
�����������
	������
�������� ����������� ������
� !"��� #��
$��������%��	����'&������'(���(�(����)� *���+,#�-�� �.#��0/�12��3������"�4�5����
.��3�-����.6�#���+,�'�53'��
��7+98 :;�

Emulator Snap/File Formats
This file is a combination of the Z80 emulator documentation for filetypes and is copyright to to that, plus other information I have found. The
following emulator file formats are described:

< KGB | SNA | Z80 (and SLT) | TAP | TZX | HOB | TRD | 000 | MDR | OUT | DAT >

First of all, here's where each is used and what it's used for:

KGB:
SNA: Memory snapshot created by (old) Jpp emulator - just a plain RAM snap with some header to store register status.
Z80: Memory snapshot, compressed and with other hardware settings (eg 48/128, MF1, +D, AY chip). Created by Z80 emulator and
a very common format. Several versions. Use Zip for better compression.
TAP: Tape files. Stores the bytes as saved to tape with a short header. Can be concatenated easily. Emulated with patched calls to
the ROM tape routines at 1366/1218. Z80 emulator created it, now supported by several emulators.
TZX: New format that can store everything under the sun, under evolution and backwards compatible. Data stored in blocks with a
header per block as well as general tzx information. Recent emulator versions are starting to support it, converters/tools exist.
HOB: Hobeta format, from the Hobeta program on PCs used to transfer TR-DOS files about. (TR-DOS is a format used by the
TRD:
000: Used by
MDR:
OUT:
DAT:
VOC: (not described here) A common format for Spectrum tape audio samples (like WAVs) of programs. The Z80 emulator can load
from these instead of the LINE IN socket, for example.

KGB Snap format

Version 1.2-1.3
Contributed by Troels Norgaard

Notice, that in 680x0 the most significant byte goes first.

Offset Size Description

0 49284 RAM dump 16252..65535

49284 132 unused, make 0

49416 10 dc.w 10,10,4,1,1 (different settings)

49426 1 dc.b InterruptStatus (0=DI/1=EI)

49427 2 dc.b 0,3

49429 1 dc.b ColorMode (0=BW/1=Color)

49430 4 dc.l 0

49434 16 dc.w BC,BC',DE,DE',HL,HL',IX,IY

49450 2 dc.b I,R

49452 2 dc.w 0

49454 8 dc.b 0,A',0,A,0,F',0,F

49462 8 dc.w 0,PC,0,SP

49470 2 dc.w SoundMode (0=Simple/1=Pitch/2=RomOnly)

49472 2 dc.w HaltMode (0=NoHalt/1=Halt)

49474 2 dc.w IntMode (-1=IM0/0=IM1/1=IM2)

49476 10 unused, make 0

Total: 49486 bytes

Back to Top

Mirage Microdrive .SNA format

Used by Spectrum 1.7 and JPP. Notice that on Intel CPUs the least significant byte goes first, like on the Z80.

When the registers have been loaded, a RETN command is required to start the program. IFF2 is short for interrupt flip-flop 2, and for all
practical purposes is the interrupt-enabled flag. Set means enabled.

�����������
	������
�������� ����������� ������
� !"��� #��
$��������%��	����'&������'(���(�(����)� *���+,#�-�� �.#��0/�12��3������"�4�5����
.��3�-����.6�#���+,�'�53'��
��7+98 :<	

Offset Size Description

0 1 db I

1 8 dw HL',DE',BC',AF'

9 10 dw HL,DE,BC,IY,IX

19 1 db Interrupt (bit 2 contains IFF2, 1=EI/0=DI)

20 1 db R

21 4 dw AF,SP

25 1 db IntMode (0=IM0/1=IM1/2=IM2)

26 1 db BorderColor (0..7, not used by Spectrum 1.7)

27 49152 RAM dump 16384..65535

Total: 49179 bytes

Back to Top

Z80 Snap Format

Nettverksgruppa, 5/10-94, www@nvg.unit.no Specification of the .z80 snapshot format

This text was cribbed from the Z80 documentation and massaged slightly. See also the .sna specification.

The old .Z80 snapshot format (for version 1.45 and below) looks like this:

 Offset Length Description

 0 1 A register
 1 1 F register
 2 2 BC register pair (LSB, i.e. C, first)
 4 2 HL register pair
 6 2 Program counter
 8 2 Stack pointer
 10 1 Interrupt register
 11 1 Refresh register (Bit 7 is not significant!)
 12 1 Bit 0 : Bit 7 of the R-register
 Bit 1-3: Border colour
 Bit 4 : 1=Basic SamRom switched in
 Bit 5 : 1=Block of data is compressed
 Bit 6-7: No meaning
 13 2 DE register pair
 15 2 BC' register pair
 17 2 DE' register pair
 19 2 HL' register pair
 21 1 A' register
 22 1 F' register
 23 2 IY register (Again LSB first)
 25 2 IX register
 27 1 Interrupt flipflop, 0=DI, otherwise EI
 28 1 IFF2 (not particularly important...)
 29 1 Bit 0-1: Interrupt mode (0, 1 or 2)
 Bit 2 : 1=Issue 2 emulation
 Bit 3 : 1=Double interrupt frequency
 Bit 4-5: 1=High video synchronisation
 3=Low video synchronisation
 0,2=Normal
 Bit 6-7: 0=Cursor/Protek/AGF joystick
 1=Kempston joystick
 2=Sinclair 2 Left joystick (or user
 defined, for version 3 .Z80 files)
 3=Sinclair 2 Right joystick

Because of compatibility, if byte 12 is 255, it has to be regarded as being 1. After this header block of 30 bytes the 48 K bytes of Spectrum
memory follows in a compressed format (if bit 5 of byte 12 is one). The compression method is very simple: it replaces repetitions of at least
five equal bytes by a four-byte code ED ED xx yy, which stands for "byte yy repeated xx times". Only sequences of length at least 5 are
coded. The exception is sequences consisting of ED's; if they are encountered, even two ED's are encoded into ED ED 02 ED. Finally,
every byte directly following a single ED is not taken into a block, for example ED 6*00 is not encoded into ED ED ED 06 00 but into ED 00
ED ED 05 00. The block is terminated by an end marker, 00 ED ED 00.

This format is used up to version 1.45. From version 2.0, a different format is used, since from then on, 128K snapshots had to be supported.
The new format is used for all snapshots, either 48K or 128K. However, the emulator still understands the old format.

Also note that, although old .Z80 file formats are still understood, the emulator will never procude an old format .Z80 file, and also 48K
snapshots are written in the new format. But, then again, new .Z80 file formats can be translated back to the old one (provided that it is an
48K snapshot of course) by using ConvZ80.

Version 2.01 and 3.0 .Z80 files start with the same 30 byte header as old .Z80 files used. Bit 4 and 5 of the flag byte have no meaning
anymore, and the program counter (byte 6 and 7) are zero to signal a version 2.01 or version 3.0 snapshot file.

�����������
	������
�������� ����������� ������
� !"��� #��
$��������%��	����'&������'(���(�(����)� *���+,#�-�� �.#��0/�12��3������"�4�5����
.��3�-����.6�#���+,�'�53'��
��7+98 :>=

After the first 30 bytes, the additional header follows:

 Offset Length Description

 * 30 2 Length of additional header block (see below)
 * 32 2 Program counter
 * 34 1 Hardware mode (see below)
 * 35 1 If in SamRam mode, bitwise state of 74ls259.
 For example, bit 6=1 after an OUT 31,13 (=2*6+1).
 If in 128 mode, contains last OUT to 7ffd
 * 36 1 Contains 0FF if Interface I rom paged
 * 37 1 Bit 0: 1 if R register emulation on
 Bit 1: 1 if LDIR emulation on
 * 38 1 Last OUT to fffd (soundchip register number)
 * 39 16 Contents of the sound chip registers
 55 2 Low T state counter
 57 1 Hi T state counter
 58 1 Flag byte used by Spectator (QL spec. emulator)
 Ignored by Z80 when loading, zero when saving
 59 1 0FF if MGT Rom paged
 60 1 0FF if Multiface Rom paged. Should always be 0.
 61 1 0FF if 0-8191 is RAM
 62 1 0FF if 8192-16383 is RAM
 63 10 5x keyboard mappings for user defined joystick
 73 10 5x ascii word: keys corresponding to mappings above
 83 1 MGT type: 0=Disciple+Epson,1=Discipls+HP,16=Plus D
 84 1 Disciple inhibit button status: 0=out, 0ff=in
 85 1 Disciple inhibit flag: 0=rom pageable, 0ff=not

The value of the word at position 30 is 23 for version 2.01 files, and 54 for version 3.0 files. The starred fields are the ones that constitute the
version 2.01 header, and their interpretation has remained unchanged except for byte 34:

 Value: Meaning in v2.01 Meaning in v3.0

 0 48k 48k
 1 48k + If.1 48k + If.1
 2 SamRam 48k + M.G.T.
 3 128k SamRam
 4 128k + If.1 128k
 5 - 128k + If.1
 6 - 128k + M.G.T.

The hi T state counter counts up modulo 4. Just after the ULA generates its once-in-every-20-ms interrupt, it is 3, and is increased by one
every 5 emulated milliseconds. In these 1/200s intervals, the low T state counter counts down from 17472 to 0, which make a total of 69888
T states per frame.

The 5 ascii words (high byte always 0) at 73-82 are the keys corresponding to the joystick directions left, right, down (!), up (!), fire
respectively. Shift, Symbol Shift, Enter and Space are denoted by [,],/,\ respectively. The ascii values are used only to display the joystick
keys; the information in the 5 keyboard mapping words determine which key is actually pressed (and should correspond to the ascii values).
The low byte is in the range 0-7 and determines the keyboard row. The high byte is a mask byte and determines the column. Enter for
example is stored as 0 x0106 (row 6 and column 1) and 'g' as 0 x1001 (row 1 and column 4).

Byte 60 must be zero, because the contents of the Multiface RAM is not saved in the snapshot file. If the Multiface was paged when the
snapshot was saved, the emulated program will most probably crash when loaded back.

Bytes 61 and 62 are a function of the other flags, such as byte 34, 59, 60 and 83.

Hereafter a number of memory blocks follow, each containing the compressed data of a 16 K block. The compression is according to the old
scheme, except for the end-marker, which is now absent. The structure of a memory block is:

 Byte Length Description

 0 2 Length of data (without this 3-byte header)
 2 1 Page number of block
 3 [0] Compressed data

The pages are numbered, depending on the hardware mode, in the following way:

 Page In '48 mode In '128 mode In SamRam mode

 0 48K rom rom (basic) 48K rom
 1 Interface I, Disciple or Plus D rom, according to setting
 2 - rom (reset) samram rom (basic)
 3 - page 0 samram rom (monitor,..)
 4 8000-bfff page 1 Normal 8000-bfff
 5 c000-ffff page 2 Normal c000-ffff
 6 - page 3 Shadow 8000-bfff
 7 - page 4 Shadow c000-ffff
 8 4000-7fff page 5 4000-7fff
 9 - page 6 -
 10 - page 7 -
 11 Multiface rom Multiface rom -

�����������
	������
�������� ����������� ������
� !"��� #��
$��������%��	����'&������'(���(�(����)� *���+,#�-�� �.#��0/�12��3������"�4�5����
.��3�-����.6�#���+,�'�53'��
��7+98 :?&

In 48K mode, pages 4,5 and 8 are saved. In SamRam mode, pages 4 to 8 are saved. In '128 mode, all pages from 3 to 10 are saved. This
version saves the pages in numerical order. There is no end marker.

SLT extension to Z80 format

.SLT files (which stands for 'super level loader trap files') are like .Z80 files except that after the ordinary data another section follows,
containing things like level data (previously stored in .DAT files, and giving .SLT files their name) or loading screens. The ".Z80 "-file
preceding the SLT must conform the format of v2.01 or v3.0x files (long header).

Though it is agreed that .Z80 files will not contain SLT data, and files with SLT data will always have extension .SLT, Z80 does in fact not
distinguish between the extensions.

The SLT format was cooked up by Damien Burke, James McKay and yours truly. It starts as an ordinary >= v2.01 .Z80 file. Directly
following this comes a SLT identifier:

 Offset Length Description

 0 6 Separator (0,0,0,'S','L','T')

Then a table follows, each entry describing a piece of data. The format of a single table entry is:

 Offset Length Description

 0 2 Data type: 1=level data, 3=loading screen
 2 2 Id word: Level number (between 0 and 255 inclusive)
 for type 1, border colour (between 0 and 7) for
 type 3.
 4 4 Length of data block in bytes (Note: long word)

Data types other than type 1 and 3 are not supported by Z80 v3.04, and are ignored. The table ends with an all-zero end marker:

 Offset Length Description

 0 8 End marker (all zeroes)

Finally, the data blocks follow. The blocks are stored in the order in which they appear in the table, i.e. the offset of a particular data block is
the sum of the lengths of the blocks that precede it. The internal format of these blocks depend on the data type:

 Type: Format:

 0 (no data)
 1 Compressed data (ED ED xx yy scheme, see above) expanding
 to anything up to 48K
 3 Compressed data expanding to exactly 6912 bytes of data

See the end of section 5.9 in the Z80 emulator "techinfo.doc" file for an explanation of how to load these blocks using the ED FB opcode,
and error handling.

All words in the format have the least significant byte first.

Nettverksgruppa, 19/1-95, www@nvg.unit.no

Back to Top

TAP tape file format

The .TAP files contain blocks of tape-saved data. All blocks start with two bytes specifying how many bytes will follow (not counting the two
length bytes). Then raw tape data follows, including the flag and checksum bytes. The checksum is the bitwise XOR of all bytes including
the flag byte. For example, when you execute the line SAVE "ROM" CODE 0,2 this will result:

 |------ Spectrum-generated data -------| |---------|

 13 00 00 03 52 4f 4d 7x20 02 00 00 00 00 80 f1 04 00 ff f3 af a3

 ^^^^^...... first block is 19 bytes (17 bytes+flag+checksum)
 ^^... flag byte (A reg, 00 for headers, ff for data blocks)
 ^^ first byte of header, indicating a code block

 file name ..^^^^^^^^^^^^^
 header info^^^^^^^^^^^^^^^^^
 checksum of header^^
 length of second block^^^^^
 flag byte ..^^
 first two bytes of rom^^^^^
 checksum (checkbittoggle would be a better name!).............^^

The emulator will always start reading bytes at the beginning of a block. If less bytes are loaded than are available, the other bytes are
skipped, and the last byte loaded is used as checksum. If more bytes are asked for than exist in the block, the loading routine will terminate
with the usual tape-loading-error flags set, leaving the error handling to the calling Z80 program.

Note that it is possible to join .TAP files by simply stringing them together, for example COPY /B FILE1.TAP + FILE2.TAP ALL.TAP

�����������
	������
�������� ����������� ������
� !"��� #��
$��������%��	����'&������'(���(�(����)� *���+,#�-�� �.#��0/�12��3������"�4�5����
.��3�-����.6�#���+,�'�53'��
��7+98 :>(

For completeness, I'll include the structure of a tape header. A header always consists of 17 bytes:

Byte Length Description

0 1 Type (0,1,2 or 3)

1 10 Filename (padded with blanks)

11 2

Length of data block

13 2 Parameter 1

15 2 Parameter 2

The type is 0,1,2 or 3 for a Program, Number array, Character array or Code file. A screen$ file is regarded as a Code file with start address
16384 and length 6912 decimal. If the file is a Program file, parameter 1 holds the autostart line number (or a number >=32768 if no LINE
parameter was given) and parameter 2 holds the start of the variable area relative to the start of the program. If it's a Code file, parameter 1
holds the start of the code block when saved, and parameter 2 holds 32768. For data files finally, the byte at position 14 decimal holds the
variable name.

Back to Top

TZX Format

Tzx is one of the newer formats around and underwent a great deal of discussion in the comp.sys.sinclair newsgroup before it was finalised.
It is an extensible format (I think) that can cater for just about any information about a Spectrum program, the producer/author information,
hardware required for it, and various other settings.

Rather than include full details here and duplicate/get out of date, I will just point you to the TZX information at the World of Spectrum
archive (documents section).

Back to Top

MDR Microdrive format

The emulator uses a cartridge file format identical to the 'Microdrive File' format of Carlo Delhez' Spectrum emulator Spectator for the QL,
who devised the format. This format is now also supported by XZX of Des Harriot. The following information is adapted from Carlo's
documentation. It can also be found in the 'Spectrum Microdrive Book', by Ian Logan (co-writer of the excellent 'Complete Spectrum ROM
Disassembly').

A cartridge file contains 254 'sectors' of 543 bytes each, and a final byte flag which is non-zero is the cartridge is write protected, so the
total length is 137923 bytes. On the cartridge tape, after a GAP of some time the Interface I writes 10 zeros and 2 FF bytes (the preamble),
and then a fifteen byte header-block-with-checksum. After another GAP, it writes a preamble again, with a 15- byte record-
descriptor-with-checksum (which has a structure very much like the header block), immediately followed by the data block of 512 bytes, and
a final checksum of those 512 bytes. The preamble is used by the Interface I hardware to synchronise, and is not explicitly used by the
software. The preamble is not saved to the microdrive file:

offset length name contents

 0 1 HDFLAG Value 1, to indicate header block
 1 1 HDNUMB sector number (values 254 down to 1)
 2 2 not used
 4 10 HDNAME microdrive cartridge name (blank padded)
 14 1 HDCHK header checksum (of first 14 bytes)

 15 1 RECFLG - bit 0: always 0 to indicate record block
 - bit 1: set for the EOF block
 - bit 2: reset for a PRINT file
 - bits 3-7: not used (value 0)
 16 1 RECNUM data block sequence number (value starts at 0)
 17 2 RECLEN data block length (<=512, LSB first)
 19 10 RECNAM filename (blank padded)
 29 1 DESCHK record descriptor checksum (of previous 14 bytes)
 30 512 data block
542 1 DCHK data block checksum (of all 512 bytes of data
 block, even when not all bytes are used)

Repeated 254 times

(Actually, this information is 'transparent' to the emulator. All it does is store 2 times 254 blocks in the .MDR file as it is OUTed, alternatingly
of length 15 and 528 bytes. The emulator does check checksums, see below; the other fields are dealt with by the emulated Interface I
software.)

A used record block is either an EOF block (bit 1 of RECFLG is 1) or contains 512 bytes of data (RECLEN=512, i.e. bit 1 of MSB is 1). An
empty record block has a zero in bit 1 of RECFLG and also RECLEN=0. An unusable block (as determined by the FORMAT command) is an
EOF block with RECLEN=0.

The three checksums are calculated by adding all the bytes together modulo 255; this will never produce a checksum of 255. Possibly, this
is the value that is read by the Interface I if there's no or bad data on the tape.

�����������
	������
�������� ����������� ������
� !"��� #��
$��������%��	����'&������'(���(�(����)� *���+,#�-�� �.#��0/�12��3������"�4�5����
.��3�-����.6�#���+,�'�53'��
��7+98 :<�

In normal operation, all first-fifteen-byte blocks of each header or record block will have the right checksum . If the checksum is not right, the
block will be treated as a GAP. For instance, if you type OUT 239,0 on a normal Spectrum with interface I, the microdrive motor starts
running and the cartridge will be erased completely in 7 seconds. CAT 1 will respond with 'microdrive not ready'. Try it on the emulator...

Back to Top

OUT files

These files are produced when logging OUTs; see menu option O in the Extra Functions menu. For the specified I/O ports, all OUTs to these
ports are recorded in the .OUT file, together with the exact time at which the OUTs were executed.

An .OUT file consists of a string of 5-byte blocks. The first word is the timing word; it has a value between 0 and 17471 inclusive (or
between 0 and 17726 inclusive when a 128K Spectrum is emulated), and a unit value corresponds to 1 T state (=1/3494400 s). After this,
the OUT port that was written to follows, then the value OUTed itself:

 Offset Length Description

 0 2 Time (0-17471 or 0-17726)
 2 2 Port address
 4 1 Value

Every 1/200th of an emulated second, that is, every 69888/4=17472 T states (or 70908/4=17727 T states on 128K Spectrums), a
time-wraparound block is written to the .OUT file:

 Offset Length Description

 0 2 Flag word #FFFF indicating wraparound-block
 2 2 Length of preceding block (17472 or 17727 T)
 4 1 Not used

So even when the Spectrum does not OUT to the logged ports at all, 1000 bytes get written to the log file every second.

By default, an OUT to an even I/O address which does not change the state of the MIC and EAR outputs is not written to the .OUT file, to
save disk space when recording music. If you want all OUTs, specify -xg on the command line.

The .OUT files are also used to make a simple trace of a running Spectrum program. Specify -xy on the command line; as soon as you
activate OUT logging, a trace is dumped also. For each instruction encountered during emulation, the following block is written to the .OUT
file:

 Offset Length Description

 0 2 Flag word (#FFFE)
 2 2 Program counter
 5 1 A register

Furthermore, no time-wraparound blocks are written to the .OUT file when tracing. HALT instructions (118 decimal) are special in that they
do not generate a block in the log file; this is to make comparisons between different logs of the same program easier. Admittedly, this is a
very crude way of tracing a program, but it's better than nothing, and very useful very occasionally.

Back to Top

DAT game data files

These files are used to store level data; blocks of memory that are loaded when the opcode ED FB is executed. The block is loaded at the
address pointed to by the HL register. The level number is in the A register. If the emulator fails to load a level data block, it complements the
carry flag. Versions of the emulator prior to v3.04 did not do this.

When an ED FB opcode is encountered, the emulator first looks for the snapshot file last loaded, and checks whether it contains the level
requested (see the description of the .Z80 format). If this fails, it looks for a .DAT file of the level; the name of this file is derived from the
name of the last snapshot loaded by appending the (decimal) value of the A register to the name of the snapshot file, dropping characters
from the original snapshot name to make the total length 8 characters if necessary. .DAT files simply contain the plain level data (in contrast
to the level data in .Z80 files, which are compressed).

Emulators (though World of Spectrum has a better page)
Back to Speccy Techy
Speccy Intro

File last updated: 25 August 1998
Author: John Garner / john@breezer.demon.co.uk

