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The objective of this book, like its previous edition, is to provide an introduction to the basic principles
in analog and digital communications for advanced undergraduates in electrical or computer
engineering. The assumed background is circuit analysis, and prior exposure to signals and systems
course is helpful. The book can be used as a self-contained textbook or for self-study. Each topic is
introduced in a chapter with numerous solved problems. The solved problems constitute an integral part
of the text.

In this edition, there are two chapters dealing with basic tools. These tools are then applied to next
three chapters in analog communication systems, including sampling and digital transmission of analog
signal. Probability, random variables, and random processes are introduced in Chapters 6 and 7 and
applied to the chapters that follow. Effect of noise in analog communication systems is covered in
Chapter 8. Chapter 9 treats the effect of noise in digital communication and the subject of optimum
reception. Information theory and source coding is treated in Chapter 10. A distinctive feature of this
edition is the new chapter, Chapter 11, on error control coding, including linear block codes, cyclic
codes, and convolutional codes.

Hwei P. Hsu
Monteville, NJ
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GNALS AND SPECTRA

ODUCTION

is chapter we review the basics of signals in the frequency domain. The frequency domain
n is called the spectrum. The spectral analysis of signals using Fourier series and Fourier
s is one of the fundamental methods of communication engineering.

ER SERIES AND DISCRETE SPECTRA
Exponential Fourier Series:

} be a periodic signal with fundamental period Tp. Then we define the complex exponential
ies of x(f) as

w1 = z o et wy = 2n/T, (1.1
e
1 [te+To B
e I (12)
o.Jdip
trary . Setting f, = —Tp/2, we have
1 [Ter2 ;
= —J ey (1.3)
Tyl-mp2
¢, are called the Fowrier coefficients of x(r). These are, in general, complex numbers
ressed as
ey = le,le™ (1.4)

amplitude and &, is the phase angle of ¢,.

cira:

.| versus the angular frequency w = 2nf is called the amplitude spectrun of the periodic
lot of 0, versus w is called the phase spectrum of x(f). These are referred to as frequency
. Since the index n assumes only integers, the frequency spectra of a periodic signal exist
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only at the discrete frequencies nwg. These are therefore referred to as discrete frequency spectra or line
spectra.
If the periodic signal x(7) is a real function of time, then

o =y = legle™ (1.5)
This means that, for a real periodic signal, the positive and negative coefficients are conjugate, that is,
leal =le 6., =-8, (1.6)
Hence, the amplitude spectrum is an even function of @ and the phase spectrum is an odd function
of w.
C. Power Content of a Periodic Signal and Parseval’s Theorem:

The power content of a periodic signal x(7) is defined as the mean square value over a period:

1 T/2 2
P=~J, x(0)|°dt (1.7)
To)-102
Parseval’s theorem for the Fourier series states that if x(7) is a periodic signal with period, Ty, then
lJTu/Z bofdi= 3 1o, (38
. x(OPdt = - .
ToJ-1p2 ( ,,:z_m k )

1.3 FOURIER TRANSFORMS AND CONTINUOUS SPECTRA

To generalize the Fourier series representation (1.1) to a representation valid for nonperiodic
signals in frequency domain, we introduce the Fourier transform.

A. Definition:

Let x(#) be a nonperiodic signal. Then the Fourier transform of x(t), symbolized by &, is defined
by

X(w) = F[x(D] = J x(Oe 7' dt 1.9)

The inverse Fourier transform of X{(w), symbolized by # 7!, is defined by
x(t) = F [ X(w)] = %J X(w)e™ de (1.10)
T ) —oo

Equations (/.9) and (1.10) are often called the Fourier transform pair denoted by
x(1) = X(w)

B. Frequency Spectra:

In general, the Fourier transform X{(w) is a complex function of angular frequency w, so that we
may express it in the form

X(0) = | X(w)|e”® (.10

where |X(w)| is called the continuous amplitude spectrum of x(f), and 0 (w) is called the continuous
phase spectrum of x(f). Here, the spectrum is referred to as a continuous spectrum because both the
amplitude and phase of X(w) are functions of continuous frequency .

If x(¢) is a real function of time, we have

X(-w) = X*(w) = [X(o)]e?* (1.12)
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or X(-o)| = [X(@)] 6(-w) =—-B(w) €.13)

Thus, just as for the complex Fourier series, the amplitude spectrum |X(w)| is an even function of w,
and the phase spectrum 6(w) is an odd function of w.

C. Energy Content of a Signal and Parseval’s Theorem:

The normalized energy content E of a signal x(f) is defined as
E= J' x(0)|dt (1.14)

If E is finite (E < oo), then we call x(?) as an energy signal. If E = oo, then we define the normalized
average power P by :

P = fim 2 ml [*d 1.15
_TEI;IOTJ—T/Z x(t)|“dt (1.15)

If P is finite (P < o), then x(¢) is referred to as a power signal. Note that a periodic signal is a power
signal if its energy per period is finite.
Parseval’s theorem for the Fourier transform states that if x(?) is an energy signal, then

r 1x(t)|2dz=ir 1X(0)*dew 1.16)
o 27 } -

1.4 PROPERTIES OF FOURIER TRANSFORM
1. Linearity (Superposition):
ayx (1) + a3 (1) < a1 X1 () + . X,(w) (1.17)

2. Time Shifting:

x(t = tg) = X(w)e 7 1.18)

Equation (/.18) shows that the effect of a shift in the time domain is simply to add a linear term —wto
to the original phase spectrum 6(w).

3. Frequency Shifting:

XD’ = X(w — wq) (1.19)
4. Scaling:
x(at) « ix(f) (1.20)
lal” \a

Equation (/.20) implies that time compression of a signal (a > 1) results in its spectral expansion and
that time expansion of the signal (a < 1) results in its spectral compression.

5. Time-Reversal:

x(=1) < X(—w) (1.21)
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6. Duality:
X(t) < 2nx(—w) (1.22)
7. Differentiation:
Time differentiation:
d
X' = 770 < joX(o) (1.23)

Equation (/.23) shows that the effect of differentiation in the time domain is the multiplication of X(w)
by jo in the frequency domain.
Frequency differentiation:

KA

—7; o X! =
HDx(1) = X' (w) o

X(w) (1.24)

8. Integration:

If X(0) =0, then

! 1
J' . x(t)dr <—>]—5X(a)) (1.25)

Equation (7.25) shows that the effect of integration in the time domain is the division of X(w) by jo in
the frequency domain, assuming that X(0) = 0. Note that by definition (1.9)

00

X(0) = I x(t) dt (1.26)

The more general case pertaining to X(0) # 0 is considered in Sec. 1.5 [Eq. (1.42)].
9. Convolution:

The convolution of two signals x1(¢) and x,(¢), denoted by x1(z) * x5(?), is a new signal x() defined
by

00
x() = x1(8) * xo(8) = J x1(T)xy(t — 1) dr (1.27)
Then x1(1) * x(8) = X(w)Xr(w) (1.28)
Equation (1.28) is referred to as the time convolution theorem, and it states that the convolution in the

time domain becomes multiplication in the frequency domain (Prob. 1.18).
Note that the operation of convolution is commutative, that is,

x1(8) * x2(0) = xp(2) * x1(8)
10. Multiplication:
1
x1(Dx,(1) %Xl (0) * Xy (w) (1.29)

Equation (1.29) is often referred to as the frequency convolution theorem. Thus, the multiplication in
the time domain becomes convolution in the frequency domain.
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1.5 FOURIER TRANSFORMS OF POWER SIGNALS

To find the Fourier transform of a periodic signal or a power signal, we need to introduce the unit
impulse function.

A. Impulse Function:

The unit impulse function, also known as the Dirac delta function, &(1), is not an ordinary function
and is defined in terms of the following process:

f D81y dt = $(0) (1.30)

where ¢(¢) is any regular function continuous at ¢ = 0. Equation (/.30) and all subsequent expressions
will also apply to the frequency-domain impulse d(w) by replacing ¢ by w.

Note that Eq. (I.30) is a symbolic expression and should not be considered an ordinary Riemann
integral. In this sense, 8(¢) is often called a generalized function and ¢(z) is known as a festing function.
A different class of testing function will define a different generalized function. Similarly, the delayed
delta function 8(¢ — t,) is defined by

| swoe-ma= o a3n

where ¢(Z) is any regular function continuous at ¢ = f,.
Some additional properties of d(¢) are

X(D(t — ty) = x(ty)d(t — t) (1.32)

if x(¢) is continuous at ¢ = f,.
x()3() = x(0)5(1) (1.33)

if x(¢) is continuous at ¢ = 0.
o(at) = %6(0 a#0 1.34)
5(—1) = o(2) (1.35)
x(}) * 0t —1g) = x(t — tp) (1.36)
x(2) * 6(¢) = x(¢t) (1.37)

Note that Eq. (1.35) can be obtained by setting a = —1 in Eq. (/.34). Equations (.33) and (/.37) are
the special cases of Egs. (1.32) and (1.36), respectively, for o = 0.
An alternative definition of J(¢) is provided by the following two conditions:

1
Jzé(t—to)dt=l H<thy<t (1.38)
it

ot—t)=0 tFt 1.39)

Conditions (/.38) and (I1.39) correspond to the intuitive notion of a unit impulse as the limit of a
suitably chosen conventional function having unity area in an infinitely small width. For convenience,
§(f) is shown schematically in Fig. 1-1(a).

B. Fourier Transforms of 4(t) and a Constant Signal:

Using Eq. (1.9) and Eq. (1.30), the Fourier transform of d(z) is given by

ST dr =1

7@ = J
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We thus have the Fourier transform pair for 6(2) :

8t~ 1 (140)
This relation states that the spectrum of 6(r) extends uniformly over the entire frequency interval, as
shown in Fig. 1-1(b).

x(1) P Xw)

(1) !

0 t 0 w
(a) )

Fig. 1-1  Unit impulse function and its spectrum

By applying the duality property [Eq. (1.22)] to Eq. (1.40) and noting that the delta function is an
even function [Eq. (/.35)], we obtain

1 & 2n(w) 141

Equation (1.41) states that the spectrum of a constant signal (or dc signal) [Fig. 1-2(a)] is a delta
function 27d(w) occurring at zero frequency, as shown in Fig. 1-2(3).

) X(w)
1
-— 2w 8( )
0 t 0 w
(@) )
Fig. 1-2 Constant signal and its spectrum
C. Integration Property:
If X(0) # 0, then
! 1
J x(t) dv < nX(0)6(w) +j; X(w) (1.42)

Solved Problems

FOURIER SERIES AND DISCRETE SPECTRA
1.1.  Derive Eq. (1.2).

2w

Since woTy = 2r and e = 1, we have

0+ 1 . T )
j Mol gy — . [el'lma(lo+ [y e/nwnfo] =0
f Jn(DO
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for any ¢y and for n # 0. From above it follows that

0+To
J * femmant gy — s 143)

o

where 6,,, is Kronecker’s delta, defined by

{1 n=m
bm={4 o a.44)

Multiplying both sides of Eq. (1.) by e 7" and integrating (and interchanging the order of integration

and summation), we obtain

tc+T 0 . 00 10+T,J . L .
J x(te e =y c,,J N = ¢y Todum = Tolm
1o 1)

n=—o0 n=—00

1 (ft+To .
Thus, Cp = —J x(f)e @t gy
. TO Iy

Changing m to n, we obtain Eq. (1.2).

1.2. Consider the periodic square wave x(f) shown in Fig. 1-3(4). Determine the complex Fourier
) series of x(¢) and plot its magnitude spectrum for (a) a = T/4 and (b) a = T/8.

Let = ™™ wy=2n/T

Because of the symmetry of x(f) about ¢ = 0 we use Eq. (1.3) to determine the Fourier series coefficients for

x(2).

x(1)

~-T -a 0 @ T t
(a)

o

~20 2 n

)

| |C,,|
l' 10 o0a gt s 2
4

(c)

saaatagrta ol lll
-4

o n

Fig. 1-3 Rectangular pulse train and its magnitude spectrum () a periodic square wave, (b)) a = T[4, (c) a = T/8
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1.4.
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10 _, . " sin nwoa
— ool ge — —inwga _ ,jnepa | - ST 04 1.
K TJ-,; ¢ ! —jnng[e € ] nn ( 45.)
1 2a
o= — dr== 146
=7, T (146)
@ a=T/Awa=mn2c=4%
' sin (nm/2)
ol = P2
The magnitude spectrum for this case is shown in Fig. 1-3(b).
) a=T/8 wpa=mn/dcy=1}
sin (nn/4)
e =29
nm
The magnitude spectrum for this case is shown in Fig. 1-3(¢).
Determine the complex Fourier series for the periodic square wave y(f) shown in Fig. 1-4.
y(1)
{
1 )
=T 1] 24 T 1
Fig. 1-4
Let Y= die"™™  wy=2n/T (1.47)
o

Comparing Fig. 1-4 with Fig. 1-3(a), we see that p(f) = x(¢ — a). Changing ¢ to t — ain Eq. (I.]) we have

0 00
x(t—a)= Z cnel"wu(l—ﬂ) — Z e ¢ In0a pjnot

n=—00 n=—00
Thus, we get
i sin nwga
d, = cye ot = 20 ponaa (1.48)
nn

From Eq. (1.48) we see that the magnitude spectrum of a signal that is shifted in time remains the same
and the effect of a time shift on signal is to introduce a phase shift in its phase spectrum that is a linear
function of w.

Consider the signal
x(?) = sin wyt
Find the complex Fourier series of x(f) and plot its frequency spectra.

We could use Eq. (1.3) to compute the Fourier coefficients, but for this case it is simpler to use Euler’s
formula and identify by inspection the Fourier coefficients. Now we can express x(7) as
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. 1/ i 1 1
x(f) = sin wgt = 2—],(8"”‘" —e /“’0’) =3¢ Joot +-2;,e/“’°t

Thus, cp=-g= 1/ ¢ = 5= le#™/D ¢, =0forn#+lor—1

The frequency spectra of sin wyt are plotted in Fig. 1-5.

el
1
2
x(t) = sin wet?
-3-2-1 0 1t 2 3 n
t 0"
x/2
(a) =2 l !
BT B n
-x/2
[}

Fig. 1-5 sin wy! and its spectrum

1.5. Find the complex Fourier series for the signal

x(1) = cos wot + sin? wyt

Again using Euler’s formulas, we have
1 Jant —jayt 1 Jart —joyt 2
x(1) = (" + ¢ °)+[f(e o —e °)]
2 2j

U, 1y 1 _
— _ o oot _ 2 R2egt _ 2wyt
3 e 4 3¢ yy (e 2477
1 1 _, 1 1, 1
— 0t T ot 4 ©  ~jogt _ Z 20t
3¢ 2° 27 2°¢ i

o0

_ Z £ et

n=—oo

Thus, we find that ¢ =1,¢; = c.; =4, ¢, = ¢, = —4, and all other values of c, are equal to zero.

1.6. If x((f) and x,(¢) are periodic signals with period T and their complex Fourier series expressions
are

o0

x () = Z d, e’ xy(1) = Z 2,&"" wy =

n=—00 n=—o0

2n
T

show that the signal x(¢) = x;(#)x»(f) is periodic with the same period 7 and can be expressed as

00
= e

n=—0co

where ¢, is given by
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= > dieny (1.49)
k=—00
X(t+ )= x,(t + Tixo(t + T) = x,(0x,(0) = x(0)
Thus, x(#) is periodic with period T. Let
& 2n

x(t) = Z ™ g ==

n=—00

ool
T

1 (72 had e .
:T_[ Z die™ " Vx, () ! dt

T2 \p="o

= S d 1 (7> He TRt g1 | — S 4,
=Y 4 T —T/ZXZ( e t|= > den

k=—00 k=—00

T/2 ) 1 (72 .
Then J- x()e ! dt = —J x1()x,()e 7" dt
-T2 T)-12

1.7.  Let x;(¢) and x,(?) be the two periodic signals of Prob. 1.6. Show that

1 (T/2 o
FLT/Z x(Dxydi = de., (1.50)

S
Equation (1.50) is known as Parseval’s formula.

From Prob. 1.6 and Eq. (1.49) we have

_l /2 oI Gy < 4
= | g, 0RO A= 3 dier,

fe=—00

Setting # = 0 in the above expression, we obtain

1 (72 Ll x
TLM xi(Oxt)dt =Y dey = ,:Z_m dye_,

k=00

FOURIER TRANSFORMS AND CONTINUOUS SPECTRA
1.8.  Consider the signal [Fig. 1-6(a)]

x(®)=e"u®)y a>0 (1.51)
where u(¢) is the unit step function defined by
_f1 t>0
u(t);{o 10 (1.52)

Find the Fourier transform of x (¢) and sketch its magnitude and phase spectra.

From Eq. (1.9), we have

00 L 0 .
X((o):J Pl dr=j eation gy 1 (1.53)
0

0 a+jo

The amplitude and phase spectra of x(f) are
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1.9.

| X(w)]
|
1]
1
1
x(1) -a 0 a
()]
6(w)
--------------- n/2
0 I
= m/4
(a) : a
-a 0 :
- ﬂ/‘ b - —
k720 sttt el
()
Fig. 1-6
X@) = () = —tan™ ©
va? + o? a

which are sketched in Fig. 1-6(5) and (c).

Find the Fourier transform of the signal [Fig. 1-7(a)]

x(t) = 7l a>0
Signal x(¢) can be rewritten as

_ e t>0
x(t) =M =
® e 1<0

0
Then - X(w) = I

0 ) -
= j 9T gy J e~@tor gy
-0 0

_ 1 I 2a
a-jo  atjo @+ w?

Hence, we get

oo
et gy +J e MO gy
o 0

x(t) X(w)
l R 2
¢ Tr
0 t ]
(a) (b)

Fig. 1-7

(1.54)
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pLpm—— 1.5
¢ @+ o? (133
The Fourier transform X (o) of x(¢) is shown in Fig. 1-7(b).
1.10. Find the Fourier transform of the rectangular pulse signal x(¢) [Fig. 1-8(a)] defined by
_ {1 ld<a
X(1) = pot) = {0 1> a (1.56)
00 3 a . 2 si 31
X(w) = J pae 7@ dt = J eI gy =290 oy 5“;0‘;“' (1.57)
The Fourier transform of p,(7) is shown in Fig. 1-8(b).
x(t) X(w)
2a
| 2sinaw
w
N\ AN
R T N TE S
; a a
(a) b
Fig. 1-8
1.11. Applying the inverse Fourier transform [Eq. (.10)] to Eq. (1.57) with ¢ = 0, show that
j S‘n““’dw={” a>0 (1.58)
o W -n a<0

Substituting Eq. (1.57) into Eq. (1.10) we have

1 J’°° 2 sin aw
—e

1
x(t) = 7

00 Q1
ot g = 2 [ SAL ot g,
T ) -0

—x w w

From Eq. (1.56) or Fig. 1-8(a), we get

J wdw:nx(()):n a>0
—00 w

When a < 0, we obtain

J gwa—wdw=—nx(0):—-n a<0

—c0

since sin(—6) = —sin 0.

1.12. Given X(w) = 1/(jo) find x(f).
From Eq. (1.10) and using Euler’s identity, we have
1 1

s ) o 1 ‘ 1 s
X(l):ﬂj jEejwtdﬂ):ﬂ B ]_E(cos wt+jsma)t)dw:%J Smwwtdw
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Since cos wt/w is an odd function of w, the first integral of the third term in the preceding expression is zero.
Then by Eq. (1.58) we obtain

x€f) = %sgn(z) (1.59)
where sgn (7) (sign function or signum function) is defined by (Fig. 1-9)
1 0
Sgn(t)={_1 izo (1.60)
From the preceding result we have the Fourier transform pair:
sgn(r) « 2 (1.61)
Jo
sga(r)
1
¢ t
-1

Fig. 1-9 Signum function

PROPERTIES OF FOURIER TRANSFORM

1.13.

Verify the duality property (1.22), that is,
X(1) & 2nx(—w)
From the inverse Fourier transform definition (/.10), we have
J X(wY* dw = 2rx(1)
Changing ¢ to —7, we obtain
j X(w)e ™ dw = 2mx(—1)
Now interchanging ¢ and w, we get

j X(O)e 7' dt = 2nx(—w)

Since F{X(W)} = ro X(He ' dt

we conclude that
X(t) o 2nx(—w)

Find the Fourier transform of the signal [Fig. 1-10(a)]

x(l)=smat (162)
et

From the result of Prob. 1.10, we have
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2
Fp)] = =sin aw
(5]
Now from the duality property of the Fourier transform (.22), we have

?7[% sin at] = 2np,(~w)

nar] 1 _[2.
Thus, X(w) = 9[5";[" ] = Zﬂ’[;sm at] = pu(— ) = pa(e) (1.63)

where p,(w) is defined by [see Eq. (1.56) and Fig. 1-10(0)]

(1 |ol<a
n={y o3

x(t) X(w)

1.15.

1.17.

(@) ‘ ®)
Fig. 1-10

Show that if
x(f) « X(w)
then x(2) cos wpt — 1X(w — wo) + $X(w + o) (1.64)
Equation (1.64) is known as the modulation theorem.
Using Euler’s identity
cos wot = Y&/ + ¥
and the frequency-shifting property (I.19), we obtain

F [x(t)cos wgf] = F [0 + b7 | = 1¥( = o) + 3X( + 0p)

The Fourier transform of a signal x(7) is given by [Fig. 1-11(a)]:
X(@) = Ipa(© = wg) + §p,( + )
Find and sketch x(7).

From Eq. (1.63) and the modulation theorem (1.64) it follows that

sin at
x(f) = cos wyt
e

which is sketched in Fig. 1-11(b).

Let signal x(z) be real, and X(w) = Z[x()]. Then show that
F [x(—H] = X(~0) = X" (0) (1.65)
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x(1)
X(w)

sin at
/ —— coswy !
nt

3

=3

~wy

(a) (b)
Fig. 1-11

By definition (7.9), we have
F [x(-t)] = J':x(—z)e‘f‘"‘dz
= j:ox(,l)ef“d,l = J:x(z)e-ﬂ“"”da = X(~w)
Thus, if x(7) is real, then

J " e di = [r xu)e—f”/"d;v]l X (@)

Hence, X(—w) = X" (w)

1.18. Prove the time convolution theorem (/.28), that is,
x1(0) * X5(0) = X1 ()X (w)
By definition (1.9) and (1.27), we have
Flx1(0) * x,(0] = Jw [Jm xl(r)xz(t—r)dr]e_j“”dt

Changing the order of integration gives

Flx, (1) * x(D] = Jl x;(7) U:o Xy (1 — z)e‘f”"dt]dr

By the time-shifting property (.18) of the Fourier transform,

b . N
J Xo(t — 1)e 7' dt = Xp(w)e 7"

Thus, we have

00

Fx(0) * ()] = J- XD Xy (w)e T dr
- Ul xl(r)e‘f“dr])@(w) = Xy (@) Xa(e)
Hence, x1(8) * x3(8) < X1(0)Xs(w)

'1.19. Consider a real signal x(7), and let
X(w) = ZF [x(1)] = A(w) + jB(w) (1.66)
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1.20.

1.21.

SIGNALS AND SPECTRA [CHAP. 1

(a) Show that x(#) can be expressed as
(1) = xo(1) + x,(0) (1.67)

where x,(7) and x,(z) are the even and odd components of x(#), respectively.
(b) Show that

X(1) = A@)  x,(2) = jB() (1.68)
(@) Let XD =xO+x50 @
Then X0 = XD+ X (D) = (D= x,) (&)

Solving (a) and (b) for x.() and x,(f), we obtain
X () =3[xO + x(-0]  x,(H) = F[x(2) — x(-1)} (1.69)
(b) Now if x(?) is real, then from Eq. (1.65) of Prob. 1.17, we have
F [x()] = X(@) = A() + jB@)
F [x(=0] = X(~0) = X" (0) = A(w) — jB(w)

Thus, we conclude that

F [x,(0] = $X(0) + 1 X* (0) = A(w)

F [x,(0] = 1 X(@) =1 X* (0) = jB(w)

Equation (1.68) shows that the Fourier transform of a real even signal is a real function of @ and the
Fourier transform of a real odd signal is an imaginary function of w.

Using the results of Prob. 1.19, redo Prob. 1.9.
From Eq. (1.53) we have

a ()

1
e u(n) — — = i
© atjo @+ Td+o?

5 =)

—-at

By Eq. (1.69) the even component of ™ “u(t) is given by

1,-at 1,at — 1,mall
Seu(t) + 3 (1) = L™

Thus, Ll o, Re( ! - ) = #
2 atjo) @ +o?
2a
or PRLLUES
@+ o?

which is the same result obtained in Prob. 1.9 [Eq. (1.55)].

Show that if x(¢) is band-limited, that is,
X(w)=0 forlwl > w,

sin at

then x() * = x(7) ifa> o,

nt

From Prob. 1.14, we have
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sin at (@)= 1 |lol<a
P70 lel>a

By the time convolution theorem (7.27),

sin at .
x(0) * “”7‘”“ o X(@)p o) = X@)  ifa> o,
in at )
Hence, x(8) * smar_ x(9) ifa> o,

1.22. 1If
x1() & Xi(w) and  x(5) < Xo(w)
show that

Jig x1(Dx2()dt = 2i7z Jio X ()X (—w)dw
From the frequency convolution theorem (Z.29), we have

Foamol = 5| X0 -Ha
That is,

J:o [ (Oxa(D)]le ™ dt = % I:o Xy (D Xo(w = DdA

Setting w = 0, we get

j: x1Oxa(dt = o J " nOX%(hd
By changing the dummy variable of integration, we get

- 1 (=
J._o0 x1(Dxy(Ndt = 7 J_w X ()X (—w)dw

1.23. Prove Parseval’s theorem Eq. (1.16) for a real x(%).

If x(?) is real, then from Eq. (1.65) of Prob. 1.17 we have
X(~0) = X" (0)
Then, setting x;(¢) = x2(¢) = x(¢) in Eq. (1.70) of Prob. 1.22, we have

o o 1 (e
J_wlx(t)lzdt = J_ [x()*dt = > I,m X(@)X(~w)dw

= % meX(w)r (wYdw = % J: 1 X(w)|*dw

FOURIER TRANSFORMS OF POWER SIGNALS
1.24. Verify property (1.32):
x(D)0(t — 1y) = x(1y)o(t — ty)

The proof will be based on the following equivalence property:

1.70)
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1.25.

1.26.

1.27.

SIGNALS AND SPECTRA [CHAP. 1

Let g,(¢) and g,(f) be generalized functions. Then the equivalence property states that g,(f) = gx(?) if
and only if

[~ awswa= [~ ewswa a7

for all test functions @(7).
If x(¢) is continuous at ¢ = f, then

|7 st ronoar - Lf(’ — )X(OBO) df = x(t0)p(t)
= xtw)|”_st- o= [ rxtwi- o
for all ¢(¢). Hence, by the equivalence property (I.71), we conclude that

X(1)8(t — 1) = x(1)6(2 ~ 1)

Verify Eq. (1.36), that is,
x(2) * O6(t — tg) = x(¢ — to)

According to the commutative property of convolution and the definition (7.37) of (f), we have
x(8) * 6(t — tg) = 8(t — ty) * x(f) = j 8t — to)x(t —1)dt

= X(t = Doy, = X(2 = 1)

Find the complex Fourier series of the unit impulse train d7(f) shown in Fig. 1-12(@) and defined
by

sry= > 8(t—nT) (1.72)
el neont 27
Let Sr(t) = Z " g = -

From Eq. (1.3), the coefficients ¢, are

-] ™ 510 ‘f"‘"ﬂ'dz—lr/z s(0e idr =
=T ) T ST T

Thus, EROESDY %ef"‘"ﬁf .73)

n=—c0

Find the Fourier transform of the following signals:

(@ x(t)=e™" (B x(f)=e7™ (¢) x(f) = cos wyt

(a) Applying the frequency-shifting property (1.19) to Eq. (1.41), we get

&7 218(w — wy) 1.74)
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ol il

2T t —wy 0 wy 2w 4

3

s
I
Nl -

Fig. 1-12  Unit impulse train and its magnitude spectrum

() From Eq. (1.74) it follows that

7% o 2n8(w + wp) 1.75)

(¢) From Euler’s formula we have

cos wyt = L&/ — 7™

Thus, using Egs. (1.74) and (1.75) and the linear property (1.17), we get
cos wyt « md(w — wy) + 7w + wp) (1.76)

1.28. Find the Fourier transform of a periodic signal x(¢) with period T.

We express x(f) as

% ) -
Jnwgt =
x(f) = ,,:E_m cpe Wy T
Taking the Fourier transform of both sides, and using Eq. (1.74), we obtain

X(@)=21 Y cd(w—nwp) a1.77)

ne—t0
Note that the Fourier transform of a periodic signal consists of a sequence of equidistant impulses located at
the harmonic frequencies of the signal.

1.29. Find the Fourier transform of the periodic train of unit impulses é(?) [Fig. 1-13(a)].

sr(n =3 &(t—nT)

n=—co

From Eq. (1.73) of Prob. 1.26, the complex Fourier series of d4(t) is given by

& i 2
b= 3 g w=T

n=—c0

Using Eq. (1.77) of Prob. 1.28,

oy -
FLr0] =7 Y S@—nog)= @g . 5= nep) = dde, @)

n=—00 n=—co

or ?[ i 6(t—nT)]=wo > 8w —nay) (1.78)

n=—00 n=—o0
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5,(1) wed, (w)
I L]
-T 0 T T t “wy 0w, 2w w
(@) ®

Fig. 1-13 Unit impulse train and its Fourier transform

Thus, the Fourier transform of a unit impulse train is also a similar impulse train [see Fig. 1-13(b)].

1.30. Find the Fourier transform of the unit step function u(z).
As shown in Fig. 1-14, u(?) can be expressed as
u(t) = %Jr %sgn (?)
Note that % is the even component of u(s) and %sgn(t) is the odd component of u(r). Thus,

Fu®] =LF 1] +17 [sgn (1)
which, using Eqs. ({.41) and (1.61), becomes

F u(t)] = no(w) -&-4l (1.79)
Jo
i
u(r) | 3 sga (1)

1 7 i
2

0 P 0 : t o

)

Fig. 1-14  Unit step function and its even and odd components

1.31. Show that

x(0) * u(t) = Ir

x(z)dt

and find its Fourier transform.

By definition (1.27) of the convolution,

x(1) * u(®) = J’W x(Du(t — t)de = Jl x(t)dt

1 =<t

since u(t—f)={0 >

Next, by the time convolution theorem (/.28) and Eq. (I.79), we obtain
t : 1
f[J x(‘r)d't] = X(w)l:n&(a)) +_7]
—o jo

= nX(w)d(w) + _iX(w) = 7X(0)d(w) + _iX(a))
Jo Jjo



CHAP. 1] SIGNALS AND SPECTRA 21

1.32.

1.33.

1.34.

1.35.

since X(@)d(ew) = X(0)3(w) by Eq. (1.33) [see Eq. (1.42)].

Use the frequency convolution theorem (1.29) to derive the modulation theorem (/.64). (See
Prob. 1.15.)

From Eq. (1.76), we have

v

cos Wyl « (e — wg) + TH(w + wg)
By the frequency convolution theorem (7.29),
1 1 1
x(1)cos wyt EX(w) * [18(w — wg) + né(w + we)l = EX((D —wy) + §X(co + wy)
The last equality follows from Eq. (1.36).

Let x(7) be a periodic signal with fundamental period Ty and let x/(#) be the segment of x(r)
between —Ty/2 < t < Tp [2; that is,

_x(t) -To/2<t<Ty/2
(D _{ 0 otherwise
Show that
1 .
¢, = F()X,(nwo) (1.80)

where ¢, are the Fourier coefficients of x(f) and X/{w) is the Fourier transform of x,().

From definition (1.9)

o0 ) To/.
X(w)= J x(He 7 dt = J -

2 s
x(t)e 7 dt
12

. 1 (/2 )
Since Cy = —j (e dt
Ty J-1o/2

it follows that 1
= TOXI(nwO)

Using Eq. (1.80), redo Prob. 1.2.
From Fig. 1-3 we see that x{(¢) = p,(?) of Fig. 1-8(a). By Eq. (1.57) we have

2sin aw

Xfw) =

Hence, by Eq. (1.80) we obtain
1 2sin nwoa _ sin nwoa
= — Xj(nwy) = — 2 =———2—
4 Ty o) nwo Ty nn

which is Eq. (1.45).

Supplementary Problems

Consider a sawtooth wave x(7) shown in Fig. 1-15. Find and sketch the magnitude and phase spectra of x(?).
Ans. el =1/Qalnl) 6, =nn+in 6_,=-0,
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x(t)

/]”2 /]
A

Fig. 1-15

1.36.  Find the fundamental period Ty and the Fourier coefficients c, of the signal
(@ x(t)=coslt+sinit; (b) x()=cos*t.

Ans.
(@ Toy=28r cy=1 cy=-1% 03:2% =1

b Th=n =% ch=c¢=1%

Iy
I

IS
I

5

1.37.  Let c, be the Fourier coefficients of a periodic signal x(¢). Find the Fourier coefficients d, of signal x(—1f) in
term of ¢,.

Ans. dy,=c_,

1.38.  Let x(z) be a periodic signal with fundamental period Tp. Let 3(f) = x(f)cos wor. Express the Fourier
coefficients d, of y(¢) in term of the Fourier coefficients c, of x().

Ans. dy =Yepq + )

1.39.  Show that if a periodic signal x(¢) is even, then its Fourier coefficients are real and if x(¢) is odd, then its
Fourier coefficients are imaginary.

Hint: Use Euler’s identity e 7" = cos nwot — j sin nwot in Eq. (1.3).
1.40.  Verify Parseval’s theorem for the Fourier series Eq. (1.8).

Hint: Let x;(t) = x(f) and x»(f) = x"(¢) in Parseval’s formula (1.50) (Prob. 1.7).
1.41. Find the Fourier transform of x(f) = te™*u(t) (a > 0).

Ans. 1/(a + jo)?

1.42. Prove the frequency convolution theorem (1.29), that is
1
X1 (Dxx(t) = ﬂXl(CD) * Xo(w)

Hint: Apply duality property (1.22) to the time convolution theorem (1.28).

1.43. Show that if

X(2) ~ X(w)
then X = 51%? « (jo)" X(w)

Hint: Repeat time-differentiation theorem (1.23). .
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1.44.

1.45.

Find the Fourier transform of sin wot.
Ans. —jnd(w — wp) + jrd(w + wo)

Find the Fourier transform of é(t — 1)

Ans. e~

23



SIGNAL
TRANSMISSION
AND FILTERING

DUCTION

transmission is a process whereby a message (or information-bearing) signal is transmitted
munication channel. Signal filtering purposefully alters the spectral content of the signal so
r transmission and reception can be achieved. Many communication channels, as well as
e modeled as a linear time-invariant system. In this chapter we review the basics of a linear
nt system in frequency domain.

RESPONSE AND FREQUENCY RESPONSE
e-Invariant Systems:

is a mathematical model of a physical process that relates the input signal (source or
al) to the output signal (response signal).

nd y(r) be the input and output signals, respectively, of a system. Then the system is
pping of x(i) into p(r). Symbolically, this is expressed as

v = Fx(1)] 2.1y

aperator that produces output y(f) from input x{¢), as illustrated in Fig. 2-1.
satisfies the following two conditions, then the system is called a linear system.

F[x1 (1) + x20)] = F[x (0] + Flxy (0] = yi () + i) (2.2)
nals x;(r) and xa(s).
Flax(f)] = aF [x(1)] = ap(t) (2.3)

nals x(f) and scalar a.
) is the additivity property and condition (2.3) is the fomogeneity property.
24
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x(0) System yn

T

Fig. 2-1 Operator representation of a system

If the system satisfies the following condition, then the system is called a time-invariant or fixed
system:

T x(t = 19)] = y(t = to) 29

where 1o is any real constant. Equation (2.4) indicates that the delayed input gives delayed output.
If the system is linear and time-invariant, then the system is called a linear time-invariant (LTI)
system.

B. Impulse Response:

The impulse response h(t) of an LTI system is defined to be the response of the system when the
input is 6(7), that is,

h(t) = T 6(1)] 2.5)
The function A(f) is arbitrary, and it need not be zero for ¢ < 0. If
h(t)=0 forz<0 ' (2.6)

then the system is called causal.

C. Response to an Arbitrary Input:
The response y(z) of an LTI system to an arbitrary input x(z) can be expressed as the convolution
of x(7) and the impulse response A(z) of the system, that is,
¥(1) = x(1) * h(t) = J‘ x(D)h(t — tyde 2.7)

Since the convolution is commutative, we also can express the output as

Y(@) = h(®) * x(t) = J:) h(t)x(t — t)dt 2.8

D. Frequency Response:

Applying the time convolution theorem of the Fourier transform (I.28) to Eq. (2.7), we obtain
Y(w) = X(w)H(w) 2.9
where X(w) = Z[x(1)], Y(w) = Fy(0)], and H(w) = F[h(D].
And H(w) is referred to as the frequency response (or transfer function) of the system. Thus
Y(w)
=g = 2.1
H(w) = FTh(1)] X) (2.10)

The relationships represented by Egs. (2.5), (2.7), and (2.9) are dépicted in Fig. 2-2.
By taking the inverse Fourier transform of Eq. (2.9), the output becomes

§o) = zinj: X(w)H(@)e" do> Q.11

Thus, we see that either the impulse response A(¢) or the frequency response H{(w) completely char-
acterizes the LTI system.
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1 H(w)
&(1) LTI h(t)
W LS ) = o h)

!

X(w) Y(w) = X(w)H(w)

Fig. 2-2 Relationships between inputs and outputs in an LTI system

2.3 FILTER CHARACTERISTICS OF LTI SYSTEMS

The frequency response H(w) is a characteristic property of an LTI system. It is, in general, a
complex quantity, that is, .

H(w) = |H(w)|e 2.12)

In the case of an LTI system with a real-valued impulse response A(f), H(w) exhibits conjugate
symmetry [Eq. (1.65)], that is,

H(~w) = H*(w) (2.13)
which means that
|H(-w)| = |H(w)| Oh(—w) = —0,(w) (2.14)

That is, the amplitude |H(w)| is an even function of frequency, whereas the phase 8,(w) is an odd
function of frequency. Let

Y(©) = [Y (@)™ X(o) = | X(w)|e*
Rewriting Eq. (2.9), we have
[Y(@)le" = | X(@)|e® | H(w)]e"

= | X(@)|| H(w)|e/ Or+ont@) @15

Thus, we have
[ Y(@)] = | X()|| H(w)| (2.16)
B(w) = 0,(w) + O4(w) (2.17)

Note that the amplitude spectrum of the output signal is given by the product of the amplitude
spectrum of the input signal and the amplitude of the frequency response. The phase spectrum of the
output is given by the sum of the phase spectrum of the input and the phase of the frequency response.
Therefore, an LTI system acts as a filter on the input signal. Here the word filter is used to denote a
system that exhibits some sort of frequency-selective behavior.

2.4 TRANSMISSION OF SIGNALS THROUGH LTI SYSTEMS
A. Distortionless Transmission:

For distortionless transmission through a system, we require that the exact input signal shape be
reproduced at the output. Therefore, if x() is the.input signal, the required output is
() = Kx(t—tp) (2.18)

where 1,is the time delay and K is a gain constans. This is illustrated in Fig. 2-3(a) and (b). Taking the
Fourier transform of both sides of Eq. (2.18), we get
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[H(w)l

t 0 w
(c) |H(w)l versus w

8,(w)

0 ty L+, ! 0 @

(b) Output signal
€ Slope = —#,4

d) 6,(w) versus w

Fig. 2-3 Distortionless transmission

Y(w) = Ke7" X(w) (2.19)
From Eq. (2.9), we see that for distortionless transmission the system must have
H(w) = |H(@)|e® = K7™ (2.20)

That is, the amplitude of H(w) must be constant over the entire frequency range, and the phase of
H(w) must be linear with frequency. This is illustrated in Fig. 2-3(c) and (d).

B. Amplitude Distortion and Phase Distortion: /

When the amplitude spectrum |H(w)| of thé system is not constant within the frequency band of
interest, the frequency components of the inpuit signal are transmitted with different amounts of gain
or attenuation. This effect is called amplitude distortion.

When the phase spectrum 6(w) of the system is not linear with frequency, the output signal
has a different waveform from the input dignal because of different delays in passing through the
system for different frequency components of the input signal. This form of distortion is called
phase distortion.

2.5 FILTERS
A. Ideal Filters:

By definition, an ideal filter has the characteristics of distortionless transmission over one or more
specified frequency band and has zero response at all other frequencies.
An ideal bandpass filter (BPF) is defined by

e for w,, < |o| <w,

Hypr(@) = { 0  otherwise 22D

The amplitude and phase spectra of Hppr(w) are shown in Fig. 2-4. The ideal BPF passes all
input signal components with frequencies between w,, and w,, without distortion and all other signal
components are rejected. The parameters o, and w,, are the lower and upper cutoff frequencies,
respectively.
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|Hgpe( )i 0,(w)

Fig. 2-4 Frequency response of an ideal BPF

An ideal low-pass filter (LPF) is defined by Eq. (2.21) with w,, = 0. An ideal high-pass filter (HPF) is
defined by Eq. (2.21) with w,, > 0, w,, = . An ideal bandstop filter (BSF) or notch filter is defined by

0 o, <lol<w
H =]0 e S ol <o :
Ber(2) { e otherwise 222

B. Causal Filters:

Notice that all ideal filters discussed in the preceding section are noncausal since 4(7) # 0 for
¢ < 0. It is not possible to build ideal filters. As shown in Eq. (2.6), for a causal filter (or physically
realizable filter) its impulse response A(f) must satisfy the condition

h(it)y=0 fort<0

C. Filter Bandwidth:

The bandwidth Wy of an ideal low-pass filter equals its cutoff frequency, that is, Wz = w,
[Fig. 2-11(a)]. The bandwidth of an ideal bandpass filter is given by Wy = @, — ,, (Fig. 2-4). The
midpoint wg = %(wcI + w,,) is the center frequency of the filter. A bandpass filter is called narrowband
if Wg<<wo. No bandwidth is defined for a high-pass or bandstop filter.

For nonideal or practical filters, a common definition of filter (or system) bandwidth is the 3-dB
bandwidth W3 4p. In the case of a low-pass filter, W3 4p is defined as the positive frequency at which
the amplitude spectrum | H(w)} drops to a value equal to |H(0)|/+/2, as illustrated in Fig. 2-5(a). In the
case of a bandpass filter, W3 4p is defined as the difference between the frequencies at which |H(w)|
drops to a value equal to 1/+/2 times the peak value | H(wo)| at the filter’s middle frequency wq (called
the midband frequency), as illustrated in Fig. 2-5(b). This definition is somewhat arbitrary and may
become ambiguous and nonunique with multiple peak frequency responses, but it is a widely accepted

i 1
i |
| 1
i !
1 1
@ —w, —w, 0

Fig. 2-5 Filter bandwidth
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criterion of measuring a system’s bandwidth. Note that each of the preceding bandwidth definitions is
defined along the positive frequency axis only and always defines positive-frequency, or one-sided,
bandwidth only.

2.6 QUADRATURE FILTERS AND HILBERT TRANSFORMS
A. Quadrature Filter:

A quadrature filter [or —x/2 radian (—90°) phase shifter] is an allpass system whose frequency
response is given by -

e >0

. 2.
&t w<0 @2

Hw) = {

Since e*™? = +j, H(w) can be rewritten as
H(w) = —j sgn (w) 2.24)

The corfesponding impulse response A(f) can be obtained as (Prob. 2.15)

1
h(t) = p (2.25)

B. Hilbert Transform:
Let a signal x(z) be the input to a quadrature filter (Fig. 2-6). Then by Eq. (2.6) the output
y(#) = x(2) * h(?) = x(¢) * (1/nt) will be defined as the Hilbert transform of x(f), denoted by %(#). Thus,

(1) = x(t) * % = lJ’w ﬂd-c (2.26)

M-t —7T
The Fourier transform of X(¢) is given by

X(w) = H@)X(®) = [ sgn (@) X() (2.27)

Phase shifter
x(0) ~7/2rad F O]

Fig. 2-6 —n/2 rad phase shifter

Solved Problems

IMPULSE RESPONSE AND FREQUENCY RESPONSE
2.1.  For each of the following systems, determine whether the system is linear.
(@) Tx(H)] = x(¥) cos w,t
) Tx(0] = [4 + x(?)] cos w.t
(@) T [x1(1) + x2(0)] = [x1()) + x2(D)] cos w2
= x;(2) cos ©.t + x,(t)cos .t
=T [x()]+ T [x()]
T lax()] = [ex(2)] cos w.t = aT [x(1)]

Hence, the system represented by (a) is linear.
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®) T Ix1 (1) + x2(0] = [4 + x1(8) + x5(1)]cos ot

# T[] + I [x0)]

=[4 + x1()] cos w.t+ [A + x3(2)] cos w,¢

= [24 + x,(t) + x,(t)] cos w,t
Thus, the system represented by () is not linear. The system also does not satisfy the homogeneity condition
(2.3). Note that the system represented by () is called the balanced modulator for DSB (double-sideband)

signals in amplitude modulation (see Sec. 3.3), and the system represented by (b) is the generator for ordinary
AM (amplitude modulation) signals (see Sec. 3.4).

Consider a system with input x(¢) and output y(¢) given by
WO = x(37(1) = x(5) Y 6(t=nT)
(a) Is this system linear?
(b) Is this system time-invariant?
(@) Let x(?) = x1(f) + x2(¢). Then
Y@ = [x1(D) + %2016 (1) = x1 (DO 7(2) + x2()o7(2)
=@+ y@
Similarly, let x(f) = ax;(f). Then
(&) = lax1 (D16 (1) = alx, (DS (D] = oy (2)
Thus, the system is linear.

(b) Let x1(2) = cos (277: t)
Then n@=Y x(T)3(t—nT)
* m N %
= cos (—fnT)o(tA—nT): > st—nT)

Next, let the input be

X (1) = xl(t—g) = sin (27“[)

o0

. (2n T
Z sin (7nT)5(t—nT) = O%yl(t—z)

=—00

Then ya(H) =

Thus, the system is not time-invariant.
Note that this system is known as the ideal sampler (see Sec. 5.4).

Derive Eq. (2.7), that is,
y(t) = x(2) * W(t) = Jw x(t) At — 1) dr

where y(f) and x(f) are the output and input, respectively, of an LTI system whose impulse
response is A(f).
If the system is time-invariant, then from Eq. (2.4) we have
Tt=)]=h(t—1)
Now, from definition (1.31) of §(t — 1), we can express x(f) as
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2.4.

2.5.

2.6.

x() = JW x(7)d(t—1)dr

Then from the linearity of the J operator, we obtain

0

WO =Tx@)]= J_m x(0) T [8(t —1))dt = J:a x(T) h(t— 1) dr

The response of an LTI system to a unit step function u(z) is called the unit step response of the
system and is denoted by a(¢). Show that a(f) can be obtained as

t
a(t)y = j h(t)dt (2.28)
and if the system is causal, then

1
a(t) = Jo h(t)dt (2.29)

From Eq. (2.8),

a(t) = h(t) * u(t) = jio h(t)u(t—1)dt

1 1<t

Since u(1—1)={0 >

we have
t
a(h) = J h(r)dr

For a causal system, since A(t) = 0 for t < 0,

a(t) = J; h(t)dre

Let an LTI system with impulse response A(f) be represented by an operator 7. If
T [x(D) = Ax(t) (2.30)

then A is called the eigenvalue of I~ and x(7) is called the associated eigenfunction of 7. Show that
the frequency response H(w) = F[h(1)] is the eigenvalue of the LTI system and &/ is the
associated eigenfunction.

Using Eq. (2.8), we have
T = J' (1) & dr
- @30
= [J h(z) e‘j‘”’d‘c]ejw’ = H(w)e™

Thus, we see that H(w) is the eigenvalue of the LTI system and ¢/" is the associated eigenfunction.

Consider the RC network shown in Fig. 2-7 (). Find the frequency response H{(w) and the
impulse response A(f) of the RC network.

Using the principle of voltage divider, we can obtain the frequency response H(w) by inspection:
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1Gec) 1 _1
@) = 7 Go0  joRCT1 jo+a *~RC 232

Next, from Prob. 1.8 we obtain
1

T — 1 t/(RO)
h(t) = ae” ™ u(t) R Ce u(t) 2.33)
which is sketched in Fig. 2.7(b).
A1)

R I |
T A,,‘,,Ay J_ ﬁ’]) RC R_C.e -(1/RO 1t
x(1) @ T C oy

t
(a) RC network (b) Impulse response of the RC network

Fig. 2-7

2.7.  Consider the simple RC circuit shown in Fig. 2-7(a). Find the unit step response a(%).
From Eq. (2.33) we have

1
h(t) = ——e_’/(RC)u(t)
Thus, by Eq. (2.29) the unit step response is

t 1 t
= = ~t/(RC} 3. _ — H/(RCY
a(t) = L W) de = 2 Jo ¢ dr= [1 ¢ ]u(t) 2.39

2.8. Redo Prob. 2.7 with frequency response and Fourier inversion technique.
Now x(£) = u(¢). Thus, by Eq. (1.79)
X(w) = nd(w) +,L
Jjo

Next, by Eq. (2.32)

Hw) = o _ 1
@ Tjo+a a_RC

Thus, by Eq. (2.9) we obtain

1 o 1 1
Y(w) = X(w)H(w) = [né(w) +/E](m) = nd(w) +jE _jw o

In the last step we have used the property (.33) of § function and the partial fraction expansion technique.
Taking the inverse Fourier transform of ¥(w), we obtain

¥ =al) =u®)— e "u(ty =1 —e ) «=1/(RC)

FILTER CHARACTERISTICS OF LINEAR SYSTEMS

2.9. Show that the RC network of Prob. 2.6 [Fig. 2-7(a)] is a low-pass filter. Also find its 3-dB
bandwidth W3 dB-
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2.10.

From Prob. 2.6, the frequency response H{w) is given by
1
Hw) = ﬁ@ - o
where wy = 1/(RC). Writing '
H(w) = |H(@)|e
we have
1

V1 + (@/mg)?

The amplitude spectrum | H(w)| and phase spectrum 6,(w) are plotted in Fig. 2-8. From Fig. 2-8 we see that
the RC network of Fig. 2-7(a) is a low-pass filter.
When o = wy = 1/(RC), |H(w)| = 1/+/2. Thus,

|H(w)| = and Gy(w) = —tan™! A
Wo

1

Wiap = wo = RC
0,(w)
——————————————— 7/2
< 74
?
~wy, 0 wo=1/(RC) —wy 0 iwo m
- 7{/4 S
R e i
(a) )
Fig. 2-8

The rise time ¢, of the low-pass RC filter of Fig. 2-7(a) is defined as the time required for a unit
step response to go from 10 to 90% of its final value. Show that

S
SfraB
where f3 gp = W3 gp/(2n) = 1/(2rRC) is the 3-dB bandwidth (in hertz) of the filter.
From Eq. (2.34) of Prob. 2.7, the unit step response of the low-pass RC filter is found to be
a(t) = (1 — & /()
which is sketched in Fig. 2-9. By definition of the rise time,
=11
where at) =1-¢"®RO =01 = /R =09
a(ty) =1-¢ R =09 — ¢/ = .1
Dividing the first equation by the second equation on the right-hand side, we obtain
£/RO) _ g
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2.197 0.35
and t,=t)—t; = RCIn9 =2.197RC = =—
o 2nfyap fraB
alt)
Y O
09 fmmmmm oo ,
i
I
1
i
]
i
1
:
0.1 :
0! Lty t
i
1
1

Fig. 2-9

2.11. Show that the RL network shown in Fig. 2-10(a) is a high-pass filter.

In a manner similar to Prob. 2.6, we can obtain the frequency response H(w) by inspection:

__JoL _ joL/R) _ j@/wy) _R
He)=7 TjoL 1+jo@/B 1+jejoy XL

[CHAP. 2

(2.35)

The magnitude of H(w) is plotted in Fig. 2-10(b). It is seen that the RL network of Fig. 2-10(a) is a high-pass

filter.

[H(w)|

T
] 4 1

(a) RL network (b) Magnitude of frequency response of the RL network

0 @
Fig. 2-10

FILTERS
2.12. Find the impulse response /(z) of the ideal LPF with cutoff frequency w,.

The frequency response of an ideal LPF with cutoff frequency w, is given by

ol for || <
H, wy=1¢ .
Ler (@) {() otherwise

(2.36)

The amplitude and phase of Hypr (w) are shown in Fig. 2-11(@). The impulse response of the ideal LPF can

be found by taking the inverse Fourier transform of Eq. (2.36), which yields
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sin @, (I —ty)
= 2.
hipr(D) TR 2.37)
The impulse response Ay pg(?) is shown in Fig. 2-11(b). Note that Ay pr(f) 7 0 for £ < 0. Thus, the ideal LPF is

not a causal system.

IHLPF(“’”
1 by pr(t)
—w, 0 @, @
o) N\
f N7
1 w,
I
—w, 0 | w 27
H -
(a) (b)

Fig. 2-11 Frequency response and impulse response of an ideal LPF

2.13. Consider the system shown in Fig. 2-12(a). Find the impulse response A(f) and its frequency
response H(w).

From Fig. 2-12(a) we can write the relationship between input x() and output y(z) as
YO =x()-xt-T1)

Thus, by definition (2.5) we get
ty=8-6(t—T)

+
()
x(1) ¥)
Delay
T
(a)

’ |H(w)|

12
7
,l

6 wo w

(b)

Fig. 2-12
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Using Eq. (1.40) and property (1.18) we obtain
H(w) = 1 — 70T = goT/2(gaT/2 _ g50T/2y — 3 (ﬂ-) T2
2

The magnitude of H(w) is shown in Fig. 2-12(b). The system is known as comb filter.

2.14. A multipath transmission occurs when a transmitted signal arrives at the receiver by two or more
paths of different delays. A simple model for a multipath communication channel is illustrated in
Fig. 2-13(a).

(a) Find the frequency system function H(w) for this channel and plot |H(w)| for « = 1 and 0.5.

(b) To compensate for the channel-induced distortion, an equalization filter is often utilized.
Ideally, the frequency system function of the equalization filter should be

1
u —-_
eq(w) Hw)
A tapped delay-line or transversal filter, as shown in Fig. 2-13(b), is commonly used to ap-
proximate this equalization filter. Find the values for aj, as,. . ., ay, assumingt = Tand a << 1.

+

@)
x(1) T 0

Delay {u\

T | ax(t — 1)

(a) Model for multipath transmission

Delay Delay .. Delay
o) T T T
a, a v
+ +
+ Ve +
&) " LY D)
(b) Tapped delay-line filter
Fig. 2-13
(a) Y(@) = x(t) + ax(t — 1)

Taking the Fourier transform of both sides, we have
Y() = X(0) + ae 7 X(0) = (1 + ae 7 X(w)
By Eq. (2.10),

H(w) =%= 1+ ae™"
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Using Euler’s identity for e 7" gives
H(w) =1 + acos wt — jasin ot
Thus, |H(w)| = [(1 + 2 cos w)? + (asin co‘z)z]l/2
= [(1 + o 4 2acos (m:)]l/2
When o« = 1,
|H()] = [2(1 + coswr)]/2 =2

cos El
2
When o =14,
[H(w)] = (1.25 + coswn)'/?
Amplitude spectra |H(w)| for « = 1 and o =} are plotted in Fig. 2-14.

|H(e)] a=1

(b) From Fig. 2-13(b), we have

N
2= aylt—(k—DT]
k=1
Taking the Fourier transform of both sides gives
N
Z(w) = Z are 7% DT y(e)
=1

Thus, the frequency response H,{(w) of the transversal filter is given by

Z(w y (k=
Hy@) = 22 = 3" g7

o) &
=a; + a7 + a6 4 - - - 4 e OO
1
- Heol® = ) ~ T oe
Using 1+x=1_x+xz_x3+__. <1

we can express Heq(w) as

Hg(@)=1—ae?™ + o7 4 - - .

37
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Thus, if T = T and |a| < 1, we have

- _ 2 VL
aq=lLag=—ua=0,. .. av=(-0)

QUADRATURE FILTERS AND HILBERT TRANSFORMS

2.15.

2.16.

2.17.

2.18.

Verify Eq. (2.25).
From Eq. (1.61) we have

2
sgn(y) < —
Jo

Applying duality property (1.22), we obtain

2

71 27 sgn(—w) = —27 sgn(w)
from which we get

1 .
— < —~J sgn(w)
nt

Show that a signal x(¢) and its Hilbert transform £(¢) have the same amplitude spectrum.
By Eq. (2.27)
() = [/ sgn(@)X(@)
Since |— j sgn(w)| = 1, we obtain

[2@)| = 1+ sen@)llx(@)| = [X@)|

Show that if £(¢) is the Hilbert transform of x(7), then the Hilbert transform of () is —x(¢), that is,
0 =-x0n 2.38)

Let x(t) = X(w)
Then by Eq. (2.27)
2(0) o X(w) = [ sgn(w)] X(@)

and 4(0) = X(0) = [ sgn(@) X(@) = ~X(@)

since [— j sgn(@)P = Flsgn(w)]* = —1. Therefore, we conclude that X(z) = —x(1).
Let x(f) be a real signal. Show that x() and its Hilbert transform %(¢) are orthogonal, that is,

jw x(O)X()dt=0 (2.39)

—~00

Using Eq. (1.70), we have

I (DX dt = z_lij X(w)X(~w) do
If x(7) is real, then by Eq. (I.12) we have

X(-w) = [ sgn(-w))X(-w) = j sgn(w) X" (w)
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2.19.

2.20.

2.21.

n

Thus, I:o x(DX(1) dt = 2]_1':[: sgn (W)X () X" (w) dw = Ej—j: sgn (q:o)[X(w)l2 do =90

since the integrand in the last integral is an odd function of w.

Let x(f) = cos wyt. Find %(2).
From Eq. (1.76)
X(w) = n[d(w — wy) + 8w + wy)]
Then X(w) = —j sgn (0)X(w) = —jn[8(w — wp) + 8w + wo)]sgn (w)
= —jr[d(c — wp) — 6(@ + wp)]
Thus, by the result of Prob. 1.44, we obtain
£(t) = sinwyt

Note that £(¢) = cos (c)ot —’2-‘) = sinwgt.
Let x(¢) = (9.
(a) Find 2(2).

(b) Use the result of (a) to confirm that (Prob. 2.15)

1 .
— = —j sgn(w)
Tt

(a) By definition (2.26) and Eq. (.37) we obtain

O N §
x(t)—a(t)*g_m

(b) From Eq. (1.40)
3« X(w)=1
Then, by Eq. (2.27) we have
Rew) = sgn (@)X(w) =~ sgn (@)

Thus, we conclude that

1 .
— <> —j sgn (w)
Tt

Supplementary Problems

Consider the system whose input-output relation is given by the linear equation

v =ax(®)+5b

39

where x(7) and y(#) are input and output of the system, respectively, and a and b are constants. Is this system

linear?

Ans. No
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2.23.

2.24.

2.25.

2.26.

2.27.

2.28.
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Consider the system that is represented by
T} = x"(1)

where x*(7) is the complex conjugate of x(z). Is this system linear?

Ans. No

A system is called BIBO stable if every bounded input produces a bounded output. Show that the system is
stable if its impulse response is absolutely integrable, that is,

JM |A(T)| dr < o0

Hint: Take the absolute value of both sides of Eq. (2.8) and use the fact that [x(z — 7)| < K.

Consider the simple RC circuit shown in Fig. 2-7(a). Find the output y(f) when the input x(f) = p,() [see
Eq. (1.56)].

Ans. YO = ps) =V ut +a) + e T Pyt — a)

Find the frequency response H(w) of the network shown in Fig. 2-15, and show that the network is a high-
pass filter.

Ans. H(w) = —LCw*(1 — LCw® + joRC)

R C
T—"M———l }—————-T
x() @ LS y(1)
5 !

Fig. 2-15

Find the frequency response H(w) of the network obtained by interchanging C and L in Fig. 2.15, and show
that the network is a low-pass filter.

Ans. H(w) = 1/(1 — LC»* + joRC)

Determine the impulse response and the 3-dB bandwidth of the filter whose frequency response is
H(w) = 10/(w? + 100).

Ans. h(t) = %e_mm, W3 ¢ = 6.44 radians per second (rad/s)
A gaussian filter is a linear system whose frequency response is given by

H( (D) — efnmz efjmto

Calculate (a) the 3-dB bandwidth W3 4 and (b) the equivalent bandwidth W, defined by



CHAP. 2] SIGNAL TRANSMISSION AND FILTERING 41

11 (®
Wy = i%]—w |H(w)| do

0.59 0.886
Ans. (@) Wagp = N (®) Weq = v
2.29. A Butterworth low-pass filter has
1
|H(w)| =

V1 + (@/wp)?

where 7 is the number of reactive components (i.e., inductors or capacitors).

(a) Show that as n — oo, | H(w)| approaches the characteristics of the ideal low-pass filter, shown
in Fig. 2-11(a) with wy = o,.
(b) Find 7 so that |H(w)|? is constant to within 1 dB over the frequency range of |w| = 0.8w,.

Ans.
(a) Note that

. (w)z” {oo for @ > wy
lim{—] =
n—oo\ g 0 forw < wy
(b) n=3
2.30. If the unit impulse response of a causal LTI system contains no impulse at the origin, then show that with
H(w) = A(w) + jB(w)
A(w) and B(w) satisfy the following equations:

A(w) = %Ji) %d&

Bor==2) wa2®

1 r AR

These equations are known as the Hilbert transform pair.

Hint: Let h(t) = h(f) + ho(t) and use the causality of A(f) to show that h(f) = h()[sgn(®)],
ho(2) = he(1)[sgn(?)].

2.31. Show that

r [x(t)]zdt=Jm SO di

Hint: Use Eq. (2.27) and apply Parseval’s theorem (1.16) for the Fourier transform.

2.32. Show that
x(6) = (o) * (—— i)
113

Hint: Use Eq. (2.27).
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2.33.  Let (@) x(2) = sin wot; (b) x(t) = m(t) cos w,t; (¢) x(t) = m(z) sin w.t. Find £().

Hint: Use Eq. (2.27).

Ans.  (a) X(f) = —cos wyt; (b) X(2) = m(f) sin w,t; (¢) X(t) = —m(¢) cos w,t



AMPLITUDE
MODULATION

DUCTION

ransmission of an information-bearing signal (or the message signal) over a bandpass
tion channel, such as a telephone ling or a satellite channel, usually requires a shift of the
requencies contained in the signal to another frequency range suitable for transmission,
the signal frequency range is accomplished by modulation. Modulation is defined as the
which some characteristic of a carrier signal is varied in accordance with a modulating
the message signal is referred to as the modulating signal, and the result of modulation is
as the moduwlated signel,

sic types of analog modulation are continuous-wave (CW) modulation and pulse
- In continuous-wave modulation, a sinusoidal signal A cos{w_f 4 ¢) is used as a carrier
a general modulated carrier signal can be represented mathematically as

x, (1) = A(r)cos [e.0 + $(0] o, = 2=f, (3.1

wfor fi. = w /(2n)] is known as the carrier frequency. And A1) and $(1) are called the
amplitude and phase angle of the carrier, respectively. When A(7r) is linearly related to the
L m(r), the result is amplitude modulation. If $(1) or its derivative is linearly related to
have phase or frequency medulation. Collectively, phase and frequency modulation are
angle modulation, which is discussed in Chap. 4.

lation, a periodic train of short pulses act as the carrier signal.

E MODULATION

¢ modulation, the modulated carrier is represented by [setting (1) = 0 in Eq. (3.0)
generality],
X0 = A(f)cos w,t (3.2

arrier amplitude A(7) is linearly related to the message signal mir). Amplitude
ometimes referred to as linear modulation. Depending on the nature of the spectral
ween mit) and Ai1), we have the following types of amplitude modulation schemes:
(DSB) medulation, ordinary amplitude modulation (AM), single-sideband (S3B)
nd vestigial-sideband (VSB) modulation,

43
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3.3 DOUBLE-SIDEBAND MODULATION
DSB modulation results when A(¢) is proportional to the message signal m(t), that is,
xpsp(?) = m(t)cos w,t 3.3

where we assumed that the constant of proportionality is 1. Equation (3.3) indicates that DSB
modulation is simply the multiplication of a carrier, cos w,f, by the message signal m(z). By
application of the modulation theorem, Eq. (I.64), the spectrum of a DSB signal is given by

Xpsp(@) = $M(0 — @) + §M(0 + ©,) 39

A. Generation of DSB Signals:

- The process of DSB modulation is illustrated in Fig. 3-1 (). The time-domain waveforms are shown
in Fig. 3-1 (b) and (c) for an assumed message signal. The frequency-domain representations of m(#) and
xpsp(?) are shown in Fig. 3-1 (d) and (e) for an assumed M(w) having bandwidth w;,. The spectra
M(w - o,) and M(w + ,) are the message spectrum translated to o = o, and ® = —,, respectively.
The part of the spectrum that lies above , is called the upper sideband, and the part below w, is called
the lower sideband. The spectral range occupied by the message signal is called the baseband, and thus the
message signal is often referred to as the baseband signal. As seen in Fig. 3-1(e), the spectrum of xpsp(?)
has no identifiable carrier in it. Thus, this type of modulation is also known as double-sideband
suppressed-carrier (DSB-SC) modulation. The carrier frequency , is normally much higher than the
bandwidth w;, of the message signal m(2); that is w, > wyy.

m(t) m(t)cos w.t = xpggll)

cos wt
(a)
M(w)
mlt)
/\ —

\ ! ~wy 0 wy @

(€2] (d)
Xpsglw)
Upper ose Upper
m(t)cos w.t sideband Lower sideband
sideband
—w 0 w «
(e)

Fig. 3-1 Double-sideband modulation
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B. Demodulation of DSB Signals:

Recovery of the message signal from the modulated signal is called demodulation, or detection.
The message signal m(z) can be recovered from the modulated signal xpgg(#) by multiplying xpgg(7) by a
local carrier and using a low-pass filter (LPF) on the product signal, as shown in Fig. 3-2 (see Prob. 3.1).

The basic difficulty associated with the DSB modulation is that for demodulation, the receiver
must generate a local carrier that is in phase and frequency synchronism with the incoming carrier
(Probs. 3.2 and 3.3). This type of demodulafion is known as synchronous demodulation or coherent
detection.

*psall)

Fig. 3-2 Synchronous demodulator

3.4 ORDINARY AMPLITUDE MODULATION

An ordinary amplitude-modulated signal is generated by adding a large carrier signal to the DSB
signal. The ordinary AM signal (or simply AM signal) has the form

xam(®) = m(f)cos w.t+ Acos ot = [A + m(r)] cosw,t 3.5
The spectrum of x,p(?) is given by
Xam(@) = 1M(0 — ) + IM(0 + 0,) + nA[5(0 — ©,) + 8 + ©,)] (3.6)

An example of an AM signal, in both time domain and frequency domain, is shown in Fig. 3-3.

M(w)
m(r)

N— ¢ —oy 0wy w

Xam(w@)
TAS(w + w.) 7AW — w.)
f\f/l RIA
—w, ] w, 4

Fig. 3-3 Amplitude modulation
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A. Demodulation of AM Signals:

The advantage of AM over DSB modulation is that a very simple scheme, known as envelope
detection, can be used for demodulation if sufficient carrier power is transmitted. In Eq. (3.5), if 4 is
large enough, the envelope (amplitude) of the modulated waveform given by A+ m(r) will be
proportional to m(z). Demodulation in this case simply reduces to the detection of the envelope of a
modulated carrier with no dependence on the exact phase or frequency of the carrier. If 4 is not large
enough, then the enevelope of xap(?) is not always proportional to m(#), as illustrated in Fig. 3-4.
Thus, the condition for demodulation of AM by an envelope detector is

A+m@® >0 forall ¢ 3.7)

or A= |min {m(@)}| ) 3.8

where min {m(#)} is the minimum value of m(z).

m(t)

—~

N !

A+m()>0 forall ¢ A+m(t)#» 0 forall ¢

Envelope

(lnves
il

_ Fig. 3-4 AM signal and its envelope

B. Modulation Index:
The modulation index p. for AM is defined as
_ | min{m®}i
p=—"

y 3.9
From Eq. (3.8), the condition for demodulation of AM by an envelope detector can be expressed as
u<l (3.10)

When g > 1, the carrier is said to be overmodulated, resulting in envelope distortion.
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C. Envelope Detector:

Figure 3-5 (a) shows the simplest form of an envelope detector consisting of a diode and a resistor-
capacitor combination. The operation of the envelope detector is as follows. During the positive half-
cycle of the input signal, the diode is forward-biased and the capacitor C charges up rapidly to the
peak value of the input signal. As the input signal falls below its maximum, the diode turns off. This is
followed by a slow discharge of the capacitor through resistor R until the next positive half-cycle,
when the input signal becomes greater than the capacitor voltage and the diode turns on again. The
capacitor charges to the new peak value, and the process is repeated.

For proper operation of the envelope detector, the discharge time constant RC must be chosen
properly (see Prob. 3.6). In practice, satisfactory operation requires that 1/f, < 1/f3, where fy is the
message signal bandwidth.

Envelope

\4

Zam(?) R

N
f
o

v (1)

(a) (b)

Fig. 3-5 Envelope detector for AM

3.5 SINGLE-SIDEBAND MODULATION

Ordinary AM modulation and DSB modulation waste bandwidth because they both require a
transmission bandwidth equal to twice the message bandwidth. (See Figs. 3-1 and 3-3.)

Since either the upper sideband or the lower sideband contains the complete information of the
message signal, only one sideband is necessary for information transmission. When only one sideband
is transmitted, the modulation is referred to as single-sideband (SSB) modulation.

Figure 3-6 illustrates the spectra of DSB and SSB signals. The benefit of SSB modulation is the
reduced bandwidth requirement, but the principal disadvantages are the cost and complexity of its
implementation.

A. Generation of SSB Signals:
1. Frequency Discrimination Method:

The straightforward way to generate an SSB signal is to generate a DSB signal first and then
suppress one of the sidebands by filtering. This is known as the frequency discrimination method, and
the process is illustrated in Fig. 3-7. In practice, this method is not easy because the filter must have
sharp cutoff characteristics. '

2. Phase-Shift Method:

Another method for generating an SSB signal, known as the phase-shift method, is illustrated in
Fig. 3-8. The box marked —x/2 is a n/2 phase shifter that delays the phase of every frequency
component by /2. An ideal phase shifter is almost impossible to implement exactly. But we can
approximate it over a finite frequency band.
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M(w)
—wy o wu I
(a)
Xpsplw)
T 0 we ©
(b)
Xgsplw)
—w, 0 @e ™
(c)
Xgsplw)
T 0 “e w
(d)

Fig. 3-6 Spectra of DSB and SSB signals

m(t) Xpsgll) Xosal(t) M(w)
—wy 0 wy @
IHBPF(“’)l
-
-, 0 W, @
Xpsplw)
-, 0 @, )
Xssplw)
- w, 0 @, @

Fig. 3-7 SSB generation using bandpass filter
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m(t) cos w1

T

smwt

oS w!
m(t) Xssall)
- o=

I
NI

mt) m(1) sin w.t

Fig. 3-8 SSB generation using phase shifters

If we let A(£) be the output of the —z/2 phase shifter due to the input m(f) (see Sec. 2.6), then from
Fig. 3-8 the SSB signal xggp(f) can be represented by
xssp(8) = m(0)cos w t + m(H)sin w ¢ (3.11)
" The difference represents the upper-sideband SSB signal, and the sum represents the lower-sideband
SSB signal. (See Prob. 3.8)

B. Demodulation of SSB Signals:

Demodulation of SSB signals can be achieved easily by using the coherent detector as used in the
DSB demodulation, that is, by multiplying xgss(?) by a local carrier and passing the resulting signal
through a low-pass filter. This is illustrated in Fig. 3-9.

xgsplt) d(t) — y(@) Xssplw)
1 LPF |
N1/

- @, ©

Dw)

r—_——__---s LPF
[\: L1 ! |/]

-2, - W, 0 @, 2w, ™)

Y(w)
0 @

Fig. 3-9 Synchronous demodulation of SSB signals

3.6 VESTIGIAL-SIDEBAND MODULATION

Vestigial-sidehand (VSB) modulation is a compromise between SSB and DSB modulations. In this
modulation scheme, one sideband is passed almost completely, whereas just a trace, or vestige,
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of the other sideband is retained. The typical bandwidth required to transmit a VSB signal is about
1.25 that of SSB. VSB is used for transmission of the video signal in commercial television
broadcasting.

A. Generation of VSB Signals:

A VSB signal can be generated by passing a DSB signal through a sideband-shaping filter (or
vestigial filter), as shown in Fig. 3-10 (a). Figure 3-10 (b) to (e) illustrates the spectrum of a VSB signal
[xysp(®)] in relation to that of the message signal m(f), assuming that the lower sideband is
transformed to vestigial sideband.

M(w)
mit) sosslt) ep Xysslt) (o
filter
208 w.t 0 °
(a) (b}
Xpsslw)
] ~ N 1
-w, 0 w, @
(c)
Hysglw)
l .
JAN y A /1
-w, 0 W, @
(d)
Xysp(w)
—w, 0 w, w

Fig. 3-10 VSB modulation

B. Demodulation of VSB Signals:

For VSB signals, m(#) can be recovered by synchronous or coherent demodulation (see Fig. 3-11);
this determines the requirements of the frequency response H(w). It can be shown that for
distortionless recovery of m(?), it is required that

H(w + w,) + H(w — w.) = constant for |o| <wyr (3.12)

where w, is the maximum frequency of m(f) (Prob. 3.11). By letting the constant in Eq. (3.12) be
2H(w,.), Eq. (3.12) becomes

H(w-0,)— Ho,) = ~[Ho + ©,) - Ho,)] (3.13)
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xysa(t) d(t) — y(@)
LPF
L1

€08 w .t

Fig. 3-11 VSB demodulator

which shows that H(w) will have antisymmetry about the carrier frequency (Fig. 3-12). Figure 3-12 (@)
and (b) shows two possible forms of |H(w)| that satisfy Eq. (3.13). The filters in Fig. 3-12 (@) and (b)
correspond to VSB filters that retain the lower sideband (LSB) and the upper sideband (USB),
respectively.

|H(w)I

(a) (b)

Fig. 3-12 VSB filter characteristics

Figure 3-13 illustrates the demodulation of the VSB signal shown in Fig. 3-10 by the synchronous
detector of Fig. 3-11.

Xysp(w)
N /]
-, 0 @, @
Dw)
ﬂ 1 D(—l ! /—1
2w, -, 0 @, 2w, w
Y(w)
N I
~w, 0 w, @

Fig. 3-13 Synchronous demodulation of VSB signals
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3.7 FREQUENCY TRANSLATION AND MIXING

In the processing of signals in communication systems, it is often desirable to translate or shift the
modulated signal to a new frequency band. For example, in most commercial AM radio receivers, the
received radio-frequency (RF) signal [540 to 1600 kilohertz (kHz)] is shifted to the intermediate-
frequency (IF) (455-kHz) band for processing. The received signal, now translated to a fixed IF, can
easily be amplified, filtered, and demodulated.

A device that performs the frequency translation of a modulated signal is called a frequency mixer
(Fig. 3-14). The operation is often called frequency mixing, frequency conversion, or heterodyning.

x(t) = m(t)cos wt BPF y(t) = m() cos w,t

w3z

2 cos(w; + wy)t

Fig. 3-14 Frequency mixer

A common problem associated with frequency mixing is the presence of the image frequency.
For example, in an AM superheterodyne receiver (see Prob. 3.13), the locally generated frequency is
chosen to be 455 kHz higher than the incoming signal. Suppose that the reception of an AM station at
600 kHz is desired. Then the locally generated signal is at 1055 kHz. Now if there is another station at
1510 kHz, it also will be received (note that 1510 kHz - 1055 kHz = 455 kHz). This second
frequency, 1510 kHz = 600 kHz + 2(455 kHz), is called the image frequency of the first, and after the
heterodyning operation it is impossible to distinguish the two. Note that the image frequency is
separated from the desired signal by exactly twice the IF. Usually, the image frequency signal is
attenuated by a selective RF amplifier placed before the mixer.

3.8 FREQUENCY-DIVISION MULTIPLEXING

Multiplexing is a technique whereby several message signals are combined into a composite signal
for transmission over a common channel. To transmit a number of these signals over the same
channel, the signals must be kept apart so that they do not interfere with each other, and thus they can
be separated at the receiver end.

There are two basic multiplexing techniques: frequency-division multiplexing (FDM) and time-
division multiplexing (TDM). In FDM the signals are separated in frequency, whereas in TDM the
signals are separated in time. TDM is discussed in Chap. 5.

The FDM scheme is illustrated in Fig. 3-15 with the simultaneous transmission of three message
signals. The spectra of the message signals and the sum of the modulated carriers are indicated in the
figure. DSB modulation is used in illustrating the spectra of Fig. 3.15. Any type of modulation can be
used in FDM as long as the carrier spacing is sufficient to avoid spectral overlap. However, the most
widely used method of modulation is SSB modulation. At the receiving end of the channel the three
modulated signals are separated by bandpass filters (BPFs) and then demodulated.

FDM is used in telephone system, telemetry, commercial broadcast, television, and communica-
tion networks. Commercial AM broadcast stations use carrier frequency spaced 10 kHz apart in the
frequency range from 540 to 1600 kHz. This separation is not sufficient to avoid spectral overlap for
AM with a reasonably high-fidelity (50 Hz to 15 kHz) audio signéf Therefore, AM stations on
adjacent carrier frequencies are placed geographically far apart to minimize interference. Commercial
FM (frequency-modulation) broadcast (Chap. 4) uses carrier frequencies spaced 200 kHz apart. In a
long-distance telephone system, up to 600 or more voice signals (200 Hz to 3.2 kHz) are transmitted
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m (1)

Communication
M) channet

0 @, @, , @

Fig. 315 Frequency-division multiplexing

over a coaxial cable or microwave links by using SSB modulation with carrier frequencies spaced
4 kHz apart. In practice, the composite signal formed by spacing several signals in frequency may, in
turn, be modulated by using another carrier frequency. In this case, the first carrier frequencies are

often called subcarriers.

Solved Problems

DOUBLE-SIDEBAND MODULATION
3.1.  Verify that the message signal m(?) is recovered from a modulated DSB signal by first multiplying
it by a local sinusoidal carrier and then passing the resultant signal through a low-pass filter, as
shown in Fig. 3-2, (a) in the time domain and (b) in the frequency domain.
(a) Referring to Fig. 3-2, the output of the multiplier is
d(1) = xpgp(?) cos w.t = [m(t)cos w 1] cos w .t
= m(r) cos® w,t
= 1m(n) + Im(1) cos 2w,
After low-pass filtering of d(f), we obtain
y(@) = Im(1) (3.14)
Thus, by proper amplification (multiplying by 2) we can recover the message signal m(z).
(b)) Demodulation of xpgp(f) by the process shown in Fig. 3-2 in frequency domain is illustrated
in Fig. 3-16.
3.2.  Evaluate the effect of a phase error in the local oscillator on synchronous DSB demodulation as
shown in Fig. 3-2. .
Let the phase error of the local oscillator in Fig. 3-2 be ¢. Then the local carrier is expressed as
cos (w.t+ ¢). Now
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M(w)

oM 0 @m @
Xpsalw)

T 0 We @

D(w)

M~ ! I I~
-2w, T 0 We 2w, )
1 |Hypr(@)]

- w, 0 w

1
Y(w) = EM(w)

0 @
Fig. 3-6 Demodulation of a DSB signal

Xpsp(?) = m(t) cos w,t

and d(t) = [m(t) cos w,t]cos (w.t + ¢)
= Im(t)[cos ¢ + cos Qw.t + $)]
= Im(f) cos ¢ + Im(1) cos Qw1 + ¢)
The second term on the right-hand side is filtered out by the low-pass filter, and we obtain
(@) = jm(1)cos ¢ (3.15)

This output is proportional to m(f) when ¢ is constant. The output is completely lost when ¢ = =r/2. Thus,
the phase error in the local carrier causes attenuation of the output signal without any distortion as long as ¢
is constant and not equal to *m/2. If the phase error ¢ varies randomly with time, then the output also will
vary randomly and is undesirable.

Evaluate the effect of a small frequency error in the local oscillator on synchronous DSB
demodulation as shown in Fig. 3-2.

Let the frequency error of the local oscillator in Fig. 3-2 be Aw. The local carrier is then expressed as
cos (v, + Aw)t. Then ‘

(1) = m(f) cos w,t cos (w, + Aw)t s
= {m(#) cos (Aw) 1 + ym(f) cos 2w,

Thus, Y(t) = (1) cos (Aw) t (3.16)
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The output is the signal m(z) multiplied by a low-frequency sinusoid. This is a “beating” effect and is a very
undesirable distortion.

ORDINARY AMPLITUDE MODULATION

3.4. The efficiency n of ordinary AM is defined as the percentage of the total power carried by the
sidebands, that is,

" =%x 100% (3.17)
t

where P, is the power carried by the sidebands and P, is the total power of the AM signal.
(@) Find g for u = 0.5 (50 percent modulation).

(») Show that for a single-tone AM, #ax is 33.3 percent at p = L.
From Egs. (3.5) and (3.9), a single-tone AM signal can be expressed as
xam(?) = Acos w,t + pAcos w,,tcos w.t
= Acos Wt +iAcos (@, — @)t + Judcos (@, + wp)t

P, = carrier power = }4”

P, = sideband power = %[(%FA)Z + (%/;.A)z] = %,uzA2
The total power P, is

Py= P, + Py =142 + 2 4% = 11 + LA 4
12 42 2

P L4
Thus 7= 22X 100% = 25— x 100% = —-—
P, G+H4 2+pu

x 100% (3.18)

with the condition that u<1.
2
(@ Forp=105 1 =5%,x 100% = 11.1%

(b) Since u<1, it can be seen that #,,, occurs at u = 1 and is given by

n=1x100% = 33.3%

3.5. Show that a synchronous demodulator (Fig. 3-17) can demodulate an AM signal xsm(?) =
[4 + m(H)]cos w, t regardless of the value of 4.

Xam(?) d(t) | — ¥
1 LPF |
cos .t

Fig. 3-17 Synchronous detector
From Fig. 3-17,
d(t) = xap(D) cos w,t = [4 + m(f)] cos’w,t

=114+ m(t)] + Y4 + m()] cos 2e,¢
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Hence, after low-pass filtering, we obtain

¥ = A+ m@®] = im@) + 14 (3.19
A blocking capacitor will suppress the direct-current (dc) term 14, yielding the output im(@).

3.6. The input to an envelope detector (Fig. 3-5) is a single-tone AM signal xap(?) = A(1 + ucos w,,t)
cos w,t, where p is a constant, 0 < u < 1, and w, > w,,.
(a) Show that if the detector output is to follow the envelope of xap(2), it is required that at any
time £,

1 usin W, Ly )
— = _ 3.20
RC w”’(l + UCOS Wty 3.20)

(b) Show that if the detector output is to follow the envelope at all times, it is required that

1 J1=42
RCg —Y-"H

O H

3.2D)

(a) Figure 3-18 shows the envelope of xzy(f) and the output of the detector (the voltage across the
capacitor of Fig. 3-5). Assume that the capacitor discharge from the peak value E;= A(1+
Heos wy,tp) at &y = 0. Then the voltage v.(2) across the capacitor of Fig. 3-5 is given by

V() = Ege /RO 3.22)

VAr) Envelope

Fig. 3-18

The interval between two successive carrier peaks is 1/f. = 2n/w, and RC > 1/w,. This means that
the time constant RC is much larger than the interval between two successive carrier peaks. Therefore,
v.(?) can be approximated by

t
V(1) ~ Eo(l - R) (3.23)
Thus, if the v.(z) is to follow the envelope of xap(2), it is required that at any time ¢,
(14 pcos w r)(l— ! )<1+ cosw(t+1) 3.24)
mlo RCT, < I8 m\ Lo I ) -

Now if w,, < w,, then
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1 ,y,
14 pcos ol ty+—+) =1+ pcos| wyto + —
Je fe
WOy, . . Wy
=1+ 1 cos Wy, tycos —=— usinwy,l sin ——
fe Je
O .
= | + Ucos w,,ty — p—— sinwykty
) Iz
1 Py .
Hence, (1 + pcos a)mto)(ﬁ) > C'" sin @,,ty

or usin w,,tg )

1
==z
RC wm(l + 14COS Wty

(b)) Rewriting Eq. (3.20), we have

1 .
RC + % COS W), 1o 2 PO, SIN Wyt
. 1 1
or [.L((U,,, Sin Wylg ~ 7 €08 wmto) <z
or 1

2
tylwd, + (L) sin(m to—tan™!
w+ze mlo

et
w,RC} ~ RC

Since this inequality must hold for every #, we must have

1y _ 1
2 N N
u,fmer(RC) <z (3.25)
or o2 4 (LY <(L)2
”[w’"+(RC) ]\ RC

From which we obtain

SINGLE-SIDEBAND MODULATION

3.7.  Using the single-tone modulating signal cosw,t, verify that the output of the SSB generator of
Fig. 3-8 is indeed an SSB signal, and show that an upper-sideband (USB) or a lower-sideband
(LSB) signal results from subtraction or addition at the summation junction.

Referring to Fig. 3-19, which is the redrawing of Fig. 3-8 with a single-tone modulating signal, we have

m(f) = cos ot
n .
cos (w[t - 5) = sinw,t
Py s .
m(t) = cos(a),,,t - 5) = §In Wy, ¢
Hence, Y(£) = COS Wy, COS Wt F SIN @y, SiN W, 2

= cos (W, = wy)t

Thus, with subtraction we have

(1) = xysp(?) = cos (@, + wy,)!
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and with addition we have

W0 = xpsp(f) = cos (W, — @yt

COS W1 COS w!

COS w,, ! + )

+i

Sin w,,t sin w

Show that if the output of the phase-shift modulator (Fig. 3-8) is an SSB signal, (a) the difference
of the signals at the summing junction produces the upper-sideband SSB signal and (b) the sum
produces the lower-sideband SSB signal. That is,

x(t) = xysp(t) = m(f) cos w t — m(t) sin w,t (3.26)
is an upper-sideband SSB signal, and

x.() = xp5p(1) = m(t) cos w,t A+ M(t) sin w,t (3.27)
is a lower-sideband SSB signal.

(@) Let m(r) — M(w) and A(f) — M(w)

Then applying the modulation theorem (/.64) of Prob. 1.15, or the frequency-shifting property (1.19)
of the Fourier transform, we have

1 1
m(1)cos w .t — EM(w —-w,) +5M(a) +w,)

: N . 1 . 1 .
and (t)sin w,t 2—] Mw-w,)- 7] M+ w,)
Taking the Fourier transform of Eq. (3.26), we have
X (0) = lM(m — o)+ lM(co +aw,)- [iM(w —w) - l.M(cu + wc)] (3.28)
2 2 2 2j

From Eq. (2.27), we have
M(w - w,) = —jsgn(w— o )Mw—w,)

and Mo+ w,) = —jsgn(w+ o )M + w,)
1 1
Thus, X @) = 3 M@= ;) + 5 M@ + )
1
~ [—%sgn (0 —w)Mw-on,)+ 5580 (0 + o )M(w + wc)] 3.29

= 3 M@= 011 + 580 = 0]+ 3 M@+ 0)[1 = 580 @+ 0,)]
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2 o>
1+ sgn(w-ow, ={ ¢
gn( V) 0 w<o,
1—sgn(cu—(o5)={g 22:35
0 lol <o,

X ()= Mo+o,) o<-—-o, (3.30)
Mow-w) o>

which is sketched in Fig. 3-20 (). We see that X,(¢) is an upper-sideband SSB signal.

(b) In a similar manner, taking the Fourier transform of Eq. (3.27), we have

Since

and

we have

l—sgn(m-wc)={§

1+sgn(@w+w) = {g

0
X(w)= { Mo - )
Mo+ o)

X (w) = %M(cu — w1 —sgn(w—w)]+ %M(w + w1 + sgn (@ + w)] 3.3D

o < o,
> W,

> =,
w< -0,

lol > o,
<o, 3.32)
> -w,

which is sketched in Fig. 3-20 (¢). We see that x.(¢) is a lower-sideband SSB signal.

M(w)

—wy 0 wy

(a)
X(w)

®)
X(w)

()

Fig. 3-20

w
M(w — w)
'\
™
1\
1
W «
Mo - o)
)
/i
/1
/o
! 1
w, w



60 AMPLITUDE MODULATION [CHAP. 3

3.9. Show that an SSB signal can be demodulated by the synchronous detector of Fig. 3-21 (a) by
sketching the spectrum of the signal at each point and () by the time-domain expression of the
signals at each point.

xss5(1) d(r) e y(t)
LPF
L1
COs w.t

Fig. 3-21 Synchronous detector

(@) Let M(w), the spectrum of the message m(?), be as shown in Fig. 3-22 (a). Also assume that xggg(?) is a
lower-sideband SSB signal and its spectrum is Xssp(®), as shown in Fig. 3-22 (b). Multiplication by
cos w,¢ shifts the spectrum Xggp(w) to = w, and we obtain D(w), the spectrum of d&(#) [Fig. 3-22 (c)].
After low-pass filtering, we obtain Y(w) = 5M(w), the spectrum of y() [Fig. 3-22 (d)]. Thus, we obtain
= %m(t), which is proportional to m().

(b) From Eq. (3.11), xggp(?) can be expressed as

xssp(f) = m(f)cos w.t + () sin w,t

Thus, d(1) = xssp(f) €08 W .t = m(t) cosza)ct F Mi(t) sin w,t cos w,t
= Im(1)(1 + cos 20.2) F I(r) sin 2w,
= 3m(1) + Im(1) cos 2wt F L1 sin 2w,

Hence, after low-pass filtering, we obtain

(@) = im(z)

3.10. Show that the system depicted in Fig. 3-23 can be used to demodulate an SSB signal.
From Eq. (3.26) of Prob. 3.8, the upper-sideband SSB signal x,(?) is
x.(2) = m(t) cos w .t — m(t)sin w,t
Then from Prob.2.33, we have
£:() = m(f)sin w,t + m(f)cos w.t
From Fig. 3-23, we have
¥() = x,(8)cos w,t + £.(2) sin w,¢
= m(t)(cos’w,t + sinzwct) = m(t)
In a similar manner, the lower-sideband SSB signal x () is

x,(1) = m(t) cos w.t + At) sin w, ¢

and X.(0) = m(t) sin w,t — #(t) cos w,t

Again, from Fig. 3-23 we obtain
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M(w)
Wy (0 Wy @
(a)
Xssp(w)
-w, 0 w, @
)
D(w)
1/] i ! [\4

2w, ~w, 0 @, 2w, «
()
Y(0) = M(w)
0 )
(d)
Fig. 3-22

(B = x.(f) cos w.t + X () sinw,t
= m(l)(coszcort + sin’w, 1) = m(f)
Note that Fig. 3-23 is exactly the same as Fig. 3-8 except in the addition at the summing junction for both

cases.

x 1) cos w.t

¥
z)—»

x 1)

+

(oY

2] F0)

Fig. 3-23 Phase-shift SSB demodulator

Z(0) sin w,t
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VESTIGIAL-SIDEBAND MODULATION

3.11.

3.12

Show that for distortionless demodulation of a VSB signal using the synchronous detector of
Fig. 3-11, the frequency response H(w) of the VSB filter of Fig. 3-10 (a) must satisfy Eq. (3.12),
that is,

H(w + w,) + H(w — w,) = constant for |o|<my

The spectrum of xpgp(#), Xpsp(w), is given by [Fig. 3-10(c)]
Xpsp(@) = M(w — w,) + M(w + @,)
From Fig. 3-10(e), the spectrum of xygp(f), Xysp(w), is
Xysp(w) = [M(w — o,) + M(w + 0)1H(w) (3.33)
Next, d(?) of the VSB demodulator (Fig. 3-11) and its Fourier transform are given by
d(1) = xysp(t)cosw t < HXygp(w — @) + Xysp(@ + w,)] (3.34)

Substituting Eq. (3.33) in the preceding equation and eliminating the spectra at + 2w, (suppressed by a low-
pass filter), we find that the output y(f) of the synchronous VSB demodulator (Fig. 3-11) and its Fourier
transform are given by

W) = IM(@)[H(o + o) + Ho - o,)] (3.35)
For distortionless detection, we must have
W) = km(t) — kM(w) (3.36)

where k is any constant.
Thus, for distortionless demodulation, we must have

H(w + w,) + H(w—w,) = constant  for |w|<wy,

The frequency response H(w) of a VSB filter is shown in Fig. 3-24.

W, ~ W, o, ot w w, + w, w

(a) Find the VSB signal xygp() when

m(t) = a;cos ! + a,cos wyt
(b) Show that xygg(?) can be demodulated by the synchronous demodulator of Fig. 3-11.
(a) Referring to Fig. 3-10, we have
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Xpsp(t) = m(z) cos w .t
= (a;€08 w1t + a,CO8 W, 1) COs Wt
= la;c08 (@, — 1)t +a, cos (@, + 1)t + 3a,¢08 (0, — 02)t + 3ayc08 (W, + W)t

These sinusoids are transmitted through H(w), shown in Fig. 3-24, which has gains of 0, a, 1 ~a, and 1
at w, — w,, 0, — 0, o, + o, and ©, + w,, respectively. Thus the VSB filter output xysg(f) is

xysp(?) = Jayocos (w, — o)t + ay (1 — @) cos (@, + o)t +Ja; cos (@ + @)t

(b) Referring to Fig. 3-11, we get

d(t) = xysp(t)cos w.t
= Y(a,c08 w1+ ayc0s w,f) + Hajacos 2w, — w)t
+ a;(1 = a)cos R, + @)t + aycos (2w, + w)y)f]
Using low-pass filtering to eliminate the double-frequency terms, we obtain

W(#) = Yaicos ot + axcos wy1) = m(2)

FREQUENCY MIXING AND FDM

3.13. A radio receiver used in the AM system is shown in Fig. 3-25. The mixer translates the carrier
frequency £, to a fixed IF of 455 kHz by using a local oscillator of frequency f7o. The broadcast-
band frequencies range from 540 to 1600 kHz.

(@) Determine the range of tuning that must be provided in the local oscillator (i} when fo is
higher than f, (superheterodyne receiver) and (ii) when f7, is lower than f,.

(b) Explain why the usual AM radio receiver uses a superheterodyne system.

Antenna

4
RF . IF Envelope
section [ Mixer section detector
//
//, /
7 Common ‘Audio
-~ tuning Local amplifier

—————————————————— -7 oscillator
Fig. 3-25 A superheterodyne AM receiver

Speaker

(@ ) Whenfo>f
540 < f. <1600
Sro—fe =455
where both f, and f7 are expressed in kilohertz. Thus,
Jro=f, +455
When £, = 540 kHz, we get f;o = 995 kHz; and when f, = 1600 kHz, we get f;o = 2055 kHz.
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Thus, the required tuning range of the local oscillator is 995-2055 kHz.
(i) When fipo<f.,
Jro =1 —455

When f. = 540 kHz, we get 1, = 85kHz; and when f, = 1600 kHz we get f;o = 1145kHz.
Thus, the required tuning range of the local oscillator for this case is 85-1145 kHz.

(b) The frequency ratio—that is, the ratio of the highest /7 to the lowest f,o—is 2.07 for case (i) and 13.47
for case (ii). It is much easier to design an oscillator that is tunable over a smaller frequency ratio; that
is the reason why the usual AM radio receiver uses the superheterodyne system.

3.14. The spectrum of a message signal m(t) is shown in Fig. 3-26 (@). To ensure communication
privacy, this signal is applied to a system (known as a scrambler) shown in Fig. 3-26 (b). Analyze
the system and sketch the spectrum of the output x().

M(w)

Twy Q Wy @

(a)

m(t) HPF LPF x(t)

A @c B C l @e

2 cos wt 2 cos wyt
w; = w, + wy

)

Fig. 3-26

The spectrum of the signal at each point is shown in Fig. 3-27. We see that the spectrum of the output x(z),

X(w), consists of the two reversed lobes of M(w). .
3.15. Using the orthogonality of sine and cosine makes it possible to transmit and receive two different

signals simultaneously on the same carrier frequency. A scheme for doing this, known as
quadrature multiplexing, or quadrature amplitude modulation (QAM), is shown in Fig. 3-28. Show
that each signal can be recovered by synchronous detection of the received signal by using two
local carriers of same frequency but in phase quadrature.

Xoam(®) = my () cos wt + my(l) sin w,t
xoam(l) cos w i = my(t) cosza)ct + my(2) sin w2 cos w,t
= Iy (1) + Imy (1) cos 2,1 + by (1) sin 20,
Xoam(D) sinw,t = m;(f) cos w1 sin w,t + my() sin? w,t

= Imy (1) sin 201 + 3my(8) — Imy(2) cos 20,
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----------- b A r===----==-- HPF
1 i
I |
I i
1 |
| |
—w; -, 0 W, W @
B
Twy; T 0 w, @y w
C
, LPF |
[\ : / : /]
] 1
1 1
i I
i i
-2w, -~y 0 oy 2w, @
X(w)
Wy 0 Wy ©
Fig. 3-27

i
y{t) = Em,(l)

mt) <
<>
0 €OS w !
+
z\ RS
~/ xoaml?)
3 *
sin @t o 1 o)
yot) = —myt
(1) — 2
s X LPF
S L=

Fig. 3-28 Quadrature multiplexing system

All terms at 2w, are filtered out by the low-pass filter, yielding
y@®=Im@® and 3@ =)

Note that quadrature multiplexing is an efficient method of transmitting two message signals within the
same bandwidth. It is used in the transmission of color information signals in commercial television
broadcasts.
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Supplementary Problems

3.16. A signal m(¢) is band-limited to w,,. It is frequency-translated by multiplying it by the signal cos w.t. Find
, so that the bandwidth of the transmitted signal is 1 percent of the carrier frequency ..

Ans. @, = 200wy,

3.17. Show that a DSB signal xpgp(#) = m(f)cos w.t may be recovered by multiplying a periodic signal p(¢) with
period 1/f, and appropriately filtering the product signal p(f)xpgg(?).

Hint:  Assume that p(t) is an even function, and expand p(t) using a Fourier series.

3.18. Show that an AM signal with large carrier can be demodulated by squaring it and then passing the resulting
signal through a low-pass filter, as shown in Fig. 3-29. This type of detector is known as a square-law
detector.

Hint:  Use the fact |m(5)}4| < 1.

2
xaml0) Square-law xZplt) FE_I y(0)
device L1

Fig. 3-29 Square-law detector

3.19. Given a real signal m(f), define a signal
m (1) = m(t) + ji(z)
where i(f) is the Hilbert transform of m(?) (see Sec. 2.6). And m_ (¥) is called an analytic signal.

(@) Show that

Flm, (O] = M (0) = {gM(CD) z z g
(b) Show that
Refm., (']

is an upper-sideband SSB signal and
Refm_ (e 7]

is a lower-sideband SSB signal.

Hint: (a) Use Eq. (2.27).

(b) Use Euler’s identity; take the real part of the expression, then compare it with Egs. (3.26)
and (3.27).

3.20. The frequency response H(w) of the VSB filter of Fig. 3-24 (Prob. 3.12) is characterized by
H(w,—w) = ad®

H(w,+ o) = (1= )’
H(w, + wy) = 1%
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3.21.

The message signal is
m(t) = aycos wyt + a,cos wyt

and is to be demodulated by a synchronous detector. Derive the expressions for 8, and 8, as functions of ¢
for distortionless demodulation.

Ans. 0y =-¢and 6, = —%qb
. Wy

Design a system, a descrambler, that will recover the original message signal m(¢) from the output of the
scrambler x(t) of Fig. 3-26, Prob. 3.14.

Hint: Consider a system identical to the one shown in Fig. 3-26.



ANGLE MODULATION

RODUCTION

s Wwe mentioned in Sec. 3.1, angle medulation encompasses phase modulation (PM) and frequency
ion (FM) and refers to the process by which the phase angle of a sinuscidal carrier wave is
according to the message signal. As we studied in Chap. 3, in amplitude modulation the
of the modulated signal is essentially the translated message spectrum, and the transmission
dth never exceeds twice the message bandwidth. In angle modulation, the spectral components
fodulated waveform are not related in any simple fashion to the message spectrum.
more, superposition does not apply (see Prob. 4.4), and the bandwidth of the angle-modulated
Fusually much greater than twice the message bandwidth. The increase in bandwidth and
plexity is compensated for by the improved performance in the face of noise and
gc (see Chap. 8).

MODULATION AND INSTANTANEOUS FREQUENCY
le modulation, the modulated carrier is represented by [see Eq. (3.1)]
x1) = Acos [rr + 1] 4.0

a1, are constants and the phase angle @(¢) is a function of the message signal m(r).
8 Eq. (4.1) as

x40 = Acos 85 (4.2)
B(1) = o1+ (1) (4.3)
efine the instantaneous radian frequency of x (1), denoted by m;, as
_dby _  deln)
=t =t (4.4)

: ien () = constant, then w; = w,.

ton (1) and de(n/dr are known as the instanianeous phase deviation and instantaneous
etion of x.(1). The quantity Aw defined by

Ao = |a — 0 |max (4.5)
snaximum (or peak) radian frequency deviation of the angle-modulated signal.

68
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4.3 PHASE AND FREQUENCY MODULATION

The two basic types of angle modulation are phase modulation and frequency modulation.

In PM, the instantaneous phase deviation of the carrier is proportional to the message signal; that
is,

&) = km(0) 4.6)
where k, is the phase deviation constant, expressed in radians per unit of m(¢).
In FM, the instantaneous frequency deviation of the carrier is proportional to the message signal; that
is,

ap)

) ‘ “.7)

t
or b0 =k J' i) di+ o) “4.8)

where k; is the frequency deviation constant, expressed in radians per second per unit of m(z), and
(1) is the initial phase angle at 7 = #,. It is usually assumed that 7y = —c0 and ¢(—o0) = 0.
Thus, we can express the angle-modulated signal as

xpn(t) = A cos [t + kymin)] 4.9)

11I,I’l"’l'lllllll’lllll"'l‘lll’lllii’l’l"'l’lyl’i’l,lil’l"" ,
l"’l‘lxllllll)'l,l"'l’lll,l’illll’l’l'l’ixl{lﬁlllli"'w! ’

Fig. 41 AM, FM, and PM waveforms
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xFM(tj = Acos [wct + kfr_m m(2) d/{] (4.10)
From definition (4.4), we have &
w; = wc+kp% for PM “4.11)
w; = 0, + kgn(t) for FM 4.12)

Thus, in PM, the instantaneous frequency w; varies linearly with the derivative of the modulating
signal, and in FM, w; varies linearly with the modulating signal.

Figure 4-1 illustrates AM, FM, and PM waveforms produced by a sinusoidal message wave-
form.

4.4 FOURIER SPECTRA OF ANGLE-MODULATED SIGNALS
An angle-modulated carrier can be represented in exponential form by writing Eq. (4.1) as
xo(2) = Re (4e/@ 90y = Re (4e/*:'e/*) (4.13)

where Re means the “‘real part of.” Because of this representation, the angle modulation is also
referred to as the exponential modulation.
Expanding ¢/*® in a power series yields

2 n
x.(5) = Re {Aef“"’[l+j¢(t)—¥— s +j”£,%+ - ]}
2 3
= A[cos .t = ¢(Hsin w, 1 — ¢2(’Z) cos w .t + ¢3(Y[) sin wyt+ - - - ] (4.14)

Thus, the angle-modulated signal consists of an unmodulated carrier plus various amplitude-
modulated terms, such as @(f)sin w,t, P*(£) cos w,t, ¢>(2)sin w,t, ..., and so on. Hence, its Fourier
spectrum consists of an unmodulated carrier plus spectra of ¢(¥), $*(2), $(9), ..., and so on, centered
at w,.

It is clear that the Fourier spectrum of an angle-modulated signal is not related to the message
signal spectrum in any simple way, as was the case in AM.

4.5 NARROWBAND ANGLE MODULATION

If |$@lmax < 1 (4.15)
then Eq. (4.14) can be approximated by [neglecting all higher-power terms of ¢(1)]
x.(f) = Acos w .t — A¢$(t) sin w,t 4.16)
The signal represented by Eq. (4.16) is called the narrowband (NB) angle-modulated signal. Thus,
Xxmem(1) = A c0S w,t — Akm(t)sin o, 4.17)
xnBrM(?) = Acos w .t — AI:ka.I . m(4) di] sin @ ¢ 4.18)

Equation (4.16) indicates that a narrowband angle-modulated signal contains an unmodulated carrier
plus a term in which ¢(z) [a function of m(f)] multiplies a n/2 (rad) phase-shifted carrier. This
multiplication generates a pair of sidebands, and if ¢(¢) has a bandwidth Wp, the bandwidth of an NB
angle-modulated signal is 2Wp. This is reminiscent of AM.
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4.6 SINUSOIDAL (OR TONE) MODULATION
A. Modulation Index:

If the message signal m(¢) is a pure sinusoid, that is,

_ {a,sin w,t for PM
o= {am cos w,t for FM (4.19)
then Egs. (4.6) and (4.8) both give
(1) = Bsin w,,¢ (4.20)
kya, for PM
where p= 4.21)
% for FM
wm

The parameter § is known as the modulation index for angle modulation and is the maximum value of
phase deviation for both PM and FM. Note that f§ is defined only for sinusoidal modulation and it can
be expressed as

B= i_: 4.22)
where Aw is the maximum frequency deviation, defined in Eq. (4.5).
B. Fourier Spectrum:
Substituting Eq. (4.20) into Eq. (4.1), we obtain
x.(t) = Acos (w1 + fsin w,,1) (4.23)

which is the angle-modulated signal with sinusoidal modulation. It can be shown by the use of the
Fourier series that this signal can also be written as (see Prob. 4.5)

x () =AY J(B)cos (@, + nw,)t 4.24)

where J,(B) is the Bessel function of the first kind of order n and argument 8. Table B-1 (in App. B)
lists some selected values of J,(B). From Eq. (4.24) and Table B-1, we observe that

1. The spectrum consists of a carrier-frequency component plus an infinite number of sideband
components at frequencies w, * nw,n =1,2,3,...).

2. The relative amplitudes of the spectral lines depend on the value of J,(8) and the value of J,(8)
becomes very small for large of .

3. The number of significant spectral lines (that is, having appreciable relative amplitude) is a
function of the modulation index . With f < 1, only J, and J; are significant, so the spectrum will
consist of carrier and two sideband lines. But if § >> 1, there will be many sideband lines.

Figure 4-2 shows the amplitude spectra of angle-modulated signals for several values of .

4.7 BANDWIDTH OF ANGLE-MODULATED SIGNALS
A. Sinusoidal Modulation:

From Fig. 4-2 and Table B-1 we see that the bandwidth of the angle-modulated signal with
sinusoidal modulation depends on ff and w,,. In fact, it can be shown that 98 percent of the normalized
total signal power is contained in the bandwidth

Wg =~ 2(B + Dy, (4.25)
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1"'
05+ B=02
] |
W, — Wy Yo, F Wy @
05}
B=1
AL
@, w
B=5
RN
w, g
B=10
ot
w, w

Fig. 42 Amplitude spectra of sinusoidally modulated FM signals (w,, fixed)

When f < 1, the signal is an NB angle-modulated signal and its bandwidth is approximately equal to
20,,. Usually a value of f < 0.2 is taken to be sufficient to satisfy this condition. All the bandwidths
can be expressed in hertz (Hz) simply by replacing Aw with Af and w,, with f,,.

B. Arbitrary Modulation:
For an angle-modulated signal with an arbitrary modulating signal m(?) band-limited to w,,
radians per second (rad/s), we define the deviation ratio D as

maximum f{requency deviation  Aw

b= bandwidth of m(2) ~on

(4.26)
The deviation ratio D plays the same role for arbitrary modulation as the modulation index f plays for
sinusoidal modulation. Replacing § by D and w,, by w,, in Eq. (4.25), we have

Wp =~ 2(D+ Doy 4.27)

This expression for bandwidth is generally referred to as Carson’s rule. If D <1, the bandwidth
is approximately 2wy, and the signal is known as a narrowband (NB) angle-modulated signal (see
Sec. 4.4). If D > 1, the bandwidth is approximately 2Dw,, = 2Aw, which is twice the peak frequency
deviation. Such a signal is called a wideband (WB) angle-modulated signal.

4.8 GENERATION OF ANGLE-MODULATED SIGNALS
A. Narrowband Angle-Modulated Signals:

The generation of narrowband angle-modulated signals is easily accomplished in view of
Eq. (4.16) or Egs. (4.17) and (4.18). This is illustrated in Fig. 4-3.

B. Wideband Angle-Modulated Signals:

There are two methods of generating wideband (WB) angle-modulated signals; the indirect
method and the direct method.
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m(r) l _® xnpemls)

(b) NBFM

Fig. 4-3 Generation of narrowband angle-modulated signals

1. Indirect Method:

73

In this method, an NB angle-modulated signal is produced first (see Fig. 4-3) and then converted
to a WB angle-modulated signal by using frequency multipliers (Fig. 4-4). The frequency multiplier
multiplies the argument of the input sinusoid by ». Thus, if the input of a frequency multiplier is

x(#) = A cos [w.t + ¢(2)]
then the output of the frequency multiplier is
y(t) = Acos [nw .t + nd(1)]

NB WwB

Fig. 44 Frequency multiplier

NBFM signal WBFM signal
fer Je, = nfe,
Afy Afy=nAf,
A vy [ Frequency | pr MG
multiplier | |
X n
fe Locat

oscillator

Fig. 45 NB-to-WB conversion

(4.28)

(4.29)
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Use of frequency multiplication normally increases the carrier frequency to an impractically high
value. To avoid this, a frequency conversion (using a mixer or DSB modulator) is necessary (Fig.4-5)
to shift the spectrum.

2. Direct Method:

In the direct method of generating an FM signal, the modulating signal directly controls the
carrier frequency. A common method used for generating FM directly is to vary the inductance or
capacitance of a tuned electric oscillator. Any oscillator whose frequency is controlled by the
modulating signal voltage is called a voltage controlled oscillator (VCO). The main advantage of direct
FM is that large frequency deviations are possible, and thus less frequency multiplication is required.
The major disadvantage is that the carrier frequency tends to drift, and so additional circuitry is
required for frequency stabilization.

49 DEMODULATION OF ANGLE-MODULATED SIGNALS

Demodulation of an FM signal requires a system that produces an output proportional to
the instantaneous frequency deviation of the input signal. Such a system is called a frequency
discriminator. If the input to an ideal discriminator is an angle-modulated signal

x.(f) = Acos [w.t + ¢(2)]
then the output of the discriminator is

d
v = kd% (4.30)

where k, is the discriminator sensitivity.
For FM, ¢(2) is given by [Eq. (4.8)]
t
o(2) = kfj m(L) di
so that Eq. (4.30) becomes
Ya(©) = kakem(t) 4.3D
The characteristics of an ideal frequency discriminator are shown in Fig. 4-6.

Output -

voltage Slope = k4 /

Input frequency

Fig. 4-6 Characteristics of ideal frequency discriminator
The frequency discriminator also can be used to demodulate PM signals. For PM, ¢(¢) is given by
[Eq. (4.6)]
¢ = kym(n)
Then y, (), given by Eq. (4.30), becomes
dm(t)

' (4.32)

yd(t) = kdkp
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Integration of the discriminator output yields a signal that is proportional to m(?). A demodulator for
PM can therefore be implemented as an FM demodulator followed by an integrator.
A simple approximation to the ideal discriminator is an ideal differentiator followed by an
envelope detector (Fig. 4-7). If the input to the differentiator is
x.() = Acos [wt + ¢(B)]
then the output of the differentiator is

1 d t .
x(1) = —A[wc + q;i )]sm [w.t + ¢(D)] (4.33)
| I i
i i
x40 | a] 0 Envelope L A0
i ]

Fig. 47 Frequency discriminator

The signal x,(?) is both amplitude- and angle-modulated. The envelope of x.(7) is

A[wc + @]

The output of the envelope detector is, by Eq. (4.4),

Ya(t) = ; (4.39)
which is the instantaneous frequency of the x.(¢).

There are many other techniques that can be used to implement a frequency discriminator. (See
Probs. 4.20, 4.21, and 4.22.)

Solved Problems

INSTANTANEOUS FREQUENCY

4.1.  Determine the instantaneous frequency in hertz of each of the following signals:
(a) 10 cos (2007 + D

(b) 10 cos (207t 4 ni?)
(¢) cos 200zt cos (5sin 2r) + sin 200x¢ sin (5 sin 277)

(@ 6(2) = 2007t +§
o
;= 5 = 2007 = 2n(100)

The instantaneous frequency of the signal is 100 Hz, which is constant.

®) 0() = 20nt + nf’

w; =§= 207 + 2t = 27(10 + ¢)

The instantaneous frequency of the signal is 10 Hz at t = 0 and increases linearly at a rate of 1 Hz/s.
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© cos 200mzcos (5sin 27f) -+ sin 200xtsin (5sin 2z7) = cos (200w — 5sin 2n1)
0(r) = 200mt — 5sin 2nt

w; = dg? = 2007 — 107 cos 2mt = 2n(100 — 5 cos 2nt)

The instantaneous frequency of the signal is 95 Hz at ¢ = 0 and oscillates sinusoidally between 95 and
105 Hz.

4.2. Consider an angle-modulated signal
x.(1) = 10 cos [(10%)nt + 5sin 21(10°)1]
Find the maximum phase deviation and the maximum frequency deviation.
Comparing the given x,(r) with Eq. (4.1), we have
0(1) = w,t + ¢(t) = (10%)mt + 5sin 2n(10%)
and @) = 5sin 27(10°)z
Now $'(1) = 5(2m)(10%) cos 2m(10%)¢
Thus, the maximum phase deviation is
[¢(Dlmax = Srad
and the maximum frequency deviation is
Aw = ¢ (Dax = 5@)(10%)Tad/s

or Af = 5kHz

t

PHASE MODULATION AND FREQUENCY MODULATION
4.3.  An angle-modulated signal is described by
x,(f) = 10 cos [2n(10%)z + 0.1 sin (10*)nt]

(a) Considering x.(¢) as a PM signal with k, = 10, find m(?).
() Considering x.(¢) as an FM signal with kr = 10z, find m(z).

(a) xpp(f) = A cos (@t + k,m(D)]
= 10cos [2n(10%)¢ + 10m(2)]

= 10cos [27(10%)7 + 0.1 sin (10%)xz]
Thus, m(t) = 0.01 sin (10%)mz

b t
® xpm(f) = Acos [w[t + kfj m(4) dix]
—o0
= 10 cos [2n(10%)¢ + 0.1 sin (10%)77}

Assuming

m(t) = @, cos (10%yzz
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we get
t t
107:] m(A) di = lOna,,,J cos (1072 di
=% gin (107 = 0.1 sin (10°
=100 sin (107)ns = 0.1 sin (10°)xz

Thus, a,, = 10, and
m(f) = 10 cos (10>)mz

4.4. Let m(¢) and m,(¥) be two message signals, and let X, (1) and x,,(?) be the modulated signals
corresponding to m(7) and m;(z), respectively.
(a) Show that if the modulation is DSB (AM), then m; () + my(¢) will produce a modulated
signal equal to x. () + x.,(¢). (This is why AM is sometimes referred to as a linear
modulation.)

(b) Show that if the modulation is PM, then the modulated signal produced by m;(£) + m,(f)
will not be x,, () + x,,(1); that is, superposition does not apply to angle-modulated signals.
(This is why angle modulation is sometimes referred to as a nonlinear modulation.)

(@) For DSB (AM), from Eq. (3.3) we have
my (1) = x,, (1) = my(¢) cos w,t
my(1) = x,, () = my(t) cos w,t
my (1) + my() = x, () = [y () + my(D)] cos ¢
= my(t) cos w,t + my(t) cos w,t
= X, (1) + %, (D)
Hence, DSB (AM) modulation is a linear modulation.
(b)) For PM, by Eq. (4.9) we have
my(t) = x., () = Acos [w,t + kym (1]
my(t) = x,,(t) = Acos [w.t + kymy(H]
m(8) + my(t) = x.() = Acos {w 1 + ky[mi (1) + my()]}
7 X, (1) + x,(0)

Hence, PM is a nonlinear modulation.

4.5. Derive Eq. (4.24).
In a sinusoidal angle modulation, the modulated signal [Eq. (4.23)]

x.(f) = Acos (w.t + fsin w,,1)
can be expressed as

x,(f) = A Re (/!SI0 Omly (4.35)
The function e/#$1 @ml is clearly a periodic function with period 7,, = 2n/,,. It therefore has a Fourier
series representation

o Bsin Wmt _ ¢ e Momt
2.
By Eq. (1.3), the Fourier coefficients ¢, can be found to be
o, =2m J Tlon . JBSIN Ot s,
2n ) /o,

Setting w,,t = x, we have
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o =L [ psinx-mog _ g g
n 2n - n

where J,(B) is the Bessel function of the first kind of order » and argument B (see App. B).

Thus, o/ sin wpt _ Z Jn(ﬁ)ej"w"‘t

n=—00

Substituting Eq. (4.36) into Eq. (4.35), we obtain

x() = ARe[ej“" > J,,(ﬁ)ej”“’”"] =4 Re[ S Tu(Befoctromnt

n=—co n=—00

Taking the real part yields

x (=4 Z J,(B) cos (@, + newpy)t

n=—o0

[CHAP. 4

(4.36)

4.6. Find the normalized average power in an angle-modulated signal with sinusoidal modulation.

From Eq. (4.24), an angle-modulated signal with a single-tone modulation can be expressed as

x (0= AL (B)cos (w, + nw,)t

n=—o0

The normalized average power in x.(¢) is given by

< 1 1 - 1
P= 3 JAIB =34 3 FB =34

n=—00

since i 2B =1

n=—00

FOURIER SPECTRA OF ANGLE-MODULATED SIGNALS
4.7. A carrier is angle-modulated by the sum of two sinusoids
x,(f) = A cos (w,t + Py sin ¢ + By sin w,1)
where w; and o, are not harmonically related. Find the spectrum of x,(7).
In a manner similar to Prob. 4.5, x.(f) can be expressed as
x,(f) = A Re(e/! o/ SID 0114550 030
= ARe(e/O! /P SIN O1 4 if SN W1
Using Eq. (4.36), we have

. o
e,ﬁlsmwlt: Z Jn(ﬁl)emwll

n=—o0
. kad .
E]ﬁ; sinwyf Z Jm(ﬁz)ejm:zl
m=—c0

Substituting these expressions into Eq. (4.40) and taking the real part, we obtain

D=4 D > JBuB2)cos (@, + noy +mow)t

n=—00 M=—00

4.37)

(4.38)

(4.39)

4.40)

441
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4.8.

From Eq. (4.41) we see that the spectrum of x.(¢) consists of four categories: (1) the carrier line; (2) sideband
lines at w, + nw; due to one tone alone; (3) sideband lines at w, = mw, due to the other tone alone; and (4)
sideband lines at w, * nw; * mw, due to the nonlinear property of angle modulation.

In a tone-modulated angle modulation, the modulated signal x.(¢) is [see Eq. (4.23)]
x.(f) = Acos (w.t + Bsin w,,t)

When f <« 1, we have NB angle modulation.

(@) Find the spectrum of this NB angle-modulated signal.

(b) Compare the result with that of a tone-modulated AM signal.

(¢) Discuss the similarities and differences by drawing their phasor representations.

(@) x.(f) = A cos (w,t+ Bsin w,1)
= A cos w.tcos (fsin w,, 1) — A sin w,sin (fsin @,,1)

when < 1, we can write

cos (fsin w, 1) =1

sin (Bsin w,,?) = fsin w,,t
Then the NB signal can be approximated by

xNpe() = A cos w.t— fAsin wp,!sin @t

(4.42)
= Acos w.t— ﬂTA cos (@, — w,,)t + ﬁ—; €os (w, + wy)t

Note that Eq. (4.42) also can be easily obtained from Eq. (4.16) by letting ¢(¢) = fsin w,,t.
From Eq. (4.42) we see that the spectrum of xyp.(£) consists of a carrier line and a pair of side lines at
@ £ Wy

(b) The preceding result is almost identical to the situation for a tone-modulated AM signal given by (see
Prob. 3.4)

xam(f) = Acos w.t + pA cos w,!cos wt

A A (4.43)
= Acos w.t+ HT €os (W, ~ Wyt + % cos (w, + wy)t

where p is the modulation index for AM.
Comparison of Egs. (4.42) and (4.43) shows that the main difference between NB angle modulation and
AM is the phase reversal of the lower sideband component.

(¢) By using Eq. (4.35) and
MBSOt | 4 ipsin @t forf < 1
Eq. (4.42) can be written in phasor form as
Xnpe(f) = Re [Aef'wc‘(l + jBsin a),,,t)]
4.44
= Re[ e (1.4 L emnt L )| @
2 2
Similarly, Eq. (4.43) can be written in phasor form as
xam(t) = Re [Aef"’c'(l + pcos comt)]

] ) (4.45)
=Re I:Ae"”"t(l +ge’w’"' +%e_ﬂ"’"')]
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By taking the term Ae/* as the reference, the phasor representations of Egs. (4.44) and (4.45) are
shown in Fig. 4-8. From Fig. 4-8, the difference between Eqgs. (4.44) and (4.45) is obvious. In NB angle
modulation, the modulation is added in quadrature with the carrier, which results in phase fluctuation with
little amplitude change. In the AM case, the modulation is added in phase with the carrier, producing
amplitude fluctuation with no phase deviation.

(a) NBFM wave () AM wave

Fig. 4-8 Phase representation

BANDWIDTH OF ANGLE-MODULATED SIGNALS

4.9.

4.10.

Given the angle-modulated signal

x,(H) = 10cos (271087 + 200 cos 2710°7)
what is its bandwidth?
The instantaneous frequency is
w; = 21(10%) — 4r(10°) sin 27(10°)z
So Aw = 47(10%), w,, = 2n(10%), and

Aw  47(10°
poto
By Eq. (4.25),
W =28+ Do, = 8.04n(10°) rad/s
Since > 1, Wy ~2Aw=8n(10°)rad/s or fz=400kHz

A 20-megahertz (MHz) carrier is frequency-modulated by a sinusoidal signal such that the
maximum frequency deviation is 100 kHz. Determine the modulation index and the approximate
bandwidth of the FM signal if the frequency of the modulating signal is (@)1 kHz, ()100 kHz,
and (¢)500 kHz.

Af= 100 kHz, f, = 20MHz>f,,

For sinusoidal modulation, f = Af/f,,.

(a) With f,, = 1kHz, f = 100. This is a WBFM signal, and f =2 Af = 200kHz.
(b) With f,, = 100kHz, g = 1. Thus, by Eq. (4.25),

f5 = 2B + 1)f,, = 400kHz

() With f, = 500kHz, § = 0.2. This is an NBFM signal, and f3 = 2f,, = 1000 kHz = 1 MHz.
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4.11. Consider an angle-modulated signal
x.(t) = 10cos (w.t + 3 sin w,,1)
Assume PM and f,, = 1 kHz. Calculate the modulation index and find the bandwidth when (a) f;,
is doubled and (&) f,, is decreased by one-half.
xpm(t) = A cos [t + k,m(1)] = 10cos (w,! + 3sin @,,1)
Thus, m(t) = a,, sin w,,¢, and
xpm(t) = 10cos (@, + kyay, sin w,,t)
From Eq. (4.21) or Eq. (4.23),
B=lkya,=3
We see that the value of f is independent of f£,,. By Eq. (4.25), when f,, = 1 kHz,
Sz =28+ 1), =8kHz

(@) When f,, is doubled, § = 3, f,, = 2kHz, and
f3=23+1)2=16kHz

(b) When f,, is decreased by one-half, g = 3, f,, = 0.5kHz, and
2 = 23 + 1)(0.5) = 4kHz

4.12. Repeat Prob. 4.11 when FM is assumed.

(]
xpm(8) = Acos [wct + ka’ m(A) d].] = 10cos (w.t + 3sin w,,f)
Thus, m(t) = a,, cos w,,t and

k
xpm(f) = 10cos (wct +%f sin w,,,t)

From Eq. (4.21) or Eq. (4.23),
_ %_ anky  amky
O 2nf, 27(10%)
We see that the value of § is inversely proportional to f,,. Thus, by Eq. (4.25), when f,, = 1 kHz,

5 =28+ f =23+ 1)l =8kHz

(@) When f,, is doubled, 8 = 3/2, f,, = 2kHz, and

f5=2B+D) fn= 2(%+ 1)2 = 10kHz
(b) When f,, is decreased by one-half, § =6, f,, = 0.5kHz, and

J5= 2B+ D) fyy = 26+ 1)0.5) = TkHz

4.13. A carrier is frequency-modulated with a sinusoidal signal of 2 kHz, resulting in a maximum
frequency deviation of 5 kHz.
(a) Find the bandwidth of the modulated signal.

(b) The amplitude of the modulating sinusoid is increased by a factor of 3, and its frequency is
lowered to 1 kHz. Find the maximum frequency deviation and the bandwidth of the new
modulated signal.
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(@) From Eq. (4.21),

ﬂ_k 4 _Af_5010%)
Ton  fu 2009

By Eq. (4.25), the bandwidth is
f5=2B+D/f,=225+1)2=14kHz

(b) Let B; be the new modulation index. Then

k3 k
b=t =6l = gp =625 =
2Pm
Thus, Af= By fm = (15)1) = 15kHz

f3=2B1+ 1) frm = 2015+ 1)(1) = 32kHz

4.14. In addition to Carson’s rule (4.27), the following formula is often used to estimate the bandwidth
of an FM signal:

Wy =2D+2)wy, forD>2
where wy, = 2nf3r and fj, is the highest frequency of the signal in hertz. Compute the bandwidth,

using this formula, and compare it to the bandwidth, using Carson’s rule for the FM signal with
Af=75kHz and f; = 15kHz.
Note that commercial FM broadcast stations in the United States are limited to a maximum frequency
deviation of 75 kHz, and modulating frequencies typically cover 50 Hz to 15 kHz.
Using Eq. (4.26) with wy; = 2n fy;, where fjy = 15kHz, we have
_Af_T7510% _
TS 150103
and by using the given formula, the bandwidth is
, 5 =2D + 2)fyy = 210kHz
Using Carson’s rule, Eq. (4.27), we see that the bandwidth is
=2(D +1)fy = 180kHz
Note: High-quality FM radios require a bandwidth of at least 200 kHz. Thus, it seems that Carson’s rule
underestimates the bandwidth.

GENERATION OF ANGLE-MODULATED SIGNALS
4.15. Consider the frequency multiplier of Fig. 4-4 and an NBFM signal
xnpeM(?) = A cos (w 1+ fsin wy,?)

with 8 < 0.5 and f, = 200 kHz. Let f,, range from 50 Hz to 15 kHz, and let the maximum
frequency deviation A f at the output be 75 kHz. Find the required frequency multiplication » and
the maximum allowed frequency deviation at the input.

From Eq. (4.22), f = Af/f,,. Thus,

75(10%) 75(10%)
e = T300% = B = 5= = 1500
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4.16.

4.17.

If B; = 0.5, where B, is the input B, then the required frequency multiplication is

_ Prax _ 1500 _
n= BT oS 3000
The maximum allowed frequency deviation at the input, denoted Af7, is
Af  7510%)
=2 = =25H
A== 3000 z

A block diagram of an indirect (Armstrong) FM transmitter is shown in Fig. 4-9. Compute the
maximum frequency deviation Af of the output of the FM transmitter and the carrier frequency
f. if f; =200 kHz, f;o = 10.8 MHz, Af; = 25Hz,n; = 64, and n, = 48.

Af= (Af) (ny) (np) = (25) (64) (48) Hz = 76.8 kHz
fo=nyfi = (64)(200) (10%) = 12.8(10%) Hz = 12.8 MHz
H=F* fro=(12.8 = 10.8)(10°) Hz = {223_66 ﬁﬁi
Thus, when f; = 23.6 MHz, then
f.=nyfy = (48)(23.6) = 1132.8 MHz
When f; = 2 MHz, then
f.=nyfs =(48)(2) = 96 MHz

Frequency X0
multiplier

X ny

Fig. 49 Block diagram of an indirect FM transmitter

In an Armstrong-type FM generator of Fig. 4-9 (Prob. 4.16), the crystal oscillator frequency is
200 kHz. The maximum phase deviation is limited to 0.2 to avoid distortion. Let f,, range from
50 Hz to 15 kHz. The carrier frequency at the output is 108 MHz, and the maximum frequency
deviation is 75 kHz. Select multiplier and mixer oscillator frequencies.

Referring to Fig. 4-9, we have
Afi = Bf,n = (0.2)(50) = 10Hz
Af _7510°)
ALy 10
fr=mfi =m@)(10°)Hz

= 7500 = nyn,

Assuming down conversion, we have

_rode
fr—fro= P
Thus, fo _ 75002)(10%) — 108(10%) _ 1392
A

—22(10% Hz
ny ny
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Letting n, = 150, we obtain
ny =50 and fro = 9.28 MHz

4.18. A given angle-modulated signal has a maximum frequency deviation of 50 Hz for an input
sinusoid of unit amplitude and a frequency of 120 Hz. Determine the required frequency
multiplication factor n to produce a maximum frequency deviation of 20 kHz when the input
sinusoid has unit amplitude and a frequency of 240 Hz and the angle modulation used is (¢) PM
and (b) FM.

(@) From Eqgs. (4.21) and (4.22) we see that in sinusoidal PM, the maximum frequency deviation Af is
proportional to f,,. Thus,

240
Afi = (m)(SO) = 100Hz
3
Hence, n= i—ﬁ = 201%8 ) =200

() Again from Eqgs. (4.2]) and (4.22) we see that in sinusoidal FM, the maximum frequency deviation Af
is independent of f,,. Thus,

a o Af_2000Y)

v o =400

4.19. Atlow carrier frequencies it may be possible to generate an FM signal by varying the capacitance
of a parallel resonant circuit. Show that the output x,(¢) of the tuned circuit shown in Fig. 4-10 is
an FM signal if the capacitance has a time dependence of the form

C(t) = Cy— k(D)

k
and |C—0m(t)‘ <1
e}
Tuned f
circuit L —_/C(,) x 0
oscillator 7 !;
Fig. 4-10

If we assume km(?) is small and slowly varying, then the output frequency w; of the oscillator is given by

1 1 1 k 12
. = = 1——
YT JICH ~ JIIC, — km()] m[ co'”")]

Since |(k/Co)m(H)| < 1, we can use the approximation

(l—z)fl/zz1+%z

) 1k
and obtain w; ~ wc[l + Ec_(,'"(t)] = o, + kgn(?)
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4.20.

4.21.

where 1 and ks

Thus, by Eq. (4.12), x.(¢) is an FM signal.

An FM signal
1
xpm () = A cos [wct + kfj m(2) d,{]
is applied to the system shown in Fig. 4-11 consisting of a high-pass RC filter and an envelope
detector. Assume that wRC < 1 in the frequency band occupied by xgp(f). Determine the
output signal y(¥), assuming that k/m(:)| < o, for all ¢.

Envelope

1m0 R ur) detector

L }

y()

Fig. 411

The frequency response H(w) of the RC high-pass filter is

R joRC
H = =
@) = R T/(joC) ~ 1+jwRC

If wRC < 1, then
H(w) = joRC
Since multiplication by jw in the frequency domain is equivalent to differentiation in the time domain [see
Eq. (1.23)], the output »(z) of the RC filter is
d
= RC;,; [xpm(®)]
t
=—ARC[w, + k()] sin I:curt + kff m(A) d/l]
The corresponding envelope detector output is
W) = ARClw, + k(D]

which shows that, except for a dc term 4ARCuw,, the output is proportional to m(t).

Delay lines might be used to approximate the derivative of the signal by realizing that

- x(H)—x(t—1)
T

x'(t) (4.46)

Draw the system, and suggest how small T must be in order for the right side to be a good
approximation of the derivative.

A system to realize Eq. (4.46) is shown in Fig. 4-12.
1
yy=- [x(®) = x(1 = 7)]
Taking the Fourier transform of both sides yields

Y(@) = X (@)~ P x@) = L x(@1 )
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If ot < 1, then 1 - €7%" =~ jor and
Y(w) = joX(w)

which indicates that y(7) is approximately equal to the derivative of x(¢) and = must satisfy the following
condition:

x(1) h 1 )
z

Delay
T x(t — 1)

Fig. 4-12

4.22. Consider an FM signal
!
xpm(t) = Acos [cuct + kf‘[ m(A) dl]

Let #; and 1, (¢, > t;) denote the times associated with two adjacent zero crossings of xpy(£)
(Fig. 4-13). If

t;
J’Z mA)dA=m()t,—t)) H<SI<0l
L3t

then show that () ~ = —
cm(t) A
where At =1, —1;.
Let xpm() = Acos 0(2)
t
where (1) = w1 + kfj m(2) da
xep()

Fig. 4-13 Zero crossings of an FM signal

<

S
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4.23.

Let ¢; and 7, (#, > ;) be the times associated with two adjacent zero crossings, that is,
xpm(t) = xpmlt2) = 0
L]
Then (1) —0(t) =7 = 0t — ;) + k/J‘ m(A) dA
I

The bandwidth of the message m(?) is assumed much less than the bandwidth of the modulated signal.
Then m(¢) is essentially constant over the interval {11, £,], and we have

[wc + k,m(t)](t2 —t)=nx
Thus, by Eq. (4.12),

co,-=wc+k/m(t)=t =
—h

or kpm(t) = —A'il — o,

where At =t — ;.

The result of Prob. 4.22 indicates that m(t) can be recovered by counting the zero crossings in
xpm(?). Let N denote the number of zero crossings in time T. Show that if T satisfies the
condition

1 1
—< T —
fe Ju
where fj, is the bandwidth of m(?) in hertz (wyr = 27fyy), then
N
km(t) =~ ——
O~ 57~/
Let t,, ,, t3,. .. denote the times of zero crossings and Ty = t, — 1, T, = 13— l3,... . Assume that there

are N zero crossings in
T=T+T)+ - +Ty
From the result of Prob. 4.22, we have

kpm(t) = Til _

T
or Ti=—
U w, + kem(D)
This is true for T, T3,...; that is,
_ n
o, + kem(?)

Thus T 4T A Ty=T= N
1+t +In . + krm()

i=1,2,3,...,N

T;

Hence, we obtain () = N _ o,
T

k N
or S wi(8) = k() =
2n (®) = m(?) 2T I

The condition 1/f, < T ensures that within T there will be some zero crossings, and the condition
T < 1/fy offers no excessive averaging (or smoothing) of m().
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Supplementary Problems

An angle-modulated signal is given by
x.(2) = 5cos [27(10%)¢ + 0.2 cos 200x¢]

Can you identify whether x,(¢) is a PM or an FM signal?

Ans. No. It can be either a PM or an FM signal.

The frequency multiplier is a nonlinear device followed by a bandpass filter, as shown in Fig. 4-14. Suppose
that the nonlinear device is an ideal square-law device with input-output characteristics

e,(t) = ael (1)

Find the output p(7) if the input is an FM signal given by
e;() = A cos (.t + fsin w,t)

Ans. y(1) = A'cos 2wt + 2B sin w,,1), where 4’ = Ja4>. This result indicates that a square-law device can
be used as a frequency doubler.

Assume that the 10.8-MHz signal in Fig. 4-15 is derived from the 200-kHz oscillator (multiplication by 54)

and that the 200-kHz oscillator drift is 0.1 Hz.
(1)
"‘ Frequency Trm
<N multiplier

X 48

200 kHz 54 108 MHz

Fig. 4-15

(@) Find the drift in the 10.8-MHz signal. -
(b) Find the drift in the carrier of the resulting FM signal.

Ans. (a) = 54 Hz, (b) 48 Hz

A given FM signal has a maximum frequency deviation of 25 Hz for a modulating sinusoid of unit amplitude
and a frequency of 100 kHz. Find the required value of frequency multiplication 7 to produce a maximum
frequency deviation of 20 kHz when the modulating sinusoid has unit amplitude and a frequency of 200 Hz.

Ans. n = 800
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4.28. A block diagram of a typical FM receiver, covering the broadcast range of 88 to 108 MHz, is shown in
Fig. 4-16. The IF amplifier frequency is 10.7 MHz. The limiter is used to remove the amplitude
fluctuations caused by channel imperfection. The FM receiver is tuned to a carrier frequency

of 100 MHz.
RF IF .. Frequency
amplifier Limiter discriminator
Audio
amplifier

Loudspeaker

xem(t)

Fig. 4-16 FM receiver
(@ A 10-Hz audio signal frequency modulates a 100-MHz carrier, producing f = 0.2. Find the

bandwidths required for the RF and IF amplifiers and for the audio amplifier.
(b) Repeat (a) if B = 5.

Ans. (d) RF and IF amplifiers: 24 kHz; audio amplifier: 10 kHz
(b) RF and IF amplifiers: 120 kHz; audio amplifier: 10 kHz.

07 )
L = Qo (20)



DIGITAL
TRANSMISSION OF
ANALOG SIGNALS

GDUCTION

nd in the design of new communication systems has been toward increasing the use of
ques. Digital communications offer several important advantages compared to analog
tions, for example, higher performance, greater versatility, and higher security.

1smit analog message signals. such as voice and video signals, by digital means, the signal
pnverted to a digital signal. This process is known as the analog-to-digital conversion, or
eferred as digital pulse modulation. Two important techniques of analog-to-digital
are pulse code modulation (PCM) and delta modulation (DM).

CODE MODULATION

ntial processes of PCM are sampling, guantizing, and encoding, as shown in Fig, 5-1.

s the process in which a continuous-time signal is sampled by measuring its amplitude
ants. Representing the sampled values of the amplitude by a finite set of levels is called
signating each quantized level by a code is called encoding.

pling converts a continuous-time signal to a discrete-time signal, quantizing converts a
plitude sample to a discrete-amplitude sample. Thus, sampling and quantizing
sform an analog signal to a digital signal.

7ing and encoding operations are usually performed in the same circuit, which is called
igital (A/D) converter. The combined use of quantizing and encoding distinguishes
log pulse modulation techniques,

flowing sections, we discuss the operations of sampling, quantizing, and encoding.

90
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m(e) :
{ samper | +{ Quantizer | ~~{ Encoder |-

Fig. 5-1 Pulse code modulation

5.3 SAMPLING THEOREM

Digital transmission of analog signals is possible by virtue of the sampling theorem, and the
sampling operation is performed in accordance with the sampling theorem.

A. Band-Limited Signals:

A band-limited signal is a signal m(¢) for which the Fourier transform of m(?) is identically zero
above a certain frequency wy, :

m(f) — M(w) = 0 for |w| > wy = 2nfy (&N))

B. Sampling Theorem:

If a signal m(¢) is a real-valued band-limited signal satisfying condition (5.1), then m(#) can be
uniquely determined from its values m(nT;) sampled at uniform intervals T,[<1/(2f3/)]. In fact, m(?) is
given by

mty= Y m@aT)

n=—c0

sin @y (¢t —nTy)

@yt —nTy) G

We refer to T, as the sampling period and to its reciprocal f; = 1/T; as the sampling rate.

Thus, the sampling theorem states that a band-limited signal which has no frequency components
higher than f;; Hz can be recovered completely from a set of samples taken at the rate of f,(=2f3))
samples per second.

The preceding sampling theorem is often called the uniform sampling theorem for baseband or low-
pass signals.

The minimum sampling rate, 23, samples per second, is called the Nyquist rate; its reciprocal
1/(2fy) (measured in seconds) is called the Nyquist interval. For the proof of the sampling theorem see
Prob. 5.2.

The requirement that the sampling rate be equal to or greater than twice the highest frequency
applies to baseband or low-pass signals. However, when bandpass signals are to be sampled, lower
sampling rates can sometimes be used (see Prob. 5.7).

5.4 SAMPLING
A. Instantaneous Sampling:

Suppose we sample an arbitrary signal m(¢) [Fig. 5-2(a)] instantaneously and at a uniform rate,
once every T, s. Then we obtain an infinite sequence of samples {m(n7})}, where n takes on all possible
integer values. This ideal form of sampling is called instantaneous sampling.

B. Ideal Sampled Signal:
Multiplication of m(f) by a unit impulse train 57(¢) [Fig. 5-2(b), Eq. (1.72)] yields

0

my(t) = m(Dér,() = Y mnT)o(t=nTy) G.3)

n=—00
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m(e)
0 t
(a)
57(0)
-, o 7, a1, ¢
®)
mye)
. ’f \‘\
_T,f {\~ f/
-, 0 T, 2T, t
(€3]

Fig. 5-2 Ideal signal sampling

0] Lot
\%\»————o -
T/ -~ ~
m(t) rﬂ H\\ -
- ||| d b Ll b H m
-7, 0 T, 2T, 3T t
(a) (b)

Fig. 5-3 Natural sampling

The signal my(z) [Fig. 5-2(c)] is referred to as the ideal sampled signal.

C. Practical Sampling :
1. Natural Sampling:

Although instantaneous sampling is a convenient model, a more practical way of sampling a
band-limited analog signal m(%) is performed by high-speed switching circuits. An equivalent circuit
employing a mechanical switch and the resulting sampled signal are shown in Fig. 5-3(¢) and (),
respectively.

The sampled signal x,(f) can be written as

Xns(1) = m(D)x, (1) 9D

where x,(?) is the periodic train of rectangular pulses with period T, and each rectangular pulse in
X,(#) has width 4 and unit amplitude.
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The sampling here is termed natural sampling, since the top of each pulse in x,,,(¢) retains the shape
of its corresponding analog segment during the pulse interval. The effect of the finite width of the
sampling pulses is investigated in Prob. 5.9.

2. Flat-Top Sampling:

The simplest and thus most popular practical sampling method is actually performed by a
functional block termed the sample-and-hold (S/H) circuit [Fig. 5-4(a)]. This circuit produces a flat-top
sampled signal x,(?) [Fig. 5-4(b)]. The effect of the flat-top sampling is discussed in Prob. 5.11.

Sampling
switch

T T

mtr) C 3 x{n N -

. 1 e
— ) ﬂ !

x(0)

LR}

switch

T,

s

(a) (b)
Fig. 5-4 Flat-top sampling

5.5 PULSE AMPLITUDE MODULATION

The signal x,(z) depicted in Fig. 5-4(b) represents a pulse amplitude-modulated signal. In pulse
amplitude modulation (PAM), the carrier signal consists of a periodic train of rectangular pulses, and
the amplitudes of rectangular pulses vary with the instantaneous sampled values of an analog message
signal. Note that the carrier frequency (that is, the pulse repetition frequency) is the same as the
sampling rate.

The PAM signal x(7) can be expressed as

o

x(0) =3 mnT)p(t—nTy) (.5)

n=-—oo

where p(7) is a rectangular pulse of unit amplitude and duration d, defined as
d
py=11 <3 , 5.6)
0 otherwise

It can be shown (Prob. 5.10) that x,(f) can be expressed as the convolution of m(?), the
instantaneously sampled signal, and the rectangular pulse p(7), that is,

x,(1) = my(1) * p(2) (5.7
5.6 QUANTIZING
A. Upniform Quantizing:

An example of the quantizing operation is shown in Fig. 5-5. We assume that the amplitude of
m(t) is confined to the range (—m,.m,). As illustrated in Fig. 5-5(a), this range is divided in L zones,
each of step size A, given by

A="2% (5.8)
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A sample amplitude value is approximated by the midpoint of the interval in which it lies.
The input-output characteristics of a uniform quantizer are shown in Fig. 5-5(b).
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94
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(b)
Fig. 5-5 Uniform quantizing

B. Quantizing Noise:

The difference between the input and output signals of the quantizer becomes the quantizing error,
or quantizing noise. It is apparent that with a random input signal, the quantizing error g, varies
randomly within the interval

3.9
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Assuming that the error is equally likely to lie anywhere in the range (—A/2,A/2), the mean-square
quantizing error <q3> is given by (see Chap. 6)

1 (A2 A?
2 e 2 = —_—
(€)= A.[—A/z 9.49. =35 (5.10)
Substituting Eq. (5.8) into Eq. (5.10), we have
2
N _ "
(€)=37 .10

C. Nonuniform Quantizing and Companding:

For many classes of signals the uniform quantizing is not efficient. For example, in speech
communication it is found (statistically) that smaller amplitudes predominate in speech and that larger
amplitudes are relatively rare. The uniform quantizing scheme is thus wasteful for speech signals;
many of the quantizing levels are rarely used. An efficient scheme is to employ a nonuniform
quantizing method in which smaller steps for small amplitudes are used (Fig. 5-6).

ITIP —
- m(r)

% —
& -

- N\ /N
§ = / N—r \/

s = i
3
3 -
-m

Fig. 5-6 Nonuniform quantizing

The same result can be achieved by first compressing signal samples and then using a uniform
quantizing. The input-output characteristics of a compressor are shown in Fig. 5-7. The horizontal
axis is the normalized input signal (that is, m/m,), and the vertical axis is the output signal y. The
compressor maps input signal increment Am into large increment Ay for small input signals and small
increments for large input signals. Hence, by applying the compressed signal to a uniform quantizer, a
given interval Am contains a larger number of steps (or smaller step size) when m is small.

A particular form of compression law that is used in practice (in North America and Japan) is the
so-called u law, defined by

_ In(1 + plm/m,|)

m
sgn(m) |—|<1 5.12
T ) Impl (5.12)
where p is a positive constant and

_ {1 m>0
sgn(m) = -1 m<0

Another compression law that is used in practice (in Europe) is the so-called A law, defined by
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4 m
1+In A\m,

y= (5.13)

1+1n Ajm/m 1 im
(———l—-——’Dsgn(m) —<sj— =<1
T+In 4 A im,
y
[ T ]
————————— 1
______ | |
E | 1 : :
e === 1 t I
= Ay /v 1 1
> TAL |
11 i i i
vt i ] i
[ 1 ! i
e ] I ]

1 A ; ”
-1 0 _.| |._ 1 o
Ax

Nonuniform
= -1

Fig. 5-7 Characteristics of a compressor

For the u law, u = 255 is used in digital telephone systems in North America. For the 4 law,
A=87.6 is used in European systems. These values are selected to obtain a nearly constant output
signal-to-quantizing noise ratio over an input signal power dynamic range of 40 decibels (dB).

To restore the signal samples to their correct relative level, an expander with a characteristic
complementary to that of the compressor is used in the receiver. The combination of compression and
expansion is called companding.

5.7 ENCODING

An encoder in PCM translates the quantized sample into a code number. Usually the code
number is converted to its representation in binary sequence. The binary sequence is converted to a
sequential ‘string of pulses for transmission (see Sec. 5.10). In this case the system is referred to as
binary PCM. The essential features of binary PCM are shown in Fig. 5-8. Assume that an analog
signal m(?) is confined to the range —4 to 4 volts (V). The step size A is set to 1 V. Thus, eight
quantizing levels are employed; these are located at —3.5, —2.5,...,+ 3.5 V. We assign the code number
0 to the level at —3.5 'V, the code number 1 to the level at —2.5 V, and so on, until the level at +3.5V,
which is assigned the code number 7. Each code number has its binary code representation, ranging
from 000 for code number 0 to 111 for code number 7. Each sample of m(z) is assigned to the
quantizing level closest to the sampled value.

5.8 BANDWIDTH REQUIREMENTS OF PCM
Suppose that in a binary PCM, L quantizing levels are used, satisfying
L=2" n=logL 5.19)
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Code Quantizing mir)
number level
7 35 M /

6 25 ) / \
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" \
4 0.5
0 // \\
'
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— 2 1 I
) | | N\
1 -25 + + +
N ! : ! /
0 -35 : : ' AN A
S ; ; I
i i i i i
Sampled value =025 3.1 L5 -2.4 -3.7
Quantized value - -05 35 LS -25 -3.5
Code number 3 7 5 1 0
Binary code 011 111 101 001 000

Fig. 58 PCM

where 7 is an integer. For this case, n = log, L binary pulses must be transmitted for each sample of
the message signal. If the message bandwidth is f,, and the sampling rate is f;(>2f,,), then nf; binary
pulses must be transmitted per second.

Assuming the PCM signal is a low-pass signal of bandwidth fpcy, the required minimum

sampling rate is 2fpcv. Thus,

2fpem = #fs

or foom =5/ =nf,, Hz (5.1

Equation (5.15) shows that the minimum required bandwidth for PCM is proportional to the message
signal bandwidth and the number of bits per symbol. Note that the actual bandwidth required for a
PCM system depends on the PCM representation.

5.9 DELTA MODULATION

A method for converting analog signals to a string of binary digits that requires much simpler
circuitry than PCM is delta modulation.

A. Delta Modulator:
A simple DM system is shown in Fig. 5-9(a). The input to the comparator is
e(t) = m(t) — () (5.16)
where m(f) is the message signal and A(?) is a reference signal. The output of the comparator is

do = ssmlen ={ 5y 6070 5.17)
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Slope overload
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(b)

Fig. 5-9 Delta modulation

Then the output of the delta modulator is

xpm() =Asgnle(D] Y. 6(t—nTy)

n=—00

=A Z sgn [e(nT,)]6(t — nT,)

n==00

(3.18)

Thus, the output of the delta modulator is a series of impulses, each having positive or negative
polarity depending on the sign of e(f) at the sampling instants. Integrating xpp(2), we obtain

m(f) = i Asgn [e(nTy)] (5.19)

n=—00

which is a staircase approximation of m(¢), as shown in Fig. 5-9(b).

B. Demodulation:

Demodulation of DM is accomplished by integrating xpp(#) to form the staircase approximation
m(t) and then passing through a low-pass filter to climinate the discrete jumps in 7(z).

Small step size is desirable to reproduce the input waveform accurately. However, small step size
must be accompanied by a fast sampling rate to avoid slope overload, as shown in Fig. 5-9(b).

To avoid slope overload, we require that

A [dm(D)
T.” | ar

(5.20)

imax
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C. Quantizing Error:

We assume that the quantizing error in DM is equally likely to lie anywhere in the interval
(—A, A), so that the mean-square quantizing error is

: 7LJA _&
() =5z |, deda. == (52D

D. Adaptive Delta Modulation:

The delta modulation discussed so far suffers from one serious disadvantage: The dynamic range
of amplitude of m(?) is too small because of the threshold and overload effects. This problem can be
overcome by making a delta modulator adaptive. In adaptive DM, the step size A is varied according
to the level of the input signal. For example, in Fig. 5-9 (b), when the signal m(f) is falling rapidly,
slope overload occurs. If the step size is increased during this period, the overload could be avoided.
On the other hand, if the slope of m(z) is small, reduction of step size will reduce the threshold level as
well as the quantizing noise.

The use of an adaptive delta modulator requires that the receiver be adaptive also, so that the step
size at the receiver changes to match the change in A at the modulator.

5.10 SIGNALING FORMAT

Digital data (a sequence of binary digits) can be transmitted by various pulse waveforms.
Sometimes these pulse waveforms have been called line codes. Figure 5-10 shows a number of signal
formats for transmission of binary data 10110001.

1 0 1 1 0 0 0 1 Binary data
1
I L R T
1 1 1 ) 1 | [} t ]
] 1 i ] 1 : : t t
i 1 1 .
I S : ; ! ; Unipolar NRZ
| i : ; i I 1 1 1
L L ! | J
{ ; I ; .
i 1 i | i Bipolar NRZ
! | ! L |
t 1 ] ] 1
H ! ¢ 1 ! | 1 | 1
R iR
! ! 1 | | H
! ! ! ! 1 1 1 i
S T N R A A
o i
y i T 1 t } i 4!-—'—: Bipolar RZ
|
o O
t f 1 ' 1 | 1 H H
' i i ! ' ! ! ] 1
'TL' ! '_I i i i : H AMI
1 1
o U L
{ | : ' ! ! ' f t
Hire e H A~
t . ! '— | |_| ] ! Split-phase
T 1 }
! [ [ __l I l (Manchester)
1 1 H : | :

Fig. 5-10 Binary signaling formats
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(@) Unipolar Nonreturn-to-Zero (NRZ) Signaling:

Symbol 1 is represented by transmitting a pulse of constant amplitude for the entire duration of
the bit interval, and symbol 0 is represented by no pulse. NRZ indicates that the assigned amplitude
level is maintained throughout the entire bit interval.

(b) Bipolar NRZ Signaling:

Symbols 1 and 0 are represented by pulses of equal positive and negative amplitudes. In either
case, the assigned pulse amplitude level is maintained throughout the bit interval.

(¢) Unipolar Return-to-Zero (RZ) Signaling:

Symbol 1 is represented by a positive pulse that returns to zero before the end of the bit interval,
and symbol 0 is represented by the absence of pulse.

(d) Bipolar RZ Signaling:

Positive and negative pulses of equal amplitude are used for symbols 1 and 0, respectively. In either
case, the pulse returns to 0 before the end of the bit interval.

(e) Alternate Mark Inversion (AMI) RZ Signaling:

Positive and negative pulses (of equal amplitude) are used alternately for symbol 1, and no pulse is
used for symbol 0. In either case the pulse returns to 0 before the end of the bit interval.

(f) Split-Phase (Manchester) Signaling:

Symbol 1 is represented by a positive pulse followed by a negative pulse, with both pulses being of
equal amplitude and half-bit duration; for symbol 0, the polarities of these pulses are reversed.

Many other signaling formats and variations are discussed in the literature. There are many
formats because the channel characteristics vary from application to application. For example, if the
channel is alternating current (ac) coupled, a format with a large dc component should not be chosen.
Some of the important parameters to consider in selecting a signaling format are the spectral
characteristics, immunity of the format to noise, bit synchronization capability, cost and complexity of
implementation, and other factors that vary with the application.

5.11 TIME-DIVISION MULTIPLEXING

Time-division multiplexing (TDM) is one of the many applications of the principle of sampling in
communication systems. TDM is commonly used to simultaneously transmit several different signals
over a single channel. Figure 5-11(q) illustrates the scheme of TDM. Each input message signal is first
restricted in bandwidth by a low-pass filter, to remove frequencies that are not essential to an adequate
signal representation. The low-pass filter outputs are then applied to a commutator that is usually
implemented by using electronic switching circuitry. Each signal is sampled at the Nyquist rate or
higher. Usually 1.1 times the Nyquist rate is employed in practice to avoid aliasing (Prob. 5.2). The
samples are interleaved, and a single composite signal consisting of all the interleaved pulses is
transmitted over the channel. Figure 5-11() shows time-division multiplexing of two PAM signals. At
the receiving end of the channel, the composite signal is demultiplexed by using a second commutator
whose output is distributed to the appropriate low-pass filter for demodulation. Proper operation of
this system depends on proper synchronization between the two commutators.

If all message signals have equal bandwidths, then the samples are transmitted sequentially, as
shown in Fig. 5-11(a). If the sampled data signals have unequal bandwidths, more samples must be
transmitted per unit time from the wideband signals. This is easily accomplished if the bandwidths are
harmonically related. (See Prob. 5.31.)
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(b) Time-division multiplexing of two signals

Fig. 5-11 Time-division multiplexing

Although Fig. 5-11 refers to TDM of PAM signals, the same general concepts apply to TDM
of PCM or any other pulse signals. TDM is widely used in telephony, telemetry, radio, and
data processing. The Bell system, for example, time-multiplexes 24 PCM signals on a telephone channel
in its T1 system. In telephony, both frequency-division multiplexing (FDM) and TDM are jointly used
to permit many hundreds of different conversations to utilize the same microwave link.

5.12 BANDWIDTH REQUIREMENTS FOR TDM

First, let us define T as the time spacing between adjacent samples in the time-multiplexed signal
waveform (see Fig. 5-11(b)]. If all input signals have the same bandwidths f,, and are sampled equally,
then T'= T/n [where n is the number of input signals and T, = 1/f; < 1/(2f,,)] is the sampling interval
for each signal. Assuming the resultant time-multiplexed signal is a low-pass signal of bandwidth
ftpMm, then the required minimum sampling rate is 2fpy-

Thus, fioM == =—===nf,=nf,, Hz (5.22)
s

Equation (5.22) shows that the minimum required bandwidth for TDM transmission is proportional
to the message signal bandwidth and the number of the multiplexed signals.

5.13 PULSE SHAPING AND INTERSYMBOL INTERFERENCE
A. Intersymbol Interference:

In discussing digital signal transmission so far, we have shown the digital pulse as rectangular
and have assumed the transmission channel to be linear and distortionless. In practice, however,
channels have a limited bandwidth, and hence transmitted pulses tend to be ‘“‘spread” during
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transmission. This pulse spreading or dispersion causes overlap of pulses into adjacent time slots, as
shown in Fig. 5-12. The signal overlap may result in an error at the receiver. This phenomenon of
pulse overlap and the resultant difficulty of discriminating between symbols at the receiver are
termed intersymbol interference (ISI).

}
1
1
1
1
1
i
1
1
)
1
I
I
1
1
1
|

/i

Fig. 5-12 Intersymbol interference in digital transmission

B. Pulse Shaping:

One method of controlling ISI is to shape the transmitted pulses properly. One pulse shape that

produces zero ISI is given by [Fig. 5-13(a)]

1 sin(nt/Ty)
= & .23
Mo == (5.23)
This is the impulse response of an ideal low-pass filter whose frequency response is shown in
Fig. 5-13(b).

h(t)
H(w)

S -

N, yanN
“ - \_/-T, 0 T\_/77, !

(a) (b)
Fig. 5-13 Pulse providing zero ISI

Nla
Mla

Note that A(z) goes through zero at equally spaced intervals that are multiples of T} except at the
center. Thus, if T, = 1/(2fp) (Nyquist interval), it is clear that pulses of the same shape that are
spaced T or an integer multiple of T, will not interfere (Fig. 5-14).

In practice, however, there are difficulties with this filter shape. First, an ideal low-pass filter is not
causal or physically realizable. Second, this waveform depends critically on timing precision.
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Fig. 5-14 Pulses with zero ISI

C. Raised-Cosine Filter:

An example of a commonly used filter that meets the requirement that the impulse response have
zeros at uniformly spaced time intervals (except one at the center) and in which the frequency response
decreases toward zero gradually rather than abruptly is the raised-cosine filter. The frequency response
of the raised-cosine filter is given by

1 0<|oj<(-0)W
1Y —sinl (100l = - < o] <
Hw) = 5{1 Sm[ZaW(le W)]} l-oW=slo|sQ+u)W (5.249)
0 lof > (A +a)W

where W = nT;. The corresponding impulse response is

1 (sinWt cos aWt
hm:ﬁ( Wi )[1—(2aWt/n)2] 29

Note that the second term on the right-hand side of Eq. (5.25) is of the form (sin x)/x, which we
encountered in the ideal low-pass filter; it retains the original zero crossings of that waveform.

Plots of H(w) and A(f) are shown in Fig. 5-15 for three values of o. The parameter o is called the
roll-off factor. Note that the case for « = 0 coincides with the ideal low-pass filter. The case for o = 11is
known as the full-cosine roll-off characteristic; its frequency response function is

l( w
= 1+cos——) lo| <2W
Hw)=12 2w (5.26)
0 elsewhere
H(w) a=0
1.0 a=1/2
| —a=1
05
A/ j ! ki
—2w —-w 0 w 2w w

Fig. 5-15 Raised-cosine pulse shaping and resulting time response

From Fig. 5-15 we see that the bandwidth occupied by a raised-cosine type of transmission
characteristic varies from aminimum of f3 = 1/(27,) Hz (o = 0) to a maximum offp = 1/T, Hz (¢ = 1).
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The bandwidth/pulse-rate trade-off from using the raised-cosine type of transmission character-
istics depends, of course, on a. If the desired rate of pulse transmission is 1/T pulses per second, the
bandwidth f required is

I1+a
fs= T Hz (5.27)
Alternatively, with f specified, the allowable pulse rate is given by
1 2
T 1+« (5-28)

5.14 DIGITAL CARRIER MODULATION SYSTEMS

Because baseband digital signals have sizable power at low frequencies, they are suitable for
transmission over a pair of wires or coaxial cables. Baseband digital signals cannot be transmitted
over a radio link because this would require impractically large antennas to efficiently radiate the
low-frequency spectrum of the signal. Hence, for such purposes, we use analog modulation
techniques in which the digital messages are used to modulate a high-frequency continuous-wave
(CW) carrier.

In binary modulation schemes, the modulation process corresponds to switching (or keying) the
amplitude, frequency, or phase of the CW carrier between either of two values corresponding to
binary symbols 0 and 1. The three types of digital modulation are amplitude-shift keying, frequency-
shift keying, and phase-shift keying.

A. Amplitude-Shift Keying (ASK):
In ASK, the modulated signal can be expressed as

X0 = {Acos w,t symbol 1 (5.29)

0 symbol 0

Note that the modulated signal is still an on-off signal. Thus, ASK is also known as on-off keying
(OOK).

B. Frequency-Shift Keying (FSK):

In FSK, the modulated signal can be expressed as

_ {Acos w;t symbol 1
X = {Acos w,t  symbol 0 ©:30)
C. Phase-Shift Keying (PSK):
In PSK, the modulated signal can be expressed as
_ {Acos w,t symbol 1
X = {Acos (w,t+m) symbol 0 ©:3D

Figure 5-16 illustrates these digital modulation schemes for the case in which the data bits are
represented by the bipolar NRZ waveform. The performance of these modulation methods in noisy
channels is discussed in Chap. 9.
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Fig. 5-16 Digital carrier modulation

Solved Problems

SAMPLING AND SAMPLING THEOREM
5.1. Verify Eq. (5.3), that is,

©

my(t) = m(Ddr,() =Y mnT)S(t—nTy)

n=—00

From Eqs. (1.72) and (1.32), we have

my(t) = m)dg () =m(t) > u—nT)= > mn)d(—nT,)

= Z mnT)d(t —nTy)

n=—00

5.2.  Verify the sampling theorem (5.2).

Let m(z) be a band-limited signal defined by Eq. (5.1) [Fig.5-17(a) and (b)]. From Eq. (1.78) of
Prob. 1.29, we have [Fig. 5-17(c) and (d)]

ﬂ'[én(l)] = oy i 0w ~nw;) ;==

n=—c0

According to the frequency convolution theorem (1.29), we have
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1 o
M(w) = ‘f][m(t)ér((t)] = Z[M(m) * @y Z w —nws):l

Using Eq. (1.36), we obtain

_ 1
T,

S M(w) * 3w —nw,)

5 p=—00

i M(w — nwy)

§ p=—o0

[CHAP. 5

(5.32)

Note that M (w) will repeat periodically without overlap as long as w; = 2wy, or 2n/T; = 2w, that is,

mi1) Mw)
0 -—wy 0 wyy @
(a) (b}
8(1) \7{67-‘“)]
-T, 0 T, 2T, - w 0 w, w
(c) (d)
m(t) M(w)
e ) AN
’ No L
1 T f 1 ] !
-7, 0 T, 2T, o oy 0 Wy ws @
(e) )
81 ER )
=T 0 T, 27, -2, —w, 0 w, 2wy w
(€3] (h)
myt)
///’— \\\
N
T I
e s L
X 1 T
~T, (1] T, 2T, —2w; - 0 wy o, 2w e

Fig. 5-17 Sampling theorem
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5.3.

T 1

T, < ar o T 7 (5.33)
where w)s = 2nfy,. Therefore, as long as we sample m(?) at uniform intervals less than n/wy,, or 1/(2fy,) s
apart [Fig.5-17(e)], M(w) will be a periodic replica of M(w) without overlap [Fig.5-17(f)] and m(z) can be
recovered by low-pass filtering of m,(#). On the other hand, if we sample m(z) at a rate less than the Nyquist
rate, that is, if @, < 2w, [Fig.5-17(i)], then the shifted components of M(w) overlap as shown in Fig.5-17( /).
Because of this overlap, it is no longer possible to recover m(z) from m(t) by low-pass filtering, since the
spectral components in these regions of overlap add, and therefore the signal is distorted. The distortion that
occurs when a signal is sampled too slowly is called aliasing.

Next, from Eq. (5.32),

TM{)= Y Mo—rnw,) (5.39
neeo
Hence, under the following two conditions:
1. M(w) = 0 for |w|>wy,

2 T=o-

we see from Eq. (5.34) that

M(m)=£ (@) for |o] < oy (5.35)

Next, taking the Fourier transform of Eq. (5.3) and using the result of Prob. 1.45, we have

M@)= Y mnT,)e " (5.36)

n=—c0

Substituting Eq. (5.36) into Eq. (5.35), we obtain
M@)="=3 mnT)e™ ™ for o] < wy (5.37)
DMy

Equation (5.37) shows that the Fourier transform M{(w) of the band-limited signal m(r) is uniquely
determined by its sample values m(nT). Taking the inverse Fourier transform of Eq. (5.37), we obtain

e N , oo ]
m(t) = %J:w M(@)e™ deo = ﬁ‘l’ M Z (Tl gy

M p=—oo

0

= Z m(,,T)_l_ij =T e g
2041 ) -y

P2y
& Siney (=T,
= 2 T Ty

Consider a signal m(f) = cos wyt, where wy = 2nf;. Illustrate the effect of undersampling of m1(t)
for a sampling rate of f; = (3/2)f;.

The spectrum of m(t) is given by [Eq. (1.76)]
M(w) = né(w — wy) + nd(w + wy)
which is shown in Fig. 5-18(a). Figure 5-18(b) shows the spectrum M (w) of the ideal sampled signal
my(t) with @, = (3/2)wy, where w; = 2nf;. Also indicated by a dashed line is the passband of the low-pass
filter with w, = w,/2. Note that aliasing does occur, and the low-pass filtered output x,(¢) is given by
1
x,(£) = cos(w; — wy)t = cos Emot #* m(1f)

In Fig. 5-19 we have depicted the signal m(z), its samples, and the reconstructed signal x,(¢).
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Fig. 5-18 Effect in frequency domain of undersampling
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Fig. 5-19 Effect of aliasing on a sinusoidal signal

54. Consider the sampling theorem (5.2) with T, = 1/, that is,

mt)= > mnT),(0)

n=—00

sin @y (t —nTy)

where () = or(t—nT)

n=0, 1, =2, ..
Show that ¢,(f) is orthogonal over the interval —oo <t < o0, and
| entoducoai=To0,0

where 8, is Kronecker’s delta, defined by

5. = 1 n=k
=10 n#k

[CHAP. 5

(5.38)

(5.39)

(5.40)
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5.5.

5.6.

From the result of Prob. 1.14, we have

sin at
mt

- _ {1 lo| < a
1’“(‘0)_{0 o] > a

sin @yt 4 — | < ©
Thus, M, —— Do, (0) = 1 Wy fel M
Wyt Wi 0 |o] > @y

Then, by Eq. (.18), we have

. T —jonT,

sin w(t —nT,) — 7o lo] < wir
W0 =B EMUEZ ) g ()= o,

PO ==ty = o Jol > oy

. T _jwkT,
sin wy(t—kTy) — s Joo] < wpr

N=—————— = O () ={ Oy

PO == Iy @ = ol > wy

Then, by Eq. (1.70) of Prob. 1.22, that is,
o0 1
[~ stomod =3[~ xomeod
we obtain ’

J: bu(D et = j s (i)ze—/wnﬂ ST, g

Wiy,

n Mt
== KT, g
20073, S~y
k3
wa s n=k
=1 Om
0 n#k

Hence, we conclude that

| ou0onvai= 16,
If m(z) is band-limited, that is, M(w) = 0 for |w| > w,,, then show that

J m@Pdt =T, > [maT)]
—w =
where T = m/wyy.

Using Egs. (5.39) and (5.40), we have

[~ wora- r;[ > m(nﬂ)%(»][ S mkT)gi(0)

n=—00 k=—

> m(nm[ > mier) [ ¢n<z>¢k<z)dt]

n=—00 k=—00

n=—co k=00 k=00

Find the Nyquist rate and the Nyquist interval for each of the following signals:

(@) m(t)=5 cos 1000x¢ cos 40007s
— sin 2007t
(b) m(s) = sin.200z

(©) mn= (%(Z)Om)z

|2

i m(nTo[ i m(kT;)Tsank] =T, i (TP
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(a) m(f) = 5cos 10007t cos 40007t
= 2.5(cos 30007t + cos 500071)

Thus, m(?) is band-limited with f3; = 2500 Hz. Hence, the Nyquist rate is 5000 Hz, and the Nyquist
interval is 1/5000 s = 0.2 ms.
(b)) From the result of Prob. 1.14, we have

sin at 1 lo| < a

“1’“(“’)2{0 ol > a

Thus, we sce that m(?) is a band-limited signal with f3; = 100 Hz. Hence, the Nyquist rate is 200 Hz,
and the Nyquist interval is 1/200 s.

(¢) From the frequency convolution theorem (I.54), we find that the signal m(z) is also band-limited and its
bandwidth is twice that of the signal of part (b), that is, 200 Hz. Thus, the Nyquist rate is 400 Hz and
the Nyquist interval is 1/400 s.

The bandpass sampling theorem states that if a bandpass signal m(z) has a spectrum of bandwidth
wp(= 27fp) and an upper frequency limit w,(= 2xf,), then m(z) can be recovered from m(f) by
bandpass filtering if f, = 2f, /k, where k is the largest integer not exceeding f,/f5. All higher
sampling rates are not necessarily usable unless they exceed 2f,.

Consider the bandpass signal m(#) with a spectrum shown in Fig. 5-20. Check the bandpass
sampling theorem by sketching the spectrum of the ideally sampled signal m(¢) when f; = 25, 45,
and 50 kHz. Indicate if and how the signal can be recovered.

M(f)

/] N

-25 -15 0 15 25 f (kHz)

Fig. 5-20 Bandpass signal spectrum

From Fig. 5-20, f, =25 kHz and fz =10 kHz. Then f,/fz =2.5 and k = 2. Hence, we have
fy =2f,/k =25 kHz.

For f, = 25 kHz: From Fig. 5-21(a), we see that m(f) can be recovered from the sampled signal by using
a bandpass filter over

f,, </<25kHz with 10kHz<f, <15 kHz

For f, = 45 kHz: From Fig. 5-21(3), it is not possible to recover m(#) by filtering.
For f, = 50 kHz: From Fig. 5-21(c), we see that m(z) can be recovered by using a low-pass filter with
cutoff frequency f, = 25 kHz.

Given the signal

m(t) = 10 cos 2000rz cos 8000xt

(¢) What is the minimum sampling rate based on the low-pass uniform sampling theorem?
(b) Repeat (a) based on the bandpass sampling theorem.
@ m(f) = 10 cos 2000t cos 80007t
= 5cos 6000nt + 5 cos 100007z
fur = 5000 Hz = 5 kHz

Thus, f; = 2f3 = 10 kHz.
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f,=25kHz ML)
BPF BPF
F===1 r-—=1
1 ] 1 i
{ t 1 ]
BN A S A AN A
|\\ //||\\I II\\ /III I//II\\ //l
1 L i 1.1 J 1 1 1 . —
50 -35 -25 -15-10 0 xo||5 25 3540 50 60 1 (kHz)
fe,
(a)
f, = 45 kHz ML)
/‘| N N f\
1 ] i 1 | i
-60 -45 =30 -15 0 15 30 45 60 f (kHz)
)
f, = 50 kHz MLf) LPF
S ittt 1
a . I ] a »
7t INC ’ N
S 4 \\\:A N// § AN
1 1 ) i i L
-65 =50 -35-25 —15 0 15 25 35 S0 65 £ (kHz)
(c)
Fig. 5-21

) fu=fuw=>5kHzand fz =(5-3)=2kHz.

fi s
M=2=250k=2
5 2

Based on the bandpass sampling theorem,

fsz%:SkHz

5.9. Show that if the sampling rate is equal to or greater than twice the highest message frequency, the
message m(f) can be recovered from the natural sampled signal x,,(7) by low-pass filtering.

As shown in Eq. (5.4) and Fig. 5-22, the natural sampled signal x,,(¢) is equal to m(¢) multiplied by a
rectangular pulse train x,(f) whose Fourier series is given by (see Prob. 1.2)

= ; 27
x,(f) = e o, ==
i n:z—eo ’ TS
d sin (nw,d/2)
h - 2 Vs
where “=T nwd/2
Then Xus() = mDx, () =m(D) > et = c,m()e” (5.42)
ne—o Pl

Hence, by the frequency-shifting property of the Fourier transform (7.19), we have
Xu@) = > c,M(w—nwy) (5.43)
n=—00
Equation (5.43) indicates that the spectrum X, (w) consists of a weighted version of the spectrum M(w)
centered on integer multiples of the sampling frequency. The spectral component at w = nw; is multiplied
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m(t) M(w)
0 t —wy 0 @y @
(a) (b)
x,(t) X,,(w)
A [ l b
-7, 0 T, 2T, ¢ _J—"'—2ms —w, 0 w 20w, Yl w
() (d)
x, (1)
.- e Sy
o s
A E I g ﬂ A /\ 2N
- 0 T, 27 ' y"_z"’s 0wy 0wy w 2w, N w

(e) o

Fig. 5-22 Natural sampling

by ¢,. It is clear from Fig. 5-22(f) that if w, = 2w, then m(f) can be recovered from x,(?) by low-pass
filtering of x,,(f).

Find the spectrum of x,(¢) [Eq. (5.7)] in terms of the spectrum of the message M{(w) and discuss
the distortion in the recovered waveform if flat-top sampling is used.

Using Eq. (1.57) of Prob.1.10, we have

_ sin (wd/2)
pH) = Plwy=d wd)2 (549
Next, applying the convolution theorem (1.28) to Eq. (5.7) and using Eq. (5.32), we obtain
X () = M(@)P@) = Ti S Miw-no,)P@) (5.45)
5 n=—co

Figure 5-23 illustrates a graphical interpretation of Eq. (5.45), with the assumed M(w). We see that flat-
top sampling is equivalent to passing an ideal sampled signal through a filter having the frequency response
H(w) = P(w). The high-frequency roll-off characteristic of P(w) acts as a low-pass filter and attenuates the
upper portion of the message spectrum. This loss of high-frequency content is known as the aperture effect.
The larger the pulse duration of aperture d, the larger the effect. Since T does not depend on d, the ratio
d/ T, is a measure of the flatness of P(w) within the bandwidth of the low-pass filter. In practice, this aperture
effect can be neglected as long as d/T; <0.1.

Verify Eq. (5.7), that is,
x,(t) = my(t) * p(D)
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M(w)

M(w)

1
27 —wy 0 @y 27 47 w
T T, T,
X(w)
—=1--
Plw)

AN
7\

l //J/ 27 —wy 0 wy 27 Zw/\L\\ J w
- T, T 4 =~

Fig. 5-23 Aperture effect in flat-top sampling

From Eq. (5.3),
©

myt) =3 mnT)5(t—nT,)

n=—00

Then using Eq. (1.36), we obtain

mdH) x p(t) = > mnT)3(t~nT)*p()

n=—c

|

3

S m(nT)p() * 8(t = nTy)

n=—00

i

i mnTop(t —nTy) = x,(2)

n=—00

QUANTIZING

5.12. A binary channel with bit rate R, = 36 000 bits per second (b/s) is available for PCM voice
transmission. Find appropriate values of the sampling rate f;, the quantizing level L, and the
binary digits n, assuming f3; = 3.2 kHz.

Since we require
fi =2 =06400 and nf;< R, =36000

s 2
then n 7 6400
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Son=5,L=2%=32 and

= %@ = 7200 Hz = 7.2 kHz

5

An analog signal is quantized and transmitted by using a PCM system. If each sample at the
receiving end of the system must be known to within +0.5 percent of the peak-to-peak full-scale
value, how many binary digits must each sample contain?

Let 2m, be the peak-to-peak value of the signal. The peak error is then 0.005(2m,) = 0.01m,, and the
peak-to-peak error is 2(0.01m,) = 0.02m, (the maximum step size A). Thus, from Eg. (5.8) the required
number of quantizing levels is

_2my,  2my,

- .
L="3" = G, = 100=2

Hence, the number of binary digits needed for each sample is n = 7.

An analog signal is sampled at the Nyquist rate f; and quantized into L levels. Find the time
duration 1 of 1 b of the binary-encoded signal.
Let n be the number of bits per sample. Then by Eq. (5.14)
n=[logy L]
where [log, L] indicates the next higher integer to be taken if log, L is not an integer value; nf; binary pulses
must be transmitted per second. Thus,
L T_ T,

nfy n = [log, L]

where T is the Nyquist interval.

The output signal-to-quantizing-noise ratio(SNR), in a PCM system is defined as the ratio of
average signal power to average quantizing noise power. For a full-scale sinusoidal modulating
signal with amplitude 4, show that

(S _3.,
(SNR), = (E) = EL (5.46)
o
or (E) =10 log(i) =1.76 +20 log L (5.47)
7/0aB Ne/o

where L is the number of quantizing levels.

The peak-to-peak excursion of the quantizer input is 24. From Eq. (5.8), the quantizer step size is
A=
L
Then from Eq. (5.10) or (5.11), the average quantizing noise power is
A2 4
(V=" = 2
N=(2)=5=3p
The output signal-to-quantizing-noise ratio of a PCM system for a full-scale test tone is therefore
S A2)2
) -t

N
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Expressing this in decibels, we have

s s
2) =10 log(—) =1.76+20 logL
(N‘I)Odﬂ N‘l 13

5.16. In a binary PCM system, the output signal-to-quantizing-noise ratio is to be held to a minimum

5.17.

of 40 dB. Determine the number of required levels, and find the corresponding output signal-to-
quantizing-noise ratio.

In a binary PCM system, L = 2", where 7 is the number of binary digits. Then Eq. (5.47) becomes

(i) =1.76+20 log2" = 1.76 + 6.02n dB (5.48)
N,
7/0dB
Now (-‘S;) =40 dB— (ir) = 10000
NeJoan Ne/,

Thus, from Eq. (5.46),

2(S 2

and the number of binary digits » is
n=[log,82] = [6.36] =7

Then the number of levels required is L = 27 = 128, and the corresponding output signal-to-quantizing-
noise ratio is

(i) =176 +6.02x7 =439 dB
0dB

Ny

Note: Equation (5.48) indicates that each bit in the code word of a binary PCM system contributes 6 dB to
the output signal-to-quantizing-noise ratio. This is called the 6 dB rule.

A compact disc (CD) recording system samples each of two stereo signals with a 16-bit analog-to-
digital converter (ADC) at 44.1 kb/s.
(@) Determine the output signal-to-quantizing-noise ratio for a full-scale sinusoid.

(b) The bit stream of digitized data is augmented by the addition of error-correcting bits, clock
extraction bits, and display and control bit fields. These additional bits represent 100 percent
overhead. Determine the output bit rate of the CD recording system.

(¢) The CD can record an hour’s worth of music. Determine the number of bits recorded on a
CD.

(d For a comparison, a high-grade collegiate dictionary may contain 1500 pages, 2 columns per
page, 100 lines per column, 8 words per line, 6 letters per word, and 7 b per letter on average.
Determine the number of bits required to describe the dictionary, and estimate the number
of comparable books that can be stored on a CD.

(a) From Eq. (5.48),

(i) =1.76+6.02x 16 = 98.08dB
N, 0dB

q,

The very high SNR of the disk has the effect of increasing the dynamic range of recording, resulting in
the excellent clarity of sound from a CD.
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(b) The input bit rate is

2(44.1)(10%)(16) = 1.411(10% b/s = 1.411 Mb/s
Including the additional 100 percent overhead, the output bit rate is
2(1.411)(10%) b/s = 2.822 Mb /s

(¢) The number of bits recorded on a CD is

2.822(10%)(3600) = 10.16(10°) b = 10.16 gigabits(GB)

(d) The number of bits required to describe the dictionary is
1500(2)(100)(8)(6)(7) = 100.8(10% b = 100.8 Mb
Including the additional 100 percent overhead, then,

10.16(10%)
2(100.8)(10°)

Thus, a disc contains the equivalent of about 50 comparable-books storage capacity.

=504

5.18. (a) Plot the x law compression characteristic for u = 255.
(b) If m, =20V and 256 quantizing levels are employed, what is the voltage between levels
when there is no compression? For u = 255, what is the smallest and what is the largest effective
separation between levels?

(@ From Eq. (5.12), for u = 255 we have

In(1 + 255[x))
n256

where x = m/m,. The plot of the y law compression characteristic for 4 = 255 is shown in Fig. 5-24.
(b) With no compression (that is, a uniform quantizing), from Eq. (5.8) the step size A is

y== Ix| <1

2m 40
="2=_"— =015V
L~ 256
y
10 -
o
06
04
0.2
1 L 1 1 1 1 1 1 1 L
-10 -08 -0.6 -04 -02 0 02 04 0.6 08 1.0 m
= =
- -02 mp
- -0.4
- -06
- -08
- -10

Fig. 5-24 The y law characteristics for u = 255
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5.20.

With compression (that is, a nonuniform quantizing), the smallest effective separation between levels will be
the one closest to the origin, and the largest effective separation between levels will be the one closest to
x| = 1.

Let x; be the value of x corresponding to y = 1/127, that is,

In(1+2550x ) _ 1

256 127
Solving for |x,|, we obtain
Ix;] = 1.75107%
Thus, the smallest effective separation between levels is given by
Buin = myplx;| = 20(175)107) =3.5107)V = 3.5mV
Next, let x;,; be the value of x corresponding to y = 1—1/127, that is,
In(1 +255|x157) _ 126

1n256 127
Solving for |x;27], we obtain
[x107] = 0.957
Thus, the largest effective separation between levels is given by
Ammax = my(1 = lx7]) = 20(1 - 0.957) = 0.86 V

When a p law compander is used in PCM, the output signal-to-quantizing-noise ratio for u>> 1 is
approximated by

S 312
(ﬁq)o~ In(+ P : (5.49)

Derive the 6 dB rule for p = 255.

S S 372
— =10log| =) = 10log————
(Nq)o a5 g(Nq)o In(l + pP

For u =255, (i =20logL—10.1 dB 5.50)

3L2
=10log——
Nq)0 a8 (In256)?
In a binary PCM, L = 2", where 7 is the number of binary digits; then Eq. (5.50) becomes

N,

(E) =20log2"—10.1 =6.02n—10.1 dB 3.5h
4/0dB

which is the 6 dB rule for u = 255.

Consider an audio signal with spectral components limited to the frequency band of 300 to 3300 Hz.
A PCM signal is generated with a sampling rate of 8000 samples/s. The required output signal-to-
quantizing-noise ratio is 30 dB.

(@) What is the minimum number of uniform quantizing levels needed, and what is the
minimum number of bits per sample needed?

(b) Calculate the minimum system bandwidth required.

(¢) Repeat parts () and (b) when a p law compander is used with u = 255.
(@) Using Eq. (5.47), we have



118 DIGITAL TRANSMISSION OF ANALOG SIGNALS [CHAP. 5

(S) =1.76 +20log L = 30
Nq 0dB

logL 3516(30— 1.76) = 1412 —» L =>25.82
Thus, the minimum number of uniform quantizing levels needed is 26.
n = [logy L] = [log, 26] = [4.7] = 5b per sample

The minimum number of bits per sample is 5.
(b) From Eq. (3.15), the minimum required system bandwidth is

foom = g /= 2(8000) = 20000 Hz = 20 kHz
(¢) Using Eq. (5.50),

(i) =20logL — 10.1 =30
NeJoas
1
logL= %(30 +10.1) =2.005— L=101.2
Thus, the minimum number of quantizing levels needed is 102.
n=/[log, L] = [6.67]=7

The minimum number of bits per sample is 7. The minimum bandwidth required for this case is

foom = ng = -;-(8000) = 28000 Hz = 28 kHz

DELTA MODULATION

5.21. Consider a sinusoidal signal m(r) = Acos w,, applied to a delta modulator with step size A. Show
that slope overload distortion will occur if

A A(f

where f; = 1/T} is the sampling frequency.

m(t) = Acos wp,t % = —Aw,,sin 0,,!

From Eq. (5.20), to avoid the slope overload, we require that

A _ |dm()
= = <
T, e 0m OTASmp

s

Thus, if 4 > A/(w,,Ty), slope overload distortion will occur.

5.22. For a sinusoidal modulating signal
m(t) = Acos w,,t W, = 27fy,

show that the maximum output signal-to-quantizing-noise ratio in a DM system under the
assumption of no slope overload is given by
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(s\_ 3
(SNR), = (E)a_ FEr (5.53)

where f, = 1/T, is the sampling rate and f}, is the cutoff frequency of a low-pass filter at the
output end of the receiver.

From Eq. (5.52), for no-slope-overload condition, we must have

< A _A (L)
T, 22\[,
Thus, the maximum permissible value of the output signal power equals
£_p
2 8’

.59

Prax =

From Eq. (5.21,), the mean-square quantizing etror, or the quantizing noise power, is (q%) = A?/3. Let the
bandwidth of a postreconstruction low-pass filter at the output end of the receiver be fy = f,, and fyy < S
Then, assuming that the quantizing noise power P, is uniformly distributed over the frequency band up to f;,
the output quantizing noise power within the bandwidth fj/ is

2
N, = (A?)f;:ﬂi (5.5%)

Combining Eqgs. (5.54) and (5.55), we see that the maximum output signal-to-quantizing-noise ratio is

S\ _Pux_ 32
N,), N, 8nifu

5.23. Determine the output SNR in a DM system for a 1-kHz sinusoid, sampled at 32 kHz, without
slope overload, and followed by a 4-kHz postreconstruction filter.

From Eq. (5.53), we obtain

_3Eyaoh? _
(SNR), = oo aos ~ S1L3 = 249 4B

5.24. The data rate for Prob. 5.23 is 32 kb/s, which is the same bit rate obtained by sampling at 8 kHz
with 4 b per sample in a PCM system. Find the average output SNR of a 4-b PCM quantizer for
the sampling of a full-scale sinusoid with f; = 8 kHz, and compare it with the result of Prob. 5.23.

From Eq. (5.48), we have
(SNR)g 4p = 1.76 + 6.02(4) = 25.84dB

Comparing this result with that of Prob. 5.23, we conclude that for all the simplicity of DM, it does not
perform as well as even a 4-b PCM.

5.25. A DM system is designed to operate at 3 times the Nyquist rate for a signal with a 3-kHz
bandwidth. The quantizing step size is 250 mV.
(@) Determine the maximum amplitude of a 1-kHz input sinusoid for which the delta modulator
does not show slope overload.

(b) Determine the postfiltered output signal-to-quantizing-noise ratio for the signal of part (a).
(a) m(t) = Acos w,t = Acos 2n(10°)¢
dm(t)

. 3
Tl = ACDa0%)
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By Eq. (5.52), the maximum allowable amplitude of the input sinusoid is

A A 250

fe= 272(10%)

=2 _2 3()(3)(10°) = 716.2mV
0T o

Amax

(b) From Eq. (5.53), and assuming that the cutoff frequency of the low-pass filter is f,,, we have

S) _ 3ABE)10°)P

SNR), =
BNR%, (Nq . 8TH10%?

=2216=235dB

SIGNALING FORMATS

5.26. Consider the binary sequence 0100101. Draw the waveforms for the following signaling formats.

5.27.

5.28.

(a) Unipolar NRZ signaling format
(b) Bipolar RZ signaling format
(¢) AMI (alternate mark inversion) RZ signaling format

See Fig. 5-25.

0 1 0 0 1 0 1 Binary sequence

] r—' '——I r———q
(a) [ ; Unipolar NRZ

] ]
i 1
JL j ﬂ i HJ Bipolar RZ
b) | | 1
==
) é I_Lg i g '—I . AMI RZ
I I I
1 I I
| I I

Discuss the advantages and disadvantages of the three signaling formats illustrated in Fig. 5-25 of
Prob. 5.26.

The unipolar NRZ signaling format, although conceptually simple, has disadvantages: There are no
pulse transitions for long sequences of Os or 1s, which are necessary if one wishes to extract timing or
synchronizing information; and there is no way to detect when and if an error has occurred from the received
pulse sequence. ,

The bipolar RZ signaling format guarantees the availability of timing information, but there is no error
detection capability.

The AMI RZ signaling format has an error detection property; if two sequential pulses (ignoring
intervening Os) are detected with the same polarity, it is evident that an error has occurred. However, to
guarantee the availability of timing information, it is necessary to restrict the allowable number of
consecutive 0s.

Consider a binary sequence with a long sequence of 1s followed by a single 0 and then a long
sequence of 1s. Draw the waveforms for this sequence, using the following signaling formats:
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5.29.

(a) Unipolar NRZ signaling

(b) Bipolar NRZ signaling

(¢) AMI RZ signaling

(d) Split-phase (Manchester) signaling

See Fig. 5-26.
1 1 1 1 1 0 i 1 1 1 1 Binary sequence
! [ ) | 1 1 ! 1 ' ! i
N N R N E S R N N
I i j A i | I | i i |
(a) : : : | : | ! : : ! L Unipolar NRZ
1 1 \ X 1 i 1 1 1 t i
1 ] 1 | ] 1 I 1 ll ] 1
! H ! ! : ; : : . H !
: : } i ! ! 1 ' | . .
) | : Ix ; L : . J' : Bipolar NR!
| | | 1 | 1 | 1 H
: : | 1 ! i | i |
| ! ' J ' h . ' !
; i ' ! ' | | | i ' '
| |
© | I !—.I N N I. ] AMI RZ
o g ey o L]
T e e e e e
1 t ! )
I
7)) E-—| | l l_l ﬂ r- f | I—-l r—l r-l Manchester
oo OoC
T !
i | )

Fig. 5-26

The AMI RZ signaling waveform representing the binary sequence 0100101011 is transmitted
over a noisy channel. The received waveform is shown in Fig. 5-27, which contains a single error.
Locate the position of this error, and justify your answer.

L H ] L ! i ) ! - |—| ]
1 2 3 4 5 6 7 8 9 10

L I { | 1 1 | 1 | | {

Fig. 5-27

The error is located at the bit position 7 (as indicated in Fig. 5-27), where we have a negative pulse. This
bit is in error, because with the AMI signaling format, positive and negative pulses (of equal amplitude) are
used alternatively for symbol 1, and no pulse is used for symbol 0. The pulse in position 7 representing the
third digit 1 in the data stream should have had positive polarity.
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TIME-DIVISION MULTIPLEXING

5.30. Two analog signals m(7) and m; () are to be transmitted over a common channel by means of
time-division multiplexing. The highest frequency of m,(z) is 3 kHz, and that of my(7) is 3.5 kHz.
What is the minimum value of the permissible sampling rate?

The highest-frequency component of the composite signal m,(#) +m,(¢) is 3.5 kHz. Hence, the
minimum sampling rate is

2(3500) = 7000 samples/s

5.31. A signal m(?) is band-limited to 3.6 kHz, and three other signals—m,(r), ms(r), and my(t)—are
band-limited to 1.2 kHz each. These signals are to be transmitted by means of time-division
multiplexing.

(@) Set up a scheme for accomplishing this multiplexing requirement, with each signal sampled
at its Nyquist rate.
(b) What must be the speed of the commutator (in samples per second)?

(¢) If the commutator output is quantized with L = 1024 and the result is binary-coded, what is
the output bit rate?

(@) Determine the minimum transmission bandwidth of the channel.

@ Message Bandwidth Nyquist rate
my (1) 3.6 kHz 7.2 kHz
my(t) 1.2 kHz 2.4 kHz
ms(2) 1.2 kHz 2.4 kHz
my(2) 1.2 kHz 2.4 kHz

If the sampling commutator rotates at the rate of 2400 rotations per second, then in one rotation we
obtain one sample from each of m,(#), ms(f), and my(?) and three samples from my(¢). This means that
the commutator must have at least six poles connected to the signals, as shown in Fig. 5-28.
() my() has 7200 samples/s. And my(f), m3(f), and my(f) each have 2400 samples/s. Hence, there are a
total of 14 400 samples/s.
(¢) L=1024=21=2"

Thus, the output bit rate is 10(14400) = 144 kb/s.
(d) The minimum channel bandwidth is

m(1)
my(r) 1
—_—>—0 i
Quantizer
and —
myr) —o0 encoder
mt)

Fig. 5-28 Time-division multiplexing scheme
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fa= %(7.2 +24+24424 =72 kHz

5,32, The T1 carrier system used in digital telephony multiplexes 24 voice channels based on 8-b PCM.
Each voice signal is usually put through a low-pass filter with the cutoff frequency of about 3.4
kHz. The filtered voice signal is sampled at 8 kHz. In addition, a single bit is added at the end
of the frame for the purpose of synchronization. Calculate (a) the duration of each bit, (b) the
resultant transmission rate, and (c) the minimum required transmission bandwidth (Nyquist
bandwidth).

(a) With a sampling rate of 8 kHz, each frame of the multiplexed signal occupies a period of

1
8000
Since each frame consists of twenty-four 8-b words, plus a single synchronizing bit, it contains a total of

248)+1=193b

= 0.000125 s = 125 microseconds (us)

Thus, the duration of each bit is

T, = %%us = 0.647us

(b) . The resultant transmission rate is

Ry =TLb= 1.544Mb/s

(¢) From Eq. (5.22), the minimum required transmission bandwidth is

fri==—=772kHz

PULSE SHAPING AND INTERSYMBOL INTERFERENCE

5.33. Show that (a pulse-shape function) 4(¢), with Fourier transform given by H(w), that satisfies the
criterion

Z H(a) + 2—k) =1 forlo|< T (5.56)

f=—00
has 4(nT) given by
hnT) = {éT Z; g .57
The criterion (5.56) is known as Nyquist’s pulse-shaping criterion.
Taking the inverse Fourier transform of H(w), we have
h(ty= -Z%J: H(w)e™ do

The range of integration in the preceding equation can be divided into segments of length 27/ 7T as

h(t) =—

T =w0

@)/ T
I H()e™ do

Qk—1)n/T
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5.34.

5.35.

5.36.
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and we can write 4(nT) as
o (Utl)n/T

1
WnT)=— H(w)e™" d 5.58
@ 2n k;w Qk=D)n/T @l @ ©-38)

By the change of variable u = w — 2n(k/T), Eq. (5.58) becomes
1 & (T 2k
-1 H TR jut2mk/TInT
h(nT) 27[1{:2_& J._ﬂ“_ (u+ T )e du.
Assuming that the integration and summation can be interchanged, we have
1 (™7 & 2nk\ .
ATy = = H{u+==)e"T 4
nT) 211,[—7:/1' k—z_:w (u+ - )e u
Finally, if Eq. (5.56) is satisfied, then

LT

WnT) = —J e dy
27 ) —nj7

_ lsinnm

+ n=0
T nrn 0 n#o0

which verifies that A(7) with a Fourier transform H(w) satisfying criterion (5.56) produces zero ISI.

A certain telephone line bandwidth is 3.5 kHz. Calculate the data rate (in b/s) that can be
transmitted if we use binary signaling with the raised-cosine pulses and a roll-off factor
o = 0.25.

Using Eq. (5.28), we see that the data rate is
2

b= 7= mGSOO) = 5600 b/s

A communication channel of bandwidth 75 kHz is required to transmit binary data at a rate of
0.1 Mb/s using raised-cosine pulses. Determine the roll-off factor o.

1
70110
f5=715kHz = 75(10°) Hz

=105

Ty

Using Eq. (5.27), we have
14+ a=2fT, = 27510H107%) = 1.5
Hence, we obtain
a=0.5

In a certain telemetry system, eight message signals having 2-kHz bandwidth each are time-
division multiplexed using a binary PCM. The error in sampling amplitude cannot be greater
than 1 percent of the peak amplitude. Determine the minimum transmission bandwidth required
if raised-cosine pulses with roll-off factor o = 0.2 are used. The sampling rate must be at least 25
percent above the Nyquist rate.

From Eq. (5.9), the maximum quantizing error must satisfy

A m,
(Gedmax = 5 = TP < O-OImp
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5.37.

5.38.

5.40.

Hence, L = 100, and we choose L = 128 = 27. The number of bits per sample required is 7.
Since the Nyquist sampling rate is 2f,; = 4000 samples/s, the sampling rate for each signal is

f; = 1.25(4000) = 5000 samples/s
There are eight time-division multiplexed signals, requiring a total of
8(5000) = 40 000 samples/s
Since each sample is encoded by 7 bits, the resultant bit rate is

L~ 7040 000) = 280 kb/s
Ty

From Eq. (5.27), the minimum transmission bandwidth required is

fu= L%(EQSO) = 168 kHz

Supplementary Problems

If m(z) is a band-limited signal, show that

ro m(D)¢,(Odt = Tim(nTy)

where ¢,(?) is the function defined in Eq. (5.39) of Prob. 5.4.

Hint:  Use the orthogonality property (5.40) of ¢,(f).

The signals
my () = 10 cos 1007t

and my(f) = 10 cos 507t
are both sampled with f; = 75 Hz. Show that the two sequences of samples so obtained are identical.
Hint: Take the Fourier transforms of ideally sampled signals m(f) and my(f). Note: This problem

indicates that by undersampling m,(¢) and oversampling m,(f) appropriately, their sampled versions can be
identical.

A signal

m(t) = cos 2007t 4 2 cos 320mt
is ideally sampled at f, = 300 Hz. If the sampled signal is passed through an ideal low-pass filter with a cutoff
frequency of 250 Hz, what frequency components will appear in the output?

Ans.  100-, 140-, 160-, and 200-Hz components

A duration-limited signal is a time function m(f) for which
m® =0 forltf>T

Let M(w) = F[m(7)]. Show that M(w) can be uniquely determined from its values M(nm/T) at a series of
equidistant points spaced n/T apart. In fact, M(w) is given by
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541,

5.42.

5.45.

5.46.

5.47.
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& nr\ sin (0T — nr)
M(w) = nzz_:oo M(T) wl —nn

This is known as the sampling theorem in the frequency domain.

Hint: Interchange the roles of ¢ and w in the sampling theorem proof (Prob. 5.2).

American Standard Code for Information Interchange (ASCII) has 128 characters that are binary-coded. If
a computer generates 100 000 characters per second, determine

(a) The number of bits required per character

(b) The data rate (or bit rate) R, required to transmit the computer output

Ans.  (a) 7 b per character, (b)) R, =0.7Mb/s

A PCM system uses a uniform quantizer followed by a 7-b binary encoder. The bit rate of the system is 50
Mb/s. What is the maximum message bandwidth for which system operation is satisfactory?

Ans.  3.57 MHz

Consider binary PCM transmission of a video signal with f; = 10 MHz. Calculate the signaling rate needed
to achieve (SNR), = 45 dB.

Ans. 80 Mb/s

Show that in a PCM system, the output signal-to-quantizing-noise ratio can be expressed as

SN\ _3 it
({)-5e

q

where fp is the channel bandwidth and f,, is the message bandwidth.

Hint:  Use Eqgs. (5.14), (5.15), and (5.46).

The bandwidth of a TV radio plus audio signal is 4.5 MHz. If this signal is converted to PCM with 1024
quantizing levels, determine the bit rate of the resulting PCM signal. Assume that the signal is sampled at a

rate 20 percent above the Nyquist rate.

Ans. 108 Mb/s

A commonly used value A4 for the 4 law compander is 4 = 87.6. If m, = 20V and 256 quantizing levels are
employed, what is the smallest and what is the largest effective separation between levels?

Ans. Apiy =98 mV, Ay, =084V
Given the binary sequence 1101110, draw the transmitted pulse waveform for (a) AMI RZ signaling format
and (b) split-phase (Manchester) signaling format.

Hint: See Fig. 5-10.
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5.48. A given DM system operates with a sampling rate f; and a fixed size A. If the input to the system is
m(f)=oat fort >0

determine the value of o for which slope overload occurs.

Ans.  Af
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5.49. Consider a DM system whose receiver does not include a low-pass filter, as in Prob. 5.22. Show that under
the assumption of no slope overload distortion, the maximum output signal-to-quantizing-noise ratio
increases by 6 dB when the sampling rate is doubled. What is the improvement that results from the use of a

low-pass filter at the receiver output?

Ans.  9-dB improvement

5.50. Twenty-four voice signals are sampled uniformly and then time-division-multiplexed. The sampling
operation uses flat-top samples with 1-us duration. The multiplexing operation includes provision for
synchronization by adding an extra pulse of appropriate amplitude and 1-us duration. The highest frequency

component of each voice signal is 3.4 kHz.

(@) Assuming a sampling rate of 8 kHz, calculate the spacing between successive pulses of the multiplexed

signal.
(b) Repeat (a), assuming the use of Nyquist rate sampling.

Ans. (a) 4 us, (b) 5.68 ps.

5.51. Five telemetry signals, each of bandwidth 1 kHz, are to be transmitted by binary PCM with TDM. The
maximum tolerable error in sampling amplitude is 0.5 percent of the peak signal amplitude. The signals are
sampled at least 20 percent above the Nyquist rate. Framing and synchronization require an additional 0.5
percent extra bits. Determine the minimum transmission data rate and the minimum required bandwidth for

the TDM transmission.

Ans. Ry, = 964.8 kb/s, fiom = 482.9 kHz

5.52. In a certain telemetry system, there are four analog signals: m(¢), my(2), ms(r), and my(?).

The bandwidth of m,(¢) is 3.6 kHz, but the bandwidths of the remaining signals are 1.5 kHz each. Set up a

suitable scheme for accomplishing the time-division multiplexing of these signals.

Ans.  Use the same scheme as the one depicted in Fig. 5-28 of Prob. 5.31 with the commutator speed raised

to 3000 rotations per second.



Chapter 6

PROBABILITY AND
RANDOM VARIABLES

DUCTION

far we have discussed the transmission of deterministic signals over a channel, and we
emphasized the central role played by the concept of “randomness”™ in communication,
random means unpredictable. If the receiver at the end of a channel knew in advance the
tput from the originating source, there would be no need for communication. So there is
ess in the message source. Moreover, transmitted signals are always accompanied by
uced in the system. These noise waveforms are also unpredictable. The objective of
is to present the mathematical background essential for further study of communi-

dy of probability, any process of observation is referred to as an experiment. The results
tion are called the onrconres of the experiment. An experiment is called a random
its outcome cannot be predicted. Typical examples of a random experiment are the roll
ss of a coin, drawing a card from a deck, or selecting a message signal for transmission
essages.

and Events:

Il possible outcomes of a random experiment is called the sample space 5. An element
sample point. Each outcome of a random experiment corresponds to a sample peint.
lled a subset of B, denoted by 4 = B if every element of A 15 also an element of B, Any
mple space § is called an evemi. A sample point of § is often referred to as an
1. Note that the sample space § is the subset of itself, that is, § < S. Since S is the set of
tcomes, it is often called the certain event.

128
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C. Algebra of Events:

1. The complement of event A, denoted 4, is the event containing all sample points in S but not in 4.

2. The union of events 4 and B, denoted 4 U B, is the event containing all sample points in either 4
or B or both.

3. The intersection of events A and B, denoted A N B, is the event containing all sample points in
both 4 and B.

4. The event containing no sample point is called the null event, denoted @. Thus @ corresponds to an
impossible event.

5. Two events 4 and B are called mutually exclusive or disjoint if they contain no common sample
point, that is, AN B = 2.

By the preceding set of definitions, we obtain the following identities:
S=2 =S
Sud=S Snd=4
AUA =S And=0 A=A

D. Probabilities of Events:

An assignment of real numbers to the events defined on S is known as the probability measure.
In the axiomatic definition, the probability P(4) of the event A4 is a real number assigned to 4 that
satisfies the following three axioms:

Axiom 1: PA)=0 6.1)
Axiom 2: PSS =1 6.2
Axiom 3: P(AUB)=PUA)+PB) ifANnB=0o 6.3)

With the preceding axioms, the following useful properties of probability can be obtained (Probs. 6.1—
6.4):

1. PA)=1-P4) 6.4)
2. P@)=0 6.5)
3. PUAS<PB ifAcB 6.6)
4. PASs1 6.7)
5.  P(AUB)= P(4)+ P(B)— P(A4n B) 6.8)

Note that Property 4 can be easily derived from axiom 2 and property 3. Since 4 c S, we have
PA)<PS)=1
Thus, combining with axiom 1, we obtain
0<PA) =1 ©6.9)
Property 5 implies that
P(4U B)< P(4) + P(B) (6.10)

since P(A N B) = 0 by axiom 1.
One can also define P(A) intuitively, in terms of relative frequency. Suppose that a random
experiment is repeated » times. If an event 4 occurs n4 times, then its probability P(4) is defined as

P() = lim ™ ' ©.11)

Note that this limit may not exist.
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E. Equally Likely Events:
Consider a finite sample space S with finite elements
S= {122, .., An}

where A;’s are elementary events. Let P(4;) = p;. Then
1. O0=sp;=<1 i=12,...,n

2. _lei=P1+p2+"-+pn=1 6.12)
£

3. If4A= .ul/li, where 7 is a collection of subscripts, then
i€

P = pl) = p; 6.13)

A€A icl

When all elementary events 4; (i = 1,2,...,n) are equally likely events, that is

PL=DP2=...=Dn
then from Eq. (6.12), we have
1
;== i=1,2,... .
pi=o i=h2.n (6.14)
and P(A4) =@ 6.15)

where n(A) is the number of outcomes belonging to event 4 and » is the number of sample points in S.

F. Conditional Probability:
The conditional probability of an event A given the event B, denoted by P(A|B), is defined as

P(ANB)
B="""__" .
P(A|B) P(8) P(B) >0 6.16)
where P(4 N B) is the joint probability of 4 and B. Similarly,
_ P(ANB)
P(Bl4) = PA) P(4) >0 6.17)
is the conditional probability of an event B given event 4. From Egs. (6.16) and (6.17) we have
P(A N B) = P(A|B)P(B) = P(B|A)P(A) 6.18)

Equation (6.18) is often quite useful in computing the joint probability of events.
From Eq. (6.18) we can obtain the following Bayes rule:

P(A|B) = % (6.19)

G. Independent Events:
Two events 4 and B are said to be (statistically) independent if
P(A|B) = P(4) and P(B|A)= P(B) 6.20)
This, together with Eq. (6.19), implies that for two statistically independent events
P(4 N B) = P(A)P(B) 6.21)
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We may also extend the definition of independence to more than two events. The events
Ay, A4,..., A, are independent if and only if for every subset {4;,4,,,...,4,} (2 <k<n) of these
events,

P(A; A, (... Ay) = P(4;)P(4,)... P(4,) (6.22)
H. Total Probability:
The events 4y, 4,,..., A, are called mutually exclusive and exhaustive if
fk’JIA,-:Alquu...uA,,=s and A,N4=0 i#j 6.23)
P

Let B be any event in S. Then
n n
P(B)=Y P(BNA) =Y P(BlA)P(4) (6.24)
i=1 i=1
which is known as the total probability of event B (Prob. 6.13). Let A = 4; in Eq. (6.19); using Eq.
(6.24) we obtain
P(Bl4)

P(4,|B) = — 1 (6.25)
Zl P(B|4,)P(4;)

Note that the terms on the right-hand side are all conditioned on events 4;, while that on the left is
conditioned on B. Equation (6.25) is sometimes referred to as Bayes’ theorem.

6.3 RANDOM VARIABLES
A. Random Variables:

Consider a random experiment with sample space S. A random variable X(1) is a single-valued real
function that assigns a real number called the value of X(1) to each sample point A of S. Often we use a
single letter X for this function in place of X(4) and use r.v. to denote the random variable. A
schematic diagram representing a r.v. is given in Fig. 6-1.

X (A R

Fig. 6-1 Random variable X as a function

The sample space S is termed the domain of the r.v. X, and the collection of all numbers [values of
X(2)] is termed the range of the r.v. X. Thus, the range of X is a certain subset of the set of all real
numbers and it is usually denoted by Ry. Note that two or more different sample points might give the
same value of X(1), but two different numbers in the range cannot be assigned to the same sample point.

The r.v. X induces a probability measure on the real line as follows:

P(X = x)= P{A: X(J) = x}
P(X<x)=P{i: X()<x}
P(x; < X <x)= P{A:x; < X(A) < x3}
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If X can take on only a countable number of distinct values, then X is called a discrete random
variable. If X can assume any values within one or more intervals on the real line, then X is called a
continuous random variable. The number of telephone calls arriving at an office in a finite time is an
example of a discrete random variable, and the exact time of arrival of a telephone call is an example
of a continuous random variable.

B. Distribution Function:

The distribution function [or cumulative distribution function (cdf)] of X is the function defined by

Fy(x)=PX<Xx) =—-00<x<o00 6.26)
Properties of Fy(x):
. 0sFy(x)<1 (6.27a)
2. Fy(x)) < Fy(xy) if x; < xy (6.27b)
3. Fy(oo)=1 (6.27¢)
4. Fy(-0)=0 (6.27d)
5. Fyla)=Fy@) at= Olimoa +¢ (6.27¢)
< g
From definition (6.26) we can compute other probabilities:
P(a < X < b) = Fy(b) — Fx(a) 6.28)
P(X > a)=1—Fx(a) (6.29)
PX<b)y=Fy(b™) b = 0]jmob —-¢ (6.30)
<&

C. Discrete Random Variables and Probability Mass Functions:

Let X be a discrete r.v. with cdf Fy(x). Then Fy(x) is a staircase function (see Fig. 6-2), and Fy(x).
changes values only in jumps (at most a countable number of them) and is constant between jumps.

Fylx)
1 ~—
L —
1
5P e—
i 1 L 1
0 1 2 3 4 x
Fig. 62
Suppose that the jumps in Fy(x) of a discrete r.v. X occur at the points x;, x,,..., where the
sequence may be either finite or countably infinite, and we assume x; < x; if i < j. Then
Fy(x;) = Fy(xi) = PX < x) = PX < x) = P(X = X)) ' (6.31)
Let px(x) = P(X = Xx) (6.32)

The function px(x) is called the probability mass function (pmf) of the discrete r.v. X.

Properties of py(x):

I O0spy(x)=<1 i=12,... (6.33a)
2. py(x)=0 ifx#x(=12,..) (6.33b)
3. Spxxp=1 (6.33¢)
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The cdf Fy(x) of a discrete r.v. X can be obtained by
Fy(x)=PX<x)= > py(x) (6.34)

D. Continuous Random Variables and Probability Density Functions:
Let X be a r.v. with cdf Fy(x). Then Fy(x) is continuous and also has a derivative dFy(x)/dx that

exists everywhere except at possibly a finite number of points and is piecewise continuous. Thus, if X is
a continuous r.v., then (Prob. 6.22)

PX=x)=0 (6.35)

In most applications, the r.v. is either discrete or continuous. But if the cdf Fy(x) of a r.v. X possesses
both features of discrete and continuous r.v.s, then the r.v. X is called the mixed r.v.

Let dFy(x)
A(x) = —2"2 6.36
Sx(x) . (6.36)

The function fy(x) is called the probability density function (pdf) of the continuous r.v. X.
Properties of fx(x):
L. fx(x)=0 (6.37a)
2. [Zofxdx =1 (6.37b)
3. fx(x) is piecewise continuous.
4. Pla<Xx<b)= [°fy(x)dx (6.37¢)
The cdf Fy(x) of a continuous r.v. X can be obtained by

Py =pac<n= [ foae (6.38)

6.4 TWO-DIMENSIONAL RANDOM VARIABLES
A. Joint Distribution Function:

Let S be the sample space of a random experiment. Let X and Y be two r.v.’s defined on S. Then
the pair (X, Y) is called a two-dimensional r.v. if each of X and Y associates a real number with every
element of S. The joint cumulative distribution function (or joint cdf) of X and Y, denoted by Fyy(x,y),
is the function defined by

Fyy(x,y) = PX<x,Y<y) (6.39)
Two r.v.’s X and Y will be called independent if

Fyy(x,y) = Fx(x)Fy(») (6.40)
for every values of x and y.

B. Marginal Distribution Function:
Since {X < oo}and {¥ < oo} are certain events, we have
X<x Y<oo}={X<x} {X=soo, Ysyl={Y=y}
so that
Fyy(x,00) = Fy(x) (6.41a)

Fyy(o0,y) = Fy(y) (6.41b)
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The cdf’s Fy(x) and Fy(y), when obtained by Egs. (6.41a) and (6.41b), are referred to as the marginal
cdf’s of X and Y, respectively.

C. Joint Probability Mass Functions:

Let (X, Y) be a discrete two-dimensional r.v. and (X, Y) takes on the values (x;, y;) for a certain
allowable set of integers / and j. Let

Pxy(xpyp)=PX =x;, Y=y 642)
The function pyy(x;, y;) is called the joint probability mass function (joint pmf) of (X,Y).
Properties of pxy(x;,y)):

L 0spyy(x,yp <1 (6.43a)
S pxy(xpy) =1 (6.43b)
X ¥

The joint cdf of a discrete two-dimensional r.v. (X,Y) is given by
Fyy(,0) = > > pxy(x:, ) (644)

XX y;Sy
D. Marginal Probability Mass Functions:

Suppose that for a fixed value X = x;, the r.v. ¥ can only take on the possible values y;(j =
1,2,...,n).

Then px(x) = ZPXY(xi:yj) (6.45a)
¥
Similarly, pyyp = ZPXY(xiayj) V (6.45b)

The pmf’s px(x;) and py(y;), when obtained by Eqs. (6.45a) and (6.45b), are referred to as the marginal
pmf’s of X and Y, respectively. If X and Y are independent r.v.’s, then

Pxy(%i,¥) = px(x)py(¥)) (6.46)
E. Joint Probability Density Functions:
Let (X,Y) be a continuous two-dimensional r.v. with cdf Fyy(x, y) and let

O Fyy(x,y)
0x0y

The function fyy(x, ) is called the joint probability density function (joint pdf) of (X,Y). By integrating
Eq. (6.47), we have

Jxr(x, ) = 647)

X (v
Fyy(x,y) = Lo J_mf”(é s mdCdn (6.48)
Properties of fyy(x, y):
L fxg(% N =0 (6.49a)
2[5 [Sofev(x, p)dxdy =1 (6.49b)

F. Marginal Probability Density Functions:
By Egs. (6.41a), (6.41b), and definition (6.36), we obtain

Jx(x) = J_wfxy(my) dy (6.50a)
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£ = [_fron s (6.505)

The pdf’s fy(x) and fy(x), when obtained by Eqs. (6.50a) and (6.50b), are referred to as the marginal
pdf’s of X and 7, respectively. If X and Y are independent r.v.’s, then

Jar(x, ) = fx(X)fy () (6.51)
The conditional pdf of X given the event {¥Y = y} is
Sxr(x, )
= 0 6.52
Jxr(x1y) 0 YO # 6.52)

where fy(y) is the marginal pdf of Y.

6.5. FUNCTIONS OF RANDOM VARIABLES
A. Random Variable g(X):

Given a r.v. X and a function g(x), the expression

Y=gX) 6.53)

defines a new r.v. Y. With y a given number, we denote D, the subset of Ry (range of X) such that
g(x) < y. Then '

Y=y =[gX)=syl=(XeD)
where (X € D,) is the event consisting of all outcomes X such that the point X(1) € D,. Hence,

Fy(n) = PY=<y)=Plg(X)<yl= P(Xe D) (6.54)

If X is a continuous r.v. with pdf fy(x), then

Fy(y) = ,[Dny(x) dx (6.55)

Determination of fy(y) from fy(x) :
Let X be a continuous r.v. with pdf fy(x). If the transformation y = g(x) is one-to-one and has the
inverse transformation

x=g"'(y) =hy (6.56)
then the pdf of Y is given by (Prob. 6.30)
dh(y)
dy
Note that if g(x) is a continuous monotonic increasing or decreasing function, then the trans-
formation y = g(x) is one-to-one. If the transformation y = g(x) is not one-to-one, fy(y) is obtained as

follows:
Denoting the real roots of y = g(x) by x, that is

d.
£ :fX(X)‘d—;C ) ©6.57)

y=gx)=...=gxp=...
Sx(o0
hy = 6.58
then Fr®) ; o] ) (6.58)

where g'(x) is the derivative of g(x).
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B. One Function of Two Random Variables:
Given two random variables X and ¥ and a function g(x, y), the expression

Z=gX, Y) 6.59)
is a new random variable. With z a given number, we denote by D, the region of the xy plane such that
g(x, y) <z Then

(Z=<zl={gX,N)<z={, Y)eD;}

where {(X, Y) € D,} is the event consisting of all outcomes A such that the point {X(4), Y(4)}isin D,.
Hence,

Fo)=P(Z<z)=P{X, V)eD;} (6.60)
If X and Y are continuous r.v.s with joint pdf fyy(x, y), then
Fy(z) = J ffxyoc, ¥) dxdy ‘ 6.61)
Dz

C. Two Functions of Two Random Variables:
Given two r.v.s. X and Y and two functions g(x,y) and A(x, y), the expression
Z=gX, Y) W=hnX, Y) (6.62)

defines two new r.v.s Z and W. With z and w two given numbers we denote D,,, the subset of Ryy
[range of (X, Y)] such that g(x, y) <z and A(x, y) < w. Then

Z=<z,Wsw)=[glx, )<z hx, ) <wl={X, V)eD,}

where {(X, Y) € D,,} is the event consisting of all outcomes A such that the point {X(4), Y(A)} € D,,.
Hence,

Fzy(z,w)= P(Z <z, W<w)= P{(X, Y) € D,,,} (6.63)
In the continuous case we have
Fanw = | [frrton dvay ©60)
Dzw

Determination of fzy(z, w) from fyy(x, y) :
Let X and Y be two continuous r.v.s with joint pdf fyy(x, ). If the transformation

z=g(x,y) w=h(x, ) 6.65)

is one-to-one and has the inverse transformation

x=qlz,w) y=r(zw (6.66)
then the joint pdf of Z and W is given by
Taw(z, w) = fy(x, G, I (6.67)

where x = ¢g(z, w), y = r(z, w) and
9g 0g| 18z 8z
sen=[E5 Bl=13 5 559)
3x dy ox 0y

which is the Jacobian of the transformation (6.65).
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6.6 STATISTICAL AVERAGES
A. Expectation:
The expectation (or mean) of a r.v. X, denoted by E(X) or uy, is defined by

> xipx(x) X : discrete
uy=EX)=1"

J S Xfx(x)dx X : continuous
The expectation of ¥ = g(X) is given by

> g(xpx(x) (discrete case)
E(Y)=E[gX] = { i

f % g(X)fx(x)dx (continuous case)
The expectation of Z = g(X, Y) is given by

> 380k, yppxy(xs ¥) (discrete case)
EZ)y=E[gX, D=7 '~/
%% [ % g(x, Y)fyy(x, y)dxdy (continuous case)

‘Note that the expectation operation is linear, that is,
E[X+Y]l=E[X]+ E[Y]

ElcX] = cE[X]
where ¢ is a constant (Prob. 6.45).

B. Moment:

The nth moment of a r.v. X is defined by
2 xXpx(x) X : discrete
EXxy =11

[ x"fx(x) dx X : continuous
C. Variance:
The variance of a r.v. X, denoted by 6% or Var(X), is defined by
Var (X) = 0% = E[(X ~ pux)°]
Thus,
3 O — ) px(x;) X : discrete
ox=17

[ (¢ — 1) fx(x) dx X : continuous
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6.69)

6.70)

6.71)

6.72)

6.73)

6.74)

6.75)

6.76)

The positive square root of the variance, or oy, is called the standard deviation of X. The variance
or standard variation is a measure of the “spread” of the values of X from its mean uy. By using Eqgs.

(6.72) and (6.73), the expression in Eq. (6.75) can be simplified to
o% = E[X] - iy = E[X"] - (E[X))’
D; Covariance and Correlation Coefficient:
The (k, n)th moment of a two-dimensional r.v. (X, Y) is defined by

>3 x v v, ¥) X : discrete
My = BX* Yy ={ % =

1% [5 x* y'fyy(x, ¥) dxdy X : continuous

6.77)

(6.78)
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The (1,1)th joint moment of (X, Y),
my = EXY) (6.79)
is called the correlation of X and Y . If E(XY) =0, then we say that X and Y are orthogonal.
The covariance of X and Y, denoted by Cov(X, Y) or oyy, is defined by
Cov(X, Y) = oxy = E[(X— px)(Y — py)] (6.80)
Expanding Eq. (6.80), we obtain
Cov(X, Y) = E(XY) — E(X)E(Y) ©6.81)

If Cov(X, Y) = 0, then we say that X and Y are uncorrelated. From Eq. (6.81) we see that X and Y are
uncorrelated if

E(XY) = E(X)EY) (6.82)

Note that if X and Y are independent, then it can be shown that they are uncorrelated (Prob.
6.66). However, the converse is not true in general; that is, the fact that X and Y are uncorrelated does
not, in general, imply that they are independent (Prob. 6.67). The correlation coefficient, denoted by
p(X, Y) or pyy, is defined by

ag
PX, V)= pyy=—2L

6.83)

OxOy
It can be shown that (Prob. 6.53)
lpxyl<1 or —I<pyr=<l (6.84)

6.7 SPECIAL DISTRIBUTIONS

There are several distributions that arise very often in communication problems. These include
binomial distribution, Poisson distribution, and normal, or gaussian distribution.

A. Binomial Distribution:

A r.v. X is called a binomial r.v with parameters (n,p) if its pmf is given by

pxlk)=PX=k) = (Z)pk(l - k=0,1,...,n (6.85)
where 0 <p =<1 and
( n ) . n
k] kWn-k)
which is known as the binomial coefficient. The corresponding cdf of X is
m
Fyo) = Z(Z)pk(l—p)”_k m<x<m+l (6.56)
=0

The mean and variance of the binomial r.v. X are

px=np  og=np(l-p) (6.87)

The binomial random variable X is an integer-valued discrete random variable associated with

repeated trials of an experiment. Consider performing some experiment and observing only whether

event A4 occurs. If A occurs, we call the experiment a success; if it does not occur (4 occurs), we call it a

failure. Suppose that the probability that 4 occurs is P(4) = p; hence, P(4) = g = 1 — p. We repeat
this experiment » times (trials) under the following assumptions:
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1. P(A) is constant on each trial.
2. The n trials are independent.

A point in the sample space is a sequence of n4’s and 4’s. A point with k4’s and n— kA ’s will be
assigned a probability of p*¢"*. Thus, if X is the random variable associated with the number of times
that 4 occurs in » trials, then the values of X are the integers k=0, 1, ...,n.

In the study of communications, the binomial distribution applies to digital transmission when X
stands for the number of errors in a message of n digits. (See Probs. 6.17 and 6.41.)

-

B. Poisson Distribution:

A r.v. Xis called a Poisson r.v. with parameter a(> 0) if its pmf is given by
k
o

Prb)=PX=k)=e*T

k=0, 1,... (6.88)
The corresponding cdf of X is
n Otk
FX(x)=e_“I;)E n<sx<n+1 6.89)

The mean and variance of the Poisson r.v. X are (Prob. 6.42)
Uy=o or=a o (6.90)

The Poisson distribution arises in some problems involving counting, for example, monitoring
the number of telephone calls arriving at a switching center during various intervals of time. In
digital communication, the Poisson distribution is pertinent to the problem of the transmission of
many data bits when the error rates are low. The binomial distribution becomes awkward to
handle in such cases. However, if the mean value of the error rate remains finite and equal to o,
we can approximate the binomial distribution by the Poisson distribution. (See Probs. 6.19 and
6.20.)

C. Normal (or Gaussian) Distribution:

A 1.v. X is called normal (or gaussian) r.v. if its pdf is of the form

1 —cwi/ee
X) =—2¢ 6.91
Sx(x) Tre (6.91)
The corresponding cdf of X is
X G~/
Fy(x) = = j" e—(i—u)z/(Zvl)dé - ‘/% ) e'fz/zdi (6.92)

This integral cannot be evaluated in a closed form and must be evaluated numerically. It is convenient
to use the function Q(z) defined as

1 (® _pp
Z)=—=| e d 6.93
0@ == Prar (6.93)
Then Eq. (6.92) can be written as
Fyx)=1- Q(—x; £ ) (6.94)
The function Q(z) is known as the complementary error function or simply the Q function. The

function Q(z) is tabulated in Table C-1 (App. C). Figure 6-3 illustrates a normal distribution.
The mean and variance of X are (Prob. 6.43)
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I Fx)

1

gl

05

AN

B x 0 B *
(a) ®)
Fig. 6-3 Normal distribution

Uy =p  of =0c" 6.95)

We shall use the notation N(u; 6%) to denote that X is normal with mean p and variance ¢%. In

particular, X = N(0; 1); that is, X with zero mean and unit variance is defined as a standard normal
r.v.

The normal (or gaussian) distribution has played a significant role in the study of random
phenomena in nature. Many naturally occurring random phenomena are approximately normal.
Another reason for the importance of the normal distribution is a remarkable theorem called the
central-limit theorem. This theorem states that the sum of a large number of independent random
variables, under certain conditions, can be approximated by a normal distribution.

Solved Problems

PROBABILITY
6.1. Using the axioms of probability, prove Eq. (6.4).
S=Aud and And =92

Then the use of axioms 1 and 3 yields
P(S) = 1 = P(4) + PAA)
Thus PA)=1-P(4)

6.2. Verify Eq. (6.5).
A=A4Au@ and AN@=2
Therefore, by axiom 3,
P(A) = P(Aw @)= P(4)+ P(®)
and we conclude that

P(@)=0

6.3.  Verify Eq. (6.6).

Let A c B. Then from the Venn diagram shown in Fig. 6-4, we see that
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6.4,

6.5.

B=A4UBNA) and AnBNnA)=o
Hence, from axiom 3,
‘ P(B) = P(A)+ P(BN A) = P(4)
because by axiom 1, P(Bn 4) = 0.

Shaded region: A N B

Fig. 6-4

Verify Eq. (6.8).

From the Venn diagram of Fig. 6-5, each of the sets 4 U B and B can be expressed, respectively, as a
union of mutually exclusive sets as follows:

AUB=AUANB) and B=AnB U NB)
Thus, by axiom 3,

P(AUB)=PA)+PANB (6.96)
and P(B)=P(ANB)+ P(4 N B) 6.97)
From Eq. (6.97) we have

P(A "B)=P(B)—P(ANB) 6.98)

Substituting Eq. (6.98) into Eq. (6.96), we obtain
P(Aw B) = P(4)+ P(B)y— P(4 " B)

N S
(2
g L {€ DL
Shaded region: A N B Shaded region: A N 8
Fig. 6-5

Let P(4) = 0.9 and P(B) = 0.8 . Show that P(4 " B)=0.7.
From Eq. (6.8) we have

P(A N B) = P(A) + P(B)— P(A U B)
By Eq. (6.9), 0 < P(4u B) < 1. Hence,
P(A N B)= P(4)+ P(B)— | 6.99)
Substituting the given values of P(4) and P(B) in Eq. (6.99), we get
P(ANB)=09+08-1=0.7

Equation (6.99) is known as Bonferroni’s inequality.
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6.6.

6.7.

6.8.

6.9.
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Show that
P(A) = P(ANB)+ P(ANB) (6.100)

From the Venn diagram of Fig. 6-6, we see that
A=(ANBUMANB) and ANBNANB)=0 (6.101)
Thus, by axiom 3 we have

P(A) = P(A B)+ P(ANB)

Consider a telegraph source generating two symbols: dot and dash. We observed that the dots
were twice as likely to occur as the dashes. Find the probabilities of the dot’s occurring and dash’s
occurring.
From the observation, we have
P(dot) = 2P(dash)
Then, by Eq. (6.12)
P(dot) + P(dash) = 3P(dash) = 1
Thus, P(dash)y=1/3 and P(dot)=2/3

Show that P(A|B) defined by Eq. (6.16) satisfies the three axioms of a probability, that is,
(a) P(AIB)=0, () P(S|B)=1, and (¢) P(A U C|B) = P(4|B)+ P(C|B),if AnC =2
(a) By axiom 1, P(4 " B) = 0. Thus,
PAIB) =0
(b) Since (S B) = B we have
P(SNB) _PB) _
P(BY ~ PBB)

(&) Now (AU O NB=(ANBU(CNB).If AN C =@, then (Fig. 6-7),
' (ANBN(CNnB =0

P(S|B) =

Hence, by axiom 3
Pl(AuC)nB] :P(AmB)+P(CnB)

. PAuClB) = 73) PB)

= P(4|B) + P(C|B)

Find P(A|B) if (a) AnB=@, (b) Ac B, and (¢) BC A4.
(a) If AN B= @, then P(4 N B) = P(@) = 0. Thus,
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6.10.

6.11.

N C—,
[ CnB
A B
ANB
Fig. 6-7
_PUNB)_P®) _
PiB) = P(B)  PB
() If Ac B, then AN B = A4 and
_PANB)_P4)
P(|B) = PB  PB
(¢) If Bc 4, then 4N B= Band
P(AIB)=P(AQB)=@—

P(B) P(B)

Show that if P(4|B) > P(A), then P(B|4) > P(B).

P(A4NB)

I PCAIB) = =52 > PO, then P4 B) > PUP(B). Thus
P(AnB)  PPEB
P(BlA) = % > % = P(B)

Let 4 and B be events in a sample space S. Show that if 4 and B are independent, then so are
(a) A and B and (b) 4 and B.
(a) From Eq. (6.100) (Prob. 6.6), we have
P(4)=P(ANB)+PANB)
Since 4 and B are independent, using Egs. (6.2/) and (6.4), we obtain
P(ANB)= P(4)— P(AN B) = P(4) :P(A)P(B) 6.102)
= P(A)[1 - P(B)] = P(A)PB)

Thus, by Eq. (6.21), A and B are independent.
(b) Interchanging 4 and B in Eq. (6.102), we obtain

P(BNA)= P(B)P(A)

which indicates that 4 and B are independent.

Let A and B be events defined in a sample space S. Show that if both P(4) and P(B) are nonzero,
then events 4 and B cannot be both mutually exclusive and independent.

Let 4 and B be mutually exclusive events and P(4)#0, P(B)#0. Then P(4 " B)= P(@) =0 and
P(A)P(B) # 0. Therefore

P(A N B)# P(A)P(B)

That is, 4 and B are not independent.
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6.13. Verify Eq. (6.24).
Since BN S = B [and using Eq. (6.23)], we have

B=BAS=BA(AUAU- Uy
=BNA)UBAA)U - - - UBAAy)

Now the events BN 4, (k= 1, 2, ..., N) are mutually exclusive, as seen from the Venn diagram of Fig. 6-8.
Then by axiom 3 of the probability definition and Eq. (6.18), we obtain

N N
P(B)=P(BNS)= P(BNA)=> PBIA)P(4)
k=1 k=1

6.14. In a binary communication system (Fig. 6-9), a 0 or 1 is transmitted. Because of channel noise, a 0
can be received as a 1 and vice versa. Let my and m; denote the events of transmitting 0 and 1,
respectively. Let 7y and r; denote the events of receiving 0 and 1, respectively. Let P(mg) =
0.5, P(r{lmg) =p =0.1, and P(rylm;) = ¢=10.2.

Plrglmgy)

mo

P(my)

o

P(rglm,)

P(ryimgy)

my n

P(my) P(rimy)

Fig. 6-9 Binary communication system

(a) Find P(ry) and P(r().

(b) If a 0 was received, what is the probability that a 0 was sent?

(c) If a 1 was received, what is the probability that a 1 was sent?

(d) Calculate the probability of error P,.

(e) Calculate the probability that the transmitted signal is correctly read at the receiver.

(a) From Fig. 6-9, we have
’ Pomy) = 1= P(mg) = 1—-0.5=0.5
P(rglmg) =1~ P(rlmg) =1—p=1-0.1=09
P(rilm) =1—-P(rglm) =1—-g=1-02=108
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Using Eq. (6.24), we obtain

P(r) = P(rolmg)P(mg) + P(rolmy)P(my) = 0.9(0.5) + 0.2(0.5) = 0.55
P(r)) = P(r,lmy)P(mo) + P(ri|lm;)P(my;) = 0.1(0.5) + 0.8(0.5) = 0.45

(b) Using Bayes’ rule (6.19), we have

Pmg)P(rolmy) _ (0.5)0.9) _

P(mglro) = i) 055 0.818
(¢) Similarly,
_ Pm)P(rImy) _ (0.5X0.8) _
P(my|ry) = Py = 045 0.889
@ P, = P(r,lmg)P(mp) + P(rolmi)P(my) = 0.1(0.5) + 0.2(0.5) = 0.15

(e) The probability that the transmitted signal is correctly read at the receiver is

P, = P(rylmg)P(my) + P(ri|my)P(m;) = 0.9(0.5) + 0.8(0.5) = 0.85
Note that the probability of error P, is

P,=1-P,=1-085=0.15

6.15. Consider a binary communication system of Fig. 6-9 with P(rylmg) = 0.9, P(r1lm;) = 0.6. To
decide which of the message was sent from an observed response ry or r|, we utilize the following
criterion:

If ry is received:

Decide my if P(mglrg) > P(my|ry)

Decide m; if P(m|rg) > P(mglry)
If r; is received:

Decide my if Pmglry) > P(my|ry)

Decide m; if P(m;|r)) > P(mglr))

This criterion is known as the maximum a posteriori probability (MAP) decision criterion (see

Prob. 9.1).

(a) Find the range of P(m) for which the MAP criterion prescribes that we decide my if ry is
received.

(b) Find the range of P(m,) for which the MAP criterion prescribes that we decide m; if ry is
received.

(¢) Find the range of P(my) for which the MAP criterion prescribes that we decide m, no matter
what is received.

(d) Find the range of P(my) for which the MAP criterion prescribes that we decide m; no matter
what is received.

(@) Since P(rilmy) = 1= P(rylmy) and P(rylm)) = 1 — P(r{|m,), we have
P(rolmg) = 0.9  P(rlmg) =0.1 P(rylm) = 0.6 P(rolmy) = 0.4
By Eq. (6.24), we obtain
P(r) = P(rolmo)P(mg) + Prolmy)P(my) = 0.9 P(mg) + 0.4[1 — P(mg)] = 0.5 P(my) + 0.4
Using Bayes rule (6.19), we have
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P(ry|mg)P(my) _ 0.9 P(my)

P(mylry) =

P(ry) T 0.5P(my)+04
Pomlrg) = P(rolm)P(my) _ 0A[L— P(my)] _ 0.4—0.4 POmo)
1o P(ry) 0.5P(my) + 0.4 0.5P(mg) +0.4

Now by the MAP decision rule, we decide my if ry is received if P(mg|rg) > P(mylrp), that is,

0.9P(mg) 0.4 — 0.4P(my)
0.5P(mg) + 0.4~ 0.5P(mg) + 0.4

or 0.9P(mg) > 0.4—0.4P(my) or 13P(my) >04 or P(mgy) > % =031
Thus, the range of P(myg) for which the MAP criterion prescribes that we decide my if r is received is
031 < P(my) <1
(b) Similarly, we have
P(r1) = P(rilmo)P(mg) + P(ry|my)P(my) = 0.1P(mg) + 0.6[1 — P(mq)] = —0.5P(mg) + 0.6

P(rylmo)P(mg) _  0.1P(my)
P(ry) Z0.5P0mg) + 0.6

P(mglr)) =

P(r|my)P(m;) _ 0.6[1—P(my)] _ 0.6 —0.6P(mp)
P(r) T —0.5P(mg) + 0.6 —0.5P(mg) + 0.6

P(mylr) =

Now by the MAP decision rule, we decide m, if r, is received if P(m|r;) > P(mylr,), that is,

0.6 —0.6P(my) S 0.1P(my)
—0.5P(my) + 0.6 = —0.5P(my) + 0.6

or 0.6~ 0.6P(mg) > 0.1P(my) or 0.6 >0.7P(my) or Pmy) < % =0.86

Thus, the range of P(my) for which the MAP criterion prescribes that we decide m, if r| is received is
0 =< P(my) < 0.86
(¢) From the result of (b) we see that the range of P(my) for which we decide my if r; is received is
P(mg) > 0.86
Combining with the result of (a), the range of P(my) for which we decide my no matter what is received is
given by
0.86 < P(mp) < 1
(d) Similarly, from the result of (a) we see that the range of P(myg) for which we decide m; if ry is received is
P(my) < 0.31
Combining with the result of (b), the range of P(mjg) for which we decide m; no matter what is received is
given by
0 < P(my) < 0.31

6.16. Consider an experiment consisting of the observation of six successive pulse positions on a
communication link. Suppose that at each of the six possible pulse positions there can be a
positive pulse, a negative pulse, or no pulse. Suppose also that the individual experiments that
determine the kind of pulse at each possible position are independent. Let us denote the event that
the ith pulse is positive by {x; = +1}, that it is negative by {x; = —1}, and that it is zero by {x; = 0}.
Assume that

Px;=+1)=p=04 Plx;=-1)=¢=03 for i=1,2,...,6
(a) Find the probability that all pulses are positive.
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(b) Find the probability that the first three pulses are positive, the next two are zero, and the last
is negative.
(a) Since the individual experiments are independent, by Eq. (6.22) the probability that all pulses are
positive is given by
Pl =+D A=+ - - Al =+DI= Pl = +DPly = +1) - - - Pleg=+1)
= p® = (0.4)° = 0.0041

(b) From the given assumptions, we have
Px;=0)=1-p-—¢=03
Thus, the probability that the first three pulses are positive, the next two are zero, and the last is negative is
given by
PIy = +D) A (G = D) A (3 = +D N G = 0) " (x5 = 0) N (x5 = =]
= P(x; = +1)P(x; = +1)P(x3 = +1)P(xs = 0)P(xs = 0)P(xs = -1)
=p(1 - p—g’q = (0.4°(0.3)%(0.3) = 0.0017

RANDOM VARIABLES

6.17.

6.18.

6.19.

A binary source generates digits 1 and 0 randomly with probabilities 0.6 and 0.4, respectively.
(@) What is the probability that two 1s and three Os will occur in a five-digit sequence?
() What is the probability that at least three 1s will occur in a five-digit sequence?

(@) Let X be the random variable denoting the number of 1s generated in a five-digit sequence. Since there
are only two possible outcomes (1 or 0) and the probability of generating 1 is constant and there are five
digits, it is clear that X has a binomial distribution described by Eq. (6.85) with n = 5 and k = 2.
Hence, the probability that two 1s and three 0s will occur in a five-digit sequence is

PX=2)= (;)(0.6)2(0.4)3 =023

(b) The probability that at least three 1s will occur in a five-digit sequence is
PX=3=1-PX<2)

2
where PX<2)=Y ( i)(0.6)k(0.4)5‘k =0.317
k=0
Hence, P(X=3)=1-0317=0.683

Let X be a binomial r.v. with parameters (n,p). Show that py(k) given by Eq. (6.85) satisfies
Eq. (6.33¢). ‘

Recall that the binomial expansion formula is given by

v s (P e
(a+b)" = Z(k)akb k
k=0
Thus, by Eq. (6.85),
> pado=3 (Z)p"(l Tt =prl-pt=1"=1

k=0 k=0

Show that when # is very large (#>> k) and p very small (p < 1), the binomial distribution
[Eq. (6.85)] can be approximated by the following Poisson distribution [Eq. 6.889)]: *
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6.20.

6.21.

6.22.

6.23.
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ke
PX=k)= e_""(nki') (6.103)
From Eq. (6.85)
‘ I R T R L e
P(X—k)—(k)pq e
) —kt D) . (6.104)
="(" ) k!(ﬂ )pkq"k
When n>> k and p < 1, then
nn=1)- -« @m—k+D=~n-n-+ . n=np

g=1l-p=e? qn—k ~ " mRP o P
Substituting these relations into Eq. (6.104), we obtain

o (mp)f
PX=k)y=e "T

A noisy transmission channel has a per-digit error probability p, = 0.01.
(@) Calculate the probability of more than one error in 10 received digits.
(5) Repeat (a), using the Poisson approximation, Eq. (6.103).

(@) Let X be a binomial random variable denoting the number of errors in 10 received digits. Then using
Eq. (6.85), we obtain

PX>1)=1-PX=0)—P(X=1)
=1- ( 100 )(0.01)"(0.99)“’ - ( 110 )(0.01)‘(0.99)9
= 0.0042
() Using Eq. (6.103) with np, = 10(0.01) = 0.1, we have

0 1
PX>1)~1-¢%! Q(‘)l|—)— el % =0.0047

Let X be a Poisson r.v. with parameter «. Show that py(k) given by Eq. (6.88) satisfies Eq. (6.33¢).
By Eq. (6.88),

el . mak _
pr(k)=e°‘zF=e“e°‘=l
=0 =0k

Verify Eq. (6.35).
From Eqgs. (6.6) and (6.28), we have
PX=Xx)<SPx—e< X<x)= Fy(x)— Fy(x—¢)

for any & = 0. As Fy(x) is continuous, the right-hand side of the preceding expression approaches 0 as ¢ — 0.
Thus, P(X = x) = 0.

The pdf of a random variable X is given by

S =1

k asx<b
0 otherwise
where k is a constant.

(a) Determine the value of k.
(b)) Leta=—1and b=2. Calculate P(|X] <c) forc=1.
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6.24.

6.25.

(@) From property 1 of f,(x) [Eq.( 6.37a)], k must be a positive constant. From property 2 of fy(x)
[Eq. (6.37b)),

o b
4[ Sx(x)dx = J- kdx=k(b—a)=1
—00 a
from which we obtain k = 1/(b— a).Thus, )

.
fx(x)={m as<x<b (6.105)
0

otherwise

A random variable X having the preceding pdf is called a uniform random variable.
(b) With a=—-1and b =2 we have

1 —1=x<2
=13
Jxx) {0 otherwise
From Eq. (6.37¢)
172 1/2
P(X|<h=PHE=sXx=<)= [ l/ﬂfX(x)zlx = J 1/ngx =1

The pdf of X is given by
fx(x) = ke u(x)

where a is a positive constant. Determine the value of the constant .
From property 1 of fy(x) [Eq. (6.37a)], we must have k = 0. From property 2 of Fx(x) [Eq.( 6.37D)],

J fr(x)dx = kJ’ e Pdx = K =1
—o0 0 a
from which we obtain k = a. Thus,

Fe(0) = ac ™ u(x) a>0 (6.106)

A random variable X with the pdf given by Eq. (6.706) is called an exponential random variable with
parameter a.

All manufactured devices and machines fail to work sooner or later. If the failure rate is constant,

the time to failure 7 is modeled as an exponential random variable. Suppose that a particular

class of computer memory chips has been found to have the exponential failure law of Eq. (6.106)

in hours.

(@) Measurements show that the probability that the time to failure exceeds 10* hours (h) for
chips in the given class is ¢71(=~0.368). Calculate the value of parameter a for this case.

(b) Using the value of parameter @ determined in part (a), calculate the time # such that the
probability is 0.05 that the time to failure is less than 7.

(@) Using Egs. (6.38) and (6.106), we sec that the distribution function of T is given by
t
Fr) = [_frode = 1=
Now P(T> 105 =1-P(T=<10%
=1-Fp(10% = 1- (1 —e ¥y = 400 = 1

from which we obtain @ = 107%.
(b) We want

Fr(to) = P(T'< 1) = 0.05

Hence, - =1- 1% — 005
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(104
or e 0% — 095
from which we obtain

o =-10*In0.95=513 h

6.26. The joint pdf of X and Y is given by
Fev(x,y) = ke P ulou(y)
where ¢ and b are positive constants. Determine the value of constant k.

The value of k is determined by Eq. (6.49b), that is,

o (o o (oo o o
f f fxy(i,n)dédn:kj J e'(““’””didrl:kj ede J g =X
- ) - 0Jo 0 0 ab

Hence, k = ab.

6.27. The joint pdf of X and Y is given by

Frr(x, 1) = xpe I 2y 00u(y)

(@) Find the marginal pdf’s fy(x) and fy(3).
(b) Are X and Y independent?

(@) By Egs. (6.50a) and (6.50b), we have

5= [~ roendy = [ e @

o
= xe™/ zu(x)J_ ye v/ 2dy = xe ™ Pu(x)
0

Since fyy(x,y) is symmetric with respect to x and y, interchanging x and y, we obtain

Fr0) = ye 7 Pu(y)
(b) Since fyy(x,y) = fx(x)fy(»), we conclude that X and Y are independent.

6.28. The random variables X and Y are said to be joinily normal random variables if their joint pdf is
given by
1 . { 1
XD —
2moyay(-pH 2 PL 201 - p?)

e

(@) Find the marginal pdf’s of X and Y.
(b) Show that X and Y are independent when p = 0.

Sxr(x,y) =

(a) By Eq. (6.50a) the marginal pdf of X is
$e0= [ fortw )y

By completing the square in the exponent of Eq. (6.107), we obtain
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e"p[‘% (%)2] r 1

ooy o \2nay(1 = pH)'72

1 Y- iy _ (x—m()]z )
Xexpj( 2(1—p2>[ o o 5
eXP[_%(%&)Z]Jw 1

V2rox — 21641 — p?)}/?
1 oy 2
——|y—py-p—(x— d
Xexp{ 20?(1_'02)[} Uy an(x Mx)]} ly

Comparing the integrand with Eq. (6.91), we see that the integrand is a normal pdf with mean

fx(x)=

“~

a
py +p=L(x— px)
(¢

and variance

31 =%
Thus, the integral must be unity, and we obtain
1 20 2
Y(x) = exp| —(x— 20 6.108)
Sx(x) Torox P[ (x—px)°/ X] (
In a similar manner, the marginal pdf of Y is
i 1 2 /n 2
= X, y)dx = exp|-(v— 20 6.109
fH) J Frrts e = p| -0 uv)?/20%] (6.109)

(b) When p =0, Eq. (6.107) reduces to

N2 [y — g
Fev(x,9) = Tlrexp{—l[(w) +( HY) ]}
nox0y 2 oy oy

SR O N 2.7 I O B Y62
_\/2_7raxexp|: 2( Ox )]\/Z_nayexp[ 2( oy )]
=fx)y»)

Hence, X and Y are independent.

FUNCTIONS OF RANDOM VARIABLES .
6.29. If X is N(u;¢?), then show that Z = (X — p)/o is a standard normal r.v.; that is, N(0; 1).

The cdf of Z is
X—u ) J‘ZJ"# 1 (i 26%)
F. =PZs)=P—E<z|=PX<zo+p = — d:
7(2) (Z=<2z) ( P z ( o+ 1) . _zme x

By the change of variable y = (x — p)/¢ (that is x = gy + ), we obtain

Fyn)=PZ<z)= J_w \/_12_; Py

A _ 1 pp

and -
Sf2(2) = e N

which indicates that Z = N(0; 1).
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6.31.
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Verify Eq. (6.57).

Assume that y = ¢g(x) is a continuous monotonically increasing function [Fig. 6-10(a)].

Then it has an inverse that we denote by x = g~ (») = A(y). Then
Fy(y) = P(Y <y) = PIX < h()] = Fx[h(»)]
and )y = i = i
Jr) = & Fy(y) = & {Fx[hO)1}
Applying the chain rule of differentiation to this expression yields
) d
Sy = fxlh(»)] cTyh(y)
which can be written as
dx
Sy =fX(X)d— x=hyy”
ag
If y = g(x) is monotonically decreasing [Fig. 6-10(3)], then

Fy(y)=P(Y <y)=PIX > h(»)] = 1 — Fxl[h(y)]

d d;
and o) = ) = —fx<x>d-;‘ x=h(y)

Combining Egs. (6.111) and (6.113), we obtain

[CHAP. 6

(6.110)

6.111)

(6.112)

(6.113)

(@ (b)
Fig. 6-10

d h(p)
dy

Fr() = fx(x),

dx|
d;‘ = flh())

which is valid for any continuous monotonic (increasing or decreasing) function y

0 x=h(y,) 0 x,=h(y)

Let Y'=2X+ 3. If a random variable X is uniformly distributed over [—1,2], find Y.

From Eq. (6.105) (Prob. 6.23), we have

—l=sx=2

otherwise

Jx(x) = { (%)

The equation y = g(x) = 2x + 3 has a single solution x; = (v —3)/2, the range of y is [1,7], and g/(x) = 2.

Thus, —1 < x; =<2 and by Eq. (6.58)
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6.32.

6.33.

6.34.

1sys7
otherwise

1 1
=3/ =18
Let Y = aX + b. Show that if X = N(u; 6%), then Y = N(au + b; ad?).

The equation y = g(x) = ax + b has a single solution x; = (y — b)/a, and g'(x) = a. The range of y is
(—00, 00). Hence, by Eq. (6.58)

Sy = fx( ) 6.114)

Since X = N(u; 6%), by Eq. (6.91)
S0 == exp[ s ©.115)

Hence, by Eq. (6.114)

1 (y—b 2
fr) = \/Elala p[ 26( - u)]

1
= b 6.116
ﬁZnIaloeXp[ A )] ( )

which is the pdf of N(au + b; @*6?). Thus, if X = N(y; ¢?), then ¥ = N(au + b; &6
Let Y= X2. Find fy(y) if X = N(0; 1).

If y < 0, then the equation y = x? has no real solutions; hence, fy(y) =
If y > 0, then y = x* has two solutions

X = =-y
Now, y = g(x) = x* and g'(x) = 2x. Hence, by Eq. (6.58)
fro)= J_ 5= (W) + (=1 u) 6.117)
Since X = N(0; 1) from Eq. (6.91), we have
1o /2
= 6.118
Sx(x) N ( )
Since fy(x) is an even function from Eq. (6./17), we have
1 L on
= ) = 6.119
fr©) J)‘/f y(/Pu®) N e u(y) ( )

The input to a noisy communication channel is a binary random variable X with
PX=0)=PX=1)= 1 . The output of channel Z is given by X+ ¥, where Y is the additive
noise introduced by the channel Assuming that X and Y are independent and Y = N(0; 1), find
the density function of Z.
Using Egs. (6.24) and (6.26), we have
F,(2)=PZ<z=PZ< ZIX=0PX=0+PZ<:zIX=DPX=1)
Since Z=X+Y
PZ<zX=0)=PX+Y<:z|[X=0)=PY<z2)= Fy2)
Similarly,

PZ<zlX=1)=PX+Y<zZX=1)=PY<z-1)=Fyz—-1)
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6.35.

6.36.

PROBABILITY AND RANDOM VARIABLES

Hence, Fo(e) = 3Fr@ + 3 Frz =)

Since ¥ = N(0; 1),

=L n
JY» \/Z_ne

dFy2) 1 1
& —3/v@ +3/vE-1)

Ir 1 ~22/2 1 —(z—l)z/z]
=—-| —¢ 4 —
2[@ N

and fz(2) =

Consider the transformation
Z=aX+bY W=cX+dY
Find the joint density function f,p(z, w) in terms of Sxy(x, ).
If ad— bc # 0, then the system
ax+by=7z cex+dy=w
has one and only one solution:
x=oaz+pw y=yz+nw

where d —b <

a

a=ad—bc ﬂ=ad—bc y=ad—bc 77=ad—l7c

Since [Eq. (6.68)]

0z Oz
3% Oy b

Jox,) = g_g; g_fv =| dl=ad—bc
ox Oy

Eq. (6.67) yields

1
Szw(z,w) = mfxy(az + Bw, vz +nw)

Let Z= X+ Y. Find the pdf of Z if X and Y are independent random variables.

We introduce an auxiliary random variable W, defined by
W=Y
The system z = x + y,w = y has a single solution:

X=z=w y=w

Since
oz Oz
% Oy 1 1
=g l-JL Y-
o oy

Eq. (6.67) yields [or by settinga=b=d=1 and ¢ = 0 in Eq. (6.122)]
Jzwz,w) = fyy(z — w,w)

Hence, by Eq. (6.50a), we obtain

[CHAP. 6

(6.120)

(6.121)

6.122)

(6.123)
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6.37.

6.38.

120 = [ _tntzwitw = [ e wycin
If X and Y are independent, then
526 = [ _fra=mpyto dw

which is the convolution of functions fy(x) and fy(y).

Suppose that X and Y are independent normalized normal random variables.

Z=X+Y.
The pdf’s of X and Y are
- — )r/z - e—y‘/2
Jx(x) J_ fr) = \/—
Then, by Eq. (6.125), we have
S = [z =wyomdw

- r’ L e L e g,

2n V2n
= .;_71[“’_ exp[——(z —2zw + 2w )]dw
= % :o exp{—i[-2-+ (\/iw —ﬁ) :I}dw

e L " ex] —l( 2w—-z—)2 dw
VAN, B [ 72

Let u = /2w —z/+/2. Then

o~ L —ep
z — du
Jz(2) = \/— \/— Wy
Since the integrand is the pdf of N(0; 1), the 1ntegra1 is equal to unity, and we obtain
R SR e
z
25 = \F NN AN T

which is the pdf of N(0; v/2).
Thus, Z, is a normal random variable with zero mean and variance V2.

Consider the transformation

I~

=JX2+ 7 ©=tan"

X
Find fze(r,0) in terms of fyy(x,y).

We assume that r = 0 and 0 < § < 2z. With this assumption, the system

VR +yr=r tan~'2 =0
X
has a single solution:

x=rcosf y=rsinf

Since [Eq. (6.68)]
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(6.124)

6.125)

Find the pdf of

(6.126)

6.127)



156 PROBABILITY AND RANDOM VARIABLES [CHAP. 6

ox 0Ox

- :@rgb:cosG —rsinO:
J6x,3) oy oy sinf rcos 0] "

or 06
Eq. (6.67) yields .
Sro(r,0) = rfyy(rcos 0, rsin 6) (6.128)

6.39. A voltage V is a function of time ¢ and is given by
V(t) = Xcos wt + Ysin wt (6.129)

in which  is a constant angular frequency and X = ¥ = N(0; ¢%) and they are independent.
(a) Show that V(t) may be written as

V(t) = Rcos (wt — ®) (6.130)
(b) Find the density functions of R and 6O, and show that R and © are independent.
(@) V() = Xcos wt + Ysin wt

X Y
—Jx 24 _r
X +Y(mcosa)t+m51nwt)
= VX2 + ¥?(cos @ cos wt + sin O sin wt)
= Rcos (wt—0)

Y
where R=vX*+Y? and O =tan™! e

() Since X = Y = N(0; ¢?) and are independent, from Egs. (6.51) and (6.91)

2 1 _p
/e g

2n6
| SIS (6.131)

=—e

2n

1
Sxy(x,y) = N

Thus, using the result of Prob. 6.38 [Eq. (6.128)], we have
fre(r, ) = rfyy(rcos 0, rsin 6)

=" rled (6.132)
2n0?
Using Egs. (6.50a) and (6.50b), we obtain
2n 2n N
falr) = j Tro(r, 0)d0 = Le-'z/@ﬁ g = Ler/es) (6.133)
) 2na? 0 o2
00 ‘l 00 o
R e e ©.134)
0 2n0? Jo 2n
and Jre(r,0) = fr(fe(0) (6.135)

Hence, R and O are independent.
Note that © is a uniform random variable, and R is called a Rayleigh random variable.

'STATISTICAL AVERAGES

6.40. The random variable X takes the values 0 and 1 with probabilities o and p = 1—u, respectively.
Find the mean and the variance of X.

Using Egs. (6.69) and (6.70), we have
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6.41.

6.42

pxy=EX]1=0@)+ 1) =
E[X=0% )+ *(B)=p
From Eq. (6.77)
ok = E[X*1- (E[X])’ = p-F =P —p) =ap

Binary data are transmitted over a noisy communication channel in a block of 16 binary digits.
The probability that a received digit is in error due to channel noise is 0.01. Assume that the
errors occurring in various digit positions within a block are independent.

(a) Find the mean (average number of) errors per block.

() Find the variance of the number of errors per block.

(¢) Find the probability that the number of errors per block is greater than or equal to 4.

(@) Let X be the random variable representing the number of errors per block. Then X has a binomial
distribution with # = 16 and p = 0.01. By Eq. (6.87) the average number of errors per block is

E(X) = np = (16)(0.01) = 0.16
(b) By Eq. (6.87)
0% = np(1 — p) = (16)(0.01)(0.99) = 0.158
(©
PX=z4=1-PX=<3)
Using Eq. (6.86), we have

3
Px=»=% ( ‘]f)(o.m Y(0.99)16* = 0.986
k=0

Hence, P(X=4)=1-0.986=0.014

Verify Eq. (6.90).
By Eq. (6.69)

uy = E[X] i kKPX=k)y=0+ i e"; o e i Ll s i il e e*
= =S kPX=k = e e L e =
* =0 o G- S &= oM

Similarly,
E[X(X—l)]:Zk(k—l)P(X=k)=0+0+Ze’“—a—
k=0 k=2 (k=2
e R Y T
Z(k 2)| o Zom_ e e =a
or EX*-X]=EX*|-EX]=E[X]-0=d
Thus, EX =’ +a (6.136)

Then using Eq. (6.77) gives
A=EX - EX)Y =@ +0-o=a

6.43. Verify Eq. (6.95).

Substituting Eq. (6.91) into Eq. (6.69), we have

o0
uy=E[X]= J xe Q) gy

V2no
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Changing the variable of integration to y = (x — y)/0, we have

1 (> )
EW == [ oy we

00

a 2 < 1 2
= e 2y + J Vg

The first integral is zero, since its integrand is an odd function. The second integral is unity, since its
integrand is the pdf of N(0;1). Thus,
ux=E[X]=p

From property 2 of fy(x) [Eq. (6.37b)], we have

J N gy = 62 (6.137)
Differentiating with respect to o, we obtain

[ ot gy - iz

Multiplying both sides by ¢%/+/2%, we have

(= P OO gy = E[(X = ] = 0% = &

s
Jz_mLe
6.44. Let X = N(0;¢%). Show that

(6.138)

e (0 n=2k+1
”’"_E[Xn]*{1~3 ----- (n—1)o" n=2k

2na
The odd moments my;,; of X are 0 because fy(—x) = fy(x). Differentiating the identity

J e dx = ‘/g (6.139)

k times with respect to o when n = 2k, we obtain

X NO: ) = i) = e/

® ki, 13 k-1 =
[ e

Setting o = 1/(267), we have

[ g1 g

V276 ) -
=13 2k —1)a*

my = E[X*] =

6.45. Verify Eq. (6.72).
Let fyy(x,») be the joint density function of X and Y. Then using Eq. (6.71), we have

E[X+7Y= J_.,, f_m O+ )y (v, ¥) dxdy

=17 J~ Xfxr(x,») dxd.V-FJ_ J_ Wxy(x,y) dxdy
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6.46.

6.47.

6.48.

Using Eqgs. (6.50a) and (6.69), we have
r_; I: Xy(x, y) dxdy = I:o x[ J:ofxy(x, » dy] dx
= [ s ax= £t
In a similar manner, we have
[ |7 rte dsaty = [ wruy dy= 10
Thus, E[X+ Y] = E[X] + E[Y]

If X and Y are independent, then show that
E[XY] = E[X]E[Y] (6.140)
and E[g1(X)g(N)] = Elgi(N]E[g2(Y)] (6.141)

If X and Y are independent, then by Egs. (6.51) and (6.71) we have
eoen =" [ sfetaryo ddy
~ [ ax [ sy @y = E0 N
Similarly,

Elg0nm = [ a0a0/tryo) dxd

—[" s dx [~ e01s0) dy = Lo Elea)

Find the covariance of X and Y if (a) they are independent and () Y is related to X by
Y=aX+b.

(@) If X and Y are independent, then by Egs. (6.81) and (6.140)
oxy = E[XY] - E[X] E[Y]

=E[X]E[Y]-E[X]E[Y]=0 (6.142)
(®) E[XY] = E[X(aX + b)] = aE[X*] + bE[X] = aE[X*] + buy
uy=E[Y] = E[aX+bl=aE[X]+b=auy+b
Thus, oyy = E[XY] - E[X]E[Y]
= aE[X*] + buy — px(apy + b)
= w(E[X*) - i}) = ac% (6.143)

Note that the result of (a) states that if X and Y are independent, then they are uncorrelated. But the
converse is not necessarily true. (See Prob. 6.49.)

Let Z = aX + bY, where a and b are arbitrary constants. Show that if X and Y are independent,
then

0% = do + b*e% (6.144)
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6.49.
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By Egs. (6.72) and (6.73),
uz =E[Z} = E[aX + bY] = aE[X] + bE[Y] = auy + buy
By Eq. (6.75)
0% = E[(Z~ 2] = E{iaX +bY) - (aux + bup}
= E{[aX = p) + b(Y - up)}
= @E[(X = )’ | + 2abEI(X = i) (¥ = )] + B E[(¥ — iyl

= a’0% + 2abE[(X ~ ux)(Y — py)] + by
Since X and Y are independent, by Eq. (6.141)

El(X = pux)(Y = py)l = E[X — py] E[Y — py] = 0

2
Hence, 0% = d*e% + b*d%

Let X and Y be defined by
X=cos® and Y=sin®

where © is a random variable uniformly distributed over [0, 2x].
(@) Show that X and Y are uncorrelated.
(b) Show that X and Y are not independent.

(a) From Eq. (6.105)

1
0  otherwise

Using Egs. (6.69) and (6.70), we have
00 00 2n
E[X] = J Xfy(x) dx = J (cos O)fe(6) df = %J’o cos0dld=0
Similarly,

o
E[Y]:LJ’ sinf@df=0
2n }o
1 2
and E[XY]:Z,[ cos Osin 6 db
0

2n
=LJ sin 20 d0 = 0 = E[X] E[Y]
4n )o

Thus, from Eq. (6.82), X and Y are uncorrelated.

®) 2 :Lf" 2 :Lf“l -1
E[X7] ), cos 6 db ), 2(l+<:0520)d€ 3

B —

E2_12n_2 ¥12n1 B
[Y]_ﬂ . sin Bdf)fﬂ . E(l—cosl@)d@—

E[X*YY) —lr” cos 20sin 29 df)*ir”l(l— cos 40) =1
“22)o T8t T =3
Hence, EX*Y = é# 1= EUPIEP)

[CHAP. 6

(6.145)

If X and Y were independent, then by Eq. (6.741) we would have E[X*Y?] = E[X?] E[Y?). Therefore, X and

Y are not independent.
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6.50.

6.51.

6.52.

If fy(x) = 0 for x < 0, then show that, for any a > 0,
PX=a)< ’%‘ (6.146)

where uy = E[X]. This is known as the Markov inequality.
From Eq. (6.37¢)

PX=za)= wax(x) dx
Since fy(x) = 0 for x < 0,

py = ElX] = j " x (o) dxaj 300 > [l

Hence, J' fu) dx = POX= o) <X

For any € > 0, show that
0%
2

PlX-pl=0 = (6.147)

where uy = E[X] and 6% is the variance of X. This is known as the Chebyshev inequality.
From Eq. (6.37¢)

e o0 i
Hx-il=o=[""pwma+ [ fwa= [ fwe

lx—pex|=e
By Eq. (6.75)
G= [ emmihmas [ Gopwihwasd [ e
|x—uxl=e Ix—pxl=e

Hence, a3

frlx) dx< C%{

Ix—pxl=c

or

2
PlX—pyl= <X
€

Let X and Y be real random variables with finite second moments. Show that
(E[XY])’ < E[XE[Y"] (6.148)
This is known as the Cauchy-Schwarz inequality.
Because the mean-square value of a random variable can never be negative,
E[X-aYY1=0
for any value of «. Expanding this, we obtain
E[X*]-20E[XY]+E[Y] =0

Choose a value of a for which the left-hand side of this inequality is minimum
.= EXY]
E[YY
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6.53.

6.54.

6.56.

6.57.

6.58.

PROBABILITY AND RANDOM VARIABLES [CHAP. 6

which results in the inequality
2
_ELXT)
E[Y?]
or (E[XY]? < E[XYE[YY

E[XY

Verify Eq. (6.84).
From the Cauchy-Schwarz inequality Eq. (6.748) we have
{EIX — p)(Y = un)l < E[X = i1 EL(Y - )]

or O'gyy = o%»a'%,
Then 5 %y -
Pxy = 2 2

(544

from which it follows that

lpxyl <1

Supplementary Problems

For any three events 4, B, and C, show that

P(AVUBUC)= P(A4)+ P(B)+ P(C)— P(AN B)
—PBNCO)-P(CNA)+PANBNC)

Hint: Write AUBU C= AU (Bu C) and then apply Eq. (6.8).
Given that P(4) = 0.9, P(B)= 0.8, P(AN B)=0.75, find (a) P(4 L B); (b) P(AB); and (c)PA NB)

Ans. (a) 0.95; (5) 0.15; (¢) 0.05.

Show that if events 4 and B are independent, then
PA nB)= PA)PB)
Hint: Use Eq. (6.102) and the relation
A=AnBud nB)
Let 4 and B be events defined in a sample space S. Show that if both P(4) and P(B) are nonzero, then the

events 4 and B cannot be both mutually exclusive and independent.

Hint: Show that condition (6.21) will not hold.

A certain computer becomes inoperable if two components 4 and B both fail. The probability that A fails is
0.01, and the probability that B fails is 0.005. However, the probability that B fails increases by a factor of 3
if 4 has failed.

(a) Calculate the probability that the computer becomes inoperable.
() Find the probability that 4 will fail if B has failed.
Ans. (a) 0.00015 (b) 0.03
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6.59.

6.60.

6.61.

6.62.

6.63.

6.64.

A certain binary PCM system transmits the two binary states X = +1, X = —1 with equal probability.
However, because of channel noise, the receiver makes recognition errors. Also, as a result of path
distortion, the receiver may lose necessary signal strength to make any decision. Thus, there are three
possible receiver states: ¥ =+1,Y =0, and Y = —1, where ¥ = 0 corresponds to “loss of signal.”” Assume
that P(Y = =1|X = +1) = 0.1, A(Y = +1|X =—1) = 0.2, and P(Y = 0|X = +1) = P(¥Y = 0|X = ~1) = 0.05.

(@) Find the probabilities P(Y = +1), P(Y = —1), and P(Y = 0).
(b) Find the probabilities P(X = +1|¥Y = +1) and P(X = -1|Y = -1).

Ans. (@) P(Y=+1)=0.525 P(Y=—1)=0425 P(Y="0)=0.05
() P(X=+1|T=+1)=081, P(X=—1|Y =—1)=0.88

Suppose 10 000 digits are transmitted over a noisy channel having per-digit error probability p = 5x 1075,
Find the probability that there will be no more than two-digit errors.

Ans. 0.9856

Show that Eq. (6.91) does in fact define a true probability density; in particular, show that
[ Aas=1

Hint: Make a change of variable [y = (x — p)/c] and show that

I:j ek dy=+2n
which can be proved by evaluating P by using the polar coordinates.
A noisy resistor produces a voltage V,(f). At ¢ = ¢,, the noise level X = V,(¢;) is known to be a gaussian
random variable with density

1 e /@)
X) = —=¢
Jx(x) Nz

Compute the probability that |X] > ko for £ = 1,2,3.
Ans.  P(X| > ¢) =0.3173, P(IX]| > 20) = 0.0455, P(|X| > 30) = 0.0027

Consider the transformation ¥ = 1/X.
(a) Find fy(p) in terms of fy(x).

®) 1 /30) = 7 find /()
1, /(1
Ans. (@) fy(y) = F/X(}')

1/(om)
1/062 + y2

Note that X and Y are known as Cauchy random variables.

® frn=

Let X and Y be two independent random variables with
fr) =™ utx)  fr)=pe " uy)
Find the density function of Z= X+ Y.
p
Ans. f{z)= B«

?ze%u(z) . B=u

(€= —e ) P
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6.65. Let X be a random variable uniformly distributed over [a, b]. Find the mean and the variance of X.
b+a , _(b-a?
2 0k = 12

Ans. py =

6.66. Let (X, Y) be a bivariate r.v. If X and Y are independent, show that X and Y are uncorrelated.
Hint: Use Eqgs. (6.78) and (6.51)
6.67. Let (X, Y) be a bivariate r.v. with the joint pdf
Frr(, y)=%e'(‘z+’2”2 0 <X,y <0
Show that X and Y are not independent but are uncorrelated.
Hint: Use Eqgs. (6.50) and (6.69).
6.68. Given the random variable X with mean uy and ¢%, find the linear transformation ¥ = aX + b such that

uy=0and 6%=1.

1
Ans.a=—, p=-Fx
ox oy

6.69. Define random variables Z and W by
Z=X+aY W=X-aY
where a is a real number. Determine @ such that Z and W are orthogonal.

_ E[X?]
Ans. a= m

6.70. The moment generating function of X is defined by
M) = B = [ futwe™as
where A is a real variable. Then

m=EX 1=MP0) k=12,

h d* My (A
Where Mo = 2D,

(a) Find the moment generating function of X uniformly distributed over (a,b).
(b) Using the result of (a), find E[X], E[X?], and E[X?].
b _ gha

Ans. (a) i(b e

O EX)=Xb+a), EIX*1=40" +ab+ ), E[X*] = 1b° + PPa+bd + )

6.71. Show that if X and Y are zero-mean jointly normal random variables, then
E[X*Y’1= E[XY E[Y"]+2E[XY])
Hint: Use the moment generating function of X and Y given by

Myy(Ay, o) = E[e" ¥+

0 1 n _ A
=y (Z)E[XkY” kg *
n=0""" k=0



RANDOM PROCESSES

[TRODUCTION

dels for random message signals and noise encountered in communication systems are developed in
er. Random signals cannot be explicitly described prior to their occurrence, and noises cannot be
by deterministic functions of time. However. when observed over a long period, a random signal
nay exhibit certain regularities that can be described in terms of probabilities and statistical
uch a model, in the form of a probabilistic deseription of a collection of functions of times, is
fEndom process.

TONS AND NOTATIONS OF RANDOM PROCESSES

sider a random experiment with outcomes A and a sample space S. If to every outcome 1 £ § we
feal-valued time function X(r, 1), we create a random (or stochastic) process. A random process
erefore a function of two parameters, the time ¢ and the outcome A. For a specific &, say, 4;, we
time function X(r, /;) = x,(r). This time function is called a sample function. The totality of all
tions is called an ensemble. For a specific time ¢, X(1;, ) = X; denotes a random variable.
#;) and fixed A(= &), X(1;, 4;) = x(1;) is a number.

ndom process is sometimes defined as a family of random variables indexed by the parameter
is called the index sef.

1 illustrates the concepts of the sample space of the random experiment, outcomes of the
associated sample functions, and random variables resulting from taking two measurements of
MCtions.

lowing we use the notation X(r) to represent X(z, 4).

S OF RANDOM PROCESSES
Expressions:
random process X(r). For a particular time #, X(t,) = X, is a tandom variable, and its
tion Fy(xg:ty) is defined as
Fylx;:n) = PIXG=x} (7.1)
real number.
163
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Sample space

Outcome

Fig. 7-1 Random process

And Fx(x;;t;) is called the first-order distribution of X(f). The corresponding first-order density

function is obtained by

OFy(xy;t
) =%1—)

(7.2)

Similarly, given #, and #,, X(t;) =X; and X(t,) = X, represent two random variables. Their joint

distribution is called the second-order distribution and is given by
Fx(x1, X331y, 1) = P{X(t)) <x1, X(1) < x5}
where x; and x, are any real numbers.
The corresponding second-order density function is obtained by
*F (X1, X958y, 1
SxGeysxo3 11, 8) = iyt 1)
0x;0x,
In a similar manner, for n random variables X(¢;) = X;(i = 1,...,n), the nth-order distribution is
FX(xh s Xy Iy tn) = P{X(tl) SXppee. 5X(tn) an}
The corresponding nth-order density function is
O Fy(xyy -5 Xn3 b1y -5 1)
Ox;...0x,

SxGors ey Xty ty) =

B. Statistical Averages:

(7.3)

74)

(7.5)

(7.6)

As in the case of random variables, random processes are often described by using statistical averages

(or ensemble averages).
The mean of X(z) is defined by

o0

) = KO = | sfatwsnas

where X(7) is treated as a random variable for a fixed value of z.

(7.7)
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The autocorrelation of X(t) is defined by
Ryx(t, 1) = E[X(11)X(5,)]
o N I T 78)
The autocovariance of X(z) is defined by
Cux (11, 15) = E{[X(1y) — px (11X (1) — px (1)1}

(7.9)
= Ryx(t1, 1) — ux(t)px(12)
The nth joint moment of X(¢) is defined by
BIXG) . X = [ [ n ittt s d, (7.10)

C. Stationarity:
1. Strict-Sense Stationary:

A random process X(¢) is called strict-sense stationary (SSS) if its statistics are invariant to a shift of
origin. In other words, the process X(¢) is SSS if
SxGony e Xty ) = SOy X G, B+ 0) (7.11)

for any c.
From Eq. (7.11) it follows that fx(x(; ;) = fx(x1:1; + ¢) for any c. Hence the first-order density of a
stationary X(7) is independent of #:

) Fx(rys 1) = fyxr) (7.12)
Similarly, fx(x;,%3; 81, ) = fx(x1,%23 8, + ¢, 1, + ¢) for any c. Setting ¢ = —t;, we obtain
SaCer,xa3 01, 10) = fx (e, X030 — 1) (7.13)

which indicates that if X(¢) is SSS, the joint density of the random variables X(¢) and X(¢ 4 ) is independent
of ¢ and depends only on the time difference 1.

2. Wide-Sense Stationary:

A random process X(¢) is called wide-sense stationary (WSS) if its mean is constant

EIX(0)] = py (7.14)
and its autocorrelation depends only on the time difference t
E[X(OX(t + 1)] = Rxx(1) (7.15)

From Eqgs. (7.9) and (7.15) it follows that the autocovariance of a WSS process also depends only on the
time difference T:

. Cxx(t) = Ryx(7) — 1y (7.16)
Setting T = 0 in Eq. (7.15), we obtain
E[X*()] = Ryx(0) (7.17)

Thus, the average power of a WSS process is independent of ¢ and equals Ryx(0).

Note that an SSS process is WSS but a WSS process is not necessarily SSS.

Two processes X(#) and Y(¢) are called jointly wide-sense stationary (jointly WSS) if each is WSS and
their cross-correlation depends only on the time difference t:

Ryy(t,1+ 1) = EIX(O)Y(t + 1)] = Ryy(7) (7.18)
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From Eq. (7.18) it follows that the cross-covariance of jointly WSS X(¢) and Y (¢) also depends only on the
time difference t:

Cxy(7) = Ryy(t) — pix iy (7.19)

D. Time Averages and Ergodicity:
The time-averaged mean of a sample function x(z) of a random process X(z) is defined as

T/2

= @)= lim % Lm x(t) dt (7.20)

where the symbol (-) denotes time-averaging.
Similarly, the time-averaged autocorrelation of the sample function x(¢) is defined as

_ i 1 T/2
Rxx(7) = (x()x(z + 7)) = lim *J‘ x(0x(t + ) dt (7.21)
=T )12
Note that ¥ and Ryx(t) are random variables; their values depend on which sample function of X(¢) is used in
the time-averaging evaluations.
If X(z) is stationary, then by taking the expected value on both sides of Eqgs. (7.20) and (7.21), we obtain

. . 1 T/2
Elx] = Th_{{)lof'[_Tﬂ E[x(0)]dt = px (7.22)

which indicates that the expected value of the time-averaged mean is equal to the ensemble mean, and

~

) T/2
E[Ryx(7)] = 71_1_1};10%4[ " Elx(#)x(t + 1)]dt = Ryy(7) (7.23)
—1/

which also indicates that the expected value of the time-averaged autocorrelation is equal to the ensemble
autocorrelation.

A random process X(¢) is said to be ergodic if time averages are the same for all sample functions and
equal to the corresponding ensemble averages. Thus, in an ergodic process, all its statistics can be obtained
by observing a single sample function x(#) = X(z, 4) (/. fixed) of the process.

A stationary process X(¢) is called ergodic in the mean if

= (@)= EX0)] = iy y, (7.24)

Similarly, a stationary process X(¢) is called ergodic in the autocorrelation if
Ryx(t) = (x(Ox(t + 1)) = EIX()X(t + 1)] = R;(\,g({—)d/‘ (7.25)

Testing for the ergodicity of a random process is usually very difficult. A reasonable assumption in the
analysis of most communication signals is that the random waveforms are ergodic in the mean and in the
autocorrelation. Fundamental electrical engineering parameters, such as dc value, root-mean-square (rms)
value, and average power can be related to the moments of an ergodic random process. They are
summarized in the following:

1. X = (x(?)) is equal to the dc level of the signal.

2. [%]® = (x(f))* is equal to the normalized power in the dc component.

3. Ryx(0) = (x*(1)) is equal to the total average normalized power.

4. 5% = (P(O)— (x(1))? is equal to the average normalized power in the time-varying or ac component of
the signal.

5. &y is equal to the rms value of the ac component of the signal.
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7.4 CORRELATIONS AND POWER SPECTRAL DENSITIES

In the following we assume that all random processes are WSS.

A. Autocorrelation Ryx(7):

The autocorrelation of X() is [Eq. (7.15)]
Ryx(1) = E[X()X(1 + 7)]

Properties of Rxx(1):

1. Ryx(—1) = Rxx(7)
2. [Ryx (| < Rxx(0)
3. Ryx(0) = E[X*(1)]

B. Cross-Correlation Ryy(7):

The cross-correlation of X(¢) and Y(¢) is [Eq. (7.18)]
Rxy(7) = E[X(OY(t + 7)]

~

Properties of Ryy(7):

1. Ryy(=7) = Ryx(7)
2. [Rxy(0)| < vRxx(0)Ryy(0)
3. [Rxy(7)] < YRxx(0) + Ryy(0)]

C. Autocovariance Cxx(7):

The autocovariance of X(z) is [Eq. (7.9)]
Cxx(7) = E[{X(t) — EIX()IHX (2 + 7) — E[X(z + DI}
= Ryx(t) — g

D. Cross-Covariance Cyy(7):

The cross-covariance of X () and Y(¢) is
Cxy(7) = E[{X(2) - EIXOIHY (¢ + ) — E[Y(t + 1)]}]
= Ryy(t) — uxpy

Two processes X(f) and Y(¢) are called (mutually) orthogonal if
Ryy(1) =0

169

(7.26)
(7.27)

(7.28)

(7.29)
N30
)

31
pd

(7.32)

(7.33)

(7.34)
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They are called uncorrelated if
Cyy(1) =0 (7.35)

E. Power Spectral Density or Power Spectrum:

Let Ryx(7) be the autocorrelation of X(#). Then the power spectral density (or power spectrum) of X(f)
is defined by the Fourier transform of Ryy(7) (Sec. 1.3) as

00

Syx(w) = J Ryx (D) 7™ dz (7.36)

1 .
Thus, R;Q((‘E)=57;J‘ Syx(@)é“ dw (7.37)

Equations (7.36) and (7.37) are known as the Wiener-Khinchin relations.

Properties of Sxx(w):

1. Sxx()is real and Syx(w) =0 (7.38)
2. ' Sxx(—w) = Sxx(w) 7.39)
> 2z | Sw(@ do = Rex(0) = B (0] 7.40)

F. Cross Spectral Densities:

. The cross spectral densities (or cross power spectra) Sxy(cw) and Syx(w) of X(¢) and Y (¢) are defined by

Syy(w) = fw Ryy(0)e " dr 741

and Syx() = J : Ryx(0)e " dz (7.42)
The cross-correlations and cross spectral densities thus form Fourier transform pairs. Thus,

Ro) =5 [ Sutere"do 7.43)

Ryx() = 2717; J: Syx(@)e " dw (7.44)

Substituting the relation [Eq. (7.29)]
Rxy(7) = Ryx(-7)

in Egs. (7.41) and (7.42), we obtain
Sxr(@) = Syx(—w) = Spx(w) (7.45)
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7.5 TRANSMISSION OF RANDOM PROCESSES THROUGH LINEAR SYSTEMS
A. System Response:

A linear time-invariant (LTI) system is represented by (Sec. 2.2)

Y(@) = LIX(®)] (7.46)

where Y(¢) is the output random process of an LTI system, represented by a linear operator L with input
random process X(f).

Let h(¢) be the impulse response of an LTI system (Fig. 7-2). Then [Sec. 2.2, Eq. (2.8)]

Y() = h@) *X(t) = J h(a)X(t — o) do (7.47)
8(1) LTI h(r)
X(1) system Y1)

Fig. 7-2 LTI system

B. Mean and Autocorrelation of the Output:

ety = ELYO) = ] [ moxe -0y ]
= ,[: R()E[X(t — o)]do:
= r; h@puy(t = ) d = h(t) * py() (7.48)
Ryy(t1, 1) = ELY ()Y (1)

= EU: I:, )Xt~ DBX(t, ~ B) dozdﬂ]

= [ | e - o, - pasdp

= | @B a1, prasap 749)

If the input X(¢) is WSS, then from Eq. (7.48) we have

E[Y®] = J_w e pxdo = px J_m (e} dec = pxH(0) (7.50)

where H(0) is the frequency response of the linear system at = 0. Thus, the mean of the output is a
constant.

The autocorrelation of the output given in Eq. (7.49) becomes
Ryt = [ [ Heh(B)Rextty =11+ = daap 7.51)

which indicates that Ryy(?;,,) is a function of the time difference © = ¢, — #;. Hence,
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Ryy(7) = r; j_w B()h(B)Ryx(t + o — B) dudB (7.52)

Thus, we conclude that if the input X(r) is WSS, the output Y(7) is also WSS.

C. Power Spectral Density of the Output:
Taking the Fourier transform of both sides of Eq. (7.52), we obtain the power spectral density of the
output
Syy(w) = ﬁ; Ryy(1)e 7" dr
= I: J : J’:) RR(B)Rxx(t + 0. — Ble 7 dv dudf
= |H(0)*Sxx() (7.53)

Thus, we obtained the important result that the power spectral density of the output is the product of the
power spectral density of the input and the magnitude squared of the frequency response of the system.

When the autocorrelation of the output Ryy(t) is desired, it is easier to determine the power spectral density
Syy(w) and then to evaluate the inverse Fourier transform (Prob. 7.21). Thus,

Ryy(z) = ij Syr(@)d™do
27 ) -
1 h
= EJ |H(0)*Sxx(w)e do (7.54)
By Eq. (7.17), the average power in the output Y(z) is

1 00
BP0 = Rn©) = 5 [ H©PSp@)do (7.55)

7.6 SPECIAL CLASSES OF RANDOM PROCESSES

In this section, we consider some important random processes that are commonly encountered in the
study of communication systems.

A. Gaussian Random Process:

Consider a random process X(¢), and define n random variables X(t1), ..., X(z,) corresponding to n time

instants #y,...,t, Let X be a random vector (nx 1 matrix) defined by
X(t)
X= : (7.56)
X(t,)

Let x be an n-dimensional vector (nx 1 matrix) defined by
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X
x=|: (7.57)
xn
so that the event {X(#;) <x;,...,X(#,) < x,} is written {X =< x}. Then X(¢) is called a gaussian (or normal)
process if X has a jointly multivariate gaussian density function for every finite set of {#,} and every n.

The multivariate gaussian density function is given by

1
£l = exp[-i x— ) Clx— u)] (7.58)

1
@y /?| det €|/

where T denotes the “transpose,” p is the vector means, and C is the covariance matrix, given by

It E[X(11)]
p=EXI=| : [=] (7:59)
[T E[X ()]
[ Cip ... Cy, ]
c=|.. ... . (7.60)
Cu ... Cp
where Cyj = Cxx(t;, 1) = Ryx (8, 1)) — paty (7.61)

which is the covariance of X(#;) and X(t;), and det C is the determinant of the matrix C.

Some of the important properties of a gaussian process are as follows:
1. A gaussian process X(¢) is completely specified by the set of means

w=EX®)] i=1,...,n
and the set of autocorrelations
Rux(1;, 1) = EIX@X(@)] i, j=1,...,n

2. If the set of random variables X(z,), i = 1,...,n, is uncorrelated, that is,
C;i=0 i#j

then X(z;) are independent.
3. If a gaussian process X(¢) is WSS, then X(z) is SSS.
4.. If the input process X(?) of a linear system is gaussian, then the output process Y(f) is also gaussian.

B. White Noise:

A random process X(z) is called white noise if [Fig. 7-3(a)]

Syx(@) = g (7.62)

S

Taking the inverse Fourier transform of Eq. (7.62), we have
Rxx(t) = gé(r) (7.63)

which is illustrated in Fig. 7-3(). It is usually assumed that the mean of white noise is zero.
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Sxxlaw)
Ryx(r}

N

;élr)

0 w 0 T
(a) (b}
Fig. 7-3 White noise

C. Band-Limited White Noise:

A random process X(z) is called band-limited white noise if
T ol <wp
Sxx(@) = 1 2 (7.64)

0 lol > ws

Then

1 (* ; i
Rex® =5 J i gdwrdw — Nop Sin @7 (7.65)

2n  wpT

And Syy(w) and Ryy(t) of band-limited white noise are shown in Fig. 7-4.

Note that the term white or band-limited white refers to the spectral shape of the process X(¢) only, and
these terms do not imply that the distribution associated with X(z) is gaussian.

Syx(w) Ryxtr)
il

il 2n

2

-wy 0 wg w ~ AASK N ~ T
™ s

wg wg
(@ (b)
Fig. 7-4 Band-limited white noise

D. Narrowband Random Process:

Suppose that X(f) is a WSS process with zero mean and its power spectral density Syx(c) is nonzero
only in some narrow frequency band of width 2W that is very small compared to a center frequency ., as
shown in Fig. 7-5. Then the process X(¢) is called a narrowband random process.

In many communication systems, a narrowband process (or noise) is produced when white noise (or
broadband noise) is passed through a narrowband linear filter. When a sample function of the narrowband
process is viewed on an oscilloscope, the observed waveform appears as a sinusoid of random amplitude
and phase. For this reason, the narrowband noise X(r) is conveniently represented by the expression

X(t) = V() cos [w.t + $(B)] (7.66)
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Sxx(w)
1 A N |
—w, 0 w, @
— —
2w pale

Fig. 7-5 Narrowband random process

where V(¢) and ¢(f) are random processes that are called the envelope function and phase function,
respectively.
Equation (7.66) can be rewritten as

X = V() cos ¢(2) cos w .t — V(t)sin ¢(#)sin w, ¢

) (7.67)
= X (t)cos w.t — X (#)sin ot
where X () = V(¢)cos ¢(r) (in-phase component) (7.68a)
X,(f) = V() sin () (quadrature component) (7.68b)
V() = XH2) + X2() (7.69a)
—_ -1 Xs(t)
é() = tan X0 (7.69b)

Equation (7.67) is called the quadrature representation of X(¢). Given X(?), its in-phase component X_(z)
and quadrature component X(f) can be obtained by using the arrangement shown in Fig. 7-6.

Low-pass X0
filter i
X(1)
—_] 2cos w,t

Low-pass X0
filter

—2sin w !

Fig. 7-6

Properties of X (t) and X ()
1. X_.(?) and X,(¢) have identical power spectral densities related to that of X(¢) by

Sy (@) = Sy (@) = {gxx((u —w) +Syx(w + o)  lolsW

otherwise 7.70)
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2. X.(t) and X,(z) have the same means and variances as X(¢):

bx, = px, = kx =0 (7.71)

0% = o% = 0% (7.72)

3. X.(¢) and X,(¢) are uncorrelated with each other:
EX.0X®] =0 (7.73)

4. If X(¢) is gaussian, then X,(¢) and X(¢) are also gaussian.
5. If X(¥) is gaussian, then for fixed but arbitrary 7, V(z) is a random variable with Rayleigh distribution and
¢(¢) is a random variable uniformly distributed over [0,2x]. (See Prob. 6.39.)

Solved Problems

RANDOM PROCESSES AND STATISTICS OF RANDOM PROCESSES

7.1. Consider a random process X(¢) given by
X(f) = Acos (wt + ©) (7.74)
where A and w are constants and @ is a uniform random variable over [—, ]. Show that X(7) is WSS.
From Egq. (6.105) (Prob. 6.23), we have
1

fo®) =1 2n
0  otherwise

sf<sn

Thus, 1x(® = EIX(®)] = JW Acos (1 + O)fo(0) dO
=ir cos (wt+6)dd =0 (7.75)
27 ) =

Ryx(t, 1 + 1) = E[X(DX(t + 7))

2 rn
= A cos (wt + 0) cos [w(t + 1) + 01d0

2n
A% (71
= —J ~[cos wt + cos Qwt + 20 + wr)]do
2n J-n2
A2

= ?cos ot (7.76)

Since the mean of X(f) is a constant and the autocorrelation of X() is a function of time difference only, we

conclude that X(7) is WSS.
Note that Ryx(z) is periodic with the period Ty = 27/w. A WSS random process is called periodic if its

autocorrelation is periodic.

7.2.  Consider a random process X(#) given by
X(?) = Acos (wt + 0) (7.77)

where @ and 6 are constants and A is a random variable. Determine whether X () is WSS.
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7.3.

7.4.

Hx(®) = E[X(2)] = E[Acos (wt + 0)]
= cos (wt + O)E[A]
which indicates that the mean of X(¢) is not constant unless E[A] = 0.
Ryx(t,1+ 1) = E[X(NX(t + 7)]
= E[A%cos (ot + 0) cos [w(t + ) + O)]]
= §[cos T + cos Qwt + 26 + w1)]E[AY]

177

(7.78)

(7.79)

Thus, we see that the autocorrelation of X(¢) is not a function of the time difference t only, and the process X(?) is

not WSS.

Consider a random process Y(¢) defined by
(3
Y@ = J’ X(tydr
0

where X(#) is given by
X(t) = Acos wt

where ® is constant and A = N[0; 02].

(a) Determine the pdf of Y(r) at t = 1.
(b) Is Y(r) WSS?

(73 H 1)
@ Y(t) = J Acos wtdt = MA
0

Then from the result of Prob. 6.32, we see that Y(z;) is a gaussian random variable with

ELY()] = %%E[A] =0

H 2
and o2 = var[¥ (1)} = (sm wt’“) o

Hence, by Eq. (6.91), the pdf of Y(#) is

Fo) = 10D
2nay

(7.80)

(7.81)

(7.82)

(7.83)

(7.84)

(7.85)

(b) From Egs. (7.83) and (7.84), the mean and variance of Y() depend on time #(;), so Y(#) is not WSS.

Consider a random process X(r) given by
X(t) = Acos wt + Bsin wt

where o is constant and A and B are random variables.

(a) Show that the condition
E[A]=E[B]=0

is necessary for X(7) to be stationary.

(7.86)

(7.87)

(b) Show that X(7) is WSS if and only if the random variables A and B are uncorrelated with equal

variance, that is,
E[AB]=0

(7.88)
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and E[A] = E[B*] = ¢* (7.89)

(a) px(®) = E[X(®)] = E[A]cos wt + E[Blsin wt must be independent of ¢ for X(s) to be stationary. This is
possible only if py(#) = 0, that is,
E[A]=E[B]=0
(b) If X(¢) is WSS, then from Eq. (A7.17)

EDCO)] = E[Xz(%)] = Ry(0) = o}

But XO0)=A and X(i) =B
2w,
Thus, E[A’] = E[B*] = 0% = ¢*

Using the preceding result, we obtain

Ryx(t,t + 1) = E[X(HX(t + 1)]
= E[(A cos wt + B sin wt)[A cos w(t + 1) + B sin w(t + 1)]]

= o?cos wt + E[ABlsin Qwt + w1) (7.90)

which will be a function of t only if E[AB] = 0.
Conversely, if E[AB] = 0 and E[A%] = E[B?] = o?, then from the result of part () and Eq. (7.90), we have

px(®) =0
Ryx(t,t 4 1) = 6%cos w1 = Ryy(x)

Hence, X(r) is WSS.

7.5. A random process X(¢) is said to be covariance-stationary if the covariance of X(f) depends only on
the time difference © = 1, ~ 1;, that is,

Cxx(t,1 4 7) = Cyx(7) (7.91)

Let X(#) be given by
X(@#)=(A+ 1)cost-+ Bsint
where A and B are independent random variables for which
E[A]=E[Bl=0 and E[A’]=E[B’]=1
Show that X(#) is not WSS, but it is covariance-stationary.
tix(t) = E[X(2)] = E[(A + 1)cos ¢ + Bsin 1)]
=_E[A + 1]cos t + E[B]sin ¢
=COoSt?
which depends on z. Thus, X(#) cannot be WSS.

Ryx(t1, 1) = E[X(8)X(12)]
= E[[(A+ 1)cos t; + Bsin #;][(A 4 1) cos t, + Bsin 1,]]

= E[(A + 1)2] cos t;cos t, + E[B*] sin tysinty
+ E[(A + 1)B](cos f; sin #, + sin #; cos ;)
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E[(A + 1)2] =E[A® + 24 + 1] = E[AN 4+ 2E[A] + 1 =2
E[(A + 1)B] = E[AB] + E[B] = E[A]E[B] + E[B] = 0
E[B’]=1

Substituting these values into the expression of Ryx(fy,%,), we obtain

Ryx(t1,1,) = 2€08 t; cOs 1, + sin t; sin &,
=cos (1 —1;) +cos t; cos t,

From Egq. (7.9), we have

Cxx(ty, 1) = Ryx(t1, 12) — px(t)ux ()
= c0s (#; — ;) + COS 1,COS f; — COS8 £;COS 13
=cos (t; — ;)

Thus, X(¢) is covariance-stationary.
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7.6. Show that the process X(¢) defined in Eq. (7.74) (Prob. 7.1) is ergodic in both the mean and the

autocorrelation.

From Eq. (7.20), we have
1 T/2
X = (x(f)) = lim —I Acos (wt+0) dt
T—oT |12

A (Tof2
=— cos (wt+0)dt =0
ToJ)-1012
where Ty = 21/ w.
From Eq. (7.21), we have

Ryx (1) = (x(Ox(z + 7))
= lim 1

/2
‘J‘ ' A’cos (wt+0) cos [o(t + 1) + 0)dt
=T ) 172

A% (To/2 1
= —J —{cos wt+cos(2wt + 20 + wt)ldt
Ty J-1,22
2
= TCOS wT

Thus, we have

ux(t) = E[X()] = (x(0)) = %
Ryx(7) = EX(HX(t + 1] = x(DX(t + 7)) = Rx(7)

(7.92)

(7.93)

Hence, by definitions (7.24) and (7.25), we conclude that X(f) is ergodic in both the mean and the autocorrelation.

CORRELATIONS AND POWER SPECTRA
7.7. Show that if X(f) is WSS, then

X + 1) = XOF | = 2(Rix(0) ~ Rx(@)]

where Ryy(t) is the autocorrelation of X(¢).

Using the linearity of E (the expectation operator) and Egs. (7.15) and (7.17), we have

(7.94)
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Hxe+0 -XOP | = E[X2 + 7 = 2X( + X () + b <0)!
= [ X6+ - 281X¢ + 0X@1 + E[ X0

= Ryx(0) = 2Ryx(7) + Ryx(0)
= 2[Ryx(0) — Ryx(7)]

7.8.  Let X(z) be a WSS random process. Verify Egs. (7.26) and (7.27), that is,
@ Ryx(~1) = Rxx(’t)
1)) [Rix (D] < Ryx(0)
(a) From Eq. (7.15)

Ryx () = E[X()X(t + )]

Setting £+ =7, we have
Ryx(t) = EIX(7 — X ()]
= E[X("YX({ — 1)] = Ryx(—1)

® E[1x() = X + or]=o0
or E[Xz(t) £ 2XOX(+0) + X +9]>0
or E[X*0] = 2BX@X( + 0] + E[X¢+0]=0
or 2Ry (0) = 2Ryy(z) = 0
Hence, Ryx(0) = |Ryx(7)]

7.9.  Show that the power spectrum of a (real) random process X(¢) is real, and verify Eq. (7.39), that is,

Sxx(—w) = Sxx(w)

From Eq. (7.36) and by expanding the exponential, we have
Syx(@) = J: Ryx(1)e 7 dr
= j:o Ryx(1)(cos wt — jsin wt)dt (7.95)
= J-: Rxx(7) cos wtdt —j J: Ryx(7)sin wtdz
Since Ryx(—7) = Ryx(t) [Eq. (7.26)], the imaginary term in Eq. (7.95) then vanishes and we obtain
o0

Sxx(w) = J_w Ryx(t)cos wtdt (7.96)

which indicates that Syy(w) is real.
Since the cosine is an even function of its arguments, that is cos (—wt) = cos wr, it follows that
Sxx(—0) = Syx(®)

which indicates that the power spectrum of X(¢) is an even function of frequency.
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7.10.

7.11.

A class of modulated random signal Y(z) is defined by
Y1) = AX(¥) cos (w.t + O) (7.97)

where X(?) is the random message signal and Acos (w,f + ©) is the carrier. The random message signal
X(r) is a zero-mean stationary random process with autocorrelation Ryx(7) and power spectrum Sxx(w).
The carrier amplitude A and the frequency o, are constants, and phase © is a random variable
uniformly distributed over [0,27]. Assuming that X(r) and © are independent, find the mean,
autocorrelation, and power spectrum of ¥(z).

uy(®) = E[Y(#)] = E[AX () cos (@t + ©)]
= AE[X(t)]E[cos (0.t + @)] =0
since X(#) and @ are independent and E[X(#)] = 0.
Ryy(t,t + 1) = E[Y(@®)Y(t + 7)]
= E[A’X()X(t + T) cos (w t + O) cos [0 (t + 1) + O]

2
= A?E[X(t)X(z + 1)]1E[cos w,T + cos 2w .t + @, T + 20)]

2
= A?RXX(T) cos 0,7 = Ryy(1) (7.98)

Since the mean of ¥(7) is a constant and the autocorrelation of ¥(z) depends only on the time difference 7, ¥(1) is
‘WSS. Thus,

A2
Syy(w) = F[Ryy(1)] = Ef[Rxx(T) cos w,1]

By Egs. (7.36) and (1.76)

F[Ryx(1)] = Sxx(w)
F(cos w,T) = nd(w = 0,) + 1w + w.)

Then, using the frequency convolution theorem (J.29) and Eq. (1.36), we obtain
A2
Syy(w) = ESXX((D) * [1(w — o) + nd(@ + ©,)]

2
= AT [Sxx(w — w,) + Sxx(w + )] (7.99)

Consider a random process X(¢) that assumes the values +A with equal probability. A typical sample
function of X(¢) is shown in Fig. 7-7. The average number of polarity switches (zero crossings) per unit

x(t)

O
JUULD L0

Fig. 7-7 Telegraph signal )
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‘'
time is a. The probability of having exactly k crossings in time t is given by the Poisson distribution
[Eq. (6.88)] >
o (1)

k!

where Z is the random variable representing the number of zero crossings. The process X(#) is known as
the telegraph signal. Find the autocorrelation and the power spectrum of X(¢).

PZ=k=e (7.100)

If © is any positive time interval, then
Ryx(t,t + 1) = E[X()X(t + 7)1
= A?P[X(z) and X(z + 1) have same signs]
+ (—AZ)P[X(t) and X(¢ + 1) have different signs]
= A%P[Z evenin (1,1 + 1)] ~A’P[Z odd in (1, ¢ + 1)]
K &
_ A2 (at) 2 oz (0T
—A S T T
keven k odd
_ 42 -t < (az) 13
=AY e
=0
< (=)

!
&

— A2 = A2 g2, (7.101)

which indicates that the autocorrelation depends only on the time difference . By Eq. (7.26), the complete solution
that includes 7 < 0 is given by

Ryx(1) = A2e™ 20 (7.102)

which is sketched in Fig. 7-8(a).

Taking the Fourier transform of both sides of Eq. (7.102), we see that the power spectrum of X(?) is
[Eq. (1.55)]
4o

A2
Sl @) = A G

(7.103)

which is sketched in Fig. 7-8(b).

Sxxlw)

A?

)

Fig. 7-8

Consider a random binary process X(¢) consisting of a random sequence of binary symbols 1 and 0.
A typical sample function of X(f) is shown in Fig. 7-9. It is assumed that

1. The symbols 1 and O are represented by pulses of amplitude +A and —AV, respectively, and
duration T}, s.

2. The two symbols 1 and O are equally likely, and the presence of a 1 or O in any one interval is
independent of the presence in all other intervals.

e



CHAP. 7] RANDOM PROCESSES 183

3. The pulse sequence is not synchronized, so that the starting time ¢, of the first pulse after t = 0 is
equally likely to be anywhere between O to T,. That is, ¢, is the sample value of a random variable
T, uniformly distributed over [0, T].

x()

— 1, —

e T, —— T, —

-A

Fig. 7-9 Random binary signal

Find the autocorrelation and power spectrum of X(?).
The random binary process X(#) can be represented by
XO= > Apt—kT,—T) (7.104)
where {A,} is a sequence of independent random variables with P[A, = A] = P[A; = —A] =1, p(® is a unit
amplitude pulse of duration Ty, and T is a random variable uniformly distributed over [0, T].
i 1
ux(t) = E[X(0)] = E[A] = EA + 5(—14) =0 (7.105)
Let £, > t;. When t, —t; > Tj, then ¢, and , must fall in different pulse intervals [Fig. 7-10 (a)] and the random
variables X(#,) and X(#,) are therefore independent. We thus have
Ryx(t1, 1) = E[X(1))X(t2)] = E[X(1))E[X(1)] = 0 (7.106)

When #, —t; < Tp, then depending on the value of 7, #; and f, may or may not be in the same pulse interval
[Fig. 7-10 (b) and (c)]. If we let B denote the random event “f; and 1, are in adjacent pulse intervals,” then we have

Ryx(t1,1,) = EIX(2)X(12)| BIP(B) + E[X(t)X(12)|BIP(B)
Now E[X(1)X(1;)1B] = EIX(1)]E[X(1;)] = 0

EIX(1)X(2)|B] = A

Since P(B) will be the same when #; and t, fail in any time range of length T}, it suffices to consider the case
0 < t < Tj, as shown in Fig. 7-10 (b). From Fig. 7-10 (b),

P(B)=P(t, <T; <1t

& ] L—t
= t)dty =] —dty=
J.z, Jr,(ta) dty J.“ T, e T,

From Eq. (6.4), we have

PB) =1-PB)=1-2_1
Ty

Thus, ‘ Reglty, 1) = A2(1 - ’3;—”) = Reg(®) 7.107)
b

where 1 =1, — 1.
Since Ryx(—7) = Rxx(1), we conclude that ’
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x(e)

x(1)

Ho ot |7, 4

)
Fig. 7-10

21 _ IT, <
Rye(9) = {A (1 Fb) ldl=<T, (7.108)
0 le] > T,

which is plotted in Fig. 7-11(a).
From Eqs. (7.105) and (7.108), we see that X(z) is WSS. Thus, from Eq. (7.36), the power spectrum of X(¢) is

sin (07}/2) ]2
S = AT, [— 7.109
xx(©) bl oT,/2 ( )
which is plotted in Fig. 7-11(b).
Ryx(t) Sxx{@)
A? AT,
-7, 0 T, T 2z 0 27 w
T, T,
(a) )

Fig. 7-11
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Let X(#) and Y(7) be WSS random processes. Verify Eqgs. (7.29) and (7.30), that is,

(@) Ryy(—7) = Ryx(7)
® [Rxy (D) < yRxx(0)Ryy(0)

(a) ByEq. (7.18)
Ryy(—7) = E[X(0Y(t — )]

Setting t —t = ¢, we obtain

Ryy(—0) = EIX(! + 0Y()] = E[Y()X( + D] = Ryx(7)

(b) From the Cauchy-Schwarz inequality Eq. (6.148) (Prob. 6.52) it follows that
{EIX@Y( + D < EX*IEY@ + 1)

or [Ryy (DT < Ryx(O)Ryy (0)
Thus, [Rxy(7)| =< Rxx(O)Ryy(0)

Let X(r) and Y(7) be both zero-mean and WSS random processes. Consider the random process Z(?)
defined by

ZH=XO+ Y (7.110)

(@) Determine the autocorrelation and the power spectrum of Z(z) if X(¢) and ¥(¢) are jointly
WSS.

(b) Repeat part (a) if X(#) and Y(¥) are orthogonal.

(¢) Show that if X(¢) and Y(¢) are orthogonal, then the mean square of Z(¥) is equal to the sum of
the mean squares of X(f) and Y(¢).

(a) The autocorrelation of Z(z) is given by
Ry (11, 12) = E[Z(t))Z(1))
= E[[X(t;) + Y)IX(rp) + Y (12)1]
= E[X(t)X(t)] + E[X(1)Y (%))
+ E[Y(t)X(12)] + ELY (1)Y (1)]
= Ryx(t1, 1) + Rxy(t1, 1) + Ryx(t1, 22) + Ryy(t1, 1) (7.111)

If X(¢) and Y(7) are jointly WSS, then we have
Rzz(1) = Ryx(0) + Ryy (1) + Ryx(t) + Ryy(7) (7.112)

.

where 1 =#, — 1;.
Taking the Fourier transform of both sides of Eq. (7.112), we obtain
Szz(@) = Sxx(w) + Sxy(@) + Syx(®) + Syy(®) (7.113)

(b) If X(r) and Y(p) are orthogonal [Eq. (7.34)],
Ryy(t) = Ryx(1) =0 .
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¥
Then Egs. (7.112) and (7.113) become
Rzz(v) = Ryx(7) + Ryy(7) (7.114)

and Szz(w) = Syx(w) + Syy(w) (7.115)

(¢) From Egs. (7.114) and (7.17),
Rz7(0) = Ryx(0) + Ryy(0)

or E[ZX() = EIX*0] + E[Y* (] - (7.116)

which indicates that the mean square of Z(#) is equal to the sum of the mean squares of X(#) and Y(¥).

Two random processes X(¢) and Y(¥) are given by
X(t) = Acos (wt + ©) (7.117a)

Y(t) = Asin (0t + @) (7.117b)
where A and @ are constants and ® is a uniform random variable over [0,2x]. Find the cross-
correlation of X(r) and Y(¢), and verify Eq. (7.29).

From Eq. (7.18), the cross-correlation of X(¢) and Y(7) is
Rxy(t,t+ 1) = E[X()Y(t + 7))
= E[A%cos (wt 4 O)sin [w(t + 7) + O]

2
= A?E[sin Qot + w1 + 20) — sin (—wrt)]

A2
= -z—sin T = Ryy(7) (7.118a)

Similarly, Ryx(t,t + 1) = E[Y()X(t + 1)]

= E[A%sin (0t + ©) cos [w(t + 1) + O]
2
= A?E[sin Qot + w0t + 20) + sin (—o7)]
2
= —A?sin T = Ryx(1)

(7.118b)

From Egqs. (7.118a) and (7.118b)

A? A?
Ryy(—1) = 73111 w(~1) = —75in 7T = Ryx(1)

which verifies Eq. (7.29).

Let X(¢) and Y(r) be defined by
X(t) = Acos wt + Bsin wt (7.119a)

Y(#) = Bcos wt — Asin wt (7.119b)

where o is constant and A and B are independent random variables both having zero mean and variance
2. Find the cross-correlation of X(7) and ¥(¢).

The cross-correlation of X(7) and Y(?) is
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Ryy(t1,12) = E[X(1))Y(5)]
= E[(Acos wt; + Bsin wt;}(Bcos wt, — Asin wt,)]
= E[AB](cos wt,c0s ot — sin wt;sin wt,)

— E[A%]cos wtsin wi, + E[B*Isin wtycos oty
Since E[AB] = E[AJE[B] =0 E[A’] = E[B*] = ¢*
we have Rxy(t, 1) = o (sin Wt COS Wi, — cos wisin wr,)
= o%sin w(t; — 1)
or Ryy(1) = —0°sin wt (7.120)

where 1 =1, — 1.

TRANSMISSION OF RANDOM PROCESSES THROUGH LINEAR SYSTEMS

7.17. A WSS random process X(r) is applied to the input of an LTI system with impulse response
h(?) = 3¢ >'u(f). Find the mean value of the output ¥(f) of the system if E[X(£)] = 2.

By Eq. (1.53), the frequency response H(w) of the system is
1
= F[h)] = 3——
H(w) [r(H] )
Then, by Eq. (7.50), the mean value of ¥(z) is
3
() = ELY)) = i) = 2(3) = 3

7.18. Let Y(¢) be the output of an LTI system with impulse response (f), when X() is applied as input. Show
that

@ Rty = [ HBRa(t,12 = B (7.121)

00

®) Ryylts, 1) = j @Ryt — 1) d (7.122)

(a) Using Eq. (7.47), we have
Rxy(t1, 1) = E[X(2))Y ()]
= ex |~ moxe—pap]

= [ mppExexc, - pias
3 = ,[—w h(B)Rxx(t1, 1, = By dp

* (b) Similarly,
Ryy(t1,1) = E[Y(1)Y(1)]
= E[ Jw RX(t, = ) docY(tz)]

- | hEue - v
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= [ @Rt = 2,1

7.19. Let X(¢) be a WSS random input process to an LTI system with impulse response A(f), and let Y() be

7.20.

the corresponding output process. Show that

(@) Rxy(7) = h(7) * Ryx(7) (7.123)
(b) Ryy(7) = h(=7) % Ryy(1) ’ (7.124)
(c) Syr(w) = H(w)Sxx(w) (7.125)
@ Syr(@) = H'(0)Syy(®) (7.126)

where * denotes the convolution and H"(e) is the complex conjugate of H(w).

(a) If X(z) is WSS, then Eq. (7.121) of Prob. 7.18 becomes
Ray,)= [ WPRa—1,- p)ap (7.127)
which indicates that Ryy(t;, ,) is a function of the time difference t = #, — #; only. Hence, Eq. (7.127) yields

Rer) = [ HERux (= P)df = o) * Rx(©

(b) Similarly, if X(s) is WSS, then Eq. (7.122) becomes

Ry, ) = [ WOty =11 + 0
ot Ryp(7) = fo B Ry (2 + 0) dot = h(—7) % Rygy(7)

(c) Taking the Fourier transform of both sides of Eq. (7.123) and using Eqs. (7.41) and (1.28), we obtain
Sxr(w) = H(w)Sxx(w)

(d) Similarly, taking the Fourier transform of both sides of Eq. (7.124) and using Egs. (7.36), (1.28), and (1.21),
we obtain

Syy(@) = H(0)Sxy(w)
Note that by combining Eqgs. (7.125) and (7.126), we obtain Eq. (7.53), that is,
Syy(@) = H (0)H(@)Sxx (@) = |H(@)*Sxx ()

Let X(#) and Y(¢) be the wide-sense stationary random input process and random output process,
respectively, of a quadrature phase-shifting filter (—n/2 rad phase shifter of Sec. 2.6). Show that

(@) Rxx(1) = Ryy(7) (7.128)

® Ryy(1) = Ryx (7) (7.129)

where Ryy(t) is the Hilbert transform of Ryx (7).



CHAP. 7] RANDOM PROCESSES 189

7.21.

7.22.

(a) The Hilbert transform X(r) of X(f) was defined in Sec. 2.6 as the output of a quadrature phase-shifting filter
with
1 ,
h() =— H(w) = —jsgn()
Tt
Since |H(@)I* = 1, we conclude that if X(7) is a WSS random signal, then Y(¢) = X and by Eq. (7.53)

Syr() = |H(@)[Sxx(@) = Sxx()

Hence, Ryy(®) = F 7 [Syp(@)] = F ' [Sxx(@)] = Ryx(7)

(b) Using Egs. (7.123) and (2.26), we have

1 N
Ryy(7) = h(z) * Ryx(t) = Pl Rxx(1) = Rxx(7)

A WSS random process X(#) with autocorrelation
Ryx(2) = Ae™

where A and a are real positive constants, is applied to the input of an LTI system with impulse
response

e = e”Pu(r)
where b is a real positive constant. Find the autocorrelation of the output Y(#) of the system.

Using Eq. (1.53), we see that the frequency response H(w) of the system is

1
H(w) = Fh(Ol = —

jo+b
So |[H(w)?> = _
Tl b
Using Eq. (1.55), we see that the power spectral density of X(z) is
2a
S. =Z[R =A——
(W) [Ryx(®)] PR R
By Eq. (7.53), the power spectral density of Y(z) is
Syr(w) = |H()Sxx(w)
- 7))
T\ PN\ + A2
_aA ( 2b ) _ A ( 2a )
) (@-P)b\? + 4] & - \o*+a*
Taking the inverse Fourier transform of both sides of the above equation and using Eq. (1.55), we obtain
aA A

—bltl _

@ T E-B

—a|
gall

Ryy(1) =

Verify Eq. (7.38); that is, the power spectrum of any WSS process X(z) is real and
Syx(w) =0

for every o.



190

7.23.

RANDOM PROCESSES [CHAP. 7

‘
The realness of the power spectrum of X(f) was shown in Prob. 7.9. Consider an ideal bandpass filter with
frequency response (Fig. 7-12)
1 o <|lol<w
0 otherwise

H(w) ={

with a random process X(?) as its input. From Eq. (7.53) it follows that the power spectrum Syy(w) of the resulting
output Y(¢) equals

_ [Sx(w) o) <l|ol<aw,
Sr(@) = {0 otherwise
Hence, from Eq. (7.55), we have
1 ¢ . .
E[Y* 0] = —j’ Syyr(w)dw = Z(L)J' ’ Syx(w)dw =0 (7.130)
27 ) 2n) J o,

which indicates that the area of Syy(w) in any interval of ® is nonnegative. This is possible only if Syy(w) = 0 for
every .

Hiw)

Fig. 7-12

Consider a WSS process X(f) with autocorrelation Ryy(tr) and power spectrum Syx(w). Let
X'(t) = dX(¢)/dt. Show that

@ Ry (z) = Rx(®) (7.131)
dr
2
®) Ry (@) = - L Rx® (7.132)
dr
(© Sy (@) = 0 Sy () (7.133)

A system with frequency response H(w) = jo is a differentiator (Fig. 7-13). Thus, if X(#) is its input, then its
output is Y(f) = X'(#) [see Eq. (1.23)].

(a) From Eq. (7.125)
Sxx (W) = H()Sxx(w) = jorSxx(w)

ras B e
X Yy =X'(r)

Fig. 7-13 Differentiator
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Taking the inverse Fourier transform of both sides, we obtain
dRxx (T
Rt = 200

T

(b) From Eq. (7.126)
Sy (@) = H ()Syxr (@) = —joSxz ()

Again taking the inverse Fourier transform of both sides and using the result of part (a), we have

_dRy(®) _ _d'Rx(®)

Rex®===¢; de?

{¢) From Eq. (7.53)
Sy (@) = |H(@)*Sx(e) = ljoPSxx(0) = 0*Sgx(w)

7.24. Suppose that the input to the differentiator of Fig. 7-13 is the zero-mean random telegraph signal
of Prob. 7.11.

(a) Determine the power spectrum of the differentiator output and plot it.
(b) Determine the mean-square value of the differentiator output.
(a) From Eq. (7.103) of Prob. 7.11

4o

s, =
(@) ? + (20

For the differentiator H(w) = jw, and from Eq. (7.53), we have

4ow?

Syy(@) = |H(@)*Sxx(w) = Azm

(7.134)

which is plotted in Fig. 7-14.
(b) From Eq. (7.55) or Fig. 7-14

B[P = %J’f Sp(@)do=c0

Syy(w)

4aA?

Fig. 7-14

7.25. Suppose the random telegraph signal of Prob. 7.11 is the input to an ideal bandpass filter with
unit gain and narrow bandwidth Wz(= 2nB)(<w,) centered at w, = 2«. Find the dc component
and the average power of the output.

From Egs. (7.53) and (7.103) and Fig. 7-8 (b), the resulting output power spectrum
Syy(@) = |H(@)*Sir(w)
is shown in Fig. 7-15. Since H(0) = 0, from Eq. (7.50) we see that *
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L
by =HOuy =0

Hence, the dc component of the output is zero.
From Eq. (7.103) (Prob. 7.11)

4 A?

— a2 _A
S0 = A S T G~ @)

Since Wy < w,,

— |o-w]< Wy
Syy(w) =~ { 2a )
0 otherwise

The average output power is

E[ Y2(t)] = %J': Syy(@)do

1 AT\  A’w, A’B (7.435)
~£(2WB)(E): e
Syy(w)
Syx(w)
’r ~\
”/’ \~
--11 ===
-w, 0 W, w
— - — =
Wy Wy
Fig. 7-15

7.26. Suppose that a WSS random process X(r) with power spectrum Sxx(c) is the input to the filter shown
in Fig. 7-16. Find the power spectrum of the output process ¥(z).

X)) +® Y(r)

Delay

Fig. 7-16

From Fig. 7-16, Y(#) can be expressed as
YO =X -X(t~-T) (7.136)
From Eq. (2.5) the impulse response of the filter is
h(@t)=0@®)—-6(t-T)
and by Eqs. (1.40) and (1.18) the frequency response of the filter is

Hw)=1-¢7"



CHAP. 7] RANDOM PROCESSES 193

Thus, by Eq. (7.53) the output power spectrum is
T2
Syy(@) = [H@) Six(@) = |1 = 7" Sxe(e)
= [(1 —cos T)? +sin 2wT] Syx () (7.137)

= 2(1 —cos wT) Sxx(w)

7.27. Suppose that X(?) is the input to an LTI system with impulse response h;(¢) and that Y() is the input to
another LT1 system with impulse response /,(#). It is assumed that X(r) and ¥(¢) are jointly wide-sense
stationary. Let V(f) and Z(#) denote the random process at the respective system outputs (Fig. 7-17).
Find the cross-correlation and cross spectral density of V(z) and Z(#) in terms of the cross-correlation
and cross spectral density of X(r) and Y(2).

X(1) 48]
Y Z(1)

Fig. 7-17
Using Eq. (7.47), we have
Ryz(t, 1) = E[V(#8)Z(;)]

~ o |~ xt - om@as | RO a]

= [ | mem@ED - e, - pldsas 7.138)
= [0 [ momaERar =t~ prana
= [ | m@haBRarte2 =11+ = pr da

since X(#) and Y(¢) are jointly W§S.
Equation (7.138) indicates that Ryz(t;,1,) depends only on the time difference 7 = #, — ;. Thus

Re@)= | [ m@h @R+ 2o dp (7.139)

Taking the Fourier transform of both sides of Eq. (7.139), we obtain

00

Syz(w) = J_w Ryz(0)e ™ de
= J: J : J:, By (0)hy(B)Rxy (T + 0 — B ™ dodf dt

Let 1+ o0~ f = A, or equivalently T = A —o + . Then '
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3
S = [ [ |7 m@h@Rr e Pdudp a2

=Jw hl(a)ei“’“dar h(Be P dp J - Ryy(De 7t d
= H;(—o)H,(0)Sxy(w)

= H{ (0)H,(@)Sxy(®) (7.140)

where H)(w) and Hy(w) are the frequency responses of the respective systems in Fig. 7-17.

SPECIAL CLASSES OF RANDOM PROCESSES
7.28. Show that if a gaussian random process is WSS, then it is SSS.
If the gaussian process X(r) is WSS, then

u; = E[X(t;))] = j(= constant) for all #;
and Rxx(t:, ) = Ryx(t; — &)
Therefore, in the expression for the joint probability density of Eq. (7.58) and Egs. (7.59), (7.60), and (7.61),
M= == py = p— E[X(@#)] = E[X(; + 0)]

Cij = Cxx(t;, 1) = Ryx (4, 1)) — pity

= Ryx(t; — 1) — 1> = Cix(t; + ¢, 1+ ¢)
for any c. It then follows that
Jxe)®) = o)
for any c. Therefore, X(¢) is SSS by Eq. (7.11).

7.29. Let X be an n-dimensional gaussian random vector [Eq. (7.56)] with independent components. Show
that the multivariate gaussian joint density function is given by

B 1 1& (x; = )2
fx(x)——n—exp[—EZ(—) ] (7.141)

@y [T o; AN
=1

where y; = E[X;] and o7 = var (X;).

The multivariate gaussian density function is given by Eq. (7.58). Since X; = X(t;) are independent, we have

Cy= {002 l,;j (7.142)
Thus, from Eq. (7.60) the covariance matrix C becomes
7 0 -+ 0
c=|° G; 0 (7.143)
0 o - aﬁ

It therefore follows that

det C'?= 6105 -0, =[] o (7.144)
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E 0
ol
1
S o = 0
and c'= o (7.145)
"
0 0 =
a
Then we can write
C—p - =Y (”—‘—_i)2 (7.146)
K W= -

i=1

Substituting Egs. (7.144) and (7.146) into Eq. (7.58), we obtain Eq. (7.141).

Let X, = X(#,) and X, = X(t,) be jointly gaussian random variables, each with a zero mean and a
variance ¢2. Show that the joint bivariate gaussian density function is given by
1 1x%—2px|x2+x72'
x)= _ 7.147
Sax, (1, %) i exp[ 27 1D ( )

where p is the correlation coefficient of X; and X, given by p = Cyy/ o’ [Eq. (6.83)].

Subsituting Cj; = Cy, = 6% and C}, = Cy; = pa? into Eq. (7.60), we have
[ p?l_ 21 »
S POy R P
Jdet C[Y2= o%,/(1 — p?)

— 1 1 —p
Cl=og
az(l—pz)[—p 1 ]

SR B
A TEro L BV

Since =0, x— p=x, and

1
= trz(l——ﬂ)(x% —2px1%, +3)

Substituting these results in Eq. (7.58), we obtain Eq. (7.147).
Note that Eq. (7.147) can be obtained from Eq. (6.107) (Prob. 6.28) by setting X = X ;¥ = X, uy = py =0,

and 0y = gy = 0.

The relation between the input X(¢) and output Y(#) of a diode is expressed as
Y = X2 (7.148)
Let X(?) be a zero-mean stationary gaussian random process with autocorrelation
Ry =€ a>0
Find the output mean uy(z), the output autocorrelation Ryy(7), and the output power spectral density
Syr(@).
py(t) = E[Y()] = EIX*(t)] = Rxx(0) (7.149)

Ryy(ty, 1) = ELY(t)Y ()] = ELX()X* ()]
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'
Since X(t)) and X(z,) are zero-mean jointly gaussian random variables, by the result of Prob. 6.71

E[X)X*(1) | = [ X JE[ 00| + 2{E[X@OX ()} (7.150)
Since X(?) is stationary
E[X*(1))] = E[X*(1,)] = Rgx(0)
and E[X(#)X(;)] = Rxx(t, — 1) = Ryx (1)

Hence, Ryy(t1,15) = Ryy(?) = [Rax(O))* + 2[Rz (D] (7.151)
and using Eqs. (1.4]) and (1.29), we have
$17(0) = F Ry ()] = 22{Rex OF6(@) + - Sc(@) * Sx(@) (7.152)
Now, for the given input autocorrelation, by Eqs. (7.749) and (7.151),
uy() = Ryx(0) =1
and Ryy(t) = 1 +2¢72H
By using Eqgs. (1.41) and (1.55), the output power spectral density is

8a
Syy(@w) = F[Ryy()] = 2nd(w) + P

7.32. The input X(r) to the RC filter shown in Fig. 7-18 is a white noise process.

(a) Determine the power spectrum of the output process Y(z).
(b) Determine the autocorrelation and the mean-square value of Y(¢).

X@) C == Y(@)

Fig. 7-18 RC filter

From Prob. 2.6 the frequency response of the RC filter is

H(w)=

1+ jowRC
(a) From Egs. (7.62) and (7.53)
_n
Sxx(w) = 2

Syy(@) = [H(@)*Six(w) = (7.153)

_ I
1+ (@RC) 2
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(b) Rewriting Eq. (7.153) as

n 1 2[1/(RO)]
K =1 - 2l

WO = SR + 1JROT
and using the Fourier transform pair Eq. (1.55), we obtain

1
Riy(@) = Lm0 (7.154)

Finally, from Eq. (7.154)

E[Y*(5)] = Ryy(0) = & (7.155)

7.33. The input X(#) to an ideal bandpass filter having the frequency response characteristic shown in
Fig. 7-19 is a white noise process. Determine the total noise power at the output of the filter.

H(w)
We W
— (R
1
1 i
-w, 0 w, «
Fig. 7-19

=1
Syx(w) 2
Srr(@) = |H@) Sxx(@) = 2 H@)P
The total noise power at the output of the filter is

- -
Brol =5 [ swodo =32 [* @

i (7.156)
= 5&(2“/3) =nB
where B = Wy/(2n) (in Hz).
7.34. The equivalent noise bandwidth of a system is defined as
o 2
= LMM Hz (7.157)

27 HO) e
where |H()|%,, = max |H(w)|?.
(a) Determine the equivalent noise bandwidth of the ideal bandpass filter shown in Fig. 7-19.
(b) Determine the equivalent noise bandwidth of the low-pass RC filter shown in Fig. 7-18, and
compare the result with the 3-dB bandwidth obtained in Prob. 2.9.

3
(a) For the ideal bandpass filter shown in Fig. 7-19, we have max |[H(w)> = 1 and
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3

By, = lr |H(w)|*do = W _p Hz (7.158)
4 2o 2n :

(b) For the low-pass RC filter shown in Fig. 7-18 we have
1

2
I = Grer
and max [H@)* = [HO)I = 1
1(®  do 11(* do
Th g L[ __de _ 111 do _
us e 271:_[0 11 (wRC? 2n2J-_w1+(wRC)2
1
- Hz (7.159)

4RC
From Prob. 2.9 the 3-dB bandwidth of the low-pass RC filter is

1 1
Bap =~ Wagp =—— H
4B = 5n VBT 50RC 7

Thus, Beq = 5 B3qp = 1.57B3gp

n
2

7.35. A narrowband white noise X(7) has the power spectrum shown in Fig. 7-20(a). Represent X(#) in
terms of quadrature components. Derive the power spectra of X(f) and X(), and show that

E[X2(9] = E[X*()] = E[X*(9)] (7.160)

From Eq. (7.67)
X(#) = X () cos @t — X (t)sin w,t
From Eq. (7.70) and Fig. 7-20 (a), we have

s =S N—Jn lol<sW(=2zB)
x(©) xx (@) {0 otherwise

Sxxlw)

b1 4 W

f— —
n
)
1 I
-w, 0 @, b
{a)

Sx x. (@) =Sy x (@)

-W o W ) w
()]

Fig. 7-20
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7.36.

7.37.

7.38.

7.39.

which is plotted in Fig. 7-20(b). From Fig. 7-20(a)
EX*®)] = ir Sxx(@)do
T ) XX

=1 (Z)J‘a]c+wﬂd(o— 1 2W = 24B
T ) w20 T g T

From Fig. 7-20(b)

1 w 1
EXC(0)] = EXC ) = 5-2) J , 1o = 5-nW) = 2B

Hence, EX* (0] = E[X2()] = E[X2(0] = ZLn: n(2W) = 2nB

Supplementary Problems

Consider a random process X(#) defined by

X(#) = cos Q¢

where Q is a random variable uniformly distributed over [0, wg]. Determine whether X(¢) is stationary.

Ans. Nonstationary

Hint: Examine specific sample functions of X(z) for different frequencies, say, Q@ = /2, , and 27.

Consider the random process X(¢) defined by

X(t) = Acos ot

199

(7.161)

where  is a constant and A is a random variable uniformly distributed over [0, 1]. Find the autocorrelation and

autocovariance of X(7).

Ans. Ryx(t), 1) = cos ticos
Cxx(t1, 1) = ﬁcos t1CoSs 1y

Let X(z) be a WSS random process with autocorrelation
Ryx(1) = Ae™

Find the second moment of the random variable ¥ = X(5) — X(2).

Ans. 24(1—e7%)

Let X(¢) be a zero-mean WSS random process with autocorrelation Ryx(t). A random variable Y is formed by

integrating X(#):
1 (T
Y=—| X@adt
2T )-r @

Find the mean and variance of Y.

1% T
Ans.  py =009 = —fjo RXX(T)(I —ﬁ)d‘r .
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)
7.40. A sample function of a random telegraph signal X(z) is shown in Fig. 7-21. This signal makes independent
random shifts between two equally likely values, A and 0. The number of shifts per unit time is governed by the
Poisson distribution with parameter a.

X(1)

1111

Fig. 7-21

(a) Find the autocorrelation and the power spectrum of X(#).
(b) Find the rms value of X(7).
4o

Ans. (@) A2 A2 2
ns. (a Ryx(7) = T(l +e ); Sxx (@) = 71[6(0)) +A Py

®m A
2

7.41. Suppose that X(?) is a gaussian process with
me=2 Ryel®)=5¢0
Find the probability that X(4) < 1.
Ans.  0.159

7.42. The output of a filter is given by
YO) =X+ T)—X(t—T1)
where X(#) is a WSS process with power spectrum Syy(w) and T is a constant. Find the power spectrum of Y(z).

Ans.  Syp(@) = 4sin 0TSy (®)

7.43. Let X(¢) is the Hilbert transform of a WSS process X(¢). Show that
Ryz(0) = EIX()X(®)] = 0

Hint. Use relation (b) of Prob. 7.20 and definition (2.26).

7.44. When a metallic resistor R is at temperature T, random electron motion produces a noise voltage V(¢) at the open-
circuited terminals. This voltage V(f) is known as the thermal noise. Its power spectrum Syy(w) is practically
constant for f < 10'? Hz and is given by

Noiseless

R

R C = V(1) C = V(1)

Syy(w)

Fig. 7-22
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Syy(w) = 2kTR
where k = Boltzmann constant = 1.37(10723), joules per kelvin (J/K)
T = absolute temperature, kelvins (K)
R = resistance, ohms ()
Calculate the thermal noise voltage (rms value) across the simple RC circuit shown in Fig. 7-22 with R = 1 kilohm
(kQ), C = 1 microfarad (uF), at T = 27° C.

Ans. Vims = \/g ~02uV



Chapter 8

NOISE IN ANALOG
COMMUNICATION
SYSTEMS

DUCTION

aresence of noise degrades the performance of communication systems. The extent to which
ts the performance of communication systems is measured by the output signal-to-noise
o or the probability of error, In this chapter, we review the effect of noise on the
= of analog communication systems. The signal-to-noise ratio 15 used to measure the
e of analog communication systems.

ollowing analysis, we will be mainly concerned with the additive noise that accompanies
the input to the receiver.

E NOISE AND SIGNAL-TO-NOISE RATIO

fatic of a communication system is shown in Fig. 8-1. It is assumed that the input of the
i8 modeled by the random process (7). the channel introduces no distortion other than
om noise, and the receiver is a linear system. At the receiver input, we have a signal
gise, The signal and the noise power al the receiver inpul are 5; and NV, respectively. Since
linear, the receiver output ¥.(f) can be written as

Y () = X, (1) +n,(0 (8.1

d (1) are the signal and noise components at the receiver output, respectively.
o further assumptions about additive noise:

is zero-mean white gaussian with power spectral density 5,.(w) = n/2.
s uncorrelated with X7r).

ceding specified assumptions, we have
202
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Channel noise

n(r)

X(r} Y1) Y (1)
——’Ensmiuer H Channel
S, N, SN,

Fig. 8-1 A communication system model

E[Y0] = E[X30] + E[ri0)] = S, + N, ©.2)

where S, = E [X%(t)] and N,=F [ng(t)] and they are the average signal and noise power at the receiver
output, respectively. The output signal-to-noise ratio (S/N), is defined as

Sy _ S, [Xﬁ(t)] 8.3)

(ﬁ)a_ N, E[#®)
In analog communication systems, the quality of the received signal is determined by this
parameter. Note that this ratio is meaningful only when Eq (8.1) holds.

8.3 NOISE IN BASEBAND COMMUNICATION SYSTEMS

In baseband communication systems, the signal is transmitted directly without any modulation.
The results obtained for baseband systems serve as a basis for comparing with other systems. Figure 8-
2 shows a simple analog baseband system. For a baseband system, the receiver is a low-pass filter that
passes the message while reducing the noise at the output. Obviously, the filter should reject all noise
frequency components that fall outside the message band. We assume that the low-pass filter is ideal
with bandwidth W(= 2znB).

Channel noise

X(1)
ﬂ LPF HChanncl

Fig. 8-2 A baseband system

It is assumed that the message signal X(¥) is a zero-mean ergodic random process band-limited to
W with power spectral density Syx(w). The channel is assumed to be distortionless over the message
band so that

X =X(t-1p 8.4)
where 2, is the time delay of the system. The average output signal power S, is
S, = E[X2(0] = E[X*(1— 1))

L 8.5)
= EJ‘ WSXX((D) dw = Sy =,

where Sy is the average signal power and S; is the signal power at the.input of the receiver. The average
output noise power N, is
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2 1 W
N, = El0) =5 J Su(@)do

For the case of additive white noise, S,,(w) = 7/2, and

1 (% g w
0—%J‘W§dm—nﬂ—n3 8.6)

The white noise assumption simplifies the calculations and provides essential aspects of analysis.
The output signal-to-noise ratio is

(E) S _5 8.7)

N, N, B :
S;

Let ;1_3 =y 8.8)
S

Then (N)a_ y 8.9)

The parameter y is directly proportional to S;. Hence, comparing various systems for the output SNR
for a given S; is the same as comparing these systems for the output SNR for a given y.

8.4 NOISE IN AMPLITUDE MODULATION SYSTEMS

A block diagram of a continuous-wave (CW) communication system is shown in Fig. 8-3. The
receiver front end (RF/IF stages) is modeled as an ideal bandpass filter with a bandwidth 2 centered
at w,. This bandpass filter, also known as a predetection filter, limits the amount of noise outside the
band that reaches the detector (‘“out-of-band noise™). Predetection bandpass filtering produces

Yi(ty= X.(0) + n(n) (8.10)
where n,(f) is the narrowband noise, which can be expressed as [Eq. (7.67)]
n(£) = n(¢)cos w .t — ny(t) sin w,t (8.11)

If the power spectral density of n(z) is #/2, then (Prob. 7.35)
E[n0] = E[niw] = E[ni0)] = 208 8.12)

Channel noise

n(t)

|
1
1
|
i
I
1

|
i : :
i
X(1) - X Yt [ A
Transmitter € A e
_“i (modula\or)’_—{ Channel ’———( }—r——{ BPF ‘—:——{ DetectoL}"", LPF H-—:—»
I
1 !
1

Fig. 8-3 A CW communication system
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A. Synchronous Detection:
1. DSB Systems:
In a DSB system, the transmitted signal X,(¢) has the form'
X.(t) = A X(H)cos m.t 8.13)
The demodulator portion of the DSB system is shown in Fig. 8-4. The input of the receiver is
Yi() = A, X(¢)cos w.t + n(t)

. (8.14)
= [4.X(0) + n (D] cos w t — ny(f) sin w,¢
2¢0s wt
| it S A
i 1
X0 + n(r) Y - Y0
e ] < [
-BPF 5o N . kil LS, N,
i
! Demodulator !
| S g I J
Fig. 8-4 DSB modulation
Multiplying ¥;(f) by 2cos w.z and using a low-pass filter, we obtain
Yo = A.X®) + n(1) = X(t) + ny(1) (8.15)

where X, ()= A.X(t) and n,() =n()

We see that the output signal and noise are additive and the quadrature noise component n,(z) has
been rejected by the demodulator. Now

S, = E[Xg(t)] = E[Asz(t)] = AEE[XZ(z)] = A28, (8.16a)
N, = E[nﬁ(z)] = E[ni(t)] = E[n,?(t)] =B (8.16b)
and the output SNR is
S\ S, A2Sy
-4
The input signal power S; is given by
] 1
S = E[Xf(:)] = 5428x (8.18)
Thus, from Egs. (8.17) and (8.8) we obtain
Sy S
(3.5 ®19)

which indicates that insofar as noise is concerned, DSB with ideal synchronous detection has the same
performance as baseband system.

' We need a random phase © in the carrier to make X,(¢) stationary (see Prob. 7.10). The‘random phase [which is independent of
X(#) ] does not affect the final results; hence, it is neglected here.
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0
The SNR at the input of the detector is

S\_Si_ S
R)=x =23 6.20)
S o
and ((Séxi =0y =2 8.21)

The ratio o, is known as the detector gain and is often used as a figure of merit for the /
demodulation. /

SSB Systems: |

Similar calculations for an SSB system using synchronous detection yield the same noise \
performance as for a baseband or DSB system (Prob. 8.4).

AM Systems:

In ordinary AM (or simply AM) systems, AM signals can be demodulated by synchronous
detector or by envelope detector. The modulated signal in an AM system has the form

X, (1) = 4]l + pX(@®)] cos w.t (8.22)
where p is the modulation index of the AM signal and
u<1l and |X(n]=1

If the synchronous detector includes an ideal dc suppressor, the receiver output Y,(¢) will be
(Fig. 8-4)

Y, (t) = AcpX(0) + n(6) = X, () + n,(1) (8.23)
where X,(t) = A.uX(®) and n,() = n (0
S\ _ S, _ A’Sy
Syl=0 el A 2
0 (R~ @29
The input signal power S; is
S 2
S, = EE[Ac[l +ux@l| )
Since X(¢) is assumed to have a zero mean,
1
S; = 5Ai(l + u*Sy) (8.25)
22 247 Sy
Thus, S, =AW Sy = m )
and (E) = i = 'quX (i) = NZSX (8 26)
NN, TSy B T 1125y '
Because u*Sy < 1, we have
S\ _vy
(ﬁ)uS 5 (8.27)

which indicates that the output SNR in AM is at least 3 dB worse that that in DSB and SSB
systems.
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B. Envelope Detection and Threshold Effect:

An ordinary AM signal is usually demodulated by envelope detection. With reference to Fig. 8-3,
the input to the detector is

Y = X(0) + ni(1)

= {4,[1 + pX(0)] + n.(D} cos w1 — ny(?) sin w,t (8.28)
We can analyze the effect of the noise by considering a phasor representation of Y(z)

Y1) = Re[ Y(z)ef“’v'] (8.29)
where Y =41+ uX(0)] + n (1) + jny(0) (8.30)

The phase diagram is shown in Fig. 8-5. From Fig. 8-5, we see that Y (¢) can be written as
Yi(t) = V(f)cos [wc(t) + ()S(l)] (8.31)
where Vi = \/{Ac[l + pX(0] + nc(t)}2+n§(t) (8.32a)
#(5) = tan™! (1) (8.32b)

AT+ X0+ 1.0)

ImY
&) Y1)
I}ns(l)
ReY
N - A
Al + pX(@)] n (1)

Fig. 8-5 Phasor diagram for AM when (S/N); > 1

1. Large-SNR (Signal Dominance) Case:

When (S/N); > 1, A [1 + pX()]>>n(2), and hence, A4.[1 + pX(1)] > n () and ny(#) for almost all ¢.
Under this condition, the envelope V(#) can be approximated by

V() = A1 + uX(®)] + 1, (8.33)
An ideal envelope detector reproduces the envelope V(f) minus its dc component, so
Y () = A.pX(0) + n.(0) (8.34)

which is identical to that of a synchronous detector [Eq. (8.23)]. The output SNR is then as given in
Eq. (8.20), that is,

S MZSX
Zy=_£5X 8.35
(N)n 1+ ,uZSXv (6.33)

Therefore, for AM, when (S/N); > 1, the performance of the envleope detector is identical to that of
the synchronous detector.
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3
2. Small-SNR (Noise Dominance) Case:

When (S/N); < 1, the envelope of the resultant signal is primarily dominated by the envelope of
the noise signal (Fig. 8-6). From the diagram of Fig. 8-6, the envelope of the resultant signal is
approximated by

V(£) = V(@) + A [1 + uX()] cos ¢,(2) (8.36)

where V,(f) and ¢,(2) are the envelope and the phase of the noise #,(r). Equation (8.36) indicates that
the output contains no term proportional to X(#) and that noise is multiplicative. The signal X(¢) is
multiplied by noise in the form of cos @,(), which is random. Thus, the message signal X(¢) is badly
mutilated, and its information has been lost. Under these circumstances, it is meaningless to talk about
output SNR.

The loss or mutilation of the message at low predetection SNR is called the threshold effect. The
name comes about because there is some value of (S/N); above which signal distortion due to noise is
negligible and below which system performance deteriorates rapidly. The threshold occurs when
(S/N); is about 10 dB or less (Prob. 8.6).

ImY ALl + uX(0)] cos &,
> (1)
N
/
N
N
1
i
& : Al + p X))
B\

0 E
W
{
(1) !

4 L Re Y
} n 1) {

Fig. 8-6 Phasor diagram for AM when (S/N); < 1.

8.5 NOISE IN ANGLE MODULATION SYSTEMS

With reference to Fig. 8-3, in angle modulation systems the transmitted signal X,(#) has the form

X () = A cos [w.t + ¢()] (8.37)
k,X() for PM
— P
where ¢ = {k, [ X@dt for FM @38
XA6) + n(t) Y1) Y, (0
{ BPF |——={ Limiter | [ Discriminator [——>] LPF |

Fig. 8-7 Angle demodulation system
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Figure 8-7 shows a model for the angle demodulation system. The predetection filter bandwidth By is
approximately 2(D + 1) B, where D is the deviation ratio and B is the bandwidth of the message signal
[Eq. (4.27)]. The detector input is

Y1) = X + n)

(8.39)
= A.cos [@. + ¢(D)] + ni(t)
The carrier amplitude remains constant, therefore
Si= B0 = 5 42 (8.40a)
and N; =yBr (8.40b)
S A2
2y e 841
Hence, (N)i 3By 841)
which is independent of X(z).
The (S/N); of Eq. (8.41) is often called the carrier-to-noise ratio (CNR).
Because n,(¢) is narrowband, we write
n(f) = vy(#) cos [wt + (1] (8.42)

where v,(¢) is Rayleigh-distributed and ¢,(?) is uniformly distributed in (0, 27) (Prob. 6.39). Then Y;(¢)
can be written as

Y1) = V(t)cos [w .t + 6(D)] (8.43)
where V() = {[Ac cos ¢ + v,(f)cos d),‘(t)]2 + [4,sin ¢ + v,(¢) sin ¢7,,(t)]2}1/2

_1 Asin ¢ + v, (¢) sin ¢,(2)
A, cos ¢ + v,(£)cos ¢, (D)

and 6(t) = tan

The limiter suppresses any amplitude variation V(7). Hence, in angle modulation, SNRs are derived
from consideration of 8(¢) only. The expression for 6(z) is too complicated for analysis without some
simplification. The detector is assumed to be ideal. The output of the detector is

0(t) for PM
Y, ()= {d@(t) for EM (8.44)

dt

A. Signal Dominance Case:

A phasor diagram (Fig. 8-8) for this case is obtained from

Y(6) = Re[Y(1)e’™] (845)
where Y() = A.e™O 4 3, ()e/® (8.46)
and v,(f) € 4, for almost all ¢. From Fig. 8-8 the length L of arc AB is

L= YO0 — ¢(n] (8.47)
and Y(0) = A, + vy(t) cos [¢n(t) - o]~ A,

L=v,(0)sin [¢,()— )] *
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Y(n)
X

& ,(1)

o(1)
(1)

Fig. 8-8 Phasor diagram for angle modulation

Hence, from Eq. (8.47), we obtain

o) ~ (o +

sin [¢,(5) — $(2)]

[CHAP. 8

(8.48)

For the purpose of computing an output SNR, replacmg ¢, () — p(f) with ¢,(¢) will not affect the

result.? Thus, we write

0() = ¢(t) + =— "( ) sin ¢,(t)
= ¢ty + 0 ?(t)
From Eqgs. (8.44) and (8.38) the detector output is
Y,(0) = 00 = k, X(1) + 22 ‘(’) for PM
v =20~ o + B0 por v

B. (S/N), in PM Systems:

From Eq. (8.50)
S, = ElloX*(0) = KE[X* ()] = k5Sx

1 1 1
N, = E[A—%nf(t)] = EB0) = 518

k2428
Hence, (5) = ZpelX
[

N, 2nB
From Eqgs. (8.8) and (8.40a)
_Si_ A2
nB 2nB

(8.49)

(8.50)

8.51)

(8.52)

(8.53)

(8.54)

(8.55)

2 This is based on the observation that in the sense of ensemble averages ¢, — ¢ differs from ¢, only by a shift of the mean value.
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and then Eq. (8.54) can be expressed as

(%): k2Syy (8.56)
C. (S/N), in FM Systems:
From Eq. (8.51)
S, = ElGX} 0] = KFELX* (0] = kFSx (8.57)
1
N,= E[% [n;(t)]z] = E[vior] .58)

By using Eq. (7.133) (Prob. 7.23), the power spectral density of #() is given by

2
) = o _fo'y for |w| < W(= 2nB)
Sy (@) = @Sy (@) = {0 otherwise 8.59)
117 29 W
The = 2ndo = = -
et No=% J A WP (8.60)
S 314%(2%)19%5);'
Hence, (ﬁ)a= W— (8.61)
Using Eq. (8.55), we can express Eq. (8.67) as
S KSx\ [ 42 k3Sy
(3).,- 3(—Wz' mB) =\ Wz ) ©62)
Since Aw = |krX(H)lmax = kr[1X(0)] < 11, Eq. (8.62) can be rewritten as
. 2
(%) - 3(%‘”) Syy = 3D%Syy 8.63)

where D is the deviation ratio, defined in Eq. (4.26).

Equation (8.60) indicates that the output noise power is inversely proportional to the mean carrier
power 4%2/2 in FM. This effect of a decrease in output noise power as the carrier power increases is
called noise quieting.

D. Threshold Effects in Angle Modulation Systems:

When 42 < E [r(t)], the resulting phasor [Eq. (8.46)] is dominated by the term v,(1)e’*®). For this
case, the phase of the detector input is

A,
0]

The noise now dominates, and the message signal has been corrupted by the noise beyond the
possibility of recovery—an effect similar to the one we observed in an AM system using envelope
detection. This threshold effect is illustrated in Fig. 8-9.

If 42> E[n2(f)], we may expect v,(t) < 4, most of the time, and the tip of the resultant phasor
Y(2) traces randomly around the end of the carrier phasor, as illustrated in Fig. 8-9(a). The variation in
phase is relatively small; however, if the noise becomes large enough, the tip of the resultant phasor
Y(z) may move away from the endpoint of the carrier phase and may even occasionally encircle the
origin [Fig. 8-9(b)], where the phase of Y(#) rapidly changes by 2n [Fig. 8-10(a)]. The output of
the frequency discriminator then will contain a spike every time an encirclement occurs. This is
illustrated in Fig. 8-10(b). ¢

01y = ¢,(1) +

sin [¢(2) — ¢,(0)] (8.64)
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I oy /|0
! n 1

Locus of Y(¢)
Locus of Y(1)

A2 > E[nX(1) A < E[n}()]
(a) (b)

Fig. 8-9 Threshold effect in FM system

o(r)
27 - A
|
]
!
0 AN A :
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N '
I C))
do(e) b
dt } :
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! !
HAY
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i
0 i
'
®
Fig. 8-10

Solved Problems

NOISE IN BASEBAND SYSTEMS

8.1.

Consider an analog baseband communication system with additive white noise. The transmission
channel is assumed to be distortionless, and the power spectral density of white noise #/2 is
107 watt per hertz (W/Hz). The signal to be transmitted is an audio signal with 4-kHz
bandwidth. At the receiver end, an RC low-pass filter with a 3-dB bandwidth of 8 kHz is used to
limit the noise power at the output. Calculate the output noise power.

From Prob. 2.9 the frequency response H(w) of an RC low-pass filter with a 3-dB bandwidth of 8 kHz is

given by

1
HO) = T w7,
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where @, = 2n(8000). Using Egs. (7.40) and (7.53), we see that the output noisc power N, is

2 1 (=
N, = B0l =5 [ HH@F do

nl[® 1
=4 ;|
2 ZnI_m T+ @fagy "
nwo = %2(10‘9)(2n)(8)(103)w =252 uW

=

8.2. Consider an analog baseband communication system with additive white noise having power
spectral density #/2 and a distorting channel having the frequency response

1
= 1 jo]

The distortion is equalized by a receiver filter having the frequency response

1 O<l|o|sW
e =W

0 otherwise

Heq(w) =

Obtain an expression for the output SNR.
1 e
S, = gf |H ()| Heg(@)* S xx(@) deo

1 w
= EJ_WSXX(CU) do = Sy

e
No=5- | L) do
(" () _1(5 )_i
“22)0 [1+(W) ]d“’*zn 37) =318

sy _S
Th D) =S 2x 20 8.65
s (N)y N, I8 4nB ©.65)

NOISE IN AMPLITUDE MODULATION SYSTEMS

8.3. A DSB signal with additive white noise is demodulated by a synchronous detector (Fig. 8-4) with
a phase error ¢. Taking the local oscillator signal to be 2 cos (@ f + ¢), show that

(%)0= ycos 2¢ (8.66)

where y is defined by Eq. (8.8).
From Eq. (8.14)
Yi(0) = [4.X(8) + n )] cos w .t — ny(f) sin ot
Multiplying Y;(¢) by 2cos (w? + ¢) and using a low-pass filter, we obtain
Y, () = A X(P) cos ¢ + n(t)cos ¢ + ny(t)sin ¢
= X,(5) + ny(2)
where X, () = A X()cos ¢

1o(8) = (1) cos ¢ + ny(D)sin
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So s, = E[X3(0)] = 42 cos 26 E[ X = A2(cos 24)Sy
N, = E[m0)] = E[n2()cos 2 + (1) sin *¢ + n. (1) sin 26 |
= E[nfm] cos 2 + E[nf.(z)] sin %4
= B[ (cos *¢ + sin 2¢) = E[ w0 | = 248

since En. (1) ny()] =0 [Eq. (7.73)}.
Thus, by Eqgs. (8.17), (8.18), and (8.19), we obtain

(5) _ A2S.cos’¢p  14lSy

v B WB cos 24)=vcos 2

where y is [Eq. (8.8)]
_eSx_ S

[ nB

Show that the performance of an SSB system using synchronous detection is equivalent to the
performance of both DSB and baseband systems.

The SSB signal X,(r) can be expressed as [Eq. (3.11)]
X.(0) = A4, [X(z) cos w,t + X(#)sin wct] (8:67)

where X(7) denotes the Hilbert transform of X(1). Note that Eq. (8.67) represents the lower-sideband SSB
signal and that the minimum bandwidth of the predetection filter is W for a single-band signal.
Refer to Fig. 8-5; the input of the receiver is

Y = X.(0) + n()

= [4,X(2) + n (1)l cos w t + [4.X(®) — ny(t)] sin w, (8.68)
Synchronous detection rejects the quadrature components of both the signal and noise, yielding
Y, (6) = A X + n(0) = X,(8) + n,(0) 8.69)
where X,(0) = A X(®) and n,(1) = n (1)

The output signal power is
s, = E[X0]= AﬁE[XZ(z)] = A28y

The power spectral density of n.(¢) is illustrated in Fig. 8-11 for the case of lower-sideband SSB.
The output noise power is

N, = E[nﬁ(z)] = %/= 1B

Thus, the output SNR is

S\ A’Sy
)= 8.7
(N)o 7]B ( 0)

The input signal power is
s, = E[X:o] = AZ{%E[Xz(t)] +%E[i’2(t)]}

= A%E[sz] = A28,
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8.5.

Spnl@)
a
’|
v ¢
-—w, o + W 0 w, — W w, w
(a)
Sponle)
a
2
-w 0 w w
(b)
Fig. 8-11

since [Prob. 7.43 and Eq. (7.128) of Prob. 7.20]
E[X([))‘((z)] =0 and E[Xz(t)]:E[f(z(t)]

We obtain
S S;
2) =2 8.71
(N)a B @70

which indicates that insofar as noise is concerned, SSB with ideal synchronous detection has the same
performance as both DSB and baseband systems.

Assuming sinusoidal modulation, show that in an AM system with envelope detection the output
SNR is given by

S u?
Sy __ & 72
(N)a 242 ©&72)

where y is the modulation index for AM.

For sinusoidal modulation

X(f) = cos w,,t

So ‘ Sy= E[Xz(t)] = %

Thus, from Eq. (8.35), we obtain

S\ _ WSy _ "2(%) @
(J_V)f +285¢ 1 _le(%) =il

Note that with 100 percent modulation (u = 1)

S 1
(ﬁ): 37 ‘ .73)
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8.6.

8.7.
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0
The threshold level (or value) in an AM system with envelope detection is usually defined as that
value of (S/N); for which V, << 4, with probability 0.99. Here 4, and V, are the amplitudes of
the carrier and narrowband noise, respectively. Show that if u = 1 and Sy = E[X*(1)] = 1, then
P(V,<<A,) = 0.99 requires

(%)I; 4In10=92~10 8.74)

From Eq. (7.69a) and Eq. (6.133) (Prob. 6.39) the pdf of V, is

F (o) = %e‘uﬁ/mﬂ for v, > 0 (8.75)
¥
where N;= E[n?(t)] =2nB
and P2 A0 = [ 00,
- J N gy j T di= AN
4, N; S LT

Now PV, < A)) =099 — P(V, = 4,) = 0.01
Hence, AN /B — 0 (8.76)

From Eq. (8.25) with u =1 and Sy = 1, we have

1
8= AL+ 12Sy) = 4

and (S) =Si_ 42
NJi N, 24B

Thus, Eq. (8.76) can be rewritten as
DS/ — 01

from which (S/N); at threshold is obtained at

(5) =2l = 41n10 = 92~ 10(10dB) 8.77)
v} 0.01

Consider an AM system with additive thermal noise having a power spectral density /2 = 10712
W/Hz. Assume that the baseband message signal X(¢z) has a bandwidth of 4 kHz and the
amplitude distribution shown by Fig. 8-12. The signal is demodulated by envelope detection and
appropriate postdetection filtering. Assume u = 1.

(@) Find the minimum value of the carrier amplitude 4, that will yield (S/N), = 40dB.

(b) Find the threshold value of A4,.

fx(x)
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(@) X () = A [1 + X()}cos w, .t

o 1
Sy= E[Xz(t)] = J_w Xfy(x)dx = 2,[0 X=x+ Ddx = é

From Eq. (8.26) (u = 1) we have

NJo 1+Sy" 143
Hence, y=7(10%
From Egs. (8.8) and (8.25)
ALY g gh

410T@)(10%)
from which we obtain

A4, 231107V =31mV
Thus, the minimum value of 4, required is 31 mV.

(b) From Eq. (8.77)
().

S
Therefore, - Huiwests = = 2(3y)_ =20 ©.78)

I
and from part (a)
A0+ _
4(10712)(4)(10%)
from which we obtain
A, = 0.52(107)V = 0.52 mV
which is the threshold value of 4,.

8.8. Calculate the transmission bandwidth By and the required transmitter power Sy of DSB, SSB,
and AM systems for transmitting an audio signal which has a bandwidth of 10 kHz with an
output SNR of 40 dB. Assume that the channel introduces a 40-dB power loss and
channel noise is AWGN with power spectral density 1/2 = 10 W/Hz. Assume uSy=0.5
for AM.

From Chap. 3 the bandwidth requirements are easily found as

B.o— 20kHz  for DSB and AM
T7110kHz  for SSB

Transmitter power for DSB and SSB systems: From Eqs.(8.19) and (8.79)

S Si 4
2y =2 = = 40dB
(N)o nB 107(=40dB)

and S; = nB(10%) = 2(107)(10*(10%) = 0.2 W
Since the channel power loss is 40 dB, the required transmitted power Sy is
S = 0.2(10% = 2000 W = 2kW
For an AM system with envelope detection: From Eq. (8.26) with u2Sy=0.5
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(%).756)
NJo 3\nB
Thus, the required transmitted power is 3 times that for the DSB or SSB system, that is,

Sr=6kW

8.9.  Consider an AM system using a square-law detector as shown in Fig. 8-13 (Prob. 3.18). Assume
that the channel noise is AWGN with power spectral density 7/2. Find the output SNR.

alt)
X (1} (L 1 Yoy | g Z(1) Y, (1)
< quare-law LPF

&/ [ BPF | S. N, | detector - S, N,

Fig. 8-13 Square-law detector

X () = A1 + pX(®)] cos w,t
The detector input Y(#) is
Yi(0) = X.(6) + ni(8)
The detector output Z(¥) is
VAOESHO)
A2
= 7‘ [1+ 2pX(0) + 12 X2 + cos 2w,2) + r2(1) + 24D + pX(®)] cos w,¢
Since it is required that |uX(#)|<<1 for distortionless square-law demodulation (Prob. 3.18), we can
approximate Z(f) as
A2 :
Z(t) =~ —zﬁ[l + 2uX(D](1 + cos 2w, 1) + n,z(t) + 2A.n,(¢)cos w,t 8.79)
After low-pass filtering and blocking the dc component, the output Y,(#) of the receiver is given by
Y (5) = X,(0) +n,(0)
where X,(t) = A2uX(t)
and 7,() is equal to the result of low-pass filtering #3(¢) + 24 ,.n,(¢) cos w,t and removing dc components. So
S, = ELX;(1)) = AL ELXC ()] = AL Sy (8.80)
Next, by Eq. (7.152) (Prob. 7.31) we have
1
Sy (w) = 2nEln} (£))8(w) + ESn,n,(w) * Syn (@) 881

and from Eq. (7.99) of Prob. 7.10 the power spectral density of 24,n,(f) cos w,t, denoted by S,i(w), is given
by

(@) = A8, (0= ) + Sy + @,)] 8.82)
These power spectral densities are shown in Fig. 8-14. The postdetection filter removes the dc component

[the first term of Eq. (8.81)] and passes only those portions of the power spectral components that lie within
—Wto W (W = 2zB). From Fig. 8-14 the output noise power is

N, = E[n2(0] = 3*B* + 244 B (8.83)
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Sanle)
A
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(a)
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2n’B
PN . . N
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Sniclw)

l

Aln LT
I"J ) N 3] ] , |
2o, -W 0 W(=2mB) 20 w
(c)

Fig. 8-14

Hence, the output SNR is

S — Su — Ag.uZSX
(ﬁ)f N, 3B +24ZB @54
NOISE IN ANGLE MODULATION.SYSTEM

8.10. Consider an FM broadcast system with parameter Af =75 kHz and B = 15 kHz. Assuming
Sy =1, find the output SNR and calculate the improvement (in dB) over the baseband system.

Substituting the given parameters into Eq. (8.63), we obtain
2
N 75(10%) 1)
Zl =3 — |y =375
(zv)o (15(103) (2 ! ’

Now 10log37.5 = 15.7dB

which indicates that (S/N), is about 16 dB beiter than the baseband system.

8.11. Show that in an FM system the output SNR, assuming sinusoidal modulation, is given by

(5).=37 885

where f is the modulation index for FM.



220

8.12.

8.13.

NOISE IN ANALOG COMMUNICATION SYSTEMS [CHAP. 8

For sinusoidal modulation

X(t) = cos w,t

o Sy = ELC0l =
From Eq. (8.62), we obtain
s KESx\ 3 A0\: 3,
().- 3( o )=3() =3
A
since Aw = [k X(D)|may =k and % =

It is important to note that the modulation index B is determined by the bandwidth W of the postdetection
low-pass filter and is not related to the sinusoidal message frequency ®,,, except insofar as this filter is chosen
so as to pass the spectrum of the desired filter. For a specified bandwidth W, the sinusoidal message
frequency may lie anywhere between 0 and W and would yield the same output SNR.

Show that narrowband FM offers no improvement in SNR over AM.

For AM with envelope detection and assuming 100 percent sinusoidal modulation, the output SNR is
given by [Prob. 8.5, Eq. (8.73)]
(¥).-3
No 3'

For FM with sinusoidal modulation, the output SNR is given by [Prob. 8.11, Eq. (8.85)]

S\ _3,
(3).=37
Hence, we see that the use of FM offers the possibility of improved SNR over AM when
3, 1
Eﬂ >§ or f>047

In Sec. 4.7 we mentioned that a value of § < 0.2 is considered to define an FM signal to be narrowband. We
conclude that the narrowband FM offers no improvement in SNR over AM.

Note that based on the preceding noise consideration, § = 0.5 is often considered as defining roughly
the transition from narrowband FM to wideband FM.

An audio signal X(#) is to be transmitted over a radio frequency (RF) channel with additive white
noise. It is required that the output SNR be greater than 40 dB. Assume the following
characteristics for X(¢) and the channel:

EX0]=0 [X(nl<1 Sy= E[Xz(t)] =% B=15kHz

Power spectral density of white noise /2 = 107° W /Hz

Power loss in channel = 50 dB
Calculate the transmission bandwidth Br and the required average transmitted power S for
(a) DSB modulation

(b) AM with 100 percent modulation and envelope detection
(c) PM with k, =3

(d) FM with a deviation ratio D = 5

(a) For DSB modulation

Br=2B=30kHz
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From Eqs. (8.8) and (8.19), we have
S S; S;

P2l =2 P = i0%=
).~ 7B A0 sy o 4098

or S, =310 W

Hence, Sy = S10°) = 3000W = 3kW

(b) For AM with u = 1 and envelope detection
By =2B=30kHz

(E) _L
N3

Hence, Sr=9kW

From Eq. (8.35), we have

(¢) For PM with k, = 3, from Egs. (4.2) and (4.25),
Br+2(k, + 1)B =120 kHz
From Eq. (8.56), we have

S ) ) 1) S; ol
-\ =K = ) =10
(N)o kpSer =0 )(2 2(10-0Y(15)(10%)
or sizg(m‘z)w
Hence, . Sr = S(10%) = 667W

(d) For FM with D =5, from Eq. (4.27)
Br=2(D+ 1)B=180kHz
From Eq. (8.63), we have

S 2 2 (1) S; 4
2) —3piSy = N2z
(N)U Sx1 = 36903 23q0myasyiod)
or S; = 1(10'2) w
AT
Hence, Sr=S(10°) = 80W

8.14 The result of Prob. 8.6 indicates that the threshold level for AM is equivalent to the input SNR

(S/N); = 10. Assume this conclusion is also valid for FM.

(@) Find the output SNR at the threshold level for FM (assuming sinusoidal modulation).

(b) Find the modulation index f that produces (S/N), = 30 dB at the threshold.

(a) From Eq. (8.62), we have
S\ _; KSx\ [ 42
(N)f W2 J\2nB
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For sinusoidal modulation
Aw

1
Sy=5 do=k f="2

B34
(-0

Br=28+1)B

Thus, Eq. (8.86) can be rewritten as

Using Eq. (8.41), we obtain

According to Carson’s rule (4.25),

Thus, we obtain

s ) s

Z) =3 H2

(N)a F$+ )(N)i
Setting (S/N); = 10, we see that the output SNR at the threshold level is
N 2
(3)., = 208G+
(ﬁ) =30p%(B + 1) = 10°(= 30dB)
N Oth

Solving for f§, we obtain f = 2.92.

[CHAP. 8

(8.87)

8.88)

8.15. In commercial FM broadcasting, a scheme known as preemphasis/deemphasis filtering is used to
improve the output SNR. In this scheme, the high-frequency component in the input signal is

20tog | Hpp(w)l

Il ! l[ o
C

[
=
=R
o— o 0 | L
@, @) log @
(a) Preemphasis filter and its frequency response
20log |Hpglw)l
R, @y
o MW ° 0 1 |
log @
=C
o o)

(b) Deemphasis filter and its frequency response

Fig. 8-15
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emphasized at the transmitter before the noise is introduced, and at the output of the FM
demodulator the inverse operation is performed to deemphasize the high-frequency components.
The circuits shown in Fig. 8-15 are used as preemphasis (PE) and deemphasis (DE) filters.
The standard value for the time constant is R;C = 75 us, and RyC> R,C.
Calculate the noise improvement factor I' defined by
N,
r=>,¢

No
where N, is the output noise power without preemphasis/deemphasis filters and N} is the output
noise power when these filters are used.

The frequency response for the preemphasis filter is

_ Ll H4jony
Hps(@) =Ko,
R, RR,C
= = = ~R
where K R+R 7, =RC 1, R+R ,C
For << w, where w, = 1/1;, Hpp(w) can be approximated by
©
Hpe(w) = K(1 + jot)) = K(l +j£-u—) (8.89)
1

! ! I
i =— and fl=———
with oy =ooand fi= = a0

The frequency response for the deemphasis filter is

=2.1(10°)Hz = 2.1 kHz

1

1
H = = 8.90
(@) 1+joty  1+jw/w) 8.90)
We note that Hpp(w)Hpp(w) =~ K foro<w,
which is the requirement for no distortion.
In the presence of the deempbhasis filter, the output noise power N, of Eq. (8.60) is modified to
11 (7 n (¥ w? nel (W 74
N =—— 20| H d =*J [ :_1(__1; "1‘.‘)
°= P W° nlHpg(w)ldw 2o Tr /oy » i\, an o
‘Without the deemphasis filter the output noise power N, is [Eq. (8.60)]
_n
° 34n
Thus,
N, 1 /o))
r=Ye_1___ Vje) 8.91
N} 3W/w, —tan {(W/w,) 89D
If f{ = 2.1kHz and B = 15kHz, then W/w, = B/f; = 7.14 and
1 (114 _
AT SV 21.25 (= 13.27dB) 8.92)

Note that Eq. (8.92) neglects any increase in the modulation signal power resulting from the preemphasis of
higher spectral components. The actual SNR improvement achieved by taking preemphasis into considera-
tion is treated in the next problem.

8.16. Suppose that the power spectral density of the signal X(¢) is

|} < 27(15)(10%)

otherwise

1
Suy(@) = { 1+ (/o)
0
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8.17.

8.18.

8.19.

8.20.

NOISE IN ANALOG COMMUNICATION SYSTEMS [CHAP. 8

where @; = 2n(2.1)(10%) rad/s.
(a) Determine the required change in modulation level with and without preemphasis for a fixed
modulation power.

() What is the net SNR improvement under these conditions?

(@) Without preemphasis, the modulation signal power Sy is

1 (% 1 o LW
Sy==— —  _do=—1t —_
X ZnJ—wl + (@/w))? w= o,
With preemphasis, using Eq. (8.89) of Prob. 8.15 gives
1 (7 1"
Sy = *J Syx(@)Hpg(o)*do = 7J Kdo =7
2n ) -w 27 ) -w n
Thus, if the modulation signal power is to remain fixed, we must have
tan™ (W/w,)
K= 7%
W/o,
With B = 15 kHz and f; = 2.1 kHz, we obtain

_ tan'7.14

== 0.200 (= —6.98 dB)

(b) From Eq. (8.91) of Prob. 8.15 the noise improvement factor with preemphasis/deemphasis is 13.27 dB.
However, now the modulation level must be decreased by 6.98 dB, so the net SNR improvement is
13.27-6.98 = 6.29 dB.

Supplementary Problems

Rewrite Eqgs. (8.19) and (8.26) in terms of y, = S, /(nB), where S, is the peak envelope power of the DSB or
AM signal.

S 1 S 1
Ans. DSB: (X/')o_ ESXyp, AM: (ﬁ)av ESX)',,
An AM receiver operates with a tone modulation, and the modulation index y = 0.3. The message signal is
20 cos 10007z.

(a) Compute the output SNR relative to the baseband performance.

(b)) Determine the improvement (in decibels) in the output SNR that results if x is increased from 0.3 to
0.7.

Ans. (a) (%) =0.043y, (b) 6.6dB

An AM system with envelope detection is operating at threshold. Find the power gain in decibels needed at
the transmitter to produce (S/N), = 30 dB for tone modulation with u = 1.

Ans. =~22dB
An AM system with envelope detection has (S/N), = 30 dB and tone modulation with g = 1 with B = 8 kHz.
If all bandwidths are increased accordingly while other parameters remain fixed, what is the largest usable

value of B?

Ans. 1.2 MHz
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8.21.

8.22.

8.23.

8.24,

8.25.

8.26.

Find the detector gain «, for an SSB system.

Ans. ay=1

Find the output SNR in a PM system for tone modulation.

S\ 1,
Ans. (N)le”

Find the detection gain o for an FM system with = 2.

Ans. oz =136.

Show that for tone modulation, FM is superior to PM by a factor of 3 from the SNR point of view.

Hint:  Use the result of Prob 8.22 and Eq. (8.85)

For a modulating signal X(¢) = cos 3w,,t, show that PM is superior to FM by a factor of 2.25 from the
output SNR point of view.

Hint: Use Eqs. (8.56) and (8.62).

Consider a communication system with the following characteristics:
1
Sy = E[X*(5)] = 3 B=10kHz g =107 W/Hz
Transmission loss = 70 dB

Calculate the required transmission power St needed to achieve (S/N), = 40 dB when the modulation is (@)
SSB, (b)) AM with p= 1 and = 0.5, (c) PM with k, = =, (d) FM with D=1 and D = 5.

Ans. (a) SSB, Sp=1 kW; () AM; pu=1, S;=3%kW; p=0.5,Sr=9kW; (¢) PM, Sy =202.6 W;
@FM; D=1,Sr=66TW; D=5, Sy =26TW



Chapter 9

OPTIMUM DETECTION

is chapter we study the performance of digital communication systems in the presence of
#inoise as measured by the probability of error and introduce the concept of the optimum
il detection. We assume throughout a distortionless channel, so the received signal is free of
bol interference (ISI). We also assume additive white gaussian noise (AWGN) with zero mean
dependent of the signal.

YARY SIGNAL DETECTION AND HYPOTHESIS TESTING

ire 9-1 portrays the operations of a binary receiver. The transmitted signal over a symbol
| 1) is represented by

a_ sty 0=r=T  forl
sy = {s;{r} 0=r=T for0 &l
gl signal r(r) by the receiver is represented by

) = sit) + nit) i=1,2 D=r=T (%.2)

Jis a zero-mean AWGN,

: two separate steps involved in signal detection, The first step consists of reducing the
mal r(f) to a single number z(T ). This operation can be performed by a linear filter
sampler, as shown in block 1 of Fig. 9-1. The output of receiver (block 1), sampled at

(M =a(T)+n,(T) i=1,2 (9.3a)

the signal component of z(T ) and n, (7'} is the noise component. We often write

z=uai+n, i=1,2 (9.3h)

oise component i, s a zero-mean gaussian random variable, and thus z is a gaussian
e with a mean of either o) or a, depending on whether 5,(f) or s2(t) was sent. The
etimes called the test stavistic.

fl step of the signal detection process consists of comparing the test statistic = to a
% in block 2 (threshold comparator) of Fig. 9-1. The final step in block 2 is to make the

226
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alr)

Sample at r = T

t 1y |
i [ |
1 Iy :
] H [ "
(T [}li?xec:ir R 11| Threshold !
s(1) "V ! A1) 2(0) (T ! €COMPArAIOT | pecision
|
i i i
! Receiver block 1 i : block 2 '
A, I i
Fig. 9-1 Digital signal detection
H,
>,
z A 9.4
g 0.4
H,

where H; and H, are the possible hypotheses. Choosing H; is equivalent to deciding that signal s;()
was sent, and choosing H, is equivalent to deciding that signal s,(¢) was sent. Equation (9.4 ) indicates
that hypothesis H, is chosen if z > 4, and hypothesis H, is chosen if z < i. If z = A, the decision can be
an arbitrary one.

9.3 PROBABILITY OF ERROR AND MAXIMUM LIKELIHOOD DETECTOR
A. Probability of Error:

For the binary signal detection system, there are two ways in which errors can occur. That is,
given that signal s;(?) was transmitted, an error results if hypothesis H, is chosen; or given that signal
s,(f) was transmitted, an error results if hypothesis H; is chosen. Thus, the probability of error P, is
expressed as [Eq. (6.24)]

P, = P(H,|s))P(s)) + P(H\|5,)P(sy) 9.5)

where P(s;) and P(s,) are the a priori probabilities that s,(z) and s,(¢), respectively, are transmitted.

When symbols 1 and 0 occur with equal probability, that is, P(s;) = P(s,) = %,

P, =J[PUD|s)) + PUL[5:)] 9.6)

B. Maximum Likelihood Detector:

A popular criterion for choosing the threshold A of Eq. (9.4) is based on minimizing the
probability of error of Eq. (9.5). The computation for this minimum error value of A = }; starts with
forming the following likelihood ratio test (Prob. 9.1)

H
_fils) > P(sy)

T fizlsy) < Psy)
,

A2) ©.7)

where f(z|s;) is the conditional pdf known as the likelihood of s;. The ratio A(z) is known as the
likelihood ratio. Equation (9.7) states that we should choose hypothesis H; if the likelihood ratio A(z)
is greater than the ratio of a priori probabilities. If P(s;) = P(s,), Eq. (9.7) reduces to

H,
fls) >
fzlsy) <

H,

AG) = (9.8d)
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H,
or fzlsy) zf(zlsz) (9.8b)
H,

If P(s;) = P(s,) and the likelihoods f{(z|s;) (i = 1,2) are symmetric, then Eq. (9.7) yields the criterion
(Prob. 9.2)

H,
>
z Ao 9.9
H,
where Jo=dtam ﬁ; % 9.10)

It can be shown that the threshold A, represented by Eq. (9.10) is the optimum threshold for
minimizing the error of probability (Prob. 9.3). The criterion of Eq. (9.9) is known as the minimum
error criterion. A detector that minimizes the error probability (for the case where the signal classes are
equally likely) is also known as a maximum likelihood detector.

C. Probability of Error with Gaussian Noise:
The pdf of the gaussian random noise n, in Eq. (9.3b) is [Eq. (6.91)]

AGE %e‘éz/ @ai) ©.11)
n,
where aﬁa is the noise variance. It follows from Egs. (9.3b) and (9.11) that
fzlsp) = \/2—; - e’ /@) (9.124)
fizlsy) = ﬁ%%e*”ﬂ’/ @) (9.12b)
which are illustrated in Fig. 9-2.
fzlsy) flzls))

2«(T)
az Ao a,
Fig. 92 Conditional pdf
)
Now P(Hyls) = .[ fielsy) dz 9-13a)
PH\lsy) = L Azlsy) dz (9.13b)
0

Because of the symmetry of f(zls;), Eq. (9.6) reduces to
P, = P(H,|s,) = P(Hilsy) 9.19)
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Thus, the probability of error P, is numerically equal to the area under the “tail” of either likelihood
function f{z|s;) or f(zls,) falling on the “incorrect” side of the threshold;

P,= J’A fzlsy) dz 9.15)
0
where 1g = (a; +a,)/2 is the optimum threshold [Eq. (9.10)]. Using Eq. (9.12b), we have

1 ) \/27710',1{7
\
Let y = (z—a,)/0,,. Then o, dy = dz and
* 1 a—a
P, = J L g (g) ©.16)
* " Jamay/ea,) V21 y=0 2,

where Q(-) is the complementary error function, or the Q function defined in Eq. (6.93). The values of
the Q function are tabulated in App. C.

9.4 OPTIMUM DETECTION

In this section we consider optimizing the linear filter in the receiver (block 1) of Fig. 9-1 by
minimizing the probability of error P,.

A. The Matched Filter:

A matched filter is a linear filter designed to provide the maximum output SNR for a given
transmitted signal. Consider that a known signal s(#) plus AWGN n(?) is the input to an LTI filter
followed by a sampler, as shown in Fig. 9-1. Let () be the output of the filter. Then from Eq. (9.3a),
at (=T, we have

N,

S\ d(T) _d\T)

( )o‘ ERYD1 o, @17

We wish to find the filter frequency response Hy(w) that maximizes Eq. (9.17). It can be shown
that (Prob. 9.7)

S 21 (® 2E

< - __ 2 _ L
(N)a =3 J_w ISl doo == (9.18)

where S(w) = F[s()], n/2 is the power spectral density of the input noise, and E is the energy of the
input signal s(#). Note that the right-hand side of this inequality does not depend on H(w) but only on
the input signal energy and the power spectral density of noise. Thus,

The equality in Eq. (9.18) holds only if the optimum filter frequency response Hy(w) is employed such
that (Prob. 9.7)

H(w) = Hy(w) = S*(@)e 7T 9.20)
where * denotes the complex conjugate.
The impulse response A(f) of this optimum filter is [see Egs. (1.18) and (1.21)]

0s<t<T

otherwise ©.2D

o =7 it = {57 "
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Equation (9.27) and Fig. 9-3 illustrate the matched filter’s basic property: The impulse response of the
matched filter is a delayed version of the mirror image of the signal form.

l}\ A h N
0 T i -T (1} t

Fig. 9-3 Matched filter characteristics

B. Correlator:

The output z(¢) of a causal filter can be expressed as [Eq. (2.8)]

z(t) = r(t) * h(t) = J; rOh(t—1) dv 9.22)
Substituting #(7) of Eq. (9.2]) into Eq. (9.22), we obtain
2(f) = J; HO)s[T— (t—1)] de (9.23)
When =T, we have
2T = JZV(T)S(T) dr 9.24)

. The operation of Eq. (9.24) is known as the correlation of r(t) and s(7).
Since the matched filter output and the correlator output are identical at the sampling time ¢ = T,
the matched filter and correlator depicted in Fig. 9-4 are used interchangeably.

Lo i
' i
|
(1) «T) 1 ¢
| 1 «T)
W) =s(T —1) T H
——f wo-ar-0 , §H—
e i
(a) Matched filter (b) Correlator

Fig. 9-4 Equivalence of matched filter and correlator

C. Optimum Detection:
To minimize P, of Eq. (9.I6), we need to determine the linear filter that maximizes
(a; — @;)/(20,,) or, equivalently, that maximizes

(a1 — m)*

2
Oy,

9.25)

where a; —a, is the difference of the signal components at the filter output, at time ¢ = T hence,
(@, - a,)* is the instantaneous power of the difference signal, and aﬁﬂ is the average output noise
power.
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Consider a filter that is matched to the input signal s,(¢) — s,(¢). From Egs. (9.17) and (9.19), we
have

(S) _@m-a)? _E _2E (9.26)

N, o, n/2 7
where 7/2 is the power spectral density of the noise at the filter input and E; is the energy of the
difference signal at the filter input:

T
Ey= jo [s1() = sy()F* dt ©9.27)

Hence, using Eqgs. (9.16) and (9.26), we obtain
ay—ay Ed
=0l === — .28
- o(222)-o{{E) o2

9.5 ERROR PROBABILITY PERFORMANCE OF BINARY TRANSMISSION SYSTEMS

By using Eq. (9.28), the probabilities of error for various binary transmission systems are given in
the following.

A. Unipolar Baseband Signaling:

s[(t):{sl(t)=A 0sisT 9.29)

(=0 0s¢<T

P, = Q(\/g) = Q(\/%) (9-30)

where E, = A>T/2 is the average signal energy per bit.

The probability of error P, is

B. Bipolar Baseband Signaling:
st = si)=+4 0<t<T
! ) =-4 0=<t=<T
The probability of error P, is (Prob. 9.12)

P, = Q(\}zfgz) = Q(\/ZTT”) 9.32)

where E, = A*T is the average signal energy per bit.
C. Amplitude-Shift Keying (or On-Off Keying):

9.31)

sy = {sl(t)=Acos wt 0st<sT ©9.33)

5 =0 0st=T
with T an integer times 1/f,. The probability of error P, is

_ /A2T _ AN
Pe_Q( W)—Q( 11) 9.34)

where Ej = A°T/4 is the average signal energy per bit.
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D. Phase-Shift Keying:

51(f) = A costo,t O0st<T
s{t) = 1 52(8) = A cos (w1 + 7) (9.35)
= —A4 cos ot 0=<!<T

with T an integer times 1/f,. The probability of error P, is (Prob. 9.14)

B 42T\ [ PE,
P, = Q( " ) = Q(\/;) (9.36)

where E, = A2T/2 is the average signal energy per bit.

E. Frequency-Shift Keying:
(N — siy=Acoswit 0<t<T
sit) = {52(1) =Acoswyt 0<t<T @37
If we assume ;7> 1, w,T>> 1, and (@0, — ;)T > 1, then the probability of error P, is (Prob. 9.17)

o))

where E, = A>T/2 is the average signal energy per bit.

Solved Problems

PROBABILITY OF ERROR AND MAXIMUM LIKELIHOOD DETECTOR
9.1. Derive the likelihood ratio test given by Eq. (9.7), that is,
H,
_Js) > Plsyp)
(zls)) < P(sy)
H,

A(z)

A reasonable receiver decision rule is to choose hypothesis H, if the a posteriori probability P(s;|z) is
greater than the a posteriori probability P(s,|z). Otherwise, we should choose hypothesis H, (See Prob. 6.15)

H;
Hence, P(si|2) Z Ps,l2) 9.39)
H,
H,
P(silz) >

P(sylz) <
H,

or

(9.40)

The decision criterion of Eq. (9.40) is called the maximum a posteriori (MAP) criterion.
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9.2.

Expressing Bayes’ rule [Eq. (6.19)] for a continuous conditional pdf, we have
fzls)P(s) i=
fi2)

where f{z|s;) is the conditional pdf of the received sample z conditioned on the signal class s;. Thus, by using
Eq. (9.41), Eq. (9.39) yields

P(sl2) = 1,2 9.41)

H,
Rels)Plsy) 7 fiels)Ps) ©.42)
Hy
H,
_flels) > P(sy)

or AZ)

Sfzlsy) < P(sy)

H,

Derive Eq. (9.9), that is,

H,;

>, a +a

D o= %
H)

Using Egs. (9.12a) and (9.12b), we see that the likelihood ratio A(z) defined in Eq. (9.7) can be written as

—~(z—a1)*/Q20%,)
Ay =T _ ¢

= Hama)/o;,~@-a)/(2a;,)

fzlsy) — eewi/@dd,)
Hence, the likelihood ratio test (9.7) can be expressed as
H;
Fa—a)/d, -, > Pls)
< P(sy)
H, .

9.43)

The inequality relationship of Eq. (9.43) is preserved for any monotonically increasing (or decreasing)
transformation. Taking the natural logarithm of both sides, we obtain

2 2 Hl
(o —a) ai—a >, P(s)
bl B . | 9.44
a2 202 < PGy 44
2
When P(s;) = P(sp),
P(sy)
In =1nl=0
P(s;)
Eq. (9.44) yields
Hl 2 2
> ai—a G+ a
AT = .
%< 2a—a) 2 0 ©43)
H,

Verify that the threshold Ay given by Eq. (9.45) yields the minimum probability of error when
P(sy) = P(s).

Assume that the threshold is set at & (Fig. 9-5). From Eq. (9.5)
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P, = P(H,|s1)P(s)) + P(Hi|s;)P(s3)

A 00
= P [__felsodePisy [ filsn)ds
Z A
=P [l dZ+P(52)[ 1= [ dz]

A
= P+ [ [P0 el = P ksl ds

fzlsy) flals)

Fig. 9-5

To find the threshold Ay that minimizes P,, we set

dP,
s 0
which yields
P(s1) Rolst) = P(sy) flAglsy) (9.46)
or Slols)) _ P(sy) ©.47)

Folsy) ™ Plsy)
Using Egs. (9.12a) and (9.12b), we obtain

folsy) _ e oma’/Gsl)  psy)
flolsy) ™~ e CGoma? /@)~ P(sy)

or =)/~ e,y _ Bl
P(s1)

or Aolar — a) " aq—d —1 P(sy)
a2, 262, P(sy)

From which we obtain

9.48)

n
a P(sp)

1 oz, . P(sy)
/10:5(111'9'02)“1_ In—*2
When P(s)) = P(s;), Eq. (9.48) reduces to

1
A= i(al +ay)

A bipolar binary signal s;(¢) is a +4-V or —A-V pulse during the interval (0, 7'). The linear filter
shown in Fig. 9-1 is an integrator, as shown in Fig. 9-6. (This detector is known as an integrate-
and-dump detector.) Assuming aﬁv = 0.1, determine the optimum detection threshold 4, if the a
priori probabilities are

(@ Pls)=05

() P(sp)) =07

(¢) P(s;) =02
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Sample at r = T

r(r)
j'T(.) dt o 5 Threshold
-o comparator Decision

Fig. 9-6 Integrate-and-dump detector

The received signal r(¢) is
r(®) = s{0) + n(®)

where ) = 51 () =+4 O0st<T forl -
M nw=-4 O0st<T for 0

The output of the integrator at the end of a signaling interval is

«T) = K [0 + () dt = { i bor ! 949
T T
where ay = Jo Adt=AT a = L (=A4) dt =—-AT 9.50)
and 7, is a random variable defined by
n, = LT n(t) dt .51

(@) P(s))=P(s)=0.5
From Egs. (9.10) and (9.50), the optimum threshold is
2 __al +a2 _AT+(—AT)ﬁ
0T T 2 -

0

(®) P(s;)=0.7, P(sy)=0.3
From Egs. (9.48) and (9.50) the optimum threshold is

_01, 03 om
07 24T

107 =T ar
(¢) P(s))=0.2, P(s;)=08
From Egs. (9.48) and (9.50) the optimum threshold is

0.1 08 0.07
In —=

Qo= =
°T2AT 02 AT

9.5.  Show that the probability of error P, in the binary system of Prob. 9.4 can be expressed as

2
P,= Q(ﬁz’: T) 9.52

T
n, = J n(t) dt
0

From Eq. (9.5]),

Since n, is obtained by a linear operation on a sample function from a gaussian process, it is a gaussian
random variable.

T T
Eln,] = E[J‘0 n(?) dt] = ,[o E[n(n]dt=0 9.53)
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since n(¢) has zero mean.

o2 = Eln)] = E[[J’: n(f) a’t]z]

T T
= j f E[n(H)n(x)} dtde
0oJo
Since n(f) is a white noise, we have [Eq. (7.63)]

En(dn()] = géa —9

T

5 T T’T n T n
and o2 :J J —o‘(t—r)dtdr:—J dv="—+ 9.54)
. 2 Jo)o2 2Jo 2

Thus, using Egs. (9.16) and (9.50), we obtain
a—a AT AT

P = =0l -Z_)=
. Q( 2%) Q( — /2) Q(J ; )

9.6. In the binary system of Prob. 9.4, P(s;) = P(s;) =1, 7/2=10" W/Hz, 4= 10mV, and the
transmission rate of data (bit rate) is 10* b/s.
(a) Find the probability of error P,.
(b) If the bit rate is increased to 10° b/s, what value of 4 is needed to attain the same P, as in

part (a@)?
(@ 24°T _ AT _ (0.01°(107%) 10
noonj2 100
Hence, from Eq. (9.52) and Table C-1, we obtain
2
P,= Q( 2A—T) = 0(V10) = 7.8107
n
® A£T_ #3007 _ o
n/2 1070

Solving for A, we obtain

A =31.62(107)V = 31.62 mV

THE MATCHED FILTER AND CORRELATOR
9.7. Derive Eq. (9.18), that is,
(S ) 2F
===
Njo n

where E is the energy of the input signal s(¢) and #/2 is the power spectral density of the input
noise n(t) (Fig. 9-1).
Let H(w) be the frequency response of the linear filter. Let a(f) be the output signal of the filter. Then by
Eq. (2.1)
a«T)= Tln,[ H(w)S(@)e*7 dew (9.5%)

where S(w) = Z[s(t)]. The output noise power N, is [by Eq. (7.55)]

N, = El20) = 251; j " @) do ©9.56)
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9.8.

Thus, the output SNR is

(5) -1 [@n|[ % H@)S@)e™" dof

No (n/2)11/@m) [Z 1 H@)* doo
We can examine the preceding SNR by applying Schwarz inequality, which states that

00 2 0 00
[ s df <[ 1@ | Ipoh d

The equality holds if
Si(w) = kf3(w)

where k is an arbitrary real number and * denotes the complex conjugate.
If we set

filw)=H@) frw) = S@e™"
we can write Um H(w)S(w)e™" a’w|-$ jm |H(w)? dow rg |S()]? dw

Substituting Eq. (9.60) into Eq. (9.57), we obtain

l/

0 2 E
(E) <21 IS(@)|* dow = 2E
N/o n2n)-x 7

1 (> 2
where E= 2—71'[_00 |S(@)|* dw

which is the energy of the input signal s(¢).
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9.57)

9.58)

9.59)

9.60)

Find the output of the matched filter and determine the maximum value of (S/N), if the input s(7)

is a rectangular pulse of amplitude 4 and duration 7.

s(1) h(t) = (T — 1)
A A
0 T { 0 T !
(a) (b)
Fig. 9-7

For the given 5(7) [Fig. 9-7(a)] the impulse response A(#) of the matched filter is [Eq. (9.21)]

) =s(T—1) = s(f)

which is exactly the same as the input s(z) [Fig. 9-7()]. Thus, the output z(7) is

A% 0st=<T
2(t) = s(2) * h(t) = § =A%t + 24T T<¢<2T
0 otherwise

which is plotted in Fig. 9-7(c).

Note that z(T') = A>T is the maximum value of z(f). From Eq. (9.19) the maximum value of (S/N),
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(ﬁ) _2E
Nos N

00 T
where E= j S di = J Aldr = AT
o 0
S 24°T
Hence, 2) = 61
ence. (N)gmx " (9 6 )

9.9. Repeat Prob. 9.8 if a simple RC filter [Fig. 9-8(a)] is used instead of the matched filter.
2(1)

h(t)
R
AMAA .
T W
s(1) C= z(f)

(a) b) (c)

Fig. 9-8

From Prob. 2.6 the impulse response A(#) and the frequency response H(w) of the RC filter are given by

M—-W%m
1
HO =R
Then the output z(¢) is given by
0 t<0
2(8) = s(t) * h(t) = § A(l — /RO 0<t<T
A(l— e—T/(RC))e—O—T)/(RC) 1>T

which is plotted in Fig. 9-8(c). Note that the maximum value of z(f) is reached at ¢ = T and
«T) = A1 - & TRO)
The average output noise power is

N, = Elr2(0)] = ~ doo

<N n
- J_ = - 1 9.62
21} -2 1+ (wRC)*  4RC ©62)
N 2(T) 442 T (1 - 11ROy
S _ 9.63
Thus, (1 ) N, p T/(RC) 9.63)
We now maximize (S/N), with respect to RC. Letting x = T/(RC) and

L (] _c—x>2
g =—71T—

and setting

goo=

2xe (1 —e ™) —(1—e™)?
x2 =

we obtain

T =1-e" or 1+2x=¢"
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9.10.

9.11.

Solving for x, we obtain

T
X=pE~ 1.257
Substituting this value into Eq. (9.63), we obtain
S 24°T
=] =(0.815—— 9.64
(v)..= om0 o8

Note that by using a simple RC filter, the maximum output SNR is reduced by a factor of 0.815, or about
0.89 dB from that of the matched filter.

Find the optimum filter frequency response Hy(w) that maximizes the output SNR when the
input noise is not a white noise.

Let H(w) be the frequency response of a linear filter. Let S,,(w) be the power spectrum of the input
noise. Proceeding as in Prob. 9.7, we see that the output signal of the filter at time r=T is
1
a(l)=— [ H()S()e™" deo
27 ) -
The output noise power is

N, = El01 = - [ Su@lH@ do

Then the output SNR is

(5) _ 1/2m1J %, H)S@)e™T dof’ ©65)

N %% Sunle) H(@)|* deo

To find the frequency response H(w) that maximizes Eq. (9.65), we apply Schwarz inequality Eq. (9.58).
Setting

S(w)e’T

Ni(w) = VSpn(w) H(w) falo) = ﬁ

we can write

© jor o P (™ 2, * 1@
H(@)S@)e’T do| < | S,(@) H)? dw (9.66)
% e —o Snn(w)
The equality holds if
S*(wye T
[Sun() H(®) = k ————= 9.6
V() H(w Bk 9.67)
Substituting Eq. (9.66) into Eq. (9.65), we obtain
Sy _ 1 (™ IS@f
%)=z ) st 69

The maximum value of (S/N), occurs when the equality holds in Eq. (9.68) or Eq. (9.66). Thus, from Eq.
(9.67) the optimum filter frequency response Hy(w) is

S*(w)e T

Hy(w) = k2

R )

An optimum filter given by Eq. (9.69) is called a matched filter for colored noise.

(9.69)

Referring to Egs. (9.26) and (9.27), we have the output SNR of a matched filter receiver as

S\ 2B, 2(T
(X/) = Td =5 J s — s dt (9.70)
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Now suppose that we want s;(¢) and s,(#) to have the same signal energy. Show that the optimum
choice of s,(7) is

$() = —s,(8) 9.71)
and the resultant output SNR is
S 8 (T , 8E
—]=- 1) dt = — 9.72
(3).=7], d0a== ©.72)
where E is the signal energy.
From Eq. (9.70)
S 2(7
(N)a = Ejo [0 +30 - 251050 dt
4E 4 (T
= 7 - ﬁj-o s1()s,(t) dt 9.73)

Using Schwarz inequality (9.58), we obtain

T T T
J s1(D5(0) dt| < I s{(z)dzj SO dt=E
0 0 0

The equality holds when
53(0) = ks1 ()

Equal energy requirement implies k£ = *1, and maximizing (S/N), requires k = —1. Hence
$:(0) = =1(2)

Substituting this relation in Eq. (9.73), we obtain

S) 4E 4JT2 8E
2= o=
(Nn 7t 1

ERROR PROBABILITY PERFORMANCE OF BINARY TRANSMISSION SYSTEMS
9.12. Derive Eq. (9.32), that is,

o)

(= [aO=+4 0<i<T
=1 =-4 0<i<T

From Eq. (9.31)
Then by Egs. (9.27) and (9.28) we obtain
T
E,;= JU [s10) — 20T dt

T
= J A4y dt = 44°T
0

el o) ()
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9.13.

9.14.

9.15.

where the average energy per bit is E, = 4%T. Note that Eq. (9.32) is the same as Eq. (9.52) obtained in Prob.
9.5.

A bipolar binary signal 5;(¢) is a + 1-V or —1-V pulse during the interval (0, 7). Additive white
noise with power spectral density #/2 = 10 W/Hz is added to the signal. Determine the
maximum bit rate that can be sent with a bit error probability of P, < 1074,

2
P, = Q(W/Z“L—T) <10™

O0(x) =10 - x=3.71

Hence, AT _ 2(1)2T_371
7 V2a07%) 7

from which

By Eq. (9.32)

From Table C-1

T = (3.71)%(107%) = 13.76(107%) s
Thus, the maximum bit rate R is

1

R=—= 7.26(10%) b/s = 7.26 kb/s

Derive Eq. (9.36), that is,
A2T DE,
P = )= )
e Q( p ) Q(\ p )

51(t) = A cos w,t 0<t=<T
s =

From Eq. (9.35)

S$p(t) = Acos(w .t + )
= —Acosw,t 0<t<T

with T an integer times 1/f.. Again, by Eqgs. (9.27) and (9.28), we obtain
T
E;= jo [s1) — ;0] dt
T 2 2
= J'o (24 cos w,t)" dt =24°T

8l

where Ej, = A T/2 is the average signal energy per bit.

An on-off binary system uses the pulse waveforms

. Tt
s,-(l)={sl(t)=Asm— 0<s:t=<T
() =0 0st=T
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Let A= 0.2mV and T = 2 us. Additive white noise with a power spectral density 7/2 = 10715 W/
Hz is added to the signal. Determine the probability of error when P(sy) = P(sp) = %

o)

From Eq. (9.28)

T
where E;= j [s1() = sz(t)]2 dt

0

T ¢ A*T

= | A2t =L
j‘o SHY’ T )
E;_ AT _ (2x1074°2x107%) _ 10

and 2 A4 4ex10%y

From Table C-1 -
P, = Q(10) = 7.83(107%

A binary system uses the pulsed waveforms
. Tt
5(0) = {s](t)=A1 sin T 0<r<T
$(8) = —s1(8) O0st=<T

Determine the probability of error under the same conditions given in Prob. 9.15 except for the
value of A, which is chosen such that the system transmits the same average power as in Prob.
9.15.

In Prob. 9.15 the average power transmitted is

(A2 1 , 4
P“V_§(7)+§(°)_T

With the present case, the average power transmitted is

1(43\ 1{43\ 4
Pav—5(7)+§(7 )

Thus, for the same average power

_ 4200 4
A= N V2(10™ V = 0.14 mV
From Eq. (9.28)
r=olz)
where T 2
E;= . [s1(8) = s2(D]" dt

T 22T 2
4 A7sin” — dt =247T
0 T

E; _AIT _ (2x1072(2x107%) _

and
2n n 2% 1071°

20

From Table C-1
P, = 0(~/20) = 3.88(107%)



CHAP. 9] OPTIMUM DETECTION 243

9.17. Derive Eq. (9.38), that is,

el ) -7

where Ej, = A% T/2 is the average signal energy per bit.

From Eq. (9.37)

s(0) = siy=Acoswyit 0st<T
M7 s =Acoswyt 0<t<T

Then 51(8) — 55(t) = A cos wyt — A cos w,t
T
and Ey= [ 190 - 5x(0F d )
0
T 2
= J A*(cos w1 —Ccosmyt)” dt
0

T
=42 J (cos® w1 + cos’w,t — 2 cos w; £ o8 y1) dt
0

_ A2T[1 + sin 20,7 | sin2w,7_sin (0, — )T _sin2(o; + wz)T]

4anT + 40, T 2(w) —opT 2wy + w)T
If we assume w, T>> 1, 0, T>> 1, and (0; — )T > 1, then
E;~ AT

e AL

Supplementary Problems

9.18. A binary communication system transmits signals s;()(i = 1,2). The receiver test statistic z(T) is

2T)y=a;+n,
where a; = +1 and a, = —1 and #, is uniformly distributed, yielding the conditional density functions f(zls;)
given by
L 01=<z=<19
=12 : .
Jelsy) {0 otherwise
1 —19=<z=0.1
=32 : .
felsy {0 otherwise

Find the probability of error P, for the case of equally likely signals, using an optimum decision threshold.

Ans. P, = 0.05

9.19. A binary communication system transmits signals s;(9)(i = 1,2) with equal probability. The receiver test
statistic z(T) is

2T) = a(T) + n,(T)

where a;(T) = +1 and a,(T) = —1 and n,(7T") is a zero-mean gaussian random variable with variance 0.1.
(a) Determine the optimum decision rule.
(b) Calculate the probability of error.
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Hy
Ans. (@) z Z 0 (b) P, =7.8(10"%
H

9.20. A binary communication system transmits signals s;(/)({ = 1,2) with the probabilities P(s;) = 0.75 and
P(s,) = 0.25. The receiver test statistic z(T") is

2T) = a(T) +n,(T)

where a;(T) =1 and a,(T) = 1 and #,(T') is a zero-mean gaussian random variable with variance 0.1.
(a) Determine the optimum decision rule.
(b) Calculate the probability of error.

Hint:  Use Eq. (9.48) of Prob. 9.3 and Eq. (9.5).

H
Ans. (@) 220.61, (b) P, = 0.0883
H,

9.21. Compute the matched filter output over (0, T') to the pulse waveform

S0 = el 0st<T
10 otherwise

Ans. e Tsinht

9.22. Derive Egs. (9.30) and (9.34).

Hint:  Use Egs. (9.27) and (9.28).

9.23. It is required to transmit 2.08 Mb/s with an error probability of P, < 107%. The channel noise power
spectrum is #/2 = 107! W/Hz. Determine the signal power required at the receiver input, using polar
signaling.

Ans. 047 mW

9.24. In a PSK system, the received waveforms s;(f) = 4 cos w.t and s,(f) = —A cos w,t are coherently detected
with a matched filter. The value of 4 is 20 mV, and the bit rate is 1 Mb/s. Assume that the noise power
spectral density 7/2 = 10711 W/Hz. Find the probability of error P,.

Ans. P, =3.9(107%)



Chapter 10

INFORMATION THEORY
'AND SOURCE CODING

ation theory provides a quantitative measure of the information contained in message
d allows us to determine the capacity of a communication system to transfer this
n from source to destination. In this chapter we briefly explore some basic ideas involved in
ation theory and source coding.

SURE OF INFORMATION
n Sources:

rmation source is an object that produces an event, the outcome of which is selected at
ording to a probability distribution, A practical source in a communication system is a
sroduces messages, and it can be either analog or discrete. Tn this chapter we deal mainly
te sources, since analog sources can be transformed to discrete sources through the use
d quantization techniques, described in Chap. 5. A discrete information source is a
s only a finite set of symbols as possible outputs. The set of source symbols is called the
t, and the elements of the set are called symbols or lerrers.

on sources can be classified as having memory or being memoryless. A source with
for which a current symbol depends on the previous symbols. A memoryless source is
each symbol produced is independent of the previous symbols.

¢ memorviess source (DMS) can be characterized by the list of the symbols, the
ignment to these symbols, and the specification of the rate of generating these symbols

ontent of a Discrete Memoryless Source:

t of information contained in an ¢vent is closely related to its uncertainty. Messages
pwledge of high probability of occurrence convey relatively little information. We note
it is certain (that is, the event occurs with probability 1), it conveys zero information.
245
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~

N

Thus, a mathematical measure of information should be a function of the probability of the outcome
and should satisfy the following axioms:

1. Information should be proportional to the uncertainty of an outcome.

2. Information contained in independent outcomes should add.

Information Content of a Symbol:

Consider a DMS, denoted by X, with alphabet {x;, x5, ..., x,,,}. The information content of a symbol
x;, denoted by I(x;), is defined by

Ix) = logb%xl_) = —log, P(x) (10.1)

~where P(x;) is the probability of occurrence of symbol x;. Note that I(x;) satisfies the following
properties:

Ix)=0 for P(x)=1 10.2)

I(x)=0 (10.3)

I(xp) > I(xp) if P(x;) < P(x)) (10.4)

I0xx;) = I(x;) + I(x))  if x;and x; are independent (10.5)

The unit of I(x;) is the bit (binary unir) if b = 2, Hartley or decit if b = 10, and nat (natural unis) if
b=e. It is standard to use b = 2. Here the unit bit (abbreviated “b”) is a measure of information
content and is not to be confused with the term bir meaning “binary digit.” The conversion of these
units to other units can be achieved by the following relationships.

_Ina_loga

TIn2 log2 (106)

logya

Average Information ov Entropy:

In a practical communication system, we usually transmit long sequences of symbols from an
information source. Thus, we are more interested in the average information that a source produces
than the information content of a single symbol.

The mean value of I(x;) over the alphabet of source X with m different symbols is given by

m
HX) = EU(x)] = > POxpI(x;)
= 10.7)
= —z P(x;)log, P(x;) b/symbol
i=1
The quantity H(X) is called the entropy of source X. It is a measure of the average information content
per source symbol. The source entropy H(X') can be considered as the average amount of uncertainty
within source X that is resolved by use of the alphabet.
Note that for a binary source X that generates independent symbols 0 and 1 with equal

probability, the source entropy H(X) is

H(X)=—}log; 1 —1log, L =1 b/symbol (10.8)
The source entropy H(X) satisfies the following relation:
0< HX)<log,m (10.9)

where m is the size (number of symbols) of the alphabet of source X (Prob.10.4). The lower bound
corresponds to no uncertainty, which occurs when one symbol has probability P(x;) =1 while
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P(x)=0 for j#1i, so X emits the same symbol x; all the time. The upper bound corresponds to
the maximum uncertainty which occurs when P(x;) = 1/m for all i, that is, when all symbols are
equally likely to be emitted by X.

3. Information Rate:
If the time rate at which source X emits symbols is r (symbols/s), the information rate R of the
source is given by
R=rH(X) b/s (10.10)

10.3 DISCRETE MEMORYLESS CHANNELS
A. Channel Representation:

A communication channel is the path or medium through which the symbols flow to the receiver.
A discrete memoryless channel (DMC) is a statistical model with an input X and an output Y (Fig. 10-1).
During each unit of the time (signaling interval), the channel accepts an input symbol from X, and in
response it generates an output symbol from Y. The channel is “discrete” when the alphabets of X and
Y are both finite. It is “memoryless” when the current output depends on only the current input and
not on any of the previous inputs.

X e N
Xy * Y2
S rx Py Ix) vy< °
X » s 7
X0 * Va

Fig. 10-1 Discrete memoryless channel

A diagram of a DMC with m inputs and » outputs is illustrated in Fig. 10-1. The input X consists
of input symbols x{, X5, ..., X,,,. The a priori probabilities of these source symbols P(x;) are assumed to
be known. The output Y consists of output symbols yi, ys, ..., ¥,. Each possible input-to-output path is
indicated along with a conditional probability P(y;|x;), where P(y;|x;) is the conditional probability of
obtaining output y; given that the input is x;, and is called a channel transition probability.

B. Channel Matrix:

A channel is completely specified by the complete set of transition probabilities. Accordingly, the
channel of Fig. 10-1 is often specified by the matrix of transition probabilities [P(Y]X)], given by

P(yilx))  P(yalx) o P(yalx)
[P(Y]X)] = P(yllxz) P(yi|xz) P().’t,‘|x2) 10.17)
Pyilxm) P(yalXm) o P(yulXm)

The matrix [P(Y]X)] is called the channel matrix. Since each input to the channel results in some
output, each row of the channel matrix must sum to unity, that is,

> P(ylx)=1 foralli (10.12)

=1
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Now, if the input probabilities P(X) are represented by the row matrix
[POOT=[P(x)) P(x3) ... P(xn)]
and the output probabilities P(Y) are represented by the row matrix

[P]=[PG1) PO - PO

then [P(Y)] = [PLOI[P(Y]X)]
If P(X) is represented as a diagonal matrix
Px) 0 ... 0
S
00 . PG
then [P, Y)] = [ P14 P(Y]X)]

[CHAP. 10

10.13)

(10.14)

(10.15)

(10.16)

(10.17)

where the (i,/) element of matrix [P(X, ¥)] has the form P(x;, ;). The matrix [P(X, ¥)] is known as
the joint probability matrix, and the element P(x;, ¥, is the joint probability of transmitting x; and

receiving y;.

C. Special Channels:
1. Lossless Channel:

A channel described by a channel matrix with only one nonzero element in each column is called a
lossless channel. An example of a lossless channel is shown in Fig. 10-2, and the corresponding channel

matrix is shown in Eq. (10.18).
3

4
LP(Y]X)] = [0
0

S O
O O

0
0
1

Owl— O

ol
- \
sl
N
S =

Fig. 102 Lossless channel

(10.18)

It can be shown that in the lossless channel no source information is lost in transmission. [See

Eq. (10.35) and Prob. 10.10.]

2. Deterministic Channel:

A channel described by a channel matrix with only one nonzero element in each row is called a
deterministic channel. An example of a deterministic channel is shown in Fig. 10-3, and the

corresponding channel matrix is shown in Eq. (10.19).
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Fig. 10-3 Deterministic channel

[P(Y|X0] = (10.19)

OO D =
(=
_0 O oo

Note that since each row has only one nonzero element, this element must be unity by Eq. (10.12).
Thus, when a given source symbol is sent in the deterministic channel, it is clear which output symbol
will be received.

3. Noiseless Channel.:

A channel is called noiseless if it is both lossless and deterministic. A noiseless channel is shown in
Fig. 10-4. The channel matrix has only one element in each row and in each column, and this element
is unity. Note that the input and output alphabets are of the same size; that is, m = n for the noiseless
channel.

£ b4l

2 Y2
1

Xm Ym

Fig. 10-4 Noiseless channel

4. Binary Symmetric Channel:

The binary symmetric channel (BSC) is defined by the channel diagram shown in Fig. 10-5, and its
channel matrix is given by

_[t-p »
e =[ 17 7] (1020)

The channel has two inputs (x; =0,x, =1) and two outputs (y; =0,y, =1). The channel is
symmetric because the probability of receiving a 1 if a 0 is sent is the same as the probability of
receiving a 0 if a 1 is sent. This common transition probability is denoted by p. (See Prob. 10.35.)



250 INFORMATION THEORY AND SOURCE CODING
t-p
x, =0 n=0
4
p
Xy =1 yp=1
I-p

Fig. 10-5 Binary symmetrical channel

10.4 MUTUAL INFORMATION
A. Conditional and Joint Entropies:

[CHAP. 10

Using the input probabilities P(x;), output probabilities P(y)), transition probabilities P( yjlx),
and joint probabilities P(x;, y;), we can define the following various entropy functions for a channel

with m inputs and n outputs:

H(X) ==} P(x)log; P(x)

i=1

H(Y) =~ P(y)log, P(y))
j=1

Jj=

HXIY) == P(x;,y)log, P(xily)

=1 =1

n m

HYX) ==Y P(x;,y)log; P(ylx)

Jj=1i=1

n m

HX, V) == P(x;,y)log, P(x;, )

j=1 =1

10.21)

10.22)

(10.23)

(10.24)

(10.25)

These entropies can be interpreted as follows: H(X) is the average uncertainty of the channel input,
and H(Y) is the average uncertainty of the channel output. The conditional entropy H(X]Y) is a
measure of the average uncertainty remaining about the channel input after the channel output has
been observed. And H(X|Y) is sometimes called the equivocation of X with respect to Y. The
conditional entropy H(Y|X) is the average uncertainty of the channel output given that X was
transmitted. The joint entropy H(X, Y) is the average uncertainty of the communication channel as a

whole.
Two useful relationships among the above various entropies are

HX,Y)=HX|Y)+ H(Y)

H(X,Y)= H(Y|X)+ H(X)

B. Mutual Information:
The mutual information I(X;Y) of a channel is defined by
IX;Y)=H(X)- HX|Y) b/symbol

(10.26)

10.27)

(10.28)
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Since H(X) represents the uncertainty about the channel input before the channel output is observed
and H(X]Y) represents the uncertainty about the channel input after the channel output is observed,
the mutual information I(X; Y) represents the uncertainty about the channel input that is resolved by
observing the channel output.

Properties of I(X; Y) :

1. IX;Y)=IY;X) (10.29)
2. IX;Y)=0 (10.30)
3. I(X;Y)=H(Y)—-H(Y|X) 10.3D)
4. I(X;Y)=HX)+HY)-HX,Y) (10.32)

" 10.5 CHANNEL CAPACITY
A. Channel Capacity per Symbol C,:

The channel capacity per symbol of a DMC is defined as
C,=max [(X;Y) b/symbol 10.33)
{PGe}

where the maximization is over all possible input probability distributions {P(x;)} on X. Note that the
channel capacity C; is a function of only the channel transition probabilities that define the channel.

B. Channel Capacity per Second C:

If  symbols are being transmitted per second, then the maximum rate of transmission of
information per second is rC;. This is the channel capacity per second and is denoted by C (b/s):

C=rC, b/s (10.34)

C. Capacities of Special Channels:
1. Lossless Channel:
For a lossless channel, H(X|Y) = 0 (Prob. 10.10) and
I(X;Y)= H(X) (10.35)

Thus, the mutual information (information transfer) is equal to the input (source) entropy, and no
source information is lost in transmission. Consequently, the channel capacity per symbol is

C = {r?&)x} H(X)=logym (10.36)
where m is the number of symbols in X.
2. Deterministic Channel.
For a deterministic channel, H(Y|X) = 0 for all input distributions P(x;), and
IX;Y)=H(Y) (10.37)

Thus, the information transfer is equal to the output entropy. The channel capacity per symbol is
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C,=max H(Y)=log,n
e HY) = log;

where # is the number of symbols in Y.
3. Noiseless Channel.

Since a noiseless channel is both lossless and deterministic, we have
IX;Y)=HX)=H(Y)
and the channel capacity per symbol is

Cy=log,m=logyn

4. Binary Symmetric Channel.
For the BSC of Fig. 10-5, the mutual information is (Prob. 10.16)

I(X;Y) = H(Y) + plog, p+ (1 - p)loga(1 - p)
and the channel capacity per symbol is

Cs=1+plogyp+(1—p)log,(1—p)

10.6 ADDITIVE WHITE GAUSSIAN NOISE CHANNEL

[CHAP. 10

(10.38)

(10.39)

(10.40)

(10.41)

10.42)

In a continuous channel an information source produces a continuous signal x(z). The set of
possible signals is considered as an ensemble of waveforms generated by some ergodic random
process. It is further assumed that x(¢) has a finite bandwidth so that x(#) is completely
characterized by its periodic sample values. Thus, at any sampling instant, the collection of
possible sample values constitutes a continuous random variable X described by its probability

density function fy(x).

A. Differential Entropy:

The average amount of information per sample value of x(¢) is measured by

H(X) = - j:fx<x> loga fy(x) dv b/sample

The entropy H(X) defined by Eq. (10.43) is known as the differential entropy of X.

(10.43)

The average mutual information in a continuous channel is defined (by analogy with the

discrete case) as
I(X;Y)=HX)-HX|Y)

or IX;Y)= H(Y)— H(Y|X)
where H(Y)=- Jvmf Y(Nlogy fy(y) dy
HOY) ==~ [ frrteloga foty) dvdy

#O0 == |7 fotnlon i dwy

(10.44)

(10.45a)

(10.45b)



CHAP. 10] INFORMATION THEORY AND SOURCE CODING 253

B. Additive White Gaussian Noise Channel

In an additive white gaussian noise (AWGN ) channel, the channel output Y is given by
Y=X+n (10.46)
where X is the channel input and 7 is an additive band-limited white gaussian noise with zero mean
and variance ¢ 2.
The capacity C; of an AWGN channel is given by
1 S
C,=max I(X;Y)==lo (1 +—) b/sample 10.47
s e ( ) 2 g2 N / p ( )
where S/N is the signal-to-noise ratio at the channel output. If the channel bandwidth B Hz is fixed,

then the output y(¢) is also a band-limited signal completely characterized by its periodic sample values
taken at the Nyquist rate 2B samples/s. Then the capacity C (b/s) of the AWGN channel is given by

C=2BC,= B 10g2<1 + %) b/s (10.48)

Equation (10.48) is known as the Shannon-Hartley law.

The Shannon-Hartley law underscores the fundamental role of bandwidth and signal-to-noise
ratio in communication. It also shows that we can exchange increased bandwidth for decreased signal
power (Prob. 10.24) for a system with given capacity C.

10.7 SOURCE CODING

A conversion of the output of a DMS into a sequence of binary symbols (binary code word) is
called source coding. The device that performs this conversion is called the source encoder (Fig. 10-6).

Discrete
me . Source
moryless
encoder .
source i Binary
sequence
X ={x...., X

Fig. 10-6 Source coding

An objective of source coding is to minimize the average bit rate required for representation of the
source by reducing the redundancy of the information source.

A. Code Length and Code Efficiency:

Let X be a DMS with finite entropy H(X) and an alphabet {xi,...,x,,} with corresponding
probabilities of occurrence P(x;)(i =1,...,m). Let the binary code word assigned to symbol x; by
the encoder have length n;, measured in bits. The length of a code word is the number of binary digits
in the code word. The average code word length L, per source symbol is given by

m
L= P(xm (10.49)
=1
The parameter L represents the average number of bits per source symbol used in the source coding
process.
The code efficiency n is defined as
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Lmin
L

where L, is the minimum possible value of L. When 5 approaches unity, the code is said to be

efficient.
The code redundancy v is defined as

n= (10.50)

y=1-9 (10.51)

B. Source Coding Theorem:

The source coding theorem states that for a DMS X with entropy H(X), the average code word
length L per symbol is bounded as
L=HX) (10.52)
and further, L can be made as close to H(X) as desired for some suitably chosen code.
Thus, with L;, = H(X), the code efficiency can be rewritten as
_HX)

T (10.53)

C. Classification of Codes:

Classification of codes is best illustrated by an example. Consider Table 10-1 where a source of
size 4 has been encoded in binary codes with symbol 0 and 1.

Table 10-1 Binary Codes

X; Code 1 Code 2 Code 3 Code 4 Code 5 Code 6
x| 00 00 0 0 0 1

x; 01 01 1 10 01 01

X3 00 10 00 110 011 001
X4 i1 11 11 111 0111 0001

1. Fixed-Length Codes:

A fixed-length code is one whose code word length is fixed. Code 1 and code 2 of Table 10-1 are
fixed-length codes with length 2.

2. Variable-Length Codes:

A variable-length code is one whose code word length is not fixed. All codes of Table 10-1 except
codes 1 and 2 are variable-length codes.

3. Distinct Codes:

A code is distinct if each code word is distinguishable from other code words. All codes of Table
10-1 except code 1 are distinct codes—notice the codes for x; and x;.

4. Prefix-Free Codes:

A code in which no code word can be formed by adding code symbols to another code word is
called a prefix-free code. Thus, in a prefix-free code no code word is a prefix of another. Codes 2, 4,
and 6 of Table 10-1 are prefix-free codes.
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5. Uniquely Decodable Codes:

A distinct code is uniguely decodable if the original source sequence can be reconstructed perfectly
from the encoded binary sequence. Note that code 3 of Table 10-1 is not a uniquely decodable code.
For example, the binary sequence 1001 may correspond to the source sequences X,X3X; OF XpXX{X;.
A sufficient condition to ensure that a code is uniquely decodable is that no code word is a prefix of
another. Thus, the prefix-free codes 2, 4, and 6 are uniquely decodable codes. Note that the prefix-free
condition is not a necessary condition for unique decodability. For example, code 5 of Table 10-1 does
not satisfy the prefix-free condition, and yet it is uniquely decodable since the bit 0 indicates the
beginning of each code word of the code.

6. Instantaneous Codes:

A uniquely decodable code is called an instantaneous code if the end of any code word is
recognizable without examining subsequent code symbols. The instantaneous codes have the property
previously mentioned that no code word is a prefix of another code word. For this reason, prefix-free
codes are sometimes called instantaneous codes.

7. Optimal Codes:

A code is said to be optimal if it is instantaneous and has minimum average length L for a given
source with a given probability assignment for the source symbols.

D. Kraft Inequality:

Let X be a DMS with alphabet {x;} (i = 1,2,...,m). Assume that the length of the assigned binary
code word corresponding to x; is ;.
A necessary and sufficient condition for the existence of an instantaneous binary code is

m
K=%2"=<] (10.54)
i=1
which is known as the Kraft inequality.
Note that the Kraft inequality assures us of the existence of an instantaneously decodable code
with code word lengths that satisfy the inequality. But it does not show us how to obtain these code

words, nor does it say that any code that satisfies the inequality is automatically uniquely decodable
(Prob. 10.27).

10.8 ENTROPY CODING

The design of a variable-length code such that its average code word length approaches the
entropy of the DMS is often referred to as entropy coding. In this section we present two examples of
entropy coding.

A. Shannon-Fano Coding:

An efficient code can be obtained by the following simple procedure, known as

Shannon-Fano algorithm:

1. List the source symbols in order of decreasing probability.

2. Partition the set into two sets that are as close to equiprobable as possible, and assign 0 to the
upper set and 1 to the lower set.



256 INFORMATION THEORY AND SOURCE CODING [CHAP. 10

3. Continue this process, each time partitioning the sets with as nearly equal probabilities as possible
until further partitioning is not possible.

An example of Shannon-Fano encoding is shown in Table 10-2. Note that in Shannon-Fano
encoding the ambiguity may arise in the choice of approximately equiprobable sets. (See Prob.
10.33))

Table 10-2 Shannon-Fano Encoding

Xx; P(x;) Step 1 Step 2 Step 3 Step 4 Code 5
X1 0.30 0 0 00

X3 0.25 0 1 01

X3 0.20 1 0 10

X4 0.12 1 1 0 110
X5 0.08 1 1 1 0 1110
Xg 0.05 1 1 1 1 1111

H(X) =2.36b/symbol
L =2.38b/symbol
n=H(X)/L=099

B. Huffman Encoding:

In general, Huffman encoding results in an optimum code. Thus, it is the code that has the highest
efficiency (Prob. 10.34). The Huffman encoding procedure is as follows:

1. List the source symbols in order of decreasing probability.

2. Combine the probabilities of the two symbols having the lowest probabilities, and reorder
the resultant probabilities; this step is called reduction 1. The same procedure is repeated until
there are two ordered probabilities remaining.

3. Start encoding with the last reduction, which consists of exactly two ordered probabilities. Assign
0 as the first digit in the code words for all the source symbols associated with the first probability;
assign 1 to the second probability.

4. Now go back and assign 0 and 1 to the second digit for the two probabilities that were combined
in the previous reduction step, retaining all assignments made in Step 3.

5. Keep regressing this way until the first column is reached.

An example of Huffman encoding is shown in Table 10-3.
H(X) = 2.36b/symbol
L = 2.38b/symbol
n=0.99
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x; P(x) Code
00 00 00 1 0
x 0.30 030 0.30 0.45 0.55
01 01 01 00
x 025 025 0.25 0.30 045
1
11 11 10
X3 020 ———— 0.20 0.25 0.25
01
101 100
X4 0.12 0.13 0.20
11
1000
] 0.08 012
101
X6 0.05
1001

Table 10-3 Huffman Encoding
Solved Problems

MEASURE OF INFORMATION
10.1. Verify Eq. (0.5), that is,
Ixixp) = I(x) + I(x)) if x; and x; are independent
If x; and x; are independent, then by Eq. (6.21)
P(xpx;) = P(x)P(x))
By Eq. (10.1)

1 1
Torg) = log g = 18 By Py
= 10g_..1_._ + log—l—
ooy T By
= I(x;) + I(x))

10.2. A DMS X has four symbols x1, x;, X3, x4 with probabilities P(x,) = 0.4, P(x;) = 0.3, P(x3) = 0.2,
P(x4)=0.1. ’
(a) Calculate H(X).
(b) Find the amount of information contained in the messages x;x,x1x3 and x;X3x3x;, and
compare with the H(X') obtained in part (a).

4
@ HQX) == Pxplogy[P(x)]

i=1
=—0.41log, 0.4—0.3log, 0.3/ —0.2log, 0.2 = 0.1log, 0.1
= 1.85b/symbol

() P(x)x,x1x3) = (0.4)(0.3)(0.4)(0.2) = 0.0096
I(x1x3x1x3) = —log, 0.0096 = 6.70 b/symbol
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Thus, I(x1x3x1x3) < 7.4[= 4H(X)] b/symbol
P(xax3x3x) = (0.1)(0.2)2(0.3) = 0.0012
I(x4x3%3x;) = —log; 0.0012 = 9.70b/symbol

Thus, I(x4x3x3%,) > 7.4[= 4H(X)] b/symbol

10.3. Consider a binary memoryless source X with two symbols x; and x,. Show that H(X) is

104.

maximum when both x; and x, are equiprobable.

Let P(x)) =oa. P(x;) =1—a.

H(X) = —alogya— (1 —a)logy(1 —a) (10.55)
dH(X d
d(oz ) o [~ology o = (1 — o) logy(1 — )]
Using the relation
d 1 dy
Elogby = ;logb e
we obtain
dH(X) -

1
i = —logy a + logy(1 — o) = log, 7

The maximum value of H(X) requires that

dH(X) _
do 0

that is,
1—«a 1
a 1me=3
Note that H(X) = 0 when o« = 0 or 1. When P(x;) = P(x;) = %,H(X) is maximum and is given by

HX)= %logz 2+ %IogZZ = 1b/symbol (10.56)

Verify Eq. (10.9), that is,
0= HX)<logym
where m is the size of the alphabet of X.
Proof of the lower bound: Since 0 < P(x;) < 1,
1
oS ) =1 and log, o) ) =0
Then it follows that
1
x)log,——=0
p(xplog, o)

1
P(x)

m

Thus, HX) =3 P(x)log, 5—>0 (10.57)
=1

Next, we note that

1
P(x;) 1og2m =0



CHAP. 10] INFORMATION THEORY AND SOURCE CODING

10.5.

if and only if P(x;) = 0 or 1. Since

i PGy =1

=1

when P(x;) = 1, then P(x;) = 0 for j# i. Thus, only in this case, H(X) = 0.

259

Proof of the upper bound: Consider two probability distributions {P(x;) = P;} and {Q(x;) = Q;} on the

alphabet {x;},i=1,2,...,m, such that
m m

Pi=1 and Y Q=1
=1

=1
Using Eq. (10.6 ), we have

iP-log —i=l~§:P-ln%
S S T < R X

Next, using the inequality
Ine<a—1 a=0

and noting that the equality holds only if @ = 1, we get
m m - m
ZP,-ln% <yPp (%—1) =3 (©QP)
i=1 =l i i=1
m m
=>0~->P=0
i=1 i=1
by using Eq. (10.58). Thus,
m
Qi
; P; log, P, <0

where the equality holds only if Q; = P, for all i. Setting

n 1 m m
we obtain Z P; log, P Z P;log, P;— Z Plogym
i=1 i i=1 i

i=1

m
= HX)-logym p;

i=1

=HX)-logym=0

Hence, HX)<logym

and the equality holds only if the symbols in X are equiprobable, as in Eq. (10.62).

(10.58)

(10.59)

(10.60)

(10.61)

(10.62)

(10.63)

A high-resolution black-and-white TV picture consists of about 2 x 10® picture elements and 16
different brightness levels. Pictures are repeated at the rate of 32 per second. All picture elements
are assumed to be independent, and all levels have equal likelihood of occurrence. Calculate the

average rate of information conveyed by this TV picture source.

16 1 1
HX)y== Telome=4 b/element

i=1
r= 2(106)(32) = 64(106) elements/s
Hence, by Eq. (10.10)
R = rH(X) = 64(10°)(4) = 256(10°) b/s = 256 Mb/s
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10.6. Consider a telegraph source having two symbols, dot and dash. The dot duration is 0.2 s. The
dash duration is 3 times the dot duration. The probability of the dot’s occurring is twice that of
the dash, and the time between symbols is 0.2 s. Calculate the information rate of the telegraph

source.
P(dot) = 2P(dash)
P(dot) + P(dash) = 3P(dash) = 1
Thus, P(dash) = % and P(dot) = %
By Eq. (10.7)

H(X) = —P(dot) log, P(dot) — P(dash) log, P(dash)
= 0.667(0.585) 4 0.333(1.585) = 0.92 b/symbol
oot = 0.28  fgasn = 0.65  fipaee = 0.2

Thus, the average time per symbol is
Ty = P(dot)tgor + P(dash)tuasn + fspace = 0.5333 s/symbol

and the average symbol rate is

r= L. 1.875 symbols/s
TS

Thus, the average information rate of the telegraph source is

R=rH(X)=1.8750.92) = 1.725 b/s

DISCRETE MEMORYLESS CHANNELS
10.7. Consider a binary channel shown in Fig. 10-7 (See Prob. 6.14)

09
P(x) X Y1
0.1
0.2
P(x,) X; Y2
08
Fig. 10-7

(a) Find the channel matrix of the channel.

(b) Find P(y;) and P(y,) when P(x;) = P(x;) =0.5.

(¢) Find the joint probabilities P(x|,y,) and P(x,,y;) when P(x;) = P(x;) = 0.5.
(¢) Using Eq. (10.11), we see the channel matrix is given by

_[Pnlx)) POnlx)]_[09 0.1
[P(YIX)]_[P(yIIx;) P(hlx;)]'[OJ o.s]

(b) Using Egs. (10.13), (10.14), and (10.15), we obtain
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[P(V)] = [PLOI[P(Y1X)]

—05 05 09 01
o ) 02 08

=[0.55 0.45] =[P(yP(»)]

Hence, P(y)=0.55 and P(y,) = 0.45.
(¢) Using Egs. (10.16) and (10.17), we obtain

[PX, V)] = [P(XO1[P(YIX)]
05 0 [09 o1
=[o 0‘5][0.2 o.s]
_[o4s 005} _[ Py PGy
7[ 0.1 04 ] _[P(Xz;yﬂ P(ng)]

Hence, P(xy,y,) = 0.05 and P(x,,y;) =0.1.

10.8. Two binary channels of Prob. 10.7 are connected in cascade, as shown in Fig. 10-8.

Fig. 10-8

(@) Find the overall channel matrix of the resultant channel, and draw the resultant equivalent
channel diagram.

(b) Find P(z;) and P(z,) when P(x;) = P(x,) =0.5.
(@) By Eq. (10.15)
[P(Y)] = [PLOI[P(Y]X)]
[P(Z)] = [P(DI[P(Z|Y)]
= [PAO)[P(NX)][P(Z| )]
= [PUN][PZIX)]
Thus, from Fig. 10-8
[P X)] = [PIO)[P(ZIY)]
109 o1 09 01] |08 017
“lo2 08[] 02 08] |034 066
The resultant equivalent channel diagram is shown in Fig. 10-9.

®) [P(2)] = [POOI[PZ|X)]

083 0.17
=[05 05] [

=[0.585 0415]
034 0.66

Hence, P(z;) = 0.585 and P(z,) = 0.415.
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0.83
Xy ]
0.17
0.34
X zy
0.66
Fig. 10-9
10.9. A channel has the following channel matrix:
_[t-p p O
[P(YIX)]f[ o 1_p] (10.64)

(a) Draw the channel diagram.

(b) If the source has equally likely outputs, compute the probabilities associated with the
channel outputs for p = 0.2.

(a) The channel diagram is shown in Fig. 10-10. Note that the channel represented by Eq. (10.64) (see
Fig. 10-10) is known as the binary erasure channel. The binary erasure channel has two inputs x; = 0
and x, = 1 and three outputs y; =0,y, = e, and y; = 1, where e indicates an erasure; that is, the
output is in doubt, and it should be erased.

I-p
=0 =0
p
y2=e
p
xy=1 y3=1
1-p
Fig. 10-10 Binary erasure channel
() By Eq. (10.15)
P(Y)] =105 0.5] 08 02 0
PAOT=105030 0 5 08
=[04 02 04]
Thus P(y;) = 0.4, P(y,) = 0.2, and P(p3) = 0.4.
MUTUAL INFORMATION
10.10. For a lossless channel show that
HX|Y)=0 (10.65)

When we observe the output y; in a lossless channel (Fig. 10-2), it is clear which x; was transmitted, that is,
P(xilyp=0or1 (10.66)
Now by Eq. (10.23)
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n

HX|Y) == P(x;,y)log, P(x;ly)

J=1i=1

==Y P(3) Y P(xly)log, P(xily)

j=1 i=1

263

(10.67)

Note that all the terms in the inner summation are zero because they are in the form of 1xlog, 1 or

0 xlog, 0. Hence, we conclude that for a lossless channel
HX|Y)=0

10.11. Consider a noiseless channel with m input symbols and m output symbols (Fig. 10-4). Show

that
H(X)=H(Y)

and H(Y|X)=

For a noiseless channel the transition probabilities are

o=y 5

Hence, Py = Pybope = {0 1

J

and P(y) = Z P(x;, ) = P(x))

Thus, by Eqs. ({0.7) and (10.72)
HY) = ZP(J/J) log, P(3;)
=

= —Z P(x;)log, P(x;) = H(X)
=1

Next, by Eqs. (10.24), (10.70), and (10.71)
m mn

H(Y|X)= —Z Z P(x;, yylogy P(yjlx;)
==l

= _ZP(X’)Z log, P(3/]x;)

i=1 =1
= —Z P(x)logy 1 =0

=1

10.12. Verify Eq. (10.26), that is,
H(X,Y) = HX|Y)+ H(Y)

From Eqs. (6.16 ) and (6.24)
P(xiyy)') = P(xib’j)P(J’j)

and ZP(XHJ’])—P(J&

i=1

(10.68)
(10.69)

(10.70)

10.71)

(10.72)
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So by Eq. (10.25) and using Egs. (10.22) and (10.23), we have

HX,Y)==> 3 P(x;,y)log P(x;, )

j=t =1
==Y Pxi,y) log Py P3|

j=1 i=1

m

= =3 > PGx;,y)log P(xly)

=1 =1

-y [Z P(x,r,yp] log P(y;)

j=1Li=1

= HX|Y)~ ZP(y,)log P(y))
5

= H(X|Y) + H(Y)

[CHAP. 10

10.13. Show that the mutual information I(X; Y) of the channel described by Eq. (10.11 ), with the input

probabilities P(x;), i=1,2
expressed as

g _ < < P(x,-lyj)
IX;Y)= ; FZIP@W‘O%Z POy

By Eq. (10.28)
KX Y)= H(X)- HX|Y)
Using Eqgs. (10.21) and (10.23), we obtain

KX;Y) = zP(xx)Ing P( 3 Z > P(xi, yplog Pxilyy)
=1 i=1

n

P(x,,y])] loga 5 )+ >N P(x;, 3 log Plxilyy)

j=1 =1

I
™M=

"
IM=

Il
M
M=

1
o
L

> Pes o gy + o Py |

P(x;ly)
P(x;)

Il
M
M=

T
"
l

P(x;,y)) logy

10.14. Verify Eq. (10.29), that is

IX;Y)=IY;X)

Using Eq. (10.73), we can express I(Y; X) as

n

m PO"ixi)
Iy, x)= P(y;, %) logy—7
; FZ] / 2Py

Now, by Eq. (6.19)
P(yj,xi) = Plx;, yy)

and P(yjlx) _ P(Xilyj)

P(y) P(x;)

,--;m, and the output probabilities P(y,), j=1,2,...,n, can be

10.73)

(10.74)
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Thus, comparing Eqs. (10.74) with (10.73), we conclude that
IX;Y)=IY;X)

10.15. Verify Eq. (10.30), that is,
(X, Y)=0
From Eq. (10.73) and using the relation log(a/b) = —log(b/a), we have
- P(x;)

—[X:Y)=> Y P(x,y)log, Pl

i=1 j=1

Using Bayes’ rule [Eq. (6.19)], we have
P(x;) _ P(xi)P(yj)
P(Xib/j) P(x;, y))
Then by using Eq. (10.6), Eq. (10.75) can be rewritten as
P(xp)P(yy)
IX,Y) _“Z ZP(x,,y])ln Py,

t—l =1

Using the inequality (10.59), that is,
Inosoa—1

[ P(x)P(Oy)

we have
-IX, V)< *Z ZP(mj) e

t*l =1

m n

> D Py,

—IXY) S [Z > PPy —
i=1 j=1

i=1 j=1

Jj=1

‘M=

=1

1

S

Since

P(x;,y) = Z

1 =1

M=
‘™M=

j=1

1j

Equation (0.77) reduces to
-IX;Y)<0
IX;Y)=0

or

10.16. Consider a BSC (Fig. 10-5) with P(x;) = o
(a) Show that the mutual information I(X; Y) is given by

IX;Y)=H(Y)+plog,p+(1

(b) Calculate I(X;Y) for a = 0.5 and p = 0.1

(¢) Repeat (b) for « = 0.5 and p = 0.5, and comment on the result

|

> D> PeoP(y) = ZPOCJZP(%) =M =1

]

[Z P(xi,y]>] = Pxy=1
i=1

—p)log,(1-p)
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(10.75)

(10.76)

(10.77)

10.78)



266 INFORMATION THEORY AND SOURCE CODING [CHAP. 10

Figure 10-11 shows the diagram of the BSC with associated input probabilities.

I-p
Px)=a X Y1
Y4
p
Plxy)=1~a x ¥2
I-p
Fig. 10-11

(a) Using Eqgs. (10.16), (10.17), and (10.20), we have

e O 1-p p
[P(X’Y)]il:o l-zx:": P 1—p]
_ [a(l - ap ] _ [P(xl,yl) P(x1,y2)
(I-wp (1=-o)1-p) P(xp,y1)  Plx2,12)
Then by Eq. (10.24)
H(Y1X) = —P(x1, y1) logy P(y1lx1) — P(x1,y2) logy P(y2]x2)
= P(xp, y1)logy P(y11x2) = P(x3, ) logy P(1,]x2)
=-o(l = p)log(1 = p)—aplogy p
— (1 —o)plogyp— (1= )1 - p)log(l —p)
=—plog,p— (1 -p)logx(1 - p) (10.79)
Hence, by Eq. (10.31)

I(X;Y)=H(Y)- H(Y|X)
= H(Y)+plogyp+ (1 - p)logy(1 —p)

(b) When a=0.5 and p = 0.1, by Eq. (10.15)

[P()] =[0.5 0.5][8:? 8:;]=[0.5 0.5]

Thus, P(y;) = P(y,) =0.5.
By Eq. (10.22)

H(Y) = —P(y1)log, P(y1) — P(y2)log, P(y»)
=—0.5l0g,0.5—-0.5l0g,0.5=1

plogy, p+(1—p)logy (1—p)=0.11log,0.140.910g, 0.9

= —0.469
Thus, I(X;Y)=1-0.469 = 0.531
(¢) Wheno=0.5andp=0.5,
0.5 0.5
[P(Y)] = [0.5 0.5][ 0> 03 =10s 0s)

HY)=1
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plog, p+(1-p)log, (1-p)=0.51og; 0.5+ 0.5 log, 0.5
=-1
Thus, I(X;Y)=1-1=0

Note that in this case (p = 0.5) no information is being transmitted at afl. An equally acceptable
decision could be made by dispensing with the channel entirely and “flipping a coin” at the receiver.
When I(X; Y) = 0, the channel is said to be useless.

CHANNEL CAPACITY
10.17. Verify Eq. (10.36 ), that is,
C,=logym
where C; is the channel capacity of a lossless channel and m is the number of symbols in X.
For a lossless channel [Eq. (70.65), Prob. 10.10]
HX|Y)=0
Then by Eq. (10.28)
I(X;Y)=HX)-HX|Y)= HX) (10.80)
Hence, by Egs. (10.33) and (10.9)

Cy=max [(X; Y) = max H(X)=log, m
R I T) = ppax HOO = log,

10.18. Verify Eq. (10.42), that is,
Cs=14plogyp+(1—p)log,(1-p)
where C; is the channel capacity of a BSC (Fig. 10-10).
By Eq. (10.78) (Prob. 10.16) the mutual information I(X; Y) of a BSC is given by
IX;Y)=H(Y)+plog, p+(1=p)logy(1-p) .

which is maximum when H(Y') is maximum. Since the channel output is binary, H(Y) is maximum when
each output has a probability of 0.5 and is achieved for equally likely inputs [Eq. (10.9)]. For this case
H(Y) =1, and the channel capacity is

Co=max IX; Y)=1+plog p+(1-p) log,(1—p)
{P(X)}

10.19. Find the channel capacity of the binary erasure channel of Fig. 10-12 (Prob. 10.9).
Let P(x;) = a. Then P(x;) = 1 —a. By Eq. (10.64)

l-p
Px)=a % Y
p
Y2
P
Plx)=l—-a X 34
1-p

Fig. 10-12
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roor=[1g7 2,0 ]

By Eq. (10.15)

= [P(yllxl) P(32lx1) P(yzlm)]
P(yilx) P(yalxa) P(yslxz)

1-p p 0
[P(Y)] = [o l—a][ 0 l—p]
=[a(l=-p)p A~-a)(1l—-p)]
=[P(y1) P(y2) P(y)]
By Eq. (10.17)

K 0 1-p p 0
[P(X,Y)]—[0 l—a][ 0 ]

p l-p
_Jad=-p ap 0

*[ 0 (1-ap (1—a><1—p)]
_ [P(xl,yo P(x1,72) P(xl,m]

P(x3,y1)  Plxa,y2)  P(x2,33)
In addition, from Eqgs. (10.22) and (10.24) we can calculate

3
H(Y)==3 P(y)log, P(y)
=1

—a(1—p) log; a(1 —p)—p log; p— (1 — )1 = p) logz [(1 —o)(1 — p)]
=(1-pl-nlog a—(1—a) log (1 —a)]

—plog, p—(1—p)logy (1 -p)

3 2
HYIX) == P(x;,y) logs P(yjlx)
j=li=1

a(l —p) logy (1 —=p)—oaplog, p
—(I—aplogy p—(1 - o)l —p) loga (1 -p)
-plogy p—(1—p) log, (1 -p)

Thus, by Eqgs. (10.31) and (10.55)

IX;Y) = H(Y)— H(Y1X)
= (1-p)[—a logy, a— (1 —a) log, (1 —a)]

=(1-pHX)
And by Egs. (10.33) and (10.56 )

C,=max IX;Y)=max (1-pHX)=(1-p)max HX)=1-p
{PCO} {Pee)} {P(x)}

ADDITIVE WHITE GAUSSIAN NOISE CHANNEL

probability density function

[CHAP. 10

(10.81)

10.82)

(10.83)

10.84)

10.20. Find the differential entropy H(X) of the uniformly distributed random variable X with

Jx(x) =

S Q=

otherwise
for (a) a=1, (b) a=2, and (c) a = 1.
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10.21.

By Eq. (10.43)

OO == [ 10 logs fyto

= —J 1 log, ldx =logya (10.85)
oa a

(@) a=1 HX)=1log,1=0
®) a=2, HX) log,2 =1
(@ a=i, HX)=log, }=—log, 2=~1

Note that the differential entropy H(X) is not an absolute measure of information.

With the differential entropy of a random variable X defined by Eq. (10.43), that is,
HOO == [~ () loga fy() ds

find the probability density function fy(x) for which H(X) is maximum.

From Egs. (6.37b) and (6.75), fx(x) must satisfy the following two conditions:

[ pwa= (10.56)

j (x = W fx(x)dx = 6> (10.87)
where u is the mean of X and ¢ is its variance. Since the problem is the maximization of H(X) under

constraints of Eqs. (10.86 ) and (10.87 ), we use the method of Lagrange multipliers. ,
First, we form the function

GLI(x), Ay, 2] = HX) + Ay ”l Fy(x) dx — 1] + zz[ J : (= W (x) dx — crz]

= |70 102 7500+ 40 fo0 o= P S| by =2 (10.88

where parameters 4, and A, are the Lagrange multipliers. Then the maximization of H(X) requires that
oG

= - - ) & - 2 = .
TS log, fx(x)—logye+ 4 + Ap(x—p)* =0 (10.89)
Thus, logy fy(x) =1ogz e + A + Ax(x — 1)?
or 1an(x)=—1+J‘—+ & (x—py?

logye logye
Hence, we obtain
A A

logy e + logy e

1) = exp [—1 + (- u)z] (10.90)

In view of the constraints of Eqs. (10.86) and (10.87), it is required that i, < 0. Let

A A
exp (—1 + 4 ) =g and 2 —_p?
logy e logy e

Then Eq. (10.90) can be rewritten as
Fi(x) = ae e 10.91)

Substituting Eq. (10.91) into Eqs. (10.86 ) and (10.87 ), we obtain
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a { T gy = a% =1 (10.92)
aj (x— #)28‘1’2‘/"_‘”)7 dx = a% =d (10.93)
Solving Egs. (10.92) and (10.93) for a and b?, we obtain
1 1
a= and b =-—
V2no 202
Substituting these values in Eq. (10.91), we see that the desired fy(x) is given by
1 —ew/eod
x) = ¢ 10.94
Sx(x) mﬂt ( )
which is the probability density function of a gaussian random variable X of mean p and variance I

[Eq. (6.91)].

10.22. Show that the channel capacity of an ideal AWGN channel with infinite bandwidth is given
by
1S S

Co=—r-~1442 b :
o3y S /s (10.95)

where S is the average signal power and 7/2 is the power spectral density of white gaussian noise.

From Eq. (8.6 ) the noise power N is given by N = 5B. Thus, by Eq. (10.48)

S
= Bl 2
C og2(1+n3)

Let S/(nB) = A. Then

S . 1 Sn(1+2)
=1 1 )= — ———— 10.
C ) ogy (1+7) 3y 7 (10.96)
Now Co = lim B lo (1+£)
® 7 Bow 82 nB
1S, In(t+2)
= — — lim ————
In2# -0 A
Since 111% [In(1 + A)}/4 = 1, we obtain
e
1S s
Cw_ﬁ; 1.44; b/s

Note that Eq. (10.95) can be used to estimate upper limits on the performance of any practical
communication system whose transmission channel can be approximated by the AWGN channel.

10.23. Consider an AWGN channel with 4-kHz bandwidth and the noise power spectral density
n/2=10"'2 W/Hz. The signal power required at the receiver is 0.1 mW. Calculate the
capacity of this channel.

B=4000Hz S§=0.1010"W
N = B = 2(107'%)(4000) = 8(10°) W

S 010107

Th 2= = 1.25(10°
s AT U
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And by Eq. (10.48)

S
C = Blog, (l +N)

= 4000 log, [1 + 1.25(10%)] = 54.44(10%) b/s

10.24. An analog signal having 4-kHz bandwidth is sampled at 1.25 times the Nyquist rate, and each
sample is quantized into one of 256 equally likely levels. Assume that the successive samples are
statistically independent.

(a) What is the information rate of this source?

(b) Can the output of this source be transmitted without error over an AWGN channel with a
bandwidth of 10 kHz and an S/N ratio of 20 dB?

(¢) Find the S/N ratio required for error-free transmission for part (b).

(@) Find the bandwidth required for an AWGN channel for error-free transmission of the
output of this source if the S/N ratio is 20 dB.

@ = 4(10%)Hz
Nyquist rate = 2, = 8(10*) samples/s
r=8(10%)(1.25) = 10* samples/s
H(X) = log, 256 = 8 b/sample

By Eq (10.10) the information rate R of the source is
R=rH(X)=10*8) b/s = 80 kb/s
(b) By Eq. (10.48)
C=Blog, (1 + %) = 10* log, (1 4 10%) = 66.6(10%) b/s
Since R > C, error-free transmission is not possible.
(¢) The required S/N ratio can be found by

o

C = 10* log, (1 + b) = 8(10%)
IV

or log, (1 +§;) =8
N
N S
1+2=20=256—2 = =24.1dB
or +3 56— =255 (=24.1dB)

Thus, the required S/N ratio must be greater than or equal to 24.1 dB for error-free transmission.
(d) The required bandwidth B can be found by

C = Blog, (1 + 100) = 8(10%

8(10%)

= 7
ot Tog, (1 + 100)

=1.2(10%Hz = 12kHz

and the required bandwidth of the channel must be greater than or equal to 12 kHz.
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SOURCE CODING
10.25. Consider a DMS X with two symbols x; and x, and P(x}) = 0.9, P(x,) = 0.1. Symbols x; and x,

10.26.

are encoded as follows (Table 10-4):

Table 10-4
X; P(x;) Code
X 0.9 0
X3 0.1 1

Find the efficiency # and the redundancy 7 of this code.
By Eq. (10.49) the average code length L per symbol is

2
L= PGxn = 09D +O.1(1)=1b

=1

By Eq. (10.7)

2
HX) == P(x)) log, P(x)
=1
=-0.9 log, 0.9—0.1 log, 0.1 = 0.469 b/symbol

Thus, by Eq. (10.53) the code efficiency # is
= 0.469 = 46.9%

HX)
L

By Eq. (10.51) the code redundancy y is
y=1-1=0531=531%

The second-order extension of the DMS X of Prob. 10.25, denoted by X2, is formed by taking the
source symbols two at a time. The coding of this extension is shown in Table 10-5. Find the
efficiency # and the redundancy 7y of this extension code.

Table 10-5
a; P(ay) Code
a; = XX 0.81 0
a) = X1X; 0.09 10
a3 = XX 0.09 110
ag = X2X 0.01 111

4
L= Pan = 0.81(1) +0.092) + 0.09(3) + 0.01(3)
=1

= 1.29 b/symbol

The entropy of the second-order extension of X, H(X?), is given by
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4
H(X*) ==Y P(a) log, Play)
i=1
=—0.81 log, 0.81 —0.09 log, 0.09 —0.09 log, 0.09 —0.01 log, 0.01

= 0.938 b/symbol
Therefore, the code efficiency 7 is
y= H(X?) 0938

T =72 = 0.727 = 72.7%

and the code redundancy y is
y=1=-%=0273=273%
Note that H(X?) = 2H(X).

10.27. Consider a DMS X with symbols x;, i=1,2,3,4. Table 10-6 lists four possible binary codes.

Table 10-6
X; Code 4 Code B Code C Code D
X1 00 0 0 0
Xy 01 10 11 100
X3 10 11 100 110
X4 11 110 110 111

(@) Show that all codes except code B satisfy the Kraft inequality.
(b) Show that codes 4 and D are uniquely decodable but codes B and C are not uniquely

decodable. .
(@) From Eq. (10.54 ) we obtain the following:
For code A: m=m=ny=ay=2
1 1 1 1
K=" =4 _4-4- =
; PR
For code B: m=1 m=m=2 n=3
4
1 1 1 1 1
K= = 4= |~
;2 stztzts = 13>1
For code C: m=1 m=2 ny=n=3
K—ir"' Leliiy iy
5 274788
For code D: m=1 m=n=n=3
4
1 1 1 1 7
K=S2" =44 -f_=_
2 atgtgtg T <!

All codes except code B satisfy the Kraft inequality.

(b) Codes 4 and D are prefix-free codes. They are therefore uniquely decodable. Code B does not satisfy
the Kraft inequality, and it is not uniquely decodable. Although code C does satisfy the Kraft
inequality, it is not uniquely decodable. This can be seen by the following example: Given the binary
sequence 0110110. This sequence may correspond to the source sequences x;X,XX4 OF X X4X4.
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Verify Eq. (/0.52), that is,
L=HX)
where L is the average code word length per symbol and H(X ) is the source entropy.
From Eq. (10.61) (Prob. 10.4), we have
< Qi
; P; log, 2 <0

where the equality holds only if Q; = P;. Let

0= 10.97)
m
where K=>2™ (10.98)
=1
which is defined in Eq. (10.54). Then
m 1o
Z‘Qi = §22 ] (10.99)
i=1 =1
m 27 m 1
Pl = : = -
and ; ; logy P, ;Pl (log2 2 n; — log, K)
— s Z 10.100
— =S Plog P=Y P - (o Y B 10
i=1 i=1 =1
=H(X)-L-logyK=<0
From the Kraft inequality (10.54 ) we have
log K=<0 (10.101)
Thus, H(X)-L<log K<0 (10.102)

or L=HX)

The equality holds when K= 1 and P; = Q.

Let X be a DMS with symbols x; and corresponding probabilities P(x;) = P;, i = 1,2,...,m. Show
that for the optimum source encoding we require that

m
K= Z 27 =1 (10.103)
i=1
1
and m=logag =1 10.1049)
i

where n; is the length of the code word corresponding to x; and /; is the information content of x;.

From the result of Prob. 10.28, the optimum source encoding with L = H(X) requires K= 1 and
P; = ;. Thus, by Egs. (10.98) and (10.97)

K=Y2"=1 (10.105)
i=1

and Pi=0;=2" (10.106)
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1
Hence, n; = —logy P; = log, 7= I

Note that Eq. (10.104) implies the following commonsense principle: Symbols that occur with high
probability should be assigned shorter code words than symbols that occur with low probability.

Consider a DMS X with symbols x; and corresponding probabilities P(x;) = P;, i=1,2,...,m.
Let n; be the length of the code word for x; such that

1 1
log, — < n < logy —+1 (10.107)
P, P;

Show that this relationship satisfies the Kraft inequality (10.54), and find the bound on K in Eq.
(10.54).

Equation (70.107) can be rewritten as

—logy P;sm < —logy P+ 1 (10.108)
or log, P; = —n; = logy Pi— 1
Then 2lowPi 9 ploa Pip~t
or P=27=1p (10.109)
mn m m
Thus, PREDWARETIW S (10.110)
=1 i=1 =1
mn
or 1=y2m=1 (10.111)
=1
which indicates that the Kraft inequality (10.54) is satisfied, and the bound on K is
%SKS] (10.112)

Consider a DMS X with symbols x; and corresponding probabilities P(x;) = P;, i =1,2,...,m.
Show that a code constructed in agreement with Eq. (10.107 ) will satisfy the following relation:
HX)sL<HX)+1 (10.113)
where H(X) is the source entropy and L is the average code word length.
Multiplying Eq. (10.108) by P; and summing over / yields
—iP,» log, P; < iﬂin < i Pi(—log, P; + 1) (10.114)
i i=1

i=1 i=

=1

m
e

m
> Pi=log Pi+1) =~
i i=1

=1

P;log; P; +
Now ; 1108 £

=HX)+1

Thus, Eq. (10.114 ) reduces to
HX)<L<HX)+1
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ENTROPY CODING

10.32. A DMS X has four symbols x;, x, x3, and x, with P(x;) =, P(xy) =}, and P(x;) = P(xg) = L.
Construct a Shannon-Fano code for X; show that this code has the optimum property that
n; = I(x;) and that the code efficiency is 100 percent.

The Shannon-Fano code is constructed as follows (see Table 10-7):

Table 10-7
X; P(x;) Step 1 Step 2 Step 3 Code
X i 0 0
x i 1 0 10
X3 1 1 1 0 110
x4 1 1 1 1 111

1 1
I(x,) = —log, 5= 1=ny I(x;)=-log, i 2=mn,

1 1
I(x3) = ~log, 3= 3=n3 I(x4) =—log, 5= 3=mny

kl 1 1 t
HX)= Z Plxp)(x)) = 5(1) + 3(2) + §(3) +%(3) =L75

=1

4 1 1 1 1
L= ZP(X,-)ni = 5(1)+Z(2) +§(3)+§(3) =175

=1

,,:%X)_:lzloo%

10.33. A DMS X has five equally likely symbols.
(a) Construct a Shannon-Fano code for X, and calculate the efficiency of the code.

(b) Construct another Shannon-Fano code and compare the results.
(¢) Repeat for the Huffman code and compare the results.

(@) A Shannon-Fano code [by choosing two approximately equiprobable (0.4 versus 0.6) sets] is
constructed as follows (see Table 10-8):

Table 10-8
X; P(x;) Step 1 Step 2 Step 3 Code
X1 0.2 0 0 00
Xy 0.2 0 1 01
X3 0.2 1 0 10
X4 0.2 1 1 0 110
Xs 0.2 1 1 1 111
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5
H(X) == P(x;) log; P(x;) = 5(-0.2 log, 0.2) = 2.32

i=1

i=1

n

_H(X) 232

L 2.4

= 0.967 = 96.7%

5
L= P =0202+2+2+3+3)=24

(b) Another Shannon-Fano code [by choosing another two approximately equiprobable (0.6 versus 0.4)
sets] is constructed as follows (see Table 10-9):

Table 10-9
X; P(x;) Step 1 Step 2 Step 3 Code
x| 0.2 0 0 00
X3 0.2 0 1 0 010
X3 0.2 0 1 1 011
X4 0.2 1 0 10
Xs 0.2 1 1 11

5
L= Pirn=02Q+3+3+2+2)=24
=1

Since the average code word length is the same as that for the code of part (a), the efficiency is the same.
(¢) The Huffman code is constructed as follows (see Table 10-10):

5
L=3 Pem=022+3+3+2+2)=24

=1

Since the average code word length is the same as that for the Shannon-Fano code, the efficiency is also

the same.
Table 10-10
X; P(x) Code
01 1 0
4 02 04 0.4 —1 06
000 01 00
X 02 02 04 04 -
001 000
X3 0.2 0.2 02
01
10
X 02 0.2
001
x5 02 =
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10.34. A DMS X has five symbols xy, x5, x3, x4, and x5 with P(x;) = 0.4, P(x,) = 0.19, P(x3) = 0.16,
P(x4) = 0.15, and P(xs5) = 0.1. .
(a) Construct a Shannon-Fano code for X, and calculate the efficiency of the code.
(b) Repeat for the Huffman code and compare the results.

(a) The Shannon-Fano code is constructed as follows (see Table 10-11):

Table 10-11
x; P(x) Step 1 Step 2 Step 3 Code
*1 0.4 0 0 00
X2 0.19 0 1 01
X3 0.16 1 0 10
X4 0.15 1 1 0 110
X5 0.1 1 1 1 111

5
H(X) == ) P(x;) log, P(x;)
=1
=—0.4log, 0.4—0.19 log, 0.19—0.16 log, 0.16
—0.15 log; 0.15-0.110g, 0.1
=215
5
L= Ptn
=
=0.42) 4+ 0.19(2) + 0.16(2) + 0.15(3) + 0.1(3) = 2.25
_HX) 205 oo
== =535~ 0.956 = 95.6%

(b)) The Huffman code is constructed as follows (see Table 10-12):

5
L= Pen;
=1

=0.4(1) 4+ (0.19+0.16 + 0.154+ 0.1)(3) = 2.2

Table 10-12
X P(x;) Code
1 1 1 0
Xq 04 0.4 04 0.6 j
000 01 00
X 0.19 0.25 0.35 04 T
001 000
x, 016 0.19 025
01
010
x 015 016 ——
0.1
s o1l
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CHX) 215 o
= =5y =097 =917%

The average code word length of the Huffman code is shorter than that of the Shannon-Fano code, and
thus the efficiency is higher than that of the Shannon-Fano code.

Supplementary Problems

10.35. Consider a source X that produces five symbols with probabilities 1,1,1, 4, and {;. Determine the source
entropy H(X).

Ans.  1.875 b/symbol

10.36. Calculate the average information content in the English language, assuming that each of the 26 characters
in the alphabet occurs with equal probability.

Ans. 4.7 b/character

10.37. Two BSCs are connected in cascade, as shown in Fig. 10-13.

0.8 Y2 0.7
Fig. 10-13

(a) Find the channel matrix of the resultant channel.
(b) Find P(zy) and P(z,) if P(x;) = 0.6 and P(x,) = 0.4.

062 038
Ans. (@) [0.38 0.62]

(®) P(z;) =0.524, P(z;) = 0.476

10.38. Consider the DMC shown in Fig. 10-14.
(@) Find the output probabilities if P(x;) =1 and P(x;) = P(x3) = 4.
(b) Find the output entropy H(Y).

Ans. (@) P(y1) =7/24, P(y,)=17/48, and P(y3) = 17/48
(b) 1.58 bjsymbol

10.39. Verify Eq. (10.32), that is,
KX;Y)=H(X)+ H(Y)-HX,Y)

Hint:  Use Egs. (10.28) and (10.26).
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10.40.

10.41.

10.42.

10.43.

INFORMATION THEORY AND SOURCE CODING

Fig. 10-14

Show that H(X, Y) < H(X)+ H(Y) with equality if and only if X and ¥ are independent.

Hint:  Use Eqgs. (10.30) and (10.32).

Show that for a deterministic channel

HYIX)=0

Hint:  Use Eq. (10.24 ), and note that for a deterministic channel P( y;lx;) are either Oorl.

[CHAP. 10

Consider a channel with an input X and an output Y. Show that if X and ¥ are statistically independent, then

H(X|Y)=H(X)and I(X;Y)=0.
Hint:  Use Egs. (6.51) and (6.52) in Egs. (/0.23) and (10.28).
A channel is described by the following channel matrix.

(4) Draw the channel diagram.
(b) Find the channel capacity.

Ot
—_
[P

—
Do

Ans. (a) See Fig. 10-15.

() 1 b/symbol

Xy

X2

Fig. 10-15

Y2

Y3
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10.44.

10.45.

10.46.

10.47.

10.48.

10.49.

10.50.

10.51.

Let X be a random variable with probability density function fy(x), and let ¥ = aX + b, where a and b are
constants. Find H(Y) in terms of H(X).

Ans. H(Y)= H(X)+logya

Find the differential entropy H(X) of a gaussian random variable X with zero mean and variance o%.
Ans.  H(X) =1 log, 2mes%)
Consider an AWGN channel described by Eq. (10.46), that is,

Y=X+n

where X and ¥ are the channel input and output, respectively, and # is an additive white gaussian noise with
zero mean and variance 2. Find the average mutual information /(X;Y) when the channel input X is
gaussian with zero mean and variance ¢%.

Ans. I(X; Y)=%log2(1+’;%f)

Calculate the capacity of AWGN channel with a bandwidth of 1 MHz and an S/N ratio of 40 dB
Ans. 13.29 Mb/s

Consider a DMS X with m equiprobable symbols x;, i = 1,2,...,m.
(@) Show that the use of a fixed-length code for the representation of x; is most efficient.
(h) Let n, be the fixed code word length. Show that if n, = log, m, then the code efficiency is 100 percent.

Hint: Use Egs. (10.49) and (10.52).

Construct a Huffman code for the DMS X of Prob. 8.32, and show that the code is an optimum code.

Ans. Symbols: x; X3 x3 X4
Code : 0 10 110 111

A DMS X has five symbols x;, x; , X3, X4, and x5 with respective probabilities 0.2, 0.15, 0.05, 0.1, and 0.5.
(@) Construct a Shannon-Fano code for X, and calculate the code efficiency.
(b) Repeat (a) for the Huffman code.

Ans.

(a) Symbols: x; x; X3 X4 Xs
Code : 10 110 1111 1110 O
Code efficiency # = 98.6 percent.

(b) Symbols: x; X X3 X4 X5

Code : 11 100 1011 1010 O

Code efficiency n = 98.6 percent.

Show that the Kraft inequality is satisfied by the codes of Prob. 10.33.

Hint:  Use Eq. (10.54).



ERROR CONTROL
CODING

RODUCTION

chapter we treat the subject of designing codes for the reliable transmission of digital
n over a noisy channel. Codes can either correct or merely detect errors, depending on the
redundancy contained in the code. Codes that can detect errors are called error-detecting
codes that can correct errors are known as error-correcting codes. There are many different
trol codes. These are classified into block codes and convelutional codes. The codes described
ary codes for which the alphabet consists of only two elements; 0 and 1, The set {0, 1} is

Coding:

i€ block diagram for the channel coding is shown in Fig, 11-1, The binary message sequence
it of the channel encoder may be the output of a source encoder or the output of a source
channel encoder introduces systematic redundancy into the data stream by adding bits to
ts in such a way as to facilitate the detection and correction of bit errors in the original
sequence at the receiver. The channel decoder in the receiver exploits the redundancy
ith message bits are actually transmitted. The combined objective of the channel encoder
i& Lo minimize the effect of channel noise,

'ng Theorem:

bl coding theorem for a DMC 1s stated as follows:

MS & with entropy H(X) bits/symbol and a DMC with capacity C, bits/symbol, if
iere exists a coding scheme for which the source output can be transmitted over the
arbitrarily small probability of error.

iy, if H{X) > C,, it is not possible to transmit information over the channel with an
all probability of error.

282
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Channel m?rl:zrrz::ss Channel
. ncode: decod
Binary ¢ r Coded channel ecoder Decoded
message quence binary
sequence 1 sequence
Noise

Fig. 11-1 Channel coding

Note that the channel coding theorem only asserts the existence of codes but it does not tell us
how to construct these codes.

11.3 BLOCK CODES

A block code is a code having all its words of the same length. In block codes the binary message
or data sequence is divided into sequential blocks each k bits long, and each k-bit block is converted
into an #-bit block, where n > k. The resultant block code is called an (n, k) block code. The k-bit
blocks form 2* distinct message sequences referred to as k-tuples. The n-bit blocks can form as many
as 2" distinct sequences referred to as n-tuples. The set of all n-tuples defined over K = {0, 1} is
denoted by K. The channel encoder performs a mapping

T:U—-V (11.1)

where U is a set of binary data words of length k and ¥ is a set of binary code words of length n with n >
k. Each of the 2 data words is mapped to a unique code word. The ratio k/n is called the code rate.

11.4 LINEAR BLOCK CODES
A. Binary Field:

The set K = {0, 1} is a binary field. The binary field has two operations, addition and multipli-
cation such that the results of all operations are in K. The rules of addition and multiplication are as
follows:

Addition:

090=0 1el=0 0al=100=1
Multiplication:
0-0=0 1-1=1 0-1=1-0=0

B. Linear Codes:

Let a = (a1, .. . ,a,), and b = (by,bs, ... ,b,) be two code words in a code C. The sum of aandb,
denoted by a ® b, is defined by (a; @ b1, a2 D ba, ... ,a, D by). A code C is called linear if the sum
of two code words is also a code word in C. A linear code C must contain the zero code word
0=1(00,...,0),sincea®a=0.

C. Hamming Weight and Distance:

Let ¢ be a code word of length n. The Hamming weight of ¢, denoted by w(c), is the number of I’sinc.

Let a and b be code words of length n. The Hamming distance between a and b, denoted by d(a, b),
is the number of positions in which a and b differ. Thus, the Hamming weight of a code word ¢ is the
Hamming distance between ¢ and 0, that is
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w(e) = d(c, 0) (11.2)
Similarly, the Hamming distance can be written in terms of Hamming weight as
d(a,b) = wadb) (11.3)

D. Minimum Distance:

The minimum distance dy;, of a linear code C is defined as the smallest Hamming distance
between any pair of code words in C.

From the closure property of linear codes—that is, the sum (modulo 2) of two code words is also a
code word—we can derive the following theorem (Problem 11.9).

THEOREM 11.1

The minimum distance dp, of a linear code C is the smallest Hamming weight of the nonzero code
word in the C.

E. Error Detection and Correction Capabilities:

The minimum distance dp;, of a linear code C is an important parameter of C. It determines the
error detection and correction capabilities of C. This is stated in the following theorems.

THEOREM 11.2
A linear code C of minimum distance dmi, can detect up to ¢ errors if and only if
dpin 1+ 1 (11.4)

THEOREM 11.3
A linear code C of minimum distance dyi, can correct up to ¢ errors if and only if
Apin 221 + 1 (11.5)

Equation (/1.5) can be illustrated geometrically by Fig. 11-2. In Fig. 11-2 two Hamming spheres, each
of radius ¢, are constructed around the points that represent code words c¢; and ¢;. Figure 11-2(a)
depicts the case where two spheres are disjoint, that is, d(c;, ¢)) > 2+ 1. For this case, if the code word
¢; is transmitted, the received word is r, and d(c;, ) < ¢, then it is clear that the decoder will choose c;,
since it is the code word closest to the received word r. On the other hand, Fig. 11-2(b) depicts the case
where the two spheres intersect, that is, d(c;, ¢;) < 2¢. In this case, we see that if the code word ¢, is
transmitted, there exists a received word r such that d(c;, r) < ¢, and yet r is as close to ¢;asitis to c;.
Thus, the decoder may choose ¢;, which is incorrect.

)

(@)d(c;, ¢) 22+ 1 (b) d(c; ¢ 22t

Fig. 11-2 Hamming distance
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F. Generator Matrix:

In an (n, k) linear block code C, we define a code vector ¢ and a data (or message) vector d as
follows:
c=[c1, -+,
d=1[d;,dy,...,dl
If the data bits appear in specified location of ¢, then the code C is called systematic. Otherwise, it is
called nonsystematic. Here we assume that the first k bits of ¢ are the data bits and the last (n—k) bits
are the parity-check bits formed by linear combination of data bits, that is,

g =d
o =d
1 =p11d1 ©Pida @ - - - @ pudy (11.6)

Cra2 =Ppudy O ppdy @ -+ + © pydy

Ct+m :Pmldl 69pm?.dZ D G3[7mkdk

where m = n — k. Equation (/1.6) can be written in a matrix form as
1o 0 pu Pa c Pm
e=ag=id & --- 4" T TTT 00 Peo Rt P )
o 0 --- 1 pyu pPu - Pm
where G = [I; P] (1.8)
where I is the kth-order identity matrix and P7 is the transpose of the matrix P given by
Pu P2 T Pk
p=| P P R ) 3 (11.9)
Pm1 Pm2 " Pmk

The k X n matrix G is called the generator matrix. Note that a generator matrix for C must have k rows
and 7 columns, and it must have rank k; that is, the k rows of G are linearly independent.

G. Parity-Check Matrix:

Let H denote an m X n matrix defined by

H=[P 1m] (11.10)
where m = n — k and 1, is the mth-order identity matrix. Then
T
HT=[P ] (1.11)
I,
Using Eqs. (11.8) and (/1.11), we have
pr

GH' =[I, P’j[ 7

m

]zPT@PT=O (11.12)

where O denotes the k X m zero matrix. Now by Egs. (/1.7) and (/1.12), we have
cH' =dGH" =0 (I1.13)

where 0 denotes the 1 X m zero vector.
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The matrix H is called the parity-check matrix of C. Note that the rank of His m = n — k and the
rows of H are linearly independent. The minimum distance dy;, of a linear block code C is closely
related to the structure of the parity-check matrix H of C. This is stated in the following theorem
(Prob. 11.22).

THEOREM 11.4

The minimum distance diy;,, of a linear block code C is equal to the minimum number of rows of HZ
that sum to 0, where H is the transpose of the parity-check matrix H of C.

H. Syndrome Decoding:

Let r denote the received word of length » when code word ¢ of length n was sent over a noisy
channel. Then r = ¢ @ e, where e is called the error pattern. Note thate = r + c.
Consider first the case of a single error in the ith position. Then we can represent e by

e=[0-:-010---0]
i (11.14)
ith position
Next, we evaluate rH” and obtain
rtH = (coe)H =cH @eH" =eH =5 (11.15)

in view of Eq. (11.13) and s is called the syndrome of r.

Thus, using s and noting that eH” is the ith row of H”, we can identify the error position by
comparing s to the rows of H”. Decoding by this simple comparison method is called syndrome
decoding. Note that not all error patterns can be correctly decoded by syndrome decoding. The zero
syndrome indicates that r is a code word and is presumably correct.

With syndrome decoding, an (n, k) linear block code can correct up to ¢ errors per codeword if
n and k satisfy the following Hamming bound:

1
n—k > n
rH ZO ; (11.16)
n) _ n!
i) (m=-D!
A block code for which the equality holds for Eq. (11.16) is known as the perfect code. Single error-
correcting perfect codes are called Hamming codes.

Note that the Hamming bound is necessary but not sufficient for the construction of a z-error
correcting linear block code.

where (

11.5. CYCLIC CODES
A. Definition:
Let ¢ = (co,¢1, - - ,¢,4—1) be a codeword in code C. The cyclic shift o(c) of ¢ is defined by
a(c) =V = (Cue15, €03 Cly - v s Cp2) (11.17a)
and a second cyclic shift produces
7@ = olo(@)} = ¢? = (12,41, 0, ) (11.17b)
Note that ¢” (¢) = c.
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A code Cis said to be a cyclic code if the cyclic shift of each code word is also a code word. Cyclic
codes are a subclass of linear block code.

B. Code Polynomials:
We define a code polynomial ¢(x) corresponding to ¢ as
) =cotcrx+ - A cp X! (11.18)

Note that c(x) is a polynomial of degree (n — 1) over K = {0, 1}, where coefficients co,c1, .. . 5¢n—1
are elements of K. Thus, a code C of length n can be represented as a set of polynomials over K of
degree at most n — 1. The polynomials over K are added and multiplied in the usual fashion, except
that since 1 @ 1 = 0, we have x* @ x* = 0. The set of all polynomials over X is denoted by K[x].

Let f{x) and A(x) be in K[x] with A(x) # 0. Then there exists unique polynomials g(x) and r(x) in
K[x}] such that

[(x) = g(x)h(x) + r(x) (11.19)

with r(x) = 0 or degree[r(x)] < degree [A(x)]. The polynomial g(x) is called the quotient, and r(x) is
called the remainder. The procedure for finding g(x) and r(x) is the familiar long-division process with
modulo 2 arithmetic among the coefficients.

We say that () modulo A(x) is r(x) if r(x) is the remainder when f{x) is divided by A(x), and we write

Hx) = fix) mod h(x) (11.20)

If ¢(x) mod A(x) = r(x) = b(x) mod h(x), then we say that c(x) and b(x) are equivalent modulo A(x)
denoted by

" e(x) = b(x) mod h(x) (11.21)
Note that
X'=1 mod (1+x") (11.22)

C. Generator Polynomial:

The code polynomial ¢V (x) corresponding to ofc) [Eq. (11.174)] is

D)=y +epx+ Xt 4 - - -+ Cppx™! (11.23)
Now from Eq. (11.18)
xe(x) = cox + x4 - -+ e X
Using Eq. (11.22), we have
D)y =xe(x) mod (1+x") (11.24)
In a similar fashion, we get
¢P(x) = xe(x) mod (1+x") (11.25)

THEOREM 11.5

If g(x) is a polynomial of degree (n — k) that is a factor of 1 4 x”, then g(x) generates an (n, k)
cyclic code C in which the code polynomial c(x) for a data word d = (do,dy, . . - ,dk—1) is generated
by

o(x) = d(x)g(x) (11.26)
where d(x) =dy + dix + ... + di—1x*"! is the data polynomial corresponding to the data word.
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The polynomial g(x) is called the generator polynomial (Prob. 11.27). Note that the resultant cyclic
code C is, in general, not systematic. To construct a systematic cyclic code, see Prob. 11.35.

D. Parity-Check Polynomial:

Let h(x) be a polynomial of degree k and also a factor of 1 + x”. Then k(x) is the parity-check
polynomial of an (n, k) cyclic code C. The parity-check polynomial A(x) and the generating
polynomial g(x) of C are related by

gA(x)=0 mod (1 +x") (11.27a)

or gXh(x)=1+x" (11.27b)

E. Syndrome Polynomial:

Let r(x) be the received word polynomial when the code word polynomial c(x) was sent.
Then r(x) = c(x) + e(x) (11.28)
where e(x) is the most likely error polynomial. The syndrome polynomial s(x) is defined by
s(x) =r(x) mod g(x) (11.29)
Assuming g(x) has degree n — k, then s(x) will have degree less than n — k and will correspond to a
binary word s of length » — k. Since c¢(x) = d(x)g(x), we have
s(x) =e(x) mod g(x) (11.30)
Thus, the syndrome polynomial is dependent only on the error. Note that if degree [e(x)] < degree

[g(x)], then e(x) = e(x) mod g(x) and thus s(x) = e(x). The following theorem specifies the condition
for the existence of a unique syndrome polynomial (Prob. 11.32).

THEOREM 11.6

Let C be a cyclic code with minimum distance d,,. Every error polynomial of weight less than 1dnin
has a unique syndrome polynomial.

From the preceding, we state that the error-correction problem then is to find the unique e(x) with
the least weight satisfying Eq. (11.30). (Note that the weight of a polynomial is the number of nonzero
coefficients in the polynomial.) This can be done as follows: For each correctable e(x), compute and
tabulate s(x) as shown in Table 11.1. The table is called the syndrome evaluator table. A decoder finds
the error polynomial e(x) by computing s(x) from #(x) and then finding s(x) in the syndrome evaluator
table, thereby finding the corresponding e(x) (see Prob. 11.34).

Table 11-1 Syndrome Evaluator Table

e(x) s(x)
1 1 mod g(x)
X x mod g(x)
x? x* mod g(x)
1+x 14-x mod g(x)
14x? 14+x? mod g(x)
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F. Implementation:

One of the advantages of cyclic codes is their easier implementation. The cyclic encoders can be
implemented by shift registers. These devices consist of m registers (or delay elements) and a “clock”
that controls the shifting of the data contained in the registers.

Output

)

Em-1

8o () & 2

Fig. 11-3 m-stage shift register

Input ——p]

An m-stage shift register, shown in Fig. 11-3, is a shift register with m registers. The output of an m-~
stage shift register is a linear combination of the contents of the registers and can be described using
coefficients go, g1, ..., gm—1 With g; € K = {0, 1}. Let ¢, be the output at time ¢z, then

¢ = goXo() + 21 X1 O+ - - - + g1 X1 (D) (11.31)

where X(f) is the value of the contents of register X; at time ¢.

Given a fixed generator polynomial g(x) of degree n — k for an (n, k) linear cyclic code C, we can
build an n — k + 1 stage shift register with generator g(x) to implement polynomial encoding of data
polynomial d(x).

Polynomial division (and thus polynomial decoding for cyclic codes) can be implemented by
devices known as feedback shift registers. A feedback shift register is a shift register with the output fed
back into the shift register as shown in Fig. 11-4.

8o & & &nok-y

Output

Input + +

Fig. 11-4 Feedback shift register

Feeding r(x) = ro + rix +--- + ra—1x" "1 into a feedback shift register with g(x) with high-order
coefficients fed in first (i.e. F,—1, 7n—2, - - ¥o) is equivalent to dividing r(x) by g(x). The output after »
clock tick will be the quotient (high-order coefficients first) and the contents of registers will be the
remainder (high-order digits to the right).

G. Generator Matrix:

There exist many generator matrices G for linear cyclic codes. The simplest is the matrix in which
the rows are the code words corresponding to the generator polynomial g(x) and its first £ — 1 cyclic
shifts:
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g(x)
xg:(x) (11.32)
P lg(x)

Note that the resulting generator matrix G is, in general, not in the form shown in Eq. (/1.8). In order
to obtain a generator matrix for a systematic cyclic code, one can apply elementary row operations to
the matrix of Eq. (/1.32) and transform it to an equivalent matrix that is in the form shown in Eq.
(11.8) (see Prob. 11.41).

H. Special Cyclic Codes:
1. Goley Codes:

The (23, 12) Goley code is the only known three-error correcting binary perfect code. The
minimum distance of the code is 7. The (23, 12) Goley code is generated either by the polynomial

g =1+x+x +x5+x"+2°+x!! " (11.33)
or by the polynomial
) =1+x2+x + 57+ x5+ x10 4 x!! (11.34)
Note that
14+ 5% =1+ 0g1(x)g(x) (11.35)

2. Bose-Chaudhuri-Hocqueghem (BCH) Codes:

The BCH codes are the most efficient error-correcting cyclic codes known. The BCH codes offer
flexibility in the choice of code parameters, that is, block length and code rate. The most common
BCH codes are characterized as follows: For any positive integers m (> 3) and ¢, there exists a binary
BCH code with the following parameters:

Block length : n=2"-1
Number of data length : n—k<mt
Minimum distance : Apin =2t + 1

Note that the Hamming single-error correcting codes can be described as BCH codes with ¢ = 1,
n—k=m.

3. Reed-Solomon Codes:

Reed-Solomon (RS) codes are an important subclass of nonbinary BCH codes. The encoder for an
RS code operates on multiple bits rather than individual bits. Reed-Solomon codes have particularly
good distance properties and are useful in situations where errors tend to happen in “bursts” rather
than randomly.

11.6. CONVOLUTIONAL CODES

Two major types of codes are in common use: block codes and convolutional codes. In an (n, k)
block code the data (or information) sequence is grouped into k-bit block and coded into n-bit block
codeword after adding (n — k) parity check bits. A characteristic of a linear block code is that each »-
bit encoded block is uniquely determined by the input data k-bit block. In contrast with this, the
encoder of an (n, k, m) convolutional code also accepts k-bit blocks of the input sequence and
produces n-bit blocks of the encoded sequence. However, each encoded n-bit block depends not only
on the corresponding k-bit input block at the same time unit, but also on the previous (m — 1) k-bit
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input blocks. Thus, an important characteristic of convolutional codes, different from block codes, is
that the encoder has memory. The integer m is a parameter known as the constraint length of the
convolutional code. In practice, # and k are small integers and m is varied to control the redundancy.

A general encoder for an (n, k, m) convolutional code is shown in Fig. 11-5. It consists of an mk-
stage shift register and n modulo-2 adders. At each unit of time, k bits are shifted into the first k-stage
of the register, all bits in the register are shifted k-stage to the right, and the outputs of the # modulo-2
adders are sequentially sampled to generate the encoded output sequence.

| mk-stage N
] shift register |

1
Input sequence

(shifted in £-bit at a time)

y
. — > Encoded output sequence

Fig. 11-5 An (n,k,m) convolutional encoder

In the important special case when k£ = 1, the data sequence is not divided into blocks and can be
processed continuously. In the following, only this special case of k& = 1 will be treated.

Convolutional codes are very practical codes. Several methods are used for representing a
convolutional encoder: the connection diagram, connection polynomials, the state diagram, the tree
diagram, and the trellis diagram. Figure 11-6 shows a simple (2, 1, 3) convolutional encoder with
n=2,k=1,and m = 3. Each time a data bit is shifted in, two encoded bits are sent out in sequence.

o TS o

Fig. 11-6 A (2,1,3) convolutional encoder

In the following we shall use this encoder to describe various representations of convolutional codes.

A. Connection Diagram:

Letting the content in each of the three stages of Fig. 11-6 be X,, X, X5, with the output coded
bits vy, v,, we have

V1:XOEBX2 V2=X0€:BX1@X2
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This coding is carried out continuously, on all data bits as they are shifted through the register.
Consider the input sequence d = (1 0 1). Then from the connection diagram of Fig. 11-6, we have the
following results:

time input X, X; X; v; w»
1 1 1 0 0 1 1
2 0 0 1 0 0 1
3 1 1 0 1 0 O
4 0 0 1 0 0 1
5 0 0o 0 1 1 1
6 0 0 0 o

Thus, Input sequence : 1 0 1

Output sequence: 11 01 00 01 11

B. Impulse Response of the Encoder:

The output sequence of the encoder to a single “1” bit input that moves through it is called the
impulse response of the encoder. Consider the contents of the register in Fig. 11-6 as “1” moves
through it. We have

input Xy X; X, v w
1 1 0 0 1 1
0 0o 1 0 0 1
0 o 0 1 1 1

Input sequence: 1 0 0
Impulse response: 11 01 11

Note that the impulse response of v; is (1 0 1) and the impulse response of v, is (1 1 1). For the input
sequence d = (1 0 1), the output may be found by the linear addition of the time-shifted impulse
responses as follows:

input d output
1 11 01 11
0 00 00 00
1 11 01 11

modulo—2sum: 11 01 00 01 11

This is the same output as that obtained previously. Thus, it shows that the convolutional codes are
linear. Note that the output sequence of v, (1 0 0 0 1) is the discrete convolution sum (mod 2) of
(1 0 1) and its impulse response (1 0 1). Similarly, the output sequence of v, (1 1 0 1 1) is the discrete
convolution sum (mod 2) of (1 0 1) and its impulse response (1 1 1). This is the reason for-the name
“convolutional.”

C. Polynomial Representation:

Comparing the structure of Fig. 11-6 with that of Fig. 11-3, we see that we can write the generator
polynomial g;(x) for the upper connection and g,(x) for the lower connection as



CHAP. 11] ERROR CONTROL CODING 293

g =1+x
L) =1+x+x
The output sequence is then
¢(x) = d(x)g,(x) interlaced with d(x)g,(x).
For d = (1 0 1), we have d(x) = 1 + x>. Now
de)g1 () = 1+ x)A +xH) =1+ x* = 1 +0x +0x? + 0x> + 1x*
dx)g) =0 +x)A+x+x)=1+x+ x> +x* = 1+ Ix 4+ 022 + 12 + 1x*

and cx)=(1, 1)+ (0, Dx+ (0, 0)x>+ (0, x>+ (1, Dx*
Thus,c=(110100011 1). Again, we obtained the same output sequence.

D. State Representation and State Diagram:

The state of an (r, 1, m) convolutional encoder is defined as the contents of the first m — 1 shift
registers. Thus, the encoder can be represented as an (m — 1)-state machine. Knowing the state at
present and the next input, we can determine the next state and then the output. The zero state is the
state when each of the first m — 1 shift registers contains 0. Transition between states is governed by
the particular incoming bit (0 or 1). The encoder has 2™~! possible states. The state diagram
representation for the encoder of Fig. 11-6 is shown in Fig. 11-7. Since m = 3, there are 4 states, and
they are designated asa=00,b=10,c=01,d=11.

Output
branch word
/

Input bit 0

——— input bit 1

Fig. 11-7 State diagram

There are only two transitions emanating from each state, corresponding to the two possible input
bits (0 or 1). Arrows indicate the direction of transition. A transition from one state to another in
response to input 0 is represented by a solid line, whereas a transition in response to input 1 is
represented as a dashed line. Bits appearing next to each path between states are the output bits
associated with the state transition. Assuming that the encoder is initially in state a (the all-zero state),
the codeword corresponding to any given input sequence can be obtained by following the path
through the state diagram determined by the input sequence and noting the corresponding outputs on
the branch labels. Following the last nonzero input sequence, the encoder is returned to state a by a
sequence of m — 1 all-zero blocks appended to the input data sequence. For example, in Fig. 11-7, if
input sequence is data word (1 0 1) followed by (0 0), the path is @ b ¢ b ¢ a and then the output
codewordis (110100011 1)
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E. Tree Diagram:

The tree diagram adds the dimension of time to the state diagram. The tree diagram for the
convolutional encoder of Fig. 11-6 is illustrated in Fig. 11-8. A vertical line is called a node and a
horizontal line is called a dranch, and the output codeword for each input bit is shown on branches.
The rule for the tree structure is as follows: Upward transitions correspond to a 0 data bit at the
input; downward transitions correspond to a 1. Following this rule, we see that the input sequence 1
0 1 0 0 traces the heavy line drawn in the tree diagram in Fig. 11-8. This path corresponds to the
following output code word sequence: 1 1 01 000 1 1 1. It is further seen that the tree structure is
repetitive beyond the third node level; this is because the encoder output depends only on the two
previous inputs and the current input. Note that the number of possible sequences (paths) of the

transition bits increases exponentially with time.

00
00 a

n a2

0 ¢ 1

00 b 01

n b 10

o < n

o w0 d ?:

o1 d

P o1
1 o« o
1 " a 1
b b2

o € 10

01 € peld

0

b 40

" b o

n a2

00 b 01

w d 10

10 o 1
o _d 2

o1 d 10

01

Fig. 11-8 Tree diagram

F. The Trellis Diagram:

The repetitive structure of the tree diagram leads to the redrawing of the tree diagram as a trellis
diagram, shown in Fig. 11-9. The four states of this encoder appear along the vertical axis; transition
between the states is represented in time along the horizontal axis. In drawing the trellis diagram, we
use the same convention for the state diagram; that is, a solid line denotes the output generated by
input bit 0, and a dashed line denotes the output generated by input bit 1. The trellis in this example
demonstrates the repetitive nature of the structure after trellis depth m(=3)(at time t4).
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b =100

c=01¢

d=1e

Fig. 11-9 Trellis diagram

The completely repetitive structure of the trellis diagram suggests a further reduction in the
representation of the encoder to the state diagram of Fig. 11-7. Thus, the tree, the trellis, and the state
diagram all represent the input-output relation of the convolutional encoder and are used for decoding
coded sequence by tracing the most likely path that has been traversed while the code was generated.
Specially, the trellis diagram is the most useful for probabilistic decoding.

11.7. DECODING OF CONVOLUTIONAL CODES
A. Distance Properties of Convolutional Codes:

As in block codes, the distance property of convolutional codes is also important in evaluating
their error-correcting capabilities. The most important distance measure for convolutional codes is the
free distance, denoted by df... The free distance of a convolutional code is defined as the minimum
Hamming distance between two code words in the code. A convolutional code with free distance dee
can correct ¢ errors if and only if

divee 221 + 1 (11.36)

Since a convolutional code is a linear code, dge. is @ minimum weight of code words generated by
nonzero data sequences. Also, it is the minimum weight of all paths in the trellis diagram that diverge
from and remerge with the all-zero state. Thus, dg.. can be obtained from the trellis diagram of the
convolutional encoder. Consider, for example, Fig. 11-9, which shows the trellis diagram of the
encoder of Fig. 11-6. First, redraw the trellis diagram as shown in Fig. 11-10, labeling each branch
with its weight instead of with its branch word symbols. Next, consider all paths that start and end in
the 00 state and do not return to the 00 state anywhere between. From Fig. 11-10 we see that there is
one path a b ¢ a with weight 5. Similarly, there are two paths, a b d c a and a b d d ¢ a, with weight 6,
and so on. Thus, the free distance of the convolutional code is seen to be 5 in this example.

b=10e

c=01e

d=11e
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B. Maximum Likelihood Decoding:
If all input data sequences are equally likely, a decoder that chooses € if
P(r|e) = max P(rle;) (11.37)

where r is the received sequence and ¢; is one of the possible transmitted sequences, is called the
maximum likelihood decoder. The conditional probabilities P(r|c;) are called the likelihood functions.
Note that for the BSC (binary symmetrical channel) the maximum likelihood decoder reduces to a
minimum distance decoder. The rule of the minimum distance decoding is as follows: Choose ¢ that
minimizes the Hamming distance between the received sequence r and the transmitted sequence c.

C. The Viterbi Decoding Algorithm:

Maximum likelihood decoding involves searching the entire code space and generally is
impractical because of the large associated computational problem. However, a decoding algorithm
due to Viterbi provides a maximum likelihood decoding procedure that is practical to use with short
constraint length convolutional codes. We may decode a convolutional code by choosing a path in
the trellis diagram such that the code sequence corresponding to the chosen path is at minimum
distance from the received sequence. The Viterbi decoding algorithm essentially performs minimum
Hamming distance decoding; however, it reduces the computational load by taking advantage of the
special structure in the code trellis. From the trellis diagram of Fig. 11-9, we note that each of the
four states (a, b, ¢, and d) can be reached through two states only. Thus, only the path that agrees
most with the received sequence r (the minimum distance path) need be retained for each state. The
retained path is called the survivor at that state. A Viterbi decoder assigns to each branch of each
surviving path a metric that equals its Hamming distance from the corresponding branch of r.
Summing the branch metric yields the path metric, and r is finally decoded as the surviving path
with the smallest metric (see Prob. 11.50).

Solved Problems

CHANNEL CODING
11.1. Consider a BSC of Fig. 10-11 (Prob. 10.16). Show that the probability of error P, is
P,=p (11.38)
From Eq. (10.20)
woron=[ 10 2 = [0 K]
The average probability of error P, is
P, = P(ya|x)P(x1) + Py |x%2) P(x3)
=pr+tpl-a)y=p

11.2. In the BSC of Prob. 11.1, consider a simple coding scheme that involves the use of a repetition
code in which each binary symbol is repeated several times. Let each symbol (0 or 1) be repeated #
times, where n = 2m + 1 is an odd integer. For decoding, a majority rule is employed. That is, if
in a block of n received bits the number of 0s exceeds the number of 1s, then the decoder decides
in favor of a 0. Otherwise, it decides in favor of a 1. Hence, an error occurs when m + 1 or more
bits out of n = 2m + 1 bits are received incorrectly.
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(a) Show that the probability of error P, is given by

Py ('f)p"(l—p)”‘”' (11.39)

i=m+l !
(b) Calculate P, when p = 0.01 for n =3, 5, and 7.

(a) The probability of i bits being received in error is
ny i =i
( i)p'(l -p)
Hence, the probability of error P, is

ro= Y (1)pa-pr
it
() Forn=3,m=1,andp=0.01,
P, = (;)(0.01)2(0.99) n (g)(o.on3 ~3(104)

Forn=5,m=2,and p=0.01,

5 3 e 4 5 5
Po=|] 0017099 +| |, J0.01*0.99)+{  J0.01)
=9.85(107%) ~ 107°
Forn=7,m=3,and p = 0.01,
7 4 3 7 5 2 7 6 7 7
Pe=| , JO01}0.99 +{ , JO.01°0.99 +| }©.01) 0.99)+{  J©0.01

=3.416(107)

BLOCK CODES

11.3.

In a communication channel encoder, every data bit is repeated five times, and at the receiver, a
majority vote decides the value of each data bit. If the uncoded bit error probability p is 1073,
calculate the coded bit error probability when using this best-of-five code.

A coding error will be made if three or more of the repetitions are received in error. Thus, the coded bit

error probability p, is

S5\ (5,33 oo
pezl;(i)pu—pf ~(3)aoa-1077 ~ 10

In a single-parity-check code, a single parity bit is appended to a block of k data bits (di1d> ... di).
The single parity bit ¢, is chosen so that the code word satisfies the even parity rule:

dlEde@"'@dkeCl:O
(a) For k = 3, set up all possible code words in the (4,3) code.
(b) Which error patterns can the (4,3) code detect?

(¢) Compute the probability of an undetected symbol error, assuming that all symbol errors are
independent and that the probability of symbol error is p = 0.01.

(a) There are k=2 =38 possible code words, which are shown in Table 11-2.
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Table 11-2
Data code Parity bit Code word
000 0 0000
001 1 0011
010 1 0101
011 0 0110
100 1 1001
101 0 1010
110 0 1100
111 1 11

(b) The (4, 3) code is capable of detectirig all single-error and triple-error patterns.

(¢) The probability of an undetected symbol error P, is equal to the probability that two or four errors
occur anywhere in a code word.

— 4\, 32 4\ 4
Pw—(z)p(l p)+(4)p

=6p*(1 - p +p*
= 6(0.01)%(0.99)* + (0.01)* ~ 5.88(107%

Show that C = {000, 1 1 1} is a linear code.

Since all four of the sums
000000 =000 (I1H®EO00) =111

(1H)@® 0 00)=(111) (11He11)=(000)

are in C, C is a linear code.

Show that C= {000,001, 10 1} is not a linear code.
Since the sum (0 0 1) D (1 0 1) = (1 0 0) is not in C, C is not a linear code.

Show that the Hamming distance measure has the following propertics

(1) da,b)=0 with=0if and onlyifa=b (11.40a)
(2) d(a,b) = d(b,a) (11.40b)
(3) d,c) <d@,b)+db,c) (11.40¢)

From Eq. (11.3) d(a,b) = w(a @ b). If a # b, then w(a@® b) > 0,andifa=b,thena@b=aDa =10
and w(a © a) = w(0) = 0. Thus, property (1) is verified. Property (2) follows since a & b = b & a. Next,

da,¢)=wae o =) la—cl
=1
where a,, ¢; are elements of K = {0, 1} and » is the code length. Similarly
n
da,b)=w@eb)=3 la;- b}
i=1

n n
db,c)=wbdc)=3 |b—cl= 3 lc;— b
i=1 i=1

Now la; = el = [(a; = by) = (¢; = bl < |a; = bl + e; = by
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11.8.

11.10.

11.11.

Thus, Sla-cl=3 la-bl+3 le-b]
i=1 =1 =1

or d(a,c) < d(a,b) + d(b,c)
which is property (3).

Consider the following code vectors:

¢ =[1 00 1 0]
=[0 110 1]
a=[1 10 0 1]

(@) Find d(es, ¢), d(cy, €3), and d(cz, ¢3).

(b) Show that
d(ey, €3) + dley, €3) = dlcy, ¢3)

(@) From Eq. (11.3) we obtain
dle;, ¢y =wle; ®e)=wfl 1 1 1 1]=5
d(ej, e3) =w(e; ®e)=w[0 1 0 1 1]=3
d(ey,c3) =w(ey Bey)=w[l 0 1 0 0]=2

® d(ey, ex)+d(ey, €5) = 5+ 223 =d(e;, ¢3)

Prove Theorem 11.1, that is, the minimum distance of a linear block code is the smallest
Hamming weight of the nonzero code vectors in the code.

From Eq. (11.3)
d(c;, c;) =w(e; S ep)
Then din = min d(c;, ¢;) = min w(c; S ¢)) (1141
oFe cFe;
Hence, by definition of linear code, Eq. (11.41) becomes
.= mi 11.
Arin min w(e) (1142)

Verify Theorem 11.2, that is, a linear code C of minimum distance dp;, can detect up to ¢ errors if
and only if dpy = ¢ + 1.

Let e be a nonzero error pattern with
w(e) = < dipjp — |
and let ¢ be a code word in a linear code C. Then
dc,ede)=wiehede)=we) < dyp

Thus, r = ¢ @ e is not in C. Therefore, C can detect e; that is, C can detect up to ¢ (< dip — 1) errors if dm
= ¢t + 1. Proof of “only if ” part is left for exercise.

Verify Theorem 11.3; that is, a linear code C of minimum distance d,,;;, can correct up to f exrors
if and only if dpy, = 2¢ + 1.
Let e be a nonzero error pattern with

Ww(e) =t < (dmin— 1)
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and let a and b be code words in a linear code C with a # b. By Eq. (/1.40c) /
d(a,a ® e)+ da P e,b) = da,b) = dy,
db,ade)+ dad® e, a)=db,a)= dpy,
Now w(e) = d (a @ e, a), and 2w(e) + | = (dmin — 1) + 1 = diin. Thus, we have
d(b,a® e) + wie) = 2w(e) + 1
Then db,ade)=we)+1=daade)+1

and we have da,ade) <db,ade)

which indicates that e is a correctable pattern. Thus, we conclude that a code C of distance dm;n can correct
up to t errors if dmin = 2¢ + 1. Again, proof of “only if* part is left for exercise.

Consider the code ¢ = {000, 1 1 1}. Show that C is a single-error correcting code and C does not
correct the error pattern (1 1 0).

1t is seen that diyi, = 3, and % (dmin =D =1. Thus, by Theorem 11.3, C is a single-error correcting code.
Next, assuming that error pattern e = (1 1 0) is associated with ¢ = (0 0 0), then
dc,e®e)=d000,110) =2
d(11l,cde)=d(111,110) = 1

Since ¢ @ e is not closer to ¢ = (0 0 0) than to (1 1 1), C does not correct the error pattern (1 1 0).

For a (6, 3) systematic linear block code, the three parity-check bits c4, ¢s, and c6 are formed from
the following equations:

(?4=d1€9d3
05:d1$d29d3
66=d1(_Dd2

(a) Write down the generator matrix G.
(b) Construct all possible code words.

(¢) Suppose that the received word is 010111. Decode this received word by finding the location
of the error and the transmitted data bits.

(@) From the given equation we obtain [Eqs. (11.6) and (11.9)]

1 o1
P=]1 11
110

100111
G=[1, PT]=|0 1 0 0 1 1
11

00 10

Then by Eq. (11.8)

(b) Since k = 3, we have 2° = 8§ data words. Thus, if d = [101], then using Eq. (11.7), we obtain

100111
c=dG=[1 0 1]J0o 1 0 0 1 1|=[1t 0 1 0 0 1]
001110
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In a similar manner, the other code words can be constructed. They are listed in Table 11-3.

Table 11-3

d c d [
000 000000 100 100111
001 001110 101 101001
010 010011 110 110100

011 011101 111 111010
(¢) ByEq.(I1.11)
111
01 1
r_ [PP]_ |t 1 o
" “[13]’ 100
010
0 0 1
Now r=[010111]
By Eq. (11.15) the syndrome s of r is
111
01 1
110
s=rH"=[0 1 0 1 1 1] Lo oo]l=[1 o 0]
010
00 1

Since s is equal to the fourth row of H”, an error is at the fourth bit, the correct code word is 01001 1,
and the data bits are 010.

11.14. A parity-check code has the parity-check matrix

1 01 10
H=111 0 0 1
1100

0

—_—0 O

(a) Determine the generator matrix G.
(b) Find the code word that begins 101 ....
(¢) Suppose that the received word is 110110. Decode this received word.

(@) Since His a 6 X 3 matrix, n = 6 and k = 3. Using Eq. (/1.11), we obtain

110
Pl=10 11
1 0 1

Then by Eq. (/1.8) the generator matrix G is

G=[r PT]=

IOO‘-—‘
oo
- o
— —
o =
—_— O
|
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0
1l=[1 0101 1]
1

oo -
o —o
- o o
—_o -
o — =

®) ec=dG=]1 0 1][

@ r=[1 10 11 0]

CO = O
OO
—o o~ — O

Since s is equal to the second row of H T an error is at the second bit, the correct code word is 100110,
and the data bits are 100.

11.15. The repetition code of Prob. 11.2 is an (n, 1) block code. There are only two code words in the
repetition code, an all-0 code word and an all-1 code word. Consider the case of a repetition code
with n = 5.
(a) Construct the generator matrix G for this (5, 1) block code.
(b) Using G find all code words.
(¢) Find the parity-check matrix H for this code.
(d) Show that GHT = 0.

(@) We have 4 parity bits that are the same as the data bit. With k& = 1, the identity matrix [ = 1, and by
Eqs. (11.6) and (/1.7) matrix P is given by

Pr=[1 11 1]
Then by Eq. (/1.8) the generator matrix G is
G=[1 111 1]
() Ford, =0,
¢=[0][t 1 1 1 1]=f0 0 0 0 0]
Ford, =1,
=[1[1 1 1 1 1]=[1 1 1 1 1]
(¢) By Eq. (11.10) the parity-check matrix H is

11000
10100
H=[P L1=|1 ¢ 9 1 0
1000 1

1
1
@ onT=[1 1 1 1 1]|0 =[0 0 0 0]=0
0
0

(=
D= O O =
_—0 O O -

11.16. Consider the (5, 1) repetition code of Prob. 11.15.

(a) - Evaluate the syndrome s for all five possible single-error patterns.
(b) Repeat (a) for all 10 possible double-error patterns.
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(¢) Show that the (5, 1) repetition code is capable of correcting up to two errors.

(a) From Prob. 11.15

N

|
cCoo—
co—o—
S
=

From Eq. (11.15) syndrome s is given by
eH =5

where e is an error vector. Let e =100 00 ]. Then

o
—_—o o =
=R ==

Il

—_

—

—

—_

—_

—

1
1

s=[1 00 0 0]Jo 1
0
0

In a similar manner, the other syndromes can be evaluated. They are listed in Table 11-4.

Table 11-4
e s
10000 1111
01000 1000
00100 0100
00010 0010
00001 0001
(b) Lete=1[11000]. Then
1 111
1 000
s=[1 100 0]J0 1 0 0[=[0 1 1 1]
00 10
00 01

Note that s is equal to the sum (modulo 2) of the first and second rows of H” (Prob. 11.18).
In a similar manner, the other syndromes can be evaluated. They are listed in Table 11-5.

Table 11-5

e s
11000 0111
10100 1011
10010 1101
10001 1110
01100 1100
01010 1010
01001 1001
00110 0110
00101 0101
00011 0011

303



304

11.17.

11.18.

11.19.

ERROR CONTROL CODING [CHAP. 11

(c) Since the syndromes for all single-error and double-error patterns are distinct, the (5, 1) repetition code
is capable of correcting up to two errors.
Show that all error vectors that differ by a code vector have the same syndrome.

For k data bits, there are 2 distinct code vectors, denoted as ¢;, i = 0, 1,.... 2% ~ 1. Thus, for any error
vector e, we define the 2F distinct vectors e; as

e=ede i=0,1,...,2-1 (11.43)
Postmultiplying both sides of Eq. (/1.43) by H” and using Eq. (/1.13), we obtain
eH! = (e®cpHT = eHT @ ¢;HT

(1144
=eH @0=elH =5 )

Show that the syndrome s is the sum (modulo 2) of those rows of matrix H” corresponding to the
error locations in the error pattern.

Let matrix H” be expressed in terms of its rows as

hy
h,
H =| . (11.45)
h,
Substituting Eq. (11.45) into Eq. (11.15), we can express the syndrome s as
by
T h, <
s=eH =[e; & - e]| . |=Deh (11.46)
: i=1
h’l

where ¢; is the ith element of the error vector e, that is,

o — 1 if an error occurred in ith location
! 0 if noerror occurred in ith location

Hence, Eq. (11.46) indicates that the syndrome s equals the sum of those rows of matrix H” that correspond
to the error locations in the error pattern.

Verify Eq. (11.16). That is, if an (n, k) linear block code can correct up to ¢ errors per code word,
the number of check bits n — k in the code word must satisfy the Hamming bound given by

—r
i=0

There are a total of 2" ~ * syndromes, including the all-0 syndrome. Each syndrome corresponds to a specific
error pattern. The number of possible i-tuple errors in an #-bit code word is equal to the number of ways of

choosing i bits out of n, namely, rlz)
Accordingly, the total number of all possible error patterns equals
>(7)
S\
where ¢ is the maximum number of errors in an error pattern. Therefore, if an (n, k) linear block code is

capable of correcting up to ¢ errors, the total number of syndromes must not be less than the total number of
all possible error patterns. Thus, we must have

=500
i=0
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11.20. Consider a single-error-correcting code for 11 data bits.
(@) How many check bits are required?

(b) Find a parity-check matrix H for this code.
(a) By Eq. (11.16)

= 3(0)-()+()-

Let n — k = m. Since k = 11, we have n = m + 11, and
2124+ m—m=4

Thus, at least 4 check bits are required.

() ByEq. (11.11)
i[5 ][]

For a single-error-correcting condition, it is required that the first 11 rows of matrix H” be unique.
They must also differ from the last 4 rows containing a single 1 in each row and cannot include an all-0
Tow.

With this requirement, a parity-check matrix H (transpose of H) for the (15, 11) code is given by

1110001 11011000
H=100110110110100
0101011011 100T10
00101 1011110001

11.21. Show that if ¢; and ¢; are two code vectors in an (#, k) linear block code, then their sum is also a
code vector.

Since all code vectors ¢ must satisfy Eq. (/1.13), we have

¢HT =0 and chT= 0

Then (c®)H =cH dcH =0+0=0 (11.47)

which indicates that ¢; @ ¢, is also a code vector.

11.22. Prove Theorem 11.4; that is, the minimum distance of a linear block code is equal to the
minimum number of rows of H” that sum to 0.

By Eq. (11.13)
cH' =0

The pro@yct cH” is a linear combination of rows of HZ. (See Prob. 11.18.) Hence, the minimum number
of rows of H” that can be added to produce 0 is

min w(c)
c#0

which equals dp, by Eq. (171.42).

11.23. Consider the (6, 3) code of Prob. 11.13.

(a) Show that d,;, = 3 and that it can correct a single error.
(b) Using the minimum distance decoding rule, repeat part (¢) of Prob. 11.13.
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(@) From part (b) of Prob. 11.13, the code vectors and their Hamming weights are listed in Table 11-6.
Since dmin Is the smallest Hamming weight of the nonzero code vectors in the code, diin = 3. Then by
Eq. (11.5)
Ain = 3221+ 1

which is satisfied by ¢ = 1. Hence, the code can correct a single error.

Table 11-6

¢; Hamming weight

¢ =[000000] 0
c=[001110]
c;=[010011]
¢ =[011101]
1
]

es=[100111
=[101001
¢;=[110100]
s =[111010]

B T N VS V)

(b) The received vectorisr =[0 1011 1]. Then by Eq. (11.3)
dr,e)) =4 dr,c5)=2
dr,e;) =3 dr,ee)=5
drr,c3) =1 dr,c;)=3
dr,e) =2 dr,cg)=4
The minimum distance between the code vectors and the received vector is
dir,e;) =1

Thus, we conclude that the code vector ¢; =[0 10 0 1 1] was sent and the data bits are 010 [which is
the same result obtained in part (¢) of Prob. 11.13].

11.24. Consider a (7, 4) linear block code with the parity-check matrix H given by

1011100
H=]1101010
01 11001
(a) Construct code words for this (7, 4) code.

(b) Show that this code is a Hamming code.

(¢) Ilustrate the relation between the minimum distance and the structure of the parity-check
matrix H by considering the code word 0101100.

(a) By Eqgs. (11.10) and (11.8) the generating matrix G for this code is
0

o= oo

0
0
0
1

(===
SO = O
—_— =
_— =

1
1
1
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Table 11-7
Data word Code word Hamming weight
0000 0000000 0
0001 0001111 4
0010 0010101 3
0011 0011010 3
0100 0100011 3
0101 0101100 3
0110 0110110 4
0111 0111001 4
1000 1000110 3
1001 1001001 3
1010 1010011 4
1011 1011100 4
1100 1100101 4
1101 1101010 4
1110 1110000 3
1111 1111111 7

With k = 4, there are 2F = 16 distinct data words, which are listed in Table 11-7. For a given data
word, the corresponding code word is obtained by using Eq. (/1.7). The resultant code words are listed
in Table 11-7.

(b)) Table 11-7 also lists the Hamming weights of all code words. Since the smallest of the Hamming
weights for the nonzero code words is 3, we have dyin = 3. Thus, by Eq. (11.5) the code can correct a
single error.

Next, n =7 and k = 4, and we have 2" % =23 =8

(1)) (7)==

Thus, the equality holds for the Hamming bound of Eq. (/1.16), and the code is a Hamming code.
(¢) With code vector ¢ = [010 1 10 0], the matrix multiplication defined by Eq. ({/1.13) indicates that the
second, fourth, and fifth rows of matrix H” yield

[0 1 1]e[t 1 1]@[1 0 o]=[0 0 0]

Similar calculations for the remaining 14 nonzero code vectors indicate that the smallest number of
rows in H” that sums to 0 is 3, which is equal to dp;, (Theorem 11.4).

CYCLIC CODES
11.25. Show that the code C={0000,0101,1010,111 1}is a linear cyclic code.

0101 ® 1010 = 1111 0101 ® 1111 =1010 1010 1111 = 0101
and C contains 0 0 0 0. Thus, C is linear. Next,
a(0000) = 0000, ¢(0101) = 1010, o¢(1010) =0101, o(1111)=1111

Since a(c) is also in C for each ¢ in C,C is cyclic. Thus, C is a linear cyclic code.



308

11.26.

11.27.

11.28.

11.29.

ERROR CONTROL CODING [CHAP. 11

Show that the code C={000,100,01 1, 11 1} is not cyclic.
The cyclic shift of ¢ = 100 is ¢(100) = 010 which is not in C. Thus, C is not cyclic.

Verify Theorem 11.5.

Consider k polynomial’s g(x),xg(x),...,x* 'g(x), which all have degree n—1 or less. Let c(x) be any
linear combination of these polynomials,

e(x) = dog(x) + dyxg(x) + - - - + dp ¥ g(x) = d(x)g(x)

where d(x) =dy+dix+ - -+ +dpy X

Then degree of [c(x)]<n — 1. There are 2* data polynomials and the code words corresponding to 2¢ code
polynomials form a linear (#, k) code C. To prove that C is cyclic, let

) =cotex+ - epyx]
be a code polynomial in C. Consider
xe(x) = cox + clx2 + X
=+ aox+ - F X )+ o+

= V@) + (1 + x5

where ¢V (x) is a cyclic shift of ¢(x). Since xe(x) and (1 + x") are both divisible by g(x), cD(x) must be
divisible by g(x). Thus, ¢"’(x) can be expressed as a linear combination of g(x),xg(x), ... xX7lg(x) and
consequently ¢’(x) is also a code polynomial in C. Hence it follows that the code C generated by
8(x),xg(x), ... X lg(x) is an (n, k) cyclic code.

Note that the set {g(x),xg(x),...,x* 'g(x)} forms a basis for C.

Consider the cyclic code C of Prob. 11.25. Find the generator polynomial g(x) for C and show
that every code polynomial is a multiple of g(x).

C={0000,0101,1010, 1111}
The polynomials corresponding to each code word are
0,x+x, 1+ 1 +x+x2+x%

Thus, 1 4+ x? < 1010 is the generator polynomial g(x) for C, since C contains only one polynomial of degree
2 and none of degree 1. Now we have

0=0(1+x2) x4+ % =x(1+x%) l+x2:l(1+x2) I+x+22+X =0 +x01+5)

which show that every code polynomial is a multiple of g(x).

Show that the nonzero code polynomial of minimum degree in a cyclic code C is unique.
Let axy=ay+ax+ - -+ aq_lxq_1 + agx?
be a nonzero code polynomial of minimum degree in C. Suppose there exists another code
polynomial of degree g, say, b(x) = by + byx + ... + 17,1,1)5’_1 + b,x?. Since C is linear
a(x) +b(x) = (ag + bo) + (@ +b)x + -+ - + (A +by)x"
is also a code polynomial that has degree less than g. If a(x) + b(x) # 0, then a(x) + b(x) is a

nonzero code polynomial with degree less than minimum q. This is a contradiction to the
assumption. Therefore, a(x) + b(x) = 0; that is, a(x) = b(x). Hence, a(x) is unique.
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11.30. Find a generator polynomial g(x) for a (7, 4) cyclic code.

From definition, g(x) must be a factor of 1 + x" =1 + x” and deg [g(x)] =n — k=7 — 4 = 3. The
polynomial 1 + x” has the following factors:

142" =1+ 00 +x+x)1 +x° +x%) (11.48)

Thus, there are two possible generator polynomials for a (7, 4) cyclic code, namely g;1(x) = 1 + x + x* and
gx) =1+ +x.

11.31. Consider a (7, 4) cyclic code with g(x) = 1 + x + x°.
(a) Let data word d = (1 0 1 0). Find the corresponding code word.

() Let the code word ¢ = (1 100 10 1). Find the corresponding data word.
(@ d(x) =1+ x* and by Eq. (11.26)
) =dgx) =1+ +x+x)=1+x+x +x

Thus, the corresponding code wordise = (111001 0).
(® cox) =1+ x4 x*+ x° Then the corresponding data polynomial is

6 4
GBS e, o e S S (R U
8(x) X +x+1

Thus, the corresponding data word isd = (1 00 1).

11.32. Verify Theorem 11.6.

Suppose error polynomials, e;(x) and ex(x) each have weight less than %dm,-n and the same syndrome
polynomial s(x). Then by Eq. (/1.30), we have

e1(x) = a1(x)g(x) + s(x)
ey(x) = ap(0)g(x) + s(x)
and e1(x) + ex(x) = [a1(x) + ax(x)]g(x) (1149)

Now the weight of [e;(x) + ex(x)] < dmin and the right-hand side of Eq. (11.49) is a code polynomial
¢(x) and weight of ¢(x) > diin. Thus, the right-hand side of Eq. (11.49) is 0, and consequently, e,(x) = ex(x). -

11.33. Construct the syndrome evaluator table for the (7, 4) cyclic code of Prob. 11.31.
By Eq. (11.30) the syndrome polynomial s(x) is
s(x) =e(x) mod g(x)

where e(x) is the most likely error polynomial. Then the syndrome evaluator table is given by Table 11-8.

11.34. In the (7, 4) cyclic code of Prob. 11.31, sequence (1 1 1 0 0 1 1) is received. Find the data word
sent.

1110011 = rx)=l+x+x>+x +x°
By Eq. (/1.29) the syndrome polynomial s(x) is
s(x) = r(x) mod g(x) = &®+x° +x*+x+1) mod FHx+D=x*+1=1 + X
Assuming only one error occurred, then from syndrome evaluation Table 11-8 (Prob. 11.33) we have

s(x)=1+x2 — e()c):x6

Thus, . () =rx)Fex)=1+x+x>+x°
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Table 11-8 Syndrome Evaluator Table

e(x) s(x)

1 Tmod (1 +x+x)=1

x xmod (1 + x4+ x°) = x

X2 x*mod (1 + x + x°) = &2

X Xmod(1+x+x)=1+x
x* x*mod (1 + x + x%) = x + x*
x5 xsmod(l—’rx+x3)=l-§-x+x2
x° )erod(1+x+x3):1+)c2
I4+x I+xmod(l+x+x)=1+x
1+ x2 I+ xmod (I +x+x)=1+x

' ox) X+xP+x+1
d dx)y==2 "~ 777 " _
an ) g(x) X +x+1

Thus, the data word is (1 0 1 0).

X+1=14+x — 1010

11.35. Let g(x) be the generator polynomial of a cyclic code C. Find a scheme for encoding the data
sequence (do,dy, ..., dr—1) into an (n, k) systematic code C.

Let ¢ be a code word of length n with the following structure.
c=(bo,by,...,byy1,do,dy,...,dx1)
where b; (i = 0,1,...,n — k — 1) are (n — k) parity bits. Let
dx)=dy+d x+...+ d ¥
b(x)=by+by x+ ...+ by X
Then the code polynomial ¢(x) can be expressed as
e(x) = b(x) + X" *d(x)
Since g(x) is a factor of ¢(x), we have

e(x) = a(x)g(x) = b(x) + x"“d(x)

" d(x) b(x)
= a(x (11.50
) ) )
Equation (/7.50) shows that b(x) is the remainder of x"‘kd(x)/g(x). Thus, we can state the encoding
procedure for a systematic cyclic code as follows:

or

1. Multiply d(x) by x"~*.
2. Divide x"“d(x) by g(x) and obtain remainder b(x).
3. Add b(x) + x""*d(x) to form the code polynomial c(x).

11.36. Consider a (7, 4) cyclic code with generator polynomial g(x) = 1 4+ x + x°. Let data word d = (1
0 1 0). Find the corresponding systematic code word.

n=Tk=4n—k=3 anddx)=1+x>
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Now, by the procedure stated in Prob. (11.35), we have

F Ay = L+ =20
XFd(x) _ X+ —24 X2
2(x) ¥ Ex+1 X +x+1

and
Thus, b(x) = x° and
ox) = b(x) + X" Fdx) = X + X +X°
Hence, the corresponding code wordise= (001101 0).

11.37. Consider the cyclic code C of Prob. 11.25. Find a generator matrix G for C.

C=1{0000,0101,1010,1111}
From Prob. (11.28), the generator polynomial for Cis g(x) = 1 + x%. Hence, n = 4 and k = 2, and
g =1+x o~ 1010
xgx)=x+x < 0101

_[1ro 0
G_[Ol 1]

Note that C is a (4, 2) systematic cyclic code.

By Eq. (11.32), we have
1
0

11.38. Let Cbe a (7, 4) cyclic code with g(x) = 1 + x + x°. Find a generator matrix G for C and find the
code word ford = (1 0 1 0).

Since n =7, k = 4, we have

gy =1+x+x < 1101000
xgx)=x+x*+x* « 0110100
gy =x*+x*+x 0011010
Pg)=x+x'+x* = 0001101
Then by Eq. (11.32), we have
1101000
SIEREREE
0001101
Ford=[1010]
1101000
c=dG:[1010]8(1);?(1)(1)8=[1110010]
0001 101

Thus, we obtained the code word (1 1 1 0 0 1 0), which is the same result obtained in Prob. 11.31.

11.39. Consider an (n, k) cyclic code C with generating polynomial g(x). Find a procedure for
construction of (n — k) X n parity-check matrix H.

‘ Let A(x) be the parity-check polynomial of C. Then by Eq. (11.27a)
g(x)h(x) =0 mod 1+x"
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which indicates that g(x) and /4(x) are orthogonal (mod 1+x"). Furthermore, x'g(x) and x’i(x) are also -
orthogonal for all i and j. However, the vectors corresponding to g(x) and /(x) are orthogonal only if the
ordered elements of one of these vectors are reversed (see Prob. 11.64). The same statement applies to the
vectors corresponding to x'g(x) and »/A(x). Thus, we can construct (n — k) X n parity-check matrix H in
which rows are the code words corresponding to A(x) and its first # — k — 1 cyclic shifts in reversed order.
Now, if

oy =hy+hx+ - -+ b X" P b XN o hghy e by By (1.52)

then its reversed order is given by

TRy =y A xR B o b - - - g (11.53)

Find the parity-check polynomial A(x) and the parity-check matrix H for the (7, 4) cyclic code C
with g(x) = 1 4+ x + x°.

By Egs. (11.27b) and (11.48), the parity-check polynomial /(x) is
h(x) = (1 +x)(1 +x2+x3) =1l+x+x+x
Now, by Eq. (11.53), we have
L =x"+x"+ X +x° 0010111

Thus, according to the procedure stated in Prob. 11.39, the parity-check matrix H is given by

00101 11
H=[0 101110 (11.54)
11

1 0 1 00
Using Egs. (11.51) and (11.54), it is easily verified that GH” = O, where O is 4 X 3 zero matrix.

Consider a (7, 4) cyclic code C with g(x) =1 + x 4 x°. Using the result of Prob. 11.38
[Eq. (11.51)], construct a (7, 4) systematic cyclic code generator matrix.

From Eq. (/1.51), we have

1101000
G= 01 10100
10011010
0001101
Applying elementary row operations on the preceding matrix G, we can obtain the following equivalent

matrices Gy and G»:

1000110 1101000
0100011 o1 10100
“=loo1 o011 1] @2 1110001 0
0001101 1010001

Generating matrix G is in the form of Eq. (Z7.8) and it will generate a systematic (7, 4) cyclic code C where
data bits will appear in the first 4 bits of code words, whereas G, will generate a systematic (7, 4) cyclic code
C where data bits will appear in the last 4 bits of code words.

Using the result of Prob. 11.41, redo Prob. 11.36.

d=(1 0 1 0)
Using G, of Prob. 11.41, we have
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1101000
c=dG~:[1010]?}}gé?g=[0011010]
1010001

Thus, ¢ = (0 0 1 1 0 1 0), which is the same result obtained in Prob. 11.36.

CONVOLUTIONAL CODES

11.43. Consider the convolutional encoder shown in Fig. 11-11.

— < e

Fig. 11-11
(@) Find the impulse response of the encoder.
(b) Using the impulse response, determine the output code word for input data d = (1 0 1).
@ input Xy X; v w»
1 1 0 1t 1
0 o 1 0 1

Thus, we have impulse response 1 1 0 1.

(b) input output
1 11 01
0 00 00
1 11 01

modulo 2 sum: 11 01 11 01
Thus, the output code wordis (1101 1101).

11.44 (a) Sketch the state diagram, the tree diagram, and the trellis diagram for the convolutional
encoder of Fig. 11-11.

(b) Find the free distance of this convolutional code.

00
00 00 a
a0 1
00 a
/ o1
! 1 b
“t ol 0 10 a=0
' _+— 00
Y 1 01 a
it b=1 o
b=1 1 b
ol
_/ 10 10 5
10
(a) b ()

Fig. 11-12



314

1145

11.46.

11.47.

11.48.

ERROR CONTROL CODING [CHAP. 11

(a) There are two states a = 0 and b = 1. The state diagram, the tree diagram, and the trellis diagram are
sketched in Fig. 11-12 (a), (b), and (c), respectively.

(b) From the trellis diagram [Fig. 11-12 (¢)], we observe that

path path metric
aba 3
abba 4
abbba 5

Thus, the free distance of this code is 3.

() Find the generator matrix G for the convolutional encoder of Fig. 11-11.
(b) Using the generator matrix G of (a), find the output code word for the input datad. = (10 1).

(@) Using the impulse response of the encoder (1 1 0 1) (Prob. 11.43), the generator matrix G for the
convolutional encoder of Fig. 11-11 can take the form of staggered impulse response as follows:

1101
1101
G= 1101

where elements not shown are 0s. The structure of G consists of a large number of rows, with each
row side-slipped out right by 2 (number of output terminals) elements, but otherwise identical to the
one above it. The number of rows in G may extend indefinitely depending on the length of input
sequence.

®) 11010000
e=dG=1101l0 01101 0 0[=(11011101]
00001101

Thus, the output code word is ¢ = (1 101 11 0 1), which is the same result obtained in Prob. 11.43.

Consider the convolutional encoder of Fig. 11-6. Using the state diagram of Fig. 11-7, find
the output code word ¢ for the message sequence d = ( 1 0 1) followed by 2 zeros to flush the
register.

From Fig. 11-7 with input sequence 1 0 1 0 0, and remembering a solid line for input 0 and a dashed line
for 1, we obtain the path a b ¢ b ¢ a with the output sequence ¢ = (110100011 1).

Consider the convolutional encoder of Fig. 11-6. Assuming that a 5-bit message sequence
(followed by zeros) is transmitted. Using the state diagram, find the message sequence when the
received sequencer = (110100100110110000...).

Using the state diagram of Fig. 11-7, starting state a and decoding the received sequence 2 bits at a time,
11,01,00,10,01,10,11,00,00..., we obtain a patha b ¢ b d d c a a. Noting 0 is represented by a solid
line and 1 by a dashed line, we obtain the decoded sequence as 1011100 .... Since the message sequence is
a 5-bit sequence, we decide the message sequence as (1011 1),

Consider the convolutional encoder shown in Fig. 11-13.
(@) Find the impulse response of the encoder.

(b) Find the output code word if the input sequence isall I's (1 11111...).
(¢) Discuss the result of (b).
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taput
Fig. 11-13
(@) -
input Xo Xi X, 21 V2
1 1 0 0 1 1
0 0 1 0 0
0 0 0 1 0 1
Thus, the impulse response is (11100 1),
) -
nput output
1 11 10 01
1 11 10 01
1 11 10 01
1 11 10 01
modulo 2 sum 11 01 00 00 00 00

Thus, the output code wordise= (110100000 0... all zeros).

315

(¢) The output code word has weight 3, and it is closer to the all-zero sequence that is the output code
word associated with the all-zero input data word. Furthermore, if the following channel error

sequence occurs

e=1101000000...=c¢

then the received sequence is all zeros, and any decoder would decide in favor of the all-zero
information sequence. Thus, error event of finite weight and duration produces an infinite number of

decoding errors.

Note that the preceding infinite number of decoding errors is called a catastrophic error, and such an

encoder is called catastrophic encoder.

11.49. Consider the catastrophic encoder of Fig. 11-13 (Prob. 11.48).

(@) Find the polynomial representation of the encoder and discuss the significance.
(b) Sketch the state diagram of the encoder and discuss its significance.

(@) From Fig. 11-13 the generator polynomial g;(x) for the upper connection and gx(x) for the lower

connection are given by

g =1+x g®=1+x
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Note that g,(x) and g,(x) have in common the polynomial 1 + x, since I 4+ x?> = (1 + x)(1 + x). This s
the condition for catastrophic error propagation. The condition for catastrophic error propagation is
that the generator polynomials have a common factor of at least degree one.

(b) The state diagram for the encoder of Fig. 11-13 is sketched in Fig, 11-14.

Fig. 11-14

Note that at state d a nonzero input causes the encoder to break back to itself with zero output. Thus,
catastrophic error can occur. It is seen that all 1s input sequence will travel the pathabddd...,
producing output sequence of (1 101000000...).

11.50. Consider that the convolutional encoder of Fig. 11-6 is used over a binary symmetric channel
(BSC). Assume that the initial encoder state is the 0 0 state. At the output of the BSC, the received
sequence is r = (1 100000 1 11 rest all 0). Find the maximum likelihood path through the
trellis diagram and determine the first 5 decoded data bits.

c=01e

d=11e

Fig. 11-15 Decoder trellis diagram

Figure 11-15 shows the trellis diagram with branch metric, which is the Hamming distance between the
branch output word and received sequence. According to Viterbi decoding, we proceed as follows:

First, cumulative path metric of a given path at time ¢ is computed. If any two paths in the trellis
merge to a single state, one of two having greater metric will be eliminated. Should metrics of the two
entering paths be of equal value, one path is chosen by flipping a coin. This process is repeated at time
t; + 1. Figure 11-16 shows this process, and the surviving path into each state is shown in Fig. 11-16 (d),
(), and (k). Finally, at time t5 we decide the most likely path abcbea (with metric 1), as shown in Fig.
11-16 (#). From Fig. 11-9, the corresponding code word is ¢ = (11010001 1 1) and the first 5 data
bits are 1 0 1 0 0.
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€=01e

c=01e

4
a=00«

b=10¢

¢ =0te

Fig. 11-16 Selection of survivor paths



318

11.51.

11.52.

11.53.

11.54.

11.55.

11.56.

11.57.
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Supplementary Problems
Consider a (6, 3) linear block code with the parity-check matrix H given by

1100
H= 1010

1 0 01
(a) Find the generator matrix G.
(b) Find the code word for the data bit 101.

Ans.  (a) 10 0 1
G=10 0011

—_ -
—_—

—
(=}
[

001 1 11
() 101010

For the (7,4) Hamming code of Prob. 11.24, decode the received word 0111100,

Ans. 0101

Consider an (», k) linear block code with generator matrix G and parity-check matrix H. The (n, n — k) code
generated by H is called the dual code of the (n, k) code. Show that matrix G is the parity-check matrix for the
dual code.

Hint: Take the transpose of Eq. (/1.12).

Show that all code vectors of an (#, k) linear block code are orthogonal to the code vectors of its dual code.

(The vector x is orthogonal to ¢ if xe” = 0, where ¢” is the transpose of ¢.)

Hint:  Use Eq. (11.12).

Find the dual code of the (7,4) Hamming code of Prob. 11.24 and find dy;, of this dual code.

Ans.
0000000 0111001 1101010 1010011

1011100 1100101 0110110 0001111
Amin = 4

A code consists of code words 1101000, 0111001, 0011010, 1001011, 1011100, and 0001101. If 1101011 is
received, what is the decoded code word?

Ans. 1001011

Show that for all (n, k) linear block codes
dpin<n—k+1

Hint:  Apply Theorem 11.4 to show that the rank of matrix H is dy, — 1.



CHAP. 11] ERROR CONTROL CODING 319

11.58.

11.59.

11.60.

11.61.

11.62.

11.63.

11.64.

11.65.

11.66.

11.67.

Show that the cyclic shift operator ¢ defined in Eq. (/1.17a) is a linear operator.

Hint: Show that o(a®b) = o(a)Po(b), and o(xa) = ao(a) @ € K.

Consider a cyclic code C with n = 3. (a) Find the (3, 1) cyclic code C;. (b) Find the (3, 2) cyclic code C».

Ans. (@ C;=1{000,111}, () C,={000,011,110,101}

Let c(x) = co+ e1x + ... + cq_lx‘f_l + x? be the nonzero code polynomial of minimum degree in an (#, k)
cyclic code C. Show that the constant term ¢, must be equal to 1.

Hint:  Assume ¢; = 0, then show the contradiction of the assumption of minimum degree by cyclically
shifting ¢(x).

Show that 1 + x*" = (1 + x>

Hint: Expand the right-hand side and use the fact that x" @ x" = 0.

Consider a (6, 2) systematic cyclic code. (a) Find a generator matrix G for this code. (b) Find the minimum
distance dpip.

_Jto1010 _
Ans. (a) G_[O 101 0 1] (b)  dmin=3
Consider a (7, 4) cyclic code with g(x) = 1 4+ x? + x°. (a) Encode the data word (1 0 0 1). (b) Find the data
word corresponding to the code word (111010 0).

Ans. (@ (1010011) (B)(1100)

Let n-1
ax)=ay+ax+...+ a1 X
b(x) = by +byx+ ...+ by X"

Show that if a(x)b(x) = 0 mod (1 + x™), then the vector corresponding to a(x) is orthogonal to the vector
corresponding to b(x) with the order of its components reversed, and to every cyclic shift of this vector.

Hint:  Find the coefficient of x’ in a(x)b(x) mod (1 + x7).
Consider the convolutional encoder of Fig. 11-6. Find the encoded sequence for the input sequence (100 1

1) by polynomial representation.

Ans. (11011111101011)

Consider the convolutional encoder of Fig. 11-6. Using the trellis diagram of Fig. 11-9, find the output
sequence for the input sequence 1 1 1 followed by two zeros to flush the register.

Ans. (1110011011)
Consider the convolutional encoder shown in Fig. 11-17.

(@) Find the impulse response of the encoder.
(b) Find the output sequence if the input sequence is (1 1 0 0 10 1).
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(¢) Sketch the state diagram and the trellis diagram.
(d) Find the free distance diy. of the code.

Fig. 11-17

Ans. (@ (011101111)
(b (011110010111011101100101111)
(¢) Hint: See Figs. 11-7 and 11-9.
@ dyee=1

11.68. Consider the convolutional encoder shown in Fig. 11-18. (a) Sketch the state diagram. (b) Determine if the
code is catastrophic or noncatastrophic.

(a) Hint: See Fig. 11-14.

?< Output

Fig. 11-18

Ans. (b) Catastrophic
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FOURIER TRANSFORM

Table A-2 Some Fourier Transform Pairs

x(1) X(w)
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BESSEL FUNCTIONS
In (B)
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BESSEL FUNCTIONS J, (8)

Table B-1 Selected Values of J,(f)

[APP. B

n\§ 0.1 0.2 0.5 1 2 5 8 10
0 0.997 0.990 0.938 0.765 0.224 —-0.178 0.172 —0.246
1 0.050 0.100 0.242 0.440 0.577 —0.328 0.235 0.043
2 0.001 0.005 0.031 0.115 0.353 0.047 —0.113 0.255
3 0.003 0.020 0.129 0.365 -0.291 0.058
4 0.002 0.034 0.391 —-0.105 —0.220
5 0.007 0.261 0.286 —0.234
6 0.001 0.131 0.338 —0.014
7 0.053 0.321 0.217
8 0.018 0.224 0.318
9 0.006 0.126 0.292
10 0.001 0.061 0.208
11 0.026 0.123
12 0.010 0.063
13 0.003 0.029
14 0.001 0.012
15 0.005
16 0.002
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THE COMPLEMENTARY ERROR FUNCTION Q(Z)

Table C-1 Q(z)

z 0 (2) z 0 () z 0@ z 0 (2
0.00 0.5000 1.00 0.1587 2.00 0.0228 3.00 0.00135
0.05 0.4801 1.05 0.1469 2.05 0.0202 3.05 0.00114
0.10 0.4602 1.10 0.1357 2.10 0.0179 3.10 0.00097
0.15 0.4404 1.15 0.1251 2.15 0.0158 3.15 0.00082
0.20 0.4207 1.20 0.1151 2.20 0.0139 3.20 0.00069
0.25 0.4013 1.25 0.1056 225 0.0122 3.25 0.00058
0.30 0.3821 1.30 0.0968 2.30 0.0107 3.30 0.00048
0.35 0.3632 1.35 0.0885 2.35 0.0094 3.35 0.00040
0.40 0.3446 1.40 0.0808 2.40 0.0082 3.40 0.00034
0.45 0.3264 1.45 0.0735 2.45 0.0071 3.45 0.00028
0.50 0.3085 1.50 0.0668 2.50 0.0062 3.50 0.00023
0.55 0.2912 1.55 0.0606 2.55 0.0054 3.55 0.00019
0.60 0.2743 1.60 0.0548 2.60 0.0047 3.60 0.00016
0.65 0.2578 1.65 0.0495 2.65 0.0040 3.65 0.00013
0.70 0.2420 1.70 0.0446 2.70 0.0035 3.70 0.00011
0.75 0.2266 1.75 0.0401 2.75 0.0030 3.75 0.00009
0.80 0.2169 1.80 0.0359 2.80 0.0026 3.80 0.00007
0.85 0.1977 1.85 0.0322 2.85 0.0022 3.85 0.00006
0.90 0.1841 1.90 0.0287 2.90 0.0019 3.90 0.00005
0.95 0.1711 1.95 0.0256 2.95 0.0016 3.95 0.00004
4.00 0.00003
425 1073
475 107¢
5.20 1077
5.60 1078

[APP. C



Adaptive delta modulation. 99
Additive noise, 202
Additive white gaussian noise {AWGN), 226,
252
channel, 253, 268, 270
Aliasing, 107
Alternate mark iaversion (AMI) signaling,
100
Amplitude distortion, 27
Amplitude modulation (AM), 4367
bandwidth, 47
double-sideband (DSB), 44. 53
double-sideband suppressed-carrier
(DSB-SC), 44
ordinary, 45
quadrature (QAM), 64
single-sideband (SSB), 47
Amplitude-shift-keying (ASK), 104, 231
Amplitude spectrum, 1-2
continuous, 2
discrete, 2
Analog-to-digital (A/D) converter, 90
Analytic signal, 66
Angle modulation, 68—89
bandwidth, 71, 80
demodulaion, 74
frequency modulation (FM), 69
narrowband, 70
generation, 72-74
narrowband, 72
wideband, 72
phase modulation (PM), 69
A posteriori probability, 232
A priori probability, 227
Aperture effect, 112
Armstrong-type FM generator, 83
ASCII code, 126
Autocorrelation, 167-169
time-average, 168
Autocovariance, 167, 169
Average information, 246
Averages:
ensemble, 166
statistical, 137, 156, 166
time, 168

Balanced modulator, 3¢
Band-limited signal, 16, 91
Band-limited white noise, 174
Bandpass filter (BPF), 28
Bandpass sampling theorem, 110
Bandpass signal, 110
Bandwidth:

equivalent, 40

equivalent noise, 197

filter, 16

of AM, 47

of angle-modulation, 71, 80

3-dB, 28, 33
Baseband signal, 44
Bayes rule, 130
Bayes’ theorem, 131
BCH (Bose-Chaudhuri-Hocqueghem) codes,

290

Bessel functions, 71, 78, 323
BIBO stable system, 40
Binary erasure channel, 262, 267

Binary field, 283
Binary symmetric channel (BSC), 249, 252
Binomial distribution, 138
Bipolar baseband signaling, 231
Bipolar NRZ signaling, 100
Bipolar RZ signaling. 100
Bit:
binary digit. 246
binary unit (information content), 246
Block codes, 283
Bonferroni’s inequality, 141
Branch metric, 316
Butterworth low-pass filter, 41

Carrier frequency, 43
Carrier signal, 43
Carrier-to-noise ratio (CNR), 209
Carson’s rule. 72, 82
Catastrophic convolutional codes, 315
Catastrophic error, 315
Cauchy random variable, 163
Cauchy-Schwarz inequality, 161
Causal filter, 28
Causal system, 25
Central-limit-theorem, 140
Channel:
AWGN, 253, 268, 270
binary erasure, 262, 267
binary symmetric (BSC), 239, 252
deterministic, 248, 251
discrete memoryless (DMC), 247, 260
lossless, 248, 251
noiseless, 249, 252
useless, 267
Channel capacity, 251
AWGN channel, 253, 270
binary erasure channel, 267
BSC, 252
deterministic channel, 251
lossless channel, 251
noiseless channel, 252
per second, 252
per symbol, 251
Channel coding, 282, 296
Channel coding theorem, 282
Channel matrix, 247
Channel transition probability, 247
Chebyshev inequality, 161
Code efficiency, 253
Code length, 253
Code polynomial, 287
Code rate, 283
Code redundancy, 254
Code vector, 285
Code word, 283
Codes:
BCH, 290
binary, 254
block, 283
convolutional, 290-296, 313317
cyclic, 286-290, 307
distinct, 254
dual, 254
error-correcting, 282
error-detecting, 282
fixed length, 254

327

Goley, 290

Hamming, 286

instantaneous, 255

line, 99

linear, 283

optimal, 255

perfect, 286

prefix-free, 254

Reed-Solomon, 290

single-parity-check, 297

uniquely decodable, 255

variable-length, 254
Coding:

channel, 282, 296

entropy, 255, 276

error control, 282—320

Huffman, 256

Shannon-Fano, 255

source, 253, 272
Coherent detection, 45
Companding, 95-96

A law, 95

p law, 95
Complementary error function, 139, 325

(See also Q function)

Complex exponential Fourier series, 1
Conditional entropy, 250
Conditional probability, 130
Connection diagram. 291
Continuous random variable, 132
Convolution, 4
Convolution theorem:

frequency, 4, 22

time, 4, 15
Convolutional codes. 290-296, 313317
Correlation, 138, 179. 230

auto-, 167-169

coefficient, 138

cross-, 7, 33, 169, 188
Correlator, 230, 236
Covariance, 138

auto-, 167, 169

cross-, 169

matrix, 173

stationary, 178
Cross-correlation, 7, 33, 169, 188
Cross spectral density, 170
Cumulative distribution function (cdf), 132

joint, 133
Cutoff frequency, 27
Cyclic codes, 286—290
Cyclic shift, 286

Data vector, 285
Decoding:
convolutional codes, 295
maximum-likelihood, 296
syndrome, 286
Viterbi algorithm, 296
Deempbhasis filter, 222
Delay line, 85
tapped, 36
Delta modulation (DM), 97-99
adaptive, 99
demodulation, 98
quantizing error, 99
slope overload, 98
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Demodulation:

AM, 46

angle-modulation, 74

DM, 98

DSB, 45

FM, 74

PM, 74

SSB, 49

VSB, 50

synchronous, 45
Descrambler, 67
Detection:

coherent, 45

envelope, 46, 207

error, 284

optimum, 226, 229

synchronous, 205
Detector:

envelop, 47

integrate-and-dump, 234

maximum likelihood, 227, 232

square-law, 66, 218

synchronous, 55, 60
Detector gain, 206
Deterministic channel, 248, 251
Deterministic signal, 128
Deviation ratio, 72
Differential entropy, 252, 268
Differentiator, 75, 190
Digital carrier modulation systems, 104
Digital pulse modulation, 90
Dirac delta function, 5
Discrete frequency spectra, 2
Discrete memoryless channel (DMC), 247, 260
Discrete memoryless source (DMS), 245
Discrete random variable, 132
Distance:

free, 295

Hamming, 283, 296, 298

minimum, 284
Distortion:

amplitude, 27

phase, 27
Distortionless transmission, 26
Distribution, 138, 139

(See also Gaussian distribution)

Distribution function, 132

cumulative (cdf), 132

joint, 133

marginal, 133
Dual code, 318
Duality, 4

Efficiency:
AM, 55
code, 253
Eigenfunction, 31
Eigenvalue, 31
Elementary event, 128
Energy content, 3
normalized, 3
Energy signal, 3
Ensemble, 165
average, 166
Entropy, 246
conditional, 250
differential, 252
joint, 250
Entropy coding, 255, 276
Huffman, 256
Shannon-Fano, 255
Envelope:
detection, 46, 207
detector, 47, 56
function, 175

INDEX

Equalization filter, 36
Equivalence property, 17
Equivalent noise bandwidth, 197
Equivocation, 250
Ergodic process:
in autocorrelation, 168
in the mean, 168
Error control coding, 282-320
Error detection, 284
Error pattern, 286
Error polynomial, 288
Error probability performance:
ASK, 231
bipolar baseband signaling, 231
FSK, 232
PSK, 232
unipolar baseband signaling, 231
Euler’s formula, 8
Even parity rule, 297
Events, 128
algebra of, 124
certain, 128
equally likely, 130
independent, 130
mutually exclusive and exhaustive, 131
null, 129
probabilities of, 129
Expectation, 137
Exponential modulation, 70
Exponential random variable, 149

Feedback shift register, 289
Filter, 26
bandwidth, 28
Butterworth low-pass, 41
causal, 28
comb, 36
deemphasis, 222
equalization, 36
gaussian, 40
ideal, 27
band-pass (BPF), 28
high-pass (HPF), 28
low-pass (LPF), 28
matched, 204
prediction, 204
preemphasis, 222
quadrature, 29, 38
raised-cosine, 103
transversal, 36
Fixed-length codes, 254
Flat-top sampling, 93
Fourier coefficients, 1
Fourier series, 1
complex exponential, 1
frequency spectra, 1
of impulse train, 18
Parseval’s theorem, 2
Fourier transform:
definition, 2
of impulse train, 19
inverse, 2
of periodic signal, 19
Perseval’s theorem, 3
of power signal, 5
properties of, 3—4, 321
pair, 2
table, 322
Free distance, 295
Frequency:
carrier, 43
conversion, 52
cutoff, 27
discrimination, 47
discriminator, 74-75

image, 52
instantaneous, 68, 75
deviation, 68
mixing, 52, 63
multiplier, 73
response, 2425
spectra, 1
translation, 52
Frequency convolution theorem, 4, 22
Frequency-division multiplexing (FDM), 52,
63
Frequency modulation (FM) (see angle
modulation)
Frequency-shift-keying (FSK), 104, 232

Gaussian distribution, 139-140

bivariate, 195

multivariate, 173, 194
Gaussian filter, 40
Gaussian noise, 228

additive white (AWGN), 226
Gaussian random process, 172
Gaussian random variable, 139
Generalized function, 5

equivalence property, 17
Generator matrix:

for convolutional code, 314

for cyclic code, 289

for linear block code, 285
Generator polynomial, 287
Goley code, 290

Hamming bound, 286
Hamming codes, 286
Hamming distance, 283, 299
measure, 298
Hamming spheres, 284
Hamming weight, 283, 299
Hartley (information content), 246
Heterodyning, 52
super, 63
Hilbert transform, 29, 38
pair, 41
Huffman encoding, 256
Hypothesis testing, 226

Ideal filter, 27
Ideal sampled signal, 91
Image frequency, 52
Impulse function, 5
Impulse response:
of a convolutional encoder, 292
of an LTI system, 25
Information:
average, 246
content, 245-246
measure of, 246, 257
mutual, 250, 262
rate, 247
source, 245
theory, 245
Instantaneous codes, 255
Instantaneous frequency, 68, 75
deviation, 68
Instantaneous phase deviation, 68
Instantaneous sampling, 91
Integrate-and-dump detector, 234-235
Intersymbol interference (ISI), 101, 123

Jacobian, 136
Joint (cumulative) distribution function (cdf),

Joint entropy, 250
Joint moment, 138



Joint probability:
density function. 134
mass function, 134
matrix, 248
Jointly normal random variables. 150

Kraft inequality, 255. 273
Kronecker’s delta, 7. 108

Lagrange multipliers, 269
Likelihood function, 296
Likelihood of event, 227
Likelihood ratio, 227
test, 227, 232
Line codes, 99
Line spectra, 2
Linear block codes, 283
code rate, 283
dual codes, 318
generator matrix, 318
parity-check matrix, 285
syndrome, 286
syndrome decoding, 286
systematic, 285
Linear codes:
definition, 283
error detection and correction
capabilities, 284
Hamming distance, 283
Hamming weight, 283
minimum distance, 284
Linear modulation, 43
Linear system, 24
Linear time-invariant (LTI) system, 25
filter characteristics, 26
frequency response, 25
impulse response, 25
transmission of signals, 26
transmission of random process, 171
unit step response, 31
Lossless channel, 248, 251
Lower sideband, 44

Manchester signaling, 100
Majority rule, 296
Marginal cumulative density functions (cdf),
134
Marginal distribution, 133
Marginal probability density function, 134
Marginal probability mass function, 134
Markov inequality, 161
Matched filter, 229
for colored noise, 239
Maximum a posteriori (MAP) criterion, 145,
232
Maximum likelihood:
decoding, 296
decoder, 296
detector, 227, 232
Maximum radian frequency deviation, 68
Mean, 137, 166
time-averaged, 168
Minimum distance, 284
Minimum error criterion, 228
Modulation, 48
amplitude (AM), 43-67
angle, 68—89
delta (DM), 97-99
digital pulse, 90
double-sideband (DSB), 44
exponential, 70
frequency (FM), 6869
linear, 43
nonlinear, 77

INDEX

phase (PM), 68—69

pulse, 43

pulse amplitude (PAM), 93

pulse code (PCM), 90

quadrature amplitude (QAM), 64

single-sideband (SSB), 47

sinusoidal, 71

tone, 71

vestigial sideband (VSB), 49
Modulation index:

for AM, 46

for angle modulation, 71
Modulation theorem, 14, 21
Moments, 137

generating function, 164

joint, 138

(k, nyth, 137

nth, 137
Multiplexing:

frequency-division (FDM), 52

quadrature, 64

time-division (TDM), 52, 100
Mutual information, 250, 262
Mutually exclusive and exhaustive events, 131

Narrowband angle modulation, 70
Narrowband filter, 20
Narrowband random process, 174
Natural sampling, 92
Noise:
additive, 202
additive white gaussian (AWGN), 226, 252
band-limited white, 174
colored, 239
in AM, 204
in analog communication system, 202225
in angle modulation, 208
in baseband systems, 203
quantizing, 94
thermal, 200
white, 173
Noise quieting, 211
Noiseless channel, 249, 252
Nonlinear modulation, 77
Nonreturn-to-zero (NRZ) signaling, 100
Nonuniform quantizing, 95
Normal distribution, 139
(See also Gaussian distribution)
Normal process (Gaussian process), 173
Normalized energy content, 3
Null event, 129
Nyquist interval, 91
Nyquist rate, 91
Nyquist’s pulse-shaping criterion, 123

On-off-keying (OOK), 104

Optimal codes, 255

Optimum detection, 226, 229-230, 233
Optimum threshold, 228

Orthogonal random variables, 138

Parity-check matrix, 285-286
Parity-check polynomial, 288
Parseval’s formula, 10
Parseval’s theorem:
for the Fourier series, 2
for the Fourier transform, 3, 17
Perfect code, 286
Periodic signal, 1
complex Fourier series, 1
Fourier coefficients, 1
power content, 2
Periodic random process, 176
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Phase distortion, 27
Phase function, 175
Phase modulation (PM), 68—69
Phase-shift-keying (PSK), 104, 232
Phase spectrum, 1
Poisson distribution, 139
Poisson random variable, 139
Polynomial decoding, 289
Polynomial division, 289
Polynomial representation, 292
Polynomial division, 289
quotient, 287
remainder, 287
Polynomials:
code, 287
error, 288
generator, 287
parity-check, 288
syndrome, 288
Power content, 2
of a periodic signal, 2
Power signal, 3
Power spectral density, 170
Power spectrum, 170, 179
Practical sampling, 92
Predetection filter, 204
Preemphasis filter, 222
Prefix-free codes, 254
Probability, 128
a posteriori, 232
a priori, 227
axiomatic definition, 129
channel transition, 247
conditional, 130
of events, 129
measure, 129
relative frequency definition, 129
total, 131
Probability density function (pdf), 133
conditional, 135
joint, 134
marginal, 134
Probability mass function (pmf), 132
joint, 134
marginal, 134
Probability of error, 227, 232
for ASK, 231
for bipolar baseband signaling, 231
for FSK, 232
with gaussian noise, 228—229
for PSK, 232
for unipolar baseband signaling, 231
Pulse amplitude modulation (PAM), 93
Pulse code modulation (PCM), 90
Pulse shaping, 102

Q function, 139
Quadrature amplitude modulation (QAM), 64
Quadrature filter, 29, 38
Quadrature multiplexing, 654
Quadrature representation of random process,
175
in-phase component, 175
quadrature component, 175
Quantizing, 93
error, 94, 99
noise, 94
nonuniform, 95
uniform, 93
Quotient, 287

Raised-cosine filter, 103
Random binary signal, 183
Random experiment, 128
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Random processes, 165
covariance-stationary, 178
definition of, 165
ergodic, 168
first-order distribution, 166
gaussian, 172
narrowband, 174
n-th order distribution, 166
orthogonal, 169
periodic, 176
quadrature representation of, 175
second-order distribution, 166
statistics of, 165, 176
strict-sense stationary (SSS), 167
uncorrelated, 170
wide-sense stationary (WSS), 167

Random signal, 165

Random telegraph signal, 200

Random variables, 131
binomial, 138
Cauchy, 163
continuous, 132-133
covariance, 138
discrete, 132
distribution function, 132
domain, 131
expected value, 137
exponential, 132
functions of, 135, 151
gaussian, 139
independent, 133
jointly normal, 150
(k, mth moment, 137
mean, 137
normal, 139
nth moment, 137
orthogonal, 138
Poisson, 139
range, 131
Rayleigh, 156
standard deviation, 137
standard normal, 151
two-dimensional, 133
uncorrelated, 138
uniform, 149
variance, 137

Random vector, 172

Rayleigh random variable, 156

Reed-Solomon codes, 290

Remainder, 287

Repetition codes, 296, 302

Return-to-zero (RZ) signaling, 100

Roll-off factor, 103

Sample-and-hold (S/H) circuit, 93
Sample function, 165
Sample point, 128
Sample space, 128
Sampling, 90-91
flat-top, 93
instantaneous, 91
natural, 92
period, 91
practical, 92
rate, 91
Sampling theorem, 91
bandpass, 110
in the frequency domain, 126
wniform, 91
Schwarz inequality, 237
Scrambler, 64
Shannon-Fano encoding, 255
Shannon-Hartley law, 253
Shift register, 289

INDEX

feedback, 289
m-stage, 289
Signals:

analytic, 66
band-limited, 16, 91
baseband, 44
bandpass, 110

carrier, 43

constant, 6
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message, 44
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Signum function, 13
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Single-sideband (SSB) modulation, 47
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Source coding theorem, 254
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Synchronous demodulation, 45
Synchronous detection, 205
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decoding, 286
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linear time-invariant (LTI), 24
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Test statistic, 226
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Threshold level, 216
Time average, 168
Time-averaged autocorrelation, 168
Time-averaged mean, 168
Time convolution theorem, 4, 15
Time-division multiplexing (TDM), 52, 100
Tone modulation, 71
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Transfer function, 25
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Tree diagram, 294
Trellis diagram, 294
Two-dimensional random variables, 133

Uniform quantizing, 93
Uniform random variable, 149
Uniform sampling theorem, 91
Unipolar baseband signaling, 231
Unipolar NRZ signaling, 100
Unipolar RZ signaling, 100
Uniquely decodable code, 255
Unit impulse function, 5

Unit impulse train, 18-20
Unit step function, 10, 20
Unit step response, 31

Upper sideband, 44

Useless channel, 267

Variable-length code, 254

Variance, 137
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Venn diagram, 140-142
Vestigial-sideband modulation (VSB), 49
Viterbi decoding algorithm, 296

Voltage controlled oscillator (VCO), 74

White noise, 173

band-limited, 174
Wideband angle-modulated signal, 72
Wide-sense stationary (WSS) random process,

Wiener-Khinchin relations, 170
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