-6) = 0.196 +j50.3 = 50.3/89.8 S 

At 40 MHz, the susceptance is so much larger than the conductance that the conductance is negligible 
for most purposes. 
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12.30 A 200-0 resistor, a I-pF capacitor, and a 75-mH inductor are in parallel. Find the total admittance 
in polar form at 400 Hz. Also, draw the admittance diagram and the admittance triangle. 

The total admittance is 

1 - j l  1 - j l  

R 2nfL 200 2~~(400)(75 x 10-3) 
Y = - +j2nfC + __ = __ +j2~~(400)(1 x 10F6) + --____-___- 

= 5 x 10-3 +j2.51 x 10-3 - j5.31 x 10-3 = (5 -j2.8)(10-3)S = 5.73/-29.2 mS 

The admittance diagram is shown in Fig. 12-17a and the admittance triangle in Fig. 12-17h. In the 
admittance diagram, the end point for the Y arrow is found by starting at the origin and moving down the 
vertical axis to -j5.31 mS (JBJ, and then by moving horizontally to the right to over 5 mS ( G )  and vertically 
up by 2.51 mS (&). 

12.31 A 100-0 resistor, a I-mH inductor, and a 0.1-pF capacitor are in parallel. Find the total 
admittances in polar form at radian frequencies of (a) 50 krad/s, (h )  100 krad/s, and (c) 
200 krad/s. 

The expression for the total admittance is Y = 1/R + j o C  - j l /oL. 

1 j 1  
100 (50 x 103~10-3) 

(a) Y = - +,(so x 103)(0.1 x 10-6) - 

= 0.01 + j0.005 -jO.O2 = 0.01 - j0.015 = 0.018/- 56.3" S 

1 
(b) Y = __ +j(105)(0.1 x 1 O W 6 )  - 

( c )  Y = - + j ( 2  x 105)(0.1 x 10-6) - 

j1 

1 OS( 10 - 3) 
= 0.01 +jO.Ol -jO.Ol = O.Ol&- s 

100 

1 j l  
100 (2 x 1 0 5 ~ 1 0 - 3 )  

= 0.01 + j0.02 - j0.005 

= 0.01 + j0.015 = 0.018/56.3" S 

Notice for o = 100 krad/s in part (6) that the admittance is real because the inductive and capacitive 
susceptance terms cancel. Consequently, this is the resonant radian frequency of the circuit. For lower 
frequencies, the circuit is inductive, as is verified in part (a). And for greater frequencies, the circuit is 
capacitive, as is verified in part (c). This response is opposite that for a series RLC circuit. 
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12.32 Three components in parallel have a total admittance of Y, = 6/30" S. I f  the admittances of 
two of the component are Y ,  = 4/45' S and what is the admittance Y, of the 
third component? 

Y, = 7/60" S, 

Since Y, = Y ,  + Y, + Y,,  

Y 3  = Y, - Y,  - Y, = 6/30 - 4/45' - 7/60' = 61-101 S 

12.33 What is the total impedance of three parallel components that have impedances of Z 1  = 
2.5/75" R, 2, = 41-50" R, and Z, = 5/45" Q? 

Perhaps the best approach is to invert each impedance to find the corresponding admittance, add the 
individual admittances to obtain the total admittance, and then invert the total admittance to find the total 
impedance. 

Inverting, 

1 1 1 1 
y ,=-=---  = 0.4/- 75' S y, = - = - = 0.25/50L S y 3 -  - --- = = 0.21-45 S 

1 

2, 5/4J Z,  2.5/75" Z, 4/-50' 

Adding, Y, = Y ,  + Y 2  + Y 3  = 0.4/-75" + 0.25/50" + 0.2/-45 = 0.527/-39.7 S 

Inverting, 
1 1 z - -- = ~ --- -- - = 1.9139.7 Q 

Y 0.527/ - 39.7' 
7 -  

12.34 Find the simplest parallel circuit that has the same impedance at 400 Hz as the series combination 
of a 30042 resistor, a 0.25-H inductor, and a 1-pF capacitor. 

The parallel circuit can be determined from the admittance, which can be found by inverting the 
impedance : 

1 
- 

1 
- - ____ - 

1 
Y =  

300 +j2n(400)(0.25) -jl/[2n(400)(10-6)] 300  +j230 378137.5 

= 2.64 x 10-3/-37.5" S = 2.096 - j1.61 mS 

The simplest parallel circuit that has this admittance is a parallel resistor and inductor. From the real 
part of the admittance, this resistor must have a conductance of 2.096mS and so a resistance of 
1/(2.096 x 10-3) = 477 R. And from the imaginary part, the inductor must have a susceptance of - 1.61 mS. 
The corresponding inductance is, from B ,  = - 1 /COL, 

- 1  - 1  

( o B ~ ~  
H = 247 mH L ~ . 

2n(4OO)( - 1.6 1 x 10- 3 ,  

12.35 A load has a voltage of V = 120/20" V both at 2 kHz. Find 
the two-element parallel circuit that the load can be. As always, assume associated references 
because there is no statement to  the contrary. 

and a current of I = 48/60 A, 

Because the two elements are in parallel, the load admittance should be used to find them: 

I 48/60 
Y = - = - - = 0.4/40 = 0.3064 + j0.257 1 S 

v 120/20' 

The real part 0.3064 is, of course, the conductance of a resistor. The corresponding resistance is R = 

1/0.3064 = 3.26R. The imaginary part 0.2571, being positive, is the susceptance of a capacitor. From 
B, = oC, 

B, 0.2571 

w 2n(2000) 
c=-=- - - -  F = 20.5 pF 
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12.36 A 0.542 resistor is in parallel with a 10-mH inductor. At  what radian frequency do the circuit 
voltage and current have a phase angle difference of 40"? 

A good approach is to find the susceptance from the admittance angle and the conductance, and then 
find the radian frequency from the susceptance and the inductance. The admittance angle has a magnitude 
of 40" because this is the phase angle difference between the voltage and current, and it  is negative because 
this is an inductive circuit. So, 6 = -40-. Then from 0 = tan-'  ( B L )  G). 

B,* = G tan 8 = (110.5) tan ( -40L) = - 1.678 S 

And, from the formula for inductive susceptance, B,. = - l/(oL, 

- 1  - 1  

LB,, 0.01( - 1.678) 
U ) = - =  = 59.6 radis 

12.37 A resistor and a parallel 1-pF capacitor draw 0.48 A when 120 V at 400 Hz is applied. Find the 
admittance in polar form. 

tions, the angle of the admittance is 
The magnitude of the admittance is Y = I , !  I/= 0.48,/120 S = 4 mS. From admittance triangle considera- 

0 = sin-'(BiY). Since B = toC, 

= 0.2n 
B c i K  27~(400)( 10-') 

- - - 
Y Y  0.004 

0 = sin-' 0.27~ = 38.9 . Therefore, the admittance is and Y = 4/38.9 mS 

12.38 Capacitors are sometimes connected in parallel with inductive industrial loads to decrease the 
current drawn from the source without affecting the load current. To verify this concept, consider 
connecting a capacitor across a coil that has 10 mH of inductance and 2 R of resistance and that 
is energized by a 60-Hz, 120-V source. What is the capacitance required to make the source 
current a minimum, and what is the decrease in this current'? 

the current magnitude will be a minimum when the admittance magnitude Y is a 
minimum. The total admittance Y is the sum of the admittances of the coil and capacitor: 

Since I = YV, 

1 1 1 

R + jwL 2 + j27~(60)(10 x I O p 3 )  2 +.j3.77 
y = -  + jtoC = + j2n(60)C = ____ + j377C 

= 0.1 10 - j0.207 + j377C 

Because the capacitance can affect only the susceptance, the admittance magnitude is a minimum for 
zero susceptance. For this, 

377C = 0.207 from which 
0.207 

377 
c=- F = 549 pF 

With zero susceptance, Y = 0.1 10 S and (11 = I Y J I V J  = 0.1 lO(120) = 13.2 A. In  comparison, be- 
fore the capacitor was added, the magnitude of the current was equal to the product of the magnitudes of 
the coil admittance and voltage: (0.1 10 - j0.2071(120) = 0.234(120) = 28.1 A. So. the parallel capacitor 
causes a decrease in source current of 28.1 - 13.2 = 14.9 A even though the coil current remains the same 
28.1 A. What happens is that some of the coil current flows through the capacitor instead of through the 
source. Incidentally, since the susceptance is zero, the circuit is in resonance. 

12.39 Find the total impedance 2, of the circuit shown in Fig. 12-18. 

This is, of course, a ladder circuit. Although for such a circuit i t  is possible to find Z,. by using only 
impedance (or admittance), i t  is usually best to alternate admittance and impedance, using admittance for 
parallel branches and impedance for series branches. This will be done starting at the end opposite the input. 
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I I 

L +  L +  L +  
Y3 22 YI 

Fig. 12-18 

There, the 3- and j6-R elements have a combined admittance of 

1 1  

' - 3  6 
Y - - - j -  = 0.373/-26.6 S 

which corresponds to an impedance of 

1 

0.313/- 26.6 
= 2.68/26.6 = 2.4 + j1.2 R 

This adds to the -j4 R of the series capacitor for an impedance of 

Z, = 2.4 + j1.2 - j4 = 2.4 - j2 .8  = 3.691-49.4 Q 

The inverse of this added to the conductance of the parallel 6-R resistor is 

1 1 

3.691-49.4 6 
y, = ____-_-- + - = 0.176 + j0.206 + 0.167 = 0.4& S 

The corresponding impedance adds to the j2 Q of the series inductor: 

The corresponding admittance plus the conductance of the 441 resistor is Y,.: 
1 1 
1 y ---___ + = 0.42 - j0.14 + 0.25 = 0.684/- 11.8 S 

- 2.26118.4 4 

Finally, 
1 1 z - - =  = 1.46/1 1.8 R r -  

Y 7' 0.684/ - 1 1 . 8  

12.40 Find the input admittance at 50 krad/s of the circuit shown in Fig. 12-19u. 

-jl/wL, G, j o X ,  and phasors to construct the corresponding phasor-domain 
circuit shown in Fig. 12-19b along with a source of lk" V. With this source, the circuit has an input 

The first step is to use 

i I,. 1 

Fig. 12-19 
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admittance of Yin = I i n / l P  = Iin.  Note that the controlling current I is the sum of the currents in the 
two right-hand branches: 

I = (1,&")(2) + (l,&")(jl) = 2 + jl A 

And so the dependent-source current flowing down is -21 = -2(2 +jl). This can be used in a K C L  
1 equation at the- top node to obtain Iin:  

Finally, 

12.41 Find Ii, 

V =  

I in = -2(2 + j l )  + (l,&"X-jl) + 2 + j l  = - 2  - j2 = 2.83/- 135" A 

Yin = Ii, = 2.83/- 135" S 

and I, for the circuit shown in Fig. 12-20. 

The current Ii, can be found from the source voltage divided by the input impedance Zin,  which equals 
the 2 R of the series resistor plus the total impedance of the three branches to the right of this resistor. Since 
these branches extend between the same two nodes, they are in parallel and have a total admittance Y that 
is the sum of the individual admittances: 

1 +-= 0.156/-38.7' + 0.149/26.6' + 0.167/-30' = 0.416/- 16" S y=- +--- 1 1 

5 + j 4  6 - j 3  6/30' 

Adding the 2 R to the inverse of this admittance results in 

from which 

1 1 

Y 0.4161-16" 
zi, = 2 + -- = 2 + = 2 + 2.41&" = 4.36/8.72" R 

I .  =-=  120/30" = 27.5121.3" A 
Zin 4.3618.72" 

in 

The current I, can be found from the load voltage and impedance. The load voltage V, is equal to the 
current Ii, divided by the total admittance of the three parallel branches: 

and 

Alternatively, I, can be found directly from Iin by current division. I, is equal to the product 
of Ii, and the admittance of the load divided by the total admittance of the three parallel branches: 

0 * 1 6 7 & ? G  - 1100 A I, = 27.5/21.3" x ______ - 
0.416/- 16" 

12.42 A current of 4LO" A flows into four parallel branches that have admittances of 61-70', 5/30", 
7/60', and 9/45" S. Use current division to find the current I in the 5 L O O - S  branch. Of course, since 
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there is no statement to the contrary, assume that the current references are such that the current 
division formula does not have a negative sign. 

The current I in the branch with the admittance of 5/30 S is equal to this admittance divided by the sum 
of the admittances, all times the input current: 

20&? = 1.07130.2 A 
18.7-m 

x 4 / 3 0  == 
5 / 3 0  

61 - 70" + --7/60--< 9& 
I =  

12.43 Use current division to find I, for the circuit shown in Fig. 12-21. 

Since there are just two branches and the branch impedances are specified, the impedance form of the 
current division formula is preferable: The current in one branch is equal to the impedance of the other 
branch divided by the sum of the impedances, all times the input current. For this circuit, though, a negative 
sign is required because the input current and I, have reference directions into the same node -the bottom 
node: 

6 -24/20' 

6 + i9 10.8/56.3 
I x 4 / 2 0  = = - 2.221- 36.3 A L -  

P 

Fig. 12-21 Fig. 12-22 

12.44 Use current division to find i, for the circuit shown in Fig. 12-22. 

The individual admittances are 

= /0.032 S 

These substituted into the current division formula give 

from which i, = 3.66,/'2 sin (400r - 57.1 ") = 5.18 sin (400t - 57.1 ) A 

12.45 Use current division twice to find the current I, for the circuit shown in Fig. 12-23. 

division. For the I current division formula, the impedance to the right of the 2-R resistor is needed. I t  is 
The approach is to find 1 from the source current by current division, and then find I, from I by current 

- j 3  + 3.121-38.7' = 2.65123.3 R j 3 + - -  
4( -J5) 
4 - j 5  
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I j3  R 

Fig. 12-23 

By current division, 

I =  x 2 0 / 4 5 " =  40/45' = 8.77131.7' A 
2 + 2.65123.3 4.5611 3.3' 

By current division again, 

x 8.77/31.7' = 43'8&c = 6.85/-70 A 
6.41-51.3 

12.46 Determine V, and I, in the circuit of Fig. 12-24. 

1 I 3 k R  j 4 k R  

2 / -30  V c, 
v 

4 k R  

1 v0 

- 

j4 kR 

I A 1 - 0 1 * 
Fig. 12-24 

Because this circuit has the same configuration as the inverter op-amp circuit of Fig. 6-4, the same 
Z, = 6 - j 8  kQ and the input formula applies, with the R's replaced by Z's. The feedback impedance is 

impedance is Zi = 3 + j 4  kR. Therefore, with the impedances expressed in kilohms, 

12.47 Find U, and i, in the circuit of Fig. 12-25a. 

rad/s 
the rms value because sinusoidal answers are desired. 

the same voltage gain formula is valid, with the R's replaced by Z's. Here, 

The first step is to draw the corresponding phasor-domain circuit of Fig. 12-25b using the o = 10 OOO 
of the source. The shown peak value of 4 V for the source voltage phasor magnitude is preferable to 

Because the circuit of Fig. 12-25h has the same configuration as the noninverting amplifier of Fig. 6-6, 
Z, = 3 - j 2  kR and 
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I "O 

OS* 1 10.1 H 

Fig. 12-25 

Z, = 2 + j l  kR. With the impedances expressed in kilohms, 

v , = ( l + I v i =  E a )  ( 1 + -  L;:) x 4/-20" = 9.12/-57.9"V 

and 

The corresponding sinusoids are 

U, = 9.12 sin (10 OOOt - 57.9") V and i, = 2.53 sin (10000r - 91.6") mA 

12.48 Calculate V, in the circuit of Fig. 12-26. 

j6 kR 

9 15/-45"V 
1 - 1 1 

- 
Fig. 12-26 

Since the op-amp circuit of Fig. 12-26 has the same configuration as the summer of Fig. 6-5, the same 
formula applies, with the R's replaced by Z's. So, with the impedances expressed in kilohms, 

4 - j 8  4 - j 8  

(7 + j 6  9 - j l 0  
v , = -  ___ x 20Lo0 + ___ x 15/-45') = -29.2/-69.4" V 

12.49 Find I, in the circuit of Fig. 12-27. 

The circuit of Fig. 12-27 consists of two cascaded op-amp circuits that have configurations of, 
respectively, a noninverting voltage amplifier and an inverting voltage amplifier. Consequently, the noninvert- 
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2 kfZ i 5  kf) 
A -  

257 

I,  5 k f l  

V" j 8  k f l  

A 
- 

4 - j 5  
= 18.3/99.1 V 

V, 1 8 . 3 / 9 9 -  
and I, = ~ - - = 1.94/41.1 mA 

5 + j 8  5 + j 8  

12.50 

c 

Fig. 12-28 

The first op-amp circuit can be considered to be similar to a summer with one input of 4/30 V and the 
other of V,. Then the output V, is 

6 - 13 
x 4/30' + - A V ,  = 4.19/- 138 + (0.429/- 156')V, 

5 - j4  10 - j12 

V, is the input to the second op-amp circuit, which has a configuration similar to that of a noninverting 
amplifier. Consequently, 

9 + j 4  
[4.19/- 138" + (0.429/- 156")V,] = 3.62/- 166' + (0.371/175")V0 

Finally, v, = 3*62/-0 = 2.641- 165" V 
1 - 0.371 /175" 
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12.51 

12.52 

12.53 

12.54 

12.55 

12.56 

12.57 

12.58 

Supplementary Problems 
A 0.5-pF capacitor and a 2-kR resistor are in series. Find the total impedance in polar form at 
60Hz, and ( c )  10kHz. 

Ans. (a) -;c/-90" R, (h)  5.67/-69.3" kR, ((3) 2/-0.912 kR 

( U )  0 Hz, ( h )  

A 30042 resistor, a I-H inductor, and a I-pF capacitor are in series. Find the total impedance in polar form 
and whether the circuit is inductive or capacitive at ( U )  833 radls, ( b )  1000 rad/s, and (c) 1200 rad/s. 

Ans. ( c )  474/50.7' R, in- 
duct ive 

(a) 474/-50.8 R, capacitive; ( h )  30010 R, neither capacitive nor inductive; 

A capacitor and resistor in series have an impedance of 1.34/-45 kR at 400 Hz. Find the capacitance and 
resistance. 

Ans. 0.42 pF, 948 R 

A load has a voltage of 2 4 0 b  V and a current of 20@- A at a frequency of 60 Hz. Find the two-element 
series circuit that the load can be. 

Ans. An 1 1 . 6 4  resistor and an 8.24-mH inductor 

Two circuit elements in series draw a current of 16 sin (200t + 35 ) A  in response to an applied voltage of 
80 cos 200r V. Find the two elements. 

Ans. A 2 . 8 7 4  resistor and a 20.5-mH inductor 

A 100-R resistor is in series with a 120-mH inductor. At  what frequency do the circuit voltage and current 
have a phase angle difference at 35 '? 

Ans. 92.9 Hz 

A 7 5 0 4  resistor is in series with a O.l-pF capacitor. At what frequency does the total impedance have a 
magnitude of 1000 R ?  

Ans. 2.41 kHz 

Find the total impedance in polar form of three series-connected components that have impedances of 
10/-40. 12 /65 ,  and 15/-30 R. 

Ans. 25.9/-6.77 R 

12.59 What resistor in series with a 2-H inductor limits the current to 120 mA when 120 V at 60 Hz is applied? 

Ans. 657R 

12.60 Two circuit elements in series draw a current of 24 sin (5000r - 10 ) mA in response to an applied voltage 

of 120,)'sin (5000t + 30 ) V. Find the two elements. 

Ans. A 5.42-kR resistor and a 0.909-H inductor 

12.61 Find the input impedance at 20 krad/s for the circuit shown in Fig. 12-29. 

Ans. 228128.8 C2 
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200 R 3 mH 

t 1 

259 

- 
Fig. 12-29 

12.62 A 300-V source is connected in series with three components, two of which have impedances of 40/30" R 
and 30/-60" R. Find the impedance of the third component if the current that flows is 5 A and if it  lags the 
source voltage by 20'. 

Ans. 27.3175.7- R 

12.63 Find the total impedance of two parallel components that have identical impedances of 100/60r R. 

Ans. 50/60'R 

What is the total impedance of two parallel components that have impedances of 80/-30' and 60/40" R? 

Ans. 41.6/10.7" R 

12.64 

12.65 A 120-mH coil with a 3042 winding resistance is in parallel with a 20-0 resistor. What series resistor and 
inductor produce the same impedance at 60 Hz as this parallel combination? 

Ans. 15.6 R, 10.6 mH 

12.66 A 2-mH coil with a 10-R winding resistance is in parallel with a 10-pF capacitor. What two series circuit 
elements have the same impedance at 8 krad,/s? 

Ans. A 13.942 resistor and a 7.2-pF capacitor 

12.67 For the circuit shown in Fig. 12-30, find I, V,, and V,, and the corresponding sinusoidal quantities if  the 
frequency is 50 Hz. Also, find the average power delivered by the source. 

Ans. I = 7.5/81.3 A V, = 150/81.3 V 

V, = 1871- 8.66" V 

11, = 212 sin (314t + 81.3-) V 

Average power delivered = 1.12 kW 

i = 10.6 sin (314t + 81.3') A 

11, = 265 sin (3 14r - 8.66') V 

I 20 n -j25 R 

Fig. 12-30 

12.68 A voltage source of 340 sin (IOOOr + 25 ') V, a 2 - 0  resistor, a 1-H inductor, and a 1-pF capacitor are in series. 
Find the current out of the positive terminal of the source. Also, find the resistor, inductor, and capacitor 
voltage drops. 

Ans. i = 170 sin (1000t + 25") A 

vL = 170 cos (1000t + 25') k V  

i t R  = 340 sin (1OOOt + 25") V 

i t ,  = 170 sin (1000t - 65') k V  
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12.69 A voltage that has a phasor of ZOO/-40 V is applied across a resistor and capacitor that are in series. I f  
the capacitor rms voltage is 120 V, what is the resistor voltage phasor? 

Ans. 160/-3.13" V 

12.70 A phasor-domain circuit has 2 2 0 B L  V applied across two components, a 30-R resistor and a coil that has 
an impedance of 3 0 b '  R. Find the voltage drops across the resistor and the coil. 

Ans. Resistor voltage = 117/10' V, coil voltage = 117/50" V 

12.71 A voltage source of 
resistor and capacitor voltage drops. 

Ans. 

170 sin (377t - 30') V, a 20042 resistor, and a 10-pF capacitor are in series. Find the 

vR = 102 sin (377t + 23-) V, cc = 136 sin (377t - 67') V 

12.72 Repeat Prob. 12.71 with an added series 1-H inductor. Also, find the inductor voltage. 

Ans. r R  = 148 sin (3771 - 597) V, L'<. = 197 sin (377t - 149") V, oL = 280 sin (377t + 31 ') V 

12.73 A phasor-domain circuit has 500&' V applied across three series-connected components that have 
impedances of 20/40', 301 - 60', and 4OkO' R. Find the component voltage drops. 

Ans. V,, = 199150.9 V, V,, = 298/-49.1 V, V,, = 397i80.9 V 

12.74 What is the current I for the circuit shown in Fig. 12-31'? 

Ans. 7.93145.8" A 

12.75 Use voltage division twice to find V in the circuit shown in Fig. 12-31. 

Ans. 81.2/6.04" V 

-j20 jS0 fl +2:7-$ 
Fig. 12-31 

12.76 Derive expressions for the resistance and reactance of an impedance in terms of the conductance and 
susceptance of the corresponding admittance. 

Ans. R = G/(GZ + B'), X = - B / ( G 2  + B 2 )  

12.77 Find the total admittance in polar form of a 1-pF capacitor and a parallel 3.6-kR resistor at 
( h )  44.2 Hz, and (c) 450 Hz. 

Ans. (a)  0.28/6.45' mS, (b) 0.393/45" mS, ( c )  2.84184.4" mS 

(a)  5 Hz, 

12.78 A 1-kR resistor, a 1-H inductor, and a I-pF capacitor are in parallel. Find the total admittance in polar 
form at (a) 500 rad/s, (6) loo0 rad/s, and ( c )  SO00 rad/s. 

Ans. (a)  1.8/-56.3' mS, (6) l,@ mS, ( c )  4.9/78.2" mS 

An inductor and a parallel resistor have an admittance of 100/ - 30' mS at 400 Hz. What are the inductance 
and resistance? 

Ans. 7.96 mH, 11.5 R 

12.79 
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12.80 

12.81 

12.82 

12.83 

12.84 

12.85 

12.86 

12.87 

12.88 

12.89 

12.90 

Find the simplest series circuit that has the same total impedance at 400 Hz as the parallel arrangement of 
a 6 2 0 4  resistor, a 0.5-H inductor, and a 0.5-pF capacitor. 

Ans. A 5 7 3 4  resistor and a 2.43-pF capacitor 

A load has a voltage of 2 4 O h q  V and a current of 120/20- mA. What two-element parallel circuit can this 
load be at 400Hz? 

Ans. A 2.61-kR resistor and a 1.24-H inductor 

A resistor and a parallel 0.5-pF capacitor draw 50 mA when 120 V at 60 Hz is applied. What is the total 
admittance in polar form and what is the resistance of the resistor? 

Ans.  0.417/26.9' mS, 2.69 kR 

What two circuit elements in parallel have an admittance of 0.4/-50 S at 60 Hz'? 

Ans. A 3.89-R resistor and an 8.66-mH inductor 

What two circuit elements in parallel have an admittance of 2.5/30' mS at 400 Hz? 

Ans. A 462-R resistor and a 0.497-pF capacitor 

Three circuit elements in parallel have an admittance of 6.3/-40 mS at a frequency of 2 kHz. If one is a 
60-mH inductor, what are the two other elements? 

Ans. A 2 0 7 4  resistor and a 29.2-mH inductor 

A 2-kR resistor is in parallel with a O.l-pF capacitor. At  what frequency does the total admittance have an 
angle of 40"? 

Ans. 668 H z  

A resistor and a parallel 120-mH inductor draw 3 A when 100 V at 60 Hz is applied. What is the total 
admittance? 

Ans. 30/-47.5' mS 

A certain industrial load has an impedance of 0.6LO- R at a frequency of 60 Hz. What capacitor connected 
in parallel with this load causes the angle of the total impedance to decrease to 15^? Also, if the load voltage 
is 120 V, what is the decrease in line current produced by adding the capacitor? 

An.7. 1.18 mF, 20.7 A 

Find the admittance Y of the circuit shown in Fig. 12-32. 

Ans. 2.29/-42.2' S 

Find the input admittance at 1 krad,/s of the circuit shown in Fig. 12-33. 

Ans. 4 S 

Fig. 12-32 Fig. 12-33 
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12.91 Repeat Prob. 12.90 for a radian frequency of 1 Mrad s. 

A m .  5.66/45 S 

12.92 A current of 20/33'' A flows into three parallel branches that have impedances of 200, jl0, and - j l O  Q. Find 
the current in thejl0-R branch. 

Ans. 400/-60 A 

12.93 A current of 20 sin (200r - 30') A flows into the parallel combination of a 100-R resistor and a 25-pF 
capacitor. Find the capacitor current. 

Ans. 8.94 sin (200t + 33.4 ) A 

12.94 A current of 201-45 A flows into three parallel branches that have impedances of 16b0 , 20/-45-, and 
25/-60 R. What is the current in the 25/-60 R branch? 

Ans. 6.89/-4.49 A 

12.95 Use current division twice to find I for the circuit shown in Fig. 12-34. 

Ans. 1.41/- 19.5 A 

j 3  R I 

Fig. 12-34 

12.96 Calculate I, in the circuit of Fig. 12-35. 

Ans. 0.419/-38.4 mA 

13 kR 

Fig. 12-35 

12.97 Find i,) in the circuit of Fig. 12-36. 

Ans. 0.441 cos ( 104r - 69.9 ) mA 
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4 kR 0.2 H 

8 k R  0.5 H - . 0.02 pF 
'0 =-7 

1. - 
Fig. 12-36 

12.98 Obtain V, and I, in the circuit of Fig. 12-37. 

Ans. 7.49/ - 45.0' V, 2.041 - 20.1 mA 

12.99 Calculate V, in the circuit of Fig. 12-38. 

Ans. -5.451- 13.0 V 

6 kR 

7kR 

Fig. 12-38 
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Chapter 13 

Mesh, Loop, Nodal, and PSpice Analyses 
of AC Circuits 

INTRODUCTION 

The material in this chapter is similar to that in Chap. 4. Here, however, the analysis techniques 
apply to ac phasor-domain circuits instead of to dc resistive circuits and so to voltage and current phasors 
instead of to voltages and currents and to impedances and admittances instead of just to resistances and 
conductances. Also, an analysis is often considered completed after the unknown voltage or current 
phasors are determined. The final step of finding the actual time-function voltages and currents is often 
not done because they are not usually important. Besides, it is a simple matter to obtain them from the 
p h aso rs. 

One other introductory note: From this point on, the term “impedance” and “admittances” will 
often be used to mean coniponents with inipeckincc>s and roniponcnts with dui t tanres ,  as is common 
practice. 

SOURCE TRANSFORMATIONS 

As has been explained, mesh and loop analyses are usually easier to do with all current sources 
transformed to voltage sources and nodal analysis is usually easier to do with all voltage sources 
transformed to current sources. Figure 13-1u shows the rather obvious transformation from a voltage 
source to a current source, and Fig. 13-lh shows the transformation from a current source to a voltage 
source. In each circuit the rectangle next to Z indicates components that have a total impedance of Z. 
These components can be in any configuration and can, of course, include dependent sources--but not 
independent sources. 

MESH AND LOOP ANALYSES 

Mesh analysis for phasor-domain circuits should be apparent from the presentation of mesh analysis 
for dc circuits in Chap. 4. Preferably all current sources are transformed to voltage sources, then 
clockwise-referenced mesh currents are assigned, and finally KVL is applied to each mesh. 

As an illustration, consider the phasor-domain circuit shown in Fig. 13-2. The K V L  equation for 
mesh 1 is 

265 
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ZI 

VI d;‘ 4 r 
7 M e s h  2 v Mesh I 

I I I 
I A - J 

Fig. 13-2 

where I , Z , ,  ( I 1  - 13)Z2, and (1, - 12)Z3 are the voltage drops across the impedances Z , ,  Z,,  and 
Z,. Of course, is the sum of the voltage rises from voltage sources in mesh 1. As a 
memory aid, a source voltage is added if i t  “aids” current flow -that is, if  the principal current has a 
direction out of the positive terminal of the source. Otherwise, the source voltage is subtracted. 

V ,  + V, - V, 

This equation simplifies to 

(Z,  + Z, + Z3)11 - Z,I, - Z,I, = V ,  + V, - V,  

The coefficient of I ,  is the selflinzpedance of mesh 1,  which is the sum of the impedances 
of mesh 1. The -Z,  coefficient of I ,  is the negative of the impedance in the branch common to meshes 
1 and 2. This impedance Z, is a r?zutuul iniprcicmcr ~ i t  is mutual to meshes 1 and 2. Likewise, the -Z, 
coefficient of I,  is the negative of the impedance in the branch mutual to meshes 1 and 3, and so Z, is 
also a mutual impedance. I t  is important to remember in mesh analysis that the mutual terms have 
initial negative signs. 

It is, of course, easier to write mesh equations using self-impedances and mutual impedances than 
it is to directly apply KVL. Doing this for meshes 2 and 3 results in 

Z ,  + Z, + Z, 

--Z3I1 + (Z, + Z4 + 241, - Z413 = V3 + V, - V, 

and -Z211 - Z41, + (Z, + Z4 + Z,)13 = - V z  - V, + V, 

Placing the equations together shows the symmetry of the I coefficients about the principal diagonal: 

(z l  + z2  + z3)11 - z312 - Z,13 = V ,  + V,  - V, 

Z41, + (Z, + Z, + ZJ3 = - V z  - V, + V, 

-Z311 + (Z, + Z4 + Z5)12 - Z4I3 = v, + v, - v, 
-Z,I,  - 

Usually, there is no such symmetry if the corresponding circuit has dependent sources. Also, some of 
the off-diagonal coefficients may not have initial negative signs. 

This symmetry of the coefficients is even better seen with the equations written in matrix form: 

-z3 - z2 v ,  + v, - v3 

-z4 -v,  - v4 + v, 
z, + z4 + z, 4 4  ][:;] = [ v3 + v4 - vs] [”’ +-z&+ - z2 z3 

z, + z4 + z, 
For some scientific calculators, it is best to put the equations in this form and then key in the coefficients 
and constants so that the calculator can be used to solve the equations. The calculator-matrix method 
is generally superior to any other procedure such as Cramer’s rule. 

Loop analysis is similar except that the paths around which K V L  is applied are not necessarily 
meshes, and the loop currents may not all be referenced clockwise. So, even if a circuit has no dependent 
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sources, some of the mutual impedance coefficients may not have initial negative signs. Preferably, the 
loop current paths are selected such that each current source has just one loop current through it. Then, 
these loop currents become known quantities with the result that i t  is unnecessary to write KVL equations 
for the loops or to transform any current sources to voltage sources. Finally, the required number of 
loop currents is B - N + 1 where B is the number of branches and N is the number of nodes. For 
a planar circuit, which is a circuit that can be drawn on a flat surface with no wires crossing, this number 
of loop currents is the same as the number of meshes. 

N O D A L  ANALYSIS 

Nodal analysis for phasor-domain circuits is similar to nodal analysis for dc circuits. Preferably, all 
voltage sources are transformed to current sources. Then, a reference node is selected and all other nodes 
are referenced positive in potential with respect to this reference node. Finally, KCL is applied to each 
nonreference node. Often the polarity signs for the node voltages are not shown because of the convention 
to reference these voltages positive with respect to the reference node. 

For an illustration of nodal analysis applied to a phasor-domain circuit, consider the circuit shown 
in Fig. 13-3. The KCL equation for node 1 is 

v,y,  + (v,  - V,)y ,  + (v1 - v3)y(j = 1, + 1 2  - 16 

where V , Y , ,  (V,  - V,)Y,, and (V,  - v3)Y6 are the currents flowing away from node 1 through 
the admittances Y Y,,  and Y6. Of course, I ,  + I ,  - I, is the sum of the currents flowing into node 1 
from current sources, 

This equation simplifies to 

(Y, + Y, + Y,)V, - Y2V2 - Y,V, = I ,  + I ,  - I, 

The coefficient of V ,  is the self-admittance of node 1, which is the sum of the 
admittances connected to node 1. The coefficient -Y, of V, is the negative of the admittance connected 
between nodes 1 and 2. So, Y, is a mutual admittance. Similarly, the coefficient - Y, of V, is the negative 
of the admittance connected between nodes 1 and 3, and so Y6 is also a mutual admittance. 

It is, of course, easier to write nodal equations using self-admittances and mutual admittances than 
it is to directly apply KCL. Doing this for nodes 2 and 3 produces 

Y, + Y, + Y6 

- Y 2 V 1  + (Y, + Y, + Y4)VZ - Y,V, = - I 2  + I, - I, 

and - Y , v ,  - y4v, + (y4 + y, + y6)v3 = 14 - 1, + 1, 
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Placing the cqiiatioiij togcthcr \ ~ O M S  !hc s~n in ic t r j  of the \' coeflicient\ about the principal diagonal: 

(Yl + Y, + Y(,)\ ' ,  - Y J ,  - YJ, = I ,  + I ,  - I, 

-YJ, + ( Y 2  + k', + YJV, -- l' ,V.) = - I ,  + I ,  - I, 

- I.(,\', - Y4V,  + (Y, + + Y , ) V ,  = I, - I ,  + I, 

Usually. there ic no cuch \qiiimetrj if the cc)rrcspondin~ circuit has dependent sources. Also, some of 
the off-diagonal coefticicnts maq n o t  h a \  e initial ncgati\c signs. I n  matri\ form these equations are 

Y, + 1 . 2  + I.(, 
-- k 2 - I ,  + I ,  - I, 
- - Y4 k r 4  + Yi t- Y(, 1, - 1, + 1, 

-- Y 2  
1.: + k'{ -c IT4 

PSPICE AC AN ALk'SIS 

The use of PSpice to ;in;iIj/e ; i n  ;tc circuit is perhaps best introduced by ivay of an illustration. 
Consider the time-domain circuit of F'ig. 13-4. A suitable PSpice circuit file for obtaining Cb and I , ,  is 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-4 
V 1  1 0 AC 10 -20 
R1 1 2 2K 
c1 2 3 1u 
R2 3 0 3K 
I1 3 0 AC 3M 42 
R3 3 4 4K 
L 1  4 0 5M 
.AC LIN 1 159.155 159.155 
.PRINT AC VM(C1) VP(C1) IM(L1) IP(L1) 
. END 

Observe that the resistor. inductor, and capacitor statements are essentially the same as for the other 
types of analyses, except that no initial conditions ;ire specified i n  the inductor and capacitor statements. 
I f  the circuit had contained :I dependcnt soiircc. the correbponding statement bould ha\Te been the same 
a 1 s 0.  

In  the independent source statement, the term AC. which must be included after the node 
specification, is followed by thc peak w l u e  of the siniisoidal source and then the phase angle. I f  rms 
magnitudes are desired in  the printed outputs, then r i m  values instead of peak values. should be specified 
i n  the independent source statement. 

The frequency of the sources (and all sources must have the same frequency ), in herti-, is specified 
in an .AC control statement, aftcr AC L I N  I .  Here the frequency is 1000 2n = 159.155 Hz. (The 
source frequency of 1000 is, of coiirsc, in radians per second.) Note  that this freqiiencj must be specified 
twice. The format of the .AC control statement a1lou.s for the lariation i n  frequency. a feature that is 
not used in this example. 
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The .PRINT statement requires the insertion of AC after .PRINT. After AC are specified the 
magnitudes (M) and phases (P) of the desired voltages and currents: VM(C1) specifies the magnitude of 
the voltage across capacitor C1, and VP(C1) specifies its phase; IM(L1) specifies the magnitude of the 
current flowing through inductor L1, and IP(L1) specifies its phase. If the results are desired in rectangular 
form, then the letters R for real part and I for irnrrginury purt are used instead of M and P. 

If this circuit file is run with PSpice, the output file will include the following: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
****  AC ANALYSIS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FREQ VM(C1) VP(C1) IM (Ll) IP(L1) 
1.592E+02 3.436E+00 -7.484E+01 6.656E-04 -4.561E+01 

Consequently, V, = 3.436/- 74.84" V and I, = 0.6656/-45.61' mA, where the magnitudes are ex- 
pressed in peak values. As stated, if rms magnitudes are desired, then rms magnitudes should be specified 
in the independent source statements. 

Solved Problems 
13.1 Perform a source transformation on the circuit shown in Fig. 13-5. 

original source gives the source current of the equivalent circuit: 
The series impedance is 3 + j4 + 611( -, is) = 5.56110.9 R, which when divided into the voltage of the 

20/30 = 3.6/19.1 A 
5.5hF10.9 

As shown in Fig. 13-6, the current direction is toward node N, as it  must be because the positive terminal 
of the voltage source is toward that node also. The parallel impedance is, of course, the series impedance 
of the original circuit. 

- j S  fl 
I /  

3a 
4-a 

3.6w" A 

Fig. 13-5 Fig. 13-6 

13.2 Perform a source transformation on the circuit shown in Fig. 13-7. 

This circuit has a dependent voltage source that provides a voltage in volts that is three times the 
current I flowing elsac~here (not shown) in the complete circuit. When, as here, the controlling quantity is 
not in the circuit being transformed, the transformation is the same as for a circuit with an independent 
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- j4  fl 

,-%-It-. 

1 h  

Fig. 13-7 Fig. 13-8 

source. Therefore, the parallel impedance is 
node a is 

3 -j4 = 5/-53.1 R, and the source current directed toward 

31 

5/ - 53.1 
= (0.6j53.1 ) I  

as shown in Fig. 13-8. 

must be used, as is explained in Chap. 14 in the section on Thevenin's and Norton's theorems. 
When the controlling quantity is in the portion of the circuit being transformed, a different method 

13.3 Perform a source transformation on the circuit shown in Fig. 13-9. 

current is the voltage of the equivalent voltage source: 
The parallel impedance is 6)1(5 + j 3 )  = 3.07/15.7 R. The product of the parallel impedance and the 

(4/-35 )(3.07/15.7 ) = 12.3/- 19.3 V 

As shown in Fig. 13-10, the positive terminal of the voltage source is toward node ( I ,  as it must be since the 
current of the original circuit is toward that node also. The source impedance is, of course. the same 
3.07/15.7" R, but is in series with the source instead of in parallel with i t .  

41-35" A 

I I 

Fig. 13-9 Fig. 13-10 

13.4 Perform a source transformation on the circuit shown in Fig. 13-1 1. 

This circuit has a dependent current source that provides a current flow in amperes that is six times 
the voltage V across a component e l s e t r k e  (not shown) in the complete circuit. Since the controlling quantity 
is not in the circuit being transformed, the transformation is the same as for a circuit uith an independent 
source. Consequently, the series impedance is 5j((4 - j 6 )  = 3.33/-22.6 R. and the source ioltagc is 

6V x 3.33/ - 22.6" = (20/ - 22.6")V 

with, as shown in Fig. 13-12, the positive polarity toward node a because the current of the current source 
is also toward that node. The same source impedance is, of course, in the circuit, but IS in series with the 
source instead of in parallel with it. 
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13.5 

13.6 

I r T 

21; -j6 

3.331-22.6" n 

Fa 

Fig. 13-1 1 Fig. 13-12 

Assume that the following equations are mesh equations for a circuit that does not have any 
current sources or dependent sources. Find the quantities that go in the blanks. 

(16 - j5 )11  I,  - (3 +j2)13 = 4 - j 2  

-(4 + j 3 ) I ,  + (18 +j9)12 - (6 - j8 ) I3  = 10/20'; 

I ,  -1, + (20 + jlO)I, = 14 + j l  1 

The key is the required symmetry of the I coefficients about the principal diagonal. Because of this 
symmetry, the coefficient of I ,  in the first equation must be -(4 +j3) ,  the same as the coefficient of I ,  in 
the second equation. Also, the coefficient of 1, in the third equation must be - ( 3  +j2), the same as the 
coefficient of I,  in the first equation. And the coefficient of I,  in the third equation must be -(6 - J8 ) ,  the 
same as the coefficient of I ,  in the second equation. 

Find the voltages across the impedances in the circuit shown in Fig. 13-13a. Then transform the 
voltage source and 10LOo-Q component to an equivalent current source and again find the 
voltages. Compare results. 

I - - I  

n 

( b  1 
Fig. 13-13 

By voltage division, 

v x 5 O B " =  500m" = 27.9124.4" V 
' - 1 O D  +8/20  17.9/25.6' 

By KVL,  

V, = 5O/2oL - 27.9124.4." = 22.3114.4" V 

Transformation of the voltage source results in a current source of ( 5 0 B 0 ) / (  l 0 k o )  = 5/- 10" A in 
parallel with a 10bo- i2  component, both in parallel with the 8/20"-R component, as shown in Fig. 13-13b. 
In this parallel circuit, the same voltage V is across all three components. That voltage can be found from 
the product of the total impedance and the current: 

V =  4mb." = 22.3114.4." V 
10& + 8/20" 17.9/25.6' 
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Notice that the 8/20"-Q component voltage is the same as for  the original circuit, but that the lOD"-Q 
component voltage is different. This result illustrates the fact that a transformed source produces the same 
voltages and currents outside the source, but usually not inside it. 

13.7 Find the mesh currents for the circuit shown in Fig. 13-14. 

3/-13" A 

The self-impedance and mutual-impedance approach is almost always best for getting mesh equations. 
The self-impedance of mesh 1 is 4 + j l 5  + 6 -17  = 10 + j 8  Cl, and the impedance mutual with mesh 2 
is 6 - j7 0. The sum of the source voltage rises in the direction of I ,  is 15/-30 - 1 O k O  = 

11.51-71.8 V. In this sum the lO&O'-V voltage is subtracted because it is a voltage drop instead of a rise. 
The mesh 1 equation has, of course, ;i left-hand side that is the product of the self-impedance and I ,  minus 
the product of the mutual impedance and I , .  The right-hand side is the sum of the source voltage rises. 
Thus, this equation is 

(10 t j8)1,  - (6  - j7)1,  = 11.5/-71.8 

No KVL equation is needed for mesh 2 because 1, is the only mesh current through the 3/- 13 -A 
current source. As a result, 1, = - 3 / -  13 A. The initial negative sign is required because 1, has a positive 
direction down through the source, but the specified 3/- 13 -A current is up. Remember that, if for some 
reason a K V L  equation for mesh 2 is wanted, a variable must be included for the voltage across the current 
source since this voltage is not known. 

The substitution of 1, = -3/-  13 A into the mesh 1 equation produces 

(10 + jS)I ,  - (6 -j7)(  -3/-  13 ) = 11.51-71.8 

from which 

11.51-71.8 + (6 - j 7 ) ( - 3 / -  13 ) 
16.41124.2 = 1.28/85.5 A I - ________ __-___-- ---____ 

10 + i8 12.8138.7 
1 -  

Another good analysis approach is to first transform the current source and parallel impedance to an 
equivalent voltage source and series impedance, and then find I ,  from the resulting single mesh circuit. I f  
this is done, the equation for I ,  will be identical to the one above. 

13.8 Solve for the mesh currents I ,  and l2  in the circuit shown in Fig. 13-15. 

The self-impedance and mutual-impedance approach is the best for mesh analysis. The self-impedance 
the mutual impedance with mesh 2 is 4 R, and the sum of the 

10/-40 + 13/10 = 201- 12.6 V. S o ,  the mesh 1 K V L  
of mesh 1 is 
source voltage rises in the direction of 1, is 
equation IS 

8 -j14 + 4 = 12 -j14 Q, 

(12 - j14)1, - 41, = 20/- 12.6 

6 + jl0 + 4 = 10 +j10  Q, 

-41, + ( 1 0  + j10)1, = -- 12/10 

For mesh 2 the self-impedance is the mutual impedance is 4 Q. and the 
sum of the voltage rises from voltage sources is - 12/10 V. So, the mesh 2 K V L  equation is 
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.- j I4 11 ** 
jl0 I1 

Fig. 13-15 

Placing the two mesh equations together shtws the symnietr> of ct>ellicicl1ts (here - 4) :thi~iit the 
principal diagonal as a rcsult of  the conimon mutuitl inipcilitncc. 

By Cramer's rule. 

13.9 lJse loop analysis to find the current down through the 4-$1 rchrstcrr in tlio circuit shoun in l ig .  

The preferable selection of  loop currents is ll i tnil  I, hC.ciiusc then I ,  is the desired current sincc i t  i \  
the only currcnt in the 4-$2 resistor itnil has it do\\nw;ird direction. Of cottrx. i l x  si.1f-impcJiinw and 
mutual-impedance approach should hc uxd. 

The xlf-impedance of the I ,  loop is X jl4 + 4 -= 12 - i l4  52. the niiitu;iI i~iipcilnncc \\it11 the I, 
loop is 8 -jl4$2. and the sum of the sourw vctlt;tge r i m  in the direction o f  I, is 1 0 3  t l2J! -- 
20/- 12.6 V. The self-impcdancr of the I, loop is X jl4 t- 6 + j l0  : I4 - j4 R. of shich X jl4 II 1.4 

mutual with the I ,  loop. The source \(>ltiIgc rise in the direction of I, i a  It)-:$ V. 'I herclore. 
the loop equations arc 

13-15. 

(13 - jlJ)i, t (X . jlJII, -= 20, . 12.0 

( 8  -/1411, t (14 -_ j4)l, - I O i l )  

The mutual terms are positive kci~usc th l :  1, itnd I, loop current?; havc. thc sitnic dirwtion through the 
mutual impedance. 

By Cramer's rule. 

- l . l A  x.7 \ -. -- .- - -  
(12-j14)614 - $1 - { X  - jl4MS il4 2 4 5 2  

1 
1 8  -114 14- j 4  I 

201- 12.6 8 - jl4 

12 - j14 8 -114' 
1 l O e  14-j4 - ~ 3 0 / - 1 2 . 6 W 1 4 - j 4 ) - ( 1 O ~ W X -  j l 4  3 x 5 4  

1, = 

As a check. notice that this loop current should he cquiil to the ciillcrcncc in the iiiesh citrrcnts 1: ;ind I, 
found in the solution to Prob. 13.8. I t  is. since I ,  -.. 1: = 0.071--11.5 I 0.63 -- 4x2 - I . 1 . 1 6 2  A. 
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13.10 Find the mesh currents for the circuit shown in Fig. 13-16u. 

3 f1 j 4  I1 4 I1 - j6  {I 

6LO" V 8@" V 

A good first step is to transform the 2/65 -A current source and parallel 542 resistor into a voltage 
source and series resistor, as shown in the circuit of Fig. 13-16h. Note that this transformation eliminates 
mesh 3. The self-impedance of mesh 1 is 3 + j4 + 5 = 8 + j4 R, and that of mesh 2 is 4 - j6  + 5 = 

9 - j 6  R. The mutual impedance is 5 R. The sum of the voltage rises from sources is 6/30 - l O / 6 5  = 

6.14/-80.9 V l o b  - 8 / -  15 = 11.7/107 V for mesh 2. The corresponding mesh 
equations are 

( 8  + j4)1, - 

for mesh 1 and 

51, = 6.141-80.9 

-511 + (9 - j6)I, = 11.7/107 

I n  matrix form these are 

These equations are best solved using a scientific calculator (or a computer). The solutions obtained 
are 

I ,  - I ,  = 2 / 6 5  A. 
Consequently, 

1, = 0.631/- 164.4 = -0.631/15.6 A 
From the original circuit shown in Fig. 13-16~i, the current in the current source is 

and I,  = 1.13/156.1 = - 1.13/-23.9 A. 

I ,  = 1, - 2/65 = -1.131-23.9 - 2/65 = 2.31/-144.1 = -2.31/35.9 A 

13.11 Use loop analysis to solve for the current flowing down through the 5-Cl resistor in the circuit 
shown in Fig. 13-16u. 

Because this circuit has three meshes, the analysis requires three loop currents. The loops can be selected 
as in Fig. 13-17 with only one current I ,  flowing through the 5-R resistor so that only one current needs 
to be solved for. Also, preferably only one loop current should flow through the current source. 

3 + j 4  + 5 = 8 + j 4  Q, the impedance mutual with the I ,  
loop is 

The self-impedance of the 1, loop is 
3 + j4 R, and the aiding source voltage is 6/30 V. So, the loop 1 equation is 

(8 +j4)11 + ( 3  +j4)1, = 6 k O  

The I ,  coefficient is positive because I ,  and I ,  have the same direction through the mutual components. 
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For the second loop, the self-impedance is 3 + j4 + 4 - j6 = 7 - j 2  R, of which 3 + j 4  R is mutual 
with loop 1. The 2/65 ' -A current flowing through the components of 4 -J6 R produces a voltage drop 
of (4 -j6)(2/65") = 1 4 . 4 / 8 '  V that has the same effect as the voltage from an opposing voltage 
source. In  addition, the voltage sources have a net aiding voltage of 6/30'- 81-15" = 5.67/117' V. The 
resulting loop 2 equation is 

(3  +j4)I1 + (7  -$? ) I2  = 5.67" - 14.418.69' = 17/170" 

In  matrix form these equations are 

A scientific calculator can be used to obtain 

I, found in the solution to Prob. 13.10. I t  is, since 

I ,  = 1.74/43.1 A 
As a check, this loop current I ,  should be equal to the difference in the mesh currents I ,  and 

from these equations. 

I ,  - I ,  = -0.631/15.6' - (-2.31/35.9") = 1.74/43.1" A. 

13.12 Use mesh analysis to solve for the currents in the circuit of Fig. 13-18. 

Fig. 13-18 

Theself-impedancesare 4 + j 1 2  + 8 = 12 + j 1 2 R  formesh 1, 8 + 8 - j 1 6  = 16 - j16R for mesh 
2, and 18 -j20 + 8 + j 1 2  = 26 - j 8  R for mesh 3. The mutual impedances are 8 R for meshes 1 and 2, 
8 i2 for meshes 2 and 3, and j12  R for meshes 1 and 3. The sum of the aiding source voltages is 20 30' - 
16/-70 = 27.7/64.7G V 161-70' + 18/35' = 20.8/- 13.1" V for mesh 2, and - 72 30' V 
for mesh 3. In matrix form. the mesh equations are 

for mesh 1 ,  t 
12 + j 1 2  I -112 -8 

-8 
16 - / I 6  

-8 
26 :";[if] - j 8  =[  

27.7164.7" 
20.8/ - 13.1 
- 72/30' 
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The solutions, which are best obtained by using a calculator or computer, are 

I ,  = 2.07/-26.6 A I ,  = 1.38/7.36 A and 1, = 1.55/-146 A 

13.13 Show a circuit that corresponds to the following mesh equations: 

(17 - j4)I, - ( 1 1  +.j5)12 = 6,& 

- ( 1 1  +j5)1,  + (18 +j7)12  = -8@- 

Because there are two equations, the circuit has two meshes: mesh 1 for which I ,  is the principal mesh 
current, and mesh 2 for which I ,  is the principal tncsh current. The - (  1 I + j 5 )  coefficients indicate that 
meshes 1 and 2 have a mutual impedance of 1 1  + j 5  Q which could be from an 1 I-R resistor in series with 
an inductor that has a reactance of 5 R. In the first equation the I ,  coefficient indicates that the resistors 
in mesh 1 have a total resistance of 17 R. Since 1 1  Q of this is in the mutual impedance, there is 17 - 11  = 6  R 
of resistance in mesh 1 that is not mutual. The -j4 of the I ,  coefficient indicates that mesh 1 has a total 
reactance of -4 R. Since the mutual branch has a reactance of 5 R, the remainder of mesh 1 must have a 
reactance of which can be from ii single capacitor. The 6/30' on the right-hand side of 
the mesh 1 equation is the result of a total of 6/30" V of voltage source rises (aiding source voltages). One 
way to obtain this is with a single sourse 6/30' V that is not in the mutual branch and that has a polarity 
such that I ,  flows o u t  of its positive terminal 

that 
can be from a resistor that is not in the mutual branch. And from thej7 part of the I ,  coefficient, mesh 2 
has a total reactance of 7 R. Since 5 R of this is in the mutual branch, there is remaining 
that could be from a single inductor that is not in the mutual branch. The -8@' on the right-hand side 
is the result of a total of 8/30' V of voltage source drops opposing source voltages. One way to obtain 
this is with a single source of 8/30 V that is not in  the mutual branch and that has a polarity such that I ,  
flows into its positive terminal 

Figure 13-19 shows the corresponding circuit. This is just  one of an infinite number of circuits from 
which the equations could have been written. 

-4 - 5 = -9  R, 

Similarly, from the second equation, mesh 2 has a nonmutual resistance of 18 - 11 = 7 R 

7 - 5 = 2 R 

6 0  -j9 I1 7 0  j2 R 
I /  

1 1  R 

j 5  R 

- 

Fig. 13-19 

13.14 Use loop analysis to solve for the current flowing to the right through the 6-Q resistor in the 
circuit shown in Fig. 13-20. 

Three loop currents are required because the circuit has three meshes. Only one of the loop currents 
should flow through the 6-R resistor so that only one current has to be solved for. This current is I , ,  a s  
shown. The paths for the two other loop currcnts can be selected as shown, but there are other suitable paths. 

I t  is relatively easy to put these equations into matrix form. The loop self-impedances and mutual 
impedances can be used to fill in the coetticient matrix. And the elements for the source vector are 100@ V 
for loop 1 and 0 V for the two other loops. Thus, the equations in matrix form are 

The solutions, which are best obtained from a calculator or computer, include I L  = 3.621-45.8 A.  
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13.15 Solve for t h e  node voltages in the  circuit s h o u n  i n  Fig. 13-21. 

The self-admittance of nodc 1 I!, 

Using self-admi t tanccs and ni l i t  u;t I ad ni t t f;incc.\ 1 5  :iIiiim t i t l v  'I! \ bc4t fo r  oht '1111 1ng t tic nod:iI  cqii,t t 1 0  n\ 

1 1 

0 .25  jO.5 
+ =-1-;2s 

of which 4 s  is m u t u a l  conductance. The sum of the current3 from current soiirccx i n t o  nndc 1 is 
20/10 + 15,/-30 = 31.9/-7.01 A.  So.  the nodc 1 KCL equation i x  

(4  - , j2) \ ' ]  -~ -I\'? = 32.9 - -  7.02 -- 

N o  K C L  equation is nccdcd for node 2 he,.c:tu.\c ;I groiiniicii \olt;tgc ~) i i i . cc  is connected to i t .  
making F'2 = - I ? / -  I S  V. I f ,  how:\cr,  for  sonic reason ;I KC'I- cqiiation i h  wanrcct for  node 2. ;I \ , iriahlc 
has to be introduced for the current through the \nltiige sourcc hccauw this current i.; i i n h n o ~ n .  Notc  i h a t .  
because the voltage source does not h a l e  ;t series ~mpcditncc. i t  cannot be transf:)rmcd to ;i currcnl s o t ~ r ~ x  
with the source transformation techniques prcscntcd i n  this chaptcr. 

l'? --1 -- I?!#'- 15 The substitution of into the nodc I cqii:ition r c x i l l t h  in  

(4 - i 2 ) \ ' ,  -- 4( - 12 - 15 1 = 32.9 -- 7.01 --__ 

13.16 Find t h e  node voltages in the circuit shoitm in F ' i g  13-22. 

Fig. 13-21 Fig. 13-22 
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The self-admittance of node 1 is 

I 1 
- + -----, = 5 + 2.44 +j1.95 = 7.69114.7 S 
0.2 0.25 -1O.L 

of which 2.44 +j1.95 = 3.12 38.7 S is mutual admittance. The sum of the currents into node 1 from 
current sources is 30/40 - 20 5 15 = 14.6/75.4 A. Therefore, the node 1 K C L  equation is 

(7.69/14.7 ) V ,  - (3.12j38.7 )V2 = 14.6/75.4 

The self-admittance of node 2 is 

1 I - +  
0.4 0.25 - j0.2 

= 2.5 + 2.44 + j1.95 = 5.31121.6 S 

of which 3.12/38.7 S is mutual admittance. The sum of the currents into node 2 from current sources 
is Z O b '  + 15/20 = 35.0/17.1 A. The result is a node 2 KCL equation of 

-(3.12/38.7 ) V ,  + (5.31121.6 )V2 = 35.0/17.1 

In matrix form these equations are 

7.69/ 14.7 - 3.12/38.7 14.6175.4 

[-3.12/38.7 5.31/21.6 ][::] = [35.0/17.1 ] 
The solutions, which are easily obtained with a scientific calculator, are V ,  = 5.13/47.3' V 
8.18115.7 V. 

and V, = 

13.17 Use nodal analysis to find V for the circuit shown in Fig. 13-23. 

I O E O "  v 

8 R  - i 1 4 R  6a 
I/ 

Fig. 13-23 

jl0 R 

Although a good approach is to transform both voltage sources to current sources, this transformation 
is not essential because both voltage sources are grounded. (Actually, source transformations are never 
absolutely necessary.) Leaving the circuit as i t  stands and summing currents away from the V node in the 
form of voltages divided by impedances gives the equation of 

V - 10/-40" V - ( -  12/10>) V 
- -  + = o  - + ~~ 

8 - j14 4 6 + j l 0  

The first term is the current flowing to the left through the 8 - j14R components, the second is the 
current flowing down through the 4-R resistor, and the third is the current flowing to the right through 
the 6 +j10 R components. 

This equation simplifies to 

(0.062j60.3 + 0.25 + 0.0857/ - 59 )V = 0.62/20.3 - 3/10 
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Further simplification reduces the equation to 

(0.325/- 3.47 )V = 2.392/- 173 

from which 
2.3921- 173" 

0.3251- 3.47: 
V =  = 7.351- 169.2' = -7.35110.8 V 

Incidentally, this result can be checked since the circuit shown in Fig. 13-23 is the same as that shown 
in Fig. 13-15 for which, in the solution to Prob. 13.9, the current down through the 4-R resistor was found 
to be 1.16/8' A. The voltage V across the center branch can be calculated from this current: V = 
4(1.16/8") - 12/10' = -7.35/10.8 V, which checks. 

13.18 Find the node voltages in the circuit shown in Fig. 13-24a. 

Fig. 13-24 

Since the voltage source does not have a grounded terminal, a good first step for nodal analysis is to 
transform this source and the series resistor to a current source and parallel resistor, as shown in Fig. 13-24h. 
Note that this transformation eliminates node 3. In the circuit shown in Fig. 13-24h. the self-admittance of 
node 1 is 5 + 4 - j6 = 9 -J6 S. The mutual admittance is 
5 S. The sum of the currents into node 1 from current sources is and 
that into node 2 is 

3 + j 4  + 5 = 8 + j 4  S, and that of node 2 is 
6/30 - l o b  = 6.14/-80.9 A, 

lO/65' - 8/- 15' = 11.7/107" A. Thus, the corresponding nodal equations are 

(8 +j4)v1 - 5 v 2  = 6.14/-80.9' 

- 5 V i  + (9 -j6)V2 = 11.7/107 

Except for having V's instead of I's, these are the same equations as for Prob. 13.10. Consequently, the 
answers are numerically the same: V ,  = -0.631/15.6" V, and 

From the original circuit shown in Fig. 13-24a, the voltage at node 3 is 2 5 65- V more negative than 
the voltage at node 2. So, 

V, = - 1.13 -23.9" V. 

V, = V, - 2/65 = - 1.13/-23.9 - 2 B J  = 2.311- 144.1 = -2.31/35.9' V 
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13.19 Calculate the node voltages in the circuit of Fig. 13-25. 

20LO" A 

j12 S . I1 
16flO" A 

v3 
v2 8s 

1 

18 S 

1 1 - 1 

Fig. 13-25 

- 
A - - 

72130" A 

The self-admittances are 4 + 8 +j12 = 12 +j12 S for node 1 ,  8 - j16 + 8 = 16 -j16 S for node 
2, and 8 + 18 - j20 +j12 = 26 - j8 S for node 3. The mutual admittances are 8 S for nodes 1 and 2, 
j12 S for nodes 1 and 3, and 8 S for nodes 2 and 3. The currents flowing into the nodes from current sources 
are 20/30" - 16/- 70: = 2 7 . 7 m 7 "  A for node 1 ,  16/- 70' + 18/35" = 20.8/- 13.1' A for node 2, 
and -72/30" A for node 3. So, the nodal equations are 

(12 + j12)V1 - 8V2 - j12V3 = 27.7/64.7" 

-8V1 + (16 - j16)Vz - 8V3 = 20.8/- 13.1" 

-j12V, - 8Vz + (26 - j8)V, = - 7 2 B 0  

Except for having V's instead of I's, this set of equations is the same as that for Prob. 13.12. So, the answers 
are numerically the same: V ,  = 2.07/-26.6" V, V2 = 1.38/7.36" V, and V, = 1.55/- 146" V. 

13.20 Show a circuit corresponding to the nodal equations 

(8 + j6)V, - (3 - j4)V2 = 4 + j 2  

- (3  -j4)V, + ( 1 1  -j6)V, = -6/-505 

Since there are two equations, the circuit has three nodes, one of which is the ground or reference node, 
and the others of which are nodes 1 and 2. The circuit admittances can be found by starting with the mutual 
admittance. From the -(3 -J4) coefficients, nodes 1 and 2 have a mutual admittance of 3 - j4 S, which 
can be from a resistor and inductor connected in parallel between nodes 1 and 2. The 8 + j6 coefficient 
of V, in the first equation is the self-admittance of node 1. Since 3 - j4  S of this is in mutual admittance, 
there must be components connected between node 1 and ground that have a total of 8 + j6 - (3  - j4)  = 
5 + j l 0  S of admittance. This can be from a resistor and parallel capacitor. Similarly, from the second 
equation, components connected between node 2 and ground have a total admittance of 1 1  -J6  - 
( 3  -J4) = 8 - j 2  S. This can be from a resistor and parallel inductor. 

on the right-hand side of the first equation can be from a total current of 4 + j2 = 
4.47j26.6' A entering node 1 from current sources. The easiest way to obtain this is with a single 
current source connected between node 1 and ground with the source arrow directed into node 1 .  Similarly, 
from the second equation, the can be from a single current source of 6/-50" A connected 
between node 2 and ground with the source arrow directed away from node 2 because of the initial negative 
sign in -6/-  50". 

The 4 + j2 

-6/-50" 

The resulting circuit is shown in Fig. 13-26. 
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1 

-j4 S 
jl0 S zz 8s 

* 

L - 
Fig. 13-26 

13.21 For the circuit shown in Fig. 13-27, which contains a transistor model, first find V as a function 
of I. Then, find V as a numerical value. 

-jl kfl  I[ 
n I /  * 2 k f l  I E l k f l  - + -  

W + 

j8 kR 

V 

6 k f l  

B 
a n * - 

Fig. 13-27 

In the right-hand section of the circuit, the current I, is, by current division, 

104 - 3  x 1051 
I , =  - x 301 = = - (1 7.2/ - 23.6")I 

lOOOO+6OOO+j8OOO-j1OOO 17.46 x 103/23.6" 

And, by Ohm's law, 

V = (6000 +j8000)IL = (10"/53.1")( - 17.2/-23.6")I = (-  17.2 x 104/29.5")I 

which shows that the magnitude of V is 
- 150.5" 

the circuit, and then KVL applied, the result is 

17.2 x 104 times that of I, and the angle of V is 29.5" - 180" = 

If this value of V is used in the 0.01-V expression of the dependent source in the left-hand section of 
plus that of I. (The - 180" is from the negative sign.) 

20001 + loo01 + 0.01(- 17.2 x 104/29.5")I = 0 . l D "  

from which 

= 5.79 x 10-'/49.3" A 
- 0.1/20" 
- 

0.1/20" 
I =  

2000 + loo0 - 17.2 x 102/29.5" 1.73 x 103/-29.3" 
I 1 

This, substituted into the equation for V, gives 

V = (- 17.2 x 104/29S0)(5.79 x 10-5/49.30) = -9.95/78.8" V 

13.22 Solve for I in the circuit shown in Fig. 13-28. 

What analysis method is best for this circuit? A brief consideration of the circuit shows that two 
equations are necessary whether mesh, loop, or nodal analysis is used. Arbitrarily, nodal analysis will be 
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16m" V 

+ 
Fig. 13-28 

used to find V , ,  and then I will be found from V ,  . For nodal analysis. the voltage source and series resistor 
are preferably transformed to a current source with parallel resistor. The current source has a current 
of (16/-45")/0.4 = 40/-45: A 

The self-admittances are 
directed into node 1. and the parallel resistor has a resistance of 0.4 Q. 

1 1  1 

0.4 j0.5 -j0.8 
- + __ + -~__ = 2.5 - j0.75 S 

for node 1, and 

1 1 
-- + ~ 

0.5 -j0.8 
= 2 +j1.25S 

for node 2. The mutual admittance is 1/( -j0.8) = j1.25 S. 

the current in to  node 2 from the dependent current source. 
The controlling current I in terms of V ,  is 

From the admittances and the source currents, the nodal equations are 

(2.5 -jo.75)v1 - 

I = V,/j0.5 = --j2V,, which means that 21 = -j4V, is 

j1.25V2 = 40/-45 

-j1.25V, + (2 + jl.25)V2 = -j4V, 

which, with j4V, added to both sides of the second equation, simplify to 

(2.5 -/0.75)v1 - j1.25V2 = 401-45 

j2.75V1 + (2 +j1 .25)V2 = 0 

The lack of symmetry of the coefficients about the principal diagonal and the lack of an initial negative sign 
for the V ,  term in the second equation are caused by the action of the dependent source. 

V ,  = 31.64/-46.02 V. Finally, If a calculator is used to solve for V , ,  the result is 

V 3 1.64/ - 46.02 

j0.5 0.5/90- 
I = > = -  = 63.31- 136 = -63.3/44 A 

13.23 Use PSpice to obtain the mesh currents in the circuit of Fig. 13-18 of Prob. 13.12. 

The first step is to obtain a corresponding PSpice circuit. Since no frequency is specified in Prob. 
13.12 (or even if one was), a convenient frequency can be assumed and then used in calculating the inductances 
and capacitances from the specified inductive and capacitive impedances. Usually, (11 = 1 rad/s is the most 
convenient. For this frequency, the inductor that has an impedance of j l 2 Q  has an inductance of 
12/1 = 12 H. The capacitor that has an impedance of -j20 Q has a capacitance of 1,120 = 0.05 F, as 
should be apparent. And the capacitor that has an impedance of -j16Q has a capacitance of 1,116 = 

0.0625 F. 
Figure 13-29 shows the corresponding PSpice circuit. For convenience, the voltage-source voltages 

remain specified in phasor form, and the mesh currents are shown as phasor variables. Thus, Fig. 13-29 is 
really a mixture of a time-domain and phasor-domain circuit diagram. 
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20130" V 

- 
0 

Fig. 13-29 

In the circuit file the frequency must be specified in hertz, which for 1 radh is 1 2rr = 0.159 155 Hz. 
The circuit file corresponding to the PSpice circuit of Fig. 13-29 is as follows: 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-29 
V1 1 0 AC 20 30 
R1 1 2  4 
V2 2 3 AC 72 30 
R2 3 4 18 
C1 4 5 0.05 
L1 2 6 12 
R3 6 7  8 
V3 7 0 AC 16 -70 
R4 6 5  8 
C2 5 8 0.0625 
V4 0 8 AC 18 35 
.AC LIN 1 0.159155 0.159155 
.PRINT AC IM(R1) IP(R1) IM(C2) IP(C2) IM(R2) IP(R2) . END 

When this circuit file is run  with PSpice, the output file will contain the following results. 

FREQ IM(R1) IP(R1) IM(C2) IP(C2) IM(R2) 
1.592E-01 2.066E+00 -2.660E+01 1.381E+00 7.356E+00 1.550E+00 

FREQ IP(R2) 
1.592E-01 -1.458E+02 

The answers I ,  = 2.0661-26.60 A, I,  = 1.381/7.356 A, and I,  = 1.5501/- 145.8 A agree within 
three significant digits with the answers to Prob. 13.12. 

13.24 Calculate V, in the circuit of Fig. 13-30. 

By nodal analysis, 

V ,  - 301-46 V ,  - 3V, V ,  - V, +-+-- - 0  
20 14 -j16 

and v, v, 
-/16 10 -jS 

+ 21 + - + __ = o  v, - v ,  

Also 
v ,  - 3v, 

I = -  
14 
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+ 
V" 

- 

20 R 

Substituting from the third equation into the second and multiplying both resulting equations by 280 gives 

(34 + jl7.5)V I - (60 + j l  7.5)V0 = 420/ - 46' 

(40 -j17.5)V, + ( -92  +j52.5)V0 = 0 

Use of Cramer's rule or a scientific calculator provides the solution V, = 13.56/ - 77.07- V. 

o v  0.0625 F 

5 14R 3 

13.25 Repeat Prob. 13.24 using PSpice. 

For a PSpice circuit file, capacitances are required instead of the capacitive impedances that are specified 
in the circuit of Fig. 13-30. I t  is often convenient to assume a frequency of o = 1 rad/s to obtain these 
capacitances. Then, of course, f = 1/2n = 0.159 155 HI, is the frequency that must be specified in the circuit 
file. For w = 1 rad/s, the capacitor that has an impedance of - j16 i2 has a capacitance of 1/16 = 
0.0625 F, and the capacitor that has an impedance of -j8 Cl has a capacitance of 1/8 = 0.125 F. Figure 
13.31 shows the PSpice circuit that corresponds to the phasor-domain circuit of Fig, 13-30. The V2 dummy 
source is required to obtain the controlling current for the F1 current-controlled current source. 

CI 

R I  * R2 I 

R3 

0 

I- 
* +  

V" 

TF 0.125 F 

- 

+ 
Fig. 13-31 

The corresponding circuit file is 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-31 
V1 1 0  AC 30 -46 
R1 1 2 20 
R2 2 3 14 
v2 3 4 
El 4 0  5 0  3 
C1 2 5 0.0625 
F1 5 0 V2 2 
R3 5 0 10 
C2 5 0 0.125 
.AC LIN 1 0.159155 0.159155 
.PRINT AC VM(5) VP(5) 
. END 



CHAP. 131 MESH, LOOP, NODAL, AND PSPICE ANALYSES OF AC CIRCUITS 285 

When this circuit file is run with PSpice, the output file includes 

FREQ W ( 5 )  VP(5) 
1.5923-01 1.356E+01 -7 .7073+01 

from which V, = 13.56/-77.07' V, which is in complete agreement with the answer to Prob. 13.24. 

13.26 Use PSpice to determine U, in the circuit of Fig. 12-251 of Prob. 12.47. 

Figure 13-32 is the PSpice circuit corresponding to the circuit of Fig. 12-251. The op amp has been 
deleted and a voltage-controlled voltage source El inserted at what was the op-amp output. This source is, 
of course, a model for the op amp. Also, a large resistor R1 has been inserted from node 1 to node 0 to 
satisfy the PSpice requirement for at least two components connected to each node. 

I 
t 0 5 

VI 

75 

Fig. 1332 

Following is the circuit file. The specified frequency, 1591.55 Hz, is equal to the source frequency of 
10 0oO rad/s divided by 2n. Also shown is the output obtained when this circuit file is run with PSpice. The 
answer of V(5) = 9.121/-57.87" V is the phasor for 

0, = 9.12 1 sin (10 OOOt - 57.87') V, 

which agrees within three significant digits with the U, answer of Prob. 12.47. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-32 
V1 1 0 AC 4 -20 
R1 1 0 lOMEG 
R2 2 3 2K 
L1 3 0 0.1 
R3 2 4 3K 
C1 4 5 0.05U 
El 5 0 1 2 2E5 
R4 5 6 3K 
L2 6 0 0.2 
.AC LIN 1 1591.55 1591.55 
.PRINT AC VM(5) VP(5) . END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ****  AC ANALYSIS 

FREQ W ( 5 )  VP(5) 
1.592E+03 9.121E+00 -5.787E+01 



286 

- J l O  kR 
I f  

MESH, LOOP, NODAL, AND PSPICE ANALYSES OF AC CIRCUITS 

A - 0 
+ 

[CHAP. 13 

10 kf2 

-j4 kR i K  

A 

v 0 

- 

i 

Since the first op-amp circuit has the configuration of a noninverting amplifier, and the second has that 
of an inverter, the pertinent fprmulas from Chap. 6 apply, with the R’s replaced by Z’s. So, with the 
impedances expressed in kilohms, 

6 - j l0 v , =  ( 1+- 1o - j4)( - 1)(;$)2b ) = 3.74/134.8 V 

13.28 Repeat Prob. 13.27 using PSpice. 

Figure 13-34 is the PSpice circuit corresponding to the circuit of Fig. 13-33, with the op amps replaced 
by voltage-controlled voltage sources that are connected across the former op-amp output terminals. In 
addition, a large resistor R1 has been inserted from node 1 to node 0 to satisfy the PSpice requirement for 
at least two components connected to each node. The large resistors R4 and R6 have been inserted to 
provide dc paths from nodes 4 and 7 to node 0, as is required from every node. Without these resistors, the 
circuit has no such dc paths because of dc blocking by capacitors. The capacitances have been determined 
using an arbitrary source frequency of 1000 rad/s, which corresponds to 1000/’27r = 159.155 Hz. As an 
illustration, for the capacitor which an impedance of -j4 kR, the magnitude of the reactance is 

1 
__ -~ = 4000 from which C = 0.25 /IF 
loOOC 

Fig. 13-34 
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Following is the circuit file for the circuit of Fig. 13-34 and also the results from the output file obtained 
agrees with the answer when the circuit file is run with PSpice. The output of V(9) = V, = 3.741/134.8" V 

to Prob. 13.27. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 13-34 
V1 1 0 AC 2 
R1 1 0 lOMEG 
R2 2 3 10K 
C1 3 0 0.25U 
R3 2 4 6K 
R4 4 0 lOMEG 
c2 4 5 0.1u 
El 5 0 1 2 1E6 
R5 5 6 8K 
C3 6 7 0.5U 
R6 7 0 lOMEG 
R7 7 8 6K 
C4 8 9 0.2U 
E2 9 0 0 7 1E6 
.AC LIN 1 159.155 159.155 
.PRINT AC VM(9) VP(9) . END 

FREQ VM(9) V W 9 )  
1.592E+02 3.741E+00 1.348E+02 

Supplementary Problems 
13.29 A 30-R resistor and a 0.1-H inductor are in series with a voltage source that produces a voltage of 

120 sin (377t + 10') V. Find the components for the corresponding phasor-domain current-source transfor- 
mation. 

Ans. A current source of 1.76/-41.5'- A in parallel with an impedance of 48.2/51.5" R 

13.30 A 4 0 b " - V  voltage source is in series with a 6-R resistor and the parallel combination of a 10-R resistor 
and an inductor with a reactance of 8 R. Find the equivalent current-source circuit. 

Ans. A 3.62/18.X0-A current source and a parallel 11/26.2"-R impedance 

13.31 A 2/30"-MV voltage source is in series with the parallel arrangement of an inductor that has a reactance 
of 100 R and a capacitor that has a reactance of - 100 R. Find the current-source equivalent circuit. 

Ans. An open circuit 

13.32 Find the voltage-source circuit equivalent of the parallel arrangement of a 30.4/- 24"-mA current source, 
a 6042 resistor, and an inductor with an 80-R reactance. 

Ans. A 1.46/12.9"-V voltage source in series with a 48136.9"-11 impedance 

13.33 A 20.1/45"-MA current source is in parallel with the series arrangement oi an inductor that has a reactance 
of 100 Q and a capacitor that has a reactance of - 100 R. Find the equivalent voltage-source circuit. 

Ans. A short circuit 
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13.34 In the circuit shown in Fig. 13-35, find the currents I ,  and I,. Then do a source transformation on the 
current source and parallel 4/30"-Q impedance and find the currents in the impedances. Compare. 

Ans. I ,  = 4.06/14.4" A, I, = 3.25/84.4" A. After the transformation both are 3.25/84.4" A. So, the current 
does not remain the same in the 4 D O - Q  impedance involved in the source transformation. 

S / - 4 0 "  fl 

6&" A 

1 I -j30 0 I I 

9m" A 

Fig. 1335 Fig. 1336 

13.35 Find the mesh currents in the circuit shown in Fig. 13-36. 

Ans. I, = - 3/- 33.6" A, 

Find I in the circuit shown in Fig. 13-37. 

Ans. 3.861- 34.5" A 

I, = 7/25" A, I, = - 91- 60" A 

13.36 

ISfiO' V 

8fl -j16 fl 

Fig. 13-37 

16 fl -j28 R 12 R 

1 1 I 

Fig. 13-38 

13.37 Find the mesh currents in the circuit shown in Fig. 13-38. 

Ans. I ,  = 1.46/46.5" A, I, = -0.945/-43.2" A 

Find the mesh currents in the circuit shown in Fig. 13-39. 

Ans. 1, = 1.26/10.6" A, I, = 4.63/30.9" A, I, = 2.251-28.9" A 

13.38 
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12 R 
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13.39 Use loop analysis to solve for the current that flows down in the 10-R resistor in the circuit shown in Fig. 

Ans. -3.47/38.1'A 

13-39. 

A 

. 13.40 Use mesh analysis to find the current I in the circuit shown in Fig. 13-40. 

Ans. 40.6/12.9' A 

32 -j4 R ZIT -j2 R 

13.41 Use loop analysis to find the current flowing down through the capacitor in the circuit shown in Fig. 13-40. 

Ans. 36.1129.9" A 

13.42 Find the current I in the circuit shown in Fig. 13-41. 

Ans. - 13.11 - 53.7" A 

13.43 For the circuit shown in Fig. 13-41, use loop analysis to find the current flowing down through the capacitor 
that has the reactance of -j2 Q. 

Ans. 28.51-41.5" A 

13.44 Use loop analysis to find I in the circuit shown in Fig. 13-42. 

Ans. 2.711-55.8" A 

16 R 

R 

Fig. 13-42 
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13.45 Rework Prob. 13.44 with all impedances doubled. 

..lrrs. 1.36/-55.8 A 

13.46 Find the node voltages in the circuit shown in Fig. 13-43. 

A ~ s .  V ,  = - 10.8/25" V, V,  = - 3 6 k '  V 

22.51_0" A 

VI- vz * 
0.5 R 

j l  fl 

- - 
Fig. 13-43 

13.47 Find the node voltages in the circuit shown in Fig. 13-44. 

Ans. V ,  = 1.17/-22.1 V, V,  = 0.675/-7.33 V 

12/-10" A 

8/40" A 

A 
8/40" A 

VI  - 
r '  

8s jl0 S Z T  

- VI  
r d  

12 s 

T 
8s jl0 S -  j14 S 

Fig. 13-44 

13.48 Solve for the node voltages in the circuit shown in Fig. 13-45 

A ~ s .  V ,  = -51.9/- 19.1" V, V, = 58.7/73.9" V 

6b' A l o b "  A 

+ 
Fig. 13-45 

13.49 Find the node voltages in the circuit shown in Fig. 13-46. 

Ans. V ,  = - 1.26/20.6" V, V, = - 2.25/- 18.9" V, V, = -4.63/40.9" V 
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13.50 Solve for the node voltages of the circuit shown in Fig. 13-47. 

Ans. V ,  = 1.75/50.9c V, V, = 2.471-24.6' V, V, = 1.5312.36" V 

- j0.2 

I5/-50" A 

VI 

R == 0.25 R 0.2 n 

1 
-L 

Fig. 13-47 

13.51 For the circuit shown in Fig. 13-48, find V as a function of I, and then find V as a numerical value. 

Aw. V = (-6.87 x 103/29.5')1, V = -9.95168.8" V 

-j200R 
I/ + 

V 

B 

Fig. 13-48 

A A -  - A 
- 

13.52 Solve for I in the circuit shown in Fig. 13-49. 

Ans. -253/34" A 

0.2 n -j0.4 fl 

0.25 fl 

Fig. 13-49 
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13.53 

13.54 

13.55 

13.56 
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In Probs. 13.53 through 13.58, given the specified PSpice circuit files, determine the output phasor voltages 
or currents without using PSpice. 

Ans. 1.721- 34.5" A 

Ans. 1.94/35.0" A 

Ans. 7.44/- 29.7" V 

CIRCUIT FILE FOR PROB. 13.53 
V1 1 0 AC 60 -10 
R1 1 2 16 
L1 2 0 24 
C1 2 3 31.25M 
V2 3 0 AC 240 50 
.AC LIN 1 0.159155 0.159155 
.PRINT AC IM(R1) IP(R1) 
. END 

CIRCUIT FILE FOR PROB. 13.54 
V1 1 0 AC 10 50 
R1 1 2  3 
L1 2 3  4 
R2 3 4  5 
C1 4 5 0.166667 
V2 0 5 AC 8 -30 
R3 3 6  7 
L2 6 7  8 
V3 7 0 AC 12 20 
.AC LIN 1 0.159155 0,159155 
.PRINT AC IM(R2) IP(R2) . END 

CIRCUIT FILE FOR PROB. 13.55 
I1 0 1 AC 6 
R1 1 0  1 
C1 1 2 0.25 
R2 2 0  2 
I2 0 2 AC 6 -90 
.AC LIN 1 0.31831 0.31831 
.PRINT AC VM(1) VP(1) . END 

CIRCUIT FILE FOR PROB. 13.56 
V1 0 1 AC -5 30 
R1 1 2  4 
R2 2 3  6 
E l  3 0  4 0  2 
c1 2 4 0.5 
F1 4 0 V1 1.5 
R3 4 0 10 
.AC LIN 1 0.159155 0.159155 
.PRINT AC VM(2) VP(2) . END 

Ans. 4.64/13.0" V 
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13.57 CIRCUIT FILE FOR PROB. 13.57 
V1 1 0 AC 2 30 
R1 1 2 2K 
C1 2 3 0.25M 
R2 3 0 lOMEG 
R3 3 4 4K 
C2 4 5 0.2M 
El 5 0 0 3 1E6 
.AC LIN 1 0.159155 0.159155 
.PRINT AC VM(5) VP(5) 
. END 

Ans. 2.861 - 138" V 

13.58 CIRCUIT FILE FOR PROB. 13.58 
V1 1 0 AC 8 
R1 1 0 lOMEG 
R2 2 0 4K 
L1 2 3  1 
El 0 3 2 1 1E6 
R3 3 4 5K 
C1 4 0 0.25U 
.AC LIN 1 318.31 318.31 
.PRINT AC IM(E1) IP(E1) 
. END 

293 

Ans. 3.34/21.8" mA 



Chapter 14 

AC Equivalent Circuits, Network 
Theorems, and Bridge Circuits 

INTRODUCTION 

With two minor modifications, the dc network theorems discussed in Chap. 5 apply as well to ac 
phasor-domain circuits: The maximum power transfer theorem has to be modified slightly for circuits 
containing inductors or capacitors, and the same is true of the superposition theorem if the time-domain 
circuits have sources of different frequencies. Otherwise, though, the applications of the theorems for ac 
phasor-domain circuits are essentially the same as for dc circuits. 

THEVENIN’S AND NORTON’S THEOREMS 

In  the application of Thevenin’s or Norton’s theorems to an ac phasor-domain circuit, the circuit 
is divided into two parts, A and B, with two joining wires, as shown in Fig. 14-111. Then, for Thevenin’s 
theorem applied to part A ,  the wires are separated at terminals U and h, and the open-circuit voltage 
V,,, the Thtcenin wltuye, is found referenced positive at terminal U ,  as shown in Fig. 14-lh. The next 
step, as shown in Fig. 14-lc, is to find Thkilenin’s irzzpedunce ZTh of part A at terminals U and h. For 
Thevenin’s theorem to apply, part A must be linear and bilateral, just as for a dc circuit. 

There are three ways to find ZTh. For one way, part A must have no dependent sources. Also, 
preferably, the impedances are arranged in a series-parallel configuration. In this approach, the 
independent sources in part A are deactivated, and then Z T h  is found by combining impedances and 
admittances-that is, by circuit reduction. 

If the impedances of part A are not arranged series-parallel, it may not be convenient to use circuit 
reduction. Or, it may be impossible, especially if  part A has dependent sources. In  this case, z , h  can 

a 

V T h  IN = ISC 

14-1 

294 
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be found in a second way by applying a voltage source as shown in Fig. 14-11! or a current source iis 

shown in Fig. 1 4 - 1 0 ,  and finding C’, = 

ID‘’ V 
The third way to find ZT, is to apply a short circuit across terminals a and h, as shown in Fig. 

14-1f, then find the short-circuit current I,,, and use it  in Z T h  = v T h / I s , .  Of course, V T h  must also be 
known. For this approach, part A must have independent sources, and they must not be deactivated. 

In the circuit shown in Fig. 14-ly, the Thevenin equivalent produces the same voltages and currents 
in part B that the original part A does. But only the part B voltages and currents remain the same; those 
in part A almost always change, except at the ( I  and h terminals. 

For the Norton equivalent circuit shown in Fig. 14-111, the Thevenin impedance is in parallel with 
a current source that provides a current 11j1 that is equal to the short-circuit current c h t w  in the circuit 
shown in Fig. 14-lf. The Norton equivalent circuit also produces the same part B voltages and currents 
that the original part A does. 

any two of the three quantities V T h .  I,,, and Z T h  can be 
found from part A and then this equation used to find the third quantity if it  is needed for the application 
of either Thevenin’s or Norton’s theorem. Obviously, PSpice can be used to obtain the needed two 
quantities, one at a time, as should be apparent. However, the .TF feature explained in Prob. 7.5 cannot 
be used for this since its use is limited to dc analyses. 

Z,, = V ,  I , .  Often, the most convenient source Lroltage is 
and the most convenient source current is I,. = lD’ A. 

Because of the relation V,, = ISCZTh. 

MAXIMUM POWER TRANSFER THEOREM 

The load that absorbs maximum average power from a circuit can be found from the Thevenin 
equivalent of this circuit at the load terminals. The load should have a reactance that cancels the reactance 
of this Thevenin impedance because reactance does not absorb any average power but does limit the 
current. Obviously, for maximum power transfer, there should be no reactance limiting the current flow 
to the resistance part of the load. This, in t u r n ,  means that the load and Thevenin reactances must be 
equal in magnitude but opposite i n  sign. 

With the reactance cancellation, the overall circuit becomes essentially purely resistive. As a result, 
the rule for maximum power transfer for the resistances is the same a s  that for a dc circuit: The load 
resistance must be equal to the resistance part of the Thevenin impedance. Having the same resistance 
but a reactance that differs only in sign, tho loirtl i}1ij~t-’t/tiiit,i-’~fOi. i i i t i . i - i i i i i i i i i  jmtw- ti-tinsf& is tlw coi~jtiyute 
of the ThPcenin inipecimcc of  thi-l ciriwit coniicctc-’tl to thc lotrd: Z ,  = Z,*, . Also, because the overall 
circuit is purely resistive, the maximum power absorbed by the load is the same as for a dc circuit: 
I/&,/4RTh, in which VTh is the rms value of the Thevenin voltage \’Th and R,h  is the resistance part of Z T h .  

SUPERPOSITION THEOREM 

If, in an ac time-domain circuit, the independent sources operate at the SIII?IC)  frequency, the 
superposition theorem for the corresponding phasor-domain circuit is the same as for a dc circuit. That 
is, the desired voltage or current phasor contribution is found from each individual source or combination 
of sources, and then the various contributions are algebraically added to obtain the desired voltage or 
current phasor. Independent sources not involczd in a particular solution are deactivated. but dependent 
sources are left in the circuit. 

For a circuit in which all sources have the same frequency, an analysis with the superposition theorem 
is usually more work than a standard mesh, loop, or nodal analysis with all sources present. But the 
superposition theorem is essential if a time-domain circuit has inductors or capacitors and has sources 
operating at ciiJLfC.rmt frequencies. Since the reactances depend on the radian frequency, the same 
phasor-domain circuit cannot be used for all sources if they do not have the same frequency. There must 
be a different phasor-domain circuit for each different radian frequency, with the differences being in the 
reactances and in the deactivation of the various independent sources. Preferably, all independent sources 
having the same radian frequency are considered at a time, while the other independent sources are 
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cteactivated. This radian frequency is used to find the inductive and capacitive reactances for the 
corresponding phasor-domain circuit, and this circuit is analyzed to find the desired phasor. Then, the 
phasor is transformed to a sinusoid. This process is repeated for each different radian frequency of the 
sources. Finally, the individual sinusoidal responses are added to obtain the total response. Note that 
the adding is of the sinusoids and not of the phasors. This is because phasors of different frequencies 
cannot be validly added. 

AC Y-A and A-Y TRANSFORMATIONS 

Chapter 5 presents the Y-A and A-Y transformation formulas for resistances. The only difference 
for impedances is in the use of Z’s instead of R’s. Specifically, for the A-Y arrangement shown in Fig. 
14-2, the Y-to-A transformation formulas are 

and the A-to-Y transformation formulas are 

The Y-to-A transformation formulas all have the same numerator, which is the sum of the different 
products of the pairs of the Y impedances. Each denominator is the Y impedance shown in Fig. 14-2 
that is opposite the impedance being found. The A-to-Y transformation formulas, on the other hand, 
have the same denominator, which is the sum of the A impedances. Each numerator is the product of 
the two A impedances shown in Fig. 14-2 that are adjacent to the Y impedance being found. 

If all three Y impedances are the same Z,, the Y-to-A transformation formulas are the 
same: Z, = 3Zy. And if all three A impedances are the same Z,, the A-to-Y transformation formulas are 
the same: Zy = ZJ3. 

C 

A B - 
Fig. 14-2 Fig. 14-3 

AC BRIDGE CIRCUITS 

An ac bridge circuit, as shown in Fig. 14-3, can be used to measure inductance or capacitance in 
the same way that a Wheatstone bridge can be used to measure resistance, as explained in Chap. 5. The 
bridge components, except for the unknown impedance Zx, are typically just resistors and a capacitance 
standard a capacitor the capacitance of which is known to great precision. For a measurement, two 
of the resistors are varied until the galvanometer in the center arm reads zero when the switch is closed. 
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Then the bridge is balanced, and the unknown impedance Z, can be found from the bridge balance 
equation Z, = Z2Z,iZ, ,  which is the same as that for a Wheatstone bridge except for having Z's 
instead of R's. 

Solved Problems 

In those Thevenin and Norton equivalent circuit problems in which the equivalent circuits are not 
shown, the equivalent circuits are as shown in Fig. 14-ly and h with v , h  referenced positive at terminal a 
and referenced toward the same terminal. The Thevenin impedance is, of course, in series 
with the Thevenin voltage source in the Thevenin equivalent circuit, and is in parallel with the Norton 
current source in the Norton equivalent circuit. 

I, = I,, 

14.1 Find ZTh, VTh, and I, for the Thevenin and Norton equivalents of the circuit external to the load 
impedance Z, in the circuit shown in Fig. 14-4. 

6 R  - j4R a 

The Thevenin impedance Z T h  is the impedance at terminals U and h with the load impedance removed 
and the voltage source replaced by a short circuit. From combining impedances, 

Z T h  = -j4 + 7 6(j8) - - -j4 + 4.8/36.87 = 4/- 16.26 Q 
6 + j 8  

Although either V T h  or I, can be found next, V,, should be found because the -j4-Q series branch makes 
I, more difficult to find. With an open circuit at terminals Q and b, this branch has zero current and so zero 
voltage. Consequently, v , h  is equal to the voltage drop across the j 8 -Q  impedance. By voltage division, 

Finally, 

14.2 If in the circuit shown in Fig. 14-4 the load is a resistor with resistance R,  what value of R causes 
a 0.1-A rrns current to flow through the load? 

As is evident from Fig. 14-ly, the load current is equal to the Thevenin voltage divided by the sum of 
the Thevenin and load impedances: 
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Since only the rms load current is specified, angles are not known, which mcans that magnitudes must 
be used. Substituting from the solution to Prob. 14.1, V T h  = 0.8 v 

0.8 
lZ ,h  + Z,,l = c'lh = = 8 R  

I,. 0.1 

AISO from this solution, Z T h  = 4/- 16.26 R. SO. 

14/-16.26 + RI = 8 or 13.84 -.jl .12 + RI = 8 

Because the magnitude of a complex number is equal to the square root of the sum of the squares of 
the real and imaginary parts, 

.'(3.84 + R)' + ( -  1.12)2 = 8 

Squaring and simplifying, 

R Z  + 7.68R + 16 = 64 or R' + 7.68R - 48 = 0 

Applying the quadratic formula, 

- 7.68 & 7.6S2 - 4( -48) - 7.68 15.84 
- - ~- R = -- 

2 2 

The positive sign must be used to obtain a physically significant positive resistance. So, 

-7.68 + 15.84 R = _.__~_____ = 4.08 R 
-I 
L 

Note in the solution that the Thevenin and load impedances must be added before and not after the 
magnitudes are taken. This is because I Z T h )  + IZ,I f JZ,, + z r h l .  

14.3 Find ZTh, V,,, and I, for the Thevenin and Norton equivalents of the circuit shown in Fig. 
14-5. 

Fig. 14-5 

The Thevenin impedance Z,, is the impedance at terminals 11 and h with the current source replaced 
by an open circuit. By circuit reduction, 

4[j2 -t 3( -j4) ( 3  - j4)] 

4 + j2 + 3( -i4) (3  - i4) 
zTh = 4IiCj2 + 3li(-j4)1 = 

Multiplying the numerator and denominator by 3 -J4  givcs 

= 1.35i10.9 R 
4[j2(3 - j4) - j121 

(4 + j 2 ) ( 3  - j4) - j12 

40/-36.87 

29.7/-47.73 
__ - - 

zTh = 

The short-circuit current is easy to find because, if  a short circuit is placed across terminals ( I  and h. 
I,, = I N  = 3/60 A. None of the source current can all the source current flows through this short circuit: 

flow through the impedances because the short circuit places a zero voltage across them. Finally. 

V T h  = I N Z T h  = (3/60 )(1.35/10.9 ) = 4 . 0 4 m  v 
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14.4 Find Z T h ,  V , , ,  and I, for the Thevenin and Norton equivalents of the circuit shown in Fig. 14-6. 

100 R j 3  R 

a 

b 

Fig. 14-6 

The Thevenin impedance Z , ,  is the impcdance at  tcrminals ( I  and h, \ c i th  the current source replaced 
by an open circuit and the \foltage source replaced by a short circuit. The 100-R resistor is then in series 
with the open circuit that replaced the current source. Consequentlq. this resistor has no effect on Zlh. The 
j 3 -  and 4-R impedances are placed across terminals ( I  and h by the short circuit that replaces the voltage 
source. 

urill be found and used to obtain \'I,, .  I f  ;I short circuit is placed 
across terminals ( I  and h, the current to the right through the j3-R impedance is 

AS a result, z , h  = 4 + j 3  = 51'36.9 R. 
lsc = I ,  The short-circuit current 

40k!! - - 40b!? = 8/23.] A 
4 + j 3  5j36.9 

because the short circuit places all the 40&0 V o f  the voltage source across the 4- and .j3-Q impedances. 
Of course, the current to the right through the 100-Q resistor is the 6/20 -A source current. By K C L  applied 
at  terminal a, the short-circuit current is the difference between these currents: 

The negative signs for 1, and V ,,, can, of course, be eliminated by reversing the references - that is, by having 
the Thevenin voltage source positive toward terminal h and the Norton current directed toward terminal h. 

As a check, V,, can be found from the open-circuit voltage across terminals a and h. Because of this 
open circuit, all the 6 L O ' - A  source current must flow through the 4- and j3-Q impedances. Consequently, 
from the right-hand half of the circuit, the voltage d rop  from terminal (I to h is 

which checks. 

14.5 Find Z T h  and V T h  for the Thevenin equivalent of the circuit shown in Fig. 14-7 

Fig. 14-7 
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The Thkvenin impedance & ,  can be found easily by replacing the voltage sources with short circuits 
and finding the impedances at terminals (1 and h. Since the short circuit places the right- and left-hand halves 
of the circuit in parallel, 

(4 - j4)(3 + j 5 )  32 +jS 32.98/14.04 

4 - j4  + 3 + j 5  7 + j l  7.07/8.13 
- _______ - - - 4.6615.91 Q - - 

‘Th = 

A brief inspection of the circuit shows that the short-circuit current is easier to find than the open-circuit 
voltage. This current from terminal (J to h is 

lsc = 1, - J 2 -  - ___ 2oD - ___~__ 15/-45 - - 3.54/75 - 2.57/-104 = 6 . 1 1 m  A 
4 - j 4  3 + j 5  

Finally, 

14.6 Find Z T h  and V T h  for the Thevenin equivalent of the circuit shown in Fig. 14-8. 

Fig. 14-8 

If the voltage source is replaced by a short circuit, the impedance Z T h  at terminals U and b is, by circuit 
red uc t i on. 

The Thevenin voltage can be found from I , ,  and I,  can be found from mesh analysis. The mesh equations 
are, from the self-impedance and mutual-impedance approach, 

( 5  + j6)1, - j61, = 2001-50 
-j61, + ( 5  + j6)l, = 0 

I f  Cramer’s rule is used to obtain I , ,  then 

15 + j 6  200/-50 1 

1200/40 = 18.461-27.4 A - 1, = I -j6 0 I - - -(-j6)(200/-50J) - I 5 + j6 -j6 I ( 5  + j6)2 - (-j6)2 65/67.4 

And v , h  = 2 1 2  E 2(18.46/-27.4 ) = 36.9/-27.4 v 

14.7 Find Z,, and I, for the Norton equivalent of the circuit shown in Fig. 14-9. 

circuit, the impedance at terminals ( I  and h is 
When the current source is replaced by an open circuit and the voltage source is replaced by a short 

5( - j 8 )  20 - j72 

5 - j 8  5 - j 8  
Z,, = 4 + -- - = - - = 7.92/- 16.48” R 

Because of the series arm connected to terminal (1 and the voltage source in it ,  the Norton current is 
best found from the Thevenin voltage and impedance. The Thkvenin voltage is equal to the voltage drop 
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-j8 fl 

T 
1 A - o b  

Fig. 14-9 

across the parallel components plus the voltage of the voltage source: 

And 

14.8 Find Z T h  and V T h  for the Thevenin equivalent of the circuit shown in Fig. 14-10. 

I j25 fl + 20 fl 
O a  

- o b  

Fig. 14-10 

When the voltage source is replaced by a short circuit and the current source by an open circuit, the 
admittance at terminals a and h is 

1 1 1 
-- + -7 + ~ = 0.025 +jO.O333 + 0.0195 -j0.0244 = 0.0454/1 1.36 S 
40 -530 20 + j 2 5  

The inverse of this is Z T h :  

1 

0.0454/11.36 
= 22/-11.36 R 'Th = 

Because of the generally parallel configuration of the circuit, i t  may be better not to find VT, directly, 
but rather to obtain IN first and then find V T h  from v , h  = I N & , .  If a short circuit is placed across terminals 
U and h, the short-circuit current is I + 6/50 since the short circuit prevents any current flow through 
the two parallel impedances. The current I can be found from the source voltage divided by the sum of the 
series impedances since the short circuit places this voltage across these impedances: 

And so I, = I + 6/50 = -3.75/- 11.3' + 6/50> = 5.34/88.05 A 

Finally, V T h  = I N Z T h  = (5.34/88.05-)(22/- 11.36 ) = 118176.7 v 

14.9 Using Thevenin's o r  Norton's theorem, find I in the bridge circuit shown in Fig. 14-1 1 if Is = 0 A. 

Since the current source produces 0 A, it is equivalent to an open circuit and can be removed from the 
circuit. Also, the 2-R and j3-R impedances need to be removed in finding an equivalent circuit because these 
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1 2OEO0 V 

Fig. 14-1 I 

are the load impedances. With this done, Z T h  can be found after replacing the \,oltage source with a short 
circuit. This short circuit places the 3-R and j5-R impedances in parallel and dso  the -,j4-R and 4-R 
impedances in parallel. Since these two parallel arrangements are in series between terminals LI and h. 

The open-circuit voltage is easier to find than the short-circuit current. By K V L  applied at the bottom 
half of the bridge, V T h  is equal to the difference in voltage drops across the j 5 -  and 4-R impedances, which 
drops can be found by voltage division. Thus, 

As should be evident from the Thevenin discussion and also from Fig. 14-10, I is equal to the Thevenin 
voltage divided by the sum of the Thevenin and load impcdances: 

= 4.391-4.5 A 
29.1/16 I = __-~- - _____ 

4.26/-9.14 + 2 + i 3  

14.10 Find I for the circuit shown in Fig. 14-11 if I, = lO/-50 A. 

The current source does not affect Z T h ,  which has the same value as found in the solution to Prob. 
14.9: z , h  = 4.26/-9.14" 0. The current source does, however, contribute to the Thevenin voltage. By 
superposition, i t  contributes a voltage equal to the source current times the impedance at terminals c1 and 
b with the load replaced by an open circuit. Since this impedance is ZTh. the voltage contribution of the 
current source is which is a kroltage drop from terminal h to 
U because the direction of the source current is into terminal h. Consequently, the Thecenin voltage is, by 
superposition, the Thevenin voltage obtained in the solution to Prob. 14.9 minus this iroltage: 

(10/-50")(4.26/-9.14') = 42.6j-59.1 V,  

and I=--  - ___ - - ~ "@ = 6.79i61.6 A 
45& 

"Th - 

ZTh + Z, 4.261- 9.14' + (2 + j 3 )  6 . 6 3 m  

14.11 Find the output impedance of the circuit to the left of terminals U and h for the circuit shown in 
Fig. 14-12. 
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4 
If n 

3 0  -j2 R 

+ "  - + 
v1 

v a b  

- 
n - 
b 

Fig. 14-12 

The output impedance is the same as the Thevenin impedance. The only way of fin( ing Z T h  is 'Y 
applying a source and finding the ratio of the voltage and current at the source terminals. This impedance 
cannot be found from because V T h  and I, are both zero since there are no independent 
sources to the left of terminals U and h. And, of course, circuit reduction cannot be used because of the 
presence of the dependent source. The most convenient source to apply is a l,&"-A current source with a 
current direction into terminal a, as shown in Fig. 14-12. Then, Z,, = Vub/l&" = Vub. 

The first step in calculating Z T h  is to find the control voltage V , .  I t  is v, = -( -j2)(1,&") = j 2  v, with 
the initial negative sign occurring because the capacitor voltage and current references are not associated 
(The I /o" -A current is directed into the negative terminal of V,.). The next step is to find the current flowing 
down through thej4-Q impedance. This is the 1b" -A  current from the independent current source plus 
the current from the dependent current source, a total of 1 + j 3  A. With this 
current known, the voltage v,, can be found from the sum of the voltage drops across the three impedances: 

z , h  = V r h  I, 

1.5v1 = 1.5(j2) = j3-A 

V,, = (1b0)(3 - j 2 )  + ( 1  + j3Xj4) = 3 - j2 + j 4  - 12 = -9  + j 2  V 

which, as mentioned, means that 
action of the dependent source. In polar form this impedance is 

z , h  = -9  + j 2  R. The negative resistance ( - 9  Q) is the result of the 

z , h  = -9 + j 2  = 9.22/167.5 = -9.22/-12.5 fi 

14.12 Find Z,, and I, for the Norton equivalent of the circuit shown in Fig. 14-13. 

3v 
4 R  

b 

Fig. 14-13 

Because of the series arm with dependent source connected to terminal a, V T h  is easier to find than I,. 
This voltage is equal to the sum of the voltage drops across thej8-Q impedance and the 3Vl dependent 
voltage source. (Of course, the 4-R resistor has a 0-V drop.) I t  is usually best to first solve for the controlling 
quantity, which here is the voltage V, across the 6-0 resistor. By voltage division, 

6 

6 + j 8  
v ,  =- x 50/-45" = 30/-98.1" V 

Since there is a 0-V drop across the 4-Q resistor, KVL applied around the outside loop gives 

v , h  = 50/-45 - v ,  - 3v, = 50/-45" - 4(30/-98.1 ) = 98.49j57.91" v 
The Thevenin impedance can be found by applying a current source of 14' A at terminals a and b, as 

shown in the circuit in Fig. 14-14, and finding the voltage V , b .  Then, Z,, = vob/lbc = v o b .  The control 
voltage V ,  must be found first, as to be expected. I t  has a different value than in the V,, calculation because 
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3v I 
611 I a 

+ -  
+ v, - 

j8 Q 

W 

b Fig. 14-14 

the circuit is different. The voltage V ,  can be found from the current I flowing through the 6-52 resistor 
across which V ,  is taken. Since the 6- andj8-R impedances are in parallel, and since 14 A from the current 
source flows into this parallel arrangement, I is, by current division, 

j 8  I = ----- x l &  = 0.8136.9 A 
6 + J 8  

And, by Ohm's law, 

V ,  = -61 = -6(0.8/36.9 ) = -4.8j36.9 V 

The negative sign is needed because the V ,  and I references are not associated. 
With V ,  known, V,, can be found by summing the voltage drops from terminal U to terminal h:  

V,, = - 3( -4.8/36.9 ) + ( l&I )(4) - ( -4.8/36.9-) = 22.53/30.75 V 

from which z,h = 22.53/30.75 n. 

Finally, 

14.13 Find Z,, and I, for the Norton equivalent of the transistor circuit shown in Fig. 14.15. 

2 kQ B 

4 - 
Fig. 14-15 

The Thevenin impedance Z T h  can be found directly by replacing the independent voltage source by a 
short circuit. Since with this replacement there is no source of voltage in the base circuit, and 
so the 501, of the dependent current source is also O A .  And this means that this dependent source is 
equivalent to an open circuit. Notice that the dependent source was not deactivated, as an independent 
source would be. Instead, it is equivalent to an open circuit because its control current is 0 A. With this 
current source replaced by an open circuit, Z T h  can be found by combining impedances: 

1, = 0 A 

2000(10 000 - j l 0  000) 

2000 + 10 000 - j l 0  000 
-- - 1.81/-5.19 kR 

zTh = 

The current I, can be found from the current flowing through a short circuit placed across terminals 
a and b. Because this short circuit places the 10-kQ and -jlO-kQ impedances in parallel, and since I, is the 
current through the -jlO-kR impedance, then by current division I, is 

10 OOO - 501, 
x 501, = _____ ] 

10 000 4 0  000 \/2/ - 45 
N -  
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The initial negative sign is necessary because both 501, and I, have directions into terminal h. The 2-kR 
resistance across terminals a and h does not appear because i t  is in parallel with the short circuit. 

From the base circuit, 

0.3/10 

2000 
I, = --___ A = 0.15/10' mA 

Finally, 
- 50(0.15/10 ) 

.12/-45 
I ,  - _ _ _ _ _ _ ~  - h -  - - -5.3/55 mA 

14.14. Use PSpice to obtain the Thevenin equivalent of the circuit of Fig. 14-16. 

In  general, using PSpice to obtain a Thivenin equivalent involves running PSpice twice to obtain 

Figure 14- 17 shows the corresponding PSpice circuit for determining the open-circuit voltage. Following 
two of the three quantities V T h ,  RTh,  and I,. I t  does not matter, of course, which two are found. 

is the circuit file along with the open-circuit voltage from the output file. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 14-17 
V1 1 0 AC 20 -40 
R1 1 2 20 
R2 2 3 14 
v2 3 4 
El 4 0  5 0  3 
C1 2 5 0.0625 
F1 5 0 V2 2 
R3 5 0 10 
C2 5 0 0.125 
.AC LIN 1 0.159155 0.159155 
.PRINT AC VM(5) VP(5) 
. END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  **** AC ANALYSIS 

FREQ VM(5) VP(5) 
1.592E-01 9.043E+00 -7.107E+01 
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c1 

Obtaining Z,, directly requires deactivating the independent kwltage source, urhich in turn requires 
changing the node 1 specification of resistor R I  to nodc 0. Also, ;t current source of 14 A can be applied 
at the Li-h terminals with the current directed into nodc (1 .  Then, the voltage ;tcross this source has the same 
numerical value as Z,.,. Following is the modified circuit file along with the source voltage from the output 
file. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 14-17, MODIFIED 
R1 0 2 20 
R2 2 3 14 
v2 3 4 
El 4 0  5 0  3 
C1 2 5 0.0625 
F1 5 0 V2 2 
R3 5 0 10 
C2 5 0 0.125 
I1 0 5 AC 1 
.AC LIN 1 0.159155 0.159155 
.PRINT AC VM(5) VP(5) 
. END 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
**** AC ANALYSIS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FREQ VM(5) VP(5) 
1.592B-01 7.920E+00 -1.602E+02 

So, Z,, = 7.910/ -  160.2 Q. 

14.15 What is the maximum average power that can be drawn from an ac generator that has an internal 
impedance of and an rms open-circuit voltage of 12.5 k V ?  Do n o t  be concerned 
about whether the generator power rating may be exceeded. 

which is also the Thevenin impedance. The formula for this power is 
12.5 kV and R , ,  = 150 cos 60 = 75 Q. So, 

150/60 R 

The maximum akerage p m e r  will be absorbed by a load that is thc conjugate of thc internal impedance, 
4R,,,. Here, L',, = P,,,, = 

(12.5 x 1o-y 
4( 7 5 )  

w = 521 kW ~ ' " , , K  = 

14.16 A signal generator operating at  2 M H I  has an rms open-circuit voltage of 0.5 V and an internal 
impedance of 50/30 R. If i t  energizes it capacitor ancl parallel resistor, find the capacitance and 
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j2  fl - 

resistance of these components for maximum average power absorption by this resistor. Also, 
find this power. 

The load that absorbs maximum average power has an impedance Z ,  that is the conjugate of the 
internal impedance of the generator. So. since the conjugate has the same magnitude 
and an angle that differs only in sign. Being in parallel, the load resistor and capacitor can best be determined 
from the load admittance. which is 

Z ,  = 50/-30 R 

But Y ,  = G + jcoC in which (D = 2qf = 2n(2 x 106) rad/s = 12.6 Mrad/s 

1 so  G =  - = 17.3mS from which R = -  = 57.7 R 
1 

R 17.3 x 10-3 

and jtaC =,j(l2.6 x 10h)C = j l O  x 1 0 - 3 S  from which 
10 x 1 0 - 3  

C =  F = 796 pF 
12.6 x 106 

The maximum average power absorbed by the 57 .74  resistor can be found from 
in which R,, is the resistance of 50/30 = 43.3 +j25  R:  

P,,, = v/:,,/4RTh 

0.5' 
P,,,, = ___ W = 1.44mW 

4(43.3) 

Of course, 43.3 R is used instead of the 57.7 R of the load resistor because 43.3 R is the Thevenin resistance 
of the source as well as the resistance of the impedance of the parallel resistor-capacitor load. 

14.17 For the circuit shown in Fig. 14-18, what load impedance 2, absorbs maximum average power, 
and what is this power'? 

3 f l  j8 fl 

ZL 

Fig. 14-18 

The Thevenin equivalent of the source circuit at the load terminals is needed. By voltage division, 

4 + j2  - j8  

4 + j 2  - j 8  + 3 + j 8  
v,, = _ _ ~  x 2 4 0 b 0  = 237.71-42.3: V 

The Thevenin impedance is 

(3  + j8)(4 + j 2  - j8) 

3 + j8  + 4 + j2  - j S  

60 + j14 

7 + j 2  
~ - - ____ - - 8.461-2.81" R '1, = 

For maximum average power absorption, 
8.46 cos 2.81 = 8.45 R. Finally, the maximum average power absorbed is 

z,. = z&, = 8.46/2.81" R, 

V:, 237.7' 

the resistive part of which is R-,-h = 

P,,, = __ - - ___ W = 1.67 kW 
4 R ~ h  q8.45) 
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14.18 In  the circuit shown in Fig. 14-19, find R and L for maximum average power absorption by the 
parallel resistor and capacitor load, and also find this power. 

A good first step is to find the load impedance. Since the impedance of the capacitor is 

the impedance of the load is 

Since for maximum average power absorption there should be no reactance limiting the current to the 
resistive part of the load, the inductance L should be selected such that its inductive reactance cancels the 
capacitive reactance of the load. So, L = 3.9110' H = 3.9 p H .  With the cancella- 
tion of the reactances, the circuit is essentially the voltage source, the resistance R .  and the 4.88 S2 of the 
load, all in series. As should be apparent, for maximum average power absorption by the 4.88 R of the load, 
the source resistance should be zero: R = On. Then, all the source voltage is across the 4.88 R and the 
power absorbed is 

toL = 3.9 R, from which 

(45 \ 2 ) 2  
y,,,, - = 208 w 

4.88 

Notice that the source impedance is not the cotijugate of the load impedance. The reason is that here 
the load resistance is fixed while the source resistance is a variable. The conjugate result occurs in the much 
more common situation in which the load impedance can be varied but the source impedance is fixed. 

j3  R 
R L 

Fig. 14-19 Fig. 14-20 

14.19 Use superposition to find V in the circuit shown in Fig. 14-20. 

component V" from the 5/-50 -V source such that 
using voltage division after replacing the 5 / -  50 -V source with a short circuit: 

The voltage V can be considered to have a component V'  from the 6/30 -V source and another 
V = V' + V". The component V' can be found by 

2 + / 3  

2 + j 3 + 4  
V' = x 6/30 = 3.22159.7 V 

Similarly, V" can be found by using voltage division after replacing the 6/30 -V source with a short circuit: 

4 

2 + j 3 + 4  
\'" = - x 5/-50 = 2.981-76.6 V 

Adding, V = V' + F'" = 3.22j59.7 + 2.981-76.6 = 2.32,'-2.82 V 
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14.20 Use superposition to find i in the circuit shown in Fig. 14-21 

I t  is necessary to construct the corresponding phasor-domain circuit, as shown in Fig. 14-22. The current 
I can be considered to have a component I'  from the current source and a component 1" from the voltage 
source such that I = I' + I". The component I' can be found by using current division after replacing the 
voltage source with a short circuit: 

4 

4 + j 2  
I' 1 ___ x 4 b  = 3.581-26.6 A 

And I" can be found by using Ohm's law after replacing the current source with an open circuit: 

The negative sign is necessary because the voltage and current references are not associated. Adding. 

I = I' + I" = 3.581-26.6 - 2.24138.4 = 3.321-64.2 A 

Finally, the corresponding sinusoidal current is 

i = .>(3.32) sin ( lOOOt  - 64.2 ) = 4.7 sin (10001 - 64.2 ) A 

i 2  fl I 

Fig. 14-22 

14.21 Use superposition to find i for the circuit shown in Fig. 14-21 if the voltage of the voltage source 
is changed to 1 0 3  cos (2000t - 25") V. 

The current i can be considered to have a component i' from the current source and a componcnt i" 
from the voltage source. Because these two sources have different frequencies, two different phasor-domain 
circuits are necessary. The phasor-domain circuit for the current source is the same as that shown in Fig. 
14-22, but with the voltage source replaced by a short circuit. As a result, the current phasor I '  is the same 
as that found in the solution to Prob. 14.20: I '  = 3.58/-26.6 A. The corresponding current is 

i = ,/?(3.58) sin (lOOOt - 26.6 ) = 5.06 sin ( lOOOt  - 26.6 ) A 
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The phasor-domain circuit for the boltage source and (o  = 2000 rud s IS shown III Fig. 14-23. By 
Ohm’s hu. 

1 oj65 
-- = - 1.77/10 A 1“ = - 

4 + j4 

from which i” = 2( - I .77) sin (2000r + 20 1 = - 2.5 sin (2000r + 20 ) A 

Finally, i = i’ + i” = 5.06 sin (10OOt - 26.6 ) - 2.5 sin (20001 + 20 ) A 

Notice in this solution that the phasors I ’  and I ”  cannot be added, as they could be in the solution to 
Prob. 14-20. The reason is that here the phasors are for different frequencies, while in the solution to Prob. 
14.20 they are for the same frequency. When the phasors are for different frequencies, the corresponding 
sinusoids must be found first, and then these aided. Also, the sinusoids cannot be combined into a single term. 

14.22 Although superposition does not usually apply to power calculations, i t  does apply to the 
calculation of Iiiwciyu power absorbed when all sources are sinusoids of ci~f/i~r.rnt frequencies. ( A  
dc source can be considered to be a sinusoidal source of zero frequency.) Use this fact to find 
the average power absorbed by the 5-R resistor in the circuit shown in Fig. 14-24. 

Consider first the dc component of average power absorbed by the 5-R resistor. Of course, for this 
calculation the ac voltage sources arc replaccd by short circuits. Also, the inductor is replaced by a short 
circuit because an inductor is ;I short circuit to dc. So, 

4 

3 + 5  
1 d C  = = 0.5 A 

This 0.5-A current produces a power dissipation in the 5-R resistor of P,, = 0.5’(5) = 1.25 W. 
The rms current from the 6000-rad s voltage source is, by superposition, 

141-1.5 1 4 
10 

~,oo, ,  = = = 0.4 A 
13 + jh + 51 

I t  produces a power dissipation of 
the 9000-rad s voltage source is 

Pt,ooO = 0.4’(5) = 0.8 W in the 5-R resistor. And the rms current from 

I t  produces a power dissipation of P9000 = 0.24g2(5) = 0.31 W in the 5-R resistor. 
The total average power P , ,  absorbed is the sum of those powers: 

P,,  = P,, + P(,(,(,(j + P,r(jo(r = 1.25 + 0.8 + 0.31 = 2.36 w 

14.23 Use superposition to find V in the circuit shown i n  Fig. 14-25. 
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2 n  

I 3 R  

15/30" V 

- 
51-45" A v \  T 

T 
Fig. 14-25 

I f  the independent current source is replaced by an open circuit, the circuit is as shown in Fig. 14-26, 
in which V' is the component of V from the voltage source. Because of the open-circuited terminals, no part 
of I can flow through the 2-R resistor and the 31 dependent current source. Instead, all of I flows through 
the j4-R impedance as well as through the 3-R resistance. Thus, 

= 3/-23.1 A I=------ 
15/30 

3 +.j4 

With this I known, V' can be found from the voltage drops across the 2- andj4-Q impedances: 

V' = V ,  + V, = 2(3I) +j41 = (6 +j4)(3/-23.1 ) = 21.6110.6 V 

15/30" V 

I 3 0  O A  * - 
0 
+ 

31 

f 
V' 

- 
- - ~~ 

Fig. 14-26 

I f  the voltage source in the circuit of Fig. 14-25 is replaced by a short circuit, the circuit is as shown 
in Fig. 14-27, where V" is the component of V from the independent current source. As a reminder, the 
current to the left of the parallel resistor and dependent-source combination is shown as 5/-45' A, the 
same as the independent source current, as it must be. Because this current flows into the parallel 3-R and 
j4-R combination, the current I in the 3-R resistor can be found by current division: 

I =  -___ J4 x 51-45' = 4/-188.1 A 
3 + j 4  

With I known, V" can be found from the voltage drops V ,  and V, across the 2-R resistor and the parallel 
3-R andj4-R impedances. Since the 2-R resistor current is 31 + 5/-45 , 

V ,  = [3(4/- 188.1') + 5/-45"1(2) = - 17.1/12.4 V 

2 R  
51-4s0 A 
f- 

I 3 R  

+ 
31 5/-45'  A 

Fig. 14-27 
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Also, since the current i n  the 342 and j4-Q parallel combination is 5~'-45 A, 

3( , i4) 
\ ' ?  = ~ ~ x 51-45 = ] ' i ' - 8 .1  \' - 3 + ,j4 

V" = V ,  + \'? = - 17.11'12.4 + 12!-8.1 = 7.21/'- 133 V 1 S 0 

Finally. by superposition. 

V = \" + \"' = 21.6/10.6 + 7.21, ' -  133 = 16.5/'-4.89 V 

The main purpose of this problem is to illustrate the fact that dcpcndent sources ;ire not cic:icti\atcd 
in using supcrpositio~i. Actuallj'. using superposition on the circuit slioum in  F ig  13-25 requires ~iiuch morc 
work than using loop or nodal analqsis. 

14.24 Transform the A shown in Fig. 14-28u to the I.' in Fig. 14-28h for ( ( 1 )  Z,  = Z, = Z, = 
12/36" R, and ( h )  Z ,  = 3 + j 5 R ,  Z, = 6@ $2, a n d  Z, = 41-30 R. 

A- 

B- 

( N )  Because all three A impedance\ ;ire thc wnie, all three Y ~mpcdances arc the \,ime and  each IS 

equal to one-third of the c ~ m m o n  A impcdancc: 

( h )  All thrcc A- to-Y t r a n s f ~ ~ r m ~ t t i n ~ i  formula\ hitic thc s;inic denominator. hich ic 

By these formulas, 
3 +jS)(S,&I ) 

13.1122.66 
= 2.67fS6.4 R 

6@ )(4/ - 30 I 
= 1.83> -31.7 (2 

13.1 /22.66 

14.25 Transform the Y shown in Fig. 14-2% to the A in Fig. 14-28a for ( ( I )  

4 -.j7R, and (h) Z, = IOR, Z, = 6 - , j S  R, a n d  Z,. = 9/30 0. 

( U )  

Z, = Z, = Z,. = 

Because all three Y impedances are the same, all three A impedances are the same and each is equal 
to three times the common Y impedance. So, 

z, I = z  - 7 ,  - - 3(4 - j7 )  = 12 - j21 = 24.2, -60.3 CI 
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( h )  All three Y-to-A transformation formulas have the same numerator, which here is 

ZAZB + ZAZ, + ZBZ, = lO(6 - jS )  + 10(9/30 ) + (6 - iR)(9,i?O ) = 231.6, - 17.7 

By these formulas, 

Z,.,ZB + Z,Z, + Z,Z, 231.6/- 17.7 
= '5.71 -47.7 R z2 = _ ~ _ _  - - ___ 

zc 9/33 

= 23.21- 17.7 R 
231.6/-17.7 

A _ C _ _ L C  - - _____.__ 

10 z'4 
ZAZB + Z Z + Z Z 

2 3  = 

14.26 Using a A-to-Y transformation, find I for the circuit shown in Fig. 13-29. 

- j4  R - j 4  R 
II 

C 

A B C 

Fig. 14-29 Fig. 14-30 

Extending between nodes A ,  B, and C there is a A, as s h m n  in Fig. 14-30, that can bc transformed t o  
the shown Y, with the result that the entire circuit becomes series-parallcl and so can be rcduccd bl combining 
impedances. The denominator of each A-to-Y transformation formula I S  3 + 4 - j4 = 7 - j4 = 

8.062/-29.7 R. And by these formulas, 

3(4) 
= 1.491-60.3 Q Z - --I- - = 1.49,1'29.7 R 

3( -j4) z -  
A - 8.0621 - 29.7. - 8.062/ - 29.7 

4( - i4) Z - - - ~ -  ~ = 1.981 -60.3 Q 
- 8.062/ - 29.7 

With this A-to-Y transformation, the circuit is as  shown in Fig. 14-31. Sincc this circuit is in scrics-parallcl 
form, the input impedance Zi, can be found by circuit reduction. And then Zi, can be diLrided i n t o  thc 

V 

1.49/-60.3" R 1.981-60.3" R 
I 2 R  j l . 5  R A - n 

v I l i l  
1 . 4 9 m 0  n 

Z I N  - 
-j2 R 5: 

1 

C 

j l  il 

Fig. 14-31 
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applied voltage to get the current 1: 

Finally, 

( 1.49/29.7 - j 2 ) (  I .9X/ - 60.3 + j 1 ) 

1.49129.7 - j 2  + 1.98/-60.3 +j l  
-___ __ - Z,, = 2 + j 1 . 5  + 1.49/-60.3 + - 3.311-4.5 R 

I = - = -  " 2oo/30 = 60.4j34.5 A 
Z,, 3.3 11 - 4.5 

Incidentally, the circuit shown in Fig. 14-29 can also be reduced to series-parallel form by transforming 
the A of the -j2-, 4-, and j l-R impedances to a Y, or by transforming to a A either the Y of the 3-, --j2-, 
and 4-R impedances or that of the -j4-, 4-, andjl-R impedances. 

14.27 Find the current I for the circuit shown in Fig. 14-32. 

240p 

240KO" 

V 

V 

j36 fl 

Fig. 14-32 

As the circuit stands, a considerable number of mesh or nodal equations are required to find 1. But the 
circuit, which has a A and a Y, can be reduced easily to just two meshes by using A-Y transformations. 
Although these transformations do not always lessen the work required, they do here because they are so 
simple as a result of the common impedances of the Y branches and also of the A branches. 

One way to reduce the A-Y configuration is shown in Fig. 14-33. If the Y of 9 + jl2-R impedances is 
transformed to a A, the result is a A of 3(9 + j 1 2 )  = 27 +j36-R impedances in parallel with the -j36-Q 
impedances of the original A, as shown in Fig. 14-33a. Combining the parallel impedances produces a A 
with impedances of 

(27 + j36)( -j36) 
- 48 - j36 R 

27 + j36 - j36 

as shown in Fig. 14-336. Then, if this is transformed to a Y, the Y has impedances of (48 -j36)/3 = 16 -jl2 $2, 
as shown in Fig. 14-33c. 

Figure 14-34 shows the circuit with this Y replacing the A-Y combination. The self-impedances 
of both meshes are the same: 4 + 16 - j12 -j12 + 16 + 4 = 40 - j24R,  and the mutual impedance is 
20 - j12 R. So, the mesh equations are 

(40 - j24)I - (20 - jl2)I' = 240b" 

- (20 - j l2)I  + (40 - j24)I' = 24ObO' 
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-j12 
-j12 R 

0 

-j12 

4 R  16 R 

-j36 R 

R 

/ 

j36 R -  \ 
4- 

-j36 R 48 R 

( b )  
Fig. 14-33 

3". 

By Cramer's rule, 

I 240& -(20 -j12)1 

I -(20 -j12) 40 -j24 1 

In reducing the A-Y circuit, i t  would have been easier to transform the A of -j36-Q impedances to a 
Y of impedances. Then, although not obvious, the impedances o f  this Y would be in 
parallel with corresponding impedances of the other Y as a result of the two center nodes being at the same 
potential, which occurs because of equal impedance arms in each Y. I f  the parallel impedances are combined, 
the result is a Y of equal impedances of 

- j36, /3  = -j12-Q 

the same as shown in Fig. 14-33. 

240p V 

240eO" V 
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14.28 Assume that the bridge circuit of Fig. 14-3 is balanced for 
Z, = 8.2 0. 
series, what art' the) '? 

balance equation. 

2, = 5 R, Z2 = 4/30 R, and 
and for a source frequency of 2 kH7.  If branch Z,y consists of two componcrits in 

The tM.0 cc)mponent\ c;tn be deteriiiincd from thc real and iinagiiiar! par t \  of % \  I- roin the bridge 

L\ hich correspond:; to i1 5 . 6 8 4 2  re\istor and ;I w i c s  inductor t h a t  has ;L reactance of 3.7X (2. Thc corrcsponcllng 
incl uct ancc is 

14.29 The bridge circuit shown in Fig. 14-35 is ii cwptrcit irric~e c w i p t i r . i . s o r i  hridgqc. that is used for measuring 
the capacitance (',, of ;i capacitor and a n y  resistance K,, inherent to the capacitor or in scries 
u i t h  i t .  The bridgc h a s  a standaril capacitor, the capacitancc ('.% o f  which is knowcn. Find R,, and 
C, if the bridge is in biiliirlct' for R I  : 500 Q, K, =I 2 kQ. K, = I kR, C7,s = 0.02 pF. and 
a source radian frequency o f  1 kradis. 

Fig. 14-35 

= 1000 - j 50  000 $2 i l  
1000(0.03 x 10 ''I 

1 ~. 
J 3 -- 1000 - 

and 

From the bridge balance equation Z,\ = ZzZ,~%, ,  

For t i io  complex quantities in  rectangular lorm t o  be equal. its here, both the real p;irts must be equal and 
the imaginnrj, pitrts must be cqual.  This inut is  tha t  R \ = 3000 51 i t i d  

I 1 
-= '00 000 from LL hich ( ' \  = I- = 5 n F  

1 OOO( ' \ 1 000( 200 000) 
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14.30 

14.31 

For the capacitance comparison bridge shown in Fig. 14-35, derive general formulas fo r  R,, and 
C, in terms of the other bridge components. 

For bridge balance, Z,Z, = Z,Z,, which in terms of the bridge components is 

From equating real parts, R , R ,  = R,R3 ,  or 
-R,/(toC,) = -R,/(toC,), or C ,  = R , C s  R,.  

R,, = R,R3 R , .  And from equating imaginary parts. 

The bridge circuit shown in Fig. 14-36, called a Mirsitx4/ hridqe, is used for measuring the 
inductance and resistance of a coil in terms of a capacitance standard. Find L,  and R,y if  the 
bridge is in balance for R I  = 500 kQ, R ,  = 6.2 kQ, R ,  = 5 kQ, and C, = 0.1 /IF. 

Fig. 14-36 

First, general formulas will be derived for R ,  and L ,  in terms of the other bridge components. Thcn, 
values will be substituted into these formulas to find R ,  and L,y for thc specified bridge. From a comparison 
of Figs. 14-3 and 14-36, Z, = R,, Z, = R,,  Z,y = R,y + j ( o L , y ,  and 

R ,( - j  1 !!wCs) - j R  z, = = _ _ _ ~ _ ~ - _  

R l  - / l , toCs  R1toCs - / I  

Substituting these into the bridge balance equation Z,Zs = Z,Z3  gives 

(R,y + j(oL,) = R ,  R ,  
- jR 

R ,wC,  - j l  

which, upon being multiplied by R , o C ,  - j l  and simplified, becomes 

R,toLx - j R , R ,  = R , R , R , o X ,  - j R , R ,  
From equating real parts, 

RI(i)Lx = R 2 R 3 R , ( ~ K s  from which L,y = R,R3Cs  

and from equating imaginary parts, 

from which 

which are the general formulas for L ,  and R , .  For the values of the specified bridge, these formulas give 

(6.2 x 103)(5 x 10,) 
= 6 2 R  and L x  = (6.2 x 103)(5 x 103)(0.1 x l W h )  = 3.1 H R 

- <no i n 3  
JVV A 1V 
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Supplementary Problems 

14.32 Find VTh and ZTh for the Thevenin equivalent of the circuit shown in Fig. 14-37. 

Ans. 1331 - 88.4' V, 8.36117.6' R 

14.33 What resistor will draw an 8-A rms current when connected across terminals (1 and h of the circuit shown 
in Fig. 14-37? 

Ans. 8.44 R 

9 R  4n i7 R -j6 R 4 R  

Fig. 14-37 Fig. 14-38 

14.34 Find I, and Z T h  for the Norton equivalent of the circuit shown in Fig. 14-38. 

Ans. 

Find VT, and Z T h  for the Thevenin equivalent of the circuit shown in Fig. 14-39 for 

Ans. 3.47/123? V, 3.05129.2" R 

- 3.0915.07- A, 6.3/-9.03 R 

14.35 R = OR. 

3 0  i4 

low v 

Fig. 14-39 

2/20' A 

14.36 Find I, and Z T h  for the Norton equivalent of the circuit shown in Fig. 14-39 for 

Ans. 0.71/105' A, 4.89/17.7' R 

R = 2 n. 

14.37 Find VT, and Z T h  for the Thevenin equivalent of the circuit shown in Fig. 14-40 for R ,  = R ,  = 

OR and V'=OV.  

Ans. - 40.4/ - 41.4- V, 1.92119.4 R 

8 R  j7 RI 
O a  

o b  
Fig. 14-40 
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;=E 

A - 

14.38 

14.39 

14.40 

14.4 1 

14.42 

14.43 

14.44 

- 
7 

I' 
- j 2  R 

Find V,, and Z,, for the Thevenin equivalent of the circuit shown in Fig. 14-40 for 
4 R ,  and V , =  50[-60 V.  

Ans. -71.5/-50.2 V. 6.24/2.03 f2 

Find V,, and Z,, for the Thevenin equivalent of the circuit shown in Fig. 14-41. 

Ans. 11.8/25.3" V, 4.6715.25" 0 

R ,  = 5f2, R ,  = 

- j 5  fl 

Fig. 14-41 

What resistor will draw a 2-A rms current when connected across terminals a and h of the circuit shown 
in Fig. 14-41? 

Ans. 1.21 R 

Using Thevenin's o r  Norton's theorem, find I for the bridge circuit shown in Fig. 14-42 if I, = 0 A 
Z, = 60@ 0. 

Ans. 10.4/-43.5$ A 

and 

Find I for the bridge circuit shown in Fig. 14-42 if I, = lO@' A 

Ans. 15& A 

and Z, = 40/-40 R. 

V 

Fig. 14-42 

31 

4 

Find the output impedance of the circuit shown in Fig. 14-43. 

Ans. 4.491-20.9- !2 

Find the output impedance of the circuit shown in Fig. 14-43 with the I reference direction reversed-being 
up instead of down. 

Ans. 1.681- 39.1 ' SZ 
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14.45 k i n d  b',,, , ind Z,,, f o r  the Thivenin equi\.alent o f  the circuit shown in Fig. 14-44. 

1 / 1 \  - 1 . 7 5 s  V, 0361119.4 R 

j3  S 

Fig. 14-44 

14.46 I n  the circuit shown in Fig. 14-44, reverse the I reference direction- have i t  up instead of down -and find 
I, and Z,, for  the Norton cquivalent circuit. 

,411.s. 4.85/-70.2 A, 0.1 16/- 18.8 R 

14.47 Find the output impedance at  10' rad s of the circuit shown in Fig. 14-45. 

4 k R  B 

A 

Fig. 14-45 

14.48 Usc PSpicc to obtain the Thivenin equivalent at the ci and h terminals of the phasor-domain circuit 
corresponding to the time-domain circuit of Fig. 14-46. 

.4m. 5.23/--10.5 V, 110/-21.7 kR 

Fig. 14-46 

14.49 What is the maximum average power that can be drawn from an ac generator that has an internal impedance 
of 100/3 R and an opcn-circuit voltage o f  25 k V  rms? 

Am. 1.66 M W 
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I450 .A signal gciicrator operating a t  5 M H z  has ;in rms short-circuit current of 100 niA and :in internal iiiipcdaiicc 
of XO>) 0. I f  i t  energizes a capacitor and 'i piiriillcl resistor, find the capacitance and resistance for  ma\irnuiii 
; I \  eragc power absorption by the rcsistor. Also, find this po\i'er. 

, 4 / l . Y .  136 pF, 85.1 R. 0.313 w 

14.51 For the circuit shown in Fig. 13-47. w h a t  %, c i r a i i b  n i ; ~ \ i ~ i i i i i i i  itLerage pouer and m h a t  13 this p c ~ c r ?  

.4ns 12.81 - 5 I .3 R, 48.5 W 

l O E O "  A 

Fig. 14-47 

14.52 In  the circuit sho\vn in Fig. 14-47, mobc the - j % Q  inipcditnce f r o m  i n  ccrics w i t h  thc current source to i n  
parallel with it. Find the Z,, that absorbs maximum average power and find this power. 

Ans. 14/-1.69 R, 61 W 

14.53 Use superposition to find I for the circuit shown in Fig. 14-48. 

A m .  2.27/65.2 A 

I i 3  R - j S  R 

4 f l  2 R  

13/25" v 2 0 E O "  v 
Fig. 14-48 

14.54 For the circuit shown i n  Fig. 14-49, find the average power dissipated in the 3-R resistor using superposition 
and then without using superposition. Rcpeat this with the 10 phase angle changed to 40 for the one 
voltage source. (This problem illustrates the fact that superposition can be used to find the average power 

1 3 I1 2H 

Fig. 14-49 
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absorbed by a resistor from two sources of the s ( u w  frequency only if  these sources produce resistor currents 
that have a 90 difference in phase angle.) 

.4)i.s. 34.7 W using superposition and without using superposition; an incorrect 34.7 W with superposition 
and a correct 20.3 W without using superposition 

14.55 Find L' for the circuit shown in Fig. 14-50. 

Am. 5.24 sin (5000r - 61.6 j - 4.39 sin (WOO( - 34.6 1 V 

10 sin (50001 - 30") V f-mo 2 sin (8OOOt + 10") A 

Fig. 14-50 

14.56 Find the average power dissipated in the 5-R resistor of the circuit shown in Fig. 14-50. 

A m .  5.74 W 

14.57 Find i for the circuit shown in Fig. 14-51. 

Ans. - 2 sin (50001 + 23.1 ) - 4.96 sin (10'1 - 2.87 ) A 

5 0 0  sin (50001 - 30") V 

Fig. 14-51 

4 sin (10'2 - 10") A 

14.58 Find the average power absorbed by the 200-R resistor in the circuit shown in Fig. 14-51 

A m .  523 W 

14.59 Transform the T shown in Fig. 14-52~i to the Il in Fig. 14-52h for 
(hj Z,., = 5[-30 R, Z , = 6 / 4 0  Q, Z c = 6 - / 7 Q .  

Ans. ( U )  Z, = Z, = Z, = 30/-50' St;  ( h )  Z ,  = 17.5/-68 Q, Z2 = 11.4/21.4 Q, Z, = 21/2.05' R 

( ( I )  %,.r = Z, = Z, = 101- 50 R. and 
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14.60 Transform the Il shown in Fig. 34-52h to the T in Fig. 14-52u for 
( h )  Z ,  = 15/-24 R, Z, = 14-  j20Q Z, = 10 +j16R.  

(a)  Z,  = Z, = Z, = 36/-24" 0, and 

Ans. ( U )  Z, = Z, = Z,. = 12/-24 R;  ( h )  Z, = 9.38/-64 R, Z, = 11.8/Ix R, Z, = 7.25/49'R 

14.61 Using a A-Y transformation, find I for the circuit shown in Fig. 14-53. 

Ans. 26.9/22' A 

5 f l  j4 fl 

Fig. 14-53 

14.62 Using a A-Y transformation, find I for the circuit shown in Fig. 14-54. 

Ans. 17.6/13.1- A 

I - j 5  fl 

Fig. 14-54 

14.63 Assume that the bridge circuit shown in Fig. 14-3 is balanced for 
Z, = 9.1 R, 
are they? 

Ans. 

Z, = 10/-30' R, Z, = 15/40" R, and 
and for a source frequency of 5 kHz. If branch Z, consists of two components in parallel, what 

A 3 9 . 9 4  resistor and a 462-pH inductor 

14.64 Find C ,  and R ,  for the capacitor comparison bridge shown in Fig. 14-35 if this bridge is balanced 
for R ,  = 1 kR, R ,  = 4 kR, R ,  = 2 kR, and C ,  = 0.1 pF. 

Ans. 25 nF, 8 kR 

14.65 Find L ,  and R ,  for the Maxwell bridge shown in Fig. 14-36 if this bridge is balanced for R ,  = 50 kR, 
R ,  = 8.2 kR, R ,  = 4 kR, and C ,  = 0.05 pF. 

Ans. 1.64 H, 656 R 



Chapter 15 

Power in AC Circuits 

INTRODUCTION 

The major topic of this chapter is the ucrruyr power absorbed over a period by ac components and 
circuits. Consequently. it will not be necessary to always use the adjective “uceruge” with power to avoid 
misunderstanding. Also, i t  is not necessary to use the subscript notation “av” with the symbol P .  Similarly, 
since the popular power formulas have only effective or rms values of voltage and current, the subscript 
notation “eff” can bc deleted from Veft and left. (or “rms” from V,,, and I,,,) and just the lightface V and 
I used to designate effective or rms values. 

As a final introductory point, in the following text material and problems the specified voltages and 
currents always haw associated references iinless there are statements or designations to the contrary. 

CIRCUIT POWER ABSORPTION 

The average power absorbed by a two-terminal ac circuit can be derived from the instantaneous 
and an input current pouer absorbed. I f  the circuit has an applied voltage 

i = I ,  sin tot, 

t’ = v,, sin ((of + 0) 
the instmtuneous power absorbed by the circuit is 

p = “i = V,,, sin ((or + 0 )  x I,,, sin (rjt = V,,I ,  sin (cot + 0)  sin tot  

This can be simplified by using the trigonometric identity 

sin A sin B = ;[cos ( A  - B )  - cos ( A  + B)] 

and the substitutions A = (o r  + 0 and B = cot .  The result is 

Since 

the instantaneous power can be expressed as 

p = 1’1 cos 0 - V I  cos (2tof + 8) 

The average value of this power is the sum of the average values of the two terms. The second term, 
being sinusoidal, has ;I zero average value over a period. The first term, though, is a constant, and so must 
be the average power absorbed by the circuit over a period. So, 

I t  is important t o  remember that in this formula the angle 0 is the angle by which the input voltage 
leads the input current. For a circuit that does not contain any independent sources, this is the impedance 
angle. 

For a purely resistive circuit, 0 = 0 and cos 0 = 1 and so P = VI cos U = V I .  For a purely 
inductive circuit, 0 = 90 and cos 0 = cos 90 = 0, and so P = 0 W, which means that a purely 
inductive circuit absorbs zero average power. The same is true for a purely capacitive circuit since, for 
i t ,  0 = -90 and cos (-90 ) = 0. 

P = V I  x PF. The 
angle 0 is called the p o ~ v r . f i ~ t o r ’  umj l (~ .  As mentioned, it is often also the impedance angle. 

cos U = 

cos ( - 0 ) .  the sign of the power factor angle has no effect on the power factor. Because the power factors 

The term ‘bcos 0“ is called the/)01~’(.’)’.fu(’t()Y. I t  is often symbolized as PF, as in 

The power factor angle has different signs for inductive and capacitive circuits, but since 

324 
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c 

Watts 

of inductive and capacitive circuits cannot be distinguished mathematicalli\. they are distinguished by 
name. The power factor of an inductive circuit is called a h g ! g ; i i ~ g  p o ~ w  f i r c t o r -  and that of a capacitive 
circuit is called ii kocrtling porrw f;lrctor.. These names can be remembered from the fact that for tin inductive 
circuit the current lags the voltage, and for a capacitive circuit the current Ic~ac1.s the voltage. 

I’ = I %  into P = I‘I cos 0: Another power formula can be obtained by substituting 

P = V I  COS 0 = ( IZ)I  COS 0 = I z (Z  COS 0 )  = I’R 

Of course, is the input resistancc, the s;imc 21s the rcd part of the input impedance. The 
formula may seem obvious from dc considerations, but reniember that R is usually not the 
resistance of a physical resistor. Rather, i t  is the real part of the input impedance and is usually dependent 
on inductive and capacitive reactances as m d l  a s  on resistanccs. 

R = Z cos 0 
P = I’R 

Similarly, with the substitution of I = 1’1’. 

P = I ‘ f  cos 0 = I ’ (  I ‘ Y )  cos 0 = I”( )’cos 0) = 1% 

in which G = Y cos 0 is the input conductance. I n  using this formula P = I”G, remember that, 
except for a purely resistive circuit, the input conductance G is not the inLwsl: of the input resistance R.  
If, however. I ’  is the voltage across a resistor of R ohms, then P = 1”G = I ”  R .  

WATTMETERS 

Average power can be measured by an instrument called a 1 w t t i m > t w ,  a s  sho\vn In Fig. 15-1. I t  has 
two pairs of terminals: a pair of voltage terminals on the left-hand side and a pair of current terminals 
on the right-hand side. The bottom terminal of each pair has ii designation for aiding i n  connecting 
up the wattmeter. as will be explained. 

I Volts Amps 
0 

2 

0 

0 
+ 

0 

Fig. 15-1 

W M  

Fig. 15-2 

For a measurement of power absorbed by a load, the voltage terminals art: connected i n  parallel 
with the load and the current terminals :ire connected in series with the load. Because the \Toltage circuit 
inside the wattmeter has a very high resistance and the current circuit has a L w - j  law resistance, the 
voltage circuit can be considered an open circuit and the current circuit a short circuit for the pouer  
measurements of almost all loads. As ;i result, inscrting a wattmeter in a circuit seldom has a significant 
effect on the power absorbed. For convenience, i n  circuit diagrams the Lultage circuit \ ! i l l  be shoun ;is 
a coil labeled “pc” (for potential coil) and the current circuit will be shown ;is ii coil labeled “cc“ (for 
current coil), as shown in Fig. 15-2. One type of wattmeter, the electrodynatiiotiiet~r \+fattilleter, actually 
has such coils. 

designations help i n  making wattmeter connections so that the u’attmeter reads upscale. to 
the right in Fig. 15-1, for positive absorbed power. A wattmeter will read upsc;tle M . i t h  the connection 

The 
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in Fig. 15-2 if  the load absorbs average power. Notice that, for the associated voltage and current 
references, the reference current enters the k current terminal and the positive reference of the voltage 
is at the a 
source of average power -then one coil connection, but not both, should be reversed for an upscale 
reading. Then, the wattmeter reading is considered to be negative for this connection. Incidentally, in 
the circuit shown in Fig. 15-2, the wattmeter reads essentially the same with the potential coil connected 
on the source side of the current coil instead of on the load side. 

voltage terminal. The effect is the same, though, if  both coils are reversed. If a load is active 

REACTIVE POWER 

For industrial power considerations, a quantity called reuctir-e poirvr is often useful. I t  has the 
quantity symbol Q and the unit  of zdtmniprru wcic t i iv .  the symbol for which is VAR.  Reactive power, 
which is often referred to as i w s ,  is defined as 

Q = V l  sin 0 

for a two-terminal circuit with an input rms voltage I/’ and an input rms current I .  This Q is cihsorhed 
reactive power. The 0 is the angle by which the input voltage leads the input current the power factor 
angle. The quantity “sin 0” is called the recic,tirie.firc,tor. of the load and has the symbol RF. Notice that 
i t  is negative for capacitive loads and is positive for inductive loads. A load that absorbs negative vars 
is considered to be producing vars 

V =  IZ 
and Z = Y V into Q = VZ sin 0. These formulas are 

that is, i t  is a source of reactive power. 
As was done for real power P,  other formulas for Q can be found by substituting from 

Q = 1 2 X  and Q = - V 2 B  

where X is the reactance or imaginary part of the input impedance and B is the susceptance or imaginary 
part of the input admittance. (Remember that B is not the inverse of X . )  Additionally, if V is the voltage 
across an inductor or capacitor with reactance X ,  then Q = V 2 / X .  So, Q = V 2 / ( o L  for an inductor 
and Q = -coCV2 for a capacitor. 

COMPLEX POWER AND APPARENT POWER 

There is a relation among the real power of a load, the reactive power, and another power called 
the c~onzplus po,ivr. For the derivation of this relation, consider the load impedance triangle shown in 
Fig. 15-~LI. If each side is multiplied by the square of the rms current I to the load, the result is the 
triangle shown in Fig. 15-3h. Notice that this multiplication does not affect the impedance angle 0 since 
each side is multiplied by the same quantity. The horizontal side is the real power P = 12R, the vertical 
side is j l  times the reactive power, j I ‘X  = jQ ,  and the hypotenuse 1 2 Z  is the complex power of the 
load. Complex power has the quantity symbol S and the unit of r d t ~ r r q w r c ~  with symbol VA. These 
power quantities are shown in Fig. 15-3c, which is known as the po,.cw tricrruglo. From this triangle, 
clearly S = P + j Q .  

12R 

( b )  
Fig. 15-3 
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The length of the hypotenuse (SI = S. is called the q p i r w t  /mtvr. Its name comes from the fact 
that i t  is equal to the product of the input rms voltage and current: 

s = l P Z l =  llZl x I = V I  

and from the fact that in dc circuits this product I'I is the pou.er absorbed. The substitution 
of V = IZ and I = I/ Z into S = C'I produces two other formulas: S = I'Z and S = 

V 2 / 2 .  
The V I  formula for apparent power leads to another popular formula for complex power. 

Since S =  S,&, and S = V I ,  then S = V I B .  
A third formula for complex power is where I *  is the conjugate of the input current 1. 

This is a valid formula since the magnitude of VI* is the product of the applied rms voltage and current, 
and, consequently, is the apparent power. Also. the angle of this product is the angle of the voltage 
phasor wintts the angle of the current phasor, with the subtraction occurring because of the use of the 
conjugate of the current phasor. This difference in angles is, of course, the complex power angle 0 the 
angle by which the input voltage leads the input current 

One use of complex power is for obtaining the total complex po\+,er of seLteral loads energized by 
the same source, usually in parallel. I t  can be shc7u.n that the total complex poLver is the sum of the 
individual complex powers, regardless of how the loads are connected. I t  follo\j.s that the total real power 
is the sum of the individual real polvers, and that the total reactije power is the sum of the individual 
reactive powers. To repeat for emphasis: Complex pcxvers, real pouers, and reactive pmvers can be added 
to obtain the total complex power, real power, and reactibre pomer, respectively. The same is )lot  true 
for apparent powers. I n  general. apparent powers cannot be added to obtain a total apparent power 
any more than rms voltages or currents can be added to obtain a total rins Ltoltage or current. 

The total complex power can be used to find the total input current. a s  should be apparent from 
the fact that the magnitude of the total complex power, the apparent power, is the product of the input 
voltage and current. Another use for complex poLver is i n  power factor correction, which is the subject 
of the next section. 

S = VI*, 

and also the poMw fhctor angle. 

POWER FACTOR CORRECTION 

In  the consumption of a large amount of power, a large polver factor is desirable the larger the 
better. The reason is that the current required to deliver a given amount of pon'er to a load is inversely 
proportional to the load power factor, a s  is evident from rearranging P = I'I cos I I  t o  

So, for a given power P absorbed and applied voltage V ,  the smaller the power factor the greater the 
current I to the load. Larger than necessary currents are undesirable because of the accompanying larger 
voltage losses and 12R power losses in power lines and other power distribution equipment. 

As a practical matter, low power factors are always the result of inductiLre loads because almost all 
loads are inductive. From a power triangle viewpoint, the vars that such loads consume make the power 
triangle have a large vertical side and so a large angle 0. The result is a small cos 0. which is the power 
factor. Improving the power factor of a load requires adding capacitors across the power line at the load 
to provide the vars consumed by the inductive load. From another point of view, these capacitors supply 
current to the load inductors, which current, without the capacitors, would have to come oFrer the power 
line. More accurately, there is a current interchange between these capacitors and the load inductors. 

Although adding sufficient capacitance to increase the power factor to uni ty  is possible, i t  may not 
be economical. For finding the minimum capacitance required to improFre the power factor to the amount 
desired, the general procedure is to first calculate the initial number of vars Q, being consumed by the 
load. This can be calculated from which formula should be apparent from the power 
triangle shown in Fig. 15-3". Of course, 0,  is the load impedance angle. The next step is to determine 

Q, = P tan i l l ,  
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the final impedance angle 0, from the final desired power factor: ($ .= cos- '  PF,. This angle is used 
in to find the total number of vars Q, for the combined load. This formula is valid 
since adding the parallel capacitor or capacitors does not change P .  The next step is to find the vars 
that the added capacitors must provide: AQ = Q, - Qi. Finally, AQ is used to find the required amount 
of capacitance: 

Q, = P tan 0, 

If AQ is defined as 
A Q / w V ~ .  All this procedure can be done in one step with 

Q, - Qr, the negative sign can be eliminated in the formula for C: then, C = 

P[tan (cos- ' PFJ - tan (cos ' PF,)] 
C =  

(0 v 2  

Although calculating the capacitance required for power factor correction may be a good academic 
exercise, it is not necessary on the job. Manufacturers specify their p m e r  fx tor  correction capacitors 
by operating voltages and the kilovars the capacitors produce. So, for power factor correction, i t  is only 
necessary to know the voltages of the lines across which the capacitors will be placed and the kilovars 
required. 

Solved Problems 
15.1 

15.2 

The instantaneous power absorbed by a circuit is 
maximum, minimum, and average absorbed powers. 

The maximum value occurs at  those times when the sinusoidal term is a maximum. Since this term has a 
maximum value of 8, pmax = 10 + 8 = 18 W .  The minimum value occurs when the sinusoidal term is at 
its minimum value of -8: pmln = 10 - 8 = 2 W. Because the sinusoidal term has a zero average value, 
the average power absorbed is 

p = 10 + 8 sin (377f + 40 ) W .  Find the 

P = 10 + 0 = 10 W .  

With 
power factor and also the average, maximum, and minimum absorbed powers. 

voltage leads the current: 

t' = 300 cos (20t + 30') V applied, a circuit draws i = 15 cos (20t - 25 ) A. Find the 

The power factor of the circuit is the cosine of the power factor anglc. which is the angle by brhich the 

PF = COS [30 - (-25 )] = COS 55 = 0.574 

I t  is lagging because the current lags the voltage. 
The average power absorbed is the product of the rms voltage and current and the power factor: 

P = -- x - -- x 0.574 = 1.29 x 103 W =  1.29 k W  
300 15 

\ 2  \ 2  

The maximum and minimum absorbed powers can be found from the instantaneous pouer, R hich I S  

p = t i  = 300 cos (20t + 30 ) x I5 cos (20r - 25 ) = 4500 cos (20r + 30  ) cos (201 - 3 ) 

This can be simplified by using the trigonometric identity 

COS A COS B = 0.5 [COS (,4 + B )  + COS ( ,A - B ) ]  

and the substitutions A = 20r + 30 and B = 201 - 25 . The result is 
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Clearly. the maximum value occurs when the first cosine term is 1 and the minimum value when this term 
is -1: 

pmdX = 2250( 1 + COS 55  ) W = 3.54 kW 

pm," = 2250( - 1 -t cos 55 ) = -959 \Y 

The negative minimum absorbed power indicates that the circuit is deliltering power instead of absorbing it. 

15.3 For each following load voltage and current pair find the corresponding power factor and average 
power absorbed: 

- 
c = 277,, 2 sin (377r + 30 ) V, 

2' = 679 sin (377t + 50 ) V, 

L' = - 170 sin (377r - 30 ) V, 

i = 5.1, 2 sin (377t - 10 ) A 

i = 13 cos (377t + 10 ) A  

i = 8.1 cos (377r + 30 ) A 

Since the angle by which the toltage leads thc current is the power factor 
is PF.' = cos 40 = 0.766. I t  is lagging because the current lags the \oltage, or. in  other words, because 
the power factor angle 0 is positiic. The akcrage power absorbed is the product of the rms iroltage and 
current and the power factor: 

0 = 30 - ( -  10 I = 40 . 

P = 1'1 x P F  = 277(5.1)(0.766) = 1.08 x 10.' W = 1.08 k W  

The power factor angle 0 can be found bq phase angle subtraction onlq if 1 %  and i hal'c the same sinusoidal 
form, which thcy do  not habe here. The cosine term of i can be conlcrtcd to the sine form of 1 3  by using 
the identity cos s = sin ( U  + 90 ): 

i = 13 cos (377t + 10 ) = 13 c i n  (3771 + 10 + 90 ) = 13 sin (377r + 100 ) A  

So, the power factor angle is 0 = 50  - 100 = - 50 , and thc p o u w  factor is P F  = cos ( - 50 ) = 

0.643. I t  is a leading power factor becausc the current leads the Loltage. and alw because 0 is negatilc, 
which is equivalent. The average pomer absorbed is 

679 13 
P = 1'1 x P F  = --I x x 0.643 = 2.84 x 1O3 W = 2.84 kW 

3 7 
\ -  \ -  

The voltage sinusoid will be put in the same sinusoidd form ;IS the current sinusoid as an aid in finding 
0. The ncgative sign can be eliminated by using - sin Y = sin ( Y 180 ):  

I'  = - 170 sin (377r - 30 ) = 170 sin (377r - 30 2 180 ) 

Then the identity sin Y = cos ( Y  - 90 ) can be used: 

z ' =  170sin(377t - 30 -t_ 180 ) = 170cos(377r - 30 180 - 90 ) 

= 170 cos (377r - 120 I80 ) 

The positibe sign of & 180 should be selected to make the voltage and current phase angles as close 
together as possible. 

1 . z  1 7 0 ~ 0 ~ ( 3 7 7 t -  120 + 1 8 0 ) =  1 7 0 ~ 0 ~ ( 3 7 7 t + 6 0 ) V  

So, 0 = 60 - 30 = 30 , and the power factor is P F  = cos 30 = 0.866. I t  is lagging because 0 is 
positive. Finally, the average power absorbed is 

170 8.1 
P = L'I x P F  = x x 0.866 = 596 W 

3 3 
t -  \ -  

15.4 Find the power factor ofa circuit that absorbs 1.5 kW for a 120-V input voltage and a 16-A current. 

From P = V I  x PF, thc power factor is 

P average power 1500 

C'1 apparent power 12Q 16) 
= 0.781 - pF'= ~- = - 

There is not enough information given to determine whether this poww factor is leading or lagging. 
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Note that the power factor is equal to the average power divided by the apparent power. Some authors 
PF = of circuit analysis books use this for the definition of power factor because it  is more general than 

cos 0. 

15.5 What is the power factor of a fully loaded 10-hp induction motor that operates at 80 percent 
efficiency while drawing 28 A from a 480-V line‘? 

power input is the power output divided by the eficiency of operation: 
The motor power factor is equal to the power input diLticied by the apparent power input. And. the 

P,,,, 10 x 745.7 
p =-=-- - w = 9.331 kW 

0.8 
in 

in  which 1 hp = 745.7 W is used. So, 

PI,, - 9.321 x to3 
P F =  - == 0.694 

V I  480(28) 

This power factor is lagging because induction motors are inductiL.e loads. 

15.6 Find the power absorbed by a load of 6j30 Q when 42 V is applied. 

of the impedance: 
COS 30 = 0.866. Thus, 

The rms current needed for the power formulas is equal to the rms voltage divided by the magnitude 
PF = I = 42/6 = 7 A. Of course, the power factor is the cosine of the impedance angle: 

P = V I  x PF = 42(7)(0.866) = 255 W 

The absorbed power can also be obtained from P = I’R,  in which R = Z cos I I  = 6 cos 30 = 5.2 R: 

P = 7’ x 5.2 = 255 W 

The power cannot be found from P = C’’/R, as is evident from the fact that R = 42’ 5.2 = 
which is incorrect. The reason for the incorrect result is that the 42 V is across the entire impedance 339 W, 

and not just the resistance part. For P = V 2  R to be valid. the 1.’ used must be that across R .  

15.7 What power is absorbed by a circuit that has an input admittance of 0.4 +j0.5 S and an input 
current of 30 A ?  

The formula P = V 2 G  can be used after the input voltage I ’  is found. I t  is equal to the current 
divided by the magnitude of the admittance: 

30 

1Y) (0.4 +j0.5\  0.64 
= 46.85 V - - 

1 30 I/ = = ~ ~- 

so P = V’G = (46.85)’0.4 = 878 W 

Alternatively, the power formula P = V I  cos 0 can be used. The power factor angle 0 is the negative 
of the admittance angle: (3 = -tan- ’ (0.5/0.4) = - 5 1.34 . So, 

P = V I  COS 0 = 46.85(30) COS ( -  51.34 ) = 878 W 

15.8 A resistor in parallel with a capacitor absorbs 20 W when the combination is connected to a 
240-V, 60-Hz source. If the power factor is 0.7 leading, what are the resistance and capacitance‘! 

The resistance can be found by solving for R in P = V ” R :  
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15.9 

15.10 

15.1 1 

One way to  find the capacitance is from the susceptance B, which can bc found from B = G tan 4 
after the conductance G and admittance angle cf, are known. The conductance is 

1 1 

R 2.88 x 1O3 
G = - =  - = 0.347 x 10 -3 s 

For this capacitive circuit, the admittancc angle is the negatikpe of the power factor angle: d, = 

- ( -COS-  0.7) = 45.6 . SO, 

B = G tan 4 = 0.347 x 10 tan 45.6 = 0.354 x 10 S 

Finally. since B = d'. 

A resistor in series with a capacitor absorbs 10 W when the combination is connected to a 12O-V, 
400-Hz source. If the power factor is 0.6 leading, what are the resistance and capacitance? 

impedance can be found by using the input current. Lvhich from 
Because this is a series circuit, inipcdancc should be used t o  find thc resistance and capacitance. The 

P = 1.1 x PF is 

The magnitude of the impedance is equal to the voltage di\.ided by the current, and the impedance angle 
is, for this capacitive circuit, the negatike of the arccosine of the poiver factor: 

From the real part the resistance is 
capacitance is 

R = 518 R. and from the imaginarj, part and X = - 1 (K. the 

I f  a coil draws 0.5 A from a 12O-V, 60-H7 source a t  a 0.7 lagging power factor, what are the coil 
resistance and inductance'! 

The resistance and inductance can be obtained from the impedance. The impedance magnitude 
and the impedance angle is the powcr factor angle: 0.7 = 

Z = 240145.57 = 168 + j171.4 R. Froni the rcal part, the coil resistance 
and from the imaginarj part the coil reactance is 171.4 R. The inductance can be found 

is 2 = V 1 = 120 0.5 = 240 R, 
45.57 . So, the coil impedance is 
is R = 168 R, 
from 

0 = cos 

X = COL. I t  is L = X ('1 = 171.4 2rr(60) = 0.455 H. 

A resistor and parallel capacitor draw 0.2 A from a 24-V, 400-Hz source at a 0.8 leading power 
factor. Find the resistance and capacitance. 

The admittance magnitude is 
circuit, the arccosine of the pokiw factor: 

Since the components arc in parallel, admittancc should be used to find the resistance and capacitance. 
and the admittancc angle is. for this capaciti\te I' = 1 I ' =  0.2 24 = 8.33 mS, 

cos 0.8 = 36.9 . Thus, the admittance is 

1' = 8.33j36.9 = 6.67 + j5  mS 

From the real part, the conductance of the resistor is 6.67 mS, and so thc resistancc is 
1W3) = 150 Q. From the imaginary part the capaciti\e susceptance is 5 mS, and so the capacitance is 

R = 1 (6.67 x 
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15.12 Operating at maximum capacity, a 12 470-V alternator supplies 35 MW at a 0.7 lagging power 
factor. What is the maximum real power that the alternator can deliver? 

The limitation on the alternator capacity is the maximum voltamperes --the apparent power, which is 
the real power divided by the power factor. For this alternator, the maximum apparent power is P/PF = 

35/0.7 = 50 MVA. At unity power factor ali of this would be real power, which means that the maximum 
real power that this alternator can supply is 50 MW. 

15.13 An induction motor delivers 50 hp while operating at 80 percent efficiency from 480-V lines. If 
the power factor is 0.6, what current does the motor draw? If the power factor is 0.9, instead, 
what current does this motor draw? 

The current can be found from P = V I  x PF, where P is the motor input power of 50 x 
745.7/0.8 = 46.6 kW. For a power factor of 0.6, the current to the motor is 

P 46.6 x 103 
I=- - - 162A 

480 x 0.6 
- _____ - 

V x PF 

And, for a power factor of 0.9, it  is 

P 46.6 x 10' 
= I O S A  I =  _ _ ~  = ~ ~ -  

V x PF 480 x 0.9 

This 54-A decrease in current for the same output power shows why a large power factor is desirable. 

15.14 For the circuit shown in Fig. 15-4, find the wattmeter reading when the 
coil is connected to node a, and also when it  is connected to node h. 

terminal of the potential 

200p V jl0 fl 

The wattmeter reading is equal to V I  cos 6, where I/ is the rms voltage across the potential coil. I is 
the rms current flowing through the current coil, and 6 is the phase angle difference of the corresponding 
voltage and current phasors when they are referenced as shown with respect to the markings of the 
wattmeter coils. These three quantities must be found to determine the wattmeter reading. 

The phasor current I is 

200b' - IOOD' 
124[-23.8 = 7.56,-61.4 A I =  - 

5 + 8 + j l0 
- 

16.4/37.6- 

With the & terminal of the potential coil at node a, the phasor voltage drop V across this coil is the 2Wb0 -V 
source voltage minus the drop across the 542 resistor: 

V = 200b- - 51 = 20O&lr' - 5(7.56/-61.4^) = 185/10.3 V 

The wattmeter reading is 

P = VI COS 8 = 185(7.56) COS [ 10.3 - ( -  61.4 ')] = 439 W 
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With the & terminal of the potential coil at node h, V is equal to the voltage drop across thejlO-R 
impedance and the 100/30 -V source: 

c' = j10(7.56/-61.4 ) + 100/10 = 1761'29.4 V 

And so the wattmeter reading is 

P = V I  COS 0 =z 1 7 6 ( 7 . 5 6 ) ~ 0 ~  C29.4 - (-61.4 I] =z - 18 W 

Probably the wattmeter cannot directly give a negative reading. If not. then the connections to one wattmeter 
coil should be reversed so that the wattmeter reads upscale. And. the reading should be interpreted as being 
negative. 

15.15 In  the circuit shown in Fig. 15-5, find the total power absorbed by the three resistors. Then find 
the sum of the readings of the two wattmeters. Compare results. 

W M  I 

3OEO" 

4 O E O "  

V 

v 

Fig. 15-5 

The powers absorbed by the resistors can be found by using P = 1 2 R .  The current through the resistors 
are 

30/50 + 40:'- 20 57.6,i9.29 

5.661 - 45 
= 10.19/54.3 A - - I, = 

4 - j4 

40 20 
I - --& = 4133.1 A 

30/50 
I, = -:-- = 6/-3.13 A and 5 -  

3 + 14 6 - j s  

Of course, only the rms values of these currents are used in P = I ' R :  

P ,  = 15(4) + 1:(3) + 1:(6) = 10.19'(4) + 62(3) + 4'(6) = 619 W 

The currents I ,  and I ,  are needed in finding the wattmeter readings since these are the currents that 
flow through the current coils: 

I, = I ,  + I, =; 10.19/53.! + 6,'-3.13 = 14.34133.6 A 

I, = -1, - 1 5  = - 10.19//54.3 - 3/33.1 = 1 4 , L  131.6 A 
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Obviously, the potential coil voltages are 
tential coil voltages and current coil currents produce wattmeter readings that have a sum of 

V ,  = 30bO V and V, = -40/-20 = 40/160 V. These po- 

P ,  =30(14 .34)~0~(50  - 3 3 . 6 ) + 4 0 ( 1 4 ) ~ 0 ~ [ 1 6 0  - ( - 1 3 1 . 6 ) ] = 4 1 3 + 2 0 6 = 6 1 c ) W  

Observe that this sum of the two wattmeter readings is equal to the total power absorbed. This should 
not be expected, since each wattmeter reading cannot be associated with powers absorbed b j  certain resistors. 
I t  can be shown, though, that this result is completely general for loads with three uires and for the 
connections shown. This use of wattmeters is the famous !~~'o- ,c 'cr t fnirf t ' ,"  im.fhotl  that is popular for measuring 
power to three-phase loads, as will be considered in Chap. 17. 

15.16 What is the reactive factor of an inductive load that has an apparent power input of 50 kVA 
while absorbing 30 kW? 

The reactive factor is the sine of the power factor angle 0, which is 

so RF = sin 53.1 = 0.8 

15.17 With u = 200 sin (377t + 30") V applied, a circuit draws i = 25 sin (377f  - 20 ) A. What is 
the reactive factor and what is the reactive power absorbed'? 

the phase angle of the current: 
absorbed can be found from 

The reactive factor is the sine of the power factor angle 0, which is the phase angle of the ~ o l t a g e  minus 
0.766. The reactive power t )  = 30 - (-20 ) = 50 . So, 

Q = C'I x RF, 
R F  = sin 50 

where C'  and I are the rms values of the voltage iind current: 

200 25 
Q = -= x --= x 0.766 = 1.92 x 103 = 1.92 k V A R  

, 2  \ 2  

15.18 What is the reactive factor of a circuit that has an input impedance of 40/50 Q? Also, what 
reactive power does the circuit absorb when the input current is 5 A ?  

RF' = sin 50 = 0.766. A n  easy uay to find the 
reactive power is with the formula 

The reactive factor is the sine of the impedance angle: 
Q = 1 2 X ,  where X ,  the reactance. is equal t o  40 sin SO = 30.64 Cl: 

Q = 1 2 X  = 5,(30.64) = 766 V A R  

15.19 What is the reactive factor of a circuit that has an input impedance of 20/-40 R'? What is the 
reactive power absorbed with 240 V applied? 

RF = sin ( -40 ) = -0.643. Perhaps the easiest 
way to find the reactive power absorbed is from Q = C'I x RF. The only unknown in this formula is the 
rms current, which is equal to the rms voltage divided by the magnitude of inipcdance: I = C '  Z = 

240/20 = 12 A. Then, 

The reactive factor is the sine of the impedance angle: 

Q = VZ x RF = 240(12)(-0.643) = - 1.85 k V A R  

The negative sign indicates that the circuit delivers vars, as should be expected from this capacitive circuit. 

is 
As a check, the formula Q = 1 2 X  can be used. in which X ,  the imaginarj- part of the impedance, 
X = 20 sin (-40") = - 12.86 R :  Q = 122( - 12.86) = - 1.85 kVAR,  the same. 

15.20 When 3 A flows through a circuit with an input admittance of 0.4 + j O . 5  S, what reactive power 
does the circuit consume? 
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15.21 

15.22 

15.23 

The reactive power consumed can be found from Q = 12X after X is found from the admittance. Of 
course X is the imaginary part of the input impedance Z. Solving for Z, 

1 
- _____ = 1.56/-51.3 = 0.976 -j1.22 Q 

1 1 z =  =-- 
Y 0.4 + j0.5 0.64151.3 

So, X = - 1.22Q and 

Q = 1 2 X  = 32( - 1.22) = - 11 V A R  

The negative sign indicates that the circuit delivers reactive power. 

0.5 S 
A check can be made by using Q = - V 2 B ,  where V = IZ = 3(1.56) = 4.68 V. (Of course, B = 

from the input admittance.) So, 

Q = - V 2 B  = -(4.68)2(0.5) = - 11 V A R  

Two circuit elements in series consume 60 VAR when connected to a 120-V, 60-Hz source. If the 
reactive factor is 0.6, what are the two components and what are their values? 

of the reactive factor: 
stituting I = V / Z  into Q = V I  x RF: 

The two components can be found from the input impedance. The angle of this impedance is the arcsine 
0 = sin-' 0.6 = 36.9 . The magnitude of the impedance can be found by sub- 

V2(RF) 1202(0.6) 
= - ____ - - - 144n 

Q 60 
from which 

so  Z = 144/36.9 = 115 +j86.4 R 

From this impedance, the two elements must be a resistor with a resistance of 
with a reactance of 86.4 R. The inductance is 

R = 1 15 Cl and an inductor 

X 86.4 
L = - =  = 0.229 H 

( 1 1  2 ~ ( 6 0 )  

What resistor and capacitor in parallel present the same load to a 480-V, 60-Hz source as a fully 
loaded 20-hp synchronous motor that operates at  a 75 percent efficiency and a 0.8 leading power 
fact or? 

The resistance can be found from the motor input power, which is 

From Pin = V 2  R ,  

PO", 20 x 745.7 
p .  =-= = 19.9 kW 

0.75 11 

I/' 4802 

in 

= 11.6n R = - =  
pin 19.9 x 103 

The corresponding conductance and the admittance angle, which is the negative of the power factor angle, 
can be used to find the capacitive susceptance. And then the capacitance can be found from this susceptance. 
The conductance is 4 = cos- 0.8 = 36.9'. So, the 
susceptance is 

G = 1 11.6 = 0.0863 S, and the admittance angle is 

B = G tan b = 0.0863 tan 36.9" = 0.0647 S 

Finally, the capacitance is this susceptance divided by the radian frequency: 

B 0.0647 

(11 27~(60) 
c=.-=- = 172 pF 

A 120-mH inductor is energized by 120 V at 60 Hz. Find the average, peak, and reactive powers 
absorbed. 
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Since the power factor is Lero (PF = cos 90 = 0). the inductor absorbs /era acerage power: 
P = 0 W. The peak power can be obtained from the instantaneous power. As derived in this chapter, the 
general expression for instantaneous power is 

p = I 'I cos 0 - V I  cos (2(91 f 0) 

For an inductor, 
peak value of the second term, which is 
I can be found from this voltage divided by the inductive reactance: 

0 = 90 , which means that the first term is icro.  Consequently, the peak power is the 
V = 120 V. The current V I :  pmdX = V I .  The voltage V is given: 

120 
- = 2.65 A 

120 
- 

1' 
/ =  - = =  s 2n(60)(120 x 1 0 - 3 )  45.24 

so pnlJX 1'1 = lZO(2.65) = 318 W 

The reactive power absorbed is 

Q = I ' X  = 2.65'(45.24) = 318 VAR 

which has the same numerical valuc ;is the peak power absorbed by thc inductor. This is generally true 
because Q = 1 2 X  = ( I X ) I  = V I ,  and Vf is the peak power absorbed by the inductor. 

15.24 What are the power components resulting froni ci 4-A current flowing into a load of 30/40 R ?  
In other words, what are the complex, real. reactive, and apparent powers of the load'? 

From Fig. 1.5-3h. the complex power S is 

S = I'Z = 1'(30&) ) = 480/40 =: 368 + j309 V A  

The real power is the real part, 
and the apparent power is the magnitude, 

P = 368 W, the reactiic power is the imaginary part. Q = 309 VAR.  
S = 480 VA. 

15.25 Find the power components of an induction motor that delivers 5 hp while operating at an 85 
percent efficiency and a 0.8 lagging pmver factor. 

The input power is 

The apparent power, which is the magnitude of the complex power, is the real power divided by the power 
factor: 0 = 

c o s - '  0.8 = 36.9 . So. the complex power is 
S = 4.386 0.8 = 5.48 kVA. The angle of the coinplev power is the p w e r  factor angle: 

S = 5.48136.9 = 4.386 + 13.29 kVA 

The reactive power is. of course. the imaginarj part: Q = 3.29 kVAR. 

15.26 Find the power components of a load that draws 20,/-30 A with 240/20 V applied. 

20/30 A, 
The complex pober  can be found from S = V1*. Since I = 20/-30 A, its conjugate is I* = 

and the complex power is 

S = (240/'20 ) ( 2 0 B  ) = 4800/50 V A  = 3.09 + 13.68 k V A  

From the magnitude and real and imaginary parts, the apparent. real, and reactice powers are 
4.8 kVA, P = 3.09 kW, Lind Q = 3.68 kVAK. 

S = 

15.27 A load, connected across a 12 470-V line, draws 20 A at a 0.75 lagging power factor. Find the 
load impedance and the power components. 
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15.28 

15.29 

Since the impedance magnitude is equal to the voltage divided by the current, and the impedance angle 
is the power factor angle, the load impedance is 

12 470 

20 
z =  /cos ’ 0.75 = 623.5141.4 R 

From S = I’Z, the complex power is 

S = 20’(623.5/41.4 ) = 249.4 x 103/41.4 VA = 187 + /165  kVA 

From the magnitude and the real and imaginary parts, S = 249.4kVA. P = 187 kW, and Q = 

165 LVAR. 

A 20-pF capacitor and a parallel 20042 resistor draw 4 A at 60 Hz. Find the power components. 

reactance is 
Once the impedance is found. the complex power can be obtained from S = I ’Z.  The capacitive 

and the impedance of the parallel combination is 

200( -jl3.2.6) 

200 - jl32.6 
z =  - -  = 1 10.5/-56.4 R 

Substitution into S = 12Z results in a complex power of 

S = 4’( 110.5/- 56.4 ) = 1.77 x 10‘1- 56.4 VA = 0.98 -,i1.47 k V A  

So, S = 1.77 kVA, P = 0.98 kW. and Q = - 1.47 kVAR. 

A fully loaded 10-hp induction motor operates from a 480-V, 60-Hz line at an efficiency of 85 
percent and a 0.8 lagging power factor. Find the overall power factor when a 33.3-pF capacitor 
is placed in parallel with the motor. 

0 = t an - ’  ( Q T  PI,,). For 
this, the input power PI, and the total reactive power Q I  are needed. The capacitor does not change the 
real power absorbed, which is 

The power factor can be determined from the power factor angle, which is 

P,”, 10 x 745.7 
p = -  = - -  = 8.77 kW I11 

11 0.85 

The total reactive power is the sum of the motor and capacitive reactive powers. As is evident from power 
triangle considerations, the reactive power QA,, of the motor is equal to the pouer  times the tangent of the 
motor power factor angle, which is the arccosine of the motor power factor: 

Q,bf = PI, tan Ou = 8.77 tan (cos I 0.8) = 6.58 kVAR 

The reactive power absorbed by the capacitor is 

Qc = --~JKV” = -27~(60)(33.3 x 10-’)(480)’ = -2.89 k V A R  

And the total reactive power is 

Q T  = Qx, + Qc = 6.58 - 2.89 = 3.69 kVAR 

With QT and PI, known, the power factor angle 0 can be determined: 

And the overall power factor is 
positive. 

P F  = cos 22.8 = 0.922. I t  is lagging because the power factor angle is 



338 

15.30 

15.31 

15.32 

POWER IN AC CIRCIJITS [CHAP.  15 

A 240-V source energizes the parallel combination of a purely resistive 6-kW heater and an 
induction motor that draws 7 k V A  at ;I 0.8 lagging power factor. Find the overall load power 
factor and also the current from the source. 

The power factor and current can be determined from the total complex power S , .  N,hich is the sum 
of the complex powers of the heater and motor: 

S,. = S,, + S,,, = 6OOO& t 7 0 0 0 / ~ 0 ~  I 0 .8  = 6000b + 7000/36.9 = 12.34/ 19.9 k V A  

The overall power factor is the cosine of the angle o f  the total complex power: PF = cos 19.9 = 0.94. I t  
is lagging, o f  course, because the power fitctor angle is positi\e. The source current is equal to the total 
apparent power divided by the voltage: 

12.34 x 10.’ 

240 
I =  = 51.4 A 

Notice that the total apparent p w e r  of 12.34 k V A  is not  the sum of  the load apparent powers of 6 
and 7 k V A .  This is generally true except in  the unusual situation in which all complex poucrs have the same 
angle. 

A 480-V source energizes two loads in parallel. supplying 2 kVA at a 0.5 lagging power factor to 
one load and 4 k V A  at a 0.6 leading power factor to the other load. Find the source current and 
also the total impedance of the combination. 

The current can be found from the total apparent poLvcr. which is the magnitude o f  the total complex 
power: 

S = 3 0 0 0 / ~ 0 ~  ‘ 0.5 + 4000/ -COS I 0.6 = 2 0 0 O f i  + 4000/’ - 53.13 = 3.703/’ - 33.4 k V A  

The power factor angle for thc 4 - k V A  load is negative bccauso the power factor is leading, tvhich means 
that the current leads the voltage. 

The current is equal to thc irpparent pokver divided by the voltage: 

s 3 703 x 

I ’  480 
I =  =z = 7.715 A 

From S = I‘Z,  the impedance is equal to the complcs pobtor diirided by the square o f  the current: 

s 3.703 x 1 0 3 ,  -23.4 
I =  = = 62.2,‘ - 23.3 R 

I 2  7.715’ 

Three loads are connected iicross ;I 277-V line. One is a ful ly  loaded 5-hp induction motor 
operating at a 75 percent efficiency and a 0.7 lagging power factor. Another is a fully loaded 7-hp 
synchronous motor operating at an 80 percent efficiency and a 0.4 leading power factor. The 
third is a 5-kW resistive heater. Find the total line current and the overall power factor. 

The line current and pokver factor can bc determined from the total  complex poivcr, which is the sum 
of the individual complex powers. Thc complex power o f  the induction motor has ;I magnitude that is equal 
to the input power divided by the power factor, and un  anglc that is the power factor angle. The same is 
true for the synchronous motor. Thc complex pou.cr for the heater is. o f  course. the same a s  the real power. So, 

5 x 745.7 

0.75 x 0.7 

7 x 735.7 

0.8 x 0.4 ‘ 
S =  !cob ‘ 0.7 + ’ -cos ’ 0.4 + sooo$ 

= 7.1 x 103,/45.6 + 16.3 x lO3)) -66.4 + SOOOb = 19.23/-30.9 k V A  

The total  line current is equal to the apparent power ditrided by the line voltage: I = 
(19.23 x 103)8277 = 69.4 A. And. t h e  overall power factor is the cosine of the angle o f  the total complex 
Power: PF = cos ( -  30.9 I = 0.858. I t  is leading bccausc the Power factor angle is ncrrative. c L L 
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15.33 I n  the circuit shown in Fig. 15-6, load 1 absorbs 2.4 k W  and 1.8 kVAR, load 2 absorbs 1.3 kW 
and 2.6 kVAR, and load 3 absorbs I k W  and generates 1.2 kVAR.  Find the total poufer 
components, the source current I , ,  and the impedance of each load. 

Load 2 II I2 
+I 

Load 1 Q 51 Load 3 

1 1 I 

Fig. 15-6 

The total complex power is the sum of the individual complex powers: 

S,  = S,  + S, + S, = (2400 + jl800) + (1300 +j2600) + (1000 -j1200) 

= 4700 + j3200 VA = 5.69/34.2 k V A  

From the total complcx power, the total apparent power is S T  = 5.69 kVA, the total real power 
is Q, = 3.2 LVAR. The source current magnitude I, is 
equal to the apparent power divided by the source voltage: I,  = (5.69 x 103)/600 = 9.48 A. And the angle 
of I ,  is the angle of thc voltage minus the power factor angle: 20 - 34.2 = - 14.2 . So, I ,  = 

9.481- 14.2 A. 
The angle of the load 1 impedance Z ,  is the load power factor angle, which is also the angle 

of the complex power S , .  Since S, = 2400 + j1800 = 3000/36.9 VA, this impedance angle is 0 = 36.9 . 
Because the load 1 voltage is known. the magnitude Z ,  can be found from S,  = V ' i Z , :  

P, = 4.7 kW, and the total reactive power is 

So, Z ,  = Zl@ = 120136.9 R. The impedances Z, and Z, of loads 2 and 3 cannot be found in a similar 
manner because the load voltages are not known. But the rms current I ,  can be found from the sum of the 
complex powers of loads 2 and 3, and used in S = 1'2 to find the impedances. This sum is 

S,, = (1300 +j2600) + (1000 -j1200) = 2300 +j1400 = 2.693131.3 kVA 

The apparent power S,, can be used to obtain I ,  from S23 = VI , :  

s,, 2.693 x 1 0 3  
I , = - - - =  = 4.49 A 

c' 600 

Since S, = 1300 + j2600 VA = 291163.4 kVA, the impedance of load 2 is 

- S, = 2.91 x 103/63.4' 
~ - 144/63.4" R 

4.492 
2 -  

If 
Similarly. S, = 1000 -j1200 VA = 1.562/-50.2 kVA, and 

15.34 A load that absorbs 100-kW at a 0.7 lagging power factor has capacitors placed across i t  to 
produce an overall power factor of 0.9 lagging. The line voltage is 480 V. How much reactive 
power must the capacitors produce, and what is the resulting decrease in line current? 

cos- '0.7 = 45.6 . 
The initial reactive power is Q, = P tan O , ,  where 0, is the initial power factor angle: 0, = 

Therefore 
Q, = 100 x 103 tan 45.6 = 102 k V A R  
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The final reactive powcr is 

Q, = P tan 0 ,  = 100 x 103 tan (cos- 0.9) = 48.4 kVAR 

Consequently, the capacitors must supply 102 -- 48.4 = 53.6 kVAR.  
The initial and tinal currents can be obtuincd from P = I ’ I  x PF: 

100 x 10’ 
= 231.5 A - - 

100 x 10” I’ 
= 297.6 A and I ,  = __ - 

P 1 = _- 

’ Z x PF, 480 x 0.7 I ’  x PF, 4x0 x 0 9  

The resulting decrease in line current is 297.6 - 231.5 = 66.1 A.  

15.35 A synchronous motor that draws 20 k W  is in parallel with a n  induction motor that draws 50 kW 
at a lagging power factor of 0.7. If thc synchronous motor is operated at a leading power factor, 
how much reactive power must i t  provide to cause the overall power factor to be 0.9 lagging, 
and what is its power factor? 

Sincc the total power input is I’, = 30 + 50 = 70 kW.  the total reactive poucr  is 

Q I  = P ,- tan(cos t’b -- 70 tan (cos ’ 0.9) = 33.9 kVAR 

Because the reactive power absorbed by thc induction motor is 

Q,,, = PI,, tan O,,, = S O  tan (cos 0.7) = 51 kVAR 

the synchronous motor must supply 

motor power factor angle. is 

Q,,, - Q ,  =< 51 - 33.9 == 17.1 k V A R .  Thus, Q\tl = - 17.1 k V A R .  
The resulting pourer factor of the 51 nchronous motor IS cos Oskl in which 05%,, the s j  nchronous 

So, PF,, = cos (-40.5 ) = 0.76 leading. 

15.36 A factory draws 100 A at a 0.7 lagging power factor from a 12 470-V, 60-Hz line. What capacitor 
placed across the line at the input to the factory increases the overall power factor to unity? Also, 
what are the final currents for the factory, capacitor, and line? 

Thc capacitance can be determined from the reactive power that the capacitor must proiride to cause 
the power factor to be unity. The reactive power absorbed by the factory is the apparent power times the 
reactive factor, which is thc sine of the arccosine of the power factor: RF = sin (cos ’ 0.7) = 0.714. Thus 

Q = 1’1 x RF = 12470 x 100 x 0.714 = 890.5 kVAR 

For a unit) pouer  factor, the capacitor must supplqr all this reactive po*cr. Since thc formula for generated 
capacitor reactive power is Q = (oCI’2. thc required capacitance is 

Adding the capacitor in parallel does n o t  change the current input to the factory since there is no 
change in the factory load. This current remains at 1 0 0 A .  The current to the capacitor can be found 
from Q = C’l, x RF‘ with RF = - 1 since thc power factor angle is -90 for the capacitor. The result 

-890.5 x 103 
= 71.4 A 1 -  = ; ~ ~  _ - - _  ~- 

(12 470)( - 1 )  
Q 

c -  C’ x RF 

The total final line current I,[. can bc found from the input power, which is 

P = 1’111, x Pl.’, = (12 47ONIOOXO.7) = 873 k W  
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Adding the capacitor does not change this power, but it does change the power factor t o  1 .  So, 
from P = VZ,,< x PF,, 

873 x 10-l 
= 70A ~ - - ~  - 

12 470 
873 X 103 = 12 470(1,,)( 1 )  from which I,, = 

Notice that the 70-A rms final line current is not equal to the sum of the capacitor 71.4-A rms current 
and the factory 100-A rms current. This should not be surprising because, in general. rms quantities cannot 
be validly added since the phasor angles are not included. 

15.37 A 240-V, 60-Hz source energizes a load of 30m Q. What capacitor in parallel with this load 
produces an overall power factor of 0.95 lagging? 

Although powers could be used in  the solution, it  is often easier to use admittance when a circuit or 
its impedance is specified. The initial admittance is 

1 
1' = - = 33.3 x 10-'/-50 = 21.4 - j25.5 mS 

30& 

Adding the capacitor changes only the susceptance, which becomes 

B =  Gtan(-O)=21.4 tan( -cosC1 0.95)= -7.04mS 

This formula 
the admittance angle is the negatitt o f  the power factor angle. From 

B = G tan ( -0) should be evident from admittance triangle considerations and the fact that 
A B  = C~K, 

15.38 At 60 Hz, what is the power factor o f  the circuit shown in Fig. 15-7? What capacitor connected 
across the input terminals causes the overall power factor to be 1 (unity) '? What capacitor causes 
the overall power factor to be 0.85 lagging? 

4 R  

Fig. 15-7 

Because a circuit is specified. the pobw factor and capacitor are probably easier to find using impedance 
and admittance instead of powers. The power factor is the cosine of the impedance angle. Since the reactance 
of the inductor is 2~(60)(0.03) = 11.3 R, the impedance of the circuit is 

15(/11.3) 
z = 4 +  = 11.9/37.38 R 

15 + j l  1.3 

And the power factor is PF = cos 37.38 = 0.795 lagging. 

the capacitance. Before the capacitor is added, this admittance is 
Because the capacitor is to be connected i n  parallel, the circuit admittance should be used to determine 

1 1 

Z 1 1 . 9 m -  
= 0.0842/ - 37.38 = 66.9 - j 5  1.1 mS y = - - = -  
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For unity power factor, the imaginary part of the admittance must be x r o ,  Nhich means that the added 
capacitor must have a susceptance of 51.1 mS. Consequentlq, its capacitance is 

A different capacitor is required for ;I power factor of 0.85 lugging. The new susceptance can be found 
where G is the conductance, Lvhich does not change by adding a parallel capacitor, from 

and U is the new power factor angle: 
B = G tan ( - 0) 

B = 66.9 tan ( -cos  0.85) = --4I.S mS 

Because the added capacitor provides the change in susccptance. its capacitance is 

Naturally, less capacitance is required to improkc the power factor to 0.8s lagging than to 1 .  

15.39 A n  induction motor draws 50 kW at a 0.6 lagging power fx tor  from a 480-V, 60-Hz source. What 
parallel capacitor will increase the overall power factor to 0.9 lagging'? What is the resulting 
decrease in input current? 

The pertinent capacitance formula IS 

P[tan(cos ' PF,) - tan (cos ' PF,)] 

0) vz 
~ ('= ~ ~- ~ _ -  

So, here, 

S O  OOO[tan (cos 0.6) - tan (cos O.9)] 

27c(60)(480)' 
C =  = 489 / t F  

From P = C'l x PF', the decrease in input current is 

50000 50000 

' - c' x PF, V x PF, 48q0.6) 48Q0.9) 
- - = 57.9 A ~ - - - - 

P 
- ~ _ _  

P 
A l = l , - l  - ~ 

15.40 A factory draws 30 M V A  at ;i 0.7 lagging power factor from a 12 470-V, 60-Hz line. Find the 
capacitance of the parallel capacitors required to improve the power factor to 0.85 lagging. Also, 
find the resulting decrease in line current. 

The power absorbed by the factor is 
in Prob. 15.39, the capacitance reqiiircd is 

P = 30(0.7) = 21 MW.  So, from the capacitance formula specified 

The decrease in line current is equal to the dccreasc in apparent power divided by the line voltage. The 
P/PF, = 21 x 10'/0.85 = initial apparent power is the specified 30 MVA, and the final apparent power is 

24.7 x 10' VA. So, 

30 x 1 0 h  - 24.7 ~ x 10" 
A1 = = 425 A 

12 470 

15.41 A 20-MW industrial load supplied from a 12 470-V, 60-Hz line has its power factor improved to 
0.9 lagging by the addition of a 230-pF bank o f  capacitors. Find the power factor of the original 
load. 
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The initial reactive power is needed. I t  is equal to the final reactive power plus that added by the 
capacitors: 

Qi = P tan Of + COOCV' = 20 x 10h tan (cos- 0.9) + 2n(60)(230 x 10-')(12 470)' 

= 9.69 x 10' + 13.5 x 10' = 23.2 MVAR 

The real power and the initial reactive power can be used to find the initial power factor angle: 

Finally, the initial power factor is PF, = cos 0,  = cos 49.2 = 0.653 lagging. 

15.42 A 480-V, 60-Hz source energizes a load consisting of an induction motor and a synchronous 
motor. The induction motor draws 50 k W  at a 0.65 lagging power factor, and the synchronous 
motor draws 10 kW at a 0.6 leading power factor. Find the capacitance of the parallel capacitor 
required to produce an overall power factor of 0.9 lagging. 

of the two motors, which from 
The required change in reactive pokvcr is needed. The initial absorbed reactibre power is the sum of that 

Q = P tan 0 

0.65) + 10 tan (-cos-  0.6) = 58.456 - 13.333 = 45.13 k V A R  

is 

Q, = 50 tan (cos 

The final reactive power is, from Qs = P,. tan (cos- PFs), 

Qr = (50 + 10) tan(cos- '  0.9) = 29.06 kVAR 

So the change AQ in reactive power is A Q  = 45.12 - 29.06 = 16.1 k V A R  and 

Supplementary Problems 
15.43 

15.44 

15.45 

15.46 

The instantaneous power absorbed by a circuit is p = 6 + 4 cos' (21 + 30 ) W. Find the maximum, 
minimum, and average powers absorbed. 

A m .  pmdx = 10 W, p,,,, = 6 W, P = 8 W 

With 170 sin (377r + 10 ) V applied, a circuit draws 8 sin (3771 + 35 ) A. Find the power factor and the 
maximum, minimum, and average powers absorbed. 

Atis. P F  = 0.906 leading, p,,, = 1.3 kW, p,,,, = -63.7 W, P = 616 W 

For each following load voltage and current pair, find the corresponding power factor and a \ u a g e  power 
absorbed : 

( U )  

( h )  

( ( 8 )  

A m .  

11 = 170 sin (50r - 40 ) V, 

ti = 340 cos (3771 - 50 ) V, i = 6.1 sin (3771 + 30 ) A 

I' = 679 sin (377r + 40 ) V, i = - 7.2 cos (377t + 50 ) A 

( U )  0.643 leading, 235 W ;  (h)  0.985 lagging, 1.02 kW; 

i = 4.3 sin (501 + 10 ) A  

(c) 0.174 lagging. 424 W 

Find the power factor of a fully loaded 5-hp induction motor that operates at 85 percent eficiency while 
drawing 15 A from a 480-V line. 

A m .  0.609 lagging 
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15.47 What is the power factor of a circuit that has an input impedance of 5/-25‘ R? Also, what is the power 
absorbed when 50 V is applied? 

Ans. 0.906 leading, 453 W 

15.48 I f  a circuit has an input admittance of 40 + j20 S and an applied voltage of 180 V, what is the power factor 
and the power absorbed? 

Ans. 0.894 leading, 1.3 M W  

15.49 A resistor in parallel with an inductor absorbs 25 W when the combination is connected to a 120-V, 60-HZ 
source. If  the total current is 0.3 A, what are the resistance and inductance’? 

Ans. 576 R, 1.47 H 

15.50 A coil absorbs 20 W when connected to a 240-V, 40Cl-H~ source. If the current is 0.2 A, find the resistance 
and inductance of the coil. 

Ans. 500 R. 0.434 H 

15.51 A resistor and series capacitor draw 1 A from a 120-V, 60-Hz source at a 0.6 leading power factor. Find the 
resistance and capacitance. 

Ans. 72 R, 27.6 pF 

15.52 A resistor and parallel capacitor draw 0.6 A from a 120-V, 400-Hz source at a 0.7 leading power factor. Find 
the resistance and capacitance. 

Ans. 286 R, 1.42 pF 

15.53 A 100-kW load operates at a 0.6 lagging power factor from a 480-V, 60-Hz line. What current does the load 
draw? What current does the load draw if i t  operates at unity power factor instead? 

Ans. 347 A. 208 A 

15.54 A fully loaded 100-hp induction motor operates at 85 percent efficiency from a 480-V line. If the power 
factor is 0.65 lagging, what current does the motor draw? If the power factor is 0.9 lagging, instead, what 
current does this motor draw? 

Ans. 281 A, 203 A 

15.55 Find the wattmeter reading for the circuit shown in Fig. 15-8. 

Ans. 16 W 

2 R  j 5  R 10 
- 

+ - 

- + P c  

W M  6 R  
b 

Fig. 15-8 
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15.56 Find each wattmeter reading for the circuit shown in Fig. 15-9. 

Ans. WM, = 1.54 kW, WM, = 656 W 

WM, 

Fig. 15-9 

15.57 With 200 sin (754r + 35") V applied, a circuit draws 456 sin (754t + 15 ) mA. What is the reactive factor, and 
what is the reactive power absorbed? 

Ans. 0.342, 15.6 VAR 

15.58 With 300 cos (377r - 75") V applied, a circuit draws 2.1 sin (377t + 70') A. What is the reactive factor, and 
what is the reactive power absorbed? 

Ans. -0.819, -258 VAR 

15.59 What is the reactive factor of a circuit that has an input impedance of 50/35' Q? What reactive power does 
the circuit absorb when the input current is 4 A ?  

Ans. 0.574, 459 VAR 

15.60 What is the reactive factor of a circuit that has an input impedance of 600/-30' R? What is the reactive 
power absorbed when 480 V is applied? 

Ans. -0.5, - 192 VAR 

15.61 When 120 V is applied across a circuit with an input admittance of 1.23/40 S, what reactive power does 
the circuit absorb? 

Ans. - 11.4 kVAR 

15.62 When 4.1 A flows into a circuit with an input admittance of 0.7 - , i l . l  S, what reactive power does the circuit 
absorb? 

Ans. 10.9 VAR 
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15.63 A load consumes 500 VAR when energixd from a 240-V source. I f  the reactive factor is 0.35, what current 
does the load draw and what is the load impedance? 

Atis. 5.95 A, 4 0 . 3 m  R 

15.64 Two circuit elements in parallel consume 90 V A R  when connected to a 120-V, 6O-H/ source. I f  the reactikc 
factor is 0.8. what are the two components and what are their values? 

24tis. A 213-R resistor and a 0.424-H inductor 

15.65 Two circuit elements in series consume -80 V A R  when connected to ;I 24O-V, 60-HI source. I f  the reactike 
factor is -0.7, what are the two components and what are their values? 

A m .  A 36042 resistor and ii 7.52-pF capacitor 

15.66 A 300-mA, 60-Hz current flows through ii 10-pF capacitor. Find the average. peak, and reactive powers 
absorbed. 

Atis,  P = 0 W, pmdx = 23.9 W, Q = -23.9 V A R  

15.67 What are the power components resulting from ;I 3.6-A current flouing through ;I load of 50,’-30 R? 

Ans.  S = 648/-30 VA. S = 648 VA. P = 561 W. Q = -324 V A R  

15.68 Find the power components of 21 fu l ly  loaded 10-hp synchronous motor operating at an 87 percent efficiency 
and a 0.7 leading power factor. 

A ~ s .  S = 12.7/-45.6 kVA. S = 12.2 k V A ,  P = 8.57 kW, (2 = -8.74 k V A K  

15.69 A load draws 3 A with 75 V applied. I f  the load power factor is 0.6 lagging, find the power components of 
the load. 

, 4 r i s .  S = 725153.1 VA, S = 225 VA. P = 135 W, Q == 180 V A R  

15.70 Find the power components of a load that draws 8.1/36 A ijrith 480/:10 V applied. 

A m .  S = 3.”)-26 k V A ,  S = 3.89 k V A ,  P = 3.49 kW, Q = - 1.7 k V A R  

15.71 A 120-mH inductor and ;I parallel 30-R resistor dritw 6.1 A at 60-H/. Find the powcr components. 

,4ns. S = 930/33.6 VA, S = 930 VA, P = 775 W. Q = 514 V A R  

15.72 A fully loaded 15-hp induction motor opcrutes from a 380-V. 60-H/ line at an eflicicncj of 83 percent and 
;I 0.7 lagging power factor. Find the overall poLier factor U hen ;I 75-pt.‘ capacitor 1s placed In parallel uith 
the motor. 

Atis. 0.88 1 lagging 

15.73 Two loads are connected in parallel across a 277-V line. Onc is ;I fully loaded 5-hp induction motor that 
operates at an 80 percent efficiency and a 0.7 lagging power factor. The other is ;I 5-kW resistive heater. 
Find the overall power factor and line current. 

Atis. 0.897 lagging, 38.9 A 

15.74 Two loads are connected in parallel across a 12 470-V linc. One load takes 23 k V A  at ;I 0.75 lagging po14cr 
factor and the other load takes 10 kVA at 11 0.6 leading power factor. Find the total line currcnt and :ilso 
the impedance of the combination. 

A m .  1.95 A, 6.39:/17.2 kR 
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15.75 Three loads are connected across a 480-V line. One is a fully loaded 10-hp induction motor operating at 
an 80 percent efficiency and a 0.6 lagging power factor. Another is a fully loaded 5-hp spchronous motor 
operating at a 75 percent efiiciency and a 0.6 leading p o u w  factor. The third is a 7-kW resistive heater. 
Find the total line current and the overall power factor. 

Ans .  46 A. 0.965 lagging 

15.76 In the circuit shown in Fig. 15-10, load I absorbs 6.3 kW and 9.27 k V A R ,  and load 2 absorbs 5.26 kW and 
generates 2.17 kVAR. Find the total power components, the source voltage V, and the impedance of each 
load. 

Ans. S, = 13.6/31.6 k V A  S, = 13.6 k V A  P I  = 11.6 kW Q, = 7.1 k V A R  

V = 1.21/- 13.4 k V  Z,  = 437155.8 0 Zr = 861/-22.4 0 

V 6.13/-45" A Load I Load 2 

Fig. 15-10 

15.77 How much reactive power must be supplied by parallel capacitors to a 50-kVA load uith a 0.65 lagging 
power factor to increase the overall pouer factor to 0.85 lagging? 

Ans. 17.9 k V A R  

15.78 An electric motor delivers 50 hp while operating from a 480-V line at an 83 percent etlicicncy and a 0.65 
lagging power factor. I f  i t  is paralleled w i t h  a capacitor that increases the oiwall  po\ser factor to 0.9 lagging, 
what is the decrease in line current? 

Ans.  40 A 

15.79 A load energized from a 480-V, 60-Hz line has a polvcr factor of 0.6 lagging. I f  placing a IOO-pF capacitor 
across the line raises the overall power factor to 0.85 lagging, find the real power of the load and the decrease 
in line current. 

A m .  12.2 kW, 12.4 A 

15.80 A factory draws 90 A at a 0.75 lagging power factor from a 25 000-V. 60-Hz line. Find the capacitance of 
a parallel capacitor that will increase the overall power factor to 0.9 lagging. 

A m .  2.85 p F  

15.81 A fully loaded 75-hp induction motor operates from a 480-V, 60-Hz line at an 80 percent cficiencq and a 
0.65 lagging power factor. The power factor is t o  be raised to 0.9 lagging by placing a capacitor across the 
motor terminals. Find the capacitance required and the resulting decrease in line current. 

Ans. 551 ILF, 62.2 A 

15.82 A load of 50/60 R is connected to a 480-V, 60-Hi. source. What capacitor connected in parallel with the 
load will produce an overall power factor of 0.9 lagging? 

Ans. 33.1 / IF  



348 POWER I N  AC CIRCUITS [CHAP. 15 

15.83 At 400 Hz, what is the power factor of the circuit shown in Fig. 15.11? What capacitor connected across 
the input terminals causes the overall power factor to be 0.9 lagging? 

A m .  0.77 lagging, 8.06 CIF 

5 mH 

Fig. 15-1 1 

15.84 For a load energized by a 277-V, 60-Hz source, an added parallel 5-pF capacitor improves the power factor 
from 0.65 lagging to 0.9 lagging. What is the source current both before and after the capacitor is added? 

Ans. 1.17 A, 0.847 A 



Chapter 16 

Transformers 

INTRODUCTION 

A transformer has two or more windings, also called coils, that are magnetically coupled. As shown 
in Fig. 16-1, a typical transformer has two windings wound on a core that may be made from iron. Each 
winding encirclement of the core is called a turn, and is designated by N .  Here, winding 1 has N ,  = 4 
turns and winding 2 has turns. (Windings of practical transformers have many more turns than 
these.) Circuit 1, connected to winding 1, is often a source, and circuit 2, connected to winding 2, is often 
a load. In this case, winding 1 is called the primary winding or just primary, and winding 2 is called the 
secondary winding or just secondary. 

N ,  = 3 

Fig. 16-1 

In the operation, current i, flowing in winding 1 produces a magnetic flux (bml that, for power 
transformers, is ideally confined to the core and so passes through or couples winding 2. The rn in the 
subscript means “mutual”-the flux is mutual to both windings. Similarly, current i, flowing in winding 
2 produces a flux 4m2 that couples winding 1. When these currents change in magnitude or direction, 
they produce corresponding changes in the fluxes and these changing fluxes induce voltages in the 
windings. In this way, the transformer couples circuit 1 and circuit 2 so that electric energy can flow 
from one circuit to the other. 

Although flux is a convenient aid for understanding transformer operation, it is not used in the 
analyses of transformer circuits. Instead, either transformer turns ratios or inductances are used, as will 
be explained. 

Transformers are very important electrical components. At high efficiencies, they change voltage and 
current levels, which is essential for electric power distribution. In electronic applications they match 
load impedances to source impedances for maximum power transfer. And they couple amplifiers together 
without any direct metallic connections that would conduct dc currents. At the same time they may act 
with capacitors to filter signals. 

RIGHT-HAND RULE 

In Fig. 16-1 the flux (bml produced by i, has a clockwise direction, but (bm2 produced by i, has a 
counterclockwise direction. The direction of the flux produced by current flowing in a winding can be 
determined from a version of the right-hand rule that is different from that presented in Chap. 9 for a 
single wire. As shown in Fig. 16-2, if the fingers of a right hand encircle a winding in the direction of 
the current, the thumb points in the direction of the flux produced in the winding by the current. 

349 
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DOT CONVENTION 

TRANSFORMERS [CHAP. 16 

Fig. 16-2 

Using dots at winding terminals in agreement with the c /or  coniwition is a convenient method for 
specifying winding direction relations. One terminal of each winding is dotted, with the dotted terminals 
selected such that currents jloiciny into the dotted terriiinals proclucv cicliliny j /u .~o.s .  Because these dots 
specify the transformer winding relations, they are used in circuit diagrams with inductor symbols in 
place of illustrated windings. A transformer circuit diagram symbol consists of two adjacent inductor 
symbols with dots. If the winding relations are no t  important, the dots may be omitted. 

Figure 16-3 shows the use of dots. In a circuit diagram, the more convenient transformer representa- 
tion with dots in Fig. 16-3h is used instead of the one with windings in Fig. 16-3~i. But both are equivalent. 
An actual transformer may have some marking other than dots. In Fig. 16-31, the two vertical lines 
between the inductor symbols designate the transformer as either an iron-core transformer o r  an ideal 
transformer, which is considered next. 

a C 

b d 

Fig. 16-3 

THE IDEAL TRANSFORMER 

In most respects, an iiiecil transforrizer is an excellent model for a transformer with an iron core an 
iron-care transformer. Power transformers, the transformers used in electric power distribution systems, 
are iron-core transformers. Being a model, an ideal transformer is a convenient approximation of the 
real thing. The approximations are zero winding resistance, zero core loss, and infinite core permeability. 
Having windings of zero resistance, an ideal transformer has no winding ohmic power loss ( I 'R  loss) 
and no resistive voltage drops. The second property, zero core loss, means that there is no power loss 
in the core no hysteresis or eddy-current losses. And since there is no power loss in the windings either, 
there is no power loss in the entire ideal transformer the power out equals the power in. The third and 
last feature, infinite core permeability, means that no current is required to establish the magnetic flux 
to produce the induced voltages. It  also means that all the magnetic flux is confined to the core, coupling 
both windings. All flux is mutual, and there is no Ieakqe.flu.\-, which is flux that couples only one winding. 

In the analysis of a circuit containing an ideal transformer, the transformer turns rlitio, also called 
triinsfbrnurtion riitio, is used instead of flux. The turns ratio, with symbol 11, is ii  = A', N , .  This is the 
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ratio of the number of primary turns to secondary turns. In many electric circuits books, however, this 
ratio is defined as the number of secondary turns to primary turns, and sometimes the symbol I I  or N 
is used. 

In a circuit diagram, the turns ratio of an iron-core or ideal transformer is specified over the 
transformer symbol by a designation such as 20:1, which means that the winding on the left of the 
vertical bars has 20 times as many turns as the winding on the right. If  the designa’tion were 1 :25 ,  instead, 
the winding on the right would have 25 times as many turns as the winding on the left. 

r 1  = 
- + N , d + i d t  and i 1 2  = k N , d +  dt .  (The same flux + is in both equations because an ideal transformer 
has no leakage flux.) The ratio of these equations is 

The turns ratio is convenient because i t  relates the winding voltages. By Faraday’s law, 

N ,  (d@dt )  N ,  1’1 - 
- -  k 
1‘2 N ,  (d+i’dt) N ,  

= & = 

The positive sign must be selected when both dotted terminals have the same reference voltage polarity. 
Otherwise the negative sign must be selected. The justification for this selection is that, as can be shown 
by Lenz’s law, at any one time the dotted terminals of an ideal transformer always have the same actual 
polarities either both positive or both negative with respect to the other terminals. Incidentally, these 
actual polarities have nothing to do with the selection of voltage reference polarities, which is completely 
arbitrary. 

the 
secondary rms voltage is greater than the primary rms voltage. Such a transformer is called a step-up 
trurzsforrzzer. But if the turns ratio is greater than one the secondary rms voltage is less than 
the primary rms voltage, and the transformer is called a s t c p c i o i t w  trun.sfi)rnicr. 

As can be shown from the property of infinite permeability, or from zero power loss, the primary 
and secondary currents have a relation that is the inverse of that for the primary and secondary voltages. 
Specifically, 

It is obvious from t ‘ 1 / ~ > 2  = f a  that if a transformer has a turns ratio less than one (a c l),  

( (1  > l),  

The positive sign must be selected if one current reference is into a dotted terminal and the other current 
reference is out of a dotted terminal. Otherwise the negative sign must be selected. The reason for this 
selection is that, at any one time, actual current flow is into the dotted terminal of one winding and out 
of the dotted terminal of the other. So, only the specified selection of signs will give the correct signs for 
the currents. But this selection of signs has nothing to do with the selection of current reference directions, 
which is completely arbitrary. 

I t  is important to remember that the winding with the greater number of turns has more voltage 
but less current. 

In the analysis of a circuit containing ideal transformers, a common approach is to eliminate the 
transformers by reflecting impedances and, i f  necessary, sources. This approach applies only if there are 
no current paths between the primary and secondary circuits, as is usually the case. For an understanding 
of this reflecting approach, consider the circuit shown in Fig. 16-4a. The impedance Z, “looking into” 
the primary winding, is called the reflected in-zpedunce, 

which is the turns ratio squared times the secondary circuit impedance Z,. If Z, replaces the primary 
winding, as shown in Fig. 16-4h, the primary current I ,  is unchanged. As can be proven by trying all 
different dot arrangements, the dot locations have no effect on this reflected impedance. 

So if the primary circuit voltages and currents are of interest, the transformer can be eliminated by 
replacing the transformer primary winding with the reflected impedance of the secondary circuit, 
assuming this circuit contains no independent sources. The resulting primary circuit can be analyzed in 
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= a2z2 22 

the usual manner. Then if the secondary winding voltage and current are also of interest, they can be 
obtained from the primary winding voltage and current. 

If the secondary circuit is not a lumped impedance, but a circuit with individual resistive and reactive 
components, the total impedance can be found and reflected. Alternatively, the whole secondary circuit 
can be reflected into the primary circuit. In this reflection, the circuit configuration is kept the same and 
each individual impedance is multiplied by the square of the turns ratio. Of course, the transformer is 
eliminated. 

Reflection can also be from the primary to the secondary. To see this, consider making cuts at 
terminals c and d in the circuit shown in Fig. 16-4u and finding the Thevenin equivalent of the circuit 
to the left. Because of the open circuit created by the cuts, the secondary current is zero: I, = 0 A, 
which in turn means that the primary current is zero: I ,  = 0 A. Consequently, there is 0 V across Z,  
and all the source voltage is across the primary winding. As a result, the Thevenin voltage referenced 
positive toward terminal c is V,, = V, = -V,/a = -V,/u. From impedance reflection the Thevenin 
impedance is ZTh = Z , / u 2 ,  with u2 being in the denominator instead of the numerator because the 
winding being “looked into” is the secondary winding. The result is shown in the circuit of Fig. 16-4c. 
Note that the source voltage polarity reverses because the dots are at opposite ends of the windings. By 
use of Norton’s theorem in a similar way, it can be shown that a source of current I, would have reflected 
into the secondary as aI, and would have been reversed in direction because the dots are not at the 
same ends of the windings. Whole circuits can be reflected in this way. 

An alternative to the reflection analysis approach is to write the circuit equations, which are usually 
mesh equations, with the transformer voltages and currents as variables. Since the number of unknowns 
will exceed the number of equations, these equations must be augmented with the transformer voltage 
and current turns-ratio equations. As an illustration, for the circuit of Fig. 16-4u, these equations are 

Z J ,  + v, = v, 
Z,I, - v, = 0 

v1 + uv ,  = 0 

U I ,  + I, = 0 

The fact that this approach requires more equations than does the reflection approach is not a significant 
disadvantage if an advanced scientific calculator is used in the calculations, and this approach may be 
easier overall. 

For ac voltages and currents, an ideal transformer gives results that are within a few percent 
of those of the corresponding actual power transformer. But for dc voltages and currents, an ideal 
transformer gives incorrect results. The reason is that an ideal transformer will transform dc voltages 
and currents while an actual transformer will not. 

THE AIR-CORE TRANSFORMER 

The ideal transformer approximation is not valid for a transformer with a core constructed of 
nonmagnetic material, as may be required for operation at radio and higher frequencies. A transformer 
with such a core is often called an uir-core transjbmier or a linear transformer. 
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a 

Circuit 1 

Circuit 2 

Fig. 16-5 

Figure 16-5 shows two circuits coupled by an air-core transformer. Current i ,  produces a mutual 
and current i, produces a mutual flux 4m2 and leakage flux 44,. As 

The coeficient of coupling, with symbol k ,  indicates the closeness of coupling, which in turn  means 

flux 4,,,, and a leakage flux 
mentioned, a mutual flux couples both windings, but a leakage flux couples only one winding. 

the fraction of total flux that is mutual. Specifically, 

4 m 2  

4 1 2  + 4 m 2  

x ____- 
k = /-- 4 m  I 

411 + 4 m l  

Clearly k cannot have a value greater than 1 or less than 0. And the greater each fraction of mutual 
flux, the greater the coefficient of coupling. The coefficient of coupling of a good power transformer is 
very close to 1, but an air-core transformer typically has a coefficient of coupling less than 0.5. 

The voltages induced by changing fluxes are given by Faraday’s law: 

The positive signs in ,&,, and &4ml are selected if and only if both mutual fluxes have the same 
direction in each winding. 

For circuit analysis, it is better to use inductances instead of fluxes. The self-inductances of the 
windings are 

N Z ( 4 m . 2  + 4 / 2 1  L2 = 
NI(4rn1 + 4ri) L ,  = 

11 12 

These are just the ordinary winding inductances as defined in Chap. 9. There is, however, another 
inductance called the mutual inductance with symbol M .  It accounts for the flux linkages of one winding 
caused by current flow in the other winding. Specifically, 

N14m2 N24m1 M = - - - -  - 
12 11 

With these substitutions, the voltage equations become 

di,  di, di, d i ,  

dt dt dt - dt 
u , = L , - _ + M - -  and U, = L2 ~ + M -- 

in which the 
voltage and current references. For a sinusoidal analysis the corresponding equations are 

signs for the Ldildt terms have been deleted because of the assumption of associated 

V, = joLII ,  & joMI,  and V, = joL,12 j o M I ,  
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In  these equations, the negative signs of & are used if one current has a reference into a dotted terminal 
and the other has a reference out of a dotted terminal. Otherwise the positive signs are used. Put another 
way, if positive i ,  and i, or I ,  and I ,  produce adding mutual fluxes, then the L and '$1 terms add. As 
mentioned, these equations are based on associated voltage and current references. I f  a pair of these 
references are not associated, the I' or V of the corresponding equation should have a negative sign. 
Everything else, though, remains the same. 

In a time-domain circuit diagram the self-inductances are specified adjacent to the corresponding 
windings in the usual manner. The mutual inductances are specified with arrows to designate which pair 
of windings each mutual inductance is for. In  a phasor-domain circuit, of course, j w L ,  ,jtoL,, and j(oM 
are used instead of L ,  , L 2 ,  and M .  

If substitutions are made for the fluxes in the coefficient of coupling equation, the result is k = 

Mesh and loop analyses are best for analyzing circuits containing air-core transformers since nodal 
analysis is diffcult to use. Writing the K V L  equations is the same as for other circuits except for the 
necessity of including thejw M I  terms resulting from the magnetic coupling. Also, voltage variables are 
not assigned to the windings. 

I f  the secondary circuit contains no independent sources and no current paths to the primary circuit, 
i t  is possible to reflect impedances in a manner similar to that used for ideal transformers. For an 
understanding of this reflection, consider the circuit shown in Fig. 16-6. The mesh equations are 

M / J m 2 .  

The mutual terms are negative in both equations because one winding current is referenced into a dotted 
terminal while the other is referenced out of a dotted terminal. If I ,  is solved for in the second equation 
and a substitution made for I ,  in the first equation, the result is 

which indicates that the secondary circuit reflects into the primary circuit as  an impedance 
( O ~ M ' : ' ( ~ ( O L ~  + Z , )  in s m k s  with t h  primrrj? irinciimq. As can be found by trying different dot locations, 
this impedance does not depend on those locations. Some authors of circuits books call this impedance 
a "reflected impedance." Others, however, use the term "coupled impedance." 

THE AUTOTRANSFORMER 

An ciirtotrun.fornzer is a transformer with a single winding that has an intermediate terminal that 
divides the winding into two sections. For an understanding of autotransformer operation, it helps to 
consider the two sections of the winding to be the two windings of a power transformer. as is done next. 
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Consider a 50-kVA power transformer that has a voltage rating of 10 000 200 V. From the kVA 
and voltage ratings, the full-load current of the high voltage winding is and that 
of the low voltage winding is 50 000 200 = 250 A. Figure 16-7a shows such a transformer, fully loaded, 
with its windings connected such that the dotted end of one winding is connected to the undotted end 
of the other. As shown, the 10000-V secondary circuit can be loaded to a maximum of 250 + S = 

255 A without either of the windings being current overloaded. Since the source current is 250 A, the 
transformer can deliver 10 200 x 250 = 2550 kVA. This can also be determined from the secondary 
circuit: 10 000 x 255 = 2550 kVA. In effect, the autotransformer connection has increased the trans- 
former kVA rating from 50 to 2550 kVA. 

50 000 ‘10 000 = 5 A 

250 A 
4 

( b  1 
Fig. 16-7 

The explanation for this increase is that the original 50-kVA transformer had no metallic connections 
between the two windings, and so the 50 k V A  of a full load had to pass through the transformer by 
magnetic coupling. But with the windings connected to provide autotransformer operation, there is a 
metallic connection between the windings that passes without being magneti- 
cally transformed. So, i t  is the direct metallic connection that provides the kVA increase. Although 
advantageous in this respect, such a connection destroys the isolation property that conventional 
transformers have, which in turn  means that autotransformers cannot be used in every transformer 
application. 

10 200 x 5 = 200 x 255 = 

51 kVA. This slight increase of 2 percent in kVA rating is the result of the greatly different voltage levels of 
the two circuits connected to the autotransformer. In general, the closer the voltage levels are to being 
the same, the greater the increase in kVA rating. This is why autotransformers are used as links between 
power systems usually only if the systems are operating at nearly the same voltage levels. 

In  Fig. 16-7a, the load and the voltage source can be interchanged. Then the load is connected across 
both windings and the voltage source across just one. This arrangement is used when the load voltage 
is greater than the source voltage. The increase in kVA rating is the same. 

In the analysis of a circuit containing an autotransformer, an ideal transformer model can be assumed, 
and its turns ratio used in much the same way as for a conventional transformer connection. Along with 
this can be used the fact that the lines with the lower voltage carry the sum of the two winding currents. 
Also, part of the winding carries only the difference of the source and load currents. This is the part that 
is common to both the source and load circuits. 

Contrary to what Fig. 16-7 suggests, autotransformers are preferably purchased as such and not 
constructed from conventional power transformers. A n  exception, however, is the “buck and boost” 
transformer. A typical one can be used to reduce 120 or 240 V to 12 or 24 V. The principal use, though, 

2550 - SO = 2500 kVA 

If the windings are connected as in Fig. 16-7h, the kVA rating is just 
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is as an autotransformer with the primary and secondary interconnected to give a slight adjustment in 
voltage, either greater or lesser. 

PSPICE AND TRANSFORMERS 

PSpice does not have a built-in ideal transformer component, but a model for one can be constructed 
with dependent sources. To see how to do this, consider the ideal transformer of Fig. 16-8u. There are, 
of course, just two constraints on its operation: v 1  = -uv, and i, = yai,,  as obtained from the 
turns ratio and also the dot locations. As shown in Fig. 16-8b, and also in Fig. 16-8c, these constraints can 
be satisfied with two dependent sources: a voltage-controlled voltage source to obtain the voltage 
constraint and a current-controlled current source to obtain the current constraint. Also needed is a 
dummy voltage source to sense the controlling current. Naturally, if the dot locations are at the same 
ends of the windings, instead of opposite ends as in Fig. 16-8a, the polarity of the dependent voltage 
source and the current direction of the dependent current source must be reversed. 

PSpice does provide for an air-core transformer. Self-inductance statements are used for the two 
windings in the same manner as for ordinary inductors. The ordering of the node numbers informs 
PSpice of the dot locations, with the first node being at the dot location. The only other requirement is 
a coefficient of coupling statement that has a name beginning with the letter K. Following this name 
are the names of the two coupled inductors, in either order. Last is the coefficient of coupling. For 
example, the following statements could be used for the air-core transformer of Fig. 16-9, 

L1 7 8 90M 
L2 11 5 40M 

K1 L1 L2 0.5 

The indicated coefficient of coupling of 0.5 is obtained from k = M / J a  = 30/,/=0 = 0.5, 
where the inductances are expressed in millihenries. 

30 mH 

Fig. 16-9 
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Solved Problems 
16.1 For the winding shown in Fig. 16-10a, what is the direction of flux produced in the core by current 

flowing into terminal a? 

\ 
\ 

d 
I 
I 

I 
/ 

Fig. 16-10 

Current that flows into terminal a flows over the core to the right, underneath to the left, then over 
the core to the right again, and so on, as is shown in Fig. 16-lob. For the application of the right-hand rule, 
fingers of a right hand should be imagined grasping the core with the fingers directed from left to right over 
the core. Then the thumb will point up, which means that the direction of the flux is up insidc the core. 

16.2 Supply the missing dots for the transformers shown in Fig. 16-1 1. 

U 
( b  1 

Fig. 16-1 1 

(a)  By the right-hand rule, current flowing into dotted terminal b produces clockwise flux. By trial and 
error it can be found that current flowing into terminal c also produces clockwise flux. So, terminal 
c should have a dot. 

(b)  Current flowing into dotted terminal d produces counterclockwise flux. Since current flowing into 
terminal b also produces counterclockwise flux, terminal b should have a dot. 

(c )  Current flowing into dotted terminal a produces flux to the right inside the core. Since current flowing 
into terminal d also produces flux to the right inside the core, terminal d should have a dot. 

16.3 What is the turns ratio of a transformer that has a 684-turn primary winding and a 36-turn 
secondary winding? 

The turns ratio Q is the ratio of the number of primary turns to secondary turns: U = 684/36 = 19. 

16.4 Find the turns ratio of a transformer that transforms the 12 470 V of a power line to the 240 V 
supplied to a house. 

equal to the ratio of the primary to secondary voltages: 
Since the high-voltage winding is connected to the power lines, it is the primary. The turns ratio is 

a = 12 470/240 = 51.96. 
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165 What are the full-load primary and secondary currents o f  a 25 OOO,ii24O-V, 50-kVA transformer'! 
Assume, of course, that the 25 000-V winding is the primary. 

The current rating of ;I winding is the transformer kVA rating divided by the winding voltage rating. 
So, the full-load primary current is 50 000 25 000 = 2 A, and the full-load secondary current is 
50 000 240 = 208 A. 

16.6 A power transformer with a voltage rating o f  12 500/240 V has a primary current rating of 50  A. 
Find the transformer kVA rating and the secondary current rating if the 240 V is the secondary 
voltage rating. 

The transformer has a kVA rating that is equal to the product of the primary koltage rating and the 
primary current rating: 12 500(50) = 625 000 VA = 625 kVA. Since this is also equal to the product of the 
secondary voltage and current ratings, the secondary current rating is 625 000 240 = 2.6 x 10" A = 2.6 kA. 
As a check, the secondary current rating is equal to the prirnarjr current rating times the turns ratio, which 
is ( I  = 12 5001240 = 52.1. So the secondary current rating is 52.1(50) = 2.6 x 10' A = 2.6 k A ,  which 
checks. 

16.7 A transformer has a 500-turn winding linked by flux changing at the rate of 0.4 Wb,/s. Find the 
induced voltage. 

I f  the polarity of the voltage is temporarily ignored, then by Faraday's law, r = IV r i@dr .  The quantity 
t i$  t i t  is the time rate o f  change of flux, which is specified a s  0.4 Wb8's. So, I'  = 50q0.4) = 200 V ;  the 
magnitude of the induced voltage is 200 V. The voltage polarity can be either positibc o r  negative depending 
on the voltage reference polarity. the direction of the winding, and the direction in which the magnetic flux 
is either decreasing or increasing, none of which are specified. So the most that can be determined is that 
the magnitude ofthe induced voltage is 200 V at the time that the flux is changing at the rate of0.4 W b  s. 

16.8 An iron-core transformer has 400 primary turns and 100 secondary turns. If the applied primary 
voltage is 240 V rms at 60 Hz, find the secondary rms voltage and the peak magnetic flux. 

boltage: 
by a sinusoidally varying flux that can be considered to be (1, = $,,, sin (or, 
flux and (o  is the radian frequency of ( I )  = 2n(60) = 377 rad s. The time rate o f  change of flux is 

d(4, sin t o r )  t lr  = (od,,,, cos (or, 

from 
for and primary quantities used, the result is 

Since the transformer has an iron core, the turns ratio can be used to find the secondary rms 
C ' z  = ( 1  L O C ;  = (100 400)(240) = 60 V rms. Because the koltages Lary sinusoidallj, they are induced 

whcre 4,,, is the peak value of 
(id, d t  = 

i t  follows 
= .Vfo(brn. I f  d,,,, is solved 

- 
which has a peak value of Since the peak koltage is 

r = .Y t l d ,  tit that the peak voltage and f lux  values are related bq 

Alternatitely, the secondary voltagc iind turns could have been used since the same flux is assumed to couple 
both windings. - 

Incidentally. from 2V,,,, = N(oclJm, the voltage V,,,, can be expressed as 

\ -  

16.9 I f  a 50-turn transformer winding has a 120-V rms applied voltage, and if the peak coupling flux 
is 2 0  mWb. find the frequency of the applied voltage. 
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From rearranging the general transformer equation defined in Prob. 16.8, 

16.10 An iron-core transformer has 1500 primary turns and 500 secondary turns. A 12-R resistor is 
connected across the secondary winding. Find the resistor voltage when the primary current is 5 A. 

Since no voltage or  current references are specified, only rms values are of interest and are to be assumed 
without specific mention of them. The secondary current is equal to the turns ratio times the primary 
current: (1500’500)(5) = 15 A. When this current flows through the 12-R resistor, i t  produces a voltage 
of 15(12) = 180 V. 

16.11 The output stage of an audio system has an output resistance of 2 kR. An output transformer 
provides resistance matching with a 6-l-2 speaker. I f  this transformer has 400 primary turns, how 
many secondary turns does it have? 

The term “resistance matching” means that the output transformer presents a reflected resistance of 
2 kQ to the output audio stage so that there is maximum power transfer to the 6-R speaker. Since, in general, 
the reflected resistance R, is equal to the turns ratio squared times the resistance RI,  of the load connected 
to  the secondary ( R ,  = a 2 R ,  ), the turns ratio of the output transformer is 

and the number of secondary turns is 

I& 
- 

N ,  400 

( I  18.26 
.I& = - = ~ - 33 

16.12 In the circuit shown in Fig. 16-12, find R for maximum power absorption. Also, find I 
for R = 3 0. Finally, determine if connecting a conductor between terminals d and f would 
change these results. 

The value of R for maximum power absorption is that value for which the reflected resistance u2R is 
equal t o  the source resistance of 27 R. Since the primary winding has 4 turns, and the secondary winding 
has 2 turns, the turns ratio is the value of R for maximum 
power absorption is 

For  R = 3 R, Z2(3) = 12 R. So the primary current directed into terminal 
c is ( 2 1 6 b  ) ,(27 + 12) = 5.544 A. I f  terminal c is dotted, then terminal L’ should be dotted, as is evident 
from the right-hand rule. And, since I is directed out of terminal LJ while the calculated current is into terminal 
c, I is just the turns ratio times the current entering terminal c :  

A conductor connected between terminals d and f does not affect these results since current cannot 
flow in a single conductor. For current to flow there would have to be another conductor to provide a 
return path. 

a = N ,  ‘ N ,  = 4 2 = 2. And, from 27 = 2’R. 
R = 27 4 = 6.75 R. 

the reflected resistance is 

I = 2 ( 5 . 5 4 b  ) = 1l.lb A. 

216p  v 

Fig. 16-12 

R 
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16.13 Find i , .  i ,, and I ,  for the circuit shown in Fig. 16-13. The transformers are ideal. 

A good procedure is to find i, using reflected resistances, then find i, from i,, and last find i, from i,. 
making a total resistance of 2 + 3 = 5 R in the The 8 R reflects into the middle circuit as 

middle circuit. This 5 C! reflects into the source circuit as 

;, = _____ - - 4 sin 2t A 

812, = 2 R, 
3'(5) = 45 R. Consequently, 

200 sin 2t 

5 + 45 

Because i, and i, both have reference directions into dotted terminals of the first transformer, i, is equal to 
the negative of the turns ratio times i , :  i, = -3(4 sin 2t) = - 12 sin 2t A. Finally, since i, has a reference 
direction into a dotted terminal of the second transformer, and i, has a reference direction out of a dotted 
terminal of this transformer, i, is equal to the turns ratio i, = 0.5( - 12 sin 2t) = 

-6  sin 2t A. 
(1/2 = 0.5) times i,: 

16.14 Find I ,  and I, for the circuit shown in Fig. 16-14. 

240E0° V 2/-4!" n 

Fig. 16-14 

Because the primary has 6 turns and the secondary has 2 turns, the turns ratio is U = 6/2 = 3 and 
so the impedance reflected into the primary circuit is 3'(2/-45 ) = 18/-45 R. Thus, 

- - 240m = 9.41/33 A 
240@ 

I ,  = 
14/30 + 18/-45' 25.5/-13' 

I f  the upper primary terminal is dotted, the bottom secondary terminal should be dotted. Then both 1, and 
1' will be referenced into dots, and so I ,  is equal to the negative of the turns ratio times I , :  

I ,  = -31, = -3(9.41/33 ) = -28.2/33 A 

16.15 Find I ,  and I, for the circuit shown in Fig. 16-15a. 

circuit as 3'( 1 )  = 9 R and 
The I - Q  resistance and thej2-Q inductive impedance in the secondary circuit reflect into the primary 

in series with the 6-R resistance, as shown in Fig. 16-15h. In  3,(i2) = j 1 8  R 
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Fig. 16-15 

effect, these reflected elements replace the primary winding. From the simplified circuit, the primary current is 

80/40 80@ I - = - = 3.411- 102 A 
1 -  

6 + 9 + j l 8  23.43150.2- 

Because I ,  is referenced into a dotted terminal and I,  is referenced out of a dotted terminal, I,  is equal to 
just the turns ratio times l l  (no negative sign): 

I,  = 31, = 3(3.41/- 10.2 ) = 10.21- 10.2 A 

16.16 Find I , ,  I , ,  and I, for the circuit shown in Fig. 16-16a. 

i n  1 . ?  12 R 211 351 

( b  1 
Fig. 16-16 

The 12-0 resistance and thejl6-R inductive impedance reflect into the primary circuit as a ( 1/2)2( 12) = 
inductive impedance in parallel with the -j5-Q capacitive 3-R 

impedance, as shown in Fig. 16-16h. The impedance of the parallel combination is 
resistance and a series (1/2),(j16) = j4-R 

so. 

-j5(3 +j4)  20 - j l 5  
- -- = 7.911- 18.4" Q 

- j S  + 3 + j4 3 - j l  

I ,  =--- 120&!!c = 12.2 /44'A 
2 + 7.911- 18.4' 

- j5 

3 + j 4 - j 5  
By current division, 1, =-- x 12.2144.7" = 19.31-26.8' A 

Finally, since I,  and I,  both have reference directions into dotted terminals, I ,  is equal to the negative of 
the turns ratio times I,: 

I ,  = -0.5(19.3/-26.8") = -9.66/-26.8- A 

16.17 Find V for the circuit shown in Fig. 16-17~.  

Although reflection can be used, a circuit must be reflected instead of just an impedance because each 
circuit has a voltage source. And, because a voltage in the secondary circuit is desired, it  is slightly preferable 
to reflect the primary circuit into the secondary. Of course, each reflected impedance is ( 1 1 ~ ) ~  times the 
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-j2 fl A- 

(a I ( b  1 
Fig. 16-17 

original impedance, and the voltage of the reflected voltage source is 1 / a  times the original voltage. Also, 
the polarity of the reflected voltage source is reversed because the dots are located at opposite ends of 
the windings. The result is shown in Fig. 16-176. By voltage division, 

J3 x(5 /10  - 10/-30)=-- 20.9/212 = 6.6/194 = -6.6& V V =  
1-j2+2+j3 3.16/Ix 

16.18 Use PSpice to determine V in the circuit of Fig. 16-17a of Prob. 16.17. 

v3 
Fig. 16-18 

Figure 16-18 shows the corresponding PSpice circuit for a frequency of UJ = 1 rad s. Following is the 
circuit file and the answers obtained from the output file when this circuit file is run  with PSpice. The answer 
of V = 6.6(- 166' = -6.6/14 V agrees with the answer obtained in the solution to Prob. 16.17. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-18 
V1 1 0  AC 20 -30 
R1 1 2  4 
C1 2 3 0.125 
v2 3 4 
El 0 4  5 0  2 
F1 5 0 V2 2 
R2 5 6  2 
L1 6 7  3 
V3 0 7 AC 5 10 
.AC LIN 1 0.159155 0.159155 
.PRINT AC VM(L1) VP(L1) . END 

FREQ vM(L1) VP (Ll) 
1.592E-01 6.600E+00 -1.660E+02 
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16.19 Find I ,  and I ,  in the circuit of Fig. 16-19. 

Fig. 16-19 

Because the 5-Q resistor directly couples both halves of the circuit, the reflection approach cannot be 
used. However, two mesh equations can be written, and then these equations augmented with the voltage 
and current transformer equations to obtain four equations in terms of four unknowns: 

(7 + j3) I l  - 51, + V ,  = 301-25 

-511 + (11 -j4)I2 - V2 = O 

-2v, + v 2  = 0 

I ,  - 21, = 0 

In matrix form, these equations are 

7 + j 3  - 5  
- 5  1 1  - j4  

0 0 -  
1 -2 

1 
0 -  
2 
0 

A scientific calculator can be used to solve for I ,  and I , .  The results are 
1, = 2.910/-47.83 A. 

I ,  = 5.821/-47.83 A and 

16.20 Repeat Prob. 16.19 using PSpice. 

Figure 16-20 is the PSpice circuit corresponding to the circuit of Fig. 16-19, with the inductor and 
capacitor values based on  a frequency of t o  = 1 rad:'s. Resistor R 4  is inserted to prevent a capacitor (C1) 

VI 

0 

Fig. 16-20 
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from being in series with a current source (Fl), since PSpice does not allow this. But the resistance of R4 is 
so large that the presence of this resistor will not significantly affect the answer. Dummy voltage source V 2  
is inserted, of course, to sense the controlling current for dependent current source F1. 

Following is the corresponding circuit file along with the answers obtained from the output file when 
the circuit file is run  with PSpice. The answers of I ,  = 2.910/-47.83 A 
agree with the answers obtained in the solution to Prob. 16.19. 

1, = 5.821/-47.83 A and 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-20 
V1 1 0 AC 30 -25 
R1 1 2. 2 
L1 2 3  3 
v2 3 4 
El 4 5 6 5 0.5 
R2 5 0  5 
F1 5 6 V2 0.5 
C 1  6 7 0.25 
R3 7 0  6 
R4 6 0 lMEG 
.AC LIN 1 0.159155 0.159155 
.PRINT AC IM(R1) IP(R1) IM(R3) IP(R3) 
. END 
FREQ IM(R1) IP(R1) IM(R3) IP(R3) 

1.592E-01 5.821E+00 -4.783E+01 2.910E+00 -4.783E+01 

16.21 Determine the branch currents I , ,  I , ,  and I, in the circuit of Fig. 16-21. 

Reflection cannot be used here because of the presence of the 10-0 resistor that along with the common 
ground provides a current path between the two winding circuits. For reflection to be applicable, the two 
windings must be only magnetically coupled. K V L  can, however, be applied, and is best done around the 
two winding meshes and the outside loop. The resulting three equations will contain five variables, and must 
be augmented with the voltage and current transformer equations. These five equations are 

( 5  +j6)I l  + V ,  = 50/30' 

- V ,  + (7  - j8)I2  + 9(1, + 1 3 )  = -70/-40- 

101, + 9(13 + 1,) = 50/30' 

v,  - 3v, = 0 

31, - 1, = 0 
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I n  matrix form these are 

5 + j 6  
0 
0 
0 
3 

0 

9 

0 
- 1  

16 - j 8  
0 1  

9 0  

19 0 
0 1  

0 0  

- 1  I ,  

-3  !]I:: v ,  
1 S O L O '  

70/ - 40 

50/30 

0 O l  

I f  a scientific calculator is used to obtain solutions, the results are 
and I3  = 4.8 18/13.80" A. 

I ,  = 1.693/176.0^ A, 1, = 5.079/176.0' A, 

16.22 Repeat Prob. 16.21 using PSpice. 

R4 

10 
0.125 F , 70/-40 V 

- 5 7 R  
o v  

5R 2 6 H  3 
I ( b  : * = I /  

v3 R 2  c1 V2 

+V(3) 

0 

Fig. 16-22 

Figure 16-22 shows the PSpice circuit corresponding to the circuit of Fig. 16-21. The inductor and 
capacitor values are based on a frequency of (11 = 1 rad,'s. A dummy voltage source V2 has been inserted 
to sense the controlling current for the dependent current source F l .  Following is the corresponding circuit 
file along with the answers obtained from the output file when this circuit file is run with PSpice. The answers 
agree with those obtained in the solution to Prob. 16.21. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-22 
V1 1 0 AC 50 30 
R1 1 2  5 
L1 2 3  6 
F1 3 0 V2 0.333333 
El 4 0 3 0 0.333333 
v2 4 5 
R2 5 6  7 
C1 6 7 0.125 
V3 7 8 AC 70 -40 
R3 8 0  9 
R4 1 8 10 
.AC LIN 1 0.159155 0.159155 
.PRINT AC IM(R1) IP(R1) IM(R2) IP(R2) IM(R4) IP(R4) 
. END 

FREQ IM(R1) IP(R1) IM(R2) IP(R2) IM(R4) 
1.592E-01 1.693E+OO 1.760E+02 5.079E+00 1.760E+02 4.818E+00 

FREQ IP(R4) 
1.592E-01 1.380E+01 
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16.23 

16.24 

16.25 

16.26 
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An air-core transformer has primary and secondary currents of i, = 0.2 A i, = 0.4 A 
that produce fluxes of = 100 pWb, $,, = 250 pWb, and $,, = 300 pWb. Find $ m 2 ,  M ,  
L , ,  L 2 ,  and k if N ,  = 25 turns and N ,  = 40 turns. 

and 

By the mutual inductance formulas, 

Also 
2 3 3 2 0  x 10 ') 

M = - = - = 20mH 
12 0.4 

From the self-inductance formulas, 

Nl(4ml + 4 1 , )  25(100 x top6  + 250 x 10-") - - --A-__-_ -. ~ L, = 

L2 = _______.- - _ _  ~. 

i l  0.2 

N2(4m2 + 412) 40(320 x to-" + 300 x 10-') 
and - 

i2 0.4 

The coefficient of coupling is 

l 0 O X  1 0 - 6  

10-' + 1 %  x 10 ' 300 x 

0.4( 40)( 100) 

230.2) 
~ ~ = 320pWb 

= 43.8 mH 

= 62 m H  

320 x 10 (' 

t o - "  + 320 x l W h  
= 0.384 

Alternatively, 

What is the greatest mutual inductance that an air-core transformer can have if its self-inductances 
are 0.3 and 0.7 H? 

From k = M / , , / a  rearranged to M = k , , / L 1 L 2  and the fact that I\ has ;I maximum value of 

M,,, = Jo3(o(fi) = 0.458 H. 1, 

For each of the following, find the missing quantity either self-inductance, mutual inductance, 
or coefficient of coupling: 

( U )  L1 = 0.3 H, L2 = 0.4 H, M = 0.2 H 
(6) L ,  = 4mH,  M = 5mH,  k = 0.4 

(c) L ,  = 30pH, L,  = 40 pH, k = 0.5 

( d )  L2 = 0.4 H, M = 0.2 H, k = 0.2 
M 0.2 

(a) k = __I_ - = 0.577 Jz-Jm 
M 2  52 
Llk2 4(0.4)2 

L - __ = __- = 39.1 mH (b) kJm = M from which 2 -  

(c) M = k J L , L ,  = 0.5,:13oO = 17.3 pH 

M 2  0.22 

L2 k 0.4(0.2)2 
(d) L, =---y=------ - 2.5 H 

An air-core transformer has an open-circuited secondary winding with 50 V across i t  when the 
primary current is 30 mA at 3 kHz. If the primary self-inductance is 0.3 H, find the primary voltage 
and the mutual inductance. 
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16.2’7 

16.28 

16.29 

16.30 

Since phasors are not specified or mentioned, presumably the electric quantities specified and wanted 
are rms. Because the secondary is open-circuited, I ,  = OA, which means that o M 1 2  = 0 and 
toL,I, = 0 in the voltage equations. So, the rms primary voltage is 

V, = toL,I, = 2n(3000)(0.3)(30 x 10-3) = 170 V 

Also, the secondary voltage equation is V ,  = coMI,, from which 

50 
M = ~ v 2  = = 88.4 mH 

to l l  2n(3000)(30 x 10-3) 

An air-core transformer has an open-circuited secondary with 8 0 V  across it when the primary 
carries a current of 0.4 A and has a voltage of 120 V at 60 Hz. What are the primary self-inductance 
and also the mutual inductance? 

Because the secondary is open-circuited, there is no current in this winding and so no mutually induced 
voltage in the primary winding. As a consequence, the rms voltage and current of the primary are related 
by the primary winding reactance: wL, = Vl/I l ,  from which 

120 
= 0.796 H v, L - -= 

01 , 2n(60)(0.4) 
1 -  

With the open-circuited secondary carrying zero current, the voltage of this winding is solely the mutually 
induced voltage: I/, = toMI,, from which 

= 0.531 H 
v 2  80 

M = - - =  
(01 2n(60)(0.4) 

Find the voltage across the open-circuited secondary of an air-core transformer when 35 V at 
400 Hz is applied to the primary. The transformer inductances are L ,  = 0.75 H, L2 = 0.83 H, 
and M = 0.47H. 

Because the secondary is open-circuited, I ,  = 0 A, which means that the rms primary voltage 
V ,  = coL,I, is and the rms secondary voltage is V ,  = wM1, .  The ratio of these equations is 

M V ,  0.47(35) 
L ,  0.75 

V - - = - -  - 21.9 V 
v, t o M I ,  

Vl toL,I ,  from which 2 -  
- 

An air-core transformer with an open-circuited secondary has inductances of L ,  = 20 mH, 
32 mH, and 
is increasing at the rate of 0.4 kA/s. 

L2 = 
M = 13 mH. Find the primary and secondary voltages when the primary current 

With the assumption of associated references, 

di, di, di, di, 
dt dt dt dt 

c ,  = L ,  - f M - and U* L2 - & M - 

In the first equation, di,/dt is zero because of the open circuit, and di,/dt is the specified 0.4 kA/s. 
So, cl = (20 x 10-3)(0.4 x 103) = 8 V. Similarly, the secondary voltage is u2 = f A4 di,/dt = 
f ( 1 3  x 10-3)(0.4 x 103) = & 5.2 V. Since the reference for u2 is not specified, the sign of u2 cannot be 
determined. 

A transformer with a short-circuited secondary has inductances of L ,  = 0.3 H, L, = 
0.4 H, and M = 0.2 H. Find the short-circuit secondary current I ,  when the primary current 
is I ,  = 0.5 A at 60 Hz. 
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Because of the short circuit, 

V, = jcoL,I, & jtoMI, = 0 from which jcoL,I, = +jcoMI, and L,I,  = * M I ,  

Since only rms quantities are of interest, as must be assumed from the problem specification, the angles of 
I ,  and I, can be neglected and the + sign of k used, giving L,l, = M l , .  From this, the short-circuit 
secondary current 1 , is 

M I  0.2(0.5) 

L ,  0.4 
= 0.25 A 1 - --! = 

2 -  

The same result would have been obtained by dividing c o M I , ,  the rms induced generator voltage, by COL, ,  
the reactance that the short-circuit secondary current I ,  flows through. 

16.31 When connected in series, two windings of an air-core transformer have a total inductance of 
0.4 H. With the reversal of the connections to one winding, though, the total inductance is 0.8 H. 
Find the mutual inductance of the transformer. 

Because the windings are in series, the same current i flows through them during the inductance 
measurement, producing a voltage drop of in one winding and a 
voltage drop of in the other. If the windings are arranged such that 
i flows into the dotted terminal of one winding but out of the dotted terminal of the other, both mutual 
terms are negative. But if i flows into both dotted terminals or out of them, both mutual terms are positive. 
Since the M d i l d t  terms have the same sign, either both positive or both negative, the total voltage drop 
is ( L ,  + L ,  f 2 M )  dii’dr. The coefficient of t f i , d t  is the total inductance. Obviously, the 
larger measured inductance must be for the positive sign, and the smaller 
measured inductance must be for the negative sign, L ,  + L , - 2 M  = 0.4 H .  I f  the second equation is 
subtracted from the first, the result is 

L ,  di,‘dt & M di/dt = ( L ,  f M )  di,:ctt 
L,  di idt  _+ M di/dr = ( L ,  & M )  dii’df 

L ,  + L,  5 2 M  
L ,  + L ,  + 2 M  = 0.8 H. 

L ,  + L,  + 2 M  - ( L ,  + L,  - 2 M )  = 0.8 - 0.4 = 0.4 

from which 4M = 0.4 and M = 0.1 H .  
Consequently, a method for finding the mutual inductance of an air-core transformer is to connect the 

two windings in series and measure the total inductance, then reverse one winding connection and measure 
the total inductance. The mutual inductance is one-fourth of the difference of the larger measurement minus 
the smaller measurement. Obviously, the self-inductance of a winding can be measured directly if the other 
winding is open-circuited. 

16.32 An air-core transformer has 3-mH mutual inductance and a 5-mH secondary self-inductance. A 
5-Q resistor and a 100-pF capacitor are in series with the secondary winding. Find the impedance 
coupled into the primary for 

The coupled impedance is ( ( O M ) ~ ’ Z , ,  where Z, is the total impedance of the secondary circuit. 
Here, toM = 103(3 x 10-3) = 3 R and 

= 1 krad,is. 

- j l  - j l  
Z, = R +jcoL + __ = 5 +j103(5 x + ~- = 5 + j 5  - j l O  = 5 - j5 = 7.071-45 R 

t0C 103(100 1 0 - 6 )  

and so the coupled impedance is 

3, 
- = 1.27/45 R 

(r0M)Z 
-__ - 

Z ,  7.07/-45 

Notice that the capacitive secondary impedance couples into the primary circuit as an inductive 
impedance. This change in the nature of the impedance always occurs on coupling because the secondary 
circuit impedance is in the denominator of the coupling impedance formula. In  contrast, there is no such 
change in reflected impedance with an ideal transformer. 
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16.33 A 1-kiZ resistor is connected across the secondary of a transformer for which 
2 H, and 

L ,  = 0.1 H, L ,  = 
k = 0.5. Find the resistor voltage when 250 V at 400 Hz is applied to the primary. 

A good approach is to first find uA41,, which is the induced mutual secondary voltage. and then LISC 

it to find the voltage across the 1-kR resistor. Since both M and I ,  in c o M I ,  are unknown, they must be 
found. The mutual inductance M is 

- 
1- 

A4 = k ,  L , L 2  = 0.5, 0.1(2) = 0.224 H 

With M known, the coupled impedance can be used to obtain I , .  This impedance is 

w 2 M 2  (271 x 400)2(0.224)2 
- - = 61.6/-78.7 R 

R ,  + jtoL, 1000 + j(2n x 400)(2) 

The current I ,  is equal to the applied primary voltage divided by the magnitude of the sum of the coupled 
impedance and the primary winding impedance: 

250 

191 
- - = 1.31 A 

2 50 

lj(27c x 400H0.1) + 61.6/-78.7 1 
1, =- 

Now, with M and I ,  known, the induced secondary voltage W M I ,  can be found: 

uMZ, = (271 x 400)(0.224)( 1.31) = 735 V 

Voltage division can be used to find the desired voltage I/, from this induced voltage. The voltage 1', is 
equal to this induced voltage times the quotient of the load resistance and the magnitude of the total 
impedance of the secondary circuit: 

735 x 10" 

5.13 x 103 
___ - ____ - - - 143V 

1 000 

11000 + j2n(400)(2)) 
v, = 735 

16.34 Find v for the circuit shown in Fig. 16-23u. 

The first step is the construction of the phasor-domain circuit shown in Fig. 16-23h. Next, the mesh 
equations are written: 

Notice that the mutual terms 
terminals. By Cramer's rule, 

( 5  +j6)I,  + $1, = 200 

j31, + (10 +j9)1,  = 0 

are positive because both I ,  and I,  have reference directions in to  dotted 

= 5.71/- 177.3 A 
600/ - 90' 600/ - 90 

( 5  + j6)(10 + j 9 )  - (j3), 5 +j105 105/87.3 
_____ - - - - - j3( 200) - 0 I, = 1 5 ~  200 I 

1 5 ; J 6  l;:j91- 
And V = 101, = 57.1/- 177.3' V. The corresponding voltage is 

~1=57.1 , , /2s in(3?-  177 .3)=  -80.7sin(3?+2.7 ) V  
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16.35 Find I ,  for the circuit shown in Fig. 16-24. 

- j s  1'1 k = 0.5 - j l O  R 

I 
- n 1 1 n o  

Before mesh equations can be written, the magnitude co,W ofjtohf must be determined. From multiplying 
both sides of AI = k ,  L , L ,  by 01, 

~ . . - 

~ o M  = k ,  ( ( O L , ) ( ( O L ~ )  = 0.5, 2(X) = 2 R 

Now the mesh equations can be written: 

( 3  - j S  + j2)I ,  - j21, = 20@ 

+ I l  + (4 + j s  - /10)1, = 0 

Notice that the mutual voltage terms have an opposite sign (negative) from that (positive) of the self-induced 
voltage terms because one current reference direction is into a dotted terminal and the other one is not. In  
matrix form, these equations are 

from which I,  = 1.321- 157.6 = - 1.31/71.4 A can be obtained by using a scientific calculator. 

16.36 What is the total inductance of an air-core transformer with its windings connected in parallel if  
both dots are at the same end and if the mutual inductance is 0.1 H and the self-inductances are 
0.2 and 0.4 H'? 

Because of the mutual-inductance effects, i t  is not possible to simply combine inductances. Instead, a 
source must be applied and the total inductance found from the ratio of the source voltage to source current, 
which ratio is the input impedance. Of course a phasor-domain circuit will have to be used. For this circuit 
the most convenient frequency is and the m o s t  convenient source is I, = lb A. The 
circuit is shown in Fig. 16-25. The transformer impedances should be obvious from the specified inductances 
and the radian frequency of ( I )  = 1 rad s. As shown, I ,  of the 14 A input current Rows through the 
left-hand winding, leaving a current of lb - I ,  for the right-hand winding. 

( 1 )  = 1 raciis, 

The voltage drops across the windings are 

V = j0.21, + j O . l ( l D  - I , )  and V =jO. t I ,  + jO.(rclk - I , ) .  

Fig. 16-25 
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The mutual voltage terms have the same signs as the self-induced voltage terms because both current reference 
directions are into dotted ends. Upon rearrangement and simplification, these equations become 

-jO.tI, + v =jo.1 and jo.31, + V = j0.4. 

The unknown I ,  can be eliminated by multiplying the first equation by 3 and adding corresponding sides 
of the equations. The result is 

j0.7 

4 
3V + V =jO.3 +jO.4 from which V = - zj0.175 V 

But 
V j0.175 

j o L ,  = - = - - -j0.175 R 
I, lB0 

Finally, since (I) = 1 rad/s, the total inductance is 

16.37 Find i, for the circuit shown in Fig. 16-26a. 

412 

4H 

L ,  = 0.175 H. 

4 R  

The first step is the construction of the phasor-domain circuit shown in Fig. 16-26h, from which mesh 
equations can be written. These are 

(4 + j3)11 - j31, -&!I, = 120bc 
-j311 -j211 + [ j3  + j8 + 6 + 2(j2)]1, = 0 

In  the first equation, the 4 + j 3  coefficient of I ,  is, of course, the self-impedance of mesh 1 ,  and the - j3  
coefficient of I,  is the negative of the mutual impedance. The -j2I2 term is the voltage induced in the 
left-hand winding by I,  flowing in the right-hand winding. This term is negative because I ,  enters a dotted 
terminal but I,  does not. I n  the second equation, the -j311 term is the mutual-impedance voltage, and 
-j21, is the voltage induced in the right-hand winding by I ,  flowing in the left-hand winding. This term is 
negative for the same reason that -j212 is negative in the first equation, as has been explained. The j 3  + 
j8  + 6 part of the coefficient of I,  is the self-impedance of mesh 2. The 202) part of this coefficient is from 
a voltage j21, induced in each winding by I,  flowing in the other winding. It is positive because 1, enters 
undotted terminals of both windings. 

These equations simplify to 

(4 + j3)11 - j51,  = 120 

-j511 + (6 + j15)12 = 0 

By Cramer's rule, 

14+j3  120 1 
J6* - 7.6812.94' A 

- ( - jS)( 120) 
- I - j5  0 I I ----------=-------------- 

( 4 + j 3  - j5  1 (4+j3)(6+j15)-(-j5)2 4 + j 7 8  
2 -  

1 - j5  6 + j 1 5 /  
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The corresponding current is 

[CHAP. 16 

i, = 7.68,/'2 sin (2t + 2.94 ) = 10.9 sin (2t + 2.94") A 

16.38 Find V for the circuit shown in Fig. 16-27. Then replace the 15-SZ resistor with an open circuit 
and find V again. 

20 R j l0  R 

120p V 

Fig. 16-27 

The mesh equations are 

All the terms should be apparent except, perhaps, those for the mutually induced voltages. The j51, in the 
first equation is the voltage induced in the vertical winding by I ,  flowing in the horizontal winding. I t  is 
positive because both I ,  and I ,  enter dotted terminals. The j 5 1 ,  term in the second equation is the voltage 
induced in the horizontal winding by I ,  flowing in the vertical winding. I t  is positive for the same reason 
that j51, is positive in the first equation. The -2(j5)1, term is the result of a voltage ofj51, induced in each 
winding by I, flowing in the other winding. I t  is negative because I, enters a dotted terminal of one winding, 
but not of the other. These equations simplify to 

from which 

j1800 
-- = 2.53/10.1 A 

-( -jl5)( 120) 
- _. - - j l5  0 

(20 +j20)(15 +j20)  - (-j15), 125 +j700 

- j l5  15 + j 2 0  

Finally, V = 151, = 15(2.53/10.1') = 38/10.1 V 

If  the 1 5 4  resistor is removed, then 1, = 0 A and V is equal to the sum of the voltage drops across 
the two windings. The only current that flows is 1 which is 

120Lo 
I l  = =4.24/-45 A 

20 + j20 

Across the vertical winding, I ,  produces a self-inductive voltage drop of 

V ,  = $01, =j20(4.24/-45 ) = 84.8/45 V 

referenced positive on the dotted cnd. Across the horizontal winding, I ,  produces a mutually induced voltage 
of 

V,  = j51, = j5(4.24/-45 ) = 21.2/45' V 
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Like the other induced voltage, it  also has a positive reference on a dotted end since part of the same tlu\ 
produces it. (Actually, a changing flux produces the corresponding voltages v 1  and i l l . )  Finally, since the 
dotted ends of the two windings are adjacent, V is equal to the difference in the two winding voltages: 

V = V, - V, = 84.8/45 - 21.2/45 = 63.6/45 V 

16.39 Repeat the first part of Prob. 16.38 using PSpice. 

3 +-%75-1+; LI 2 0 H  I5 R 

120kv - - VI 

0 
Fig. 16-28 

Figure 16-28 shows the PSpice circuit corresponding to the phasor-domain circuit of Fig. 16-27. The 
which is selected for convenience. The 

Following is the corresponding circuit file along with the answer from the output file obtained 
agrees to three signifcant 

inductance values are based on a frequency of o = 1 rad/s, 
coefficient of coupling needed for the circuit file is k = M i d  L,L ,  = 5,1.,#'20 x 10 = 0.353 553. 

when PSpice is run with this circuit file. The answer of V = 37.97110.12 V 
digits with the first answer of Prob. 16.38. 

[-- ~ 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-28 
V 1  1 0 AC 120 
R 1  1 2 20 
L 1  2 0 20 
L2 2 3 1 0  
K 1  L1 L2 0.353553 
R2 3 0 1 5  
.AC L I N  1 0.159155 0.159155 
.PRINT AC VM(R2) VP(R2) . END 

FREQ v w R 2 )  VP(R2) 
1.592E-01 3.797E+01 1.012E+01 

16.40 Determine the mesh currents in the circuit of Fig. 16-29. 

j l 6  R 12 R 

200m v 
R 

- j4R 

Fig. 16-29 
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The mesh equations are 
(4 + j4)1, - j41, - 41, - j51, = 200/30 

-j411 + (j4 + 7 - j 8  + 6 - j4)12 - (7 - J 8 ) l 3  + j51, = 0 
-41, - (7  - jS)l, + (4 +j16 + 12 - j S  + 7)1, + j 5 ( 1 ,  - I , )  = 0 

In the I ,  mesh equation, the mutual term -j51, has a negative sign because I ,  is directed into a dotted end 
of a transformer winding but I ,  is not. In the I, mesh equation, the mutual term j51, does not have a 
negative sign because both I ,  and I ,  have directions into undotted ends of the transformer windings. And 
in the I,  mesh equation, the mutual term is j5(1, - I , )  because both 1, and I ,  have directions into undotted 
ends of the transformer windings but I ,  does not. When simplified and placed in matrix form, these equations 
are 

4 + j 4  -j4 

- 4 - j 5  -7 + j 1 3  23 + j S  

The solutions to these equations can be obtained by using a scientific calculator. They are I ,  = 

51.37/5.836 A, I, = 10.06/44.79 A, and 1, = 16.28/16.87 A. 

16.41 Repeat Prob. 16.40 using PSpice. 
I6 H 0 1211 

VI 

0 
Fig. 16-30 

Figure 16-30 shows the PSpice circuit corresponding to the phasor-domain circuit of Fig. 16-29 of Prob. 
16.40. As usual, the inductances and capacitances are based on the frequency (I) = 1 radis. The coefficient of 

coupling needed for the circuit file is 
Following is the corresponding circuit file along with the answers from the output file obtained when 

PSpice is run with this circuit file. The answers agree with those obtained in the solution to Prob. 16.40. 

_ -  ___ --- 
k = M f ,  L , L ,  = 5 4 x 16 = 0.625. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 16-30 
V1 0 1 AC -200 30 
R1 1 2  4 
L1 2 0  4 
R2 2 3  7 
C1 3 4 0.125 
R3 4 5  6 
C2 5 0 0.25 
L2 6 1 16 
K1 L1 L2 0.625 
R4 6 4 12 
.AC LIN 1 0.159155 0.159155 
.PRINT AC IM(V1) IP(V1) IM(R3) IP(R3) IM(R4) IP(R4) 
. END 

FREQ IM(V1) IP(V1) IM(R3) IP(R3) IM(R4) 
1.592~~01 5.137E+01 5.836E+OO 1.006E+01 4.479E+01 1.628E3+01 

FREQ IP(R4) 
1.592E-01 1.687E+01 
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16.42 What is the turns ratio of a two-winding transformer that can be connected as a autotransformer 
of 500/350 kV? 

As can be seen from Fig. 16-7, the lower voltage is the voltage across one winding, and the higher voltage 
is the sum of the winding voltages. So, for this transformer, one winding voltage rating is 350 kV and the 
other is 500 - 350 = 150 kV. The turns ratio is, of course, equal to the ratio of these ratings: a = 

350/150 = 2.33 or a = 150/350 = 0.429, depending upon which winding is the primary and which is the 
secondary. 

16.43 Compare the winding currents of a fully loaded 277/120-V, 50-kVA two-winding transformer and 
an autotransformer with the same rating. 

50 000/277 = 181 A, and the 
low-voltage winding must carry 50 000/120 = 417 A. So, one winding carries the source current and the 
other winding carries the load current. In contrast, and as shown in the circuit of Fig. 16-31, part of the 
autotransformer winding must carry only the difference in the source and load currents, which is 
417 - 181 = 236 A, as compared to the 417 A that the low-voltage winding of the conventional transformer 
must carry. Consequently, smaller wire can be used in the autotransfbrmer, which results in a savings in the 
cost of copper. Also, the autotransformer can be smaller and lighter. 

The high-voltage winding of the conventional transformer must carry 

181 A 
4 

I 4 

236 A t  
181 A 417 A 
+ 

Fig. 16-31 

16.44 A 12 470/277-V, 50-kVA transformer is connected as an autotransformer. What is the kVA rating 
if the windings are connected as shown in Fig. 16-7a? And what is this rating if the windings are 
connected as shown in Fig. 16-7b? 

For either connection the maximum applied voltage is the sum of the voltage ratings of the wind- 
ings: 12 470 + 277 = 12 747 V. Since, for the connection shown in Fig. 16-7a, the source current flows 
through the low-voltage winding, the maximum input current is the current rating of this winding, which 
is 12 747 x 181 VA = 2300 kVA. For the 
other connection, that illustrated in Fig. 16-7b, the source current flows through the high-voltage winding. 
Consequently, the maximum input current is the current rating of this winding, which is 50 000/12 470 = 
4.01 A, and the kVA rating is only 12 747 x 4.01 VA = 51.1 kVA. 

50 000/277 = 181 A. So, the kVA rating for this connection is 

16.45 Find the three currents I,, I,, and I 3  for the circuit shown in Fig. 16-32. 

100 n 

Fig. 16-32 
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The resistor current is obviously I ,  = 120/100 = 1.2 A. And the resistor receives 120 x 1.2 = 144 VA. 
Since this is also the voltamperes supplied by the source, then 2771, = 144 and I ,  = 144/277 = 0.52 A.  
Last, from KCL applied at the transformer winding tap, I, = I ,  - I ,  = 1.2 - 0.52 = 0.68 A. Scalar 
addition can be used here since all three currents are in phase. 

Supplementary Problems 
16.46 In  the transformer shown in Fig. 16-33, what is the direction of flux produced in the core by current flow 

into ( U )  terminal U ,  ( h )  terminal h, ( ( 5 )  terminal c, and ( d )  terminal d? 

Ans. (a)  Clockwise, (h)  counterclockwise, ( ( 8 )  counterclockwise, ( d )  clockwise 

9 b 9  

d d  
Fig. 16-33 

16.47 Supply the missing dots for the transformers shown in Fig. 16-34. 

Ans. ( U )  Dot on terminal d ;  ( h )  dot on  terminal h;  (c) dots on terminals h, c, and g 

( b  1 
Fig. 16-34 

16.48 What is the turns ratio of a power transformer that has a 6.25-A primary current at the same time that i t  
has a 50-A secondary current? 

Ans.  (1 = 8 .  
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16.49 

1650 

16.51 

16.52 

16.53 

16.54 

16.55 

16.56 

16.57 

Find the turns ratio of a power transformer that transforms the 12 470 V of a power line to the 480 V used 
in a factory. 

Ans. a = 26. 

What are the full-load primary and secondary currents of a 7200/120-V, 25-kVA power transformer? Assume 
that the 7200-V winding is the primary. 

Atis. 3.47-A primary current and 208-A secondary current 

A power transformer with a 13 200/480-V rating has a full-load primary current rating of 152 A. Find the 
transformer kVA rating and the full-load secondary current rating if the 480 V is the secondary voltage rating. 

Ans. 2000 kVA, 4.18 kA 

A 7200/120 V, 60-Hz transformer has 1620 turns on the primary. What is the peak rate of change of magnetic 
flux? (Hint :  Remember that the voltage ratings are in rms.) 

Ans. 6.29 Wb/s 

An iron-core transformer has 3089 primary turns and 62 secondary turns. If the applied primary voltage is 
13 800 V rms at 60 Hz, find the secondary rms voltage and the peak magnetic flux. 

Ans. 277 V, 16.8 mWb 

If a 27-turn transformer winding has 120 V rms applied, and if the peak coupling flux is 20 mWb, what is 
the frequency of the applied voltage? 

Ans. 50 Hz 

An iron-core transformer has 1620 primary turns and 54 secondary turns. A 10-R resistor is connected across 
the secondary winding. Find the resistor voltage when the primary current is 0.1 A. 

Ans. 3 0 V  

What should be the turns ratio of an output transformer that connects a 4-R speaker to an audio system 
that has an output resistance of 1600R? 

Ans. a = 20 

In the circuit shown in Fig. 16-35, what should a and X ,  be for maximum average power absorption by 
the load impedance, and what is this power? 

Ans. 3.19, -4.52 0, 376 W 

I jXc - 4+ 
Fig. 16-35 
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1658 Find i,, i,, and i, in the circuit shown in Fig. 16-36. 

Ans. i, = 4 sin (3t - 36.9') A 
i ,  = 8 sin (3t - 36.9') A 

i3 = -24 sin (3t  - 36.9') A 

24fl + . I  6H 1 . 1  

Fig. 16-36 

16.59 Find V in the circuit shown in Fig. 16-37 

Ans. - 3 12160.7' V 

16.60 Find I , ,  I,, and I, in the circuit shown in Fig. 16-38. 

Ans. I ,  = 1.491-23.5' A, I, = 4.461-23.5" A, I, = -8.93/-23.5" A 

16.61 What is U in the circuit shown in Fig. 16-39? 

Ans. -23.7 sin (2t - 6.09") V 

311 2n 7 .  I 

Fig. 16-39 
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16.62 Find I in the circuit shown in Fig. 16-40. 

A m .  2.281- 39.1" A 

Fig. 16-40 

- j l O  fl 

16.63 For the following PSpice circuit file, construct a corresponding phasor-domain circuit diagram that contains 
an ideal transformer. Then use this diagram to calculate the answer that will appear in the output file when 
PSpice is run with this circuit file. 

CIRCUIT FILE FOR PROB. 16.63 
V1 1 0 AC 200 80 
R1 1 2  8 
L1 2 3  4 
F1 3 0 V2 2 
El 0 4  3 0  2 
v2 5 4 
C1 5 6 6.25M 
R2 6 0 60 
.AC LIN 1 0.31831 0.31831 
.PRINT AC VM(6) VP(6) . END 

A m .  23 1.11 - 72.45" V 

16.64 Repeat Prob. 16.63 for the following PSpice circuit file. 

CIRCUIT FILE FOR PROB. 16.64 
V1 1 0 AC 12 30 
R1 1 2  8 
C1 2 3 20M 
v2 3 4 
El 4 0  0 5  4 
F1 5 0 V2 4 
L1 5 6  1 
R2 7 6  1 
V3 7 0 AC 8 -20 
.AC LIN 1 0.31831 0.31831 
.PRINT AC IM(R2) IP(R2) . END 

Ans. 6.5221 - 23.23' A 
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16.65 Repeat Prob. 16.63 for the following PSpice circuit file. 

C I R C U I T  F I L E  FOR PROB. 16.65 
V 1  1 0 AC 1 6  2 0  
R 1  1 2  4 
v 2  2 3 
E l  3 4  5 4  2 
L 1  4 0  5 
F 1  4 5 V2 2 
C 1  5 6 0 .125  
R2 6 0  6 
R 3  5 0 lMEG 
. A C  L I N  1 0.159155 0.159155 
. P R I N T  AC VM(R2) V P ( R 2 )  
. END 

Ans. 4.936/63.96" V 

16.66 An air-core transformer has a primary current of 0.2 A and a secondary current of 0.1 A that produce fluxes 
of 4/, = 40pWb, 4m2 = lOpWb, and 4/, = 30pWb. Find 4ml ,  L , ,  L , ,  M ,  and k if N ,  = 30 turns 
and N ,  = 50 turns. 

Ans. $,,,, = 12 pWb, L ,  = 7.8 mH, L ,  = 20 mH, M = 3 mH, k = 0.24 

16.67 What is the greatest possible mutual inductance of an air-core transformer that has self-inductances of 120 
and 90 mH? 

Ans. 104mH 

16.68 For each of the following, find the missing quantity-either self-inductance, mutual inductance, or coefficient 
of coupling. 
(a) L ,  = 130 mH, 

( c )  L ,  = 350 mH, 

Ans. 

L ,  = 200 mH, M = 64.5 mH 

M = 100 mH, k = 0.3 
(b)  L ,  = 2.6 pH, L2 = 3 pH, k = 0.4 

( a )  k = 0.4, ( h )  M = 1.12 pH, ( c )  L ,  = 317 mH 

16.69 An air-core transformer has an open-circuited secondary winding with 70 V induced in i t  when the primary 
winding carries a 0.3-A current and has a 12O-V, 600-Hz voltage across it. What is the mutual inductance 
and the primary self-inductance'? 

Ans. M = 61.9 mH, L ,  = 106 mH 

16.70 An air-core transformer with an open-circuited secondary has inductances of L ,  = 200mH, L,  = 
320 mH, and M = 130 mH. Find the primary and secondary voltages, referenced positive at the dotted 
terminals, when the primary current is increasing at the rate of 0.3 kA/s into the dotted terminal of the 
primary winding. 

Ans. U, = 60 V, 0, = 39 V 

16.71 An air-core transformer has inductances of L ,  = 0.3 H, L,  = 0.7 H, and M = 0.3 H. The primary 
current is increasing into the dotted primary terminal at the rate of 200A/s, and the secondary current is 
increasing into the dotted secondary terminal at the rate of 300 A/s. What are the primary and secondary 
voltages referenced positive at the dotted terminals? 

Ans. c l  = 150 V, v 2  = 270 V 

16.72 An air-core transformer with a shorted secondary has a 90-mA short-circuit secondary current and a 150-mA 
primary current when 50 V at 400 Hz is applied to the primary. If the mutual inductance is 110 mH, find 
the self-inductances. 

Ans. L ,  = 199 mH, L,  = 183 mH 
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16.73 

16.74 

16.75 

16.76 

16.77 

16.78 

16.79 

An air-core transformer with a shorted secondary has inductances of L ,  = 0.6 H, 
M = 0.2 H. Find the winding currents when a primary voltage of 50 V at 60 Hz is applied. 

Ans. I ,  = 265 mA, 1 ,  = 133 mA 

L ,  = 0.4 H,  and 

A transformer has self-inductances of 1 and 0.6 H. One series connection of the windings results in a total 
inductance of 1 H. What is the coefficient of coupling? 

Ans. k = 0.387 

The transformer windings of a transformer are connected in series with dotted terminals adjacent. Find the 
total inductance of the series-connected windings if L ,  = 0.6 H, L,  = 0.4 H, and k = 0.35. 

Ans. 0.657 H 

An air-core transformer has an 80-mH mutual inductance and a 200-mH secondary self-inductance. A 2-kR 
resistor and a 100-mH inductor are in series with the secondary winding. Find the impedance coupled into 
the primary for to = 10 krad 's. 

Ans. 178/-56.3" R 

Find V in the circuit of Fig. 16-41. 

Ans. - 801 - 37.4" V 

Fig. 16-41 

A 6.8-kR resistor is connected across the secondary of a transformer having inductances of L ,  = 150 mH, 
L,  = 300 mH, and M = 64 mH. What is the resistor current when 40 V at 10 krad,'s is applied to the 
primary? 

Ans. 2.33 mA 

Find i in the circuit of Fig. 16-42. 

Ans. 103 sin (1000t - 73.1") mA 

Fig. 16-42 

16.80 What is the total inductance of the parallel-connected windings of an air-core transformer if the dots are at 
opposite ends and if the mutual inductance is 100 mH and the self-inductances are 200 and 400 mH? 

Ans. 87.5 mH 
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16.81 Find i in the circuit of Fig. 16-43. 

Ans. 24 sin (2 t  - 76.6') A 

3n i F  30 fl j25 Q 

j40 Q 

1 1 - 
O b  

Fig. 16-43 Fig. 16-44 

16.82 Find V in the circuit of Fig. 16-44. Then switch the dot on one winding and find V again. 

Ans. 100/51.9' V, 60/51.9' V 

16.83 In the circuit shown in Fig. 16-44, place a short circuit across terminals a and b and find the short-circuit 
current directed from terminal a to terminal b. 

Ans. 1.85/-4.44" A 

16.84 For the circuit shown in Fig. 16-44, what load connected to terminals a and b absorbs maximum power 
and what is this power? 

Ans. 54.11 - 56.3" R, 83.3 W 

16.85 Find I in the circuit of Fig. 16-45. 

Ans. 7.38139.4" A 

14 -j15 Q j 4 Q  10 n 

70&0° V 

Fig. 16-45 

16.86 Calculate the answer that will appear in the output file when PSpice is run with the following circuit file. 

CIRCUIT FILE FOR PROB. 16.86 
V1 1 0  AC 24 -50 
R1 1 2  2 
L1 2 0  2 
L2 0 3  8 
K1 L1 L2 0.5 
R2 3 4  3 
C1 4 0 0.25 
.AC LIN 1 0,159155 0.159155 
.PRINT AC IM(R1) IP(R1) 
. END 

Ans. 8.4851- 78.74' A 
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16.87 Calculate the answer that will appear in the output file when PSpice is run with the following circuit file. 

CIRCUIT FILE FOR PROB. 16.87 
V1 1 0 AC 50 75 
R1 1 2 12 
L1 2 0  2 
L2 3 U 3.125 
K1 L1 L2 0.4 
R2 3 4  8 
C1 4 5 0.025 
V2 5 0 AC 30 -40 
.AC LIN 1 0.31831 0.31831 
.PRINT AC IM(R1) IP(R1) . END 

Ans. 3.657153.20' A 

16.88 Calculate the answer that will appear in the output file when PSpice is run with the following circuit file. 

CIRCUIT FILE FOR PROB. 16.88 
V1 1 0 AC 60 25 
R1 1 2 20 
L1 2 0 16 
L2 0 3  4 
K1 L1 L2 0.75 
c1 3 4 0.2 
R2 4 0  7 
R3 1 4 11 
.AC LIN 1 0.159155 0.159155 
.PRINT AC VM(R3) VP(R3) 
. END 

Ans. 58.87/40.51" V 

16.89 What is the turns ratio of a two-winding iron-core transformer that can be connected as a 2771'120V 
auto transformer? 

Ans. a = 1.31 or a = 0.764 

16.90 A 4800/240-V, 75-kVA power transformer is connected as  an  autotransformer. What is the kVA rating of 
the autotransformer for the connection shown in Fig. 16-7a? What is the kVA rating for the connection 
shown in Fig. 16-7b? 

Am. 1575 kVA, 78.75 LVA 

16.91 Find the currents I , ,  I,, and I ,  in the circuit of Fig. 16-46. 

Ans. I ,  = 800 A, I ,  = 343 A, I ,  = 1.14 kA 

Fig. 16-46 



Chapter 17 

Three-Phase Circuits 

INTRODUCTION 

T/ircq)/itr.sc~ circ*iri/.s itre import:tnt bccitusc ithost itll electric power is generated and distributed 
thrce-phase. A thrcc-phase circuit has an itc Voltitgc gcnerator, also called an ti//crticr/or. that produces 
three sinusoiditl voltitges that are identical except for it phitsc itngle difference o f  120 . The electric energy 
is transmitted over either three of four wires. more oftcn citlled liticx Most of the three-phase circuits 
presented in this chapter arc htrkrrtwtl. In them. thrcc of the line currents arc identical exmpt for it phase 
itnglc difference of 120 . 

SUBSCRIPT NOTATION 

The polarities of voltages in three-phase circuits are designated by double subscripts. as in V’,. As 
may he recalled from Chap. 1. these subscripts identify the nodes that a voltage is across. Also, the order 
gives the voltage reference polarity. Specifically, the first subscript specifies the positively referenced node 
and the second subscript the negatively referenced node. So, V,, is a voltage drop from node A to node 

Double subscripts itre also necessary for some current quantity symbols, as in I,,. These subscripts 
identify the nodes between which I,4, flows, and the order of the subscripts specifies the current reference 
direction. Specifically. the current reference direction is from the node of the first subscript to the node 
of the second subscript. So. the current I,, has a reference direction from node A to node B. 
Also, 

The subscripts identify the 
two nodes that the impxtitnce is connected bctwcen. Hut  the order of the subscripts hits no significance. 
Consequently. Z,,, = Z,,,. 

B. Also, V,, = -V’,. 

I,, = -I,.,. Figure 17-1 illustrittcs the subscript convention for I.,, and also for VA,. 
Double subscript notittic>n is itlso used for some impcdiinccs. as in 

Fig. 17-1 

THREE-PHASE VOLTAGE <; EN ER ATION 

Figure 17-211 is a cross-sectional view of it thrcc-phitsc alternator having a stationary stator and a 
countcrclockwisc rotittitlg rotor. Physiciilly displitced by 120 itround the inner periphery of the stator 
itrc three sets of itrtnitturc windings with terminals .4 itnd A‘, B itnd B’. and C itnd C‘. I t  is in these 
windings thitt thc threc-phase sinusoidal voltages are gcncratcd. The rotor has it lield winding in which 
the flow of a dc current produces a magnetic field. 

As the rotor rotates countcrclockwisc i t t  3600 r:min. its magnetic field cuts the armature windings, 
thereby inducing i n  them the sinusoiditl voltages shown in Fig. 17-2h. These voltages have peaks at 
one-third of it period ilpitrt. or 120 itpart. bccituse of the I20 spatial displacement of the armature 
windings. As it result. thc altcrnittc)r produces three voltitgcs of thc same rms vitlue. which may be as 

284 
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A 
Rotor, I Armature 

great as 30 kV, and of the same 
for example, 

VAA'  VBB' VCC' 

( b )  
Fig. 17-2 

frequency (60 Hz), but phase-shifted by 120 . These voltages might be, 

i',.,,.,, = 25 000 sin 377t V 

z'BB, = 25 000 sin (377t - 120') V 

and 

If the voltages shown in Fig 
zero. This zero sum can also be 

P~~~ = 25 000 sin (377t + 120 ) V 

17-2h are evaluated at any one time, i t  will be found that they add to 
shown by vector graphical addition of the phasors corresponding to 

these voltages. Figure 17-3a is a phasor diagram of the three phasors VAAf,  VBBr, and Vcct, corresponding 
to the generated voltages. These three phasors are added in Fig. 17-3h by connecting the tail of VBB, to 
the tip of VAA,, and the tail of Vcc. to the tip of VBB,. Since the tip of Vcc. touches the tail of VAAf, the 
sum is zero. And since the sum of the phasor voltages is zero, the sum of the corresponding instantaneous 
voltages is zero for all times. 

In general, three sinusoids have a sum of zero if they have the same frequency and peak value but 
are phase-displaced by 120". This is true regardless of what, if anything, that the sinusoids correspond 
to. In particular, i t  is true for currents. 

GENERATOR WINDING CONNECTIONS 

The ends of the generator windings are connected together to decrease the number of lines required 
for connections to loads. The primed terminals can be connected together to form the Y (wye) shown 



386 T H  R E E - P H A S E  CI R C U  ITS [CHAP. 17 

E ’  
A c  

I B  
n 

( b )  
Fig. 17-4 

in Fig. 17-4a, or primed terminals can be connected to unprimed terminals to form the A (delta) shown 
in Fig. 17-4b. The primed letters are included this once to show these connections. But since the terminals 
at which they are located also have unprimed letters, the primed letters are not necessary. These 
Y and A connections are not limited to generator windings but apply as well to transformer windings 
and load impedances. There are some practical reasons for preferring the Y connection for alternator 
windings, but both the Y and A connections are used for transformer windings and for load impedances. 
Incidentally, in circuit diagrams, sometimes circular ac generator symbols are used instead of the coil 
symbols. I 

In the Y connection shown in Fig. 17-4a, the primed terminals are joined at a common terminal 
marked N for neutral. There may be a line connected to this terminal, as shown, in which case there are 
four wires or lines. If no wire is connected to the neutral, the circuit is a three-wire circuit. The A 
connection illustrated in Fig. 17-4h inherently results in a three-wire circuit because there is no neutral 
terminal. 

For the Y connection, the line currents are also the winding currents, also called pliasc. cwrtwts .  A 
line current is a current in one of the lines and by convention is referenced from the source t o  the load. 
A phase current is a current in a generator or transformer winding or in a single load impedance, which 
is also called a phase of the load. 

A Y connection of windings or of impedances has two sets of voltages. There are the voltages VAN, 
VBN, and VCN from terminals A,  B,  and C to the neutral terminal N .  These are pliLise voltaycv. These 
differ from the line-to-line voltages, or just line uoltuges, V,,, VBc, and VcA, across terminals A, B, and 
C. There are three other line voltages that have a 120” angle difference. These are V,,., V,,, and V,,, 
which are the negatives of the other line voltages. In each set of line voltages, no two subscripts begin 
or end with the same letter. Also, no two pairs of subscripts have the same letters. 

For the A shown in Fig. 17-4b, the line voltages are the same as the phase voltages. But the line 
currents I,, I,, and I, differ from the phase currents I,,, I,,., and I(.,,, that flow through the windings. 
There is another suitable set of phase currents: I,,., I,,, and I,.,, which are the negatiLres of the currents 
in the first set. 

PHASE SEQUENCE 

The phase sequence of a three-phase circuit is the order in which the voltages or currents attain their 
maxima. For an illustration, Fig. 17-2h shows that P,,, peaks first, then t’, , , ,  then t‘, .(, . ,  then L‘,., ,~, etc., 
which is in the order of . .  . A B C A B C A B . .  . . Any three adjacent letters can be selected to designate the 
phase sequence, but usually the three selected are ABC. This is sometimes called thc posirire phusr 
sequence. If in Fig. 17-2a the labels of two windings are interchanged, or if the rotor is rotated clockwise 
instead of counterclockwise, the phase sequence is ACB (or C B A  or BAC),  also called the ncyiitii’r plzusv 
sequence. Although this explanation of phase sequence has been with respect to voltage peaking, phase 
sequence applies as well to current peaking. 
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Phase sequence can be related to the subscripts of voltage and current phasors. If, for example, 
VAN has an angle 120" greater than that of VBN, then vAN must lead vBN by 120°, and so the phase 
sequence must be ABC. Incidentally, the terms "lead" and "lag" are often applied to the voltage phasors 
as well as to the corresponding instantaneous voltages. For another example, if VCN leads VBN by 120", 
then in the phase sequence the first subscript C of VcN must be immediately ahead of the first subscript 
B of VBN. Consequently, the phase sequence is C B A ,  or ACB, the negative phase sequence. 

Phase sequence can be related to either the first or second subscripts of the line voltage phasors. 
This can be verified with an example. Figure 17-5a shows a phasor diagram of phase voltages VAN, VBN, 
and VcN for an ABC phase sequence. Also included are terminals A, B, C, and N positioned such that 
lines drawn between them give the correct corresponding phasors. Drawn between terminals A, B, and 
C are a set of line voltage phasors: VAB, VBc, and VCA, which are redrawn in the phasor diagram shown 
in Fig. 17-91. Note that VAB leads VBc by 120" and that VBc leads VCA by 120". On the basis of this 
leading, the order of the first set of subscripts is ABC,  in agreement with the phase sequence. The order 
of the second set of subscripts is BCA, which is equivalent to ABC,  also in agreement with the phase 
sequence. This order can also be found by using a reference point R on the phasor diagram, as shown. 
If the phasors are rotated counterclockwise about the origin, the first subscripts pass the reference point 
in the order of the phase sequence, as do the second subscripts. 

R 
0 

Fig. 17-5 

In a similar manner it can be shown for a balanced circuit that the line current phasor subscripts 
correspond to the phase sequence order in the same way as explained for the voltage phasor subscripts. 
Also, the same is true for either the first or the second subscripts of the phase current phasors for a 
balanced A load. (A balanced A load has three equal impedances.) 

BALANCED Y CIRCUIT 

Figure 17-6 shows a hciluncvd Y circuit that has a balanced Y load (a Y load of identical impedances) 
energized by a generator having Y-connected windings. Instead of generator windings, the windings 
could as well be the secondary windings of a three-phase transformer. A neutral wire connects the two 
neutral nodes. 

A balanced three-phase circuit is easy to analyze because it is, in effect, three interconnected but 
separate circuits in which the only difference in responses is an angle difference of 120". The general 
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I I 

Fig. 17-6 

analysis procedure is to find the desired voltage or current in one phase, and use i t  with the phase 
sequence to obtain the corresponding voltages or currents in the two other phases. For example, in the 
circuit shown in Fig. 17-6, the line current I, can be found from I, = V,,/Z,. Then, I, and I, can be 
found from I ,  and the phase sequence: They have the same magnitude as I , ,  but lead and lag I ,  by 
120" as determined from the phase sequence. 

Since the three currents I,, I,, and I, have the same magnitude but a 120 angle difference, their 
sum is zero: I, + I, + I, = 0. And from KCL, I, = - ( IA + I, + I,) = 0 A. Because the neutral wire 
carries no current, it can be eliminated to change the circuit from a four-wire to a three-wire circuit. A 
further consequence of the zero neutral current is that the tkro neutral nodes Lire (it tlic s m i e  potentid, 
even without the neutral wire. In  practice, though, i t  may be a good idea to have a small neutral wire 
to ensure balanced phase voltages in case the load impedances are not exactly the same. 

The set of phase voltages and either set of line voltages for a balanced Y load have certain angle 
and magnitude relations that are indepentierzt of' the lotid inipedrnce. These relations can be obtained 
from one of the triangles shown in  Fig. 17-5tr. Consider the triangle formed by V,,, V,.v, and VEc. The 
largest angle is 120-, leaving 180' - 120 = 60 for the other two angles. Since these two are opposite 
sides of equal length, they must be equal and so 30 each as shown in Fig. 17-7~i .  I t  can be seen that 
there is a 30' angle between line voltage V,,. and phase voltage V,,v, as is better shown in Fig. 17-7h. 
As should be evident from Fig. 17-5u, there is also a 30 angle difference between V,,,, and V,4, and 
between V,, and VcN. In general, in the voltage phasor diagram for a balanced Y load, there is a 30 
angle between each phase voltage and the nearest line voltage. This 30 can be either a lead or a lag, 
depending on the particular set of line voltages and also the phase sequence. 

( a  1 
Fig. 17-7 

Figure 17-8 has all the possible phasor diagrams that relate the Y phase voltages and the two sets 
of line voltages for the two phase sequences. Thus, all angle relations between the line and Y phase 
voltages can be determined from them. From the subscripts it should be apparent that Figs. 17-8u and 
h are for an ABC phase sequence and Figs. 17-8c and d are for an A C B  phase sequence. Only relative 
angles are shown. For actual angles, the appropriate diagram would have to be rotated until any one 
phasor is at its specified angle, but this is seldom necessary. 
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There is also a relation between the magnitudes ofthc line and phitsc voltages. From Fig. 17-7fr iind 
the law of sines, 

or V ,  = ,"3V,,. In general, for it bitlanccd Y loitd the line voltitgc tlliigtlittdr: 1;. is 3 times 1;. 

Incidentally. in the description of it threc-phiisc circuit thc spccilicd voltiiac should ho itssttnlcd to 
the phase voltage magnitude: C; = .;31.,. 

be the rms line-to-line voltage. 

BALANCED A LOAD 

Figure 17-9 shows a balanced A load connected by three wires to ii thrce-phase source. As ;I pritcticiil 
matter, this source is either a Y-connected iiltcrnittot or. more prohlibly, a Y- or A-coniiected secondary 
of a three-phase transformer. There is. of course. no neutral wire beci1use it A load hus only three terminals. 

The general procedure for finding the A phase currents is to first find one phitse current and then 
use it with the phase sequence to find the other two. For cxamplc, the phiisc current I, , ,  can be found 
from and then I,(. and I(.,, from I.,,, itnd the ph:isc seyucncc: Thcsc have the s;mc 
magnitude as I,,, but lead and litg I,, by 120 its determined from the phi1sc scquencc. 

The set of line currents and either set of phiisc currents for ;I halnnccd A haw certain angle ittld 
magnitude relations that are k t l i p v i t b t t  of' the lotid k i p t v k r t i t r ~ .  Thcsc can tx found by applying KCL 

I,, = V,,/Z, 
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Fig. 17-10 

at any terminal in the circuit shown in Fig. 17-9. If done at terminal A ,  the result is I, = I,, - Ic,. 
Figure 17-10a is a graphical representation of this subtraction for an A B C  phase sequence. Since this is 
the same form of triangle as for the phase and line voltages of a balanced Y load, the results are similar: 
On a phasor diagram there is a 30" angle difference between each phase current and the nearest line 
current, as shown in Fig. 17-lob. This 30' can be either a lead or a lag, depending on the particular set 
of phase currents and on the phase sequence. Also, the line current magnitude I ,  is j 3  times I,, the 
phase current magnitude: 

Figure 17-11 has all the possible phasor diagrams that relate the line currents and the two sets of 
phase currents of balanced A loads for the two phase sequences. Thus all angle relations between the 
line and A phase currents can be determined from them. From the subscripts it should be evident that 
Figs. 17-1 la  and h are for an A B C  phase sequence and that Figs. 17-1 lc and d are for an A C B  phase 
sequence. Only relative angles are shown. For actual angles, the appropriate diagram would have to be 
rotated until any one phasor is at its specified angle, but this is seldom necessary. 

I ,  = J I p .  

Fig. 17-1 1 

PARALLEL LOADS 

If a three-phase circuit has several loads connected in parallel, a good first step in an analysis is to 
combine the loads into a single Y or A load. Then, the analysis methods for a single Y or A load can 
be used. This combining is probably most obvious for two A loads, as shown in Fig. 17-12a. Being in 
parallel, corresponding phase impedances of the two A's can be combined to produce a single equivalent 
A. 

- 
( b )  

Fig. 17-12 
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If there are two Y loads, as shown in Fig. 17-12h, and if there is a neutral wire (not shown) connecting 
the two neutral nodes of the loads, corresponding phase impedances of the two Y’s are in parallel and 
can be combined to produce a single equivalent Y. Even if there is no neutral wire, the corresponding 
phase impedances are in parallel provided that both Y loads are balanced because then both neutral 
nodes are at the same potential. If the loads are unbalanced and there is no neutral wire, corresponding 
impedances of the two Y’s are not in parallel. Then, the two Y’s can be transformed to two A’s, and 
these combined into a single equivalent A. 

Sometimes a three-phase circuit has a Y load and a A load, as shown in Fig. 17-12c. If the loads 
are balanced, the A can be transformed to a Y and then the two Y’s combined. If the loads are unbalanced, 
the Y can be transformed to a A and then the two A’s combined into a single equivalent A. 

POWER 

The average power absorbed by a balanced three-phase Y or A load is, of course, just three times 
the average power absorbed by any one of the phase impedances. For either a balanced A or a Y load, 
this is P = 3 V p I p  cos 8. The power formula is usually expressed in terms of the rms line voltage 
V, and the rms line current I , .  For a Y load, V, = V, /a and I ,  = I , .  And for a A load, I/, = 

V, and I ,  = I , / &  With either substitution the result is the same: 

P = J3V,IL cos 0 

which is the formula for the total average power absorbed by either a balanced Y or A load. I t  is 
important to remember that 0 is the load impedance angle and not the angle between a line voltage and 
line current. 

Formulas for complex power S and reactive power Q can be readily found using the relations with 
average power presented in Chap. 15. For a balanced three-phase load, the result is 

r 
S = f i V ‘ l , & l  and Q = \ /3h-lLsin 0 

Three-phase power factor correction is obtained with a balanced Y or A of capacitors, with each 
phase producing one-third of the required reactive power. Consequently, for each phase of a A the 
capacitance required is 

P[tan (cos- ’ PF,) - tan (cos- ’ PF,)] c - _________ 

3ca v; A -  

But since for a Y the phase voltage is 
the 3s divide out, with the result that 

V,/$, the voltage factor in the denominator is V i / 3 .  So, 

P[tan (cos- ’ PF,) - tan (cos- ’ PF,)] c - _ _ _ _ ~  ~ ~~ ~ .. 

Consequently, for a Y connection of power factor correction capacitors, the capacitance required in each 
phase is three times that required for a A. On the other hand, though, the breakdown voltage requirement 
is less for the Y-connected capacitors. 

Y -  
(0 v; 

THREE-PHASE POWER MEASUREMENTS 

If a three-phase load is balanced, the total average power absorbed can be measured by connecting 
a wattmeter into a single phase and multiplying the wattmeter reading by three. For this, the wattmeter 
current coil should be connected in series with a phase impedance and the wattmeter potential coil 
should be connected across this impedance. If the load is unbalanced, three measurements can be made, 
one in each phase. 
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Frequently, though, it is impossible to connect a wattmeter into a phase. This is true, for example, 
for the common three-phase electric motor that has just three wires extending from it .  For such an 
application, the two-wuttmeter method can be used, provided that there are just three wires to a load. 

Figure 17-13 shows the wattmeter connections for the two-wattmeter method. Notice that the 
current coils are in series in two of the lines and that the respective potential coils are connected between 
these two lines and the third line. The _+ terminals are connected such that each wattmeter is connected as 
if to give an upscale reading for power absorbed by the load. 

Fig. 17-13 

I t  can be shown that the total average power absorbed by the load is equal to the alyehruic. sum of 
the two wattmeter readings. So, if  one reading is negative, it is added, sign and all, to the other wattmeter 
reading. (Of course, i t  may be necessary to reverse a coil to obtain this reading.) This two-wattmeter 
method is completely general. The load does not have to be balanced. In  fact, the circuit does not have 
to be three-phase or even sinusoidally excited. 

From the line voltage and current phasors, i t  can be calculated that, for a balanced load with 
an impedance angle of 0, one wattmeter reading is V , I ,  cos(30 + U )  and the other is 
V L  I ,  cos(30" - U ) .  reading has a current coil in the 
line corresponding to the phase sequence letter that immediately precedes the letter of the line in which 
there is no current coil. If, for example, there is no current coil in line C, and if the phase sequence is 
ABC,  then, since B precedes C in the phase sequence, the wattmeter with its current coil in line B has the 
V L  I ,  cos (30" + 0) 

The impedance angle for the phase impedance of a balanced load can be found from the readings 
of wattmeters connected for the two-wattmeter method. There are six formulas that relate the tangent 
of the impedance angle to the power readings. The appropriate formula depends on the phase sequence 
and the lines in which the current coils are connected. If P,4, P,, and P ,  are the readings of wattmeters 
with current coils in lines A ,  B,  and C, then, for an ABC phase sequence, 

The wattmeter with the V,I , -  cos(30' + 0) 

reading. 

For an ACB phase sequence, tan 0 equals the negative of these. 
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UNBALANCED CIRCUITS 

If a three-phase circuit has an unbalanced load, none of the shortcuts for the analysis of balanced 
three-phase circuits can be used. Conventional mesh or loop analysis is usually preferable. If the load 
is an unbalanced Y with a neutral wire, then the voltage across each phase impedance is known, which 
means that each phase current can be readily found. The same is true for an unbalanced A load if there 
are no line impedances. Otherwise, it may be preferable to transform the A to a Y so that the line 
impedances are in series with the Y phase impedances. 

PSPICE ANALYSIS OF THREE-PHASE CIRCUITS 

PSpice applies to the analysis of a three-phase circuit, balanced or unbalanced, as to any ac circuit. 
There are, however, three special considerations. First, if a Y load has a series-connected capacitor in 
each phase and if there is no neutral wire, then PSpice will not complete an analysis because there is 
no dc path from the neutral node of this Y to the 0 node, assuming that this neutral node is not the 0 
node. This problem is easily solved by inserting between these two nodes a resistor of extremely large 
resistance, thus providing the dc path without significantly affecting the analysis. 

Second, a A-A circuit has no convenient node for the 0 node, which may or may not be important. 
If it is important, a balanced Y of resistors can be inserted and then the neutral node of this Y used for 
the 0 node. The resistance of each resistor should be large enough to avoid having the inserted Y affect 
the results. 

Finally, PSpice will not analyze a circuit that has a A of voltage sources, inductors, or transformer 
windings, or a mixture of these. Inserting into this A a single resistor of negligibly small resistance will 
eliminate this problem as regards obtaining external voltages or currents. But if currents are of interest 
interior to a A of voltage sources, it is necessary to insert two other resistors to achieve balance. Otherwise, 
the obtained source currents will not even be approximately accurate. 

Incidentally, for a A of voltage sources, one voltage source can be replaced by an open circuit to 
avoid having a loop of voltage sources. This deletion will not change the line voltages. I t  will, however, 
affect the currents flowing in the voltage sources, and so cannot be done if these currents are of interest. 
Similarly, for a three-phase transformer, if the windings are connected A-A, one primary winding and 
the corresponding secondary winding can be replaced by open circuits to avoid having loops of inductors. 
Electric utilities sometimes use two single-phase transformers in this manner to obtain three-phase 
transformer action. This is called an open-deltu instullution, and provides 57.7 percent of the capacity of 
a three-transformer bank. Utilities often use an open-delta installation when they know that the load 
will be increased in the future. 

Solved Problems 

17.1 What is the phase sequence of a balanced three-phase circuit in which 
VCN = 7200/- 100" V ?  What is V,,? 

Since V,, lags V,, by 120", and the first subscripts are C and A ,  respectively. C follows A in  the phase 
sequence. So, the phase sequence is ACB, the negative phase sequence. Of course, V,, leads V,,v by 120 , 
but has the same magnitude: 

V.4N = 7200/20' V and 

V,, = 7200/20' + 120" = 7 2 W B  V. 

17.2 What is the phase sequence of a balanced three-phase circuit in which 
VCiv = 277/90" V ?  What is V A N ?  

V,,\, = 277/-30'' V and 
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Since V,.,v leads V,,v by 120 , and the first subscripts are C and B, respectively. C leads B in the phase 
sequence, which must be C B A ,  or A C B ,  the negative phase sequence. Of course, V,, has the same magnitude 
as V,.,v, but has an angle that is 120 greater: 

V,,v = 277/90 + 120 = 277/210 z= 277/- 150 V 

17.3 In a three-phase, three-wire circuit, find the phasor line currents to a balanced Y load in which 
each phase impedance is and the phase sequence is 
ABC.  

Z, = 20/30 R. Also, V,,4, = 120/20 V, 

The line current 1, can be found by dividing the phase voltage V,,,,v by the phase impedance Z,: 

The other line currents can be determined from I, and the phase sequence. They have the same magnitude 
as I,, and for the specified ABC phase sequence, the currents 1, and I,., respectively, lag and lead I, by 
120'. so, 

I, = 6/-10J - 120' = 6/- I30  A and I,. = 6/- 10 + 120 = 6&l A 

17.4 What is the phase sequence of a three-phase circuit in which and 
V,, = 13 200/110" V? Also, which line voltage has an angle that differs by 120 from the angles 
of these voltages? 

The phase sequence can be found from the voltage angles and first subscripts. Since V,,. leads V,, by 
120 , and since the first subscripts are B and A, respectively, B is immediately ahead of A in the phase 
sequence. So the phase sequence must be B A C  or equivalently, A C B .  the negative phase sequence. 

The third line voltage is either V,.,,, or V,,. because only A and C of A B C  have not been used together 
in subscripts. The proper third line voltage the voltage that has an angle differing by 120 from those of 
V,, and V,,-is VCA since no two line voltages of a set can have subscripts that start with the same letter, 
as would be the case if VAC were used. Thus. This result is also obvious from 
Fig. 17-8c. 

V,, = 13 200/- 10 V 

V,,4 = 13 200/- 130 V .  

17.5 A balanced three-phase Y load has one phase voltage of V,,, = 277/45 V. I f  the phase sequence 
is A C B ,  find the line voltages V,,, V,4,, and VBc. 

From Fig. 17-8c, which is for an A C B  phase sequence and the specified line voltages. i t  can be seen 
that the line voltage V,.,4 has an angle that is 30 less than that of V,.,. Its magnitude is, of course, greater 

from the same figure or from the fact that V,4, has an angle that is 120 greater because its first subscript .4 is 
just ahead of the first subscript C of V,., in the phase sequence ACB. Similarly, must lag V,,,, by 

- 
by a factor of \/i3. SO, V(., = 277, 3/45 -30 = 4 8 0 b  V. Also, V,, = 480/15 + 120 = 480/135 V, 

120 : V,,-=480/15 - 120 =480/-105 V. 

17.6 What are the phase voltages for a balanced three-phase Y load if V,,., = 12 470/-35 V? The 
phase sequence is ABC.  

From Fig. 17-8h. which is for an ABC phase sequence and the set of line voltages that includes V,,,,, 
it can be seen that V,,v leads V,,4 by 30 . Also, the magnitude of V,, is less by a factor o f ,  3. So. 

Also from this figure, or from the phase sequence and first subscript relation, V , ,  leads VHS by 1 2 0 ,  and 
V,, lags it by 120': 

V,, = 72oOj-5 + 120 = 7 2 0 0 m  V and V,.v = 72001-5 - 120 = 7200/- I25 V 
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17.7 

17.8 

17.9 

17.10 

17.1 1 

17.12 

A balanced three-phase, three-wire circuit with an ABC phase sequence has one line current 
of I, = 20/40" A. Find the other line currents. 

Because the circuit is balanced, all three line currents have the same magnitude of 20 A. And because 
the phase sequence is ABC, and A precedes B in the sequence, I, leads I, by 120 . For a similar reason, I, 
lags I, by 120". Consequently, 

I, = 20/40" + 120 = 2 0 m '  A and I, = 20/40' - 120 = 20!-80' A 

What is the I, line current in an unbalanced three-phase, three-wire circuit in which I, = 
50/60' A and I, = 80/160" A? 

I, = - I ,  - I, = By KCL, the sum of the three line currents is zero: I, + I, + I,. = 0, from which 
- 50/60" - 80/1603 = 86.7/- 54.6 A. 

A balanced Y load of 4 0 - 0  resistors is connected to a 480-V, three-phase, three-wire source. Find 
the rms line current. 

Each line current is equal to the load phase voltage of 480, \ ' 3  = 277 V divided by the phase 
impedance of 40 R: I ,  = 277140 = 6.93 A. 

A balanced Y load of 50/- 30" R impedances is energized by a 12 470-V, three-phase, three-wire 
source. Find the rms line current. 

Each line current is equal to the load phase voltage of 12 470 '3 = 7200 V divided by the phase 
impedance magnitude of 50 R:  I ,  = 7200150 = 144 A. 

Find the phasor line currents to a balanced Y load of impedances 
a three-phase source. One phase voltage is 

the other line currents can be found from I, with the aid of the phase sequence. The line current I, is 

Z, = S O D 2  R energized by 

The line current I, can be found by dividing the phase voltage V,,&! by the phase impedance Z,. Then 

V,,v = 120/30" V, and the phase sequence is ABC.  

Since the phase sequence is ABC, the angle of I, is 120 more than the angle of I,. Of course, the current 
magnitudes are the same: I, = 2.4/5 + 120 = 2.4/125 A. Similarly. the angle of I, is 120' less. So, 
I, = 2.4/5" - 120" = 2.4/- 115- A. 

In a three-phase, three-wire circuit, find the phasor line currents to a balanced Y load for 
which Z, = 60/-30" R and V,, = 480/65" V. The phase sequence is ABC.  

From Fig. 17-8h, the phase voltage V,, has an angle that is 30J greater than that of V,, and, of course, 
has a magnitude that is less by a factor of 

The line current I, is 

Since A follows C in the phase sequence, I, lags I, by 120 : 
B precedes C in the phase sequence, 1, leads I, by 120 : 

I, = 4.62/125 - 120 = 4.62b A. And because 

I, = 4.62/125 + 120 = 4 . 6 2 b  = 4.621- I15 A 
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17.13 What is the phase sequence of a balanced three-phase circuit with a A load in which two of the 
phase currents are I,,4 = 61-30 A and lc, = 6/90 A'? What is IAc? 

Since I,.,, with a first subscript of C, has an angle 120 greater than that of I, , ,  which h a \  :i 

first subscript of B, the letter C precedes the letter B in the phase sequence. Thus the phase scqucncc 
must be ACB. the negative phase sequence. From this pliase sequence, the current I,,., with a fir\( 
subscript o f  A,  has an  angle that is 120 less than that of I,,,,. Of course. the magnitude is the same. S o .  
I,, = 6/-30' - 120' = 6/- I50 A. 

17.14 Find the phase currents IBc, IAB,  and ICA of a balanced three-phase A load to which one line 
current is 

From Fig. 17-1 I L J ,  which is for an ABC phase sequence and the specified set of A phase currents. i t  can 
be seen that I,(. has an angle that is 30 greater than that of I,, and, of course. has a magnitude that is less 
by a factor of 1 , 3. Consequently, 

I, = 501-40 A. The phase sequence is A B C .  

= 28.9/-10 A IN,. = --- 
50/-40 + 30 

Also, from the same figure or from the fact that I,,, has an  angle that is 120 greater because its first sub- 
script A is just ahead of the first subscript B of in the phase sequence ,4BC. 1 4 ,  = 

less than that of I,, . = 2 8 . 9 L O  A. Then lc..f must have an  angle that is 120 
10 - 120 = 28.9/-130 A. 

17.15 A balanced three-phase A load has one phase current of I,,,f = 10m A. The phase sequence is 
ACB. Find the other phasor phase currents and also the phasor line currents. 

The two other desired phase currents are those having angles that differ by 120 from the angle of I B 4 .  
These are and I,.,, ;is can be obtained from the relation o f  subscripts: No two currents can habe the 
same firs: or second subscript letters, or the same two letters. This is also obvious from Fig. 17-1 Ic. Since 
the phase sequence is .4CB or negative, I , ,  must lead I,, by 120 because in the phase sequence the letter 
C, the first subscript letter of I,.,, precedes the letter B, the first subscript letter of I,.,. Also, Fig. 17-1 1,- 
shows this 120 lead. Therefore, I,,,  = 
10/30 - 120 = 10/-90 A. 

From Fig. 17-1 lc ,  I,4 lags I .,, by 30 , and since i t  has a magnitude that IS greater by a factor of 

, 3, I,4 = 10, 31-90 - 30 = 17.3/- 120 A. Because the phase sequence is A C B .  currents I ,  and I , ,  
respectively, lead and lap I ,  by 120 : 

I ,  , = 10130 + 120 = lO/l_So A.  Then I,,, must lag I , ,  by 120 : 

- - 

I, = 17.31-120 + 120 = 1 7 . 3 b  A and I,. = 17.3/-120 - 120 = 17.31-240 = 17.3/110 A 

17.16 What are the phasor line currents to a balanced three-phase A load if one phase current 
is I,, = 10/'20 A 

From Fig. 17-1 I b ,  which is for an ABC phase sequence and the set of phase currents that includes I ,  ,. 
I,. = 

and if thc phase sequence is A B C ?  

- 
i t  can be seen that I,. leads by 30 . Of course, its magnitude is greater by a factor of , 3. So 
10, 7/20 + 30 = 1 7 . 3 m  A.  From the phase sequence, I, leads I,. by 120 and I ,  lags i t  by 120 : 

I,  = 17.3/50 + 120 = 17.3/170 A and I, = 17.3/50 - 120 = 17.31-70 A 

17.17 A 208-V three-phase circuit has a balanced A load of 50-SZ resistors. Find the rms line current. 

voltage (and also phase koltage) divided by the 5042 phase resistance: 

current I ,  is greater bq a factor o f ,  3: 

The rms line current I ,  can be found from the rms phase current I,, which is equal t o  the 208-V line 
I, = 208150 = 4.16 A .  The rrns line - 

I,,  = , 3(4.16) = 7.21 A. 

17.18 Find the phasor line currents to a balanced A three-phase load of impedances 
one phase voltage is 

Z, = 40//100 i 2  i f  
VcTB = 4801- 15 V and if the phase sequence is ,4CB. 
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A good first step is to find the phase current ICE: 

From Fig. 17-llc, which is for an A C B  phase sequence and the set of phase currents that includes I,,, the 
line current I, lags I,, by 30". Of course, its magnitude is greater by a factor of J5. So 

I, = 12J3/-25 - 3OC = 20.8/-5SA 

Since the phase sequence is A C B ,  the line currents I, and I, respectively lead and lag I, by 120' : 

I, = 20.81-55" + 12OC = 20.8& A and I, = 20.8/-55 - 120 = 20.8/- 175' A 

17.19 A balanced A load of impedances Z, = 241-40' SZ is connected to the Y-connected secondary 
of a three-phase transformer. The phase sequence is ACB and V,, = 277/50" V. Find the phasor 
line currents and load phase currents. 

I, = VBN,'ZY. The next step 
is to use the phase sequence to obtain I, and I, from I,. The last step is to use either Fig. 17-llc or d to 
obtain the phase currents from I,. This is the approach that will be used, although there are other approaches 
just as short. 

One approach is to find the corresponding Z, and use it to find I, from 

The corresponding Y impedance is Zy = Z,/3 = (24/-40'),13 = 8/-40' 0. And 

Since the phase sequence is ACB, the line currents I, and I, respectively lag and lead I, by 120': 

I, = 34.6/90" - 120" = 34.6/- 30" A and I, = 34.6/90' + 120" = 34.6/210" = 34.6/- 150" A 

Either set of load phase currents can be found: I,,, I,,, and I,,, or I,,, I,,, and I,,. I f  the first set is 
selected, then Fig. 17-1 Id can be used, which has these currents for an ACB phase sequence. I t  can be seen 
that I,,, IBc, and I,, lag I,, I,, and I, respectively by 30'. The magnitude of each load phase current is, 
of course, 34.6/$ = 20 A. Thus, 

I,, = 20/-60" A I,, = 2 O k  A I,, = 20/- 180' = -20 A 

17.20 Find the rms line voltage I/, at the source of the circuit in Fig. 17-14. As shown, the rms load 
phase voltage is 100 V and each line impedance is 2 + j 3  R. 

8 211 j3 R k - 
+ + 

10 R 

100 V 

V L  
Three-phase 

source 

211 j3 R 

Fig. 17-14 
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17.2 1 

17.22 

The rms line current I ,  can be used to find V l , .  Of course, I ,  is equal to the 100-V load phase voltage 
divided by the magnitude of the load phase impedance: 

100 

110 - j9 (  
I 1, - - __- - - = 7.43 A 

In flowing, this current produces a voltage drop from a source terminal to the load neutral terminal N ,  
which drop is equal to the product of this current and the magnitude of the sum of the impedances that 
the current flows through. This voltage is 

ILIZllne + ZyJ = 7.43)(2 + j3) + (10 - j9 ) l  = 7.43) 12 - j6l = 7.43 13.42) = 99.7 V 

The line voltage at the source is equal to v ' 3  times this: I/,* = \ 3(99.7) = 173 V. 

Find the rms line voltage V L  at the source of the circuit in Fig. 17-15. As shown, the rms line 
voltage at the load is 100 V and each line impedance is 2 + j 3  R. 

> j3 R 1L  

---+ 

+ 

VL 
Three-phase 

source 

2 R  j3 R 

2 R  j3 R 

I 
Fig. 17-15 

Perhaps the best approach is to transform the A to an equivalent Y and then proceed as in the solution 
to Prob. 17.20. The equivalent Y impedance is (9 + j12 ) /3  = 3 + j 4  R. Since the line voltage at the load is 

100 V, the line-to-neutral voltage for the equivalent Y load is 3 = 57.74 V. The rms line current I ,  
is equal to this voltage divided by the magnitude of the Y phase impedance: 

- 

100 

57.74 57.74 
1 - _____ = -- - = ] 1.55 A 
L - 1 3 + j 4 \  5 

In flowing, this current produces a voltage drop from a source terminal to the Y neutral terminal, which 
drop is equal to the product of this current and the magnitude of the sum of the impedances that the current 
flows through. The voltage is 

I1,IZllne + Z,( = 11.55((2 + j3) + (3 + j4)l = 11.5515 +j7I = 11.55(8.6) = 99.3 V 

And the line voltage at the source is equal to t' 3 times this: I/,- = '3(99.3) = 172 V. 

A 480-V, three-phase, three-wire circuit has two parallel-connected balanced S loads, one of 5-R 
resistors and the other of 20-R resistors. Find the total rms line current. 

Because the corresponding resistors of the A loads are in parallel, the resistances can be combined to 
resistors. The phase current of this A is equal to the line 

I, = 480 4 = 120 A. And, of course, the line current is \ 3 times 
produce an equivalent single A of 
voltage divided by the 4 R of resistance: 

greater. So. I, = , 3(120) = 208 A. 

51\20 = 4-R - 
7 
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17.23 A 208-V, three-phase, three-wire circuit has two parallel-connected balanced Y loads, one of 
6 - a  resistors and the other of 12-ln resistors. Find the total rrns line current. 

Since the loads are balanced, the load neutral nodes are at the same potential even if there is no 
connection between them. Consequently, corresponding resistors are in parallel and can be combined. The 
result is a net resistance of 611 12 = 4 R. This divided into the phase voltage of 208/$ = 120 V gives 
the total rms line current: I ,  = 12014 = 30 A. 

17.24 A 600-V three-phase circuit has two parallel-connected balanced A loads, one of 4Om-0 
impedances and the other of 50/-6Oo-lZ impedances. Find the total rms line current and also 
the total average absorbed power. 

Being in parallel, corresponding A impedances can be combined to 

= 31.2/-8.7 = 30.9 - j4.7 R (40/30 )(50/ - 60 ) 

40/30 + 50/-60 64/-21.3 

2000/- 30' - z, = - 

The rms phase current for the combined A is equal to the line voltage divided by the magnitude of this 
impedance : 

And the rms line current is I ,  = \ ' 3 1 ,  = ,'3(19.2) = 33.3 A. 
The total average power can be found using the phase current and resistance for the combined A :  

P = 3 I i R  = 3(19.2)'(30.9) = 34.2 x 103 W = 34.2 kW 

Alternatively, i t  can be found from the line quantities and the power factor: 
r - 

P = d'3K,l1, x PF = 'I 3(600)(33.3) cos (-8.7") = 34.2 x 103 W = 34.2 kW 

17.25 A 208-V three-phase circuit has two parallel-connected balanced loads, one a A of 211 30'42 
impedances and the other a Y of 91-60"-R impedances. Find the total rms line current and 
also the total average absorbed power. 

The two loads can be combined if the A is transformed to a Y or if the Y is transformed to a A so that, 
in effect, the loads are in parallel. If the A is transformed to a Y, the equivalent Y has a phase impedance 
of (21/30 )13 = 7/30" R. Since the circuit now has two balanced Y loads, corresponding 
in parallel and so can be combined: 

impedances are 

= 5.531- 7.87 = 5.47 - j0.76 R 
(7/3OL)(9/-6OL) 63/-30' 

- 7/30' + 9/-60 - Kj22.13" 
z -  - 

The rms line current is equal to the phase voltage of 
of the combined phase impedance: 

I/, = 208,',/3 = 120 V divided by the magnitude 

120 

z, 5.53 
I ,  = - = - = 21.7 A 

Since this current effectively flows through the resistance of the combined Y, the total average power 
absorbed is 

P = 3ILR = 3(21.7)2(5.47) = 7.8 x 103 W = 7.8 kW 

Alternatively, the line voltage and current power formula can be used: 

r P = wl 3VI,I12 x PF = J5(208)(21.7) COS (-7.87') = 7.8 x 103 W = 7.8 kW 
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17.26 A balanced Y of 20,/23"-fl impedances and a parallel-connected balanced A of 42130"-R 
impedances are connected by three wires to the secondary of a three-phase transformer. If  
V,, = 4 8 0 w  V and if the phase sequence is ABC, find the total phasor line currents. 

A good approach is to obtain an equivalent single combined Y impedance, and also a phase voltage, 
and then find a line current by dividing this phase voltage by this impedance. The other line currents can 
be obtained from this line current by using the phase sequence. For this approach the first step is find the 
equivalent Y impedance for the A. I t  is (42/30")/3 = 14LO1 Q. The next step is to find a combined Y 
impedance Zy by using the parallel combination formula: 

From Fig. 17-8u, which is for an ABC phase sequence, V,, has an angle that is 30" less than that of V,, 

and, of course, it  has a magnitude that is less by a factor of l/>: 

480/10' - 30" 
V,, = ______ = 2771 - 20" V 

I5 
d =  

The line current 1, is equal to this voltage divided by the combined Y phase impedance: 

From the phase sequence, the line currents I, and I, respectively lead and lag 1, by I20 : 
and 

I, = 33.5/74.1 A 
I, = 33.51- 165.9 A. 

17.27 A balanced A load of 39/-40"-R impedances is connected by three wires, with 4 R of resistance 
each, to the secondary of a three-phase transformer. If  the line voltage is 480 V at the secondary 
terminals, find the rms line current. 

I f  the A is transformed to a Y, the Y impedances can be combined with the line resistances, and the line 
current found by dividing the magnitude of the total Y phase impedance into the phase voltage. The Y 
equivalent of the A has a phase impedance of 

- 131-40" = 9.96 -J8.36 Q 
391 - 40" 

3 
._____- 

Being a Y impedance, this is in series with the line resistance and so can be combined with it. The result is 

4 + (9.96 - j8.36) = 13.96 - j8.36 = I6.3/- 30.9' R 

And the rms line current is equal to the phase voltage of 480/d'? = 277 V 
this impedance: 

divided by the magnitude of 
I, = 277116.3 = 17 A. 

17.28 Find the average power absorbed by a balanced three-phase load in an ABC circuit in 
which V,, = 208/15: V and I, = 311 10" A. 

P = J5V,I,  x PF can be used if the power factor PF can be found. Since it is the 
cosine of the impedance angle, what is needed is the angle between a load phase voltage and current. With 
I, known, the most convenient phase voltage is V,, because the desired angle is that between V,, and I,. 
This approach is based on the assumption of a Y load, which is valid since any balanced load can be 
transformed to an equivalent Y. Figure 17-86, which is for an ABC phase sequence, shows that V,, leads 
V,, by 150 , and so here has an angle of 15" + 150" = 165'. The power factor angle, the angle between 
V,, and I,, is 

The formula 

165" - 110" = 55 . So the average power absorbed by the load is 

P = k/3q,lIa x PF = &208)(3) COS 55 = 620 W 
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17.29 A three-phase induction motor delivers 20 hp while operating at an 85 percent efficiency and at 
a 0.8 lagging power factor from 480-V lines. Find the rms line current. 

The current I,, can be found from the formula P,, = 3&>I,, x PF, in which PI, is the input power 
to the motor: 

P,,", 20 x 745.7 
= 17.55 x 103 W _____.__ p .  = = 

' I  0.85 

and 
17.55 x 103 

3V, x PF , 3(480)(0.8) 
? = 26.4 A - - PI " I =  ~ 

1- r 

17.30 A three-phase induction motor delivers 100 hp while operating at an efficiency of 80 percent and 
a power factor of 0.75 lagging from 480-V lines. The power factor is to be improved to 0.9 lagging 
by inserting a A bank of power-factor correction capacitors. Determine the capacitance C, 
required in each phase. 

The input power to the motor is 

P"", 100 x 745.7 w = 93.2 kW p .  = ~ = -~ .. 

0.8 
in 

'1 

S O .  
(93.2 x 103)[tan (cos- 0.75) - tan (cos- ' 0.9)] 

- - - F = 142.2 j t F  c* - __ _ _ _ _ _ _ _ ~  
3( 377)(480)2 

4 -  

17.31 In a 208-V three-phase circuit a balanced A load absorbs 2 kW at a 0.8 leading power factor. 
Find Z,. 

From P = 3V,I, x PF, the phase current is 

2000 
~ = 4.01 A - - 

P 
I, = 

3V, x PF 3(208)(0.8) 

Since the line voltage is also the phase voltage, the magnitude of the phase impedance is 

208 z,  = vL = 51.9Q 
I, 4.01 

The impedance angle is the power factor angle: 
is Z h  = 51.9/-36.9 Q. 

0 = -cos-' 0.8 = -36.9 . So the phase impedance 

17.32 Given that V A B  = 480/30' V 

P = \ /31/ ,  I, x PF, 

in an ABC three-phase circuit, find the phasor line currents to a 

the line current magnitude is 

balanced load that absorbs 5 kW at a 0.6 lagging power factor. 
r 

From 

5000 
= 1 0 A  - ~ 

P 
-- I, = ~- 

' 

\'3V,> x P y  - 3(480)(0.6)  

If, for convenience, a Y load is assumed, then from Fig. 17-8u, V,,v lags V,, by 30 and so has an angle 
of 30" - 30' = 0 . Since I, lags V,,b by the power factor angle of 0 = cos- ' 0.6 = 53.1 , has an angle 
of 0" - 53.1 = - 53.1 ". Consequently, I, = 10/- 53.1 A and, from the ABC phase sequence, 

1, = 10/-53.1 - 120 = 10/-173.1 A 

I, = 10/-53.1 + 120 = 10/66.9 A and 
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17-33 A 480-V three-phase circuit has two balanced loads connected in parallel. One is a 5-k W 
resistive heater and the other an induction motor that delivers 15 hp while operating at an 80 
percent efficiency and a 0.9 lagging power factor. Find the total rms line current. 

IS,./ = S, = 

S H  = 5& kVA.  
The complex power of the motor has a magnitude (the apparent power) that is equal to the input power 
divided by the power factor, and i t  has an angle that is the arccosine of the power factor: 

SJW = -____ /cos- 0.9 = 15.5 x 103/25.8 VA = 13.98 + j6.77 kVA 

A good approach is to find the total complex power S7 and then solve for I ,  from 

3V,, I ,  , the apparent power. Since the heater is purely resistive, its complex power is 

15 x 745.7 

0.8(0.9) 

The total complex power is the sum of these two complex powers: 

S I  = S,, + S,, = 5 + (13.98 +j6.77) = 20.15/19.6 kVA 

Since the apparent power is IS,( = S, = 20.15 kVA, 

s, - 20.15 x 103 
I I .  = r - = 24.2 A 

3V14 ?(480) 

17.34 If in a three-phase, three-wire, ABC circuit, I, = 10/-30- A, I, = 8/45 A, and V,, = 

208/60 V, find the reading of a wattmeter connected with its current coil in line C and its 
potential coil across lines B and C. The & terminal of the current coil is toward the source, and 
the k terminal of the potential coil is at line C .  

ang I,.). Of course, V L  = 208 V. Also, 
From the specified wattmeter connections, the wattmeter reading is equal to P = V ,  I, cos (ang V,., - 

1, = -1, - 1, = - 10/-30' - 8 / 4 5  = 14.3/- 177.4" A 

From an inspection of Figs. 17-8u and h, i t  should be fairly apparent that V,., leads V,, by 60' and so here 
is V,., = 208/60' + 60 = 208/120 V. Therefore, the wattmeter reading is 

P = 2 0 8 ( 1 4 . 3 ) ~ 0 ~ [ 1 2 0  - ( -177 .4) ]W = 1.37kW 

17.35 A balanced Y load of 25-52 resistors is energized from a 480-V, three-phase, three-wire, ABC 
source. Find the reading of a wattmeter connected with its current coil in line A and its potential 
coil across lines A and B. The k terminal of the current coil is toward the source, and the k 
terminal of the potential coil is at line A. 

cos (ang V,, - 

ang lA), for which 1,- znd the angles of V,, and I, are needed. Since no phasors are specified in the problem 
statement, the phasor V,, can be conveniently assigned a 0 angle: V,, = 480/0 V. The current 1, can 
be found from the phase voltage V ., , and the phase resistance of 25 f l .  Of course, V 4 ,  has a magnitude 
of 480/,,'3 = 277 V. Also, from Fig. 17-8a, i t  lags V,, by 30 and so has an angle of 0 - 30 = - 30". 
Consequently. V,, = 277/- 30 V and 

With the specified connections, the wattmeter has a reading equal to P = V,, I 

VAN 277/-30r 

R Y  25 
I , =  ~- = - = 11.09/-30 A 

Since the magnitude of I ,  is the rms line current, 

P = &>I, cos (ang V,.,, - ang I,) = 48q11.09) cos [0 - (-3071 = 4.61 x 103 W = 4.61 kW 

Incidentally, this wattmeter reading is just half the total average power absorbed of J S V L I L  x PF = 

V L  I,, cos (30' + 0) 
V ,  I, cos (30 - O ) ,  this result is generally true for a purely resistive balanced load (0 = 0") and a 

r- 

,' 3(480)( 11.09)(1) = 9220 W. As should be evident from the two-wattmeter formulas 
and 
wattmeter connected as if it is one of the two wattmeters of the two-wattmeter method. 
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17.36 A balanced A load ofj40-Q inductors is energized from a 208-V, A C B  source. Find the reading 
of a wattmeter connected with its current coil in line B and its potential coil across lines B and 
C. The & terminal of the current coil is toward the source, and the terminal of the potential 
coil is at line B. 

P = V L l L  cos (ang V,, - 

ang 1,). for which I ,  and the angles of V , ,  and I ,  are needed. Since no phasors are specified, the phasor 
V,, can be conveniently assigned a 0 angle: as is apparent 
from the relation between the specified A C B  phase sequence and the first subscripts. I t  follows that 

With the specified connections, the wattmeter has a reading equal to 

V,, = 208b  V. Then V A B  = 208/- 120' V, 

= 9.01/-60' A 
V,,.  V , 4 ,  - 208b  208/- 120' 

Z, Z, j40 140 
~- I, = I,, - I,, = ~ - - 

So the wattmeter reading is 

P = I/,l,cos(ang V,,. - ang I,) = 208(9.01) cos [O - (-60')] = 937 W 

This reading has, of course, no relation to the average power absorbed by the load, which must be 0 W 
because the load is purely inductive. 

17.37 A 240-V ABC circuit has a balanced Y load of 20/-60 -Q impedances. Two wattmeters are 
connected for the two-wattmeter method with current coils in lines A and C. Find the wattmeter 
readings. Also, find these readings for an A C B  phase sequence. 

is needed to determine the wattmeter readings. This current magnitude is 
Since the line voltage magnitude and the impedance angle are known, only the line current magnitude 

Vp 240/,"3 
1 =-=- = 6.93 A 

2,. 20 1. P 

For the ABC phase sequence, the wattmeter with its current coil in line A has a reading of 

PA = &,11, COS (30 + 0) = 240(6.93) COS (30 - 60 ) = 1440 W 

because A precedes B in the phase sequence and there is no current coil in line B. The other wattmeter 
reading is 

P ,  = l$I,, COS (30 - 0) = 240(6.93) COS [30 - (-60 )] = 0 W 

Notice that one wattmeter reading is 0 W and the other is the total average power absorbed by the load, 
as is generally true for the two-wattmeter method for a balanced load with a power factor of 0.5. 

For the ACB phase sequence, the wattmeter readings switch because C is before B in the phase sequence 
and there is no current coil in line B.  So, P ,  = 1440 W and P A  = 0 W. 

17.38 A 208-V circuit has a balanced A load of 30/4O0-Q impedances. Two wattmeters are connected 
for the two-wattmeter method with current coils in lines A and B. Find the wattmeter readings 
for an ABC phase sequence. 

1- 
The rms line current is needed for the wattmeter formulas. This current is 3 times the rms phase 

current: 

r 5 208 

2.4 30 
l l S = \  / 3 1 , = , 3 - = , / - =  -- 1 2 A  

Since there is no current coil in line C ,  and since B precedes C in the phase sequence, the reading of the 
wattmeter with its current coil in line B is 

P ,  = V1*1, COS (30 + 0) = 208( 12) COS (30 + 40") = 854 W 

The other wattmeter reading is 

P A =  V 1 A l , , ~ ~ ~ ( 3 0  - 8 ) = 2 0 8 ( 1 2 ) ~ 0 ~ ( 3 0  - 4 O ) W  =2.46kW 
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17.39 A balanced Y load is connected to a 480-V three-phase source. The two-wattmeter method is 
used to measure the average power absorbed by the load. If the wattmeter readings are 5 kW and 
3 kW, find the impedance of each arm of the load. 

Since the phase sequence and wattmeter connections are not given, only the magnitude of the impedance 
angle can be found from the wattmeter readings. From the angle-power formulas, this angle magnitude is 

101 = tan-'(,,h-) 5 - 3  = 23.4"' 

5 + 3  

The magnitude of the phase impedance 2, can be found from the ratio of the phase voltage and current. 

The phase voltage is 480/,/3 = 277 V. The phase current, which is also the line current, can be found from 
the total power absorbed, which is 5 + 3 = 8 k W :  

8000 
= 10.5 A - - 

P 
I ,  = I ,  = 

f i V ,  x PF wh(480)(cos 23.4') 

From the ratio of the phase voltage and current, the magnitude of the phase impedance is 277,/10.5 = 26.4 R. 
So the phase impedance is either Z,. = 26.4/23.4' R or Z, = 26.4/-23.4' R. 

17.40 Two wattmeters both have readings of 3 kW when connected for the two-wattmeter method with 
current coils in lines A and B of a 600-V, ABC circuit having a balanced A load. Find the A 
phase impedance. 

For an A B C  phase sequence and current coils in lines A and B, the phase impedance angle is given by 

Because the load impedance angle is 0 , the load is purely resistive. The phase resistance is equal to the 
phase voltage of 600 V, which is also the line voltage, divided by the phase current. From P = 3 V , I ,  cos 8. 

Finally, 

3000 + 3000 
= 3.33 A ~ - ~-~ - 

P 

3 V, cos 8 
I ,  = 

3(600)( 1 )  

V 600 
R ,  = 2 = __ = 18OR 

I ,  3.33 

17.41 Two wattmeters are connected for the two-wattmeter method with current coils in lines B and C 
of a 480-V, A C B  circuit that has a balanced A load. If the wattmeter readings are 4 kW and 2 kW, 
respectively, find the A phase impedance Z,. 

The phase impedance angle is 

The magnitude of the phase impedance can be found by dividing the phase voltage of 480 V, which is also 
the line voltage, by the phase current. From P = 3 V,l, cos f), the phase current is 

P 4000 + 2000 1 = -~~ = _-__ = 481 A 
3 Vp cos 0 3(480) cos ( - 30") * 

This divided into the phase voltage is the magnitude of the phase impedance. Consequently, 

480 

4.8 1 
Z, = ---/-30' = 99.8/-30- 
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17.42 Two wattmeters are connected for the two-wattmeter method with current coils in lines A and 
C of a 240-V, A C B  circuit that has a balanced Y load. Find the Y phase impedance if  the two 
wattmeter readings are - 1 kW and 2 kW, respectively. 

The impedance angle is 

P ,  - P,. , - - 1 - 2  

' A  + ' C  1 + 2  
0 = tan-'  (a-) = t an- '  (, 3 :---) = t an- '  ( -3\  3) = -79.1 

The magnitude of the phase impedance can be found by dividing the phase voltage of I/, = 

240/,;'5 = 139 V the line 
current is 

? 

by the phase current, which is also the line current. From P = 3i;, I ,  cos 0, 

P - 1000 + 2000 
I 1 . -  - 1  p -  - = - = 12.7 A 

3 V,, COS O ,,' 3( 240) COS ( - 79.1 ) 

139 

12.7 
so Zy =-/-79.1 = 10.9/-79.1 R 

17.43 A 240-V, ABC circuit has an unbalanced A load consisting of resistors RE, = 
30R, and R,, = 40 R. Two wattmeters are connected for the two-wattmeter method with 
current coils in lines A and B. What are the wattmeter readings and the total average power 
absorbed? 

R,.,, = 45 R, 

From the wattmeter connections, the wattmeter readings are equal to 

P ,  = VAcZ,4 COS (ang V,, - ang I , )  and 

For the calculations of these powers, the phasors V,,., V,,, I,,, and I, are needed. Since no angles are 
specified, the angle of VAC can be conveniently selected as 0 ,  making V,,,, = 2 4 0 b  V. For an ABC 
phase sequence, V,, leads V,, by 120 and so is 

P ,  = C',,.I, cos (ang V,,. - ang I,) 

V(-, = 2 4 0 b O  V. But V,,. is needed: 

V,, = -VC, = - 2 4 0 m  = 240/120 - 180 = 240/-60 V 

Also, V,, lags V,, by 120 and is 
from the phase currents: 

V,,4 = 240/- 120 V. The line currents I ,  and I, can be determined 

Now P ,  and P ,  can be determined: 

P A  = VACZA COS (ang VAC. - ang I,) = 240( 11.6) COS (0 - 36.6 ) W = 2.24 kW 

P ,  = cos (ang V,, - ang I,) = 2 4 q  12.2) cos [ - 60 - ( - 94.7 )] W = 2.4 k W 

Notice that the two wattmeter readings are not the same, even though the load is purely resistive. The reason 
they are not the same is that the load is not balanced. 

The total power absorbed is P ,  + P ,  = 2.24 + 2.4 = 4.64 kW. This can be checked by summing the 
V 2 / R  power absorptions by the individual resistors: 

2402 2402 2402 

45 30 40 
P ,  = ~ + ~ + - W 4.64 kW 

17.44 For a four-wire, A C B  circuit in which 
a Y load of Z, = 15/30" R, Z, = 20/-25" R, and Z,. = 25/45' R. 

The three phase currents, which are also three of the line currents, are equal to the phase voltages 
divided by the phase impedances. One phase voltage is the specified YAv. The others are V,, and V,.,. 

V,, = 277/-40':' V, find the four phasor line currents to 
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From the specified A C B  phase sequence, the voltages V,,v and V,, respectively lead and lag V A N  by 
120 : V,, = 277/80' V and V,,v = 277/- 160' V. So the phase currents are 

V,, 277/- 40' V,, 277/80^ 
= 18.51-70 A 1 - 1 =-- - 13.9/105- A 

Z, 201-25 
n -  I - -= 

Z,., 15/30 
,4 - 

By K C L  the neutral line current is 

I,v = -(I,4 + I, + I,) = -(18.5/-70 + 13.9/105 - 11.1/-25 ) = 7.3/-5.53 A 

17.45 For an ABC circuit in which V,, = 480/40:'V, find the phasor line currents to a A load 
of Z,, = 40/30" R, Z,, = 30/- 70' R, and Z,, = 50/60" R. 

Each line current is the difference of two phase currents, and each phase current is the ratio of a phase 
V,.,, = 480/40 V. And from the given ABC phase 

Vnc = 480/-80- V 
voltage and impedance. One phase voltage is the given 
sequence, the other phase voltages, V,, and V,,, respectively lag and lead V,, by 120 : 
and V,,4 = 480/160 V. So the phase currents are 

V A ,  - 480/40 V,(. 4801-80 

Z,,. 30/-70 
I,, = - - -___ - - 12/10 A I,, = -- = -____ = 16/-10 A 

vc4 -- 480/160- = 9.6/100 A 
ZcA 50/60 

lc,4 = - 

And, by K C L ,  the line currents are 

I, = I,, - I,, 
1, = I,, - I,4, = 16/- 10 - 12/10 = 6.26/-51 A 

12/10 - 9.6/100' = 15.4/-28.7 A 

I, = I,, - 1,' = 9.6/100' - 16/- 10 = 21.3j144.9 = -21.3/-35.1 A 

As a check, the three line currents can be added to see if the sum is zero, as it should be by K C L .  This 
sum is zero, but it  takes more than three significant digits to show this convincingly. 

17.46 In  a three-wire, ABC circuit in which find the phasor line currents to a Y 
load of Z, = 16/-30" R, Z, = 14/50- R, and 2, = 12/-40': R. 

Since the Y load is unbalanced and there is no neutral wire, the load phase voltages are not known. 
And this means that the line currents cannot be found readily by dividing the load phase voltages by the 
load phase impedances, as in the solution to Prob. 17.44. A Y-to-A transformation is tempting so that the 
phase voltages will be known and the approach in the solution to Prob. 17.45 can be used. But usually this 
is considerably more effort than using loop analysis on the original circuit. 

As shown in Fig. 17-16, loop analysis can be used to find two of the three line currents, here 
I,,, and Ic.  Of course, after these are known, the third line current 1, can be found from them by 
K C L .  Note in Fig. 17-16 that the V(-, generator is not shown. I t  is not needed because the shown 
two generators illustrated supply the correct voltage between terminals A and c'. Of course, as shown, V, 
lags the given V A ,  by 120' because the phase sequence is A B C .  

V,, = 480/60' V, 

The loop equations are 

which simplify to 
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A 

By Cramer's rule, 
I 480/60" 14/50'' I 
I -480/-60" 18.4&' I 12.1 x 103/36.2" = 26.9/45.8c A 
12316.8" 14/50' I 4481 - 9.6" 

- I, = - 

I 14/50' -480/-60" I 5.01 x 103/149.6" = 11.2/159.23 A - 1, = - 
448/ - 9.6" 448/ - 9.6" 

Of course, by KCL, 

1, = -1, - 1, = -26.9/45.8? - 11.2/159.2- = 24.7/- 110" A 

17.47 In the circuit of Fig. 17-16, include the third voltage generator V,, and use PSpice to obtain the 
three generator currents I,,, I,,, and I,,, as well as the line currents I,4, I,, and I,. 

The PSpice circuit is shown in Fig. 17.17. Resistors R1,  R2, and R3 of the same negligibly small 
resistance have been inserted to avoid having a loop of voltage sources, which PSpice will not accept. There 
is nothing especially significant about the node numbering or the particular choice of the 0 node. Since 

1 $ B i B c = 4 8 0 k 6 0 ' V  ~ 

~2 + - 
1,- 9.1925 R 0.12964 F 4 

Fig. 17-17 



inductances and capacitunces must be specified instead of impedances, the load impedances hal'e been 
con\.erted to time-domain quantities, b+i th  the inductor and capacitor values based on a radian frequency 
of 1 rad s. Then since the Z,4 impedance is obtained with a resistor of 
13.856 R in series with a capacitor of the 
ZH impedance is obtained with a 9-51 resistor in  series with a 10.725-H inductor. And since 1 2 / - 4 0  R = 
9.1925 - j7.7135 $2. the %(. impedance is obtained 14,ith ;i 9.19254 resistor in series uith ;i capacitor 
of I 7.7135 = 0.12963 ).' capacitance. 

E'ollouing is the corresponding PSpicc circuit file and the output obtained when PSpice is run with 
this circuit file. This output, expressed in  tcrms of the currents specilied in the circuit of F'ig. 17.17 are 

16/-30 Q = 13.856 --. is R, 
= 0.125 F. Similarly, because 1 4 b '  R = 9 + j 1 0 . 7 2 5  Q, 

I , ,  = 16.82) - 122.5 A I,,, -= 9.102/'94.47 A I ,  ,., = I 1.00/27.67 A 

and 

I ,  = 24 701 - 109.7 A I, = 1 l.l8/159.2 A I -I = 26.92, 45.77 A 

The line current \alues agree w i t h i n  three signilicant digits with those obtained in the solution to Prob. 17.46. 

CIRCUIT FILE FOR THE CIRCUIT OF FIG. 17-17 
R1 0 1 1U 
VAB 1 2 AC 480 60 
R2 2 3 1U 
VBC 3 4 AC 480 -60 
R3 4 5 1U 
VCA 5 0 AC 480 180 
R4 0 6 13.856 
C1 6 7 0.125 
R5 2 8  9 
L1 8 7 10.725 
R6 4 9 9.1925 
C2 9 7 0.12964 
.AC LIN 1 0.159155 0.159155 
.PRINT AC IM(VAB) IP(VAB) IM(VBC) IP(VBC) IM(VCA) IP(VCA) 
.PRINT AC IM(R4) IP(R4) IM(R5) IP(R5) IM(R6) IP(R6) 
. END 

FREQ IM (VAB) IP(VAB) IM (VBC) IP(VBC) IM (VCA) 
1.592E-01 1.682E+01 -1.225E+02 9.102E+00 9.447E+01 1.100E+01 

FREQ IP(VCA) 
1.592E-01 2.767E+01 

IP(R4) IM(R5) IP(R5) IM(R6) FREQ IM(R4) 
1.592E-01 2.692E+01 4.577E+01 2.470E+01 -1.097E+02 1.118E+01 

FREQ IP(R6) 
1.592E-01 1.592E+02 

17.48 In the circuit shown in Fig. 17-18, in which cach line has an impedance of 
I and I , .  

5 + j S  C l ,  determine 

The loop equations ;ire 

( 5  + j~ + I S /  - 30 + I 3,125 + s + ~ X ) I  .I + ( S  + j t ;  + I 3/75 ) l H  = 208/40 

( 5  + 18 + 131135 ) I ,  t ( 5  + 18 t 10,145 + 13 /25  + 5 + j8)IH = -2O8/-80 

In matrik form. these siniplif~ to 



CHAP. 171 THREE-PHASE CIRCUITS 409 

Fig. 17-18 

Notice in Fig. 17-18 the use of lowercase letters at the source terminals to distinguish them from the 
load terminals, as is necessary because of the line impedances. 

17.49 In a three-wire, ACB circuit in which one phase voltage at the Y-connected source is 
Z,, = 30/-40" R, 

A good approach is to transform the A to a Y and then use loop analysis. The three A-to-Y 

V,, = 120 -30" V, determine the phasor line currents to a A load in which 
Z,, = 40 t 30" 0, and Z,, = 35/60' R. Each line has an impedance of 4 + j 7  R. 

transformation formulas have the same denominator of 

ZA, + Z,, + ZCA = 30/-40" + 40/30" + 35/60' = 81.3/22.4" 

With this inserted, the transformation formulas are 

With the equivalent Y inserted for the A, the circuit is as shown in Fig. 17-19. Because of the ACB phase 
sequence, V,, leads Van by 120" and V,, lags Van by 120°, as shown. 

h 4 R  j7 R B 
? 

- 
i 

' V  

120/ - 30' V 4 Ze = 14.81-32.4" R 

Zc = 17.2/676' fl 

Fig. 17-19 
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The loop equations are 

(4 + j7 + 14.81- 32.4" + 12.9/- 2.4" + 4 + j7)IB + (4 + j7 + 12.9/- 2.4')1, = 120/90 - 120/ - 30 

(4 + j7 + 12.9/- 2.4")1, + (4 + j7 + 17.2/67.6" + 12.9/ - 2.4" + 4 + j7)IC = 120/ - 150 - 170/ - 30 

These simplify to 

(33.8/9.41 ")IB + ( 1  8.1/20.9")1, = 208/120" 

(1  8. 1/20.9")IB + (40.2/46.9')1, = - 208 

The solutions are I, = 5.4184.2' A and I, = 5.1 1/160" A. Of course I, = -1, - Ic, from which 
I, = 8.27/- 58.9" A. - 

Supplementary Problems 
1750 What is the phase sequence of a Y-connected three-phase alternator for which 

and 
V,,, = 7200/- 130 V 

V B N  = 7200/llJ0 V? Also, what is V,,? 

Ans. ABC, VC- = 7200/-10" V 

17.51 Find the phase sequence of a balanced three-phase circuit in  which V,,,,,, = 120& V and V,.,v = 

1 2 0 b 0  V. Also, find V B N .  

Ans. ABC, V B ,  = 120/- 105" V 

17.52 For a three-phase, three-wire circuit, find the phasor line currents to a balanced Y load in which each phase 
impedance is 30/-40" R and for which V,, = 277/-70" V. The phase sequence is .4CB. 

Ans. I, = 9.23/90" A, I, = 9.231- 150' A, 1, = 9.23/-30" A 

17.53 Find the phase sequence of a three-phase circuit in which V,, = 12 470/- 140 V and V,,. = 

12 4 7 0 m "  V. Also, find the third line voltage. 

Ans. ACB, V C B  = 12 4701-20" V 

17.54 What is the phase sequence of a three-phase circuit for which V,,v = 7.62/-45 k V  and VcB = 

13.2/105" kV? 

Ans. ACB 

1755 A balanced Y load has one phase voltage of V,, = 120/130" V. If the phase sequences is ABC,  find the 
line voltages VAC, V,,, and V B A .  

Ans. V A C  = 208/- 140" V, VcB = 208/-20" V, VB, = 208/100" V 

1756 What are the phase voltages for a balanced three-phase Y load if V,, = 208/- 125 V ?  The phase sequence 
is ACB. 

Ans. V A N  = 120/25" V, V B N  = 120/145' V, Vc, = 120/-95r V 

17.57 A balanced three-wire, ACB circuit has one line current of I, = 6/- 10" A. Find the other line currents. 

Ans. 1, = 6/110" A, 1, = 6/- 130" A 

17.58 Find the I, line current in an unbalanced three-wire, three-phase circuit in which 
1, = - 4 B "  A. 

Ans. I, = 6 . 6 1 b "  A. 

1, = 6/ - 30 ' A and 
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17.59 A balanced Y load of 100-Q resistors is connected to a 208-V, three-phase, three-wire source. Find the rms 
line current. 

Ans. 1.2 A 

17.60 A balanced Y load of 40/60'-R impedances is connected to a 600-V, three-phase, three-wire source. Find 
the rms line current. 

Ans. 8.66 A 

17.61 Find the phasor line currents to a balanced Y load of 45/-48'-R impedances. One phase voltage 
is V,, = 120/-65" V, the phase sequence is A C B ,  and there are only three wires. 

Ans. I, = 2.67/103" A, I, = 2.67/- 137" A, I, = 2.67/- 17" A 

17.62 For a three-phase, three-wire circuit, find the phasor line currents to a balanced three-phase Y load of 
8OkO-Q impedances if V,, = 600/-30" V and the phase sequence is A C B .  

Ans. I, = 4.33/-25" A, I, = 4.33/95 A, I, = 4.33/- 145' A 

17.63 Find the phase sequence of a three-phase circuit in which two of the phase currents of a balanced A load 
are IAB = 10kOo A and 

Ans. A B C ,  I,, = 1 O / - 7 O z  A 

I,, = 10/170" A. Also, find the third phase current. 

17.64 Find the phase currents I,,, I,,, and IBA of a balanced three-phase A load to which one line current 
is I, = 1.4/65" A. The phase sequence is ACB. 

Ans. I,, = 0.808/95' A, I,, = 0.808/-25 A,  IBA = 0.808/- 145- A 

17.65 A balanced three-phase A load has one phase current of I,, = 4/- 35' A. If the phase sequence is A B C ,  find 
the phasor line currents and the other phasor phase currents. 

Ans. 1, = 6.93/175" A I,, = 4/- 155 A 

I, = 6.93/55" A I,, = 4 b '  A 

1, = 6.93/-65" A 

17.66 Find the phasor line currents to a balanced three-phase A load in which one phase current is 
I,, = 4.2/ - 30" A. The phase sequence is A C B .  

Ans. I, = - 7.27 A, I, = 7.27/- 60' A, I, = 7.27/60' A 

17.67 Find the rms value of the line currents to a balanced A load of 100-Q resistors from a 480-V, three-phase, 
three- w ire source. 

Ans. 8.31 A 

17.68 Find the phasor line currents to a balanced three-phase A load of 200/-55"-Q impedances if the phase 
sequence is ABC and if one phase voltage is 

Ans. I, = 1.8/- 155" A, I, = 1.8,&" A, I, = 1.8/-35" A 

V,, = 2081-60" V. 

17.69 A balanced A load of 50/35"-Q impedances is energized from the Y-connected secondary of a three-phase 
transformer for which V,, = 120/- 10" V. If the phase sequence is ABC, find the phasor line and load 
currents. 

Ans. 1, = 7.2/-45" A I,, = 4.16/-75" A 

1s = 7.21- 165" A 

I, = 7.2/75" A 

I,, = 4.16/- 195" A 

ICE = 4. 1 6 b "  A 
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17.70 A hlanctxj Y load with impedances of 8 +.j6 R is connected to a threc-phase source by threc wires, each 
t>f which has 3 +.i4 R of impeditnce. The rms load phase voltrtgc is 50 V. Find the rms line voltage at the 
source. 

Atis. 129 V 

A hill i tnd A load with impedances of 15 - j9 R is connected to a thrce-phasc sourcc by three wires. each 
of which hiis 2 + j S  R of  impcditnLw. The rms load phiise voltage is 120 V. Find the rms line voltage at the 
source. 

Am. 150 V 

17.72 A WO-V. three-phase. three-wire circuit has two parallel-connected balanced A loads. one of 30-1) 
resistors and the other ol'ho-fl rehistors. Find the total rim line current. 

17.71 

.hS. 22 A 

17.73 A 480-V. three-phase, three-wire circuit has two parallelconnected balanced Y loads, one of 40-0 resistors 
and the other of 120-Il resistors. Find the total rms line current. 

. h s .  9.24 A 

A 480-V three-phase circuit has t w o  pariallel-connected balanced A loads, one of 50-w I) impedances and 
thc other of 70.7S00-11 impedanccs. Find the total rms line current and the total average power absorbed. 

17.74 

.-It1s. 16.8 A. 13.3 kW 

17.75 A 6OO-V three-phase circuit has two p;irallel-r.onnectcd balanced loads, one a A of 9O--'-fl impedances 
nnd the other a Y of SO.j!!o-fl inipcdiinces. Find the total rmh line current and the total average power 
ii hso rhed . 
Atis. 15.4 A. 15.4 k W 

17.76 A halanced Y load of 30;Oo-11 impedances and a parallelconnected balanced A load of 90/-50°-0 
impedances are connected by three wires to the secondary of a three-phase transformer. If V,, = 2 0 8 1 '  V 
and the phase sequence is ACB. find the total phasor line currents. 

17.77 A balancwd b load of  6OB -R impditnccs is connwtd to the secondary of a thrce-phase transformer by 
three wires that have 3 i - j 4  R of  impdancw eitch. I f  the rms line voltage is 480 V at the secondary terminals. 
find the rnis line current. 

A m  1 I .  I A 

17.78 Find the avoriige power ahsorhcd hy a balanced three-phase load in an ACB circuit in which one line voltage 
is V,4t. = 4 8 0 E  V and one line current to the loiid is I, = 21/80 A. 

Atis. 1.34 k W 

17.79 A three-phase induction motor delivers I(X) hp while operating at an 80 percent elliciency and a 0.7 lagging 
power factor from 600-V lincs. Find the rms line current. 

Atis. I28 A 

17.80 A three-phase induction motor delivers I So hp while operating at an efficiency of 75 pcrcent and a power 
factor of 0.8 lagging from 480-V lincs. A Y hank of  power factor correction capacitors is to be inserted to 
improve the overall power hctor to 0.9 kiging. llctcrmine the capacitancc required per phase. 

Atis. 456 11 F 

l7Sl In a 480-V thrcw-phase circuit. a haliinced A load ahsorhs 5 kW at a 0.7 lagging power factor. Find the A 
phitse impdiince. 

Atis. 96.8/& S2 
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17.82 Given that 
load that absorbs 10 kW at a 0.8 lagging power factor. 

Ans. I,., = 34.71- 107" A, I, = 34.7/13' A, I,- = 34.7/133' A 

V,, = 208/-40" V in an ACB three-phase circuit, find the phasor line currents to a balanced 

17-83 A 600-V three-phase circuit has two parallel-connected balanced loads. One is a synchronous motor that 
delivers 30 hp while operating at an 85 percent efficiency and a 0.7 leading power factor. The other is an 
induction motor that delivers 50 hp while operating at an 80 percent efficiency and a 0.85 lagging power factor. 
Find the total rms line current. 

Ans. 70.2 A 

17.84 If I, = 2 0 b 0  A, I, = 151-30" A, and V,, = 4801-40" V in a three-wire, ACB circuit, find the 
reading of a wattmeter connected with its current coil in line A and its potential coil across lines A and B. 
The & terminal of the current coil is toward the source, and the & terminal of the potential coil is at line A.  

Ans. 13.6 kW 

17.85 A balanced Y load of 50-R resistors is connected to a 208-V, ACB, three-wire, three-phase source. Find the 
reading of a wattmeter connected with its current coil in line B and its potential coil across lines A and C. 
The f terminal of the current coil is toward the source, and the & terminal of the potential coil is at line A. 

Ans. 0 W 

17.86 A balanced A load with impedances of 9 +j12 R is connected to a 480-V, ABC source. Find the reading of 
a wattmeter connected with its current coil in line A and its potential coil across lines B and C. The & 
terminal of the current coil is toward the source, and the 

Ans. -21.3 kW 

terminal of the potential coil is at line C. 

17.87 A 600-V three-phase circuit has a balanced Y load of 40/30"-R impedances. Find the wattmeter readings 
for the two-wattmeter method. 

Ans. 5.2 kW. 2.6 kW 

17.88 A 480-V, ACB circuit has a balanced Y load of 30/- 50"-Q impedances. Two wattmeters are connected for 
the two-wattmeter method with current coils in lines B and C. Find the wattmeter readings. 

Ans. P ,  = 4.17 kW, P ,  = 770 W 

17.89 A 600-V, A C B  circuit has a balanced A load of 60/20--Q impedances. Two wattmeters are connected for 
the two-wattmeter method with current coils in lines B and C. Find the wattmeter readings. 

A ~ s .  P ,  = 6.68 kW, P, = 10.2 kW 

17.90 A balanced Y load is connected to a 208-V three-phase source. The two-wattmeter method is used to measure 
the average power absorbed by the load. If the wattmeter readings are 8 kW and 4 kW, find the Y phase 
impedance. 

Ans. Either 3.12/30" f2 or 3.12/-30" R 

17.91 Two wattmeters both have readings of 5 kW when connected for the two-wattmeter method in a 480-V 
three-phase circuit that has a balanced A load. Find the A phase impedance. 

Ans. 69.1b" R 

17.92 Two wattmeters are connected for the two-wattmeter method with current coils in lines A and B of a 208-V, 
ABC circuit that has a balanced A load. I f  the wattmeter readings are 6 kW and - 3 kW, respectively, find the 
A phase impedance. 

Ans. 8.18/79.13 R 
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Two wattmeters are connected for the two-wattmeter method with current coils in lines B and C of a 600-V, 
ABC circuit that has a balanced Y load. Find the Y phase impedance if the two wattmeter readings are 3 k W 
and 10 kW, respectively. 

Ans. 20.3/ - 43" R 

A 480-V, ACB circuit has an unbalanced A load consisting of resistors R,, = 85 R, and 
R,, = 70 R. Two wattmeters are connected for the two-wattmeter method with current coils in lines ,4 and 
C. What are the wattmeter readings? 

R, ,  = 6 0  Q, 

Ans. P ,  = 4.63 kW, P ,  = 5.21 kW 

For a four-wire, ABC circuit in which 
of 2, = 30/-50" R, 2, = 25/38' R, and 2, = 35/-65' R. 

V,, = 208/65" V, find the four phasor line currents to a Y load 

Ans. I, = 6.93/- 125" A, I, = 8.32/27' A, I, = 5.94/10" A, 1, = 9.33/175" A 

For an ACB circuit in which 
Z,, = 150/- 35" R, Z B A  = 200/60" Q, and 

VAC = 6001- 15" V, find the phasor line currents to a A load of 
Z,, = 175/ - 70" R. 

Ans. I, = 1.81-24.7" A, I, = 5.27/82.7" A, I, 5.04/- 117" A 

In a three-wire, ACB circuit in which 
of 2, = 10/30" R, 2, = 20,& R, and Z, = 15 5 -50" R. 

V,, = 208 -40' V, find the phasor line currents to a Y load 

Ans. I, = 2.53188.8" A, I, = 10.7/133" A, I, = 12.6/-54.8" A 

In a three-wire, A C B  circuit in which one source line voltage is 
currents to a Y load of Z, = 12/60' R, Z, = 8/20" R, and 
ance of 3 + j4 R. 

Ans. I, = 15.2/- 165" A, I, = 27.31-33.9" A, I, = 20.9/113" A 

V,, = 480/-30' V, find the phasor line 
Z, = 10/-30" R. Each line has an imped- 

In a three-wire, ABC circuit in which one source line voltage is 
currents to a A load of Z,, = 40/-50" R, Z,, = 35/60" R, and 
impedance of 8 + j9 R. 

V,, = 480/60- V, find the phasor line 
Z,, = 50/40 R. Each line has an 

Ans. I, = 7.44/27.8" A, I, = 14/- 112" A, I, = 9.64/97.8' A 

Determine the answers that will be printed in the output file when PSpice is run with the following circuit file. 

CIRCUIT FILE FOR PROB. 17.100 
v1 1 0 AC 340 90 
v2 2 0 AC 340 -30 
v3 3 0 AC 340 -150 
R1 1 4 1  
L1 4 5 1  
R2 2 6 1  
L2 6 7 1  
R3 3 8 1  
L3 8 9 1  
R4 5 10 6 
C1 10 7 66.667M 
R5 7 11 6 
C2 11 9 66.667M 
R6 9 12 6 
C3 12 5 66.667M 
.AC LIN 1 0.159155 0.159155 
.PRINT AC VM(5) VP(5) IM(R4) IP(R4) . END 

Ans. 366.2174.93' V, 39.2611 73.1 A 
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ac (alternating current), 3, 194 
ac circuit, 194 
ac generator (alternator), 195, 384 
ac PSpice analysis, 268-269 
Admittance, 238 

conductance of, 238 
mutual, 267 
self-, 267 
susceptance of, 238 

Admittance diagram, 238 
Admittance triangle, 238 
Air-core transformer, 352 
Algebra, complex, 2 17-22 1 
Alternating current (ac), 3, 194 
Alternating current circuit, 194 
Alternator (ac generator), 195, 384 
Ampere, 2 
Analysis : 

loop, 57, 266 
mesh, 56, 265 
nodal, 58, 267 

Angle, phase, 197 
Angular frequency, 195 
Angular velocity, 195 
Apparent power, 327 
Associated references, 5 
Autotransformer, 354 
Average power, 194, 324 
Average value of periodic wave, 198 

Balanced bridge, 87, 297 
Balanced three-phase load, 387, 389 
Branch, 31 
Bridge balance equation, 87, 297 
Bridge circuit, 86 

capacitance comparison, 3 16 
Maxwell, 317 
Wheatstone, 86 

Buffer, 116 

Capacitance, 153 
equivalent, 154 
total, 154 

Capacitance comparison bridge, 3 16 
Capacitive circuit, 235 
Capacitive reactance, 200 
Capacitor, 153 

energy stored, 155 
sinusoidal response, 200 

Cascaded op amps, 116 

Charge, 1 
conservation of, 2 
electron, 1 
proton, 1 

Choke, 175 
Circuit, 2 

ac, 194 
capacitive, 235 
dc, 31 
inductive, 235 
phasor-domain, 232 
three-phase, 384-414 
time-domain, 232 

Coefficient of coupling, 353 
Coil, 175 
Color code, resistor, 20 
Complex algebra, 2 1 7-22 1 
Complex number: 

angle, 219 
conjugate, 219 
exponential form, 219 
magnitude, 2 19 
polar form, 219 
rectangular form, 2 18 

Complex plane, 218 
Complex power, 326 
Conductance, 17 

of admittance, 238 
equivalent, 33 
mutual, 58 
self-, 58 
total, 33 

Conductivity, 18 
Conductor, 17 
Conjugate, 2 19 
Conservation of charge, 2 
Controlled source, 4 
Conventional current flow direction, 2 
Cosine wave, 197 
Coulomb, 2 
Coupled impedance, 354 
Coupling, coefficient of, 353 
Cramer’s rule, 54 
Current, 2 

ac, 3, 194 
dc, 3 
loop, 57 
mesh, 56 
phase, 386 
short-circuit, 83, 295 

reference, 2 
Current direction, 2 
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Current division rule, 34, 239 
Current source, 3 

controlled, 4 
dependent, 4 
independent, 4 
Norton, 83, 295 

Cycle, 194 

dc (direct current), 3 
dc circuit, 31 
dc PSpice analysis, 136-140 
dc source, 4 
Delta (A) connection, 85, 296, 386 
A-Y transformation, 85, 296 
Dependent source, 4 

PSpice, 138 
Derivative, 155 
Determinant, 54 
Dielectric, 153 
Dielectric constant, 154 
Digit grouping, 1 
Direct current (dc), 3 
Direct current circuit, 31 
Direction, current, 2 
Dot convention, 350 
Double-subscript notation, 3, 384 
Drop, voltage, 3 
Dual, 72 

Etrective value, 198 
Efficiency, 5 
Electron, 1 
Electron charge, 2 
Energy, 3, 5 

stored by a capacitor, 155 
stored by an inductor, 177 

Equivalent circuit: 
Norton’s 83, 295 
Thevenin’s, 82, 294 

Equivalent sources, 56, 265 
Euler’s identity, 219 
Exponential form of complex number, 219 

Farad, 153 
Faraday’s law, 175 
Ferromagnetic material, 174 
Flux: 

leakage, 350 
magnetic, 174, 349 
mutual, 349 

Flux linkage, 175 
Frequency, 194 

angular, 195 
radian, 195 

General transformer equation, 358 
Generator: 

ac, 195. 384 
A-connected, 386 
Y-connected, 385 

Giga-, 2 
Ground, 33 
Grouping of digits, 1 

Henry, 175 
Hertz, 194 
Horsepower, 5 

Ideal transformer, 350 
Imaginary number, 2 17 
Impedance, 234 

coupled, 354 
equivalent, 234 
input, 235 
mutual, 266 
output, 303 
reactance of, 235 
reflected, 351, 354 
resistance of, 235 
self-, 266 
Thevenin, 294 
total, 234 

Impedance angle, 235 
Impedance diagram, 235 
Impedance plane, 235 
Impedance triangle, 236 
Independent source, 4 
Induced voltage, 175, 353 
Inductance, 175 

equivalent, 176 
mutual, 353 
self-, 353 
total, 176 

Inductive circuit, 235 
Inductive reactance, 199 
Inductor, 175 

energy stored, 177 
sinusoidal response, 199 

Inferred zero resistance temperature, 18 
Input impedance, 235 
Input resistance, 84 
Instantaneous current, 155 
Instantaneous power, 198, 324 
Instantaneous voltage, 155 
Insulator, 17 
Internal resistance, 20 
International System of Units (SI), 1 
Inverter, 114 
Ion, 2 
Iron-core transformer, 350 
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Joule. 3 

Kilo-, 2 
Kilohm-milliampere method, 34 
Kilowatthour. 5 
Kirchhoffs laws: 

current law (KCL), 32, 267 
voltage law (KVL), 31, 265 

Lagging power factor, 325 
Lattice circuit. 86 
Leading power factor. 325 
Leakage flux. 350 
Line current, 386 
Line voltage, 386 
Linear circuit, 82 
Linear circuit element, 82 
Linear transformer, 352 
Load: 

balanced, 387, 389 
A-connected, 85,296, 389 
parallel three-phase, 390 
unbalanced. 393 
Y-connected, 85,296, 387 

"Long time," 165 

Loop analysis, 57, 266 
Loop current. 57 

Loop, 31 

Magnetic flux, 174 
Matching, resistance, 84, 359 
Maximum power transfer theorem. 84, 295 
Maxwell bridge, 31 7 

Mesh, 31 
Mesh analysis, 56, 265 
Mesh current, 56 
Mho, 17 
Micro-. 2 
Miili-, 2 
Millman's theorem, 84 
M ode1 : 

Mega-, 2 

op amp, 1 12 
PSpice op-amp, 139 
transformer, 350 

Mutual admittance, 267 
Mutual conductance. 58 
Mutual flux, 349 
Mutual impedance, 266 
Mutual inductance, 353 
Mutual resistance, 57 

Nano-, 2 
Negative charge, 1 
Negative phase sequence, 386 

Network (.\re Circuit) 
Network theorem I.\c*c* Thcnrcni 1 
Neutral. 3x6 
Neutron. 2 
Newton. 3 
Nodal analysis, 58. 267 
Node. 31 

rcfcrcncc, 33 
Node voltagc, 33 
Nominal value of  resistance. Is) 
Noninvcrting \(bltitgc amplifier. I i f ;  
Iriorton's thcorcm. 83. 295 

Ohm. 17 
Ohm's law, 17 
Op amp: (.rc*r 0pcr;itionctl ;iniplificr) 
Open circuit. 20 
Open-circuit voltagc, R2. 294 
Opcrational itmpliticr (up ;imp). 1 I:! 

model. 112 
open-loop koltage gain. 1 1  3 
PSpicc model. 139 

bulfcr, I I6 

inverter. I I4 
noninverting v o t i n g  miplilicr. 1 15 
~01tiige follower. 116 
\ ohage-to-current converter. 1 16 

0pL.r~itionaI-aniplificr circuits. I I:!-t35 

ciiscttded ~p ;imps. 1 1 h 

Oscillator. 157 
Output impcdnncc. 303 
Output resistancr. 82. 84 

Piirdlcl connection. 21, ? I  
P w i w  sign convention. 5 
Period, 158. 194 
Periodic qiiitntity, 1'34 

efTcctiw \~aliic. 198 
Pernicability. I74 
PermittiLity. 124 
Phaisc itnglc. I97 
Phasc current. 386 
Phase difTcrencc. I97 
Phase relation. 197 
Phase sequencc. 3x6 
Phase voltage. 386 
Phasor. 721 
Phasor diagram. 221 
Phasor-domain circuit. 232 
Pico-. 2 
Plane, complex, ZI X 
Polar form of complex number. 11'3 
Polarity. rcfercncc voltage. 4 
Polarity, \~oltnge. 3 
Positive charge. I 
Positive phase sequence, 386 
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Potential drop, 3 
Potential rise, 3 
Power, 5, 324 

apparent, 327 
average, 194, 324 
complex, 326 
instantaneous, 198, 324 
maximum transfer of, 84, 295 
reactive, 326 
real, 326 
resistor, 19 
three-phase, 39 1 

Power factor, 324 
lagging, 325 
leading, 325 

Power factor angle, 324 
Power factor correction, 327 
Power measurement : 

single-phase, 325 
three-phase, 39 1 
two-wattmeter method, 334, 392 

Power triangle, 326 
Primary winding, 349 
Probe, 178 
Proton, 1 
PSpice analysis: 

ac, 268-269 
dc, 136140 
Probe, 178 
transient, 177-179 
three-phase circuits, 393 
transformer circuits. 356 

Radian, 195 
Radian frequency, 195 
Rationalizing, 218, 219 
RC time constant, 156 
RC timer, 157 
Reactance : 

capacitive, 200 
of impedance, 235 
inductive, 199 

Reactive factor, 326 
Reactive power, 326 
Real number, 217 
Rectangular form of complex number, 218 
Reference current direction, 2 
Reference node, 33 
Reference voltage polarity, 4 
References, associated, 5 
Reflected impedance, 351, 354 
Relative permeability, 175 
Relative permittivity, 154 
Resistance, 17 

equivalent, 3 1 
of impedance, 235 

Resistance (cont.): 
input, 84 
internal, 20 
mutual, 57 
nominal value, 19 
output, 82, 84 
self-, 57 
Thevenin, 82 
tolerance, 19 
total, 31 

Resistance matching, 84, 359 
Resistivity, 17 
Resistor, 19 

color code, 20 
linear, 19 
nonlinear, 19 
sinusoidal response, 198 

Resonant frequency, 240 
Right-hand rule, 174, 349 
Rise, voltage, 3 
R L  time constant, 177 
rms (root-mean-square) value, 199 

Secondary winding, 349 
Self-admittance, 267 
Self-conductance, 58 
Self-impedance, 266 
Self- i n d uc t a n ce, 3 5 3 
Self-resistance, 57 
Semiconductor, 18 
Series connection, 21, 3 1 
Short circuit, 20 
Short-circuit current, 83, 295 
SI (International System of Units), 1 
Siemens, 17 
Sine wave, 194, 195 
Sinusoid, 197 

average value, 198 
effective value, 199 

ac, 194, 384 
controlled, 4 

Source : 

current, 3 
dc, 4 
dependent, 4 
equivalent, 56, 265 
independent, 4 
Norton, 83, 295 
practical, 20 
Thevenin, 82, 294 
voltage, 4 

Source transformation, 56, 265 
SPICE program, 136 
Step-down transformer, 351 
Step-up transformer, 351 
Subscript not at ion : 

current, 384 
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Subscript notation (cont.): 
voltage, 3, 384 

Superposition theorem, 84, 295 
Susceptance, 238 

Temperature coefficient of resistance, 19 
Tera-, 2 
Theorem : 

maximum power transfer, 84, 295 
Millman’s, 84 
Norton’s, 83, 295 
superposition, 84, 295 
Thekenin’s, 82, 294 

Thevenin’s theorem, 82, 294 
Three-phase circuits, 384-414 

balanced, 384, 387, 389 
PSpice analysis, 393 
unbalanced, 393 

Three-phase power, 391 
Three-phase power measurement, 391 
Time constant, 156 

RC, 156 
RL, 177 

Time-domain circuit, 232 
Time-varying voltages and currents, 155 
Timer, RC, 157 
Tolerance, resistance, 19 
Transformation : 

Source 56, 265 
A-Y, 85 ,  296 

Transformation ratio, 350 
Transformers, 349-383 

air-core. 352 
ideal, 350 
iron-core, 350 
linear, 352 
PSpice models, 356 
step-down, 35 1 
step-up, 351 

Transient, 156 
Transient PSpice analysis, 177-1 79 
Turns ratio, 350 
Two-wattmeter method, 334, 392 

Unbalanced three-phase circuit, 393 
Unit symbol, I 
Units, S1, 1 

VAR, 326 
Volt, 3 
Voltage, 3 

induced, 175, 353 
node, 33 
open-circuit, 82, 294 
phase, 386 

Voltage difference, 3 
Voltage division rule, 32, 236 
Voltage drop, 3 
Voltage follower, 116 
Voltage polarity, 3 

reference, 4 
Voltage rise, 3 
Voltage source, 4 

controlled, 4 
dependent, 4 
independent, 4 
Thevenin, 82,294 

Voltage-to-current converter, 1 16 
Voltampere, 326 
Voltampere reactive, 326 

Watt, 5 
Wattmeter, 325 
Weber, 174 
Wheatstone bridge, 86 
Winding: 

primary, 349 
secondary, 349 

Work, 3 

Y (Wye) connection, 85, 296, 385 
Y-A transformation, 85, 296 
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SCHAUM’S INTERACTIVE OUTLINE SERIES 

Schauni’s Outlines and M i t 1 i c a P 1  C o i n l ) i i i c c l .  . . 
Thc Ultimatc Solution. 

NOW AVAILABLE! Electronic, interactive versions of engineering titles from the Schaum’s Outline Series: 
Electric Circuits 
Electromagnetics 
Feedback and Control Systems 
Thermodynamics For Engineers 
Fluid Mechanics and Hydraulics 

McGraw-Hill has joined with MathSoft, Inc., makers of Mathcad, the world’s leading technical calculation software, 
to offer you interactive versions of popular engineering titles from the Schaum’s Outline Series. Designed for 
students, educators, and technical professionals, the lnteractive Outlines provide comprehensive on-screen access 
to theory and approximately 100 representative solved problems. Hyperlinked cross-references and an electronic 
search feature make it easy to find related topics. In each electronic outline, you will find all related text, diagrams 
and equations for a particular solved problem together on your computer screen. Every number, formula and graph 
is interactive, allowing you to easily experiment with the problem parameters, or adapt a problem to solve related 
problems. The Interactive Outline does all the calculating, graphing and unit analysis for you. 

These “live” lnteractive Outlines are designed to help you learn the subject matter and gain a more complete, more 
intuitive understanding of the concepts underlying the problems. They make your problem solving easier, with powc 
to quickly do a wide range of technical calculations. All the formulas needed to solve the problem appear in real 
math notation, and use Mathcad’s wide range of built in functions, units, and graphing features. This interactive 
format should make learning the subject matter easier, more effective and even fun. 

For more information about Schaum’s Interactive Outlines listed above and other titles in the series, please contact 
Schaum Division 
McGraw-Hill, Inc. 
1221 Avenue of the Americas 
New York, New York 10020 
Phone: 1-800-338-3987 

To place an order, please mail the coupon below to the above address or call the 800 number. 

Schaum’s Interactive Outline Series 
using Mathcada 

fSoftware requires 80386180486 PC or conipatibles, with Wilzdoicis 3.1 or highcl; 4 M B  of RAM, 4 M B  of 
hard disk space, and 3 1/2” disk drive.) 

Interactive Software and 

($29.95 ea) ($38.95 ea) 
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MathSoft, Inc./DiStefano: Feedback & Control Systems 07-842708-8 07-842709-6 
MathSoft, Inc./Edminister: Electric Circuits 07-84271 0-x 07-84271 1-8 
MathSoft, IncJEdminister: Electromagnetics 07-84271 2-6 07-84271 3-4 
MathSoft, Inc./Giles: Fluid Mechanics & Hydraulics 07-84271 4-2 07-84271 5-0 
MathSoft, Inc./Potter: Thermodynamics For Engineers 07-8427 1 6-9 07-8427 1 7-7 
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Free Software 

Pspice is a circuit simulator software package used to calculate the behavior of electrical circuits. Class 
instructors can receive complimentary evaluation versions for both the IBM-PC and Macintosh by 
submitting a request on company or educational letterhead to: 

MicroSim Corporation 
20 Fairbanks 
Irvine, CA 92718 
ATTN: Product Marketing Dept. 

Duplication of the diskettes for your students is encouraged. 




