[image: image1.png]

OPENGL TUTORIALS
Lesson 9

By Jeff Molofee

 Welcome to Tutorial 9. By now you should have a very good understanding of OpenGL. You've learned everything from setting up an OpenGL Window, to texture mapping a spinning object while using lighting and blending. This will be the first semi-advanced tutorial. You'll learn the following: Moving bitmaps around the screen in 3D, removing the black pixels around the bitmap (using blending), adding color to a black & white texture and finally you'll learn how to create fancy colors and simple animation by mixing different colored textures together.

We'll be modifying the code from lesson one for this tutorial. We'll start off by adding a few new variables to the beginning of the program. I'll rewrite the entire section of code so it's easier to see where the changes are being made.

#include <windows.h>

// Header File For Windows

#include <stdio.h>

// Header File For Standard Input/Output

#include <gl\gl.h>

// Header File For The OpenGL32 Library

#include <gl\glu.h>

// Header File For The GLu32 Library

#include <gl\glaux.h>

// Header File For The GLaux Library

HDC

hDC=NULL;
// Private GDI Device Context

HGLRC

hRC=NULL;
// Permanent Rendering Context

HWND

hWnd=NULL;
// Holds Our Window Handle

HINSTANCE
hInstance;
// Holds The Instance Of The Application

bool
keys[256];

// Array Used For The Keyboard Routine

bool
active=TRUE;

// Window Active Flag Set To TRUE By Default

bool
fullscreen=TRUE;

// Fullscreen Flag Set To Fullscreen Mode By Default

The following lines are new. twinkle and tp are BOOLean variables meaning they can be TRUE or FALSE. twinkle will keep track of whether or not the twinkle effect has been enabled. tp is used to check if the 'T' key has been pressed or released. (pressed tp=TRUE, relased tp=FALSE).

BOOL
twinkle;

// Twinkling Stars

BOOL
tp;

// 'T' Key Pressed?

num will keep track of how many stars we draw to the screen. It's defined as a CONSTant. This means it can never change within the code. The reason we define it as a constant is because you can not redefine an array. So if we've set up an array of only 50 stars and we decided to increase num to 51 somewhere in the code, the array can not grow to 51, so an error would occur. You can change this value to whatever you want it to be in this line only. Don't try to change the value of num later on in the code unless you want disaster to occur.

const
num=50;

// Number Of Stars To Draw

Now we create a structure. The word structure sounds intimidating, but it's not really. A structure is a group simple data (variables, etc) representing a larger similar group. In english :) We know that we're keeping track of stars. You'll see that the 7th line below is stars;. We know each star will have 3 values for color, and all these values will be integer values. The 3rd line int r,g,b sets up 3 integer values. One for red (r), one for green (g), and one for blue (b). We know each star will be a different distance from the center of the screen, and can be place at one of 360 different angles from the center. If you look at the 4th line below, we make a floating point value called dist. This will keep track of the distance. The 5th line creates a floating point value called angle. This will keep track of the stars angle.
So now we have this group of data that describes the color, distance and angle of a star on the screen. Unfortunately we have more than one star to keep track of. Instead of creating 50 red values, 50 green values, 50 blue values, 50 distance values and 50 angle values, we just create an array called star. Each number in the star array will hold all of the information in our structure called stars. We make the star array in the 8th line below. If we break down the 8th line: stars star[num]. This is what we come up with. The type of array is going to be stars. stars is a structure. So the array is going to hold all of the information in the structure. The name of the array is star. The number of arrays is [num]. So because num=50, we now have an array called star. Our array stores the elements of the structure stars. Alot easier than keeping track of each star with seperate variables. Which would be a very stupid thing to do, and would not allow us to add remove stars by changing the const value of num.

typedef struct

// Create A Structure For Star

{

int r, g, b;

// Stars Color

GLfloat dist;

// Stars Distance From Center

GLfloat angle;

// Stars Current Angle

}

stars;

// Structures Name Is Stars

stars star[num];
// Make 'star' Array Of 'num' Using Info From The Structure 'stars'

Next we set up variables to keep track of how far away from the stars the viewer is (zoom), and what angle we're seeing the stars from (tilt). We make a variable called spin that will spin the twinkling stars on the z axis, which makes them look like they are spinning at their current location.

loop is a variable we'll use in the program to draw all 50 stars, and texture[1] will be used to store the one b&w texture that we load in. If you wanted more textures, you'd increase the value from one to however many textures you decide to use.

GLfloat
zoom=-15.0f;

// Viewing Distance Away From Stars

GLfloat tilt=90.0f;

// Tilt The View

GLfloat
spin;

// Spin Twinkling Stars

GLuint
loop;

// General Loop Variable

GLuint
texture[1];

// Storage For One Texture

LRESULT
CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);// Declaration For WndProc

Right after the line above we add code to load in our texture. I shouldn't have to explain the code in great detail. It's the same code we used to load the textures in lesson 6, 7 and 8. The bitmap we load this time is called star.bmp. We generate only one texture using glGenTextures(1, &texture[0]). The texture will use linear filtering.

AUX_RGBImageRec *LoadBMP(char *Filename)
// Loads A Bitmap Image

{

FILE *File=NULL;

// File Handle

if (!Filename)

// Make Sure A Filename Was Given

{

return NULL;

// If Not Return NULL

}

File=fopen(Filename,"r");

// Check To See If The File Exists

if (File)

// Does The File Exist?

{

fclose(File);

// Close The Handle

return auxDIBImageLoad(Filename);
// Load The Bitmap And Return A Pointer

}

return NULL;

// If Load Failed Return NULL

}

This is the section of code that loads the bitmap (calling the code above) and converts it into a textures. Status is used to keep track of whether or not the texture was loaded and created.

int LoadGLTextures()

// Load Bitmaps And Convert To Textures

{

int Status=FALSE;

// Status Indicator

AUX_RGBImageRec *TextureImage[1];

// Create Storage Space For The Texture

memset(TextureImage,0,sizeof(void *)*1);
// Set The Pointer To NULL

// Load The Bitmap, Check For Errors, If Bitmap's Not Found Quit

if (TextureImage[0]=LoadBMP("Data/Star.bmp"))

{

Status=TRUE;

// Set The Status To TRUE

glGenTextures(1, &texture[0]);
// Create One Texture

// Create Linear Filtered Texture

glBindTexture(GL_TEXTURE_2D, texture[0]);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);

glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[0]->sizeX,

 TextureImage[0]->sizeY, 0, GL_RGB, GL_UNSIGNED_BYTE, TextureImage[0]->data);

}

if (TextureImage[0])

// If Texture Exists

{

if (TextureImage[0]->data)
// If Texture Image Exists

{

free(TextureImage[0]->data);// Free The Texture Image Memory

}

free(TextureImage[0]);

// Free The Image Structure

}

return Status;

// Return The Status

}
	
	
	

	
	Now we set up OpenGL to render the way we want. We're not going to be using Depth Testing in this project, so make sure if you're using the code from lesson one that you remove glDepthFunc(GL_LEQUAL); and glEnable(GL_DEPTH_TEST); otherwise you'll see some very bad results. We're using texture mapping in this code however so you'll want to make sure you add any lines that are not in lesson 1. You'll notice we're enabling texture mapping, along with blending.
	

	
	
	

int InitGL(GLvoid)

// All Setup For OpenGL Goes Here

{

if (!LoadGLTextures())

// Jump To Texture Loading Routine

{

return FALSE;

// If Texture Didn't Load Return FALSE

}

glEnable(GL_TEXTURE_2D);

// Enable Texture Mapping

glShadeModel(GL_SMOOTH);

// Enable Smooth Shading

glClearColor(0.0f, 0.0f, 0.0f, 0.5f);
// Black Background

glClearDepth(1.0f);

// Depth Buffer Setup

glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
// Really Nice Perspective

//Calculations

glBlendFunc(GL_SRC_ALPHA,GL_ONE);
// Set The Blending Function For Translucency

glEnable(GL_BLEND);

// Enable Blending

The following code is new. It sets up the starting angle, distance, and color of each star. Notice how easy it is to change the information in the structure. The loop will go through all 50 stars. To change the angle of star[1] all we have to do is say star[1].angle={some number} . It's that simple!

for (loop=0; loop<num; loop++)
// Create A Loop That Goes Through All The Stars

{

star[loop].angle=0.0f;
// Start All The Stars At Angle Zero

 I calculate the distance by taking the current star (which is the value of loop) and dividing it by the maximum amount of stars there can be. Then I multiply the result by 5.0f. Basically what this does is moves each star a little bit farther than the previous star. When loop is 50 (the last star), loop divided by num will be 1.0f. The reason I multiply by 5.0f is because 1.0f*5.0f is 5.0f. 5.0f is the very edge of the screen. I don't want stars going off the screen so 5.0f is perfect. If you set the zoom further into the screen you could use a higher number than 5.0f, but your stars would be alot smaller (because of perspective).

You'll notice that the colors for each star are made up of random values from 0 to 255. You might be wondering how we can use such large values when normally the colors are from 0.0f to 1.0f. When we set the color we'll use glColor4ub instead of glColor4f. ub means Unsigned Byte. A byte can be any value from 0 to 255. In this program it's easier to use bytes than to come up with a random floating point value.

star[loop].dist=(float(loop)/num)*5.0f;// Calculate Distance From The Center

star[loop].r=rand()%256;

// Give star[loop] A Random Red Intensity

star[loop].g=rand()%256;
// Give star[loop] A Random Green Intensity

star[loop].b=rand()%256;
// Give star[loop] A Random Blue Intensity

}

return TRUE;

// Initialization Went OK

}

The Resize code is the same, so we'll jump to the drawing code. If you're using the code from lesson one, delete the DrawGLScene code, and just copy what I have below. There's only 2 lines of code in lesson one anyways, so there's not a lot to delete.

int DrawGLScene(GLvoid)

// Here's Where We Do All The Drawing

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// Clear The Screen And The

//Depth Buffer

glBindTexture(GL_TEXTURE_2D, texture[0]);

// Select Our Texture

for (loop=0; loop<num; loop++)

// Loop Through All The Stars

{

glLoadIdentity();
// Reset The View Before We Draw Each Star

glTranslatef(0.0f,0.0f,zoom);// Zoom Into The Screen (Using The Value In 'zoom')

glRotatef(tilt,1.0f,0.0f,0.0f);// Tilt The View (Using The Value In 'tilt')

 Now we move the star. The star starts off in the middle of the screen. The first thing we do is spin the scene on the y axis. If we spin 90 degrees, the x axis will no longer run left to right, it will run into and out of the screen. As an example to help clarify. Imagine you were in the center of a room. Now imagine that the left wall had -x written on it, the front wall had -z written on it, the right wall had +x written on it, and the wall behind you had +z written on it. If the room spun 90 degrees to the right, but you did not move, the wall in front of you would no longer say -z it would say -x. All of the walls would have moved. -z would be on the right, +z would be on the left, -x would be in front, and +x would be behind you. Make sense? By rotating the scene, we change the direction of the x and z planes.

The second line of code moves to a positive value on the x plane. Normally a positive value on x would move us to the right side of the screen (where +x usually is), but because we've rotated on the y plane, the +x could be anywhere. If we rotated by 180 degrees, it would be on the left side of the screen instead of the right. So when we move forward on the positive x plane, we could be moving left, right, forward or backward.

glRotatef(star[loop].angle,0.0f,1.0f,0.0f);// Rotate To The Current Stars Angle

glTranslatef(star[loop].dist,0.0f,0.0f);
// Move Forward On The X Plane
Now for some tricky code. The star is actually a flat texture. Now if you drew a flat quad in the middle of the screen and texture mapped it, it would look fine. It would be facing you like it should. But if you rotated on the y axis by 90 degrees, the texture would be facing the right and left sides of the screen. All you'd see is a thin line. We don't want that to happen. We want the stars to face the screen all the time, no matter how much we rotate and tilt the screen.

We do this by cancelling any rotations that we've made, just before we draw the star. You cancel the rotations in reverse order. So above we tilted the screen, then we rotated to the stars current angle. In reverse order, we'd un-rotate (new word) the stars current angle. To do this we use the negative value of the angle, and rotate by that. So if we rotated the star by 10 degrees, rotating it back -10 degrees will make the star face the screen once again on that axis. So the first line below cancels the rotation on the y axis. Then we need to cancel the screen tilt on the x axis. To do that we just tilt the screen by -tilt. After we've cancelled the x and y rotations, the star will face the screen completely.

glRotatef(-star[loop].angle,0.0f,1.0f,0.0f);// Cancel The Current Stars Angle

glRotatef(-tilt,1.0f,0.0f,0.0f);

// Cancel The Screen Tilt

If twinkle is TRUE, we'll draw a non-spinning star on the screen. To get a different color, we take the maximum number of stars (num) and subtract the current stars number (loop), then subtract 1 because our loop only goes from 0 to num-1. If the result was 10 we'd use the color from star number 10. That way the color of the two stars is usually different. Not a good way to do it, but effective. The last value is the alpha value. The lower the value, the darker the star is.

If twinkle is enabled, each star will be drawn twice. This will slow down the program a little depending on what type of computer you have. If twinkle is enabled, the colors from the two stars will mix together creating some really nice colors. Also because this star does not spin, it will appear as if the stars are animated when twinkling is enabled. (look for yourself if you don't understand what I mean).

Notice how easy it is to add color to the texture. Even though the texture is black and white, it will become whatever color we select before we draw the texture. Also take note that we're using bytes for the color values rather than floating point numbers. Even the alpha value is a byte.

if (twinkle)

// Twinkling Stars Enabled

{

// Assign A Color Using Bytes

glColor4ub(star[(num-loop)-1].r,star[(num-loop)-1].g,

star[(num-loop)-1].b,255);

glBegin(GL_QUADS);
// Begin Drawing The Textured Quad

glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f,-1.0f, 0.0f);

glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f,-1.0f, 0.0f);

glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 0.0f);

glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f);

glEnd();

// Done Drawing The Textured Quad

}

Now we draw the main star. The only difference from the code above is that this star is always drawn, and this star spins on the z axis.

glRotatef(spin,0.0f,0.0f,1.0f);
// Rotate The Star On The Z Axis

// Assign A Color Using Bytes

glColor4ub(star[loop].r,star[loop].g,star[loop].b,255);

glBegin(GL_QUADS);

// Begin Drawing The Textured Quad

glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f,-1.0f, 0.0f);

glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f,-1.0f, 0.0f);

glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 0.0f);

glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f);

glEnd();

// Done Drawing The Textured Quad

 Here's where we do all the movement. We spin the normal stars by increasing the value of spin. Then we change the angle of each star. The angle of each star is increased by loop/num. What this does is spins the stars that are farther from the center faster. The stars closer to the center spin slower. Finally we decrease the distance each star is from the center of the screen. This makes the stars look as if they are being sucked into the middle of the screen.

spin+=0.01f;

// Used To Spin The Stars

star[loop].angle+=float(loop)/num;// Changes The Angle Of A Star

star[loop].dist-=0.01f;

// Changes The Distance Of A Star

 The lines below check to see if the stars have hit the center of the screen or not. When a star hits the center of the screen it's given a new color, and is moved 5 units from the center, so it can start it's journey back to the center as a new star.

if (star[loop].dist<0.0f)

// Is The Star In The Middle Yet

{

star[loop].dist+=5.0f;
// Move The Star 5 Units From The Center

star[loop].r=rand()%256;
// Give It A New Red Value

star[loop].g=rand()%256;
// Give It A New Green Value

star[loop].b=rand()%256;
// Give It A New Blue Value

}

}

return TRUE;

// Everything Went OK

}

Now we're going to add code to check if any keys are being pressed. Go down to WinMain(). Look for the line SwapBuffers(hDC). We'll add our key checking code right under that line. lines of code.

The lines below check to see if the T key has been pressed. If it has been pressed and it's not being held down the following will happen. If twinkle is FALSE, it will become TRUE. If it was TRUE, it will become FALSE. Once T is pressed tp will become TRUE. This prevents the code from running over and over again if you hold down the T key.

SwapBuffers(hDC);

// Swap Buffers (Double Buffering)

if (keys['T'] && !tp)

// Is T Being Pressed And Is tp FALSE

{

tp=TRUE;

// If So, Make tp TRUE

twinkle=!twinkle;// Make twinkle Equal The Opposite Of What It Is

}

The code below checks to see if you've let go of the T key. If you have, it makes tp=FALSE. Pressing the T key will do nothing unless tp is FALSE, so this section of code is very important.

if (!keys['T'])

// Has The T Key Been Released

{

tp=FALSE;

// If So, make tp FALSE

}

The rest of the code checks to see if the up arrow, down arrow, page up or page down keys are being pressed.

if (keys[VK_UP])

// Is Up Arrow Being Pressed

{

tilt-=0.5f;

// Tilt The Screen Up

}

if (keys[VK_DOWN])

// Is Down Arrow Being Pressed

{

tilt+=0.5f;

// Tilt The Screen Down

}

if (keys[VK_PRIOR])

// Is Page Up Being Pressed

{

zoom-=0.2f;

// Zoom Out

}

if (keys[VK_NEXT])

// Is Page Down Being Pressed

{

zoom+=0.2f;

// Zoom In

}

Like all the previous tutorials, make sure the title at the top of the window is correct.

if (keys[VK_F1])

// Is F1 Being Pressed?

{

keys[VK_F1]=FALSE;
// If So Make Key FALSE

KillGLWindow();

// Kill Our Current Window

fullscreen=!fullscreen;
// Toggle Fullscreen / Windowed Mode

// Recreate Our OpenGL Window

if (!CreateGLWindow("NeHe's Textures,

 Lighting & Keyboard Tutorial",640,480,16,fullscreen))

{

return 0;
// Quit If Window Was Not Created

}

}

}

}

In this tutorial I have tried to explain in as much detail how to load in a gray scale bitmap image, remove the black space around the image (using blending), add color to the image, and move the image around the screen in 3D. I've also shown you how to create beautiful colors and animation by overlapping a second copy of the bitmap on top of the original bitmap. Once you have a good understanding of everything I've taught you up till now, you should have no problems making 3D demos ofyour own. All the basics have been covered!

Jeff Molofee (NeHe)

PAGE
1
Jeff Molofee’s Lesson 9

