[image: image1.png]

OPENGL TUTORIALS
Lesson 10

By Jeff Molofee

This tutorial was created by Lionel Brits (ίetelgeuse). This lesson only explains the sections of code that have been added. By adding just the lines below, the program will not run. If you're interested to know where each of the lines of code below go, download the source code, and follow through it, as you read the tutorial.

Welcome to the infamous Tutorial 10. By now you have a spinning cube or a couple of stars, and you have the basic feel for 3D programming. But wait! Don't run off and start to code Quake IV just yet. Spinning cubes just aren't going to make cool deathmatch opponents :-) These days you need a large, complicated and dynamic 3D world with 6 degrees of freedom and fancy effects like mirrors, portals, warping and of course, high framerates. This tutorial explains the basic "structure" of a 3D world, and also how to move around in it.

Data structure
While it is perfectly alright to code a 3D environment as a long series of numbers, it becomes increasingly hard as the complexity of the environment goes up. For this reason, we must catagorize our data into a more workable fashion. At the top of our list is the sector. Each 3D world is basically a collection of sectors. A sector can be a room, a cube, or any enclosed volume.

typedef struct tagSECTOR

// Build Our Sector Structure

{

int numtriangles;

// Number Of Triangles In Sector

TRIANGLE* triangle;

// Pointer To Array Of Triangles

} SECTOR;

// Call It SECTOR

 A sector holds a series of polygons, so the next catagory will be the triangle (we will stick to triangles for now, as they are alot easier to code.)

typedef struct tagTRIANGLE

// Build Our Triangle Structure

{

VERTEX vertex[3];

// Array Of Three Vertices

} TRIANGLE;

// Call It TRIANGLE

The triangle is basically a polygon made up of vertices (plural of vertex), which brings us to our last catagory. The vertex holds the real data that OpenGL is interested in. We define each point on the triangle with it's position in 3D space (x, y, z) as well as it's texture coordinates (u, v).

typedef struct tagVERTEX

// Build Our Vertex Structure

{

float x, y, z;

// 3D Coordinates

float u, v;

// Texture Coordinates

} VERTEX;

// Call It VERTEX

Loading files
Storing our world data inside our program makes our program quite static and boring. Loading worlds from disk, however, gives us much more flexibility as we can test different worlds without having to recompile our program. Another advantage is that the user can interchange worlds and modify them without having to know the in's and out's of our program. The type of data file we are going to be using will be text. This makes for easy editing, and less code. We will leave binary files for a later date.

The question is, how do we get our data from our file. First, we create a new function called SetupWorld(). We define our file as filein, and we open it for read-only access. We must also close our file when we are done. Let us take a look at the code so far:

// Previous Declaration: char* worldfile = "data\\world.txt";

void SetupWorld()

// Setup Our World

{

FILE *filein;

// File To Work With

filein = fopen(worldfile, "rt");

// Open Our File

...

(read our data)

...

fclose(filein);

// Close Our File

return;

// Jump Back

}

Our next challenge is to read each individual line of text into a variable. This can be done in a number of ways. One problem is that not all lines in the file will contain meaningful information. Blank lines and comments shouldn't be read. Let us create a function called readstr(). This function will read one meaningful line of text into an initialised string. Here's the code:

void readstr(FILE *f,char *string)

// Read In A String

{

do
return;

// Start A Loop

{

fgets(string, 255, f);

// Read One Line

} while ((string[0] == '/') || (string[0] == '\n'));// See If It Is Worthy Of Processing

return;

// Jump Back

}

Next, we must read in the sector data. This lesson will deal with one sector only, but it is easy to implement a multi-sector engine. Let us turn back to SetupWorld().Our program must know how many triangles are in our sector. In our data file, we will define the number of triangles as follows:

NUMPOLLIES n

Here's the code to read the number of triangles:

int numtriangles;

// Number Of Triangles In Sector

char oneline[255];

// String To Store Data In

...

readstr(filein,oneline);

// Get Single Line Of Data

sscanf(oneline, "NUMPOLLIES %d\n", &numtriangles);
// Read In Number Of Triangles

The rest of our world-loading process will use the same process. Next, we initialize our sector and read some data into it:

// Previous Declaration: SECTOR sector1;

char oneline[255];

// String To Store Data In

int numtriangles;

// Number Of Triangles In Sector

float x, y, z, u, v;

// 3D And Texture Coordinates

...

sector1.triangle = new TRIANGLE[numtriangles];// Allocate Memory For numtriangles And Set Pointer

sector1.numtriangles = triangles;

// Define The Number Of Triangles In Sector 1

// Step Through Each Triangle In Sector

for (int triloop = 0; triloop < numtriangles; triloop++)
// Loop Through All The Triangles

{

// Step Through Each Vertex In Triangle

for (int vertloop = 0; vertloop < 3; vertloop++)
// Loop Through All The Vertices

{

readstr(filein,oneline);

// Read String To Work With

// Read Data Into Respective Vertex Values

sscanf(oneline, "%f %f %f %f %f %f %f", &x, &y, &z, &u, &v);

// Store Values Into Respective Vertices

sector1.triangle[triloop].vertex[vertloop].x = x;

// Sector 1, Triangle triloop, Vertice vertloop, x Value=x

sector1.triangle[triloop].vertex[vertloop].y = y;

// Sector 1, Triangle triloop, Vertice vertloop, y Value=y

sector1.triangle[triloop].vertex[vertloop].z = z;

// Sector 1, Triangle triloop, Vertice vertloop, z Value=z

sector1.triangle[triloop].vertex[vertloop].u = u;

// Sector 1, Triangle triloop, Vertice vertloop, u Value=u

sector1.triangle[triloop].vertex[vertloop].v = v;

// Sector 1, Triangle triloop, Vertice vertloop, v Value=v

}

}

Each triangle in our data file is declared as follows:
X1 Y1 Z1 U1 V1

X2 Y2 Z2 U2 V2

X3 Y3 Z3 U3 V3
Displaying Worlds

Now that we can load our sector into memory, we need to display it on screen. So far we have done some minor rotations and translations, but our camera was always centered at the origin (0,0,0). Any good 3D engine would have the user be able to walk around and explore the world, and so will ours. One way of doing this is to move the camera around and draw the 3D environment relative to the camera position. This is slow and hard to code. What we will do is this:

1. Rotate and translate the camera position according to user commands
2. Rotate the world around the origin in the opposite direction of the camera rotation (giving the illusion that the camera has been rotated)
3. Translate the world in the opposite manner that the camera has been translated (again, giving the illusion that the camera has moved)
This is pretty simple to implement. Let's start with the first stage (Rotation and translation of the camera).

if (keys[VK_RIGHT])

// Is The Right Arrow Being Pressed?

{

yrot -= 1.5f;

// Rotate The Scene To The Left

}

if (keys[VK_LEFT])

// Is The Left Arrow Being Pressed?

{

yrot += 1.5f;

// Rotate The Scene To The Right

}

if (keys[VK_UP])

// Is The Up Arrow Being Pressed?

{

xpos -= (float)sin(yrot*piover180) * 0.05f;// Move On The X-Plane Based On Player Direction

zpos -= (float)cos(yrot*piover180) * 0.05f;// Move On The Z-Plane Based On Player Direction

if (walkbiasangle >= 359.0f)
// Is walkbiasangle>=359?

{

walkbiasangle = 0.0f;
// Make walkbiasangle Equal 0

}

else

// Otherwise

{

 walkbiasangle+= 10;
// If walkbiasangle < 359 Increase It By 10

}

walkbias = (float)sin(walkbiasangle * piover180)/20.0f;// Causes The Player To Bounce

}

if (keys[VK_DOWN])

// Is The Down Arrow Being Pressed?

{

xpos += (float)sin(yrot*piover180) * 0.05f;// Move On The X-Plane Based On Player Direction

zpos += (float)cos(yrot*piover180) * 0.05f;// Move On The Z-Plane Based On Player Direction

if (walkbiasangle <= 1.0f)

// Is walkbiasangle<=1?

{

walkbiasangle = 359.0f;

// Make walkbiasangle Equal 359

}

else

// Otherwise

{

walkbiasangle-= 10;

// If walkbiasangle > 1 Decrease It By 10

}

walkbias = (float)sin(walkbiasangle * piover180)/20.0f;// Causes The Player To Bounce

}

That was fairly simple. When either the left or right cursor key is pressed, the rotation variable yrot is incremented or decremented appropriatly. When the forward or backwards cursor key is pressed, a new location for the camera is calculated using the sine and cosine calculations (some trigonometry required :-). Piover180 is simply a conversion factor for converting between degrees and radians.

Next you ask me: What is this walkbias? It's a word I invented :-) It's basically an offset that occurs when a person walks around (head bobbing up and down like a buoy. It simply adjusts the camera's Y position with a sine wave. I had to put this in, as simply moving forwards and backwards didn't look to great.

Now that we have these variables down, we can proceed with steps two and three. This will be done in the display loop, as our program isn't complicated enough to merit a seperate function.

int DrawGLScene(GLvoid)

// Draw The OpenGL Scene

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// Clear Screen And Depth Buffer

glLoadIdentity();

// Reset The Current Matrix

GLfloat x_m, y_m, z_m, u_m, v_m;
// Floating Point For Temp X, Y, Z, U And V Vertices

GLfloat xtrans = -xpos;

// Used For Player Translation On The X Axis

GLfloat ztrans = -zpos;

// Used For Player Translation On The Z Axis

GLfloat ytrans = -walkbias-0.25f;
// Used For Bouncing Motion Up And Down

GLfloat sceneroty = 360.0f - yrot;// 360 Degree Angle For Player Direction

int numtriangles;

// Integer To Hold The Number Of Triangles

glRotatef(lookupdown,1.0f,0,0);
// Rotate Up And Down To Look Up And Down

glRotatef(sceneroty,0,1.0f,0);
// Rotate Depending On Direction Player Is Facing

glTranslatef(xtrans, ytrans, ztrans);// Translate The Scene Based On Player Position

glBindTexture(GL_TEXTURE_2D, texture[filter]);// Select A Texture Based On filter

numtriangles = sector1.numtriangles;// Get The Number Of Triangles In Sector 1

// Process Each Triangle

for (int loop_m = 0; loop_m < numtriangles; loop_m++)// Loop Through All The Triangles

{

glBegin(GL_TRIANGLES);

// Start Drawing Triangles

glNormal3f(0.0f, 0.0f, 1.0f);
// Normal Pointing Forward

x_m = sector1.triangle[loop_m].vertex[0].x;// X Vertex Of 1st Point

y_m = sector1.triangle[loop_m].vertex[0].y;// Y Vertex Of 1st Point

z_m = sector1.triangle[loop_m].vertex[0].z;// Z Vertex Of 1st Point

u_m = sector1.triangle[loop_m].vertex[0].u;//UTexture Coord Of 1stPoint

v_m = sector1.triangle[loop_m].vertex[0].v;//VTexture Coord Of 1stPoint

glTexCoord2f(u_m,v_m);glVertex3f(x_m,y_m,z_m);//Set The TexCoord&Vertice

x_m = sector1.triangle[loop_m].vertex[1].x;//X Vertex Of 2nd Point

y_m = sector1.triangle[loop_m].vertex[1].y;//Y Vertex Of 2nd Point

z_m = sector1.triangle[loop_m].vertex[1].z;//Z Vertex Of 2nd Point

u_m = sector1.triangle[loop_m].vertex[1].u;//U Texture Coord Of 2ndPoint

v_m = sector1.triangle[loop_m].vertex[1].v;//V Texture Coord Of 2ndPoint

glTexCoord2f(u_m,v_m);glVertex3f(x_m,y_m,z_m);//Set The TexCoord&Vertice

x_m = sector1.triangle[loop_m].vertex[2].x;//X Vertex Of 3rd Point

y_m = sector1.triangle[loop_m].vertex[2].y;//Y Vertex Of 3rd Point

z_m = sector1.triangle[loop_m].vertex[2].z;//Z Vertex Of 3rd Point

u_m = sector1.triangle[loop_m].vertex[2].u;//U Texture Coord Of3rdPoint

v_m = sector1.triangle[loop_m].vertex[2].v;//V Texture Coord Of3rdPoint

glTexCoord2f(u_m,v_m);glVertex3f(x_m,y_m,z_m);//Set The TexCoord&Vertice

glEnd();

// Done Drawing Triangles

}

return TRUE;

// Jump Back

}

And voila! We have drawn our first frame. This isn't exactly Quake but hey, we aren't exactly Carmack's or Abrash's. While running the program, you may want to press F, B, PgUp and PgDown to see added effects. PgUp/Down simply tilts the camera up and down (the same process as panning from side to side.) The texture included is simply a mud texture with a bumpmap of my school ID picture; that is, if NeHe decided to keep it :-).

So now you're probably thinking where to go next. Don't even consider using this code to make a full-blown 3D engine, since that's not what it's designed for. You'll probably want more than one sector in your game, especially if you're going to implement portals. You'll also want to have polygons with more than 3 vertices, again, essential for portal engines. My current implementation of this code allows for multiple sector loading and does backface culling (not drawing polygons that face away from the camera). I'll write a tutorial on that soon, but as it uses alot of math, I'm going to write a tutorial on matrices first.

NeHe (05/01/00): I've added FULL comments to each of the lines listed in this tutorial. Hopefully things make more sense now. Only a few of the lines had comments after them, now they all do :)

Please, if you have any problems with the code/tutorial (this is my first tutorial, so my explanations are a little vague), don't hesitate to email me mailto:iam@cadvision.com Until next time,

Lionel Brits (ίetelgeuse)

PAGE
6
Jeff Molofee’s Lesson 10

