TECHNICAL INFO
Using The Interface I

 If you want to use the microdrive, you'll need cartridge files. The

 emulator can create an empty cartridge file for you. You have to format

 it before you can use it. Type

 FORMAT "m";1;"name"

 to format the cartridge currently in Microdrive 1 giving it the name

 'name'. Next, type CAT 1 to get a catalogue of the files on it (none of

 course) and the number of kilobytes free. You can save a file by typing

 for instance

 SAVE *"m";1;"screen"SCREEN$

 Instead of SCREEN$ you can use all other expressions that are permitted

 also when saving to tape, like LINE nnnn or CODE x,y etcetera. To load

 a file back from cartridge, you type (you guessed it)

 LOAD *"m";1;"screen"SCREEN$

 If the file doesn't exist or is of the wrong type you'll get the

 appropriate error message. To erase a file, type for instance

 ERASE "m";1;"screen"

 Note that no * is needed (or even permitted), and that only the name

 should be given. There's another way to create a file on a cartridge,

 and that is by using a command like OPEN #3;"m";1;"name", and printing

 to that stream. You can use MOVE to move data from stream to stream,

 but I'll not go into that --- it's not very much used anyway.

 Instead of to the microdrive, you can also 'save to the RS232 link'. For

 instance, type SAVE *"b"SCREEN$ (note: there's no name!) to save a

 screen. On the emulator you can send the output to the RS232 channel to

 a printer (then SAVE *"b" is useless), to a file (can be useful) or to

 the COM port (very useful if you connect a real Spectrum to the PC's COM

 port!). You can load the data back by typing LOAD *"b"SCREEN$ and

 making sure the RS232 channel is fed with the right input (from a COM

 port or a file). See also paragraph 2.6.

 If you want to use the RS232 channel for printing, open stream 3 for

 output to that channel by typing

 OPEN #3,"b"

 or

 OPEN #3,"t"

 The first will simply copy everything you send to stream 3 (using for

 instance LPRINT or LLIST) to the RS232 channel; the second converts CR's

 into CR/LF's, breaks off lines at 80 characters and translates keywords

 into character sequences. "t" is useful for LLISTings, but not for

 anything else.

 Useful extra commands: CLS #, to clear the screen and reset the

 attributes to their reset defaults, and CLEAR # to do a CLS # and close

 all currently open streams (discarding all data that may still be

 buffered!)

 The Interface I uses its own system variables. At the first error

 message you make (or RASP, or flashing question mark) and at the first

 Interface I statement you execute, it inserts them automatically. Some

 programs will not run when the Interface I has inserted its system

 variables. So if you load a game from tape, reset the Spectrum first

 and don't make an error typing LOAD "". With a bit of exercise you

 should be able to do this.

The Spectrum
 The Spectrum is at the hardware level a very simple machine. There's

 the 16K ROM which occupies the lowest part of the address space, and 48K

 of RAM which fills up the rest. An ULA which reads the lowest 6912

 bytes of RAM to display the screen, and contains the logic for just one

 I/O port completes the machine, from a software point of view at least.

 Every even I/O address will address the ULA, but to avoid problems with

 other I/O devices only port FE should be used. If this port is written

 to, bits have the following meaning:

 Bit 7 6 5 4 3 2 1 0

 +-------------------------------+

 | | | | E | M | Border |

 +-------------------------------+

 The lowest three bits specify the border colour; a zero in bit 3

 activates the MIC output, and a one in bit 4 activates the EAR output

 (which sounds the internal speaker). The real Spectrum also activates

 the MIC when the ear is written to; the emulator doesn't. This is no

 problem; MIC is only used for saving, and when saving the Spectrum never

 sounds the internal speaker. The upper three bits are unused.

 If port FE is read from, the highest eight address lines are important

 too. A zero on one of these lines selects a particular half-row of five

 keys:

 IN: Reads keys (bit 0 to bit 4 inclusive)

 #FEFE SHIFT, Z, X, C, V #EFFE 0, 9, 8, 7, 6

 #FDFE A, S, D, F, G #DFFE P, O, I, U, Y

 #FBFE Q, W, E, R, T #BFFE ENTER, L, K, J, H

 #F7FE 1, 2, 3, 4, 5 #7FFE SPACE, SYM SHFT, M, N,

 A zero in one of the five lowest bits means that the corresponding key

 is being pressed. If more than one address line is made low, the result

 is the logical AND of all single inputs, so a zero in a bit means that

 at least one of the appropriate keys is pressed. For example, only if

 each of the five lowest bits of the result from reading from port 00FE

 (for instance by XOR A/IN A,(FE)) is one, no key is pressed.

 A final remark about the keyboard. It is connected in a matrix-like

 fashion, with 8 rows of 5 columns, as is obvious from the above remarks.

 Any two keys pressed simultaneously can be uniquely decoded by reading

 from the IN ports, however, if more than two keys are pressed decoding

 may not be uniquely possible. For instance, if you press Caps shift, B

 and V, the Spectrum will think also the Space key is pressed, and react

 by giving the 'Break into Program' report. This matrix behaviour is

 also emulated - without it, Zynaps for instance won't pause when you

 press 5,6,7,8 and 0 simultaneously.

 Bit 5 (value 64) of IN-port FE is the ear input bit. When the line is

 silent, its value is zero, except in the early Model 2 of the Spectrum,

 where it was one. When there is a signal, this bit toggles. The

 Spectrum loading software is not sensitive to the polarity of this bit

 (which it definitely should not be, not only because of this model

 difference, but also because you cannot be sure the tape recorder

 doesn't change the polarity of the signal recorded!) Some old programs

 rely on the fact that bit 5 is always one (for instance Spinads); for

 these programs the emulator can mimic a Model 2 Spectrum.

 Bits 6 and 7 are always one.

 The ULA with the lower 16K of RAM, and the processor with the upper 32K

 RAM and 16K ROM are working independently of each other. The data and

 address buses of the Z80 and the ULA are connected by small resistors;

 normally, these do effectively decouple the buses. However, if the Z80

 wants to read of write the lower 16K, the ULA halts the processor if it

 is busy reading, and after it's finished it lets the processor access

 lower memory through the resistors. A very fast, cheap and neat design

 indeed!

 If you run a program in the lower 16K of RAM, or read or write in that

 memory, the processor is halted sometimes. This part of memory is

 therefore somewhat slower than the upper 32K block. This is also the

 reason that you cannot write a sound- or save-routine in lower memory;

 the timing won't be exact, and the music will sound harsh. Also, INning

 from port FE will halt the processor, because the ULA has to supply the

 result. Therefore, INning from port FE is a tiny bit slower on average

 than INning from other ports; whilst normally an IN A,(nn) instruction

 would take 11 T states, it takes 12.15 T states on average if nn=FE. See

 below for more exact information.

 If the processor reads from a non-existing IN port, for instance FF, the

 ULA won't stop, but nothing will put anything on the data bus.

 Therefore, you'll read a mixture of FF's (idle bus), and screen and ATTR

 data bytes (the latter being very scarce, by the way). This will only

 happen when the ULA is reading the screen memory, about 60% of the

 1/50th second time slice in which a frame is generated. The other 40%

 the ULA is building the border or generating a vertical retrace. This

 behaviour is actually used in some program, for instance by Arkanoid,

 and the emulator also emulates this behaviour.

Spectrum 128K
 In comparison to the Spectrum 48K, and on the hardware side, the

 Spectrum 128 offers more RAM (128K, you guessed it), more ROM (32K

 instead of 16K), a soundchip, and a serial printer port. Nothing

 really spectacular.

 Another difference with the 48K Spectrum is in the timing of the video

 signals. You can see this if you save something: the bars in the

 border move differently. The really important difference of the 128K

 with respect to the video is that the 128K ULA is more relaxed in

 giving the Z80 access to (screen) memory. This allows programs to make

 hi-resolution colour effects not only in the border, but also on the

 screen itself. Many 128K programs use this effect. Note however that,

 although the 128K ULA is more relaxed towards memory access, it does

 still halt the Z80 occasionally. Partly for this reason it is

 impossible to have hi-res colour effect over the entire screen; there is

 only time to change approximately half of it. (This does not seem to

 be true; the Shock Megademo manages to move 1-pixel thick lines up on

 the screen one pixel per frame on the whole screen. Very well done

 indeed! This is the only program I know to feature hi-res colour effect

 over the entire width of the screen. It might be, however, that this

 program only changes the entire ATTR line every two scan line times.)

 The basic video timings, with the Z80 out of the way, are as follows.

 Each video line takes 228 T states, 4 T states more than on the 48K

 Spectrum. It starts with 128 T states of screen pixels (or border).

 Then there's border, horizontal retrace and border again, of 100 T

 states. A complete '50 Hz' frame consists of 311 video lines (of which

 a few are vertical retraces), that is, 1 less than for 48K models. A

 complete frame is 311 x 228 = 70908 T states long.

 I don't know whether the 128K model uses a different crystal. If not,

 one frame on the Spectrum 128K is 1.5% longer than a 48K frame.

 A quote from the +2 manual, page 279; Cliff Lawson writes: "For the

 contended RAM [pages 4-7] (which shares time between the video

 circuitry and the processor), during 128 out of every 228 CPU T states

 (1 TV line), and during 192 out of every 311 TV lines (1 frame) the CPU

 is allowed only 1 access to contended RAM in every 8 T states. The CPU

 is controlled by introducing wait states". My guess is this holds true

 for the 128K too.

 Directly after an interrupt is generated by the ULA (so slightly before

 the Z80 acts upon it), 63 video lines are written to the CRT. A first

 few may be verical retraces; this is difficult to find out without an

 oscilloscope, but luckily we don't need this information. Then 192

 screen lines are written, and then 56 border lines and (possibly)

 vertical retrace lines. The first screen byte is written to the screen

 14364 T states after the interrupt was generated.

 Then the other things. Memory is arranged in banks of 16K. The bank

 at 0000-3FFF contains either the original 48K ROM or the new 128K ROM.

 The latter is active at reset. The bank at 4000-7FFF always contains

 RAM page 5. The bank at 8000-BFFF is always page 2. The bank at

 C000-FFFF contains any page from 0-7, including page 2 and 5. If page

 2 or 5 is enabled in the high bank, every byte written in this bank is

 mirrored in the other bank at 4000 or at 8000, and vice versa. The

 screen information is read, by the ULA, from the first 6912 bytes of

 either page 5 or page 7.

 All this is controlled by writing to port 7FFD (or, in fact, by writing

 to any address with bit 15 and 1 zero; don't use this fact, though; it

 does not work on the +3, where there's another port 1FFD, and neither

 will this work in full generality on the emulator.)

 Port #7FFD:

 Bit 7 6 5 4 3 2 1 0

 +-------------------------------+

 WRITE| | | P | R | S | page no |

 +-------------------------------+

 Bits 0-2 determine which page is to appear in bank C000-FFFF. If S=0,

 the ULA reads the screen from page 5, otherwise it reads page 7. If

 R=0, the 128K Rom is selected in bank 0000-3FFF; otherwise the 48K Rom.

 If P=1, port #7FFD will be disabled and keep its value until the

 computer is reset. This bit is set if you select 48K Spectrum in the

 128K startup menu, so that no 48K program is able to (accidentally)

 swap itself into oblivion.

 The sound chip of the Spectrum 128 is described in the next section.

The AY-3-8912 sound chip
 The following section was put together using information collected from

 comp.sys.sinclair. Thanks, and large parts of the information below,

 are due to Alastair Booker, who put a detailed description on the net

 in April '95, and to Ian Collier who recently carried out some thorough

 investigations on the AY chip.

 This chip is used in for instance the Sinclair ZX Spectrum 128/+2/+3,

 Amstrad CPC 464/664/6128, Mattel Intellivision, Atari ST, Sega Master

 System and the MSX.

 The AY has 16 internal registers. A register is selected by OUTing the

 register number in bits 0-3 to port #FFFD (only A15, A14 and A1 are

 decoded). Then write to a register by OUTing to #BFFD, read it by

 INning from #FFFD. When reading from a register, unused bits are

 always 0. Reading always yields the value last written to the

 register, except for R14 and R15 when bit 6 or 7 of R7 are reset (R14 /

 R15 used for input). On the AY-3-8912, when R7 bit 7 is reset, R15

 always reads 255. Writing to R14 or R15 when they are selected for

 input does load the output register.

 Here are the names of the AY registers:

 Register Name Bits used:

 R0 Fine tone control (FTC) channel A 0-7

 R1 Coarse tone control (CTC) channel A 0-3

 R2 FTC channel B 0-7

 R3 CTC channel B 0-3

 R4 FTC channel C 0-7

 R5 CTC channel C 0-3

 R6 Noise generator pitch control 0-4

 R7 Mixer and I/O control 0-7

 R8 Amplitude channel A 0-4

 R9 Amplitude channel B 0-4

 R10 Amplitude channel C 0-4

 R11 Envelope fine period control 0-7

 R12 Envelope coarse period control 0-7

 R13 Envelope control 0-3

 R14 RS232 i/o 0-7

 R15 I/O port 2 0-7

 The AY chip consists of three tone generators, one noise generator, an

 envelope generator, three mixers, and three volume generators.

 Tone generator A is controlled by R0 and R1. It contains a 12 bit up

 counter which is reset to 0 whenever it is larger than or equal to the

 value of R1R0 (most significant bits are in R1), and is counted up at a

 frequency of 221660 Hz (which is the driving frequency of the chip

 divided by 8). Loading R0 or R1 takes effect directly. If the internal

 counter is below the new value, it simply continues; if it is above, it

 immediately resets to 0. Every time the internal counter is reset, the

 tone generator changes it output from 0 to 1 or vice versa, so the

 frequency of the tone generated is 110830/R1R0 Hz (one period consists

 of two transitions). If R1R0 contains 0, the counter behaves as if R1R0

 contained 1.

 The noise generator contains a 5 bit up counter, which is reset to 0

 whenever it is >= R6. It is counted up at a frequency of 110830 Hz

 (driving frequency divided by 16) [1]. Every time it reaches zero, it

 randomly chooses 0 or 1 as its new output [2]. When R6 is zero, the

 noise generated is the same as when R6 is 1. Changes to R6 take effect

 only when the internal counter reaches 0.

 Bit 7 6 5 4 3 2 1 0

 +---------------------------------------+

 R7 | D2 | D1 | Nc | Nb | Na | Tc | Tb | Ta |

 +---------------------------------------+

 If D1 is 1, R14 acts as output register (RS232 output: bit 2 is CTS,

 bit 3 is data output); when it is 0 R14 acts as input register (bit 6

 is DTR [3]). D2 is ignored as the AY chip has only one I/O register;

 the bit and its corresponding register are present however. Reading

 R15 in input mode always yields 255. Changes made to R7 take effect

 immediately.

 The noise and tone output of a channel is combined in the mixer in the

 following way:

 Output_A = (Tone_A OR Ta) AND (Noise OR Na)

 Here Tone_A is the binary output of tone generator A, and Noise is the

 binary output of the noise generator. Note that setting both Ta and Na

 to 1 produces a constant 1 as output. Also note that setting both Ta

 and Na to 0 produces bursts of noise and half-periods of constant

 output 0.

 Each binary tone channel output is fed to a separate volume generator.

 Each volume generator is controlled by its amplitude register (R8 for

 channel A) and the 4-bit output of the envelope controller.

 Bit 7 6 5 4 3 2 1 0

 +---------------------------------------+

 R8 | | | | Ev | V3 | V2 | V1 | V0 |

 +---------------------------------------+

 If Ev=0, the current volume is given by V3V2V1V0. If Ev=1, the current

 volume is given by the output of the envelope generator. The volume

 controller produces an output voltage proportional to its channel's

 binary output value times the current volume. These analogue outputs

 are then added together to give the final output (this is done outside

 the chip actually). Note that even when a channel is disabled (say Ta

 = Na = 1), changing the volume level changes the final output, as the

 binary tone channel output is constant and equal to 1, not 0. Changes

 to the amplitude registers take effect immediately.

 The envelope generator is controlled by R11, R12 and R13.

 Bit 7 6 5 4 3 2 1 0

 +--+

 R13 | | | | | Continue | Attack | Alternate | Hold |

 +--+

 The envelope generator contains a 16-bit up counter, operated at a

 frequency of 110830 Hz. The lowest frequency attainable by the

 envelope clock is therefore 1.7 Hz. If R12R11 contains 0, the clock

 runs at 110830 Hz; otherwise it runs at 110830/R12R11 Hz. The envelope

 generator is reset by writing to R13 (but not by writing to R11 or

 R12); otherwise it works just as the other counters.

 Each time the envelope generator up counter is reset, it produces a

 envelope clock tick. A 'period' is the time taken by 16 clock ticks.

 The output of the envelope generator during the first period is as

 follows. If Attack = 1, the output starts off at 0 and at each clock

 tick is increased by 1 until it reaches 15. If Attack = 0, the output

 starts off at 15 and is falls to 0.

 The output in the subsequent periods is 0 if Continue = 0. Otherwise,

 first the (internal) 'Attack' bit is toggled if Alternate is set,

 otherwise it doesn't change. How if Hold = 1, the output is a constant

 15 in this and subsequent periods if Attack = 1, otherwise it is a

 constant 0. If Hold = 0, the envelope generator behaves just as in the

 first period (except that Attack has possibly changed). To sum it up:

 0,1,2,3 __________ single decay then off

 4,5,6,7 /|_________ single attack then off

 8 \|\|\|\|\|\ repeated decay

 9 __________ single decay then off

 10 \/\/\/\/\/\ repeated decay-attack

 11 \| single decay then hold

 12 /|/|/|/|/|/ repeated attack

 13 / single attack then hold

 14 /\/\/\/\/\/ repeated attack-decay

 15 /|_________ single attack then off

 If the envelope generator is used to generate a tone, its frequency is

 either 110830/(16*R12R11) Hz (R13 = 8 or 12) or 110830/(32*R12R11) Hz

 (R13 = 10 or 14).

 [1] This has been checked by Pierre Guerrier using an oscilloscope.

 [2] The algorithm used for the pseudo random output is not known. It

 seems not to be too good, as sounds vaguely similar to tape loading

 sounds are audible if you set R6 to 31.

 [3] I don't know which bit is data input; it is probably not bit 3.

The Interface I

 The Interface I is quite complicated. It uses three different I/O

 ports, and contains logic to page and unpage an 8K ROM if new commands

 are used. I won't be very detailed here; you could refer to the source

 code of the emulator if you want to know some details, or read the

 'Spectrum Shadow ROM Disassembly' by Gianlura Carri, published by

 Melbourne House - but don't expect the same level of detail as of Ian

 Logan and Frank O'Hara in their Rom disassembly book.

 The ROM is paged if the processor executes the instruction at ROM

 address 0008 or 1708 hexadecimal, the error and close# routines. It is

 inactivated when the Z80 executes the RET at address 0700.

 I/O Port E7 is used to send or receive data to and from the microdrive.

 Accessing this port will halt the Z80 until the Interface I has

 collected 8 bits from the microdrive head; therefore, it the microdrive

 motor isn't running, or there is no formatted cartridge in the

 microdrive, the Spectrum hangs. This is the famous 'IN 0 crash'.

 Port EF is used for several things:

 Bit 7 6 5 4 3 2 1 0

 +---------------------------------------+

 READ| | | |busy| dtr |gap| sync|write|

 | | | | | | | |prot.|

 +---------------------------------------+

 WRITE| | |wait| cts|erase|r/w|comms|comms|

 | | | | | | | clk | data|

 +---------------------------------------+

 Bits DTR and CTS are used by the RS232 interface. The WAIT bit is used

 by the Network to synchronise, GAP, SYNC, WR_PROT, ERASE, R/_W, COMMS

 CLK and COMMS DATA are used by the microdrive system. If the microdrive

 is not being used, the COMMS DATA output selects the function of bit 0

 of out-port F7:

 Bit 7 6 5 4 3 2 1 0

 +--+

 READ|txdata| | | | | | | net |

 | | | | | | | | input |

 +--+

 WRITE| | | | | | | |net output/|

 | | | | | | | | rxdata |

 +--+

 TXDATA and RXDATA are the input and output of the RS232 port. COMMS

 DATA determines whether bit 0 of F7 is output for the RS232 or the

 network.

The ZX Printer
 As always, how very Sinclair, this is a simple but ingenious piece of

 equipment. The ZX Printer is controlled through one I/O port, namely

 #FB. It is decoded using A2 only. Port #FB:

 Bit 7 6 5 4 3 2 1 0

 +---------------------------------------+

 READ |styl| 0 | | | | | | enc|

 +---------------------------------------+

 +---------------------------------------+

 WRITE |Data| | | | | Mot|Slow| |

 +---------------------------------------+

 To print, first read port #FB and check that bit 6 is 0 to make sure

 that the printer is attached. The printer motor is started by writing

 a byte 0 to #FB (Mot=0). Then check bit 7 until it goes high; this

 means that the printer head is in the starting position. A line is

 printed as follows. Wait for bit 0 (encoder) to go high, and write a

 bit of data (1=black dot), and do this 256 times. The Spectrum ROM

 makes the 'Slow' bit 1 in the last two lines; this ensures that the

 printer head stops at the start of the new line, instead of halfway

 into it. Stop the printer by writing a byte 4. See #0EF4 in the ROM

 for the relevant routine.

 The emulator returns #FF on a port #FB IN if there is no printer

 attached to the LPT port selected for ZX Printer output. If the

 printer is off-line, busy, or out of paper, the emulator will usually

 return #FF too, so that the Spectrum program will not even consider to

 print, unless you set option -xj. In that case the emulator returns 1

 so that the program will try to print, and will wait for the printer to

 go on line. The reason for including the -xj switch is that usually

 the status lines of the printer are not too reliable, so that a

 Spectrum program may halt on a COPY statement even if there's no

 printer attached (e.g. with SuperSpy, which makes screendumps on the ZX

 Printer without asking). In the inner printing loop, the ROM does not

 check for BREAKs, so that the encoder bit is always high to prevent

 locking the emulated Spectrum. If the printer is happy to accept data,

 the emulator returns #81.

File formats
.TAP FILES:
 The .TAP files contain blocks of tape-saved data. All blocks start with

 two bytes specifying how many bytes will follow (not counting the two

 length bytes). Then raw tape data follows, including the flag and

 checksum bytes. The checksum is the bitwise XOR of all bytes including

 the flag byte. For example, when you execute the line SAVE "ROM" CODE

 0,2 this will result:

 |------ Spectrum-generated data -------| |---------|

 13 00 00 03 52 4f 4d 7x20 02 00 00 00 00 80 f1 04 00 ff f3 af a3

 ^^^^^ first block is 19 bytes (17 bytes+flag+checksum)

 ^^ flag byte (A reg, 00 for headers, ff for datablocks)

 ^^ first byte of header, indicating a code block

 filename ^^^^^^^^^^^^^

 header info ^^^^^^^^^^^^^^^^^

 checksum of header ^^

 length of second block ^^^^^

 flag byte ^^

 first two bytes of rom ^^^^^

 checksum (checkbittoggle would be better) ^^

 The emulator will always start reading bytes at the beginning of a

 block. If less bytes are loaded than are available, the other bytes are

 skipped, and the last byte loaded is used as checksum. If more bytes

 are asked for than exist in the block, the loading routine will

 terminate with the usual tape-loading-error flags set, leaving the error

 handling to the calling Z80 program.

 Note that it is possible to join .TAP files by simply stringing them

 together, for example COPY /B FILE1.TAP + FILE2.TAP ALL.TAP

 For completeness, I'll include the structure of a tape header. A header

 always consists of 17 bytes:

 Byte Length Description

 0 1 Type (0,1,2 or 3)

 1 10 Filename (padded with blanks)

 11 2 Length of data block

 13 2 Parameter 1

 15 2 Parameter 2

 The type is 0,1,2 or 3 for a Program, Number array, Character array or

 Code file. A screen$ file is regarded as a Code file with start address

 16384 and length 6912 decimal. If the file is a Program file, parameter

 1 holds the autostart line number (or a number >=32768 if no LINE

 parameter was given) and parameter 2 holds the start of the variable

 area relative to the start of the program. If it's a Code file,

 parameter 1 holds the start of the code block when saved, and parameter

 2 holds 32768. For data files finally, the byte at position 14 decimal

 holds the variable name.

.MDR FILES:

 The emulator uses a cartridge file format identical to the 'Microdrive

 File' format of Carlo Delhez' Spectrum emulator Spectator for the QL.

 The following information is adapted from Carlo's documentation. It can

 also be found in the 'Spectrum Microdrive Book', by Ian Logan (co-writer

 of the excellent 'Complete Spectrum ROM Disassembly').

 A cartridge file contains 254 'sectors' of 543 bytes each, and a final

 byte flag which is non-zero is the cartridge is write protected, so the

 total length is 137923 bytes. On the cartridge tape, after a GAP of

 some time the Interface I writes 10 zeros and 2 FF bytes (the preamble),

 and then a fifteen byte header-block-with-checksum. After another GAP,

 it writes a preamble again, with a 15-byte record-

 descriptor-with-checksum (which has a structure very much like the

 header block), immediately followed by the data block of 512 bytes, and

 a final checksum of those 512 bytes. The preamble is used by the

 Interface I hardware to synchronise, and is not explicitly used by the

 software. The preamble is not saved to the microdrive file:

 offset length name contents

 0 1 HDFLAG Value 1, to indicate header block

 1 1 HDNUMB sector number (values 254 down to 1)

 2 2 not used

 4 10 HDNAME microdrive cartridge name (blank padded)

 14 1 HDCHK header checksum (of first 14 bytes)

 15 1 RECFLG - bit 0: always 0 to indicate record block

 - bit 1: set for the EOF block

 - bit 2: reset for a PRINT file

 - bits 3-7: not used (value 0)

 16 1 RECNUM data block sequence number (value starts at 0)

 17 2 RECLEN data block length (<=512, LSB first)

 19 10 RECNAM filename (blank padded)

 29 1 DESCHK record descriptor checksum (of previous 14 bytes)

 30 512 data block

 542 1 DCHK data block checksum (of all 512 bytes of data

 block, even when not all bytes are used)

 254 times

 (Actually, this information is 'transparent' to the emulator. All it

 does is store 2 times 254 blocks in the .MDR file as it is OUTed,

 alternatingly of length 15 and 528 bytes. The emulator does check

 checksums, see below; the other fields are dealt with by the emulated

 Interface I software.)

 A used record block is either an EOF block (bit 1 of RECFLG is 1) or

 contains 512 bytes of data (RECLEN=512, i.e. bit 1 of MSB is 1). An

 empty record block has a zero in bit 1 of RECFLG and also RECLEN=0. An

 unusable block (as determined by the FORMAT command) is an EOF block

 with RECLEN=0.

 The three checksums are calculated by adding all the bytes together

 modulo 255; this will never produce a checksum of 255. Possibly, this

 is the value that is read by the Interface I if there's no or bad data

 on the tape.

 In normal operation, all first-fifteen-byte blocks of each header or

 record block will have the right checksum. If the checksum is not

 right, the block will be treated as a GAP. For instance, if you type

 OUT 239,0 on a normal Spectrum with interface I, the microdrive motor

 starts running and the cartridge will be erased completely in 7 seconds.

 CAT 1 will respond with 'microdrive not ready'. Try it on the

 emulator...

.SCR FILES:

 .SCR files are memory dumps of the first 6912 bytes of the Spectrum

 memory. A coordinate (x,y), x between 0 and 255 and y between 0 and

 192, (0,0) being the upper left corner of the screen, corresponds to the

 pixel address

 16384+INT (x/8)+1792*INT (y/64)-2016*INT (y/8)+256*y

 I admit this is not quite the clearest way to explain the organization

 of Spectrum's video memory, but with a bit or (hard) thinking you can

 extract from above formula all information you need... The lowest three

 bits of x determine which bit of this address corresponds to the pixel

 (x,y). This bit-map constitutes the larger part of the screen memory,

 256*192/8=6144 bytes. The final 768 bytes are attribute bytes. The

 address of the attribute byte corresponding to pixel (x,y) is

 22528+INT (x/8)+32*INT (y/8)

 The lowest three bits of the attribute byte control the foreground color

 (the color of the pixel if the corresponding bit in the bitmap is set),

 bits 3-5 control the background color, bit 6 is the bright bit and bit 7

 is the flash bit - if it is set, every 16/50th of a second the ULA

 effectively flips the foreground and background colours.

.Z80 and .SLT files:

 The old .Z80 snapshot format (for version 1.45 and below) looks like

 this:

 Offset Length Description

 0 1 A register

 1 1 F register

 2 2 BC register pair (LSB, i.e. C, first)

 4 2 HL register pair

 6 2 Program counter

 8 2 Stack pointer

 10 1 Interrupt register

 11 1 Refresh register (Bit 7 is not significant!)

 12 1 Bit 0 : Bit 7 of the R-register

 Bit 1-3: Border colour

 Bit 4 : 1=Basic SamRom switched in

 Bit 5 : 1=Block of data is compressed

 Bit 6-7: No meaning

 13 2 DE register pair

 15 2 BC' register pair

 17 2 DE' register pair

 19 2 HL' register pair

 21 1 A' register

 22 1 F' register

 23 2 IY register (Again LSB first)

 25 2 IX register

 27 1 Interrupt flipflop, 0=DI, otherwise EI

 28 1 IFF2 (not particularly important...)

 29 1 Bit 0-1: Interrupt mode (0, 1 or 2)

 Bit 2 : 1=Issue 2 emulation

 Bit 3 : 1=Double interrupt frequency

 Bit 4-5: 1=High video synchronisation

 3=Low video synchronisation

 0,2=Normal

 Bit 6-7: 0=Cursor/Protek/AGF joystick

 1=Kempston joystick

 2=Sinclair 2 Left joystick (or user

 defined, for version 3 .Z80 files)

 3=Sinclair 2 Right joystick

 Because of compatibility, if byte 12 is 255, it has to be regarded as

 being 1. Following this header block of 30 bytes the 48K bytes of

 Spectrum memory are stored, in a compressed format (if bit 5 of byte 12

 is set).

 The compression method is this. Repetitions of at least five equal

 bytes are replaced by the four-byte code ED ED xx yy, which stands for

 "byte yy repeated xx times". Only sequences of length at least 5 are

 coded. The exception is sequences consisting of ED's; if they are

 encountered, even two ED's are encoded into ED ED 02 ED. Finally,

 every byte directly following a single ED is not taken into a block,

 for example ED 6*00 is not encoded into ED ED ED 06 00 but into ED 00

 ED ED 05 00. The block is terminated by an end marker, 00 ED ED 00.

 That's the format of .Z80 files as used by versions up to 1.45.

 Starting from version 2.0, a different format is used, since from then

 on also 128K snapshots had to be supported. This new format is used

 for all snapshots (48K or 128K).

 Version 2.01 and 3.0x .Z80 files start with the same 30 byte header

 that old .Z80 files used. Bit 4 and 5 of the flag byte (offset 12)

 have no meaning anymore, and the program counter (offset 6 and 7) are

 zero to signal a version 2.01 (or later) snapshot file.

 Starting from version 3.05, Z80 ignores the setting of byte 29, bit 3

 (Double Interrupt frequency) when loading snapshots, and resets the bit

 when saving, because of the altered behaviour of the -d switch.

 After the first 30 bytes, the additional header follows:

 Offset Length Description

 * 30 2 Length of additional header block (see below)

 * 32 2 Program counter

 * 34 1 Hardware mode (see below)

 * 35 1 If in SamRam mode, bitwise state of 74ls259.

 For example, bit 6=1 after an OUT 31,13 (=2*6+1)

 If in 128 mode, contains last OUT to 7ffd

 * 36 1 Contains 0FF if Interface I rom paged

 * 37 1 Bit 0: 1 if R register emulation on

 Bit 1: 1 if LDIR emulation on

 * 38 1 Last OUT to fffd (soundchip register number)

 * 39 16 Contents of the sound chip registers

 55 2 Low T state counter

 57 1 Hi T state counter

 58 1 Flag byte used by Spectator (QL spec. emulator)

 Ignored by Z80 when loading, zero when saving

 59 1 0FF if MGT Rom paged

 60 1 0FF if Multiface Rom paged. Should always be 0.

 61 1 0FF if 0-8191 is ROM, 0 if RAM

 62 1 0FF if 8192-16383 is ROM, 0 if RAM

 63 10 5x keyboard mappings for user defined joystick

 (Default values: 0x0103,0x0203,0x0403,0x0803,0x1003)

 73 10 5x ascii word: keys corresponding to mappings above

 (Default values: 0x0031,0x0032,0x0033,0x0034,0x0035)

 83 1 MGT type: 0=Disciple+Epson,1=Discipls+HP,16=Plus D

 84 1 Disciple inhibit button status: 0=out, 0ff=in

 85 1 Disciple inhibit flag: 0=rom pageable, 0ff=not

 The value of the word at position 30 is 23 for version 2.01 files, and

 54 for version 3.0x files. The starred fields are the ones that

 constitute the version 2.01 header, and their interpretation has

 remained unchanged except for offset 34 (Hardware mode):

 Value: Meaning in v2.01 Meaning in v3.0x

 0 48k 48k

 1 48k + If.1 48k + If.1

 2 SamRam SamRam

 3 128k 48k + M.G.T.

 4 128k + If.1 128k

 5 - 128k + If.1

 6 - 128k + M.G.T.

 Fields 30-34, 36-37, 55-82 are valid in all modes. Field 35 is valid

 in mode 2,4,5,6. Fields 38-54 are valid in modes 4-6. Fields 83-85

 are valid in modes 3 and 6 (all mode codes are as in v3.0x files).

 "Invalid" fields are "don't care" for Z80 when loading, and "undefined"

 when saving.

 The hi T state counter counts up modulo 4. Just after the ULA

 generates its once-in-every-20-ms interrupt, it is 3, and is increased

 by one every 5 emulated milliseconds to take the values 0,1,2 and 3

 again respectively. In these 1/200s intervals, the low T state counter

 counts down from 17471 to 0 inclusive (or 17726 to 0 in 128K modes),

 which make a total of 69888 T states (70908 T states) per frame.

 The 5 ascii words (high byte always 0) at 73-82 are the keys

 corresponding to the joystick directions left, right, down, up, fire

 respectively. Shift, Symbol Shift, Enter and Space are denoted by

 [,],/,\ respectively. The ascii values are used only to display the

 joystick keys; the information in the 5 keyboard mapping words

 determine which key is actually pressed (and should correspond to the

 ascii values). The low byte is in the range 0-7 and determines the

 keyboard row. The high byte is a mask byte and determines the column.

 Enter for example is stored as 0x0106 (row 6 and column 1) and 'g' as

 0x1001 (row 1 and column 4). The default values correspond to the Left

 Sinclair Interface 2 joystick.

 Byte 60 must be zero, because the contents of the Multiface RAM is not

 saved in the snapshot file. If the Multiface was paged when the

 snapshot was saved, the emulated program will most probably crash when

 loaded back.

 Bytes 61 and 62 are a function of the other flags, such as byte 34, 59,

 60 and 83.

 Hereafter a number of memory blocks follow, each containing the

 compressed data of a 16K block. The compression is according to the

 old scheme, except for the end-marker, which is now absent. The

 structure of a memory block is:

 Offset Length Description

 0 2 Length of data (without this 3-byte header)

 2 1 Page number of block

 3 [0] Compressed data

 Starting with version 3.05, a length field of 65535 (-1) means that the

 block is not compressed and exactly 16384 bytes long, and the length

 field will never hold values larger than 16383. (Previous versions of

 Z80 could produce 'compressed' blocks of more than 16384 bytes, but

 would refuse to load those.)

 The pages are numbered, depending on the hardware mode, in the

 following way:

 Page In '48 mode In '128 mode In SamRam mode

 0 48K rom rom (basic) 48K rom

 1 Interface I, Disciple or Plus D rom, according to setting

 2 - rom (reset) samram rom (basic)

 3 - page 0 samram rom (monitor,..)

 4 8000-bfff page 1 Normal 8000-bfff

 5 c000-ffff page 2 Normal c000-ffff

 6 - page 3 Shadow 8000-bfff

 7 - page 4 Shadow c000-ffff

 8 4000-7fff page 5 4000-7fff

 9 - page 6 -

 10 - page 7 -

 11 Multiface rom Multiface rom -

 In 48K mode, pages 4,5 and 8 are saved. In SamRam mode, pages 4 to 8

 are saved. In '128 mode, all pages from 3 to 10 are saved. This

 version saves the pages in numerical order. There is no end marker.

 This concludes the specification of .Z80 files. .SLT files (which

 stands for 'super level loader trap files') are like .Z80 files except

 that after the ordinary data another section follows, containing things

 like level data (previously stored in .DAT files, and giving .SLT files

 their name) or loading screens. The ".Z80"-file preceding the SLT must

 conform the format of v2.01 or v3.0x files (long header).

 Though it is agreed that .Z80 files will not contain SLT data, and

 files with SLT data will always have extension .SLT, Z80 does in fact

 not distinguish between the extensions.

 The SLT format was cooked up by Damien Burke, James McKay and yours

 truly. It starts as an ordinary >= v2.01 .Z80 file. Directly

 following this comes a

 Offset Length Description

 0 6 Separator (0,0,0,'S','L','T')

 Then a table follows, each entry describing a piece of data. The

 format of a single table entry is:

 Offset Length Description

 0 2 Data type: 1=level data, 3=loading screen

 2 2 Id word: Level number (between 0 and 255 inclusive)

 for type 1, border colour (between 0 and 7) for

 type 3.

 4 4 Length of data block in bytes (Note: long word)

 Data types other than type 1 and 3 are not supported by Z80 v3.04, and

 are ignored. The table ends with an all-zero end marker:

 Offset Length Description

 0 8 End marker (all zeroes)

 Finally, the data blocks follow. The blocks are stored in the order in

 which they appear in the table, i.e. the offset of a particular data

 block is the sum of the lengths of the blocks that precede it. The

 internal format of these blocks depend on the data type:

 Type: Format:

 0 (no data)

 1 Compressed data (ED ED xx yy scheme, see above) expanding

 to anything up to 48K

 3 Compressed data expanding to exactly 6912 bytes of data

 See the end of section 5.9 for an explanation how to load these blocks

 using the ED FB opcode, and error handling.

 All words in the format have the least significant byte first.

KEYMAP
[image: image1.png]

KEYBOARD MATRIX

b0
b1
b2
b3
b4

b0
Left shift
Z
X
C
V

b1
A
S
D
F
G

b2
Q
W
E
R
T

b3
1
2
3
4
5

b4
0
9
8
7
6

b5
P
O
I
U
Y

b6
ENTER
L
K
J
H

b7
SPACE
Right shift
M
N
B

VARS
Length
Address

(dec)
Address

(hex)
Name
Contents

N8
23552
5C00
KSTATE
Used in reading the keyboard.

Nl
23560
5C08
LAST K
Stores newly pressed key.

1
23561
5C09
REPDEL
Time (in 50ths of a second in 60ths of a second in N. America) that a key must be held down before it repeats. This starts off at 35, but you can POKE in other values.

1
23562
5C0A
REPPER
Delay (in 50ths of a second in 60ths of a second in N. America) between successive repeats of a key held down: initially 5.

N2
23563
5C0B
DEFADD
Address of arguments of user defined function if one is being evaluated; otherwise 0.

Nl
23565
5C0D
K DATA
Stores 2nd byte of colour controls entered from keyboard.

N2
23566
5C0E
TVDATA
Stores bytes of coiour, AT and TAB controls going to television.

X38
23568
5C10
STRMS
Addresses of channels attached to streams.

2
23606
5C36
CHARS
256 less than address of character set (which starts with space and carries on to the copyright symbol). Normally in ROM, but you can set up your own in RAM and make CHARS point to it.

1
23608
5C38
RASP
Length of warning buzz.

1
23609
5C39
PIP
Length of keyboard click.

1
23610
5C3A
ERR NR
1 less than the report code. Starts off at 255 (for 1) so PEEK 23610 gives 255.

X1
23611
5C3B
FLAGS
Various flags to control the BASIC system.

X1
23612
5C3C
TV FLAG
Flags associated with the television.

X2
23613
5C3D
ERR SP
Address of item on machine stack to be used as error return.

N2
23615
5C3F
LIST SP
Address of return address from automatic listing.

N1
23617
5C41
MODE
Specifies K, L, C. E or G cursor.

2
23618
5C42
NEWPPC
Line to be jumped to.

23620
5C44
NSPPC
Statement number in line to be jumped to. Poking first NEWPPC and then NSPPC forces a jump to a specified statement in a line.

2
23621
5C45
PPC
Line number of statement currently being executed.

1
23623
5C47
SUBPPC
Number within line of statement being executed.

1
23624
5C48
BORDCR
Border colour * 8; also contains the attributes normally used for the lower half of the screen.

2
23625
5C49
E PPC
Number of current line (with program cursor).

X2
23627
5C4B
VARS
Address of variables.

N2
23629
5C4D
DEST
Address of variable in assignment.

X2
23631
5C4F
CHANS
Address of channel data.

X2
23633
5C51
CURCHL
Address of information currently being used for input and output.

X2
23635
5C53
PROG
Address of BASIC program.

X2
23637
5C55
NXTLIN
Address of next line in program.

X2
23639
5C57
DATADD
Address of terminator of last DATA item.

X2
23641
5C59
E LINE
Address of command being typed in.

2
23643
5C5B
K CUR
Address of cursor.

X2
23645
5C5D
CH ADD
Address of the next character to be interpreted: the character after the argument of PEEK, or the NEWLINE at the end of a POKE statement.

2
23647
5C5F
X PTR
Address of the character after the ? marker.

X2
23649
5C61
WORKSP
Address of temporary work space.

X2
23651
5C63
STKBOT
Address of bottom of calculator stack.

X2
23653
5C65
STKEND
Address of start of spare space.

N1
23655
5C67
BREG
Calculator's b register.

N2
23656
5C68
MEM
Address of area used for calculator's memory. (Usually MEMBOT, but not always.)

23658
5C6A
FLAGS2
More flags.

X1
23659
5C6B
DF SZ
The number of lines (including one blank line) in the lower part of the screen.

2
23660
5C6C
S TOP
The number of the top program line in automatic listings.

2
23662
5C6E
OLDPPC
Line number to which CONTINUE jumps.

23664
5C70
OSPCC
Number within line of statement to which CONTINUE jumps.

N1
23665
5C71
FLAGX
Various flags.

N2
23666
5C72
STRLEN
Length of string type destination in assignment.

N2
23668
5C74
T ADDR
Address of next item in syntax table (very unlikely to be useful).

2
23670
5C76
SEED
The seed for RND. This is the variable that is set by RANDOMIZE.

3
23672
5C78
FRAMES
3 byte (least significant first), frame counter. Incremented every 20ms. See Chapter 18.

2
23675
5C7B
UDG
Address of 1st user defined graphic You can change this for instance to save space by having fewer user defined graphics.

1
23677
5C7D
COORDS
x-coordinate of last point plotted.

1
23678
5C7E

y-coordinate of last point plotted.

1
23679
5C7F
P POSN
33 column number of printer position

1
23680
5C80
PR CC
Less significant byte of address of next position for LPRINT to print at (in printer buffer).

1
23681
5C81

Not used.

2
23682
5C82
ECHO E
33 column number and 24 line number (in lower half) of end of input buffer.

2
23684
5C84
DF CC
Address in display file of PRINT position.

2
23686
5C86
DFCCL
Like DF CC for lower part of screen.

X1
23688
5C88
S POSN
33 column number for PRINT position

X1
23689
5C89

24 line number for PRINT position.

X2
23690
5C8A
SPOSNL
Like S POSN for lower part

23692
5C8C
SCR CT
Counts scrolls: it is always 1 more than the number of scrolls that will be done before stopping with scroll? If you keep poking this with a number bigger than 1 (say 255), the screen will scroll on and on without asking you.

1
23693
5C8D
ATTR P
Permanent current colours, etc (as set up by colour statements).

1
23694
5C8E
MASK P
Used for transparent colours, etc. Any bit that is 1 shows that the corresponding attribute bit is taken not from ATTR P, but from what is already on the screen.

N1
23695
5C8F
ATTR T
Temporary current colours, etc (as set up by colour items).

N1
23696
5C90
MASK T
Like MASK P, but temporary.

23697
5C91
P FLAG
More flags.

N30
23698
5C92
MEMBOT
Calculator's memory area; used to store numbers that cannot conveniently be put on the calculator stack.

2
23728
5CB0

Not used.

2
23730
5CB2
RAMTOP
Address of last byte of BASIC system area.

2
23732
5CB4
P RAMT
Address of last byte of physical RAM.

