Communication Handlers

Sockets and Signal Handling

Monday 6/11/2000

Aims

· Introduction to the generalised workings of the IBISS interface handlers.

· To explain the de-coupling mechanism of the queues in the handlers and the use of signals.

· A brief introduction to the IAI Transformer.

Internal operation of an handler

· All the handlers use the normal Berkley TCP/IP socket interface for communications.

· All the handlers use SIGIO to be notified when messages are coming in. This is set using the Unix ioctl interface. On the server type man 7 socket for details. The SIGIO mechanism was chosen for the IBISS handlers as the Node Services watchdog mechanism does not allow IBISS processes to wait indefinitely on operating system calls.

· Each handler can only send one incoming message at a time to the other IBISS applications. Note that while the handler is communicating with the application incoming messages are still read from the socket and stored for distribution.

General flow of control in an handler

All the handlers work by the same following principal:

(Note that the ESI Handler dealing with C-CRIS and CRIMES messages has an extra layer of complexity due to the need to store messages in the database)

· At startup the socket, 2 queues (a read queue and a write queue) and 4 threads (a socket handler thread, a reader thread, a writer thread and a dispatcher thread) are created. Some of the handlers also create one of more threads activated by a timer.

· The socket is set up so that an incoming message generates a SIGIO signal.

· The process sleeps until one of the two following situations occurs:

· An application calls one of the RPC interfaces in the handler to send a message from IBISS to another server. In this case the message to be sent is placed on the write queue and the thread that handles the writing of data is woken to deal with it. This thread then sends the data out over the socket.

· A SIGIO is generated and the socket handler thread is woken by the signal handler. Note that SIGIO can be generated for two reasons:

1. A connection is being made on the socket.

2. A message is waiting to be read from the socket.

· If there is currently no connection then the socket handler thread accepts the incoming connection and goes back to sleep. If there has already been a connection made then the socket handler thread wakes up the reader thread and goes back to sleep.

· On the reader thread being woken it reads and validates the message coming from the socket, placing it on the read queue. The dispatcher thread is woken which reads the message off the queue and sends it to the appropriate IBISS process via an RPC.

Extra Handler Funtionality

· On many of the handlers one or more threads are used that are activated at periodic intervals, independently of any incoming or outgoing messages.

· The main use for this to check for outgoing messages that have not been acknowledged. Messages that are not acknowledged within a certain time frame are automatically resent by this thread.

· Their other main use is in the sending of periodic status messages expected by some remote servers (specifically SAM and ESI).

· Most of the handlers perform duplicate message checking. In all handlers this is done in the same manner, by checking a sequence number in the incoming message.

· If the incoming sequence number is zero, it is taken as meaning that the remote system has been reset and sequence number checking should restart.

· If the incoming sequence number is non-zero, the number is checked against the last valid sequence number received. If the new sequence number is OK (i.e. not one that we have recently received) then the message is passed onto the IBISS application, otherwise the message is rejected.

Error Handling

· All the handlers have an eh_applic_clean_up() function within them. This function is used to trap fatal errors when calling other IBISS processes from within the dispatcher thread.

· Fatal errors can be caused by the calling process crashing (e.g. a segmentation fault) or returning a negative status. When this occurs the dispatcher thread is killed and eh_applic_clean_up() called. This recreates the dispatcher thread.

· The dispatcher thread, once recreated, will detect that a serious error occurred trying to send the message onto the other IBISS applications. The message that caused the problem is resent, rather than the dispatcher thread waiting for a new message to come in.

· If resending of the message causes another fatal error the whole process is repeated. This continues until the message has been tried a certain number of times (usually three), at which point the message is destroyed.

Handlers and the IAI Transformer

· Communications between the handlers and other servers (e.g. MFMS) is handled by IAIXF (the IAI Transformer). This process converts our TCP based communications to the necessary format to be transported over IAI. To aid in this conversion process all handlers and the IAIXF use the following message header format.

· All messages sent by IBISS have a 15-byte header generated by the handler. The IAIXF generates this header on incoming messages:

· SOH (1 byte)

The start of the IAIXF header is introduced by a byte whose value is 1.

· Message format (1 byte)

This is set to 2 to indicate that this is a data message. Setting it to 3 indicates this message is a batch file.

· Message ID (4 bytes)

The message ID.

· IAI Sequence number (4 bytes)

This is a sequence number used internally by IAI. All the IBISS handlers simply start this number at zero and increment it for every message sent.

· Security classification (4 bytes)

Sets the classification level for this message. Possible values are 4 (Unclassified), 5 (Restricted), 6 (Confidential) and 7 (Secret).

· Following the IAIXF header is the message itself.

Summary

· Remember that all the handlers use TCP/IP for communications. Only the IAIXF deals with IAI in the IBIS server.

· Remember that all the handlers handle one incoming message at a time. The queues provide a de-coupling mechanism that means that messages are still read while another is being processed. But if a process blocks the handler (for instance, calling incident handling to inform it that a call has come in from ACDI) for any length of time, no other messages will be propagated up to IBISS applications until the block has cleared.

· Remember that signals provide the mechanism for notifying the handlers of incoming messages. This is required due to the watchdog mechanism in Node Services, and is technically better than a more CPU intensive polling mechanism.

Flow Diagram

This diagram shows how messages flow between threads within the handler:

[image: image1.wmf]RPC for

outgoing

message

RPC for

incoming

message

Handler

SIGIO

Writes

outgoing

data

Message

placed in

Write

Queue

Reads

incoming

data

Message

placed in

Read

Queue

Wakes up

Socket

Socket

Handler

Thread

Reader

Thread

Dispatcher

Thread

IBIS

Process

Writer

Thread

RPC Function

Incoming

messages

Outgoing

messages

Key

[image: image2.wmf]Messages internal

to the handler

Message between

IBIS processes

through RPCs

Message passed

over the network

Page 9 of 9

Communication Handlers

_1035110529.doc

Handler

Socket

Socket Handler Thread

Reader Thread

Dispatcher

Thread

SIGIO

Wakes up

Message placed in Read Queue

IBIS Process

RPC for incoming message

Incoming messages

Writer Thread

Reads incoming data

RPC Function

Message placed in Write Queue

Writes outgoing data

RPC for outgoing message

Outgoing messages

_1035110565.doc

Messages internal to the handler

Message between IBIS processes through RPCs

Message passed over the network

