

Symbian OS Internals
Real-time Kernel Programming

Jane Sales

With
Andrew Rogers, Andrew Thoelke, Carlos Freitas,
Corinne Dive-Reclus, Dennis May, Douglas Feather,
Morgan Henry, Peter Scobie, Jasmine Strong, Jason Parker,
Stefan Williams and Tony Lofthouse

And
Jon Coppeard and Martin Tasker

Reviewed by

Andrew Ford, Andrew Jordan, Andrew Thoelke,
David Bachelor, Dennis May, Jason Parker,
Jonathan Medhurst, Jo Stichbury, Mark Shackman,
Nigel Henshaw, Peter Scobie, Richard Fitzgerald,
Simon Trimmer, Tony Lofthouse, Trevor Blight and
William Roberts

Symbian Press

Head of Symbian Press

Phil Northam

Managing Editor

Freddie Gjertsen

Symbian OS Internals

TITLES PUBLISHED BY SYMBIAN PRESS

� Wireless Java for Symbian Devices
Jonathan Allin
0471 486841 512pp 2001 Paperback

� Symbian OS Communications Programming
Michael J Jipping
0470 844302 418pp 2002 Paperback

� Programming for the Series 60 Platform and Symbian OS
Digia
0470 849487 550pp 2002 Paperback

� Symbian OS C++ for Mobile Phones, Volume 1
Richard Harrison
0470 856114 826pp 2003 Paperback

� Programming Java 2 Micro Edition on Symbian OS
Martin de Jode
0470 092238 498pp 2004 Paperback

� Symbian OS C++ for Mobile Phones, Volume 2
Richard Harrison
0470 871083 448pp 2004 Paperback

� Symbian OS Explained
Jo Stichbury
0470 021306 448pp 2004 Paperback

� Programming PC Connectivity Applications for Symbian OS
Ian McDowall
0470 090537 480pp 2004 Paperback

� Rapid Mobile Enterprise Development for Symbian OS
Ewan Spence
0470 014857 324pp 2005 Paperback

� Symbian for Software Leaders
David Wood
0470 016833 326pp 2005 Hardback

Symbian OS Internals
Real-time Kernel Programming

Jane Sales

With
Andrew Rogers, Andrew Thoelke, Carlos Freitas,
Corinne Dive-Reclus, Dennis May, Douglas Feather,
Morgan Henry, Peter Scobie, Jasmine Strong, Jason Parker,
Stefan Williams and Tony Lofthouse

And
Jon Coppeard and Martin Tasker

Reviewed by

Andrew Ford, Andrew Jordan, Andrew Thoelke,
David Bachelor, Dennis May, Jason Parker,
Jonathan Medhurst, Jo Stichbury, Mark Shackman,
Nigel Henshaw, Peter Scobie, Richard Fitzgerald,
Simon Trimmer, Tony Lofthouse, Trevor Blight and
William Roberts

Symbian Press

Head of Symbian Press

Phil Northam

Managing Editor

Freddie Gjertsen

Copyright 2005 Symbian Ltd
Published by John Wiley & Sons, Ltd

The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to
the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West
Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario,
Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Sales, Jane.
Symbian OS internals : real-time kernel programming / Jane Sales
with Andrew Rogers [. . . et al.].

p. cm.
Includes bibliographical references and index.
ISBN-13 978-0-470-02524-6 (pbk. : alk. paper)
ISBN-10 0-470-02524-7 (pbk. : alk. paper)
1. Real-time control. I. Title.

TJ217.7.S25 2005
629.8—dc22

2005018263

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-02524-6
ISBN-10 0-470-02524-7

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Bell & Bain, Glasgow
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

Contents

Symbian Press Acknowledgments ix

About this Book xi

About the Authors xiii

1 Introducing EKA2 1
1.1 The history of EKA2 1
1.2 Basic OS concepts 3
1.3 Symbian OS design 4
1.4 Summary 16

2 Hardware for Symbian OS 17
2.1 Inside a Symbian OS phone 17
2.2 System-on-Chip (SoC) 20
2.3 Random Access Memory (RAM) 29
2.4 Flash memory 31
2.5 Interrupts 33
2.6 Timers 35
2.7 Direct Memory Access (DMA) 36
2.8 Liquid Crystal Display (LCD) 37
2.9 Audio 39
2.10 Power management 41
2.11 Summary 42

3 Threads, Processes and Libraries 45
3.1 What is a thread? 45
3.2 Nanokernel threads 46
3.3 Symbian OS threads 62
3.4 What is a process? 93
3.5 DProcess class 94
3.6 Scheduling 98

vi CONTENTS

3.7 Dynamically loaded libraries 112
3.8 Summary 115

4 Inter-thread Communication 117
4.1 Client-server ITC 117
4.2 Asynchronous message queues 145
4.3 Kernel-side messages 147
4.4 Publish and subscribe 150
4.5 Shared chunks and shared I/O buffers 160
4.6 Summary 160

5 Kernel Services 161
5.1 Objects and handles 161
5.2 Services provided to user threads 173
5.3 Example user-accessible services 183
5.4 Services provided by the kernel to the kernel 187
5.5 Timers 195
5.6 Summary 206

6 Interrupts and Exceptions 207
6.1 Exception types 207
6.2 Exceptions on real hardware 210
6.3 Interrupts 219
6.4 Aborts, traps and faults 236
6.5 Summary 249

7 Memory Models 251
7.1 The memory model 251
7.2 MMUs and caches 253
7.3 The memory model interface 262
7.4 The memory models 274
7.5 Programmer APIs 298
7.6 Memory allocation 309
7.7 Low memory 311
7.8 Summary 314

8 Platform Security 315
8.1 Introduction 315
8.2 Unit of trust 317
8.3 Capability model 320
8.4 Data caging 327
8.5 Summary 330

9 The File Server 333
9.1 Overview 333

CONTENTS vii

9.2 The file server client API 339
9.3 The file server 347
9.4 File systems 364
9.5 Summary 385

10 The Loader 387
10.1 E32 image file format 387
10.2 ROM image file format 392
10.3 The loader server 393
10.4 Kernel-side code management 412
10.5 Summary 427

11 The Window Server 429
11.1 The kernel’s event handler 429
11.2 Different types of events 430
11.3 How WSERV processes events 435
11.4 Processing key events 436
11.5 Processing pointer events 438
11.6 Client queues 440
11.7 A simple handwriting animation DLL 442
11.8 Window objects and classes 456
11.9 Properties of windows 462
11.10 Drawing to windows 466
11.11 Direct screen access 471
11.12 Platform security in WSERV 473
11.13 Summary 474

12 Device Drivers and Extensions 475
12.1 Device drivers and extensions in Symbian OS 476
12.2 Kernel extensions 488
12.3 The hardware abstraction layer 494
12.4 Device drivers 498
12.5 Differences between EKA1 and EKA2 544
12.6 Summary 548

13 Peripheral Support 549
13.1 DMA 549
13.2 Shared chunks 562
13.3 Media drivers and the local media sub-system 574
13.4 Peripheral bus controllers 589
13.5 MultiMediaCard support 594
13.6 USB device support 602
13.7 Summary 612

viii CONTENTS

14 Kernel-Side Debug 613
14.1 Overview 613
14.2 Architecture 615
14.3 The kernel debug interface 625
14.4 Target debugger agents 640
14.5 Stop-mode debug API 643
14.6 Kernel trace channel 652
14.7 Summary 658

15 Power Management 659
15.1 Power states 661
15.2 Power framework 663
15.3 Typical power management 688
15.4 Managing idle time 723
15.5 Advanced power management 727
15.6 Summary 736

16 Boot Processes 737
16.1 Operating system startup 737
16.2 Alternative startup scenarios 747
16.3 Operating system shutdown 750
16.4 Operating system sleep and wakeup events 762
16.5 Summary 764

17 Real Time 765
17.1 What is real time? 765
17.2 Real time operating systems 767
17.3 EKA2 and real time 778
17.4 Real time application – GSM 788
17.5 Personality layers 807
17.6 Summary 823

18 Ensuring Performance 825
18.1 Writing efficient code 826
18.2 Maintaining real-time performance 834
18.3 Summary 850

Appendix 1 Glossary 851

Appendix 2 The E32ImageHeader 855

Appendix 3 The TRomImageHeader 861

Appendix 4 Bibliography 865

Index 867

Symbian Press Acknowledgements

Many people put many hours into the creation of this book, none more
so than the authors and reviewers. Symbian Press would like to thank
each of them without restraint for their perseverance and dedication,
with a special mention for Dennis, who always seemed to be holding the
short straw.

Thanks are also due to Stephen Evans and Akin Oyesola for their
patience whilst some of their most vital engineers were distracted from
‘‘real work’’ for week after long week.

About this Book

The latest versions of Symbian OS are based upon Symbian’s new real-
time kernel. This kernel is designed to make phone-related development
easier: base-porting will be easier, device driver development will be
easier, software development will be easier.

Symbian OS Internals is a detailed exposition on the new real-time
kernel, providing the reader with the insights of the software engineers
who designed and wrote it. In the main it is an explanatory text which
seeks to describe the functioning of the kernel, and, where relevant, to
indicate key differences from its predecessor.

This book is invaluable for:

Those who are involved in porting Symbian OS. This book is not a
base-porting manual, since this is already provided by Symbian; but it
benefits the base-porting engineer by giving him or her a more solid
understanding of the OS being ported.

Those writing device drivers. This book provides an in-depth explana-
tion of how Symbian OS drivers work. Device drivers have changed
considerably with the introduction of a single code, so this helps fill the
knowledge gap for those converting them to the new kernel.

Those who wish to know how the Symbian OS kernel works. This book
provides a detailed commentary on the internals of Symbian OS, providing
information for the varied needs of readers, helping: students studying
real-time operating systems, middleware programmers to understand the
behavior of underlying systems, systems engineers to understand how
Symbian OS compares to other similar operating systems, and, for those
designing for high performance, how to achieve it.

About the Authors

Jane Sales, lead author

Jane joined Symbian (then Psion) in 1995 to lead the team whose goal
was to create a new 32-bit operating system, now known as EKA1.
This goal was realized two years later, when the Psion Series 5 was
released. Since then, Jane has taken on a variety of roles within Symbian,
including product management, systems architecture and setting up a
small product-focused research group in Japan.

Jane studied at Jesus College, Oxford, where she gained an MA in
mathematics in 1982. After that, she became part of a small team
building a microcomputer to which they ported CCP/M. It was the start
of a long-lasting love of systems programming.

In 2003, Jane moved to the South of France and began work on this book.
She would like to thank her husband, Roger, for his moral and financial
support over the succeeding 18 months.

Corinne Dive-Reclus

Corinne joined Symbian in 2001 after several years at Baltimore Ltd.,
where she designed the embedded software of ACCE (Advanced Config-
urable Crypto Environment), a cryptographic hardware module certified
FIPS 140-1 Level 4.

In 1987, her first job was as a presales engineer at Sun Microsystems,
France where she was exposed to the concept of Network Computing &
Internet and to its very first remote attacks – at a time when this was still
confidential. Being more interested in development than presales, she
subsequently worked as a software engineer for Concept and Implicit,
developing an RAD (Rapid Application Development) programming lan-
guage for the creation of distributed data-oriented applications.

xiv ABOUT THE AUTHORS

Since joining Symbian, Corinne has been the Platform Security System
Architect, and has worked on the platform security architecture from its
initial design to its implementation in Symbian v9. To ensure that all
layers of the operating system will contribute to its overall security, she
worked extensively with Andrew Thoelke and Dennis May to validate the
security features of EKA2, design new services such as Publish&Subscribe
and Capability Model, as well as defining the new behavior of the
file server, known as Data Caging. For this work, Corinne received the
Symbian Technical Innovation award in 2003.

Fulfilling an early passion for Prehistoric Archaeology & Computing,
Corinne graduated from the Ecole Nationale Superieure de Geologie, a
unique French institution combining a five-year curriculum in Engineering
and Earth Science.

Douglas Feather

Douglas joined Symbian (then Psion) in 1994. He started by leading the
writing of the text formatting engine for the Psion S5. He has also worked
in the Web Browser and Core Apps teams where he rewrote most of
the versit parser to greatly improve its performance. For five out of the
last seven years he has worked mainly on the Window Server, where he
added full color support, fading support, a framework to allow digital ink
to be drawn over the other applications, support for multiple screens and
transparent windows.

Douglas has a BSc in Mathematics from Southampton University and a
PhD in Number Theory from Nottingham University. He is a committed
Christian and regularly engages in vigorous theological debate, to defend
the biblical truths about Jesus Christ, at Speaker’s Corner (Hyde Park,
London) on Sunday afternoons.

Carlos Freitas

Carlos joined Symbian in 2000, working on device and media drivers and
porting the Base. His involvement with EKA2 dates from 2002 when he
ported the newly released Kernel and several device drivers to a new hard-
ware reference platform. He has since assumed responsibility for docu-
menting, improving and maintaining the power management framework.

Carlos is a licentiate in Electronics and Telecommunications Engineering
from the University of Porto, Portugal, and had a CERN bursary to research
advanced optical communications. Prior to Symbian Carlos worked on
both hardware and embedded software development under a number of
Operating Systems such as VxWorks, µItron and WinCE.

ABOUT THE AUTHORS xv

Morgan Henry

Morgan joined Symbian (then Psion) in 1995 working in the kernel
team on EKA1, where he met some amazing people. Once he regained
his composure he was responsible for the kernel port for the Nokia
9210 – ‘‘the world’s first open Symbian OS phone’’. During his time in
the kernel team he invented the EKA1 power management framework, a
cross platform DMA framework, co-developed Symbian’s ROM-building
tools, and worked on the partner-OS solution for single-core dual-
OS phones.

Morgan is responsible for the Symbian OS kernel debug architecture for
both EKA1 and EKA2, and has worked with many tools vendors, taking
the project from research to production.

Before joining Symbian, Morgan dabbled in graphic design, but he
now finds himself as a System Architect. He’s not sure how that
happened. Most recently he has been working on requirements and
designs across several technology areas to shape future versions of
Symbian OS.

Morgan maintains an active interest in drawing, painting and animation.
He holds a BSc in Mathematics and Computer Science from Queen Mary
and Westfield College, London.

Tony Lofthouse

Tony joined Symbian in 2002, having previous worked for the Santa
Cruz Operation (SCO) Inc. in the Base Drivers team on the UnixWare
Operating System and Veritas Inc. in the VxFS file-system team.

At Symbian he has been a lead developer on various Symbian OS
hardware reference platform base ports for the Development Boards
group. Tony now works in the Base department and is the technical
architect for the Development Boards technology stream.

He received a BSc in Computer Science from the University of Southamp-
ton in 1996. Prior to this he had a brief career in contaminated land
environmental research, but along with sometimes being cold and wet,
decided this was too risky.

Dennis May

Dennis May joined Symbian (then Psion) in 1996, having previously
worked on RF hardware design and software development for mobile
satellite communication systems and on layer 1 software development
for a GSM mobile handset.

xvi ABOUT THE AUTHORS

Dennis initially worked on the development of the Psion Series 5 PDA and
subsequently rewrote the Symbian maths library, worked on improve-
ments to the EKA1 kernel and ported Symbian OS to new platforms. He
went on to become the original architect and creator of the EKA2 kernel,
which he designed to improve on the original kernel in the areas of
real-time performance, portability and robustness.

Dennis has made several other contributions to Symbian, including work
in the areas of build tools and automated testing, and he is an inventor
of patented ideas relating to platform security, file systems, memory
management and kernel synchronization primitives. He also had a hand
in the design of the ARM architecture 6 memory management unit.

Dennis is currently working as kernel technology architect at Symbian,
leading the kernel team in the continued development of the EKA2 kernel.

Dennis received a BA in Mathematics from Trinity Hall, Cambridge,
in 1990 and an MSc in Communications and Signal Processing from
Imperial College, London, in 1991.

Jason Parker

Jason joined Symbian (then Psion) in 1998, where he became a founding
member of the Base Porting Group (BPG). He currently leads BPG and
the recently formed Multimedia Porting Group (MMPG) within Symbian’s
Technical Consulting division.

Jason engages with Symbian semiconductor partners to ensure their SoC
designs are optimized for Symbian phones. He and his teams have been
instrumental in building many of Symbian’s leading-edge phones. They
have contributed practical technologies into the EKA2 project, including
ROLF (now renamed as ROFS) and the Flash Logger. They built the
first working EKA2 prototype phone and are leading the development of
commercial EKA2 handsets.

Before joining Symbian, Jason developed real-time software for bespoke
embedded systems. Projects included a multi-channel digital video record-
ing system and 3D military simulators.

Jason holds a BSc in Mathematics and Physics from the University
of York, and an MSc in Remote Sensing and Image Processing from
Edinburgh University. Outside of Symbian, he can be found climbing the
world’s mountains.

Andrew Rogers

Andrew Rogers joined Symbian in 2002. He then spent time working on
Bluetooth,USB, InfraredandOBEXwith teams in Cambridge before joining

ABOUT THE AUTHORS xvii

the base kernel team in London to work on EKA2. Whilst with the base ker-
nel team Andrew migrated the whole OS to a new data type for TInt64 and
oversaw the introduction of support for the Symbian User::Leave()/TRAP
framework to be implemented in terms of C++ exceptions, including imple-
menting the support for this on the Win32 emulator himself.

More recently, Andrew has spent the last 4 months working in Korea as
a member of Symbian’s technical consultancy department, but has now
returned to Cambridge to work as a consultant on European phone projects.

Andrew has a BA in Computer Science from Sidney Sussex College,
Cambridge. In his ‘‘spare’’ time he has been known to bring up support
on EKA2 for other Win32 compilers and has also been responsible for
implementing changes to the IPC mechanism to prevent problems caused
by race conditions between connect and disconnect messages, whilst he
is not chasing round after his two young children or writing.

Peter Scobie

Peter joined Symbian (then Psion) in 1992 after eight years working for
various telecommunications and process control companies – including
Dacom, Combustion Engineering and Plessey Telecommunications.

At Psion he initially led the production software team which developed
software for the test systems used in the manufacture of the Psion Series
3a. Then he moved into the hand-held computer software department and
was part of the original development team for the EKA1 kernel – working
on EPOC Release 1 used in the Psion Series 5. During this time he designed
and developed the local media sub-system and the PC Card Controller.
He then worked on the development of the MultiMediaCard controller
and the LFFS file system. He is still working in the base department and
is now technical architect for the peripherals technology stream.

Peter has a BSc in Electrical and Electronic Engineering from Loughbor-
ough University of Technology. Outside of work Peter enjoys canoeing,
sailing and coaching for his eldest son’s football team.

Jasmine Strong

Jasmine Strong joined Symbian in 2003, having previously worked for
Texas Instruments, designing the system-on-chip architecture of the new
generation of OMAP processors. At Symbian, she has worked on perfor-
mance profiling and improvements for the EKA2 kernel, using her long
experience with ARM processors to exploit their special characteristics.

Jasmine has worked in embedded systems since 1998, when she started
a project to produce the world’s first internet-enabled walk-in freezer

xviii ABOUT THE AUTHORS

cabinet. Her eclectic career has touched upon many different areas, from
hydrocarbon physics to digital television.

Jasmine has been programming ARM processors since the late 1980s
and is a keen motorcyclist and photographer. When she’s not at work or
tearing around at high speeds, Jasmine keeps a weblog.

Andrew Thoelke

Andrew joined Symbian (then Psion) in 1994 and became one of the
key developers of OVAL, a rapid application development language
similar to Visual Basic, for the Psion Series3a computers. He has since
worked on projects throughout the lifetime of Symbian OS, and spanning
many of its technology areas such as kernel, data storage, messaging,
Java and platform security. He has been deeply involved in the design,
development and promotion of EKA2 for the last four years, taking this
project from research to production.

Today he has one of the most senior technical roles within Symbian,
influencing both the technical strategy of the organization and the ongoing
architectural development of Symbian OS.

He graduated from Sidney Sussex College, Cambridge with an MA in
Mathematics shortly before beginning his career at Symbian.

Stefan Williams

Stefan joined Symbian in 2002 where he now works in the position of
File Server Technical Lead. During his time with Symbian, Stefan has
been actively involved in many aspects the Peripherals and File Server
sub-systems, with most recent contributions including the design and
implementation of the SDIO framework, USB Mass Storage controller
and various kernel porting activities.

A graduate of Imperial College, London, Stefan has an MA in Elec-
trical and Electronic Engineering and has previously worked on several
major design commissions and commercial products, including PC-based
data acquisition and signal analysis software, real-time TDR-based fault
analysis systems and distributed embedded network solutions.

Stefan would like to thank his son, Derry, for not complaining too much
while Dad spent his weekends writing – and promises to start being
fun again!

1
Introducing EKA2
by Jane Sales with Martin Tasker

The ability to quote is a serviceable substitute for wit.

W. Somerset Maugham

1.1 The history of EKA2

Kernel design is one of the most exciting opportunities in software
engineering. EKA2 is the second iteration of Symbian’s 32-bit kernel
architecture, and this in turn follows 8- and 16-bit kernels designed in the
1980s for Psion’s personal organizers and PDAs.

Psion’s Organiser, launched in 1984, was based on an 8-bit processor
and supported only built-in applications. For such a device, the only
kernel needed was a bootstrap loader and a small collection of system
services. There was no clear requirement to differentiate the 8-bit kernel
from middleware or application software.

In 1986, Psion launched the Organiser II, an 8-bit machine offering
expansion based on the interpreted OPL language. The demands on the
OS were slightly greater – sufficiently good memory management, for
example, to support an interpreted language.

A major evolution came when, beginning in 1990, Psion launched
a range of machines including a laptop, a clamshell organizer and an
industrial organizer, all based on a single OS. The 16-bit EPOC kernel
was tied to the Intel 8086 architecture and supported expansion, with
applications written not only in OPL, but also in the native C APIs of the
EPOC OS – thus opening up the OS itself to any number of aftermarket
application writers.

This openness placed massive new demands on the kernel. For one
thing, it had to be documented and made accessible to aftermarket
programmers. Perhaps some applications would be poorly written: the
kernel had to provide memory protection so a bug in one program would

2 INTRODUCING EKA2

not crash another – or even crash the whole OS. Applications demanded
sophisticated memory management for their own working memory. A
potentially limitless number of event-driven services had to execute
efficiently on a highly resource-constrained machine. And all this had to
be delivered on the platform of the 8086’s segmented memory model,
with challenges that PC programmers of the day will readily recall.

The 16-bit EPOC kernel thus had to address many of the requirements
which are met by EKA2 today, because of its positioning between the
embedded real-time operating systems and classic desktop operating
systems such as Windows. Although it was similar to embedded RTOSes (it
ran from ROM), it was bigger because it supported richer functionality and
was open to aftermarket applications. Although it was similar to desktop
OSes (it was open and used the 8086 architecture), it was smaller because
the memory and power resources available were considerably less.

Two further evolutionary steps were necessary to arrive at EKA2.
EPOC32, released in Psion’s Series 5 PDA in 1997, began life in 1994.

Its kernel, retrospectively dubbed EKA1, carried over the best features
of the 16-bit EPOC kernel and fixed several significant issues. Firstly,
EKA1 was thoroughly 32-bit – with no relics of the awkwardness in EPOC
resulting from the 8086-segmented memory architecture. Secondly, the
EKA1 kernel was designed from the beginning with hardware variety and
evolution in mind – unlike 16-bit EPOC, which had been tied closely to a
single 80186-based chipset. Many implementation details were changed
as a result of these fundamentals, but EKA1 was otherwise surprisingly
similar in spirit to 16-bit EPOC.

At that time, one of the proudest moments of my career took place – in
my spare bedroom! The rest of the team were out of the office, so I
worked at home for a week, frantically trying to achieve the first ever
boot of the kernel before they got back. And late on the Friday afternoon,
the null thread finally printed out its debug message – EKA1 was born.

But EKA1 was not destined to be the end of the story. The Symbian OS
system for supporting event-driven programming was efficient overall,
but provided no real-time guarantees. The kernel itself was designed
with robustness – key for PDAs that hold a user’s personal data – as the
primary goal. As Symbian OS began to address the processing needs
of mobile phones, it became apparent that an OS that could provide
real-time guarantees was really needed.

There were other influences on EKA2 too. The experience gained
from real hardware porting in the context of EKA1 was beginning to
demonstrate that EKA1’s module boundaries were not always drawn in the
right place to make porting easy. Some ports, which should have required
only a driver change, in practice required the kernel to be re-built.

So a new kernel architecture was conceived and, to distinguish it
from the original 32-bit EPOC kernel, it was named EKA2 (EPOC Kernel
Architecture 2), with the term EKA1 being invented for the original.

BASIC OS CONCEPTS 3

EKA2 was conceived in 1998 and, little by little, brought from drawing
board to market. By 2003, Symbian’s lead licensees and semiconductor
partners were committed to adopting EKA2 for future products.

This book was written to provide a detailed exposition on the new
real-time kernel, providing the reader with the insights of the software
engineers who designed and wrote it.

This chapter is designed as the foundations for that book and should
give you a good understanding of the overall architecture of the new
real-time kernel, and of the reasoning behind our design choices. I will
also say a little about the design of the emulator, and then return to this
subject in more detail a couple of times later in the book.

1.2 Basic OS concepts

I’d like to start with a basic definition of an operating system (OS):
The operating system is the fundamental software that controls the

overall operation of the computer it runs on. It is responsible for the man-
agement of hardware – controlling and integrating the various hardware
components in the system. The OS is also responsible for the manage-
ment of software – for example, the loading of applications such as email
clients and spreadsheets.

The operating system is usually the first software that is loaded into a
computer’s memory when that computer boots. The OS then continues
the start-up process by loading device drivers and applications. These,
along with all the other software on the computer, depend on the
operating system to provide them with services such as disk access,
memory management, task scheduling, and interfacing with the user.

Symbian OS has a design that is more modular than many other oper-
ating systems. So, for example, disk services are in the main performed
by the file server, and screen and user input services by the window
server. However, there is one element that you can think of as the heart
of the operating system – the element that is responsible for memory
management, task management and task scheduling. That element is of
course the kernel, EKA2.

There are many different flavors of operating system in the world, so
let’s apply some adjectives to Symbian OS, and EKA2 in particular:

Symbian OS and EKA2 are modular. As I’ve already said, operating sys-
tem functionality is provided in separate building blocks, not one mono-
lithic unit. Furthermore, EKA2 is modular too, as you can see in Figure 1.1.

EKA2 is single user. There is no concept of multiple logins to a
Symbian OS smartphone, unlike Windows, Mac OS X, UNIX or traditional
mainframe operating systems.

EKA2 is multi-tasking. It switches CPU time between multiple threads,
giving the user of the mobile phone the impression that multiple applica-
tions are running at the same time.

4 INTRODUCING EKA2

HAL

ESTARTEFILE
(file server)

EWSRV
(window server)

EUSER
(user library)

MMU CPU

nano
kernel

memory
model

EKERN
(kernel)

software

hardware

user

kernel

BSP
boundary

Peripherals
Pic

& timer

ASSP

variant

Platform
Specific

Layer

Platform
Indepent

Layer
LDD

PDD

DEVICE
DRIVER

EXTENSION

RTOS
PERSONALITY

LAYER
(EXTENSION)

privilege
boundary

physical
boundary

Figure 1.1 Symbian OS overview

EKA2 is a preemptively multi-tasking OS. EKA2 does not rely on
one thread to relinquish CPU time to another, but reschedules threads
perforce, from a timer tick.

EKA2 is a priority-based multi-tasking OS with priority inheritance.
EKA2 allocates CPU time based on a thread’s priority and minimizes the
delays to a high-priority thread when a low-priority thread holds a mutex
it needs.

EKA2 is real-time. Its services are (mostly) bounded, that is it completes
them in a known amount of time.

EKA2 can be a ROM-based OS.
EKA2 is suitable for open but resource-constrained environments. We

designed it for mobile phones, and so it needs less of key resources such
as memory, power and hard disk than open desktop operating systems
such as Windows or Linux.

1.3 Symbian OS design

1.3.1 Design goals
When creating EKA2 we set ourselves a number of design constraints. We
started by deciding what we didn’t want to lose from EKA1. This meant
that we wanted to ensure that the new kernel was still:

1. In the embedded OS tradition

2. Suitable for resource-constrained environments

SYMBIAN OS DESIGN 5

3. Modular: consisting of microkernel and user-side servers

4. Portable to a range of evolving chipsets

5. Robust against badly written user code

6. Of high integrity, ensuring the safety of user data.

Then we decided on our new goals. The key goal was that the new
kernel would be real-time and have enhanced overall performance. We
decided that we would meet this if we could run a GSM protocol
stack on our new operating system. A side benefit, and a worthy one,
would be the ability to better support high-bandwidth activities such as
comms and multimedia. This goal broke down into several sub-goals and
requirements:

1. Latency ≤ 1 ms from interrupt to user thread

2. Latency ≤ 500 µs from interrupt to kernel thread

3. Fast mutex operations

4. OS calls to be of determined length where possible

5. OS calls to be preemptible

6. Priority-order waiting on semaphores and mutexes

7. Timers with a finer resolution.

Then we considered how else we could improve the operating system,
and we came up with the following list:

1. Ease porting – although EKA1 had been designed to be portable, we
could go much further to make life easier for those porting the OS to
new hardware

2. Be robust against malicious (rather than merely badly written) user
code

3. Enable single-core solutions, in which embedded and user-application
code run on the same processor core

4. Provide a better emulator for code development and debugging, that
emulator being a closer match to real hardware

5. Simplify life for device driver writers.

And as we considered these design goals, we were aware that there
was one over-riding constraint on our design. That constraint was to
be backwards source compatibility with the EKA1’s EUSER class library.

6 INTRODUCING EKA2

EUSER is the interface to the kernel for all Symbian OS applications, and
there are a lot of them out there!

1.3.2 Symbian OS kernel architecture
With those design goals in mind, we designed an operating system whose
architecture, at the highest level, looked like that in Figure 1.1. You can
see the major building blocks of the kernel. I’ve also included two other
key system components that are usually considered to be part of the
operating system, and that I will cover in this book: the file server and the
window server. I’ll cover each of these building blocks and give you an
idea of its basic functionality.

1.3.2.1 Nanokernel

The main function of the nanokernel is to provide simple, supervisor-mode
threads, along with their scheduling and synchronization operations. We
named the nanokernel as we did because the services it provides are
even more primitive than those provided by most embedded real-time
operating systems (RTOSes). However, we have carefully chosen those
services to be sufficient to support a GSM signaling stack.

The nanokernel is the initial handler for all interrupts. It then passes
the majority of them to the variant layer for dispatch. It also provides
simple timing functions, such as the nanokernel timer (NTimer) API,
which gives a callback after a specified number of ticks, and the sleep API
(NKern::Sleep), which makes the current thread wait for a specified
number of ticks.

The simple synchronization objects I mentioned earlier are the nano-
kernel mutex (NFastMutex) and the nanokernel semaphore (NFast-
Semaphore). Both of these forbid more than one thread from waiting
on them.

Finally, the nanokernel provides deferred function calls (DFCs) and the
oddly named immediate deferred function calls (IDFCs). If you want to
find out more about these, then please turn to Chapter 6, Interrupts and
Exceptions.

An important difference in EKA2 from EKA1 that should be noted is
that neither the nanokernel nor the Symbian OS kernel link to the user
library, EUSER. Instead, the nanokernel uses its own library of utility
functions, and makes these available to the rest of the kernel, and device
drivers too.

Another key difference from EKA1, somewhat related to the one I
have just discussed, is that EKA2 does not support a kernel-side leaving
mechanism. This means that errors are reported by returning an error
code – or panicking the thread.

The majority of the time, the nanokernel is preemptible. Usually it
runs unlocked and with interrupts enabled, but we do have to prevent

SYMBIAN OS DESIGN 7

other threads from running in a few sections of code, such as thread state
changes and access to the ready list. We designed these critical sections
to be as short as possible and to have bounded execution times, the
goal being to maintain deterministic real-time performance. We protect
the critical sections in the nanokernel by disabling preemption – this is
possible because these sections are very short. In general, we use a mutex
known as the system lock to protect critical code in the Symbian OS
kernel and memory model, but the only place where the nanokernel uses
this lock is to protect the scheduler’s address space switch hook on the
moving memory model.

What are the limitations on the nanokernel? The main one to note
is that it does not do any dynamic memory allocation; that is, it can’t
allocate or free memory. In all of the nanokernel’s operations, it assumes
that memory has been preallocated by other parts of the operating system.

1.3.2.2 Symbian OS kernel

The Symbian OS kernel provides the kernel functionality needed by
Symbian OS, building on the simple threads and services provided by the
nanokernel to provide more complex objects, such as user-mode threads,
processes, reference-counted objects and handles, dynamically loaded
libraries, inter-thread communication and more.

These objects also include a range of more sophisticated synchro-
nization objects: Symbian OS semaphores and mutexes. Symbian OS
semaphores are standard counting semaphores which support multiple
waiting threads and which release waiting threads in priority order. Sym-
bian OS mutexes are fully nestable (a thread can hold several mutexes at
once, and can hold the same mutex multiple times). They also support
priority inheritance: the holding thread inherits the priority of the highest
priority waiting thread, if that is higher than its usual priority.

In contrast to the nanokernel, the Symbian OS kernel does allow
dynamic memory allocation. It provides a kernel memory allocator – the
kernel heap, which uses low-level memory services provided by an entity
known as the memory model. The Symbian OS is completely MMU
agnostic – we isolate all assumptions about memory to the memory
model, which I describe in more detail in the next section.

The Symbian OS kernel is fully preemptible: an interrupt can cause
it to reschedule at any point in its execution, even in the middle of a
context switch. This means that the Symbian OS kernel can have no effect
whatsoever on thread latency.

We use system lock mutex, provided by the nanokernel, to protect the
most fundamental parts of the Symbian OS kernel, such as:

(i) The state of DThread objects. When Symbian OS threads interact
with semaphores and mutexes, they undergo state transitions that
are protected by the system lock

8 INTRODUCING EKA2

(ii) The state of most Symbian OS synchronization objects: IPC (servers
and sessions), semaphores, mutexes, message queues, publish and
subscribe properties

(iii) Handle arrays are valid for reading (but not writing) when the system
lock is held. All the executive functions that take a handle hold the
system lock while translating it – see Chapter 5, Kernel Services, for
more on this subject.

1.3.2.3 Memory model

In EKA2, we confine our assumptions about the memory architecture of
the ASIC to one module, the memory model. Thus the memory model
encapsulates significant MMU differences, such as whether a cache is
virtually tagged or physically tagged, and indeed, whether there is an
MMU at all. In EKA1, assumptions about memory and the MMU were
spread throughout the operating system, making it difficult to produce
a mobile phone based on an ASIC without an MMU, for example. This
has become much easier with the advent of EKA2, since the memory
model allows you to model memory in different ways, and to change that
decision relatively easily.

Symbian currently provides four different memory models:

1. Direct (no MMU)

2. Moving (similar to EKA1)

3. Multiple (used for ASICs with physically tagged caches such as Intel
X86 and later ARM cores)

4. Emulator (used by the Symbian OS emulator that runs on Windows).

The memory model provides low-level memory management services,
such as a per-process address space and memory mapping. It performs
the context switch when asked to do so by the scheduler and is involved
in inter-process data transfer.

The memory model also helps in the creation of processes as an
instantiation of an executable image loaded by the file server, and takes
part in making inter-process data transfers.

If you are interested in finding out more about the memory model, turn
to Chapter 7, Memory Models.

1.3.2.4 Personality layer

We designed the nanokernel to provide just enough functionality to
run a GSM signaling stack. The idea behind this was to allow mobile
phone manufacturers to run both their signaling stacks and their personal
information management (PIM) software on a single processor, providing
considerable cost savings over the usual two-processor solution.

SYMBIAN OS DESIGN 9

Most mobile phone manufacturers have written their signaling stacks
for existing RTOSes such as Nucleus or µITRON. These signaling stacks
represent a considerable investment in time and money, and it would be
very time-consuming for the mobile phone manufacturers to port them
to the nanokernel – not to mention the increase in defects that would
probably ensue from such an exercise.

Because of this, we designed the nanokernel to allow third parties
to write personality layers. A personality layer is an emulation layer
over the nanokernel that provides the RTOS API to client software. The
personality layer would translate an RTOS call into a call (or calls) to
the nanokernel to achieve the same ends. In this way, we allow source
code written for that RTOS to run under Symbian OS with little or no
modification.

For a more detailed description of personality layers, and the nanoker-
nel design decisions that support them, turn to Chapter 17, Real Time.

1.3.2.5 ASSP/variant extension

Typically, the CPU and the majority of hardware peripherals on mobile
devices are implemented on a semiconductor device integrated circuit
commonly referred to as an ASSP (Application-Specific Standard Product).
To reduce both the bill of materials and the size of a phone, it is becom-
ing common to add an increasing number of components to the ASSP.
This might include stacking RAM and flash components on the same
silicon package, or incorporating components into the silicon layout; for
example, a DSP (digital signal processor) for audio/video processing, ded-
icated graphics processors and telephony baseband processors running
GSM or CDMA communication stacks.

We refer to any hardware components outside the ASSP as variant-
specific components. These typically include components such as flash
and RAM storage technology, display devices, baseband and Bluetooth
units. They are typically interfaced to the processor over semiconductor-
vendor-specific buses and interconnect, or more standard communica-
tions lines such as USB and serial UARTs. ASSPs also tend to provide
configurable GPIO (general purpose I/O) lines for custom functions such
as MMC card detect and touch-screen pen down interrupt lines.

So, in Symbian OS, the ASSP/variant extension provides the hardware-
dependent services required by the kernel – for example, timer tick
interrupts and real-time clock access. In the days of EKA1, we built
the ASSP into the kernel, and the separate variant layer described in the
next section was mandatory. This made for unnecessary re-compilation of
the kernel when porting to a new ASSP, so in EKA2 we have completely
separated the ASSP from the kernel. Of course, this means that if you are
porting EKA2, you no longer need to recompile the kernel every time you
tweak your hardware.

10 INTRODUCING EKA2

1.3.2.6 Variant

In EKA2, we don’t insist that you make a division between the ASSP and
the variant, as we do in EKA1. You may provide one single variant DLL if
you wish. Nevertheless, if you were porting the OS to a family of similar
ASICs, you would probably choose to split it, putting the generic code for
the family of ASICs in the ASSP extension, and the code for a particular
ASIC in the variant DLL. For example, within Symbian, the Intel SA1100
ASSP has two variants, Brutus and Assabet.

1.3.2.7 Device drivers

On Symbian OS, you use device drivers to control peripherals: drivers
provide the interface between those peripherals and the rest of Sym-
bian OS. If you want, you may split your device driver in a similar
way to the ASSP and variant, providing a hardware-independent logical
device driver, or LDD, and a hardware-dependent physical device driver,
or PDD.

Device drivers may run in the client thread or in a kernel thread:
our new multi-threaded kernel design makes porting device drivers to
Symbian OS from other operating systems much easier.

Symbian provides standard LDDs for a wide range of peripheral types
(such as media devices, the USB controller and serial communications
devices) – nevertheless, phone manufacturers will often develop their
own interfaces for custom hardware.

Device drivers have changed considerably from EKA1 to EKA2. See
Chapter 12, Drivers and Extensions, for more details.

1.3.2.8 Extensions

Extensions are merely device drivers that the kernel automatically starts
at boot-time, so you can think of them as a way to extend the kernel’s
functionality. For example, the crash debugger is a kernel extension,
allowing you to include it or exclude it from a ROM as you wish, without
having to recompile the kernel.

The variant and the ASSP that I discussed earlier are important exten-
sions that the kernel loads quite early in the boot process. After this, the
kernel continues to boot until it finally starts the scheduler and enters
the supervisor thread, which initializes all remaining kernel extensions.
Extensions loaded at this late stage are not critical to the operation of
the kernel itself, but are typically used to perform early initialization of
hardware components and to provide permanently available services for
devices such as the LCD, DMA, I2C and peripheral bus controllers.

The final kernel extension to be initialized is the EXSTART extension,
which is responsible for loading the file server. I discuss system boot in
more detail in Chapter 16, Boot Processes.

SYMBIAN OS DESIGN 11

1.3.2.9 EUSER

The user library, EUSER, provides three main types of function to its
clients:

1. Class library methods that execute entirely user-side, such as most
methods in the array and descriptor classes (descriptors are the
Symbian OS version of strings)

2. Access to kernel functions requiring the kernel to make privileged
accesses on behalf of the user thread, such as checking the time or
locale settings

3. Access to kernel functions requiring the kernel to manipulate its own
memory on behalf of a user thread, such as process creation or
loading a library.

Every Symbian OS thread gains its access to kernel services through the
EUSER library. It is this interface that we have largely maintained between
EKA1 and EKA2, resulting in minimal disruption to application authors.

1.3.2.10 File server

The file server is a user-mode server that allows user-mode threads to
manipulate drives, directories and files. Please turn to Chapter 9, The File
Server, for more details.

1.3.2.11 Window server

The window server is a user-mode server that shares the screen, keyboard
and pointer between all Symbian OS applications. See Chapter 11, The
Window Server, for more details.

1.3.2.12 Software layering

We can also consider the architecture of Symbian OS from a software
layering perspective, as shown in Figure 1.2.

If you are familiar with EKA1, you will notice that the layering of EKA2
is a little different. Nonetheless, there are strong similarities, as we move
down from the most generic, independent layer, in which code is shared
between all platforms, to the most specific variant layer, in which code
is written for a particular ASIC on a particular development board or in a
particular mobile phone.

We call the top four software layers ‘‘the kernel layer’’, and the bottom
two, ‘‘the peripheral layer’’. These last form a key part of the board
support package that a phone manufacturer implements when porting
Symbian OS to new hardware. This also comprises the bootstrap and
device drivers and extensions.

12 INTRODUCING EKA2

NKern

Memory Model

Memory Model

Memory Model

NKern Symbian OS Kernel

Symbian OS Kernel

ASSP DLL

Variant DLL

Independent

Platform

Model

CPU

ASSP

Variant

Figure 1.2 Kernel layering

The independent layer makes up about 60% of the kernel source
code. It provides the basic building blocks of the nanokernel and the
Symbian OS kernel – nanothreads, threads, processes, chunks, client-
server and more. These base classes are derived in lower layers to
provide implementations for the particular hardware on which Symbian
OS is running.

The platform layer is concerned with executable images – whether
Symbian OS is running on the emulator or real hardware – hence its
alternative name of the image layer. Only the memory model has code
at this level, and it provides two implementations, EPOC for device
hardware and WIN32 for the emulator.

The model layer is all about the organization of per-process memory,
and again only the memory model has code at this level. The mem-
ory model provides four different implementations – moving, multiple,
direct and emulator. I will discuss these in more depth in Chapter 7,
Memory Models.

The CPU layer is for code that differs according to the processor that
Symbian OS is running on; this is where assembler code belongs. The
nanokernel, memory model and Symbian OS kernel all have code in
this layer. At the time of writing, Symbian provides three possible CPU
layers – X86 (a port to PC hardware), ARM (mobile phones) and Win32
(for the emulator).

The CPU layer of the memory model has code that is CPU- and
MMU-specific, as well as specific to the type of memory model. The
nanokernel’s CPU layer contains most of the knowledge of the core CPU
architecture – how exceptions and interrupts are handled, which registers
need to be saved on a context switch and so on. A good proportion of
the code in the CPU layer of the Symbian OS kernel is independent layer
functionality that has been assembler-coded for improved performance.

SYMBIAN OS DESIGN 13

The variant layer provides the hardware-specific implementation of the
control functions expected by the nanokernel and the Symbian OS kernel.
As I mentioned earlier, the phone manufacturer can choose whether to
split this layer into an ASSP and a variant when porting to new hardware.

This variant layer can also provide hardware-specific implementations
of hardware abstraction layer (HAL) functions, although these may equally
be implemented in the kernel itself or in extensions.

In Chapter 5, Kernel Services, I will explain what services each layer
exposes to the other layers.

1.3.3 Design solutions

Now I’m going to talk about the design decisions that we took for EKA2,
and how they helped us to achieve the goals that we had set ourselves.

1.3.3.1 Multi-threaded preemptible kernel

To decrease thread latency, we chose to make EKA2 multi-threaded,
allowing the preemption of low-priority kernel operations by high-
priority ones.

EKA2 has five threads, and they are:

1. The null thread – idles the CPU, de-fragments RAM. This is also
known as the idle thread

2. The supervisor thread – cleans up killed threads and processes, pro-
vides asynchronous object deletion

3. DFC thread 0 – runs DFCs for general device drivers, such as comms,
keyboard and digitizer

4. DFC thread 1 – runs the nanokernel’s timer queue

5. Timer thread – runs Symbian OS relative and absolute timers
(After(), At()).

I’ll describe the purpose of these five threads in more detail in Chapter 3,
Threads, Processes and Libraries.

The multi-threaded nature of the kernel also helped us to achieve
another of our goals – making life easier for device driver writers. You
often want to port a device driver from another operating system, but
the single-threaded device driver model of EKA1 meant that porting a
multi-threaded device driver was not a simple task – you usually had to
redesign the driver from scratch. In EKA2, device drivers can make use
of DFC thread 0, or can even create threads of their own if they wish.
Device driver designs from other operating systems can be re-used and
porting is now much simpler.

14 INTRODUCING EKA2

1.3.3.2 Nanokernel

We chose to have a separate nanokernel, because it has several advan-
tages:

1. Very low and predictable interrupt and thread latencies. This is
because only the nanokernel disables either interrupts or reschedul-
ing. (There are a handful of exceptions to this, but they are not
important here.) The vast majority of the Symbian OS kernel, and the
memory model, run with both interrupts and preemption enabled.
Because the nanokernel provides only a small selection of primi-
tives, it is easy to determine the longest period for which we disable
interrupts or rescheduling

2. Simpler and better emulation. The Symbian OS emulator running
under Windows has far more code in common with a real device,
which means that the emulation is more faithful than that obtained
with the EKA1 emulator

3. Support for single-core phones. The nanokernel allows you to run an
RTOS and its GSM signaling stack alongside Symbian OS and its PIM
software. For more detail see Section 1.3.2.4.

1.3.3.3 Modularity

The increased modularity of the new kernel makes porting the operating
system to new ASSPs much easier. A large proportion of the processor-
specific code is in the nanokernel, and differences in memory and MMU
are confined to the memory model.

The memory model makes it easy for you to use the direct memory
model in the early stages of a port to a new CPU architecture, changing
to the moving or multiple models later on when you’ve done more
debugging. It allows you to port the OS in smaller, simpler stages.

1.3.3.4 Design limitations

Designing for real-time performance led to a couple of design limitations
on EKA2:

1. To ensure deterministic interrupt latencies, we could not allow an
unlimited number of interrupt service routines to bind to one interrupt
source as was possible in EKA1. Now only one ISR may bind to
an interrupt

2. To ensure bounded context switch times, we had to restrict the
number of chunks in a process to a maximum of 8 – from an unlim-
ited number in EKA1. (A chunk is the Symbian OS object that is
fundamental to memory allocation – for more details see Chapter 7,
Memory Models.)

SYMBIAN OS DESIGN 15

It’s important to note that not all EKA2 services are bounded in time:
for example, the allocation and freeing of memory are potentially
unbounded. This is discussed in Chapter 17, Real Time.

1.3.4 The Symbian OS emulator

1.3.4.1 Design decisions

The emulator has two main uses – developing Symbian OS software and
demonstrating that software.

The first of these use cases makes more demands on kernel services, so
we concentrated on it when we drew up our requirements. At the highest
level, it gave us just a couple of key requirements for the emulator:

1. It needs to support development and debugging using standard tools
on the host platform

2. It should provide as faithful an emulation as possible of Symbian OS
on target hardware.

These requirements seem to conflict, because the first requires the use of
entities in the hosted platform (until now, always Windows) that do not
exist in the same form in the ‘‘real’’ Symbian OS. For example:

1. Source-level debugging requires that the object code is stored in
standard Windows executable files that the Windows debugger can
recognize and that are loaded via the standard Windows loader

2. Debugging multi-threaded software requires that the Windows debug-
ger recognize those threads. This means that we should implement
emulated threads as Windows threads.

In the end, we decided to write the EKA2 emulator as a port of the EKA2
kernel, rather than trying to make the Symbian OS kernel API work over
Win32 APIs. We used Windows as little as possible so as to share the
maximum amount of Symbian OS code (and hence behavior) between
the emulator and real mobile phones.

Indeed, if you look at Figure 1.3 and compare the code that runs on
a real device to the code that runs on the Win32 emulator, you will
find a great deal in common. Both systems contain the same core kernel
code, from the Symbian OS kernel and the nanokernel. At the lower,
architecture-specific, levels of the nanokernel, we have an emulated
‘‘Win32’’ CPU rather than an ARM CPU or an X86 CPU. This means that
the emulator is effectively a port to a different processor. For example, the
emulator has processes and scheduling that are almost identical to those
on a real device.

16 INTRODUCING EKA2

Symbian OS
KERNEL

ARM processor

ARM CPU-specific
nanokernel and

kernel

ARM
MMU-specific

memory model

memory
model

nanokernel

Symbian OS
KERNEL

Host OS:
Windows

emulator-specific
nanokernel and

kernel

emulator-specific
memory model

memory
model

nanokernel

remains
the same

Symbian OS

Windowshardware

software

Figure 1.3 Emulator code re-use

The memory model, however, is completely different on the emulator
and a real mobile phone. On the emulator, it is always the special
emulator memory model, which has knowledge of the different image
files that are loaded to create processes. These are standard Win32 PE EXE
files, and so we satisfy our earlier requirement for source-level debugging.
In theory, this approach could make it easier for us to implement an
emulator on platforms other than Windows.

1.4 Summary

I hope that this chapter has given you a good overview of the history and
design of the Symbian OS kernel. Next I shall look at Symbian OS as a
platform for real device hardware.

2
Hardware for Symbian OS

by Jason Parker

If it draws blood, it’s hardware.

Unknown

This chapter explores the hardware that Symbian OS is designed to run
on: a mobile phone. This is often known as the device platform. I’ll
examine the core hardware that is needed to run Symbian OS, and try
to help you to appreciate the design choices that underlie a world-class
Symbian phone. With this knowledge, I hope that you will also gain a
deeper insight into the operating environment of Symbian OS.

Information on running Symbian OS on the EKA2 emulator, the plat-
form that you will use during development, is placed in context throughout
the book. The aim of this material is to let you see where you can rely on
the similarities of the emulator to your phone hardware, and where you
need to be aware of the differences.

2.1 Inside a Symbian OS phone
Symbian OS phones are designed first and foremost to be good telephones,
with quality voice calls and excellent battery life. On top of that, Symbian
OS phones are usually open platforms that provide opportunities for
interesting and novel software. Achieving these goals requires hardware
designed specifically for the task, high enough performance in the key
use cases and an obsession for low power usage.

Looking into Symbian OS phone design, there are two complementary
computing domains, the mobile radio interface of the baseband processor
(BP), also known as the modem, and the application processor (AP),
which runs the user interface and high-level code, under Symbian OS.
Surrounding these domains is a collection of peripherals that make up
the product: battery, display, speakers, SIM card and more.

Figure 2.1 depicts a common two-chip solution, where the BP and
the AP are self-contained systems, with a high speed inter-processor

18 HARDWARE FOR SYMBIAN OS

Baseband
Processor

(Modem)

Application
Processor

(Symbian)

LCD

1 2 3
4 5 6
7 8 9

Power and audio

SIM

Inter Processor
Communication

(antenna)

(loudspeaker)

(microphone)

Figure 2.1 A common two-chip solution

communication (IPC) link between them. This is the preferred design
for 3G phones, in which each domain can re-use existing software and
hardware sub-systems.

The two-domain system of AP and BP isolates each processor from the
other’s requirements. The BP requires hard real-time software, periodic
power management and provides security for the network. The AP
expects to operate in two modes – full power when a user is interacting
with the phone, and a deep sleep idle when nothing is happening. The
AP code contains the frameworks and libraries for built-in applications
and third-party code.

The overall quality of the product comes from the tight coupling
between the two domains over the IPC, and their ability to co-ordinate
the shared responsibilities of audio and power.

Designing hardware for Symbian OS phones requires a clear under-
standing of the end-user use cases, the performance requirements that
these put on the design, and a continual focus on power management.

2.1.1 Baseband processor (BP)

The baseband processor is the voice and data modem for the phone. It
contains all the electronics required for the radios used in 2.5G and 3G
telephony, a DSP to run the algorithms to decode the information, and a
CPU to run the call control stack, which co-ordinates with the network
base stations and communicates with the AP.

INSIDE A SYMBIAN OS PHONE 19

The software on the BP is called the telephony stack, and known as
the stack for short. The stack is a complex system of code that has grown
in step with the evolving telephony standards and their type certification
regimes. A typical stack will contain between 2 and 8 MB of code, and
require up to 2 MB of working RAM to execute. GSM calls are scheduled
to a 4.6 ms time frame, in which all of the call activity needs to have com-
pleted before the start of the next frame. This requires a real-time operating
system (RTOS) environment. It is tuned and tested to meet the stringent
timing requirements under worst-case loads of voice and data calls.

BP power management is highly optimized for maximum call time and
idle time, whilst still being connected to the network. When the phone is
idle, the BP can put itself into a deep power-saving mode, only waking
up every two seconds to listen to the paging channel for an incoming call
or message.

The IPC interface to the AP has evolved from simple serial ports in
early Symbian phones to 10 Mb/s multiplexed links. This link could use
five bi-directional channels for telephony control, system control, packet
data, streamed data and BP debug.

Audio data is routed to and from the BP through a dedicated digital
audio bus, directly to the audio hardware. This bus provides minimal
latency with guaranteed real-time performance and lower power con-
sumption during a call by bypassing the AP. If voice call data was passed
over the IPC to the AP, additional buffering would be incurred, a real-time
load would be placed on the AP, and power consumption would go up.

The BP controls the SIM card, which contains the secret codes and
algorithms required for network authentication.

The two-domain system of AP and BP provides many technical
and engineering benefits, including design re-use, stability and secu-
rity. These come at the cost of additional chips, physical size, and overall
power consumption.

There are strong financial pressures towards the closer integration of
the AP and BP domains for mid-tier phones. Example designs range from
multiple cores on one ASIC, sharing memory but little else, up to the full
integration of the telephony stack and Symbian OS. In this last case, the
two co-exist on the same CPU, with all of the software integration issues
that this incurs.

As you can see, baseband processors and their sophisticated telephony
stacks are major topics that already fill several books on their own.

2.1.2 Application processor (AP)

The application processor is at the heart of a Symbian OS phone.
Contained on a single piece of silicon, the AP is an example of a
System-on-Chip. It has an ARM CPU, memory, display and audio inter-
faces, multimedia accelerators and many more peripherals. I will now

20 HARDWARE FOR SYMBIAN OS

focus on these components, their integration and how they interact with
each other.

2.2 System-on-Chip (SoC)
SoCs are known by two other names: ASICs (Application-specific Inte-
grated Circuits) for custom chips and ASSPs (Application-specific Semi-
conductor Parts) for commercial parts. All three terms are used imprecisely
and interchangeably. SoCs are designed and manufactured by all of the
major silicon companies: Texas Instruments have a product family called
OMAP and Intel have their XScale range of processors. Figure 2.2 shows
a typical System-on-Chip design.

Each sub-component within the SoC is an intellectual property (IP)
block. The blocks are linked to interconnecting buses through industry
standard interfaces. The IP blocks can be licensed from many sources.
The most well known IP licensing company is ARM Ltd, who license
ARM CPU cores.

The example SoC is driven by an ARM 926 CPU for Symbian OS,
and a DSP for multimedia codecs. These two cores are both masters
on the system bus, which is a high-speed, low-latency, 32-bit wide
bus, connected to the DRAM controller. The system bus and memory
controller funnel all data accesses into main memory, so they must be
designed for high bandwidth and low latency transfers to avoid starving
the CPU and reducing its effective performance.

ARM
CPU

DSP DMA
LCD

controller

SYSTEM BUS

IRAM

FAST

Audio

SLOW

Memory
controller UART IR I/O

PIC RTC

USB IPC NAND

Figure 2.2 System-on-Chip

SYSTEM-ON-CHIP (SoC) 21

The DMA engine and LCD controller are additional bus masters,
both accessing memory through the same bus. The remaining peripheral
blocks are known as bus slaves – they cannot access memory directly,
and require their masters to feed them with commands and data. The
slave blocks are cascaded off the two peripheral buses, one of which is a
relatively fast bus for DMA devices, and the other is a slow bus for simple
low-bandwidth peripherals.

Peripheral buses are connected to the system bus through bus bridges.
These translate between the bus formats and compensate for any speed
differences, necessary since peripheral buses normally run slower than
the system bus. A good SoC design will pay attention to these bridges to
ensure that critical timed or high-bandwidth peripherals can be accessed
quickly by the CPU.

Further information about ARM SoCs can be found in the book, ARM
System-on-Chip Architecture by Steve Furber.1

2.2.1 Physical memory map
The buses and their connections determine the physical address map
of the chip – with 32-bit addressing there is 4 GB of addressable space.
Symbian OS uses the CPU’s Memory Management Unit (MMU) to remap
the reality of the chip’s address space layout into a consistent virtual
address space for the software.

As an example, the 4 GB address space of the SoC might be divided
into large regions by the system bus controller. By only decoding the top
three address bits, it produces eight regions, each 512 MB in size:

Address start Address end Content

0x00000000 0x1FFFFFFF ROM Bank 0 (Boot Rom)

0x20000000 0x3FFFFFFF ROM Bank 1

0x40000000 0x5FFFFFFF DSP

0x60000000 0x7FFFFFFF Fast Peripheral Bus

0x80000000 0x9FFFFFFF Slow Peripheral Bus

0xA0000000 0xBFFFFFFF IRAM

0xC0000000 0xDFFFFFFF DRAM Bank 0

0xE0000000 0xFFFFFFFF DRAM Bank 1

1 ARM System-on-Chip Architecture, 2nd edn by Steve Furber. Addison-Wesley
Professional.

22 HARDWARE FOR SYMBIAN OS

These large regions are then further sub-divided.
With 32 MB of RAM installed in DRAM Bank 0, the remaining 480 MB

of address space will contain aliases of the RAM contents if address bits
25 to 28 are not decoded by the hardware, as is typical:

0xC0000000 0xC1FFFFFF 32 MB RAM

0xC2000000 0xC3FFFFFF 32 MB Alias 1

0xC4000000 0xC5FFFFFF 32 MB Alias 2

.

0xDE000000 0xDFFFFFFF 32 MB Alias F

The peripheral bus’s regions are sub-divided by their peripherals. The
fast peripherals in the example SoC each have 64 KB of address for their
register sets:

0x60000000 0x6000FFFF NAND Interface

0x60010000 0x6001FFFF IPC

0x60020000 0x6002FFFF Audio

0x60030000 0x6003FFFF USB

.

0x600x0000 0x7FFFFFFF Empty Space

In practice, every ASSP will have a different physical address space
and most of it will be unused or aliased. Reads and writes to unused
space will produce a bus error.

A good design will have a consistent memory map for all of the bus
masters, removing the need for any physical address translation, and
reducing the likelihood of errors.

Normally the CPU will have access to every peripheral in the system,
whereas the other masters will only have visibility of appropriate slaves.
The LCD controller needs to pull frame data from memory, and the DMA
engine will work between the fast peripherals and memory.

The physical address map is used by the bootstrap code when con-
figuring the MMU. The DMA engine and the other bus masters will not
contain their own MMUs. They only understand physical addresses and

SYSTEM-ON-CHIP (SoC) 23

software that programs these devices must translate virtual addresses back
to their physical values before using them.

2.2.2 Central Processing Unit (CPU)
Symbian OS requires a 32-bit microprocessor that combines high per-
formance with low power consumption. It must be little endian, with a
full MMU, user and supervisor modes, interrupts and exceptions. ARM
designs fit this bill exactly and when this book was written all Sym-
bian OS phones had an ARM-based CPU, as did 80% of the world’s
mobile phones.

To take these requirements in turn:
High performance is a relative term for a battery-powered device.

Symbian phones today have CPUs clocked between 100 and 200 MHz,
which is more than an order of magnitude slower than an average 3 GHz
PC – yet the power they consume is three orders of magnitude less. Future
application demands will push the CPU speeds into the 300 to 400 MHz
range for peak performance.

Low power consumption is a design requirement for all components
in a Symbian OS phone. During the CPU design, engineering trade-offs
are evaluated and features are added to produce the most power-efficient
core. Power saving comes from lean hardware design, the selective
clocking of circuits and the addition of multiple low-power modes: Idle,
Doze, Sleep, Deep Sleep and Off. I will discuss the mapping from
hardware into the software frameworks that Symbian OS provides for
power management in Chapter 15, Power Management.

The MMU, with the user and supervisor modes the CPU provides,
allow for the virtualization of the user memory. EKA2 constructs a robust
execution environment for applications, each isolated from the others
with its own protected memory space. Application code executes in
user mode with limitations and kernel code uses supervisor mode with
fewer limitations, but even kernel code is still constrained by its virtual
memory map. I describe the memory models that Symbian OS provides
in Chapter 7, Memory Models.

Exceptions are CPU events that change the instruction flow in the
core. Interrupt exceptions are generated by peripherals that are seeking
attention. Software interrupts are used as a controlled switch from user
to supervisor mode. The MMU will generate a data abort if code tries
to access memory that is not mapped, and a prefetch abort if the CPU
jumps to a code address that is not mapped. See Chapter 6, Interrupts
and Exceptions, for more on interrupts and exceptions.

2.2.3 ARM
ARM have been designing RISC-based CPUs for over 20 years, and suc-
cessfully licensing them to all of the world’s semiconductor manufacturers

24 HARDWARE FOR SYMBIAN OS

for inclusion into their own SoCs. Intel has licensed version 5 of the ARM
architecture to build the software-compatible XScale microprocessor.

As ARM developed successive generations of CPUs, they have added
new instructions and features, and deprecated some rarely used old
features. The ARM architectural version number, with some additional
letters, defines the feature set. It specifies the instruction set, the operation
of the MMU, the caches and debugging.

Symbian OS requires a CPU that supports ARM v5TE or greater. ARM
v5TE is the baseline instruction set for all Symbian software. To ensure
compatibility across multiple phones, application code should only use
v5TE instructions. (The previous generation of EKA1 phones used the
ARM v4T architecture.)

What does ARM v5TE actually mean? It is version 5 of the ARM
architecture, with the THUMB instruction set and the Enhanced DSP
instructions. The definition of the ARM v5TE instruction set can be found
in the ARM Architecture Reference Manual.2

ARM cores and SoCs that are currently compatible with Symbian OS
phone projects include:

Core Architecture SoC

ARM926 v5TE Philips Nexperia PNX4008

ARM926 v5TE Texas Instruments OMAP 1623

Xscale v5TE Intel XScale PXA260

ARM1136 v6 Texas Instruments OMAP 2420

THUMB was introduced in architecture v4T. It is a 16-bit sub-set of
the ARM instruction set, designed to resolve the common RISC issue of
poor code density with instructions that are all 32 bits. By using a 16-bit
encoding scheme, THUMB compiled code is approximately 70% of the
size of the ARM equivalent, but it needs 25% more instructions to do the
same task. THUMB and ARM code can inter-work on the same system,
using the BLX instruction to switch mode.

Most code in Symbian OS is compiled as THUMB, since the size of the
ROM is intimately linked to the cost of a Symbian OS phone. The kernel is
built for ARM for increased performance and it requires instructions which
are missing from THUMB, such as coprocessor instructions needed to
access the MMU and CPU state control registers. Application code can be
built for ARM by adding ALWAYS_BUILD_AS_ARM into the application’s

2 ARM Architecture Reference Manual, 2nd edn by David Seal. Addison-Wesley
Professional.

SYSTEM-ON-CHIP (SoC) 25

MMP file. Symbian does this for algorithmic code, since, for example, the
JPEG decoder runs 30% faster when compiled for ARM.

The enhanced DSP instructions enable the more efficient implemen-
tation of 16-bit signal processing algorithms using an ARM CPU. These
instructions are not used in normal procedural code and have little impact
on the execution of Symbian OS.

2.2.4 Memory Management Unit (MMU)

Symbian OS requires a full Memory Management Unit to co-ordinate and
enforce the use of virtual memory within an open OS. I discuss the use of
the MMU in Chapter 7, Memory Models.

The MMU sits between the CPU and the system bus, translating virtual
addresses used by software into physical addresses understood by the
hardware. This lookup has to happen on every memory access.

The MMU breaks up the flat contiguous physical memory into pages.
Mostly they are small, 4 KB pages, although larger 64 KB pages and 1 MB
sections exist.

The Symbian OS virtual memory map re-orders scattered physical
pages into an apparently ordered virtual memory space. The re-ordering
information is expressed to the MMU through the use of page tables.
Page tables are a hierarchical data structure that encode the entire 4 GB
virtual address space in a sparse manner. On ARM systems the table has
two levels, the Page Directory and Page Tables.

In much the same way as a physical address is decoded by the bus
controllers, the bit fields within a virtual address are decoded by the
MMU into the Page Directory, the Page Table and index into the memory
page. This is explained in detail in Section 7.2.1.

Bits 31 → 20 19 → 12 11 → 0

Address
decode

Top 12 bits
map to Page
Directory

Middle 8 bits
map to Page
Table

Bottom 12
bits are offset
in page

Virtual address decoding for a small page
On every memory access the MMU performs a virtual to physical lookup
to get the correct bus address and to validate page permissions. The
process of looking up a physical address from a virtual one is known as
‘‘walking’’ the page tables. This takes the time required for two memory
accesses, the read of the Page Directory followed by the Page Table read.

To speed up the address translation the MMU caches recently looked-
up results within a Translation Look-aside Buffer (TLB). If a virtual to
physical lookup cannot be found in a TLB, the MMU has table walking

26 HARDWARE FOR SYMBIAN OS

hardware to perform a new virtual lookup and it will save the result into
a TLB entry.

The TLBs must be flushed if the page tables are changed. This can
happen on a context switch, during debug or the unloading of code.

At startup the CPU will run using physical addresses and the bootstrap
code will build the initial set of page tables. When the MMU is turned on
the CPU will switch into virtual memory operation, ready for the kernel
boot sequence.

2.2.5 Caches

The CPUs used in every Symbian phone require caches to achieve
optimum performance. The job of a cache is to insulate the fast CPU from
its slower memory system by holding local copies of recently accessed
data or instructions.

ARM CPUs have Harvard architectures, with separate instruction and
data ports, resulting in separate instruction and data caches (ICache,
DCache).

Caches work by taking advantage of the repetitive local characteristics
of executing code. Code that is in a loop will execute the same instructions
and access the same or similar data structures. As long as the CPU’s view
into memory is consistent, it does not care where the data is located at any
instant in time – whether it is found in RAM or in the cache. However,
the kernel does not cache memory mapped peripherals because the
controlling software requires strict ordering of reads and writes into the
peripheral registers.

Caches are organized in cache lines, which typically contain 32 bytes
of data from a 32-byte aligned address, and a tag to store this source
address. A 16 KB cache would contain 512 lines.

When the CPU requests data, the cache tests to see if it has a line
that matches the requested address. If it does, the data is returned
immediately – this is called a cache hit. If the cache does not contain the
data, then a cache miss has occurred. After a miss, there will be a cache
line fill of the required data from the memory system, and then the CPU
will continue execution. To make space for this new cache line, an older
cache line will be evicted from the cache.

The efficiency of a cache is measured by its hit ratio – the ratio of
cache hits to total accesses. On Symbian OS, the approximate numbers
are 95% for the ICache and 90% for the DCache.

With a high hit rate, the CPU can run close to its maximum speed
without being stalled by the memory system. This is good for performance
and even better for battery life, since a cache hit requires substantially
less power than an external memory access.

Line fill operations are optimized for the memory system, to take
advantage of sequential burst modes from the memory chips.

SYSTEM-ON-CHIP (SoC) 27

Once the MMU has been set up and the cache enabled, all of its
operation is automatic and the system runs faster. EKA2 only needs to
issue cache control commands if the caches need to be flushed. This can
be due to any of the following:

• A memory map change on a context switch

• New code being loaded or existing code discarded

• Self-modifying code generation

• Using DMA from cached memory.

2.2.5.1 Virtual and physical caches

The CPU is isolated from the system bus by the MMU and caches, so
their order of operation has an impact on Symbian OS (see Figure 2.3).

When the CPU is connected directly to the cache, the cache uses
virtual addresses, and it in turn talks through the MMU to generate
physical addresses on the system bus (left-hand side of Figure 2.3).

A physically addressed cache will be connected directly to the system
bus and will be indexed with real physical addresses. The virtual to
physical lookup will occur in the MMU, which is located between the
CPU and the cache (right-hand side of Figure 2.3).

CPU

Caches

System Bus

Virtual address
Physical address

CPU

Caches

System Bus

MMU
Virtual address

Physical address

Physical CachesVirtual Caches

MMU

Figure 2.3 Virtual and physical caches

2.2.5.2 ARM v5 virtual cache

In ARM v5 and earlier systems, the MMU was placed outside the CPU
and caches, resulting in caches that worked within the virtual memory
domain of the MMU.

In this design, all data stored in the cache is indexed by its virtual
address, so when the CPU requests data with a virtual address, no MMU
translation is required for a cache hit. If there is a miss, the MMU is

28 HARDWARE FOR SYMBIAN OS

invoked to generate a physical bus address for the cache miss. This
design reduces the workload on the MMU and saves power.

The downside to virtual caches is that the kernel has to empty them
every time it modifies the page tables. The kernel can invalidate the
ICache (discard it) but it has to flush all of the dirty data in the DCache to
the memory system.

Unfortunately, the Symbian OS moving memory model modifies the
virtual address map when it performs inter-process context switch. This
means that a cache flush is needed that can take many milliseconds,
resulting in a significant loss of system performance. In Section 7.2.1,
you will see that Symbian OS uses a technique called fixed processes to
minimize these cache flushes.

2.2.5.3 ARM v6 physical cache

ARM architecture v6 delivered a whole new MMU, with new page table
layout, physical caches, process ASIDs, support for level 2 caches and IO
memory space.

An ARM v6 CPU, such as the 1136, uses physical addresses at all
times in the cache. This requires the MMU to work harder by performing
a virtual to physical lookup on every request from the CPU core. This will
normally be through a TLB lookup.

The advantage to this scheme is that the caches are always in sync
with the physical memory map, no matter how the virtual map changes.
This removes the cache flush penalty from context switches.

To further improve performance, the v6 MMU model introduced
Application Space Identifiers, known as ASIDs. Each ASID has its own 4
or 8 KB PDE, for the bottom 1 or 2 GB of address space. Changing the
ASID will instantly swap out this address space.

As I will explain in Section 7.4.2, EKA2 assigns an ASID to every
process it creates, resulting in extremely fast context switches.

2.2.5.4 Instruction cache (ICache)

The ICache contains recently executed instructions, ready for their re-use.
Instructions cannot be modified in the ICache, so it can be treated as a
read-only device.

When a line needs to be evicted on a cache miss, it is immediately
overwritten by the new instructions. This is permitted, since it is read-only
and cannot have changed. Cache flushing operations are only needed
when code is unloaded from the system and to ensure the coherency of
generated or self-modifying code.

Code compiled for the THUMB instruction set gains an advantage over
ARM by being able to fit twice as many instructions into the ICache. This
helps to offset its slower performance.

RANDOM ACCESS MEMORY (RAM) 29

2.2.5.5 Data cache (DCache)

When the CPU is reading data, the DCache works in the same way as
the ICache. Data hits within the cache are returned immediately and
missed data will be sourced from main memory, replacing a recently
evicted line.

The complexity comes with data writes into the DCache and the
combinations of strategies to return it to memory.

With write-through caching, every time the CPU writes data, it will
be immediately written out to memory, through the write buffer, and the
data will update the cached copy if it hits.

Write-through caching ensures that memory always stays coherent
with the cache. Cache line evictions and cache cleaning operations do
not need to write anything back to memory, enabling them to discard
lines at will.

The downside is that the system bus has to support the full write speed
of the CPU and the cache is only being effective for reads.

Symbian OS uses write-through caching for the LCD frame buffer, to
ensure consistent pixels on the display. Writes of new pixel data will gain
a small speed-up because of the write buffer, and read–modify–write
operations will be aided by the cache. But running all of Symbian OS in
a write-through cached system reduces performance by over 30%.

To make full use of the DCache for writes as well as reads, Symbian
OS uses a scheme called copy-back. Write hits into the cache remain in
the cache, where they may be overwritten again. Copy-back results in a
massive reduction of write traffic to memory by only writing data when it
is evicted.

Cache lines that have been modified are tagged by dirty bits – normally
two of them for a pair of half lines. When it is time to evict the cache
line, the dirty bits are evaluated, and dirty half lines are written back
out to memory through the write buffer. Half lines are used to reduce
the write bandwidth overhead of unmodified data, since clean data can
be discarded.

Flushing the entire contents of a copy-back cache will take some
milliseconds, as it may be populated entirely with dirty data.

2.3 Random Access Memory (RAM)

Random Access Memory (RAM) is the home of all the live data within the
system, and often the executing code. The quantity of RAM determines
the type and number of applications you can run simultaneously, the
access speed of the RAM contributes to their performance.

A Symbian OS phone will have between 8 and 64 MB of RAM. The
OS itself has modest needs and the total requirement is determined by the
expected use cases. Multimedia uses lots of RAM for mega-pixel cameras

30 HARDWARE FOR SYMBIAN OS

images and video recording. If NAND Flash memory is used, megabytes
of code have to be copied into RAM, unlike NOR flashes that execute
in place.

The RAM chip is a significant part of the total cost of a phone, both
in dollar terms, and in the cost of the additional power drain required to
maintain its state.

It is not only the CPU that places heavy demands on the memory sub-
system; all of the bus master peripherals read and write into RAM too.
Their demands and contention have to be considered during the system
design. Working out real-world use cases, with bandwidth and latency
calculations, is essential for understanding the requirements placed on
the memory system.

2.3.1 Mobile SDRAM
In the last few years, memory manufacturers have started to produce
RAM specifically for the mobile phone market, known as Low Power or
Mobile SDRAM.

This memory has been optimized for lower power consumption and
slower interface speeds of about 100 MHz, compared to normal PC
memory that is four times faster.

Mobile memories have additional features to help maintain battery
life. Power down mode enables the memory controller to disable the
RAM part without the need for external control circuitry.

Data within a DRAM has to be periodically updated to maintain its
state. When idle, DRAMs do this using self-refresh circuitry. Temperature
Compensated Self Refresh (TCSR) and Partial Array Self Refresh (PASR)
are used to reduce the power consumption when idle. The combination
of TCSR and PASR can reduce the standby current from 150 to 115 µA.

2.3.2 Internal RAM (IRAM)
Memory that is embedded within the SoC is known as internal RAM
(IRAM). There is much less of this than main memory.

When booting a system from NAND Flash, core-loader code is copied
from the first block of NAND into RAM. IRAM is an ideal target for
this code due to its simple setup. Once the core-loader is running from
IRAM, it will initialize main RAM so that the core OS image can be
decompressed and copied there.

IRAM can be used as an internal frame buffer. An LCD controller
driving a dumb display needs to re-read the entire frame buffer 60 times
a second. Thus a 16-bit QVGA display will require 8.78 MB of data in
one second. By moving the frame buffer into IRAM, the system can make
a large saving in power and main memory bandwidth. A dedicated IRAM
frame buffer can be further optimized for LCD access and to reduce its
power needs.

FLASH MEMORY 31

IRAM can also be useful as a scratch pad or message box between
multiple processors on the SoC.

Note that putting small quantities of code into IRAM does not speed
up the execution of that code, since the ICache is already doing a better
and faster job.

2.4 Flash memory

Symbian phones use Flash memory as their principal store of system
code and user data. Flash memory is a silicon-based non-volatile storage
medium that can be programmed and erased electronically.

The use of Flash memory is bound by its physical operation. Individual
bits can only be transformed from the one state into the zero state. To
restore a bit back to a one requires the erasure of a whole block or segment
of Flash, typically 64 KB. Writing a one into a bit position containing a
zero will leave it unchanged.

Flash memory comes in two major types: NOR and NAND. The names
refer to their fundamental silicon gate design. Symbian OS phones make
best use of both types of Flash through the selection of file systems – I
will explain this in detail in Chapter 9, The File Server.

The built-in system code and applications appear to Symbian software
as one large read-only drive, known as the Z: drive. This composite file
system is made up of execute in place (XIP) code and code that is loaded
on demand from the Read Only File System (ROFS). The Z: drive is
sometimes known as the ROM image.

User data and installed applications reside on the internal, writable C:
drive. The C: drive is implemented using one of two different file systems:
LFFS (Log Flash File System) for NOR or a standard FAT file system above
a Flash Translation Layer (FTL) on top of NAND.

A typical Symbian phone today will use between 32 and 64 MB of
Flash for the code and user data – this is the total ROM budget.

Symbian uses many techniques to minimize the code and data sizes
within a phone, such as THUMB instruction set, prelinked XIP images,
compressed executables, compressed data formats and coding standards
that emphasize minimal code size.

2.4.1 NOR Flash
NOR Flash is used to store XIP code that is run directly by the CPU. It
is connected to a static memory bus on the SoC and can be accessed in
random order just like RAM. The ARM CPU can boot directly out of NOR
Flash if the Flash is located at physical address zero (0x00000000).

For user data, Symbian uses the Log Flash File System (LFFS) on top of
NOR Flash. This file system is optimized to take advantage of NOR Flash
characteristics. I describe LFFS in detail in Chapter 9, The File Server.

32 HARDWARE FOR SYMBIAN OS

NOR flashes allow for unlimited writes to the same data block, to turn
the ones into zeros. Flashes usually have a write buffer of around 32 to 64
bytes that allows a number of bytes to be written in parallel to increase
speed. A buffered write will take between 50 and 600 µs depending
on the bit patterns of the data already in the Flash and the data being
written. All zeros or all ones can be fast, and patterns such as 0xA5A5
will be slow.

Erasing a NOR segment is slow, taking about half a second to one
second. But erases can be suspended and later restarted – LFFS uses this
feature to perform background cleanup of deleted data while remaining
responsive to foreground requests.

Completed writes and erases will update the status register within the
Flash, and may generate an external interrupt. Without an interrupt, the
CPU will need to use a high-speed timer to poll the Flash for completion.

By using NOR flashes with Read–While–Write capabilities, it is pos-
sible to build a Symbian OS phone with one NOR part containing XIP
code and LFFS data.

2.4.2 NAND Flash

NAND Flash is treated as a block-based disk, rather than randomly
addressable memory. Unlike NOR, it does not have any address lines, so
cannot appear in the memory map. This means that code cannot execute
directly from NAND and it has to be copied into RAM first. This results
in the need for extra RAM in a NAND phone compared to a similar
NOR device. NAND Flash writes are about 10 times faster than those on
NOR Flash.

A phone cannot boot directly from NAND. The process is more
complex, requiring a set of boot loaders that build upon each other,
finally resulting in a few megabytes of core Symbian OS image, the ROM,
being loaded into RAM, where it will execute.

NAND is also inherently less reliable than NOR. New parts will come
with defective blocks and are susceptible to bit errors during operation.
To alleviate the second problem, an Error Correction Code (ECC) is
calculated for every page of data, typically 512 bytes. On every read,
the ECC is re-calculated and the difference between it and the stored
ECC value is used to correct single-bit errors, at runtime. Multi-bit errors
cannot be recovered and the page is considered corrupt.

The lower price of NAND compared to NOR makes it attractive for
mass-market phone projects, even after taking into account the extra
RAM required.

NAND Flash parts are attached to the SoC using a dedicated interface
that is connected directly to the NAND chip pins through an 8-bit or 16-
bit bus. The interface block will use the DMA interface for data transfers,
and contains circuits to calculate the ECC on writes and reads.

INTERRUPTS 33

The NAND interface reads and writes into the NAND Flash using
pages of data. A small block NAND device uses 512-byte pages, and a
large block device uses 2048-byte pages. Data is erased by block, where
a block will contain 32 or 64 pages.

2.5 Interrupts

Peripherals in the system demand attention from the CPU by generating
interrupts. Every peripheral will have one or more interrupt lines attached
to the Programmable Interrupt Controller (PIC), which in turn will funnel
the outstanding interrupts into the CPU. ARM cores only have two
interrupt inputs, the normal Interrupt ReQuest (IRQ) and the Fast Interrupt
reQuest (FIQ). The FIQ has higher priority than IRQ and an additional set
of banked registers.

The EKA2 interrupt dispatch code determines the source of an interrupt
by reading the PIC registers, and then calls the correct service function.
This is all explained in Chapter 6, Interrupts and Exceptions.

In Figure 2.4, you can see a 62 interrupt system, incorporating a two-
layer design that re-uses the same PIC block to cascade from level 2 into
level 1.

CPU

PIC Level 1

PIC Level 2

P62P31P1 P30

L2 FIQL2 IRQ

FIQIRQ

Figure 2.4 Two-layer interrupt controller

34 HARDWARE FOR SYMBIAN OS

Each interrupt within a layer will be represented by one of the 32
bits inside the controlling register set. The registers allow the interrupt
dispatch software to configure, enable and detect the correct interrupt:

Interrupt Type IRQ FIQ

Output Status True False

Enabled True False

Latched Interrupt Input True False

Detect Type Edge Level

Polarity Rising
Edge/High Level

Falling
Edge/Low Level

Examples of interrupt types in use include:

A serial port output FIFO will have a half-empty setting, generating a high
level whenever there is space within the FIFO. Once enough data has been
written into the FIFO by an interrupt service routine, the interrupt output
will drop back.

A rising edge interrupt would be used to detect the short VSync pulse
generated by the LCD controller on the start of a new output frame.

To determine the current pending interrupt, the software dispatcher must
read the status and enable registers from the PIC, AND them together,
and look for a set bit to determine which interrupt to dispatch. The bit
number is then used to index a table of function pointers to the correct
interrupt service routine (ISR). By putting the highest priority interrupt in
the upper bits of level 1, the first valid bit can be found quickly using the
count leading zeros (CLZ) instruction.

The interrupt dispatch latency is the time between the IRQ input being
raised and the execution of the first instruction in the ISR, and is the time
taken up by the software dispatcher described in the previous paragraph
and the thread preamble code. It will run for tens of instructions, resulting
in about a 50-cycle interrupt cost, or 250 ns on a 200 MHz core. The total
overhead of an interrupt, once the post-amble code and kernel dispatcher
is taken into account, will be approaching 1 µs.

You can use more sophisticated PICs to reduce the interrupt latency.
Bit patterns are replaced by a status register containing the highest priority
interrupt number for the dispatch software to use immediately.

The ARM vectored interrupt controller (VIC) is an even more complex
system, in which the CPU has a dedicated VIC port. It allows for the

TIMERS 35

ISR address to be injected directly into the CPU, removing the overhead
of software interrupt dispatch, and saving a few tens of cycles per
interrupt. Symbian OS phones do not require a VIC and its associated
silicon complexity, as they do not have hard real-time interrupts with
nanosecond latencies.

When designing a phone you should aim to minimize the number
of active interrupts within the system, as this will increase the overall
system interrupt response robustness and reduce power consumption.
This can be done by using DMA interfaced peripherals, and by not
polling peripherals from fast timers.

2.6 Timers

In Chapter 5, Kernel Services, I will explain EKA2’s use of the millisecond
timer. EKA2 uses a 1 ms tick timer to drive time slicing and the timer
queues, and to keep track of wall clock time.

The minimum hardware requirement is for a high-speed timer capable
of generating regular 1 ms interrupts without drifting. The timer counter
needs to be readable, writable, and the maximum cycle period should be
many seconds.

The speed of the timer clock source is not essential to Symbian OS,
but somewhere between 32 kHz and 1 MHz is common. Slower clock
sources have lower power consumption, and faster clock rates allow
more flexible use of the timers, beyond the kernel millisecond tick (see
Figure 2.5).

The preferred hardware implementation is a free-running 32-bit counter
coupled with a set of 32-bit match registers to generate the timer interrupts.
They enable simple software schemes for anti-jitter, idle tick suppression
and profiling. Self-reloading countdown timers are an alternative hard-
ware option, but they are less flexible.

COUNTER

MATCH 0

MATCH 1

MATCH 2

CLOCK

DEBUG_HALT

=

=

=

Figure 2.5 High-speed timer with three match registers

36 HARDWARE FOR SYMBIAN OS

The normal operation of the millisecond timer with match registers
is straightforward. The external clock source drives the counter, and
on every increment the match registers are tested. If they match, their
interrupt line is raised, the millisecond timer ISR will execute, kernel
millisecond tick processing will occur and then the ISR will re-queue the
interrupt by adding 1 ms worth of clock ticks to the match register.

The counter is always allowed to be free-running and the match register
is always incremented from the previous match value. This produces a
drift-free millisecond interrupt. If the input clock frequency is not an exact
multiple of 1 Hz, anti-jitter software will generate an average 1 ms timer,
by adding or removing a few extra clock cycles per millisecond interrupt.

For the kernel to keep accurate track of time when the CPU is asleep,
the timer input clock and the counter circuits must be powered from an
independent source to the core.

To debug software running in a system with high-speed timers, it is
essential that the JTAG debugger hardware suspends the timers while it
halts the CPU. It does this by the input of a DEBUG_HALT signal into
the timer block. Stopping the timers ensures that the OS is not flooded
by timer interrupts during debug single steps, and that the kernel timer
queues are not broken by too much unexpected time elapsing.

Multiple timers are required within a real system even though EKA2
itself only needs one. Peripherals with sub-millisecond timing require-
ments, for example those polling a NOR Flash for write completion,
will use an extra timer. Spare timers can also be used for accurate
performance profiling.

2.7 Direct Memory Access (DMA)

Direct Memory Access (DMA) is used by Symbian OS to offload the
burden of high bandwidth memory to peripheral data transfers and allow
the CPU to perform other tasks. DMA can reduce the interrupt load by
a factor of 100 for a given peripheral, saving power and increasing the
real-time robustness of that interface.

Chapter 13, Peripheral Support, will describe how the EKA2 software
framework for DMA is used with the different DMA hardware options
and device drivers.

A DMA engine is a bus master peripheral. It can be programmed to
move large quantities of data between peripherals and memory without
the intervention of the CPU.

Multi-channel DMA engines are capable of handling more than one
transfer at one time. SoCs for Symbian phones should have as many
channels as peripheral ports that require DMA, and an additional channel
for memory-to-memory copies can be useful.

A DMA channel transfer will be initiated by programming the control
registers with burst configuration commands, transfer size, the physical

LIQUID CRYSTAL DISPLAY (LCD) 37

addresses of the target RAM and the peripheral FIFO. This is followed
by a DMA start command. The transfers of data will be hardware flow
controlled by the peripheral interface, since the peripherals will always
be slower than the system RAM.

In a memory to peripheral transfer, the DMA engine will wait until the
peripheral signals that it is ready for more data. The engine will read a
burst of data, typically 8, 16 or 32 bytes, into a DMA internal buffer, and
it will then write out the data into the peripheral FIFO. The channel will
increment the read address ready for the next burst until the total transfer
has completed, when it will raise a completion interrupt.

A DMA engine that raises an interrupt at the end of every transfer is
single-buffered. The CPU will have to service an interrupt and re-queue
the next DMA transfer before any more data will flow. An audio interface
will have a real-time response window determined by its FIFO depth
and drain rate. The DMA ISR must complete within this time to avoid
data underflow. For example, this time would be about 160 µs for 16-bit
stereo audio.

Double-buffered DMA engines allow the framework to queue up the
next transfer while the current one is taking place, by having a duplicate
set of channel registers that the engine switches between. Double-
buffering increases the real-time response window up to the duration of a
whole transfer, for example about 20 ms for a 4 KB audio transfer buffer.

Scatter-gather DMA engines add another layer of sophistication and
programmability. A list of DMA commands is assembled in RAM, and
then the channel is told to process it by loading the first command into
the engine. At the end of each transfer, the DMA engine will load the
next command – until it runs out of commands. New commands can be
added or updated in the lists while DMA is in progress, so in theory my
audio example need never stop.

Scatter-gather engines are good for transferring data into virtual mem-
ory systems where the RAM consists of fragmented pages. They are also
good for complex peripheral interactions where data reads need to be
interspersed with register reads. NAND controllers require 512 bytes of
data, followed by 16 bytes of metadata and the reading of the ECC
registers for each incoming block.

Power savings come from using DMA, since the CPU can be idle
during a transfer, DMA bursts don’t require interrupts or instructions to
move a few bytes of data, and the DMA engine can be tuned to match
the performance characteristics of the peripheral and memory systems.

2.8 Liquid Crystal Display (LCD)

The primary display on Symbian OS phones is a color liquid crystal
display. The job of the display is to turn pixels in the frame buffer into
images we can see.

LIQUID CRYSTAL DISPLAY (LCD) 37

addresses of the target RAM and the peripheral FIFO. This is followed
by a DMA start command. The transfers of data will be hardware flow
controlled by the peripheral interface, since the peripherals will always
be slower than the system RAM.

In a memory to peripheral transfer, the DMA engine will wait until the
peripheral signals that it is ready for more data. The engine will read a
burst of data, typically 8, 16 or 32 bytes, into a DMA internal buffer, and
it will then write out the data into the peripheral FIFO. The channel will
increment the read address ready for the next burst until the total transfer
has completed, when it will raise a completion interrupt.

A DMA engine that raises an interrupt at the end of every transfer is
single-buffered. The CPU will have to service an interrupt and re-queue
the next DMA transfer before any more data will flow. An audio interface
will have a real-time response window determined by its FIFO depth
and drain rate. The DMA ISR must complete within this time to avoid
data underflow. For example, this time would be about 160 µs for 16-bit
stereo audio.

Double-buffered DMA engines allow the framework to queue up the
next transfer while the current one is taking place, by having a duplicate
set of channel registers that the engine switches between. Double-
buffering increases the real-time response window up to the duration of a
whole transfer, for example about 20 ms for a 4 KB audio transfer buffer.

Scatter-gather DMA engines add another layer of sophistication and
programmability. A list of DMA commands is assembled in RAM, and
then the channel is told to process it by loading the first command into
the engine. At the end of each transfer, the DMA engine will load the
next command – until it runs out of commands. New commands can be
added or updated in the lists while DMA is in progress, so in theory my
audio example need never stop.

Scatter-gather engines are good for transferring data into virtual mem-
ory systems where the RAM consists of fragmented pages. They are also
good for complex peripheral interactions where data reads need to be
interspersed with register reads. NAND controllers require 512 bytes of
data, followed by 16 bytes of metadata and the reading of the ECC
registers for each incoming block.

Power savings come from using DMA, since the CPU can be idle
during a transfer, DMA bursts don’t require interrupts or instructions to
move a few bytes of data, and the DMA engine can be tuned to match
the performance characteristics of the peripheral and memory systems.

2.8 Liquid Crystal Display (LCD)

The primary display on Symbian OS phones is a color liquid crystal
display. The job of the display is to turn pixels in the frame buffer into
images we can see.

38 HARDWARE FOR SYMBIAN OS

Displays in Symbian phones come in common sizes dictated by the
user interface software layers, since the latter are graphically optimized
to the screen size. The most common resolutions are 176 × 208 pixels as
used in Series 60 phones and 240 × 320 pixels for UiQ.

The frame buffer is an area of contiguous physical memory, large
enough to contain an array of pixels with the same dimension as
the display.

The base port reserves memory for the frame buffer during initialization,
and ensures the MMU maps it with write-through caching. A frame buffer
for 16-bpp QVGA display will require 150 KB (320 × 240 × 2) of RAM.

Pixels have common formats depending on their storage containers.
Most current mobile phones use 16 bits per pixel (bpp) in 565 format,
where the top 5 bits are red, the middle 6 bits are green, and the bottom
5 bits are blue – giving 65,535 (216) unique colors:

15 → 11 10 → 5 4 → 0

RED GREEN BLUE

Phones with genuine 18-bpp displays are starting to be common,
they display 262,144 colors. Symbian OS does not support 18-bit
words – instead a 24-bpp representation is used inside a 32-bit word.
This has an aRGB, 8888 format, where the ‘‘a’’ is empty space or an
alpha value. The LCD controller will discard the bottom two bits of each
color component byte:

31 → 24 23 → 16 15 → 8 7 → 0

alpha RED GREEN BLUE

Mobile phone LCDs come in two distinct types, dumb and smart. A
dumb display does not contain any control electronics; instead its pixels
are driven directly by the LCD controller in the SoC. On the other hand,
a smart display contains its own LCD controller, memory for the frame
buffer, and a medium-bandwidth interface back to the SoC.

The dumb display controller within an SoC has to output a new copy
of the display image around 60 times per second to persist the image on
the LCD.

This 60 Hz update requires the controller to continually transfer data
from memory using DMA as long as the display is switched on. Using
IRAM as a frame buffer can help reduce the power cost and bandwidth
overhead of the display. As I said earlier, a 16-bit QVGA with a 60 Hz
refresh rate will require 8.78 MB of data every second, and looking to the
future, a full 32-bit VGA display will require eight times as much data.

AUDIO 39

The interface to a smart display is optimized for two uses: incremental
updates to the display when small elements change, and full bandwidth
operation when multimedia video or games require it. For the small
updates, the updated screen region is transferred into the display interface
using a smart 2D DMA engine.

Smart displays save power by removing the need for full-bandwidth
updates most of the time. Their internal circuitry is optimized to match the
display characteristics exactly. They have additional low-power modes
for idle phones that only want to display the clock. These have partial
display refreshing and limited colors.

2.9 Audio

The audio sub-system of a Symbian OS phone contains two, mostly
independent, streams of audio data. One is the telephony voice data and
the other is multimedia data.

Two vital phone use cases are to have good quality voice calls and
long talk times. Digital audio buses are dedicated to voice data to ensure
this is the case.

The de facto raw hardware audio format used in a Symbian OS phone
is 16-bit pulse code modulated (PCM) data. The quality ranges from
8 kHz mono for telephony audio up to 48 kHz stereo for music playback.

PCM audio hardware can be quite simple, requiring little setup to
ensure the volume and correct output path are selected. Then all that
is needed is to feed data to the hardware at the rate it demands – DMA
hardware is very good for this. If data transfer stalls, the audio hardware
will immediately produce audible pops, clicks and stutters.

2.9.1 Telephony audio
The telephony voice data is the essence of a phone call. It has stringent
latency restrictions placed upon it to ensure that the user has a high-
quality call without the effects of transatlantic satellite lag. To ensure this
is the case, the system designers have optimized the controlling software
and hardware paths for low latency response and low power consumption
during a voice call.

The BP contains a DSP that performs the processing for voice band
audio without passing through Symbian OS. During a call, Symbian OS
will be in a low-power mode, only needing to wake up when the display
needs updating.

A normal call will end up in the analogue audio circuits. They contain
the analogue to digital and digital to analogue converters, which in turn
are connected to the microphone and speakers. When using a BlueTooth
(BT) headset the PCM data is transported directly into the BT module via
its own dedicated interface.

40 HARDWARE FOR SYMBIAN OS

Symbian OS needs an additional audio path to allow it to inject system
sounds into the ongoing call. These are for such things as message alerts,
low battery and a second incoming call. This injection of sounds can be
done by passing the raw audio data over the IPC link to the BP, where
the DSP will mix it into the audio stream.

2.9.2 Multimedia audio

Multimedia audio is a general term for every generated sound in the
system that is not voice data.

The main multimedia sounds are:

• Ring tones, in many formats

• Alerts, for incoming messages

• Alarms, from clock and calendar

• Video telephony

• MP3 playback

• Games

• Recorded voice, dictaphone

• Video capture and playback.

The higher levels are all controlled by the Symbian multimedia framework
(MMF) for media players, file formats and plug-ins.

The Multimedia Device Framework (MDF) will contain the codecs, and
it will transfer PCM data to and from the device driver layer, DevSound.

Video telephony (VT) is a special case, in which live audio data does
pass through Symbian OS. The audio elements of the call are multiplexed
into the 64-kb/s data stream along with the video. The VT call system has
to de-multiplex the incoming data stream, decode the audio and video
elements, and then play them in sync. This is normally done in dedicated
hardware or a DSP, since it would require all of a 200 MHz ARM CPU
just to run the codecs.

The main complexity in the audio systems is the ever-growing
number of audio sources and sinks, and the possible ways in which
they can be connected. For example, current phones have multi-
ple headsets, speakers, Bluetooth and FM radios. This is likely to
remain an issue until hardware is capable of mixing and routing
every audio source in all possible combinations. Today some audio
use cases will be incompatible with others, requiring them to interrupt
each other.

POWER MANAGEMENT 41

2.10 Power management

All Symbian OS phones are battery powered, and as I have stressed
throughout this chapter, effective power management (PM) is crucial in
designing a successful Symbian OS phone.

The overall design goals of the SoC team must be focused on adequate
performance at low power. At every decision point the system’s designers
must ask themselves, ‘‘How will this affect the power consumption?’’
‘‘Can I design this in another way that will have the same performance
with lower power?’’ Only by constant attention to power use will a single
battery charge give hours of talk and play time, and still leave hundreds
of hours for standby.

The ARM CPUs used in Symbian OS phones are designed as answers
to these questions, as they are the best low-power peripheral blocks in
use. Schemes to reduce power consumption within the SoC include
self-clocking circuits, serial ports that power down when idle and
memory controllers that put RAM into low-power modes whenever
possible.

Most importantly, the SoC should only include hardware capabilities
that will be used. Use case analysis and feature justification are a good
way of removing unnecessary power loads at the start of the design.
An example of a bad design is an over-specified internal bus with more
bandwidth than all of its slave peripherals.

I explain the EKA2 power model in Chapter 15, Power Management.
This power management architecture is based on the runtime use of shared
power resources by the peripherals. To closely match this model, the SoC
power architecture needs to be partitioned for clean and orthogonal PM,
enabling peripherals to have well-defined power and clock sources that
can be turned on and off as needed.

The designers of CPUs like to invent all sorts of named power modes,
for example Turbo, Run, Idle, Doze, Sleep, Deep Sleep and Off. The more
power-saving the mode is, the more work is required to get into or out
of the state. For example, a Deep Sleep state is likely to require flushing
all the state out of the caches, and turning off the core, and waking from
Deep Sleep will initially look like a boot to the CPU.

Almost all of these modes will map onto the Symbian OS idle mode,
where the system is powered but doing nothing. Symbian OS tends to
spend most of its time in idle mode, even going into it between presses
on a phone keypad. As I’ve already hinted, the most important difference
between the CPU power modes to Symbian OS is the time it takes to
transition from Run to a mode and the time taken to get back to Run
mode again. The decision about which CPU mode to use is determined
heuristically within the idle software, based on recent use and pending
timer events.

42 HARDWARE FOR SYMBIAN OS

Dedicated hardware accelerators allow for excellent performance
with low power consumption, whereas general purpose ARM software
is infinitely reprogrammable, but execution is more expensive in power
and time. The trick is to get the right balance between fixed hardware
and flexible software, and ensure that the real phone requirements can
be met two years after the silicon is finalized.

Power management is a pervasive topic. It requires careful hardware
design and focused software to achieve the system design goals.

2.11 Summary

In this chapter I have described the core hardware that is needed to run
Symbian OS, with some emphasis on the power management implications
of those hardware choices. There are a great many more peripherals and
topics that I do not have space to cover here, including:

• Real-time clock

• Touch screen

• IPC interface to BP

• Debug interfaces

• Flash programming

• Multiple displays

• IRDA

• Booting

• Removable media, SD, MMC

• 2D Graphics

• 3D Graphics

• DSP

• Multimedia accelerators

• USB interfaces

• Advance power management

• Bluetooth modules

• Watchdogs and resets

• Security hardware.

SUMMARY 43

Within Symbian, we refer to the software layers that control the hardware,
including the bootstrap, kernel port and device drivers as the baseport,
and more generically as the Board Support Package (BSP).

To enable all of the hardware on a phone is the job of the people in
the base porting team, who use their skills and experience to populate the
lowest layers of hardware abstraction within Symbian OS. You can find
further information in the Base Porting Kit (BPK) and Device Driver Kit
(DDK) documentation, both of which are available to Symbian Partners,
see www.symbian.com/partners for more information.

Designing hardware for a Symbian OS phone requires a system view of
the final product. The designers need to consider real-world performance
use cases, select hardware with enough (but not too much) capacity, and
with every decision, they need to analyze power consumption.

I hope that this chapter will have given you an insight into the design
choices you will need to make if you are building a Symbian OS phone.

In the next chapter, I will start to look at the fundamental entities
that underlie the running of code on Symbian OS – threads, processes
and libraries.

3
Threads, Processes and Libraries

by Jane Sales

One of the main causes of the fall of the Roman Empire was that, lacking
zero, they had no way to indicate successful termination of their

C programs.

Robert Firth

In this chapter, I will look at the entities – that is, threads, processes and
libraries – that are concerned with executing code under Symbian OS. I’ll
begin by examining threads, which are the fundamental unit of execution
of Symbian OS.

Because processes and threads touch so many components in Symbian
OS, this chapter will refer to many areas that I will explain in more detail
in other chapters.

3.1 What is a thread?

Under Symbian OS, our definition of a thread is that it is the unit of
execution; it is the entity that the kernel schedules, the entity to which the
kernel allocates CPU resources. You can think of a thread as a collection
of kernel data structures that describe the point a program has reached in
its execution. In fact, more accurately, these data structures describe one
of the points a program has reached in its execution, because a program
can contain more than one thread.

The Symbian OS definition of a process is that it is a collection of
threads that share a particular address mapping. In other words, the
particular mapping of virtual to physical memory at a particular time
depends on the process that is running. Each thread within a process
can read and write from any other thread’s memory, since they share
an address space. But more on this later – for now, let’s concentrate
on threads.

46 THREADS, PROCESSES AND LIBRARIES

3.2 Nanokernel threads
The nanokernel provides the most basic thread support for Symbian
OS in the form of nanokernel threads (which from now on I’ll call
nanothreads). The nanokernel provides support for the scheduling of
nanothreads, and for their synchronization and timing services. The
thread services the nanokernel provides are very simple – simpler even
than those provided by a typical RTOS. We chose them to be the minimal
set needed to support a GSM signaling stack.

Nanothreads only ever run in supervisor mode; they never run in user
mode. Because of this, each nanothread needs only a single, supervisor
mode stack. The nanokernel keeps the address of the nanothread’s stack in
the NThread class’s iStackBase, and the stack’s size in iStackSize.
The kernel uses these two variables for initialization and, when an
exception occurs, for stack checking to protect against stack overflows.

Each nanothread’s member data also contains its last saved stack
pointer value, iSavedSP. Whenever the nanothread blocks or is pre-
empted, the scheduler saves the ARM processor’s context on the nano-
thread’s stack. Next, the scheduler saves the value of the processor’s
supervisor-stack-pointer register in iSavedSP. Then the scheduler over-
writes the processor’s supervisor-stack-pointer register, by loading it from
the iSavedSP of the new nanothread. Finally, the scheduler restores
the processor’s context from the new stack, thus bringing about a thread
switch. I will cover scheduling in more detail later.

3.2.1 NThread class
The NThread class is derived from a base class, NThreadBase, which
is defined in nk_priv.h. Here is a cut-down version of NThreadBase,
showing the main points of interest:

class NThreadBase : public TPriListLink
{

public:

enum NThreadState
{
EReady,
ESuspended,
EWaitFastSemaphore,
ESleep,
EBlocked,
EDead,
EWaitDfc,
ENumNStates
};

enum NThreadOperation
{
ESuspend=0,

NANOKERNEL THREADS 47

EResume=1,
EForceResume=2,
ERelease=3,
EChangePriority=4,
ELeaveCS=5,
ETimeout=6,
};

public:
NThreadBase();
TInt Create(SNThreadCreateInfo& anInfo,TBool aInitial);
IMPORT_C void CheckSuspendThenReady();
IMPORT_C void Ready();
void DoCsFunction();
IMPORT_C TBool Suspend(TInt aCount);
IMPORT_C TBool Resume();
IMPORT_C TBool ForceResume();
IMPORT_C void Release(TInt aReturnCode);
IMPORT_C void RequestSignal();
IMPORT_C void SetPriority(TInt aPriority);
void SetEntry(NThreadFunction aFunction);
IMPORT_C void Kill();
void Exit();
void ForceExit();

public:
NFastMutex* iHeldFastMutex;// fast mutex held
NFastMutex* iWaitFastMutex;// fast mutex on which blocked
TAny* iAddressSpace;
TInt iTime; // time remaining
TInt iTimeslice;
NFastSemaphore iRequestSemaphore;
TAny* iWaitObj;// object on which this thread is waiting
TInt iSuspendCount; // how many times we have been suspended
TInt iCsCount; // critical section count
TInt iCsFunction; // what to do on leaving CS:

// +n=suspend n times, 0=nothing, -1=exit
NTimer iTimer;
TInt iReturnValue;
TLinAddr iStackBase;
TInt iStackSize;
const SNThreadHandlers* iHandlers; // + thread event handlers
const SFastExecTable* iFastExecTable;
const SSlowExecEntry* iSlowExecTable; //first entry iEntries[0]
TLinAddr iSavedSP;
TAny* iExtraContext; // coprocessor context
TInt iExtraContextSize; // +ve=dynamically allocated

// 0=none, -ve=statically allocated
};

You can see that the thread base class itself is derived from TPriList
Link – this means that the thread is part of a priority-ordered doubly
linked list, which is used in scheduling.

The NThread class itself is CPU-dependent – at the moment three
versions of it exist, one for ARM, one for X86 and the other for the
emulator. To give you a flavor for the kind of functionality that you find
in NThread, here is a cut-down ARM version:

48 THREADS, PROCESSES AND LIBRARIES

class NThread : public NThreadBase
{

public:
TInt Create(SNThreadCreateInfo& aInfo, TBool aInitial);
inline void Stillborn() {}

// Value indicating what event caused thread to
// enter privileged mode.
enum TUserContextType

{
EContextNone=0, /* Thread has no user context */
EContextException=1, /* HW exception while in user mode */
EContextUndefined,
EContextUserInterrupt, /* Preempted by int in user mode */
// Killed while preempted by interrupt taken in user mode
EContextUserInterruptDied,
// Preempted by interrupt taken in executive call handler
EContextSvsrInterrupt1,
// Killed while preempted by interrupt taken in
// executive call handler
EContextSvsrInterrupt1Died,
// Preempted by interrupt taken in executive call handler
EContextSvsrInterrupt2,
// Killed while preempted by interrupt taken in
// executive call handler */
EContextSvsrInterrupt2Died,
EContextWFAR, // Blocked on User::WaitForAnyRequest()
// Killed while blocked on User::WaitForAnyRequest()
EContextWFARDied,
EContextExec, // Slow executive call
EContextKernel, // Kernel-side context (for kernel threads)
};

IMPORT_C static const TArmContextElement*
const* UserContextTables();

IMPORT_C TUserContextType UserContextType();
inline TInt SetUserContextType()

{ return iSpare3=UserContextType(); }
inline void ResetUserContextType()

{if(iSpare3>EContextUndefined) iSpare3=EContextUndefined; }
void GetUserContext(TArmRegSet& aContext,

TUint32& aAvailRegistersMask);
void SetUserContext(const TArmRegSet& aContext);

void ModifyUsp(TLinAddr aUsp);

#ifdef __CPU_ARM_USE_DOMAINS
TUint32 Dacr();
void SetDacr(TUint32 aDacr);
TUint32 ModifyDacr(TUint32 aClearMask, TUint32 aSetMask);

#endif

#ifdef __CPU_HAS_COPROCESSOR_ACCESS_REG
void SetCar(TUint32 aDacr);

#endif
IMPORT_C TUint32 Car();
IMPORT_C TUint32 ModifyCar(TUint32 aClearMask, TUint32 aSetMask);

NANOKERNEL THREADS 49

#ifdef __CPU_HAS_VFP
void SetFpExc(TUint32 aDacr);

#endif
IMPORT_C TUint32 FpExc();
IMPORT_C TUint32 ModifyFpExc(TUint32 aClearMask, TUint32 aSetMask);
};

Key member data of NThread and NThreadBase

iPriority
The thread’s absolute scheduling priority, between 0 and 63 inclusive.

iNState
The state of the thread, that is, ready or blocked. Essentially this determines
which queue if any the thread is linked into.

iAttributes
Bit mask that determines scheduling policy with respect to the system
lock and whether the thread requires an address space switch in general.

iAddressSpace
Address space identifier for the thread, used to determine whether the cor-
rect address space is already active. The actual value has no significance
to the nanokernel, only to the Symbian OS memory model.

iTime
Counter used to count timer ticks before thread should yield to next equal
priority thread.

iTimeslice
Number of low-level timer ticks before thread yields to equal priority
threads. If negative, it will not yield unless it blocks.

iRequestSemaphore
An NFastSemaphore that we use for general ‘‘wait for any event’’. For
Symbian OS threads, it serves as the Symbian OS request semaphore.

iSuspendCount
Integer, ≤0, which equals minus the number of times a thread has been
explicitly suspended.

iCsCount
Integer, ≥0, which indicates whether the thread may currently be killed or
suspended. These actions can only happen if this count is zero, otherwise
they are deferred.

iCsFunction
Integer that indicates what if any action was deferred due to iCsCount
being non-zero. If zero, no action is required; if positive, it equals the
number of explicit suspensions that have been deferred; if negative, it
indicates that a thread exit has been deferred.

50 THREADS, PROCESSES AND LIBRARIES

iTimer
Nanokernel timer object used to sleep the thread for a specified time and
to implement wait-for-event-with-timeout functions.

iExitHandler
Pointer to function. If it is not NULL the kernel will call the function when
this thread exits, in the context of the exiting thread.

iStateHandler
Pointer to function that is called if the thread is suspended, resumed,
released from waiting or has its priority changed and the iNState is not
a standard nanokernel thread state. Used to implement RTOS emulation
layers.

iExceptionHandler
Pointer to function called if the thread takes an exception. On ARM, the
function is called if a prefetch abort, data abort or undefined instruction
trap occurs. The function is always executed in mode_svc1 in the context
of the current thread, regardless of the exception type.

iFastExecTable
Pointer to table of fast executive calls for this thread.

iSlowExecTable
Pointer to table of slow executive calls for this thread – see Section 5.2.1.7
for details.

3.2.2 Nanothread creation
The nanokernel provides the static API below to allow kernel modules
outside of the nanokernel to create a nanothread:

NKern::ThreadCreate(NThread* aThread, SNThreadCreateInfo& aInfo)

This function takes an SNThreadCreateInfo structure as a parameter.
The caller also passes a pointer to a new NThread object, which it
has instantiated beforehand. This must be done because the nanokernel
cannot allocate or free memory.

3.2.2.1 SNThreadCreateInfo

The SNThreadCreateInfo structure looks like this:

struct SNThreadCreateInfo
{

1 An ARM CPU mode that is associated with a different register set. See Chapter 6,
Interrupts and Exceptions, for more on this.

NANOKERNEL THREADS 51

NThreadFunction iFunction;
TAny* iStackBase;
TInt iStackSize;
TInt iPriority;
TInt iTimeslice;
TUint8 iAttributes;
const SNThreadHandlers* iHandlers;
const SFastExecTable* iFastExecTable;
const SSlowExecTable* iSlowExecTable;
const TUint32* iParameterBlock;
TInt iParameterBlockSize;
// if 0,iParameterBlock is initial data
// otherwise it points to n bytes of initial data
};

Key member data of SNThreadCreateInfo
iFunction
Address of code to execute.

iStackBase
Base of stack for new NThread. This must be preallocated by the
caller – the nanokernel does not allocate it.

iHandlers
Points to the handlers for different situations, namely:

• iExitHandler: called when a thread terminates execution

• iStateHandler: called to handle state changes when the iNState
is not recognized by the nanokernel (used so OS personality layers
can implement new NThread states)

• iExceptionHandler: called to handle an exception

• iTimeoutHandler: called when the NThread::iTimer timer
expires.

3.2.2.2 SNThreadHandlers

The SNThreadHandlers structure looks like this:

struct SNThreadHandlers
{
NThreadExitHandler iExitHandler;
NThreadStateHandler iStateHandler;
NThreadExceptionHandler iExceptionHandler;
NThreadTimeoutHandler iTimeoutHandler;
};

Key member data of SNThreadCreateInfo
iParameterBlock
Either a pointer to a block of parameters for the thread, or a single 32-bit
parameter.

52 THREADS, PROCESSES AND LIBRARIES

iParameterBlockSize
If zero, iParameterBlock is a single 32-bit parameter. If non-zero, it
is a pointer.

iFastExecTable
Allows personality layer to pass in a pointer to a table of exec calls to be
used for this thread.

iSlowExecTable
Allows personality layer to pass in a pointer to a table of exec calls to be
used for this thread.

3.2.2.3 Creating a nanothread

Returning to NKern::ThreadCreate(), you can see that the caller
passes in the address of the stack that the nanothread will use. This is
because the nanokernel cannot allocate memory – so anyone creating a
nanothread must first allocate a stack for it.

NThread::Create()

TInt NThread::Create(SNThreadCreateInfo& aInfo, TBool aInitial)
{

TInt r=NThreadBase::Create(aInfo,aInitial);
if (r!=KErrNone)

return r;
if (!aInitial)

{
TUint32* sp=(TUint32*)(iStackBase+iStackSize-

aInfo.iParameterBlockSize);
TUint32 r6=(TUint32)aInfo.iParameterBlock;
if (aInfo.iParameterBlockSize)
{
wordmove (sp,aInfo.iParameterBlock,

aInfo.iParameterBlockSize);
r6=(TUint32)sp;
}

*--sp=(TUint32)__StartThread; // PC
*--sp=0; // R11
*--sp=0; // R10
*--sp=0; // R9
*--sp=0; // R8
*--sp=0; // R7
*--sp=r6; // R6
*--sp=(TUint32)aInfo.iFunction; // R5
*--sp=(TUint32)this; // R4
*--sp=0x13; // SPSR_SVC
*--sp=0; // R14_USR
*--sp=0; // R13_USR
iSavedSP=(TLinAddr)sp;
}

NANOKERNEL THREADS 53

NThreadBase::Create()

TInt NThreadBase::Create(SNThreadCreateInfo& aInfo, TBool aInitial)
{
if (aInfo.iPriority<0 || aInfo.iPriority>63)

return KErrArgument;
new (this) NThreadBase;
iStackBase=(TLinAddr)aInfo.iStackBase;
iStackSize=aInfo.iStackSize;
iTimeslice=(aInfo.iTimeslice>0)?aInfo.iTimeslice:-1;
iTime=iTimeslice;
iPriority=TUint8(aInfo.iPriority);
iHandlers = aInfo.iHandlers ? aInfo.iHandlers :

&NThread_Default_Handlers;
iFastExecTable=aInfo.iFastExecTable?aInfo.iFastExecTable:

&DefaultFastExecTable;
iSlowExecTable=(aInfo.iSlowExecTable?aInfo.iSlowExecTable:

&DefaultSlowExecTable)->iEntries;
iSpare2=(TUint8)aInfo.iAttributes;
// iSpare2 is NThread attributes
if (aInitial)

{
iNState=EReady;
iSuspendCount=0;
TheScheduler.Add(this);
TheScheduler.iCurrentThread=this;
TheScheduler.iKernCSLocked=0;
// now that current thread is defined
}

else
{
iNState=ESuspended;
iSuspendCount=-1;
}

return KErrNone;
}

The static function NKern::ThreadCreate() merely calls
NThread::Create() (the first code sample), which then calls
NThreadBase::Create()(the second sample). This function sets up
various properties of the new thread, including:

• its stack

• its priority

• its timeslice

• its slow and fast exec tables.

NThreadBase::Create() then puts the new nanothread into the
suspended state and returns.
NThread::Create() sets up a stack frame for the new nanothread,

first copying over the parameter block (if any) and then creating register

54 THREADS, PROCESSES AND LIBRARIES

values, ready for the thread to pop them. The kernel gives the thread’s
program counter register (on the stack) the value of __StartThread
(see the following code sample). To find out more about where in memory
we create the thread’s stack, see Chapter 7, Memory Models.

__StartThread

__NAKED__ void __StartThread()
{
// On entry r4->current thread, r5->entry point, r6->parameter block
asm("mov r0, r6 ");
asm("mov lr, pc ");
asm("movs pc, r5 ");
asm("b " CSM_ZN5NKern4ExitEv);
}

__StartThread merely assigns some registers, so that iFunction
is called with the iParameterBlock function as its argument. If
iFunction returns, __StartThread branches to Kern::Exit to
terminate the thread.

3.2.3 Nanothread lifecycle

3.2.3.1 Nanothread states

A nanokernel thread can be in one of several states, enumerated by
NThreadState and determined by the NThread ’s iNState member
data. I will describe these states below:

iNState==EReady
Threads in this state are eligible for execution. They are linked into the
ready list. The highest priority EReady thread is the one that will actually
execute at any given time, unless it is blocked on a fast mutex.

iNState==ESuspended
A thread in this state has been explicitly suspended by another thread
rather than blocking on a wait object.

iNState==EWaitFastSemaphore
A thread in this state is blocked waiting for a fast semaphore to be signaled.

iNState==EWaitDfc
The thread is a DFC-handling thread and it is blocked waiting for a DFC
to be added to the DFC queue that it is servicing. (For more on DFCs, see
Section 6.3.2.3.)

iNState==ESleep
A thread in this state is blocked waiting for a specific time period to elapse.

NANOKERNEL THREADS 55

iNState==EBlocked
The thread is blocked on a wait object implemented in a layer above
the nanokernel. This generally means it is blocked on a Symbian OS
semaphore or mutex.

iNState=EDead
A thread in this state has terminated and will not execute again.

iNState=other
If you are writing a personality layer (see Chapter 17, Real Time) then you
may choose to allow your nanothreads to have extra states; that is your
iNState will be able to take a value other than those above. You must
then provide an iStateHandler in your NThread, and then the kernel
will call this function if there is a transition in state for this nanothread – if
it is resumed, blocked and so on.

3.2.4 Mutual exclusion of nanothreads

3.2.4.1 Critical sections

A critical section is any sequence of code for which a thread, once it has
entered the section, must be allowed to complete it. In other words, the
nanokernel must not suspend or kill a thread that is in a critical section.

The nanokernel has sections of code that update kernel global data,
and where preemption is enabled. This could lead to problems: imagine
that thread MARLOW is in the middle of updating a global data structure,
when thread BACON preempts it. Then the global data structure is left
in a half-modified state, and if BACON tries to access that data a system
crash may well result. We can guard against this scenario by protecting
each such global data structure by a mutex, but we need to do more
than this.

Imagine this time that, while MARLOW is in the middle of updating the
global data structure, BACON preempts MARLOW and suspends or kills
it. Let’s consider the two situations – suspended or killed – separately.

Assume BACON suspended MARLOW, and that BACON is the only
thread that might release MARLOW. MARLOW still holds the mutex
protecting the global data structure. So now, if BACON tries to access the
same global data structure, a deadlock results, because no other thread
will release MARLOW.

Assume BACON killed MARLOW. Now we have a situation similar
to our first one – we have left the global data structure in a half-modified
state, rendering it unusable by any other thread and having the potential
to crash the entire system.

To prevent either of these situations from occurring, we give each
thread a critical section count, iCsCount. We increment this every time
the thread enters a critical section of kernel code, and decrement it when
the thread leaves the critical section.

56 THREADS, PROCESSES AND LIBRARIES

Then, when thread BACON preempts thread MARLOW, and tries to
suspend or kill it, the nanokernel first checks MARLOW’s critical section
count. If the count is zero, the nanokernel can immediately suspend or
kill the thread on behalf of thread BACON.

If MARLOW’s critical section count is non-zero, then the nanokernel
must delay its actions until MARLOW leaves the critical section. The
nanokernel sets a flag in MARLOW’s iCsFunctionmember, to indicate

a) That further action is required

b) Whether the thread should suspend or exit.

The nanokernel decrements the thread’s iCsCount when the thread
leaves the critical section. If the thread’s iCsCount becomes zero, then
the kernel checks the thread’s iCsFunction to see if further action is
required. If iCsFunction is set, then the nanokernel suspends or kills
the thread, according to the value placed in iCsFunction. Note that
thread BACON, which called Suspend() or Kill(), is not blocked at
any stage – it simply carries on executing.

3.2.4.2 Fast mutexes

But what of the actual mutex used to protect global data structures?
Keeping the design goals for the nanokernel as a whole in mind, we
derived the following requirements for a fast mutex that would efficiently
protect short, critical sections of code:

1. The mutex must be very fast in the case where there is no contention
for the mutex

2. The mutex must have a low RAM footprint

3. A thread may not wait on a fast mutex if it already holds a fast mutex
(fast mutexes are non-nestable)

4. A thread may not block or exit while holding a fast mutex.

The nanokernel then ensures that a thread is not suspended or terminated
while holding a fast mutex. It does this by treating a nanothread that holds
a fast mutex as if it were in a critical section – that is, the nanokernel
delays suspending or terminating the nanothread until it releases the
fast mutex.

This leaves us with the case in which the thread attempts to exit while
holding a fast mutex, for example as a result of taking an exception. In
this case, as in the one where a thread attempts to exit while in a critical
section, the kernel will fault.

If a nanothread holds a fast mutex, then, on a timeslice, the nanokernel
will not schedule another nanothread of the same priority in its place.

NANOKERNEL THREADS 57

This is done to reduce the time spent unnecessarily switching between
threads in short critical sections.

How fast mutexes work
Each nanothread has a pointer to the fast mutex currently held by
the thread (iHeldFastMutex). We only need one fast-mutex pointer,
because, as I said earlier, we chose to design EKA2 with non-nestable
fast mutexes. Naturally, the fast mutex pointer is NULL if the nanothread
does not hold a fast mutex.

Each nanokernel thread also has a pointer to the fast mutex on which
it is currently blocked (iWaitFastMutex). Again, this pointer is NULL
if the nanothread is not blocked on a fast mutex.

There are two key elements in the fast mutex class. The first is a pointer
to the holding thread (iHoldingThread), which is NULL if the mutex
is free. The second is a flag (iWaiting), which indicates either that there
was contention for the mutex or that the nanokernel deferred an action
(such as suspension, termination or round-robinning) because the mutex
was held.

The algorithm for waiting on a fast mutex is:

1. Lock the kernel
2. IF (iHoldingThread!=NULL)
3. iWaiting = TRUE
4. Current thread->iWaitFastMutex = this
5. Yield to iHoldingThread //return with ints disabled, kernel unlocked
6. Lock the kernel
7. Reenable interrupts
8. Current thread -> iWaitFastMutex = NULL
9. ENDIF
10. Current thread -> iHeldFastMutex = this
11. iHoldingThread = Current thread
12. Unlock the kernel

If the mutex is free, this simply reduces to two variable assignments, and
so is very fast. On single-processor systems (all of them to date!), we
further optimize this by disabling interrupts rather than locking the kernel
when we check iHoldingThread.

It is worth looking carefully at the section of pseudo code between
the IF and the ENDIF, lines 2 to 9. You can see that as the kernel blocks the
thread, it does not remove it from the ready list. Instead, it performs the
Yield to iHoldingThread operation, which immediately switches
the context to the thread that holds the mutex. We have to be careful in
the case where we are using the moving memory model (see Chapter 7,
Memory Models, for more on what this means). The context switch that
we have just done does not call the memory model hook provided to
allow slow process changes, so the memory model does not get chance
to perform any page table manipulations. We cannot allow it to do so,

58 THREADS, PROCESSES AND LIBRARIES

because we want a fast mutex operation, and page table manipulations
are usually slow. This means that the kernel doesn’t guarantee a user
address space to be consistent while the current thread holds a fast
mutex. (If we are using the multiple memory model, then all is well, since
we can perform the address space change, as in this case it is very fast.)

This scheme also gives us priority inheritance on fast mutexes. This
comes about because the blocked thread remains on the ready list, so a
reschedule can only be triggered if another thread becomes ready whose
priority is at least as great as the highest priority blocked thread (see
Section 3.6). So the holding thread can only be scheduled out by a thread
whose priority is greater than any thread already on the list – in effect its
priority is raised to that of the highest priority blocked thread.

The algorithm for releasing a fast mutex is:

1. Lock the kernel
2. iHoldingThread = NULL
3. Current thread -> iHeldFastMutex = NULL
4. IF iWaiting
5. iWaiting = FALSE
6. Set TheScheduler.iRescheduleNeededFlag to cause reschedule
7. IF CurrentThread->iCsFunction & & CurrentThread->iCsCount==0
8. Do critical section exit processing for current thread
9. ENDIF
10. ENDIF
11. Unlock the kernel

If iWaiting is NULL, then again this becomes just two variable assign-
ments. And again, on single-processor systems we have optimized this
by disabling interrupts rather than locking the kernel while checking
iWaiting.

Remember that the nanokernel would have set the iWaiting flag if
another nanothread had attempted to acquire the mutex while the first
nanothread held it.

The nanokernel would also have set the iWaiting flag if another
nanothread had attempted to suspend or kill the first one – in this case it
would delay the function to be performed, and keep a record of which
function is to be performed later by storing it in iCsFunction.

Finally, the nanokernel would also have set the iWaiting flag if the
first nanothread’s timeslice had expired, because it will delay the round-
robin with other equal priority threads until the fast mutex is released.

Have another look at lines 7 and 8 of the pseudo code. They say
that the critical section exit processing will be called whenever we are
not in a critical section and there is a delayed function to be performed
(iCsFunction != NULL). We can reach this point for two reasons. The
first is that the thread was executing in a critical section when it was killed
or suspended, and now it has exited that critical section. The second is
the thread held a fast mutex when it was killed or suspended, and now it
has released the fast mutex. The exit processing is the same in both cases.

NANOKERNEL THREADS 59

3.2.5 Nanothread death
You can kill a nanothread by calling NThread::Kill(), but beware –
this method is only intended for use by personality layers and the EPOC
layer, and should not be called directly on a Symbian OS thread. This is
because a Symbian OS thread is an extension of a nanothread, and needs
to also perform its own actions on thread death, such as setting the thread
exit category and the reason code.

So, we believe that killing threads is not a good thing to do and it
is much better to ask them nicely to stop! We have implemented this
philosophy in the kernel process’s Symbian OS threads. The practical
consequence of this is that these threads don’t need to enter critical
sections – so if you were to kill them at the wrong point, you would have
the problems outlined in Section 3.2.4.1.

If the subject thread is in a critical section, then the kernel will not
kill it immediately, but will mark it ‘‘exit pending’’ and kill it once it has
exited its critical section.

In either case, the exiting thread first invokes its exit handler, which
I’ll discuss next.

3.2.5.1 Exit handler

An exiting thread will invoke its exit handler (iExitHandler) if one
exists. The exit handler runs with the kernel unlocked and the exiting
thread in a critical section, so it is impossible to suspend the thread while
running its exit handler.

The exit handler can return a pointer to a DFC (deferred function call)
that will be queued just before the thread actually terminates, that is just
before the kernel sets the thread’s iNState to EDead. The Symbian OS
kernel also uses the DFC to perform final cleanup after the thread has
terminated – for example to delete the thread control block.

3.2.6 Threads in the emulator
The Win32 NThread class has the following members to add to those of
the generic NThreadBase:

Field Description

iWinThread Win32 handle that refers to the host thread that underlies this
thread.

iScheduleLock Win32 event object used to block the host thread when not
scheduled by the nanokernel. Every nanokernel thread except the
current thread will either be suspended in the host OS, in which
case iWakeup is EResume or EResumeLocked, otherwise it
will be waiting on this event object in its control block.

60 THREADS, PROCESSES AND LIBRARIES

iDivert A function pointer used to divert a thread from normal return
from the scheduler. Diverting threads using a forced change of
context in the host OS is unsafe and is only used for forced
termination of a thread that is suspended.

iInKernel A counter used to determine if the thread is in ‘‘kernel’’ mode. A
zero value indicates ‘‘user’’ mode. This state is analogous to
being in supervisor mode on ARM – it is used primarily to
determine the course of action following an exception.

iWakeup Records the method required to resume the thread when it
becomes the current thread.

3.2.6.1 Thread creation

Instantiating a thread in the emulator is a little more complex than on
a target phone, as we must create and initialize a host thread, acquire
the resources to control its scheduling, and hand the initial data over
to the thread. On the target, we hand the initial data over by directly
manipulating the new thread stack before it runs; on the emulator this is
best avoided as it involves directly manipulating the context of a live host
thread. The nanokernel API allows an arbitrary block of data to be passed
to the new thread. Because the new thread does not run synchronously
with the create call, but rather when the new thread is next scheduled to
run, we must hand over this data before the creating thread returns from
NThread::Create().

When creating a new nanokernel thread in the emulator, we create an
event object for the reschedule lock, then create a host OS thread to run
the NThread::StartThread()method, passing an SCreateThread
parameter block. The parameter block contains a reference to the thread
creation information and a fast mutex used to synchronize the data
block handover. The handover requires that the new thread runs to
copy the data, but it must be stopped again straight afterwards, because
when NThread::Create() returns the new thread must be left in
a NThread::ESuspended state. Now I’ll describe in detail how we
achieve this.

We create the new Windows thread, leaving it suspended within Win-
dows. NThread::Create() then marks the new thread as preempted
(within the nanokernel) so that it will be resumed when the nanokernel
schedules it to run. The creating thread then locks the kernel, sets up
the handover mutex so that it is held by the new thread, and sets a
deferred suspension on the new thread. (The deferred suspension is not
immediately effective as the new thread holds a fast mutex.) When the
creating thread waits on the same fast mutex, the scheduler runs the new
thread from its entry point.

NANOKERNEL THREADS 61

The new thread now initializes. It sets an exception handler for the
Windows thread so that the emulator can manage access violations, and
then copies the data out of the parameter block. Initialization is then
complete so the new thread signals the handover mutex. This action
activates the deferred suspension, leaving the new thread suspended as
required. Signaling the mutex also wakes up the creating thread, which
was blocked on the mutex. The creating thread can now release the
mutex again and return, as the new thread is ready to run.

When the new thread is resumed, it invokes the supplied thread entry
point function and then exits if that returns.

3.2.6.2 Thread exit

On target, a nanothread is considered dead when its state is NThread::
EDead and after it enters TScheduler::Reschedule for the last time
and schedules another thread to run. Because of its state, it will never be
scheduled to run again, and its control block can be destroyed.

If the emulator followed this model directly, the Windows thread would
be left blocked on its iRescheduleLock. Although the host thread and
event object could then be discarded when the thread’s control block is
destroyed by calling the TerminateThread() function (as in EKA1),
Windows does not recommend such use of this function.

Instead, we want the Windows thread to exit cleanly by calling the
ExitThread() function. To do this, we ensure that we handle the final
thread switch (detected by checking a thread state of EDead) slightly
differently. We wake up the next Windows thread to run but do not block
the dying thread. Instead, the dying thread releases the thread and event
handles before calling ExitThread().

3.2.6.3 Forced exit – diverting threads

When one thread kills another, the victim has to be diverted from its
current activity into the thread exit processing. As we saw before, doing
such a diversion by making a forced change of context in Windows can
destabilize Windows itself.

The vast majority of situations in which this occurs involve a thread that
has voluntarily rescheduled, by callingTScheduler::Reschedule(),
rather than being preempted, due to an interrupt. In these situations we can
divert safely by making the return path from TScheduler::
Reschedule() check to see if a diversion is needed. We use the
NThread::iDivert member to record the existence of a diversion on
the thread.

This only leaves the rare case where the thread has been preempted,
in which case diversion has to involve changing the Windows thread
context – there is no other alternative.

62 THREADS, PROCESSES AND LIBRARIES

This doesn’t crash Windows for two reasons:

1. We don’t run the emulator on versions of Windows that suffer like
this (such as Windows 98)

2. We ensure that we don’t kill the thread when it is executing code
inside a Windows ‘‘kernel’’ function.

Also we recommend that any threads interacting with Windows should
use Emulator::Lock() and Unlock() to prevent preemption whilst
‘‘inside’’ Windows.

3.3 Symbian OS threads

The Symbian OS kernel builds on nanothreads to provide support for user-
mode threads that are used by standard Symbian OS user applications.
We represent these threads using the DThread class.

Earlier in this chapter, I said that nanothreads always execute in
supervisor mode and have a single supervisor-mode stack. Each Symbian
OS thread object contains a nanothread object; this nanothread is what
the kernel actually schedules. The nanokernel cannot allocate memory,
so when it is creating a Symbian OS thread, the Symbian OS kernel must
allocate the memory for the nanothread’s supervisor stack before it makes
the ThreadCreate() call to the nanokernel.

Each user-mode Symbian OS thread naturally has a user-mode stack,
so, to spell it out, user-mode Symbian OS threads each have two stacks
(Figure 3.1). The supervisor-mode stack associated with the nanothread is
used by kernel-side code run in the thread’s context – that is, the system
calls made by the thread.

The use of per-thread supervisor stacks is a fundamental difference from
EKA1, in which each thread had only one stack. By adding the supervisor
stack to each thread, we allow kernel-side code to be preempted and
thus achieve low thread latencies. You can read more about this in
Section 5.2.1.3.

EKA2 also provides each Symbian OS thread with:

• Access to a set of executive functions to enable user-mode threads to
gain access to kernel functionality

• An exception handler, which enables the kernel to handle exceptions
in user-mode threads (typically caused by programming errors)

• An exit handler, which allows resources to be freed and other threads
to be notified when a thread terminates.

SYMBIAN OS THREADS 63

nano-thread

Symbian OS thread

User-mode stack

Supervisor stack

iUserStackRunAddress

iSupervisorStack

Figure 3.1 Stacks for a user-mode Symbian OS thread

3.3.1 Symbian OS thread creation

3.3.1.1 Creating a thread: 1

User-mode code creates a Symbian OS thread by calling RThread::
Create(). By default, this method creates a thread belonging to the
current process, and returns an open handle to the newly created thread
back to the caller.

The RThread::Create()method goes via an exec call (see Chapter
5, Kernel Services) to the kernel, where it ends up inside the method
DThread::Create(SThreadCreateInfo&aInfo).

SThreadCreateInfo
The basic SThreadCreateInfo structure looks like this:

struct SThreadCreateInfo
{
TAny* iHandle;
TInt iType;
TThreadFunction iFunction;
TAny* iPtr;
TAny* iSupervisorStack;
TInt iSupervisorStackSize;
TAny* iUserStack;
TInt iUserStackSize;
TInt iInitialThreadPriority;
TPtrC iName;
TInt iTotalSize; // Size including any extras
};

64 THREADS, PROCESSES AND LIBRARIES

Key member data of SThreadCreateInfo
iHandle
Handle on thread, returned to caller.

iType
Type of thread (EThreadInitial, EThreadSupervisor, EThread-
MinimalSupervisor or EThreadUser). Indicates whether thread can
execute in user mode and whether creation should be fast or normal.

iFunction
Where to begin execution of this thread.

iPtr
The pointer passed as an argument to iFunction.

iSupervisorStack
Pointer to supervisor stack. If 0, a stack will be created for it.

iSupervisorStackSize
Size of supervisor stack. Zero means to use the default value of 4 KB.

iUserStack
Pointer to user stack. This is returned to caller, not passed in.

iUserStackSize
Size of user stack. Zero means to use the default value of 8 KB.

iInitialThreadPriority
Initial priority for this thread.

iName
Name of the thread. If this is non-zero then the thread is a global object.

iTotalSize
Size including any extras. This must be a multiple of 8 bytes.

SStdEpocThreadCreateInfo
The basic SThreadCreateInfo structure is then derived by SStdE-
pocThreadCreateInfo to provide three more fields, like so:

struct SStdEpocThreadCreateInfo : public SThreadCreateInfo
{
RAllocator* iAllocator;
TInt iHeapInitialSize;
TInt iHeapMaxSize;
TInt iPadding; // Make size a multiple of 8 bytes
};

This structure adds a pointer to the RAM allocator and an initial and a
maximum size for the heap. It forms the control block that is pushed onto
a thread’s stack before that thread starts. The extra fields are used by the

SYMBIAN OS THREADS 65

standard entry point function to set up the thread’s heap – the kernel does
not use them itself.

We chose to derive from SThreadCreateInfo so that we could
support other kinds of threads in personality layers. Those new types of
thread would probably need to pass different parameters to the thread’s
entry point instead. The authors of the personality layer can do this easily,
by deriving a new class from SThreadCreateInfo.

3.3.1.2 Creating a thread: 2

The DThread constructor sets the state of the new thread to ECreated.
The thread stays in this state throughout the construction process, then,
once the thread is completely constructed, the kernel changes its status to
EReady. This ensures that there are no anomalies arising from the death
of a partly created thread.

Then the DThread::Create() method creates a user stack for the
thread. To find out more about where in memory we create the thread’s
stack, see Chapter 7, Memory Models.

Next DThread::Create() calls DThread::DoCreate(). This
method continues the work of setting up the thread, calling
NKern::ThreadCreate() to create the nanokernel portion of the
Symbian OS thread.

On return from DoCreate(), DThread::Create() adds the thread
to the object container for threads (assuming it is neither the initial thread,
nor a minimal supervisor thread). For more on object containers, see
Chapter 5, Kernel Services.

When the Symbian OS thread first starts to run, it executes
__StartThread. This calls DThread::EpocThreadFunction(),
which checks to see if the thread is a kernel or user thread.

If it is a kernel thread, then DThread::EpocThreadFunction()
calls the thread function – this is the function that the caller specified in
Kern::ThreadCreate().

If it is a user thread, then the thread creation information is copied
to the user stack. Then the CPU is switched to user mode and the process’s
entry point is called, with a parameter that is either
KModuleEntryReasonProcessInit for the first thread in the process,
or KModuleEntryReasonThreadInit for subsequent threads.

The process’s entry point is __E32Startup in e32\euser\epoc
\arm\uc_exe.cia. This code compiles into eexe.lib – Symbian’s
equivalent of crt0.obj on Windows.

The process entry point then calls RunThread(), which calls User
Heap::SetupThreadHeap(). This is the function that will create the
thread’s heap if required.

Then, if this is the first thread in the process, the constructors for
static data are called before calling E32Main(). Otherwise, the thread
function is called straight away.

66 THREADS, PROCESSES AND LIBRARIES

3.3.1.3 Over-riding the Symbian OS allocators

You may have noticed that EKA2 does not create the thread’s heap.
Instead, threads create their own heaps (or share an existing heap)
when they first run. This makes it possible for the process itself to hook
in and over-ride the normal heap creation function. In this way, you
can choose to make a particular process use a memory allocator other
than the standard one that Symbian provides in EUSER. You can also
insert additional heap tracking or diagnostic functions. However, you
should note that the function UserHeap::SetupThreadHeap()must
be in a static library if you want to automatically over-ride heap cre-
ation in a process; the code for the RAllocator-derived class can
be in a DLL. You do need to be careful when over-riding User-
Heap::SetupThreadHeap(), because it is called before static data is
initialized.

3.3.2 The DThread class
As we’ve already seen, the DThread class represents a Symbian OS
thread. Now let’s find out a little more about it. DThread derives from
DObject, which makes it a dynamically allocated reference counted
object inside the kernel (see Chapter 5, Kernel Services, for more on
this). The DThread has an embedded nanothread (iNThread), which
enables the nanokernel to schedule it.

We then derive the DThread class further to give a concrete CPU/
MMU specific class – on ARM CPUs this is called DArmPlatThread.
DArmPlatThread contains some CPU specifics but in general, it does
not add much functionality to DThread.

Here is a cut-down version of the DThread class to give you a flavor
for the kind of thing it includes:

class DThread : public DObject
{

public:
enum {EDefaultUserTimeSliceMs = 20};

enum TThreadState
{
ECreated,
EDead,
EReady,
EWaitSemaphore,
EWaitSemaphoreSuspended,
EWaitMutex,
EWaitMutexSuspended,
EHoldMutexPending,
EWaitCondVar,
EWaitCondVarSuspended,
};

SYMBIAN OS THREADS 67

enum TOperation
{
ESuspend=0,
EResume=1,
EForceResume=2,
EReleaseWait=3,
EChangePriority=4,
};

public:
DThread();
void Destruct();
TInt Create(SThreadCreateInfo& aInfo);
TInt SetPriority(TThreadPriority aPriority);
IMPORT_C void RequestComplete(TRequestStatus*& aStatus,

TInt aReason);
IMPORT_C TInt DesRead(const TAny* aPtr, TUint8* aDes,

TInt aMax, TInt aOffset, TInt aMode);
IMPORT_C TInt DesWrite(const TAny* aPtr, const TUint8* aDes,

TInt aLength, TInt aOffset, TInt aMode,
DThread* aOriginatingThread);

// not memory model dependent
TInt DoCreate(SThreadCreateInfo& aInfo);
IMPORT_C void SetThreadPriority(TInt aThreadPriority);
void SetDefaultPriority(TInt aDefaultPriority);
void AbortTimer(TBool aAbortAbsolute);
void Suspend(TInt aCount);
void Resume();
void ForceResume();
void Exit();
void Die(TExitType aType, TInt aReason,

const TDesC& aCategory);
TInt Logon(TRequestStatus* aStatus, TBool aRendezvous);
void Rendezvous(TInt aReason);

// memory model dependent
TInt AllocateSupervisorStack();
void FreeSupervisorStack();
void FreeUserStack();
TInt AllocateUserStack(TInt aSize);
TInt RawRead(const TAny* aSrc, TAny* aDest, TInt aLength,

TInt aFlags);
TInt RawWrite(const TAny* aDest, const TAny* aSrc,

TInt aLength, TInt aFlags, DThread* aOriginatingThread);
DChunk* OpenSharedChunk(const TAny* aAddress, TBool aWrite,

TInt& aOffset)

static void DefaultUnknownStateHandler(DThread* aThread,
TInt& aOperation, TInt aParameter);

static void EpocThreadFunction(TAny* aPtr);
static TDfc* EpocThreadExitHandler(NThread* aThread);
static void EpocThreadTimeoutHandler(NThread* aThread,

TInt aOp);
public:
TUint32 iIpcCount;
TLinAddr iUserStackRunAddress;

68 THREADS, PROCESSES AND LIBRARIES

TInt iUserStackSize;
TUint32 iFlags;
DProcess* iOwningProcess;
SDblQueLink iProcessLink;
TInt iThreadPriority;
DObjectIx* iHandles;
TUint iId;
RAllocator* iAllocator;
RAllocator* iCreatedAllocator;
TTrap* iFrame;
TTrapHandler* iTrapHandler;
RArray<STls> iTls;
CActiveScheduler* iScheduler;
TExceptionHandler iExceptionHandler;
TUint iExceptionMask;
TExcTrap* iExcTrap;
TInt iDebugMask;
TThreadMessage iKernMsg;
DObject* iTempObj;
DObject* iExtTempObj;
TAny* iTempAlloc;
SDblQue iOwnedLogons;
SDblQue iTargetLogons;
RMessageK iSyncMsg;
TDfc iKillDfc;
SDblQue iClosingLibs;
TPriListLink iWaitLink;
TInt iDefaultPriority; // default scheduling priority
TAny* iWaitObj; // object on which this thread is waiting
// handler for extra thread states - used by RTOS
// personality layers
TUnknownStateHandler iUnknownStateHandler;
// pointer to extra data used by RTOS personality layers
TAny* iExtras;
TAny* iSupervisorStack;// thread’s supervisor mode stack
TInt iSupervisorStackSize;
TUint8 iSupervisorStackAllocated;
TUint8 iThreadType;
TUint8 iExitType;
TUint8 iPad1;
TInt iExitReason;
TBufC<KMaxExitCategoryName> iExitCategory;
// list of held mutexes, used only for acquisition
// order checking
SDblQue iMutexList;
// things to clean up when we die
TPriList<TThreadCleanup,KNumPriorities> iCleanupQ;
TTimer iTimer;
NThread iNThread;
};

Key member data of DThread
iFlags
Thread flags (system critical, last chance, process permanent, original).
iExitType
Top level thread exit reason (kill, terminate or panic) or EExitPending
if thread still running.

SYMBIAN OS THREADS 69

iExitReason
Exit code (return value from thread main function or reason supplied to
kill, terminate or panic call).

iExitCategory
String providing additional exit information in case of panic.

iThreadType
Type of thread: EThreadInitial, EThreadSupervisor, EThread-
MinimalSupervisor or EThreadUser.

iOwningProcess
Pointer to DProcess object that represents the process to which this
thread belongs.

iThreadPriority
Priority of this thread in either absolute or process-relative form. Values
between 0 and 63 represent absolute priorities; values between −8 and
−2 represent priorities relative to that of the owning process.

iHandles
Pointer to array (DObjectIx) of thread-local handles for this thread.

iId
Symbian OS thread ID of this thread (unsigned 32-bit integer).

iAllocator
Pointer to the user-side heap being used by this thread. This is stored by
the kernel on behalf of the user code and is not used by the kernel itself.

iExceptionHandler
Pointer to this thread’s user-side exception handler. This will be invoked
in user mode in the context of this thread if a handled exception occurs.

iExceptionMask
Bit mask indicating which types of exception the user-side exception
handler handles. These are defined by the enum TExcType.

iExcTrap
Pointer to the thread’s exception trap handler. The handler will be invoked
if an exception occurs in the context of this thread. The trap part of the
handler provides the ability to return to the beginning of a protected code
section with an error code. NULL if no such handler is currently active.

iDebugMask
Per-thread debug mask. This is ANDed with the global debug mask to
generate the debug mask used for all kernel tracing in the context of
this thread.

iKernMsg
Kernel-side message sent synchronously to kernel-side threads. Used for
communication with device driver threads.

70 THREADS, PROCESSES AND LIBRARIES

iOwnedLogons
Doubly linked list of thread logons owned by this thread (that is, this thread
is the one which requests notification of another thread terminating).

iTargetLogons
Doubly linked list of thread logons whose target is this thread (that is,
another thread requests notification if this thread terminates).

iSyncMsg
Symbian OS IPC message (RMessageK) reserved for sending synchronous
IPC messages.

iKillDfc
The Symbian OS exit handler returns a pointer to this DFC when the
thread terminates. The nanokernel queues the DFC immediately before
terminating the thread. The DFC runs in the context of the supervisor
thread and is used to clean up any resources used by the thread, including
the DThread object itself.

iClosingLibs
This is a doubly linked list holding a list of DLibrary objects which
require user-side destructors to be called in the context of this thread.

iMState
This is actually the iSpare1 field of iWaitLink. It indicates the state
of this thread with respect to Symbian OS wait objects.

iWaitLink
This is a priority queue link field used to link the thread on to the wait
queue of a Symbian OS wait object. Note that the priority of this link
should always be equal to the thread’s nanokernel priority.

iWaitObj
This is a pointer to the Symbian OS wait object to which this thread is
currently attached, NULL if the thread is not attached to any wait object.

iSupervisorStack
Base address of thread’s supervisor mode stack.

iCleanupQ
Priority-ordered list (64 priorities, same structure as scheduler) used
to hold callbacks to be invoked if the thread terminates. Also used
to implement priority inheritance – adding a high-priority cleanup queue
entry will raise a thread’s priority. Thread scheduling priority is calculated
as the maximum of iDefaultPriority and the highest priority of any
entry in the cleanup queue.

iNThread
The nanokernel thread control block corresponding to this thread.

SYMBIAN OS THREADS 71

3.3.3 Types of Symbian OS thread

There are four types of Symbian OS thread, which are determined by the
iThreadType field in DThread. This takes on one of the values in the
enumeration TThreadType.

iType==EThreadInitial
There is only ever one initial thread in the system, and this is the first
thread to run on a device at boot time. This thread’s execution begins
at the reset vector and eventually becomes the null thread, which is
the thread with the lowest possible priority in the system. For more on
Symbian OS bootup, see Chapter 16, Boot Processes.

iType==EThreadSupervisor
Supervisor threads run only in supervisor mode, never in user mode. The
memory model allocates a supervisor stack for these threads; you may
vary its size by passing in a parameter during thread creation. Usually it
is best to pass in a value of 0, which tells the kernel to use the default size
of 4 KB (one page).

Supervisor threads have time slicing enabled by default, with a times-
lice of 20 ms.

iType==EThreadMinimalSupervisor
These threads are intended for use by RTOS personality layers and are
similar to supervisor threads. The key requirement for an RTOS threads is
a fast creation time, so the kernel does not give these threads.

The memory model can allocate the supervisor stack just as it does
for supervisor threads, but if you wish, you can preallocate an area of
memory and pass a pointer to it when you create the thread.

Finally, RTOS threads generally don’t need time slicing, so we disable
it by default.

iType==EThreadUser
These are the threads used to run standard user applications. They run in
user mode for most of the time, although they do run in supervisor mode
during executive calls.

As we have seen, these threads have two stacks, a user-mode one
and a supervisor-mode one; the memory model allocates both of these
dynamically. The memory model allocates the supervisor stack in the
same way as for supervisor threads, with a default stack size of 4 KB. It
allocates the user stack during thread create time; it creates the user stack
in the address space of the process to which the thread belongs. (I will
discuss this in more detail in Chapter 7, Memory Models.) The creator of
a user thread can specify the size of the user stack at creation time.

User threads have time slicing enabled by default, with a timeslice of
20 ms.

72 THREADS, PROCESSES AND LIBRARIES

3.3.3.1 Identifying Symbian OS and personality layer threads

The easiest way to determine if a given NThread is a Symbian OS
thread or belongs to an executing personality layer is to examine the
nanothread’s handlers:

// additional thread event handlers for this NThread
SNThreadHandlers* NThreadBase::iHandlers()

The function I use looks like this:

SNThreadHandlers *gEpocThreadHandlers;

// Grab the thread handlers from a thread that we
// know is a Symbian OS thread.
// The extension and DLL loader is guaranteed to be
// a Symbian OS thread, so we can use an extension
// entry point to capture its thread handlers.

// Extension entry point
DECLARE_STANDARD_EXTENSION()
{
gEpocThreadHandlers=(SNThreadHandlers*)

CurrentThread()->iHandlers;
. . .

}

// Get Symbian OS thread from a NThread
// if there isn’t one, it’s a personality
// layer thread, return NULL.
DThread *GetEpocThread(NThread *aNThread)
{
if (aNThread->iHandlers != gEpocThreadHandlers)

return NULL; // personality layer thread
DThread* pT = _LOFF(aNThread, DThread, iNThread);
return pT;
}

The method I use is quite simple. First, in a global variable I save a
pointer to the handlers of the extension and DLL loader (a thread that is
known to be a Symbian OS thread). Then, later, I compare my thread’s
nanothread’s iHandlers pointer, and if it is the same as the global
variable, then my thread is a Symbian OS thread too.

3.3.4 Symbian OS thread lifecycle

3.3.4.1 Symbian OS thread states

Each Symbian OS thread has a state, known as the M-state. (This is
in addition to the N-state of each Symbian OS thread’s embedded
nanothread.) When the Symbian OS thread waits on or is released from
a Symbian OS semaphore or mutex, its M-state changes.

SYMBIAN OS THREADS 73

The M-state may take on any of the values in the enumeration
TThreadState – a complete list follows. An RTOS may add more
M-states; I’ll discuss this further in the next section, 3.3.4.2.

iMState==ECreated
This is the initial state of all Symbian OS threads. It is a transient state – the
kernel puts the thread into this state when it creates the DThread control
block and keeps the thread in this state until the kernel is ready to resume
it, at which point it changes the state to EReady.

iMState==EDead
This is the final state of all Symbian OS threads. A thread enters this state
when it reaches the end of its exit handler, just before the nanokernel
terminates it.

iMState==EReady
A thread is in this state when it is not waiting on, or attached to,
any Symbian OS kernel wait object (semaphore or mutex). This state
does not necessarily imply that the thread is actually ready to run – this is
indicated by the N-state. For example, a thread that is explicitly suspended
or waiting on a nanokernel wait object (generally a fast semaphore) has
iMState==EReady, if it is not attached to any Symbian OS wait object.

iMState==EWaitSemaphore
This state indicates that the thread is currently blocked waiting for
a Symbian OS semaphore and is enqueued on the semaphore’s wait
queue. The thread’s iWaitObj field points to the semaphore.

iMState==EWaitSemaphoreSuspended
This state indicates that another thread has explicitly suspended this
thread after it blocked on a Symbian OS semaphore and was enqueued
on the semaphore’s suspended queue. The thread’s iWaitObj field
points to the semaphore.

iMState==EWaitMutex
This state indicates that the thread is currently blocked waiting for a Sym-
bian OS mutex and is enqueued on the mutex wait queue. The thread’s
iWaitObj field points to the mutex.

iMState==EWaitMutexSuspended
This state indicates that another thread has explicitly suspended this
thread after it blocked on a Symbian OS mutex and was enqueued on
the mutex suspended queue. The thread’s iWaitObj field points to
the mutex.

iMState==EHoldMutexPending
This state indicates that the thread has been woken up from the EWait-
Mutex state but has not yet claimed the mutex. The thread is enqueued
on the mutex pending queue and the thread’s iWaitObj field points to
the mutex.

74 THREADS, PROCESSES AND LIBRARIES

iMState==EWaitCondVar
This state indicates that the thread is waiting on a condition variable. The
thread is enqueued on the condition variable’s wait queue, iWaitQ, and
its iWaitObj field points to the condition variable.

iMState==EWaitCondVarSuspended
This state indicates that the thread has been suspended while waiting on
a condition variable. The thread is removed from the condition variable’s
iWaitQ, and enqueued on iSuspendQ. The thread’s iWaitObj field
points to the condition variable.

M-state changes
A thread’s M-state can change because of any of the following operations:

1. The thread blocks on a wait object

2. The thread is released from a wait object

3. The thread is suspended

4. The thread is resumed

5. The thread’s priority is changed. This can cause a transition from
EWaitMutex to EHoldMutexPending if the mutex is free and the
thread’s priority is increased

6. The thread is killed. Multiple state changes can occur in this case as
the thread proceeds through the exit handler. The first state change
will occur as a result of a ReleaseWait() call at the beginning of
the exit handler. This call cancels the thread’s wait on any Symbian
OS wait object and detaches the thread from the wait object, that is it
removes it from any queues related to the wait object. The final state
change will be to the EDead state at the end of the exit handler.

The first five of these operations are protected by the system lock mutex.
In the case of thread exit, the initial call to make the thread exit is
protected by the system lock, as is the ReleaseWait() call, but the exit
handler runs without the system lock for some of the time.

3.3.4.2 Other M-states

RTOS personality layers can add new M-states to indicate that threads
are waiting on non-Symbian OS wait objects. To make this easier to
implement, each Symbian OS thread has an unknown state handler,
iUnknownStateHandler. Let’s see how it works.

Assume that a thread is in an M-state unknown to the kernel (that is,
not one of those I have discussed above). Then the kernel will call the
unknown state handler after the kernel suspends, resumes, kills or changes

SYMBIAN OS THREADS 75

the priority of that thread. The unknown state handler can then adjust the
RTOS wait object’s queues and transition the M-state if necessary.

The unknown state handler is not involved in all state transitions: the
RTOS personality layer code will block and release threads from an RTOS
wait object directly.

It is worth noting that the Symbian OS thread unknown state handler,
iUnknownStateHandler, is completely different to the nanoker-
nel thread unknown state handler, iNThread->iHandlers->iState
Handler. Which you use depends on exactly how you implement your
RTOS personality layer. Clearly there are two choices:

Over the nanokernel
This is the usual method, described in Chapter 17, Real Time. Personality
layer threads are bare NThreads and you use NThread::iHandlers-
>iStateHandler to add extra wait states for new wait objects.

Over the Symbian OS kernel
In this case, personality layer threads are Symbian OS kernel threads, and
DThread::iUnknownStateHandlerwould be used to add extra wait
states for new wait objects. The advantage of using this method is that
you can make use of Symbian OS kernel services in your personality layer
threads (for example semaphores, mutexes and memory allocation). The
disadvantage is that Symbian OS threads use a lot more memory – over
800 bytes per DThread, plus 4 KB of stack.

3.3.5 Cleanup queues
Each Symbian OS thread has a cleanup queue, iCleanup. This
queue holds thread cleanup items, which are TThreadCleanup-derived
objects.

TThreadCleanup

class TThreadCleanup : public TPriListLink
{

public:
IMPORT_C TThreadCleanup();
void ChangePriority(TInt aNewPriority);
IMPORT_C void Remove();
virtual void Cleanup()=0;

public:
DThread* iThread;

public:
friend class Monitor;
};

The cleanup queue is a priority queue, with each of the cleanup items on it
having a priority between 0 and 63. Each cleanup item also has a callback

76 THREADS, PROCESSES AND LIBRARIES

function. When the Symbian OS thread terminates, its thread exit handler
calls the callback functions in descending order of priority – it always
holds the system lock while it does this. It is, however, permissible for a
cleanup item’s callback to release the system lock, for example to delete
the cleanup item itself or to perform some other long-running operation.
(The kernel also locks the system when it modifies the cleanup queue.)

The kernel sets the priority of cleanup items that are used purely to
provide notification of thread exit to zero.

Currently the Symbian OS kernel uses thread cleanup items for two
purposes:

1. It associates a TThreadMutexCleanup object with every Symbian
OS mutex. The kernel adds this item to the cleanup queue of the
mutex-holding thread so that it can release the mutex if the thread
terminates

2. The kernel uses cleanup items with non-zero priority to implement
priority inheritance for Symbian OS mutexes; it does this by adjusting
the priority of the TThreadMutexCleanupItem.

3.3.5.1 Priority inheritence

How does this priority inheritence work? We define the priority of a
Symbian OS thread to be the maximum of its own priority, and that of
any cleanup item on its queue. Now suppose that a low-priority thread
owns a mutex when a higher-priority thread comes along and blocks on
that mutex. The kernel will then adjust the priority of the cleanup item
associated with the mutex to be equal to the priority of the high-priority
thread. Thus the low-priority thread’s priority, which is the maximum
of its own priority and any cleanup item it owns, is also boosted, since
it owns the cleanup item associated with the mutex. If there are no
higher-priority ready threads in the system, it will continue to run until it
releases the mutex, at which point its priority drops to its normal level.

3.3.5.2 Notification of device driver client termination

There is a third use for thread cleanup items: device drivers can use
them to get notification of their clients terminating unexpectedly. For
example, the local media sub-system uses this mechanism to ensure
that the resources held by the driver on behalf of the client thread are
cleaned up if the client thread terminates. It has to use this method, since
multiple threads in the same process may use a single logical channel
to communicate with the driver, meaning that the channel Close()
method will not necessarily be called when a client thread terminates.

SYMBIAN OS THREADS 77

3.3.6 Thread logon and rendezvous
Thread logon is a mechanism that allows a thread to request notification
that another thread has reached a given point in its execution or has
terminated. The first form of notification is known as a rendezvous.

Each thread has two doubly linked lists: one of target logons (iTar-
getLogons – representing threads which are requesting notification of
a rendezvous with or the termination of this thread) and one of owned
logons (iOwnedLogons – representing requests by this thread to be noti-
fied of a rendezvous with other threads or when other threads terminate).
Rendezvous requests are stored at the head of iOwnedLogons and logon
(termination) requests are stored at the tail of this list.

The kernel handles process rendezvous and logon using an identical
mechanism.

The TLogon::LogonLock fast mutex protects all these lists (over
all the threads and processes in the system). When a rendezvous is
signaled by a thread, the target logon list is iterated from the head and all
rendezvous requests completed. When a thread terminates, the thread exit
handler completes all the logons on its target logon list (both rendezvous
and termination) with the exit reason and discards any remaining logons
on its owned logon list.

We use the iExiting field to prevent a new logon from being added
to a thread after it has completed all its target logons, which would result
in the new logon never being completed. The iExiting flag is set to
ETrue at the beginning of the thread exit handler. Any attempt to add a
new logon to (or rendezvous with) a thread whose iExiting flag is set
will fail and will complete immediately with KErrDied.

Since thread logons need notification of thread exit just as cleanup
items do, why do we need a separate mechanism for them rather than
just adding them to the thread cleanup list? This is because the kernel
protects thread cleanup queues with the system lock held and so they
must be fast, with a bounded execution time. But, of course a thread may
have any number of logons outstanding, and canceling a logon requires
the kernel to walk the list of outstanding logons. This means that the time
for which the system lock could be held is unbounded.

You might be wondering why this is so. After all, the kernel releases the
system lock after it processes each cleanup item. However, the situations
are subtly different. The kernel processes cleanup items when a thread
exits, walking the queue and processing each cleanup item. However,
rather than searching for and removing a particular item, it simply wants
to remove all items, so it can use an algorithm like this one:

FOREVER
{
LOCK();
// remove the first item (if any) from the list

78 THREADS, PROCESSES AND LIBRARIES

// and return a pointer to it.
// p is null when there are no more items left
p = GetFirstItem();
UNLOCK();
if (p)

Cleanup(p);
else

break;
}

But when attempting to cancel a logon, the kernel needs to search the
list for a particular item and remove just that one item. If it releases the
lock at any point during this scan it can ‘‘lose its place’’ – the last item
it checked may be removed from the list and placed on another list, or
even destroyed, before this portion of code runs again. So the kernel must
hold the lock throughout the scan, and this means that it cannot use the
system lock.

We also considered the fact that processes don’t have cleanup queues.
Once we had taken this into account, it made sense to create an entirely
new mechanism for thread logons, knowing we could re-use it for process
logons. So, we use a separate queue for logons, and we protect this queue
with a different mutex.

3.3.7 Symbian OS thread-synchronization objects

The Symbian OS kernel provides support for more complex thread-
synchronization objects than the nanokernel does. These objects are
Symbian OS semaphores and mutexes.

Symbian OS semaphores are standard counting semaphores which
support multiple waiting threads (unlike nanokernel fast semaphores) and
which release waiting threads in priority order.

Symbian OS mutexes are fully nestable – a thread can hold several
mutexes at once and can also hold the same mutex several times. They
support priority inheritance – the holding thread inherits the priority of the
highest-priority waiting thread if that is higher than the holding thread’s
usual priority. The kernel and memory model use Symbian OS mutexes
extensively to protect long-running critical code sections.

3.3.7.1 Semaphores – DSemaphore

Symbian OS semaphores are standard counting semaphores. The sema-
phore maintains a count: if the count is positive or zero, no threads
are waiting; if it is negative, the count is equal to minus the number of
waiting threads.

There are two basic operations on semaphores:

SYMBIAN OS THREADS 79

• WAIT. This decrements the count atomically. If the count remains non-
negative the calling thread continues to run; if the count becomes
negative the calling thread is blocked

• SIGNAL. This increments the count atomically. If the count was
originally negative, the kernel releases the next waiting thread.

The kernel protects Symbian OS semaphore operations by the system
lock.

It is important to note that DSemaphore operations rely on fields
that are present in DThread but not in NThread. This means that only
Symbian OS threads may invoke Symbian OS semaphore operations – it
is not permitted for an IDFC or a non-Symbian OS thread to signal a
Symbian OS semaphore.

We use the DSemaphore class to represent a Symbian OS semaphore.
This class is derived from DObject, which makes it a dynamically
allocated reference counted object. DSemaphore is the kernel object
referred to by a user-side RSemaphore handle:

class DSemaphore : public DObject
{

public:
TInt Create(DObject* aOwner, const TDesC* aName,

TInt aInitialCount, TBool aVisible=ETrue);
public:

∼DSemaphore();
void WaitCancel(DThread* aThread);
void WaitCancelSuspended(DThread* aThread);
void SuspendWaitingThread(DThread* aThread);
void ResumeWaitingThread(DThread* aThread);
void ChangeWaitingThreadPriority(DThread* aThread, TInt aNewPriority);

public:
TInt Wait(TInt aNTicks);
void Signal();
void SignalN(TInt aCount);
void Reset();

public:
TInt iCount;
TUint8 iResetting;
TUint8 iPad1;
TUint8 iPad2;
TUint8 iPad3;
SDblQue iSuspendedQ;
TThreadWaitList iWaitQ;

public:
friend class Monitor;
};

Key member data of DSemaphore

iCount
The semaphore count.

80 THREADS, PROCESSES AND LIBRARIES

iResetting
A flag set while the semaphore is being reset; this occurs just prior
to the semaphore being deleted and involves releasing any waiting or
suspended threads. The flag is used to prevent any more threads from
waiting on the semaphore.

iSuspendedQ
This is a doubly linked list of threads which are both waiting on the
semaphore and explicitly suspended. These threads will have iWaitObj
pointing to this semaphore and will have M-state EWaitSemaphore-
Suspended.

iWaitQ
A list, in decreasing priority order, of threads that are waiting on the
semaphore and not explicitly suspended. Note that this is a difference
from EKA1 – under the old version of Symbian OS, the kernel released
threads in the order that they had waited on the semaphore.

Threads in this list will have their iWaitObjpointing to this semaphore
and their M-state will be EWaitSemaphore.

Note that the iWaitObj field under discussion here is the DThread
member, not the NThread member of the same name.

Threads that are explicitly suspended as well as waiting on a semaphore
are not kept on the semaphore wait queue; instead, the kernel keeps them
on a separate suspended queue, iSuspendedQ,which is just a standard
doubly linked list. We do not regard such threads as waiting for the
semaphore – if the semaphore is signaled, they will not acquire it and
the semaphore count will simply increase and may become positive.
To acquire the semaphore, they must be explicitly released, at which
point the kernel removes them from iSuspendedQ and adds them to
iWaitQ.

3.3.7.2 Mutexes – DMutex

Symbian OS mutexes provide mutual exclusion between threads, but
without the restrictions imposed by the nanokernel mutex. So,

• It is possible to wait on a Symbian OS mutex multiple times, provided
it is signaled the same number of times

• It is possible to hold several Symbian OS mutexes simultaneously,
although care is required to avoid deadlocks (I’ll discuss this later)

• It is possible to block while holding a Symbian OS mutex. Symbian
OS mutexes provide priority inheritance.

SYMBIAN OS THREADS 81

The freedom from the restrictions of the nanokernel mutex comes at a
price in terms of performance; operations on Symbian OS mutexes are
more complicated and hence slower than those on NFastMutex.

Our motivation in designing DMutex was the requirement that the
mutex should be held, whenever possible, by the highest priority thread
that requires the mutex. Of course, this is not possible if the mutex is
already held when a higher-priority thread requests the mutex – in this
case, the delay before the higher-priority thread acquires the mutex should
be kept to a minimum. The design meets these criteria in these ways:

1. The kernel defers a thread’s acquisition of a mutex to the last possible
moment. A thread cannot acquire a mutex on behalf of another
thread; it can only acquire a mutex for itself. When a thread signals
a mutex, the kernel does not directly hand the mutex over to the
highest-priority waiting thread; it merely frees the mutex and releases
the highest-priority waiting thread. The waiting thread must actually
run to claim the mutex. We chose this design to take care of the
case in which a high-priority thread acquires and releases a mutex
several times in succession. Imagine we have a high-priority thread
HAIKU that owns a mutex and a lower-priority thread EPIC that is the
highest-priority thread waiting on that mutex. If HAIKU released the
mutex and the kernel then handed it over to EPIC immediately, then
HAIKU would not be able to reclaim the mutex so would be delayed
by the lower-priority thread

2. The kernel queues threads waiting for a mutex and releases them
in priority order. So when the kernel releases a mutex the highest-
priority waiting thread will run and acquire the mutex, if its priority
is higher than the current thread’s priority

3. Mutexes implement priority inheritance. If a low priority thread, EPIC,
is holding a mutex when a higher-priority thread, HAIKU, waits on
the same mutex, then the kernel elevates the priority of EPIC to that
of HAIKU. This ensures that another thread SONNET, of medium
priority, which might prevent EPIC from running and releasing the
mutex, does not delay HAIKU

4. If the kernel suspends a thread that is waiting on a mutex, it removes
it from the wait queue and places it on a separate suspended queue.
The kernel no longer regards the thread as waiting for the mutex: the
kernel will never hand over the mutex to a thread that is suspended.
This is because this would result in the mutex being held for an
indeterminate period.

We need three thread M-states to describe the interaction of a thread
with a mutex. The most obvious of these is the EWaitMutex state, which

82 THREADS, PROCESSES AND LIBRARIES

indicates that the thread is blocked waiting for the mutex. The kernel adds
a thread in EWaitMutex state to the priority-ordered mutex wait queue.

Point 4 requires the existence of a second state, EWaitMutexSus-
pended; this is because threads that are both waiting for a mutex and
explicitly suspended are not enqueued on the wait queue but on the
suspended queue. The kernel needs to perform different actions in the
event, for example, of the thread being killed, and so different states
are required.

Point 1 requires the existence of a third state, EHoldMutexPending.
When the kernel releases a mutex, it marks the mutex as free and releases
the highest-priority waiting thread. Typically, that thread will then run
and acquire the mutex. Note that although there may be other threads on
the wait queue, we release only one thread, the highest priority one. We
do this for efficiency – there is no point releasing all those other threads
since this is time-consuming and only the highest-priority thread among
them will be able to acquire the mutex anyway. But this presents us with
a problem: if we release the highest-priority thread and it is killed before
it has had chance to acquire the mutex, then the mutex remains free but
none of the waiting threads can claim it – because they are all blocked.

The solution is simply that the kernel moves the next highest-priority
thread from the EWaitMutex state to EHoldMutexPending.

The thread that holds the mutex is in the EReady state. It is linked
to the mutex by way of its cleanup queue and each mutex has a
TThreadCleanup object embedded in it. When a thread acquires the
mutex, the kernel adds the TThreadCleanup object to the thread’s
cleanup queue. (While the mutex remains free, the cleanup item is not
linked to any queue and its cleanup item’s thread pointer is NULL.) The
priority of the cleanup item is equal to that of the highest-priority thread
on the mutex wait queue. The kernel first sets this priority when a thread
acquires the mutex, just before adding the cleanup item to the thread’s
cleanup queue. If another thread subsequently waits for the mutex then
the kernel adjusts the priority of the cleanup item (if the new waiting
thread has a higher priority than any other). Raising the cleanup item’s
priority may then cause the holding thread’s priority to increase (if the
new cleanup priority is higher than the holding thread’s default priority).
In this way, the holding thread’s priority will never be less than that of
any waiting thread, and so we get priority inheritance.

What happens if the holding thread is itself blocked on another mutex?
In this case the kernel may elevate the priority of the holding thread of
the second mutex if necessary. In principle, a sequence like this may
be arbitrarily long, which would result in an arbitrarily long execution
time for the mutex wait operation. To avoid this, we terminate the chain
once we have traversed 10 mutexes. Priority inheritance will no longer
operate if a chain of mutexes exceeds this length.

SYMBIAN OS THREADS 83

To ensure that the highest-priority thread always acquires the mutex
first, the kernel must take action whenever a thread performs any of the
following operations on a thread associated with the mutex:

• Suspends

• Resumes

• Kills

• Changes priority.

The following table summarizes the required actions. (The row indicates
the relationship of the thread to the mutex, the column indicates the
operation performed on the thread.)

Suspend Resume Kill Priority change

Holding thread No action. No action. Signal mutex. Priority of thread
will not drop
below that of
highest-priority
waiting thread.

Waiting Change thread
state to
wait/suspend.
Adjust cleanup
priority.

Not applicable. Remove from wait
queue and adjust
cleanup priority.

If priority raised
and mutex free,
make thread
pending. If mutex
not free adjust
cleanup priority.

Waiting/suspended No action. If mutex free make
thread pending
else make thread
waiting and adjust
cleanup priority.

Remove from
suspended queue
and adjust
cleanup priority.

No action.

Pending If mutex free and
wait queue
non-empty,
make
highest-priority
waiting thread
pending.

No action. Remove thread
from pending
queue. If mutex
free and wait
queue non-empty,
make highest
priority waiting
thread pending.

If mutex free and
thread priority
reduced below that
of highest-priority
waiting thread,
make the latter
pending.

The kernel and memory model use DMutex extensively to protect
global data structures that are accessed by multiple threads. The kernel
protects DMutex operations using the system lock fast mutex.

Note that DMutex operations rely on fields that are present in DThread
but not in NThread. Hence only Symbian OS threads may invoke mutex

84 THREADS, PROCESSES AND LIBRARIES

operations; it is not permitted for an IDFC or a non-Symbian OS thread
to use a Symbian OS mutex.

We represent a Symbian OS mutex by the DMutex class. Like many
others, this class is derived from DObject, which makes it a dynamically
allocated reference counted object. DMutex is the kernel object referred
to by a user-side RMutex handle:

class DMutex : public DObject
{

public:
TInt Create(DObject* aOwner, const TDesC* aName,

TBool aVisible, TUint aOrder);
public:
DMutex();
∼DMutex();
TInt HighestWaitingPriority();
void WaitCancel(DThread* aThread);
void WaitCancelSuspended(DThread* aThread);
void SuspendWaitingThread(DThread* aThread);
void ResumeWaitingThread(DThread* aThread);
void ChangeWaitingThreadPriority(DThread* aThread,

TInt aNewPriority);
void SuspendPendingThread(DThread* aThread);
void RemovePendingThread(DThread* aThread);
void ChangePendingThreadPriority(DThread* aThread,

TInt aNewPriority);
void WakeUpNextThread();

public:
TInt Wait();
void Signal();
void Reset();

public:
TInt iHoldCount;
TInt iWaitCount;
TUint8 iResetting;
TUint8 iOrder;
TUint8 iPad1;
TUint8 iPad2;
TThreadMutexCleanup iCleanup;
SDblQue iSuspendedQ;
SDblQue iPendingQ;
TThreadWaitList iWaitQ;

#ifdef _DEBUG
SDblQueLink iORderLink;

#endif
public:
friend class Monitor;
};

Key member data of DMutex
iHoldCount
Count of the number of times the holding thread has waited on this mutex
in a nested fashion. We increment this field if the holding thread waits

SYMBIAN OS THREADS 85

again and decrement it if it signals the mutex; in the latter case we release
the mutex if iHoldCount becomes zero.

iWaitCount
Count of the number of waiting threads plus the number of waiting and
suspended threads. This is used only to implement the
RMutex::Count() method.

iResetting
This flag is set while the mutex is being reset; this occurs just prior to the
mutex being deleted and involves releasing and unlinking any waiting,
suspended or pending threads. The flag is used to prevent further threads
waiting on the mutex.

iCleanup
A TThreadCleanup entry used both to enable the mutex to be released
if the holding thread exits and also to enable the holding thread to
inherit the priority of the highest-priority waiting thread. The iThread
member of iCleanup is a pointer to the holding thread; a NULL value
for iCleanup.iThread indicates that the mutex is free.

iSuspendedQ
A doubly linked list of threads that are both waiting on the mutex and
explicitly suspended. These threads have iWaitObj pointing to this
mutex and have M-state EWaitMutexSuspended.

iPendingQ
A doubly linked list of threads, released by the kernel after waiting on
a mutex, but which have not yet claimed that mutex. These threads
have iWaitObj pointing to this mutex and have M-state EHoldMutex
Pending.

iWaitQ
A 64-priority list of threads that are waiting on the mutex and that are
not explicitly suspended. These threads have iWaitObj pointing to the
mutex and have M-state EWaitMutex.

3.3.7.3 Condition variables – DCondVar

Often, a thread will need to block until some data that it shares with other
threads reaches a particular value. In Symbian OS, it can do this by using
a POSIX-style condition variable.

Condition variables provide a different type of synchronization to
locking mechanisms like mutexes. Mutexes are used to make other
threads wait while the thread holding the mutex executes code in a critical
section. In contrast, a thread uses a condition variable to make itself wait
until an expression involving shared data attains a particular state.

86 THREADS, PROCESSES AND LIBRARIES

The kernel-side object is DCondVar, and its class definition is shown
in the first of the two code samples which follow. Access to DCondVar
from user-side is via RCondVar, which is shown in the second sample.

Condition variables are always used in association with a mutex to
protect the shared data. In Symbian OS, this is, of course, an RMutex
object.

DCondVar

class DCondVar : public DObject
{

public:
TInt Create(DObject* aOwner, const TDesC* aName, TBool aVisible);

public:
DCondVar();
∼DCondVar();
void WaitCancel(DThread* aThread);
void WaitCancelSuspended(DThread* aThread);
void SuspendWaitingThread(DThread* aThread);
void ResumeWaitingThread(DThread* aThread);
void ChangeWaitingThreadPriority(DThread* aThread, TInt

aNewPriority);
public:
TInt Wait(DMutex* aMutex, TInt aTimeout);
void Signal();
void Broadcast(DMutex* aMutex);
void Reset();
void UnBlockThread(DThread* aThread, TBool aUnlock);

public:
TUint8 iResetting;
TUint8 iPad1;
TUint8 iPad2;
TUint8 iPad3;
DMutex* iMutex;
TInt iWaitCount;
SDblQue iSuspendedQ;
TThreadWaitList iWaitQ;

public:
friend class Monitor;
};

RCondVar

class RCondVar : public RHandleBase
{

public:
IMPORT_C TInt CreateLocal(TOwnerType aType=EOwnerProcess);
IMPORT_C TInt CreateGlobal(const TDesC& aName,

TOwnerType aType=EOwnerProcess);
IMPORT_C TInt OpenGlobal(const TDesC& aName,

TOwnerType aType=EOwnerProcess);
IMPORT_C TInt Open(RMessagePtr2 aMessage, TInt aParam,

TOwnerType aType=EOwnerProcess);
IMPORT_C TInt Open(TInt aArgumentIndex,

TOwnerType aType=EOwnerProcess);

SYMBIAN OS THREADS 87

IMPORT_C TInt Wait(RMutex& aMutex);
IMPORT_C TInt TimedWait(RMutex& aMutex, TInt aTimeout);
IMPORT_C void Signal();
IMPORT_C void Broadcast();
};

You can see that the condition to be tested lives outside of the condition
variable. This is because the condition is application-defined, and allows
it to be as complex as you wish. The only real requirement is that the
volatile data being tested by the condition is protected by the mutex that
is being used with the condition variable.

Let’s look at how condition variables are used in practice.
One common use case for condition variables is the implemention of

thread-safe message queues, providing a producer/consumer communi-
cation mechanism for passing messages between multiple threads. Here
we want to block producer threads when the message queue is full and
we want to block consumer threads when the queue is empty. Assume
that the queue is a doubly linked list of messages. Clearly we will need
to protect this list with a mutex (let’s call it myMutex), so that producers
and consumers do not interfere with each other as they add and remove
messages from the queue.

Now let’s look at this from the point of view of the consumer thread,
and let’s suppose that there are no messages for it to process. How
does it deal with this situation? The consumer thread could repeatedly
lock and unlock myMutex, each time checking the linked list for more
messages. But this busy polling is extremely inefficient. It is far better
for the consumer thread to first wait on myMutex, and then on the
condition variable, by calling RCondVar::Wait(RMutex&aMutex).
This method will only return when there is a new message on the list.
What goes on behind the scenes when this happens?

The consumer thread ends up in DCondVar::Wait(). This is kernel
code, but it is running in the consumer thread’s context. Almost the first
thing DCondVar::Wait() does is to release the mutex. The function
then blocks – this means the consumer thread does not run again until
the condition variable is signaled. Now that myMutex is unlocked, other
threads that were blocked on the mutex may become runnable, and can
access and modify the message-status variable.

Suppose a producer thread signals the condition variable. What then
happens to our sleeping consumer thread? Immediately after it wakes,
still in DCondVar::Wait(), it re-aquires the mutex, preventing access
by other threads and making it safe for it to examine the shared data itself.

So we have seen that usage pattern for condition variables is as follows:

mutex.Wait();
while(!CONDITION)

88 THREADS, PROCESSES AND LIBRARIES

// possible race condition here if signalling thread
// does not hold mutex

condvar.Wait(mutex);
STATEMENTS;
mutex.Signal();

Here CONDITION is an arbitrary condition involving any number of
user-side variables whose integrity is protected by the mutex. You have
to loop while testing the condition since there is no guarantee that the
condition has been satisfied when the condition variable is signaled.
Different threads may be waiting on different conditions or the condition
may have already been absorbed by another thread. All that can be said
is that the thread will awaken whenever something happens which might
affect the condition.

And what about the producer thread? How does it signal the condition
variable? There are two methods in RCondVar that allow it to do this:
Signal() and Broadcast().
Signal() unblocks a single, waiting thread. If there are several of

these, then the kernel unblocks the highest-priority thread that is not
explicitly suspended. If there are no threads currently waiting this call
does nothing.

The calling thread does not have to hold the mutex when it calls
Signal() but we recommend that it does so. Otherwise a race condition
can result if it signals the condition variable just between the waiting
thread testing the condition and calling Wait().
Broadcast() unblocks all the threads that are waiting on the con-

dition variable. As for Signal(), it is best if the thread that calls
Broadcast() holds the mutex first.

I hope that I have also shown that, although RCondVar is used
for explicit communications between threads, the communications are
anonymous. The producer thread does not necessarily know that the
consumer thread is waiting on the condition variable that it signaled. And
the consumer thread does not know that it was the producer thread that
woke it up from its wait on the condition variable.

3.3.8 Symbian OS thread death
All Symbian OS threads have an exit handler installed, which performs
first stage cleanup of the thread in the context of the exiting thread. This
first stage includes:

• Restoring the thread to a consistent state – for example removing the
thread from any mutexes or semaphores on which it was waiting

• Running thread-exit cleanup handlers

• Completing logons.

SYMBIAN OS THREADS 89

The kernel can’t perform its entire cleanup in the exiting thread’s con-
text – for example it can’t free the thread’s supervisor stack or control
block. So the kernel performs a second phase of exit processing in
the supervisor thread context. Each DThread has a DFC, given by
iKillDfc, which is queued on the supervisor thread just before the
exiting thread actually terminates. The DFC completes the cleanup pro-
cess – closing thread handles, freeing stacks and freeing the thread control
block. If this is the last thread in a process, then it also closes process
handles and frees the process control block.

3.3.8.1 Types of Symbian OS thread

When we start to think about thread death, there are four different types
of Symbian OS thread we need to consider. These are specified by the
iFlags member data, and defined in u32std.h:

KThreadFlagProcessCritical = 1
KThreadFlagProcessPermanent = 2
KthreadFlagSystemCritical = 4
KthreadFlagSystemPermanent = 8

The corresponding user-side enumerations are in e32std.h:

enum TCritical
{
ENotCritical,
EProcessCritical,
EProcessPermanent,
EAllThreadsCritical,
ESystemCritical,
ESystemPermanent
};

The meanings of the values in this enumeration are:

ENotCritical
The thread or process is not critical. No special action is taken on thread
or process exit or panic.

EProcessCritical
Indicates that a thread panic causes the process to panic.

EProcessPermanent
Indicates that a thread exit of any kind causes the process to exit.

EAllThreadsCritical
Indicates that if any thread in a process panics, then the process panics.

90 THREADS, PROCESSES AND LIBRARIES

ESystemCritical
Indicates that a thread or process is system-critical. If that thread or
process panics, then the entire system is rebooted. Clearly this is a drastic
step to take, so we ensure that only a process with the ‘‘Protected Server’’
capability can set a thread to system-critical.

ESystemPermanent
Indicates that a thread or process is system-permanent. If that thread or
process exits, then the entire system is rebooted. Clearly this too is a
drastic step to take, so again we ensure that only a process with the
‘‘Protected Server’’ capability can set a thread to system-permanent.

3.3.9 Kernel threads

The Symbian OS kernel itself creates five kernel threads at boot time,
and these threads continue to run until the mobile phone is rebooted. (In
fact, there may even be more than five threads on a phone, since kernel
extensions can create them too.) Next I will briefly describe each kernel
thread and its purpose in the system.

3.3.9.1 The null thread

Earlier I described how the null thread (also known as the idle thread) is
the first thread to run on a device at boot time. This thread’s execution
begins at the reset vector. Just after the reset is applied, there are no
NThread or DThread objects in existence, of course – but the thread of
execution that begins here eventually becomes the null thread, which is
the thread with the lowest possible priority in the system. Since there is
no point in time slicing the null thread, the kernel sets a variable in the
thread to disable time slicing. This thread has iType==EInitial, and
is the only thread in the system with this type.

Because of the unusual way this thread comes into being, the bootstrap
must allocate and map its stack before kernel execution begins. This
means that the stack is in a special place – at the start of the chunk
containing the kernel heap. For more on Symbian OS bootup, see
Chapter 16, Boot Processes.

As we said, the null thread has the lowest possible priority in the
system. This means that the null thread will gain control only when
no other thread is ready to run. Generally the null thread simply loops
forever executing a ‘‘wait for interrupt’’ instruction, which places the CPU
in a low-power mode where instruction execution stops until a hardware
interrupt is asserted.

The main task that the null thread performs in its infinite loop is to
delay the nanokernel timer tick for as long as possible. The null thread
inspects the nanokernel timer queue and determines how many ticks will

SYMBIAN OS THREADS 91

elapse before the first timer is due to expire. It then updates the hardware
timer to skip that number of ticks, so that the next timer interrupt coincides
with the expiry of the first timer on the queue. In this way, we save power
by not reactivating the CPU several times just to discover that there is
nothing to be done. For more details of Symbian OS power management,
see Chapter 15, Power Management.

3.3.9.2 The supervisor thread

This is the second thread to run after a system reset. It is responsible
for the final phase of kernel initialization and for phase 3 of the variant
initialization, which initializes the interrupt dispatcher and enables the
nanokernel tick timer interrupt. For more details of the supervisor thread’s
role in start-up, see Chapter 16, Boot Processes.

Once the OS is running, the primary functions of the supervisor thread
are cleanup activities and providing notification of non-time-critical
events to user-side code. The supervisor thread’s priority is set so that
it is higher than applications and most user-mode code but lower than
anything that is time-critical.

The supervisor thread performs many of its functions via deferred
function calls, or DFCs, which I will discuss in Chapter 5, Interrupts and
Exceptions. DFCs that run in the supervisor thread can’t expect any real-
time guarantees – and would typically be unbounded operations anyway,
often involving the freeing of memory. To sum up, DFCs in the supervisor
thread perform these tasks:

1. Thread and process cleanup on exit

2. Asynchronous deletion. For more on this, see Chapter 7, Memory
Models

3. Asynchronous change notifier completion. (User code uses the
RChangeNotifier class to get notification from the kernel of
important changes, such of change of locale.) Sometimes the kernel
needs to signal change notifiers either from time-critical code (for
example the midnight crossover detection in TSecondQ) or from
places where low-level kernel mutexes are held (for example the
memory threshold detection code may run with the kernel heap
mutex held). The signaling of change notifiers is unbounded (since
there may be arbitrarily many of them) and involves waiting on the
change notifier container’s mutex. To avoid timing and deadlock
problems, the kernel provides the function Kern::AsyncNotify
Changes(). This function accumulates the set of changes that it
needs to signal in a bit mask, K::AsyncChanges, and queues a
DFC on the supervisor thread to signal the change notifiers

92 THREADS, PROCESSES AND LIBRARIES

4. Asynchronous freeing of physical RAM. For more on this, see
Chapter 7, Memory Models

5. The completion of publish and subscribe property subscriptions.

3.3.9.3 DFC thread 0

This thread has priority 27 (usually the second highest in the system), and
it simply runs a DFC queue. The kernel does not use this queue itself, but
provides it for those device drivers that do not have stringent real-time
requirements, to give them a context that they can use for their non-ISR
processing. You can think of this queue as approximately equivalent to
the single DFC queue that EKA1 provided. The presence of this single
‘‘general purpose’’ DFC thread in the kernel saves memory, because
each device driver does not have to create its own thread. The function
Kern::DfcQue0() returns a pointer to the DFC queue serviced by
this thread.

Symbian device drivers that use this thread include serial comms,
sound, ethernet, keyboard and digitizer.

3.3.9.4 DFC thread 1

This thread has priority 48; it is generally the highest-priority thread in
the system. The nanokernel timer DFC runs on this thread.

DFC thread 1 is available for use by other device drivers if necessary;
the function Kern::DfcQue1() returns a pointer to the DFC queue
serviced by this thread.

You should beware of using DFC thread 1 for anything other than
running the nanokernel timer queue. You should also beware of creating
a higher-priority thread than this one. If you delay the nanokernel timer
DFC by more than 16 nanokernel timer ticks, you run the risk of adversely
affecting the accuracy of the nanokernel timers.

3.3.9.5 The timer thread

This thread has priority 27. It manages the Symbian OS timer queues.
The timer thread is also available for device drivers to use if they need

it – the function Kern::TimerDfcQ() returns a pointer to the DFC
queue serviced by this thread.

3.3.10 Threads – conclusion

In this section I’ve discussed both nanothreads and Symbian OS threads.
I’ll now go on to describe a Symbian OS object that has no nanokernel
equivalent – the process.

WHAT IS A PROCESS? 93

3.4 What is a process?

Under Symbian OS, a process is both a single instantiation of an exe-
cutable image file and a collection of one or more threads that share a
particular address space (or memory mapping). This address space may,
or may not, be different to that of other processes in the system – this
depends on whether the processor in the mobile phone has an MMU, and
on which particular memory model the phone manufacturer has chosen
to use.

In most cases, designers will want to ensure that they protect processes
from each other by choosing the memory model appropriately. In this
case, a thread in one process will not be able to directly access the
memory belonging to a thread in another process – although, it will of
course be able to directly access the memory of any thread in the same
process. So you can see that, with the appropriate choice of memory
model, the process is the fundamental unit of memory protection under
Symbian OS.

The loader creates a process by first asking the kernel to create a
DProcess object, then loading the image and informing the kernel that
it has done so. The kernel creates a single thread, marks it as the main
thread, and starts execution at the process’s entry point. The main thread
is marked as KThreadFlagProcessPermanent (see Section 3.3.8),
but the application can change this later.

As well as sharing an address space, the threads in a process are
connected in other ways:

• You can specify their priorities relative to the process priority; changing
the process priority will change the priorities of all such threads. (You
may also specify absolute thread priorities – these do not change
when the process priority is changed)

• If the process exits or is terminated, then the kernel terminates all the
threads in the process with the same exit information

• Threads in the same process can share object handles; this is not
possible for threads in different processes

• A user thread can create a new thread only in its own process.

This section is quite a lot shorter than the one on threads, since the two
things that are mainly of interest for processes are how they are loaded,
which I will cover in Chapter 10, The Loader, and the role they play in
address spaces, which I will cover in Chapter 7, Memory Models. All
that remains is to discuss the Symbian OS representation of the process,
DProcess.

94 THREADS, PROCESSES AND LIBRARIES

3.5 DProcess class

Like many other classes in the kernel, this class is derived from DObject,
which makes it a dynamically allocated reference counted object. DPro-
cess is the kernel object referred to by a user-side RProcess handle.
Here a cut-down version of the class:

class DProcess : public DObject
{

public:
DProcess();
∼DProcess();
TInt Create(TBool aKernelProcess, TProcessCreateInfo& aInfo,

HBuf* aCommandLine);
TInt SetPriority(TProcessPriority aPriority);
TInt Logon(TRequestStatus* aStatus, TBool aRendezvous);
void Rendezvous(TInt aReason);
TInt AddCodeSeg(DCodeSeg* aSeg, DLibrary* aLib, SDblQue& aQ);
TInt RemoveCodeSeg(DCodeSeg* aCodeSeg, SDblQue* aQ);
TBool HasCapabilityNoDiagnostic(TCapability aCapability);

private:
virtual TInt NewChunk(DChunk*& aChunk, SChunkCreateInfo& aInfo,

TLinAddr& aRunAddr)=0;
virtual TInt AddChunk(DChunk* aChunk,TBool isReadOnly)=0;
virtual TInt DoCreate(TBool aKernelProcess,

TProcessCreateInfo& aInfo)=0;
virtual TInt Loaded(TProcessCreateInfo& aInfo);

public:
TInt NewThread(DThread*& aThread, SThreadCreateInfo& aInfo,

TInt* aHandle, TOwnerType aType);
virtual void Resume();
void Die(TExitType aType,TInt aReason,const TDesC &aCategory);

public:
TInt iPriority;
SDblQue iThreadQ;
TUint8 iExitType;
TUint8 iPad1;
TUint8 iPad2;
TUint8 iPad3;
TInt iExitReason;
TBufC<KMaxExitCategoryName> iExitCategory;
DObjectIx* iHandles;
TUidType iUids;
TInt iGeneration;
TUint iId;
TUint32 iFlags;
HBuf* iCommandLine;
DProcess* iOwningProcess;
SDblQue iTargetLogons;
RArray<SCodeSegEntry> iDynamicCode;
SSecurityInfo iS;
SSecurityInfo iCreatorInfo;
TUint iCreatorId;
TUint iSecurityZone;
TInt iEnvironmentData[KArgIndex];

public:
enum TProcessAttributes {

DPROCESS CLASS 95

EPrivate=2,
ESupervisor=0x80000000,
EBeingLoaded=0x08000000,
EResumed=0x00010000 };

TInt iAttributes;
TLinAddr iDataBssRunAddress;
DChunk* iDataBssStackChunk;
DCodeSeg* iCodeSeg;
DCodeSeg* iTempCodeSeg;
DMutex* iProcessLock;
DMutex* iDllLock; // can be held while in user mode
// user address to jump to for new threads, exceptions
TLinAddr iReentryPoint;
};

Key member data of DProcess
iThreadQ
Doubly linked list of all threads belonging to this process. Accesses to
this list are protected by the process lock mutex.

iHandles
Pointer to array (DObjectIx) of process-global handles for this process.

iDataBssStackChunk
Pointer to chunk-holding process global data (.data and .bss sections)
and, in most cases, user stacks of threads belonging to this process. The
memory model determines whether or not user stacks are placed in this
chunk.

iDataBssRunAddress
Run address of base of initialized data.

iDynamicCode
RArray listing all explicitly dynamically loaded code segments which
are attached to this process – that is, only ones corresponding to DLLs
which have been explicitly loaded, not the process EXE code segment
(iCodeSeg) or code segments which are attached to the process only
due to implicit linkages from other code segments. For each such code
segment this array contains two pointers – a pointer to the DCodeSeg
object and a pointer to the DLibrary or (for the kernel process only)
the DLogicalDevice DPhysicalDevice object that represents the
process’s use of the code segment.

iCodeSeg
Pointer to DCodeSeg object that represents the executable image used
to create this process. This value is set when the process is fully loaded
and ready to be resumed.

iTempCodeSeg
Temporary pointer to DCodeSeg object that represents the executable
image used to create this process. This value is only used during process

96 THREADS, PROCESSES AND LIBRARIES

creation; it is set to NULL when the process is fully loaded and ready to
be resumed.

iAttributes
Process attributes. Some of these are generic (private, supervisor, being
loaded, resumed); the memory model defines some more.

iFlags
Process flags (just-in-time debug).

iProcessLock
Pointer to DMutex object used to protect the process thread list and in
some memory models, the process address space list.

iDllLock
Pointer to DMutex object used to protect DLL static data constructors
and destructors that run user-side in this process. Note that this mutex is
held while running user-mode code and hence the thread need not enter
a critical section before acquiring it; these are the only mutexes used by
the kernel with this property.

3.5.1 Processes in the emulator

The increased code-sharing in the EKA2 emulator means that the EKA2
emulator provides much better emulation of Symbian OS processes than
the EKA1 emulator did. The emulator can instantiate a process from
a .EXE file and has the same object and thread ownership model as on
target hardware. The EKA1 emulator failed to emulate processes at all.

That said, debugging multiple processes on a host OS is difficult and
so the EKA2 emulator still executes as a single process in the host OS.
Indeed, the emulator does not provide a complete emulation of processes
as found on target platforms. In particular, the following aspects of
processes are not completely emulated:

1. Memory protection between processes, or between user and kernel
mode

2. Full support for multiple instances of a DLL with writable static data.

The EKA1 emulator shares both these failings.

3.5.1.1 When a .EXE is not an EXE

Under Windows, a process is instantiated from a Portable Executable (PE)
format file of type EXE. However, a process instantiated in this way may
not load and link further EXE files. This means that the emulator must use
a PE file of type DLL to create a new emulated Symbian OS process.

DPROCESS CLASS 97

The Symbian tool chain could build all EXE targets for the emulator
as host DLLs. These would then be easily loaded into the emulator as
an emulated process. Unfortunately this prevents the EXE from being
invoked from the Windows command line, something which has proved
useful with EKA1. It also makes it impossible to load multiple instances
of a process that has static data, because static data support is provided
by the host OS, and the emulator is a single process in the host OS.

We solved this dilemma by making certain assumptions about the PE
file format and the Windows platform:

1. The difference between a DLL and an EXE is a single bit in the PE
file header

2. Identical copies of a DLL with different file names load as independent
modules in the host OS.

This is currently true for all the Win32 platforms we have tested.
When creating a process within the emulator, we go through the

following steps:

1. We copy the EXE file to a new filename

2. We set the ‘‘DLL’’ type bit and clear the Win32 entry point

3. We load the copy as a DLL

4. We find the Symbian OS entry point by looking for the _E32Startup
export.

As a result, if you set the target type to EXE, then the tool chain creates
a file that can bootstrap the emulator and that can also be loaded as a
process within the emulator multiple times.

3.5.1.2 Entry points

The DLL and EXE entry point scheme used in the emulator has been
changed, allowing the emulator to fully control how and when these
functions are called. It also enables the Symbian OS ‘‘EXE’’ scheme I have
just described.

The entry point in a Win32 DLL is not used at all, and the entry point
for a Win32 EXE merely bootstraps the emulator by calling BootEpoc().

The Symbian OS entry points are implemented by exporting a named
symbol from the DLL or EXE. The DLL entry point is ‘‘_E32Dll ’’ and
the EXE entry point is ‘‘_E32Startup ’’. The export management tools
recognize these symbols and ensure that they are not included in frozen
exports files and are always exported by name as the last symbol from
the file.

98 THREADS, PROCESSES AND LIBRARIES

3.6 Scheduling

EKA2 implements a priority-driven, preemptive scheduling scheme. The
highest-priority ready thread, or one of several ready threads of equal
highest priority, will usually run. (The exception, which I discussed earlier,
is when a high-priority thread is waiting on a nanokernel fast mutex held
by a lower-priority thread – in this case, the lower-priority thread runs.)

Within Symbian OS, scheduling is the responsibility of the nanokernel.
Threads that are eligible for execution (that is, threads that are not waiting
for an event) are called ‘‘ready’’ and are kept on a priority-ordered list,
the ready list.

Each nanothread has an integer priority between 0 and 63 inclusive.
As we have said, the highest-priority thread that is ready to run will run. If
there are several threads at the same priority, then one of two things may
happen. Firstly, the threads may be executed in a round-robin fashion,
with the timeslice selectable on a thread-by-thread basis. Secondly, they
may be executed in FIFO order – that is the first thread to become ready at
that priority will run until it blocks and other threads at the same priority
will not run until the first thread blocks. Which of these two methods is
chosen is a property of the thread itself, not the scheduler.

Each thread has its own timeslice (iTimeslice) and time count
(iTime). Whenever the thread blocks or the kernel rotates the thread
to the end of the queue of threads at the same priority, the kernel sets
the iTime field equal to iTimeslice. The low-level tick interrupt
then decrements the current thread’s iTime if it is positive and triggers
a reschedule if it becomes zero. So you can see that if iTimeslice
is positive, the thread will run for iTimeslice low level timer ticks
before yielding to the next thread at the same priority. If iTimeslice is
negative, the thread will only yield to other threads at the same priority if
it blocks.

The ready list, shown graphically in Figure 3.2, holds all the threads
that are currently eligible for execution. It is always accessed with the
kernel locked so, to maintain low thread latency, operations on the
ready list need to be bounded and as fast as possible. We achieve this
by using 64 separate queues, one for each possible thread priority – the
kernel places each ready thread in the queue corresponding to its priority.
The kernel also maintains a 64-bit mask to indicate which queues have
entries; bit n in the mask is set if and only if the queue for priority n has
entries.

So, to insert an entry, the kernel simply adds it to the tail of the
queue corresponding to its priority (no searching is required) and sets the
corresponding bit in the bit mask. To remove an entry, the kernel first
unlinks it from its queue, then, if that queue is now empty, resets the bit in

SCHEDULING 99

nth bit set
implies ready list
for priority n has

entries

iQueue [63] iQueue [n] iQueue [0]

Thread A

64-bit mask

Ready list for
highest

priority = 63

Ready list for
priority = n

Ready list for
lowest

priority = 00

001... 111...

Figure 3.2 The ready list

the bit mask. To find the highest-priority entry, the kernel finds the most
significant 1 in the bit mask (which can be done with a binary search or
with a single instruction on some CPUs), and then finds the first entry on
the corresponding queue. You can see that this implementation gives us
bounded (and small) execution times for insertion and removal of entries
and for finding the highest-priority entry.

To save on memory, we use a single pointer for each queue. This is
NULL if the queue is empty, otherwise it points to the first entry on the
queue. We arrange the entries in the queue in a doubly linked ring. We
use the same priority ordered list implementation for DFC queues, and
semaphore and mutex wait queues.

The kernel also maintains a flag (TheScheduler.iReschedule-
NeededFlag) that indicates whether a thread switch may be required. It
sets this flag whenever it adds a thread to the ready list, and that thread’s
priority is greater than the highest priority of any other thread already on
the list. The nanokernel timer tick interrupt also sets this flag when the
current thread’s timeslice has expired.

When the kernel subsequently becomes unlocked, it checks this flag
to determine whether a reschedule is needed, and clears the flag when it
performs the reschedule.

The scheduler is responsible both for running IDFCs (immediate
deferred function calls) and for selecting the next thread to run and
switching to it. It does not do any page table manipulations to switch pro-
cesses – instead it provides a hook that the Symbian OS memory model
uses to arrange for such code to be called.

100 THREADS, PROCESSES AND LIBRARIES

Here is a summary of the scheduler control block:

Field Description

iPresent[2] 64-bit mask with a 1 in bit position n if and only if
iQueue[n] is non-empty, that is, if and only if there is a
thread of priority n on the ready list.

iQueue[64] 64 pointers, one for each possible thread priority. If there is
no ready thread at priority n, iQueue[n]=NULL, else
iQueue[n] points to the first ready thread at priority n.

iRescheduleNeededFlag Boolean flag that is set if a reschedule is needed when the
kernel is locked, and cleared by the scheduler when it runs.

iDfcPendingFlag Boolean flag, set when an IDFC is queued and cleared
when all pending IDFCs have been processed.

iKernCSLocked The kernel lock (otherwise known as the preemption lock).

iDfcs Doubly linked list of pending IDFCs.

iMonitorExceptionHandler Pointer to exception handler installed by the crash
debugger.

iProcessHandler Pointer to the process address space switch handler in the
Symbian OS memory model.

iLock The system lock fast mutex.

iCurrentThread Pointer to the currently executing NThread.

iAddressSpace The identifier of the currently active process address space.

iExtras[16] Space reserved for extra data used by the Symbian OS
process switch handler.

Now let’s look at the full scheduler algorithm. Before we start, we’ll
define some terms.

Non-volatile registers: those CPU registers that are preserved across a
function call (r4–r11 and r13 on ARM).

CPU-specific registers: those registers, outside the normal supervisor-
mode register set, that are required to exist on a per-thread basis. Examples
on ARM include the DACR (domain access control register, CP15 CR3)
and user mode R13 and R14.

System lock: a fast mutex, iLock, which the kernel uses to protect
address space changes, among other things.

SCHEDULING 101

Kernel lock: a counter, iKernCSLocked, which is always ≥ 0. Zero
is the normal state and indicates that IDFCs and a reschedule may run
immediately following an interrupt. Non-zero values indicate that IDFCs
and reschedules must be deferred until the count is decremented to zero.
Also known as the preemption lock.

The kernel calls the scheduler in two different situations. The first is at the
end of an interrupt service routine, if the following conditions are met:

1. IDFCs are pending or a reschedule is pending

2. The kernel is not locked (iKernCSLocked==0)

3. On ARM the interrupted mode must be usr or svc. (Other modes are
non-preemptible since they don’t have per-thread stacks.)

The kernel also calls the scheduler when it becomes unlocked (iKernCS-
Locked decrements to zero), if the following condition is met:

4. Either IDFCs are pending or a reschedule is pending. (This will be the
case if the current thread has just completed a nanokernel function
that has blocked it or made a higher-priority thread ready.)

Here is the full scheduler algorithm for the moving memory model:

// Enter with kernel locked
// Active stack is supervisor stack of current thread

1 Disable interrupts
2 start_resched:
3 IF IDFCs pending (iDfcPendingFlag TRUE)
4 Run IDFCs (with interrupts enabled but kernel locked)
5 iDfcPendingFlag = FALSE
6 ENDIF
7 IF reschedule not needed (iRescheduleNeededFlag FALSE)
8 iKernCSLocked=0 (unlock the kernel)
9 Return
10 ENDIF
11 Reenable interrupts
12 Save nonvolatile registers and CPU specific registers on stack
13 iCurrentThread->iSavedSP = current stack pointer
14 iRescheduleNeededFlag = FALSE
15 next_thread = first thread in highest priority non-empty ready queue
16 IF next_thread->iTime==0 (ie timeslice expired)
17 IF another thread is ready at same priority as next_thread
18 IF next_thread holds a fast mutex
19 next_thread->iHeldFastMutex->iWaiting=TRUE
20 goto resched_end
21 ENDIF
22 next_thread->iTime=next_thread->iTimeslice (new timeslice)
23 next_thread=thread after next_thread in round-robin order
24 ENDIF
25 ENDIF

102 THREADS, PROCESSES AND LIBRARIES

26 IF next_thread holds a fast mutex
27 IF next_thread holds system lock
28 goto resched_end
29 ENDIF
30 IF next_thread requires implicit system lock
31 IF system lock is held OR next_thread requires address space

switch
32 next_thread->iHeldFastMutex->iWaiting=TRUE
33 ENDIF
34 ENDIF
35 goto resched_end
36 ENDIF
37 IF next_thread is blocked on a fast mutex
38 IF next_thread->iWaitFastMutex->iHoldingThread (mutex is still

locked)
39 next_thread=next_thread->iWaitFastMutex->iHoldingThread
40 goto resched_end
41 ENDIF
42 ENDIF
43 IF next_thread does not require implicit system lock
44 goto resched_end
45 ENDIF
46 IF system lock held by another thread
47 next_thread=system lock holding thread
48 system lock iWaiting = TRUE
49 goto resched_end
50 ENDIF
51 IF thread does not require address space switch
52 goto resched_end
53 ENDIF
54 iCurrentThread=next_thread
55 current stack pointer = next_thread->iSavedSP
56 Restore CPU specific registers from stack
57 system lock iHoldingThread = next_thread
58 next_thread->iHeldFastMutex = system lock
59 Unlock kernel (scheduler may go recursive here, but only once)
60 Invoke address space switch handler
61 Lock the kernel
62 system lock iHoldingThread = NULL
63 next_thread->iHeldFastMutex = NULL
64 IF system lock iWaiting (there was contention for the system lock)
65 system lock iWaiting = FALSE
66 iRescheduleNeededFlag = TRUE (so we reschedule again)
67 IF next_thread has critical section operation pending
68 Do pending operation
69 ENDIF
70 ENDIF
71 goto switch_threads

72 resched_end: // switch threads without doing process switch
73 iCurrentThread=next_thread
74 current stack pointer = next_thread->iSavedSP
75 Restore CPU specific registers from stack

76 switch_threads:
77 Restore nonvolatile registers from stack
78 Disable interrupts
79 IF IDFCs pending or another reschedule needed

SCHEDULING 103

80 goto start_resched
81 ENDIF
82 iKernCSLocked=0 (unlock the kernel)
83 Return with interrupts disabled

Lines 1–10 are concerned with running IDFCs. We check for the presence
of IDFCs with interrupts disabled, since an interrupt could add an IDFC.
If IDFCs are present, we call them at this point; we do this with interrupts
enabled and with the kernel locked. IDFCs run in the order in which
they were added to the queue. An IDFC could add a thread to the
ready list; if that thread has a sufficiently high priority, the kernel sets
iRescheduleNeededFlag. We remove each IDFC from the pending
queue just before we execute it. We then disable interrupts again and
make another check to see if more IDFCs are pending. If there are no
more IDFCs, the kernel clears the iDfcPendingFlag. Interrupts are still
disabled here. Next we check iRescheduleNeededFlag. This could
have been set in several different ways:

1. By the current thread just before calling the scheduler (for example if
that thread needs to block waiting for an event)

2. By an IDFC

3. By the timer tick interrupt, if the current thread’s timeslice has expired.

If the flag is clear, no further action is needed and the scheduler returns.
If it is set, we proceed to switch threads.

Lines 11–14 are straightforward: we can re-enable interrupts at this
point since the most they could do is queue another IDFC that would
eventually cause the scheduler to loop. We save the current thread’s
register context on the stack, which is the thread’s own supervisor mode
stack. Then we store the stack pointer in the current thread’s iSavedSP
field and clear iRescheduleNeededFlag since we are about to do
a reschedule.

Line 15 implements the basic scheduling policy. The most significant
bit in the 64-bit mask indicates the highest priority of any ready thread.
We select the first thread on the queue corresponding to that priority as a
candidate to run.

Lines 16–25 deal with round-robin scheduling of threads at the same
priority. The system tick interrupt decrements the current thread’s iTime
field; when this reaches zero the thread’s timeslice has expired, so the
iRescheduleNeededFlag is set, which causes a reschedule at the
next possible point – either at the end of the tick ISR or when the kernel
is next unlocked. Line 16 checks to see if the selected thread’s timeslice
has expired. If it has, and there is another thread at the same priority,
and the originally selected thread does not hold a fast mutex, then we

104 THREADS, PROCESSES AND LIBRARIES

select the next thread in round-robin order and we reset the original
thread’s timeslice.

If the original thread does hold a fast mutex, we defer the round-robin
and set the fast mutex iWaiting flag so that the round-robin will be
triggered when the thread releases the mutex. We defer the round-robin
to reduce the time that might be wasted by context switching to another
thread that then immediately waits on the same mutex and causes another
context switch. This would be a particular problem with threads waiting
on the system lock. We expect that a fast mutex will only be held for short
periods at a time and so the overall pattern of round-robin scheduling
will not be disturbed to any great extent.

Lines 26–36 deal with the case where the selected thread holds a fast
mutex. If the thread holds the system lock, we can simply switch straight
to the thread with no further checking, since the address space cannot
have been changed since the thread last ran. Also, the thread cannot
be blocked on another fast mutex (because it holds one and they do
not nest).

If the selected thread holds a fast mutex other than the system lock, we
still switch to it, and we don’t have to call out to do address space changes,
since we don’t guarantee that the user-mode address space is valid during
a critical section protected by a fast mutex (unless it’s the system lock).
However, if an address space change would normally be required, we set
the mutex iWaiting flag to ensure that the address space change does
actually occur when the fast mutex is released. In addition, if the thread
has the KThreadAttImplicitSystemLock attribute and the system
lock is currently held, we set the mutex iWaiting flag. This is to ensure
that the thread doesn’t exit the mutex-protected critical section while the
system lock is held.

Lines 37–42 deal with the case where the selected thread is actually
blocked on a fast mutex. Such threads stay on the ready list, so the kernel
may select them during a reschedule. We do not want to waste time by
switching to the thread and letting it run, only to immediately switch to
the holding thread. So we check for this case in the scheduler and go
straight to the mutex holding thread, thus saving a context switch. This
check also guarantees that the YieldTo function used in NFastMutex
wait operations cannot return until the mutex has been released. Notice
that we need to check both iWaitFastMutex and iWaitFastMutex-
>iHoldingThread, since when the holding thread releases the mutex,
iHoldingThread will be set to NULL but iWaitFastMutex will still
point to the mutex. As before, there is no need to do any address space
changing if we switch to the mutex holding thread. There is also no need
to set the fast mutex iWaiting flag here since it must already have been
set when the selected thread blocked on it.

Lines 43–50 deal with threads requiring an implicit system lock. We
mainly use this mechanism for threads requiring long-running address

SCHEDULING 105

space switches: to perform such a switch the scheduler must claim the
system lock. Threads that do not need implicit system lock will also not
need the scheduler to call the address-space-switch hook; the scheduler
can simply switch to them at this point (lines 43–45). If the selected
thread does require an implicit system lock, the scheduler then checks
if the lock is free. If it is not, the scheduler switches to the system lock
holding thread. It also sets the system lock’s iWaiting flag since there
is now a thread implicitly waiting on the system lock.

If we reach line 51, the selected thread needs an implicit system lock
and the lock is free. If the thread does not need an address space change,
we can now switch it in – the system lock is not claimed (lines 51–53).
If the thread does require an address space change – that is, it has the
KThreadAttAddressSpace attribute and its iAddressSpace value
differs from the currently active one – then the scheduler calls out to do
this address space change (line 60).

In lines 54–56 we do the actual thread switch. We change stacks
and restore the CPU-specific registers from the new thread’s stack. At
this point, the new thread is effectively running with the kernel locked.
Lines 57–58 claim the system lock for the new thread – we know that
it’s free here. Then we unlock the kernel (line 59). From this point on,
further preemption can occur. It’s also worth noting that the scheduler
will go recursive here if an IDFC was queued by an interrupt serviced
during the first part of the reschedule. There can only be one recursion,
however, since the second reschedule would find the system lock held
and so could not reach the same point in the code.

Line 60 calls the address space switch handler in the Symbian OS
memory model to perform any MMU page table manipulations required
to change to the required address space. The switch hander is also
responsible for changing the iAddressSpace field in the scheduler to
reflect the new situation. Since the switch handler runs with the kernel
unlocked, it does not directly affect thread latency. But it does affect
latency indirectly, since most Symbian OS user mode threads need an
address space switch to run and many kernel functions wait on the system
lock. The switch handler also affects the predictability of execution time
for Symbian OS kernel functions. This means that we want the system
lock to only be held for a very short time. To accommodate this, the
address space switch handler does the operation in stages and checks
the system lock’s iWaiting flag after each stage. If the flag is set, the
switch handler simply returns and we trigger a further reschedule (line 64)
to allow the higher-priority thread to run. We set the iAddressSpace
field in the scheduler to NULL just before we make the first change to the
address space and we set it to the value corresponding to the new thread
just after the last change is made. This ensures that we take the correct
action if the address space switch handler is preempted and another
reschedule occurs in the middle of it.

106 THREADS, PROCESSES AND LIBRARIES

After we’ve done the address space switch, we lock the kernel again and
release the system lock (lines 61–70). If contention occurred for the lock,
we do not call the scheduler again directly as would normally be the case
in a fast mutex signal; instead we set the iRescheduleNeededFlag,
which will cause the scheduler to loop. Attempting recursion at this point
would be incorrect, because the system lock is now free and there would be
nothing to limit the recursion depth. [The processing of a deferred critical
section operation (line 68) could cause the scheduler to go recursive, but
only in the case where the thread was exiting; clearly, this cannot occur
more than once. A deferred suspension would simply remove the thread
from the ready list and set the iRescheduleNeededFlag, which would
then cause the scheduler to loop.]

Lines 73–75 cover the case in which an address space switch was
not required. They do the actual thread switch by switching to the new
thread’s stack and restoring the CPU-specific registers.

In lines 76 and onwards we finish the reschedule. First we restore the
non-volatile registers, then we disable interrupts and make a final check of
iDfcPendingFlag and iRescheduleNeededFlag. We need to do
this because interrupts have been enabled for most of the reschedule and
these could either have queued an IDFC or expired the current thread’s
timeslice. Furthermore, the iRescheduleNeededFlag may have been
set because of system lock contention during the processing of an address
space change. In any case, if either of these flags is set, we loop right
back to the beginning to run IDFCs and/or select a new thread. If neither
of the flags is set, then we unlock the kernel and exit from the scheduler
in the context of the new thread.

The scheduler always returns with interrupts disabled. We need to
make sure of this to prevent unbounded stack usage because of repeated
interrupts in the same thread. When an interrupt occurs, the kernel pushes
the volatile registers (that is, those modified by a normal function call)
onto the thread’s supervisor stack before calling the scheduler. If inter-
rupts were re-enabled between unlocking the kernel and popping these
registers, another interrupt could occur and push the volatile registers
again before causing another reschedule. And so it might continue, if
interrupts were not disabled.

The algorithm and the explanation above apply to the moving memory
model. The emulator and direct memory models do not do any address
space switching, simplifying scheduling. The multiple memory model
uses a simplified address space switching scheme, since switching is very
fast. The multiple memory model scheduling algorithm becomes:

// Enter with kernel locked
// Active stack is supervisor stack of current thread
1 Disable interrupts
2 start_reschedule:
3 IF IDFCs pending (iDfcPendingFlag TRUE)

SCHEDULING 107

4 Run IDFCs (with interrupts enabled but kernel locked)
5 iDfcPendingFlag = FALSE
6 ENDIF
7 IF reschedule not needed (iRescheduleNeededFlag FALSE)
8 iKernCSLocked=0 (unlock the kernel)
9 Return
10 ENDIF
11 Reenable interrupts
12 Save non-volatile registers and CPU specific registers on stack
13 iCurrentThread->iSavedSP = current stack pointer
14 iRescheduleNeededFlag = FALSE
15 next_thread = first thread in highest priority non-empty ready

queue
16 IF next_thread->iTime==0 (ie timeslice expired)
17 IF another thread is ready at same priority as next_thread
18 IF next_thread holds a fast mutex
19 next_thread->iHeldFastMutex->iWaiting=TRUE
20 goto resched_end
21 ENDIF
22 next_thread->iTime=next_thread->iTimeslice (new timeslice)
23 next_thread=thread after next_thread in round-robin order
24 ENDIF
25 ENDIF
26 IF next_thread holds a fast mutex
27 IF next_thread holds system lock
28 goto resched_end
29 ELSE IF next_thread requires implicit system lock and system

lock held
30 next_thread->iHeldFastMutex->iWaiting=TRUE
31 goto resched_end
32 ENDIF
33 ENDIF
34 IF next_thread is blocked on a fast mutex
35 IF next_thread->iWaitFastMutex->iHoldingThread (mutex is still

locked)
36 next_thread=next_thread->iWaitFastMutex->iHoldingThread
37 goto resched_end
38 ENDIF
39 ENDIF
40 IF next_thread does not require implicit system lock
41 goto resched_end
42 ELSE IF system lock held by another thread
43 next_thread=system lock holding thread
44 system lock iWaiting = TRUE
45 ENDIF
46 resched_end:
47 iCurrentThread=next_thread
48 current stack pointer = next_thread->iSavedSP
49 switch_threads:
50 Restore CPU specific registers from stack
51 IF next_thread requires address space switch
52 Invoke address space switch handler (kernel still locked)
53 ENDIF
54 Restore nonvolatile registers from stack
55 Disable interrupts
56 IF IDFCs pending or another reschedule needed
57 goto start_resched
58 ENDIF

108 THREADS, PROCESSES AND LIBRARIES

59 iKernCSLocked=0 (unlock the kernel)
60 Return with interrupts disabled

The main difference here is that we can invoke the address space switch
handler with preemption disabled. This is because we can change address
spaces in just a few assembly language instructions.

3.6.1 Scheduling of Symbian OS thread
As I said in the previous section, scheduling is the responsibility of the
nanokernel, and the scheduler deals in nanothreads, not Symbian OS
threads. Symbian OS only contributes to scheduling in the setting of
thread priorities.

The Symbian OS thread class, DThread, has a member iThread-
Priority. This specifies the priority in either absolute or process-relative
form. Values between 0 and 63 inclusive represent absolute priorities (cor-
responding directly to nanokernel priorities) and negative values between
−8 and −2 represent process-relative values (−1 is not used).

A call to the user-side API RThread::SetPriority() sets the
iThreadPriority field using a value derived from the TThread-
Priority argument that is passed to it. The kernel combines the
iThreadPriority field with the process priority of the thread’s own-
ing process using a mapping table to produce the iDefaultPriority
field. The following code shows how this is done.

Calculating Thread Priority

// Mapping table for thread+process priority to
// thread absolute priority

LOCAL_D const TUint8 ThreadPriorityTable[64] =
{

//Idle MuchLess Less Normal More MuchMore RealTime
/*Low*/ 1, 1, 2, 3, 4, 5, 22, 0,
/*Background*/ 3, 5, 6, 7, 8, 9, 22, 0,
/*Foreground*/ 3, 10, 11, 12, 13, 14, 22, 0,
/*High*/ 3, 17, 18, 19, 20, 22, 23, 0,
/*SystemServer1*/ 9, 15, 16, 21, 24, 25, 28, 0,
/*SystemServer2*/ 9, 15, 16, 21, 24, 25, 28, 0,
/*SystemServer3*/ 9, 15, 16, 21, 24, 25, 28, 0,
/*RealTimeServer*/ 18, 26, 27, 28, 29, 30, 31, 0
};

TInt DThread::CalcDefaultThreadPriority()
{
TInt r;
TInt tp=iThreadPriority;
if (tp>=0) // absolute thread priorities

r=(tp<KNumPriorities)?tp:KNumPriorities-1;
else

SCHEDULING 109

{
tp+=8;
if (tp<0)
tp=0;
TInt pp=iOwningProcess->iPriority; // proc priority 0-7
TInt i=(pp<<3)+tp;
// map thread+process priority to actual priority
r=ThreadPriorityTable[i];
return r;

}
}

This iDefaultPriority, returned from CalcDefaultThreadPri-
ority() is the actual scheduling priority used by the thread when it
doesn’t hold a Symbian OS mutex, and so it is not subject to priority
inheritance.

What about when the thread does hold a mutex? As we saw in
Section 3.3.5.1, the nanokernel priority of a Symbian OS thread is given
by the maximum of its iDefaultPriority value and the maximum
priority of any entry on the thread’s cleanup queue. Some of the cleanup
queue entries result from mutexes held by the thread and, as we saw, the
kernel adjusts their priorities to provide priority inheritance.

3.6.2 Scheduling in the emulator

As we saw in Chapter 1, Introducing EKA2, the emulator uses the host
OS (Win32) threads. This means that the nanokernel needs to provide its
own scheduling mechanism as Windows does not provide the 64 priority
levels we have in Symbian OS. (Win32 only really provides five usable
distinct priorities within a process.)

To make this work, we cannot allow Windows to arbitrarily schedule
Symbian OS threads to run. The nanokernel achieves this by only making
one Symbian OS thread ready to run as a Win32 thread; all the others will
either be waiting on a Win32 event object or suspended. A side effect
of this policy is that all Symbian OS threads can have the same standard
Win32 priority.

3.6.2.1 Disabling preemption

EKA2 provides two mechanisms to disable preemption and rescheduling:

1. Masking interrupts – disables interrupt dispatch and thus preemption

2. Locking the kernel – disables preemption and rescheduling.

The emulator only has to emulate the first of these, since the second uses
the same implementation as the target mobile phone.

110 THREADS, PROCESSES AND LIBRARIES

We provide the interrupt mask in the emulator using something similar
to a Win32 critical section object. Unlike the RCriticalSection of
Symbian OS, this is re-entrant, allowing a single thread to wait on a
critical section multiple times. The key difference to the standard Win32
critical section is the ability to operate correctly on a multi-processor PC
in conjunction with the emulator’s ‘‘interrupt’’ mechanism.

We disable interrupts by entering this critical section. This is effective
as ’’interrupts’’ must do the same, and so they are blocked until the thread
that owns the critical section releases it (by restoring interrupts). Thus this
also prevents a thread being preempted whilst it has masked interrupts,
as desired.

3.6.2.2 TScheduler::Reschedule

The kernel lock is just a simple counter, rather than the Win32 critical
section used in EKA1; this allows the emulator to hand over the lock
between threads when rescheduling exactly as the target scheduler does.
The result is that the scheduler code follows the same algorithm as the
nanokernel with regards to:

• Disabling interrupts

• Running IDFCs

• Selecting a new thread

• Exiting the scheduler.

The major difference in scheduling is in the handover code between
threads. Any Symbian OS thread which is not the current thread will
either be waiting on a Win32 event object, the ‘‘reschedule lock’’,
or suspended. Suspension is rare, and only occurs if the thread was
preempted rather than voluntarily rescheduling. I discuss preemption
in more detail in the next section; this section will concentrate on the
normal case.

The handover from the old (executing) thread is usually done by
signaling the new thread’s reschedule lock and then waiting on the old
one’s lock. The new thread starts running from the same point in the code
(because there is only one place where the waiting is done), the kernel is
still locked and the algorithm continues as normal.

This is slightly different to the behavior on a real target phone. On
the latter, there is no ‘‘waiting’’, as the thread state is saved to its stack
before the new thread state is restored. The scheduler knows that there
is only one true thread of execution in the CPU and just changes the
register context to effect the switch. But in the emulator we have two
‘‘real’’ execution contexts (ours, and the new thread) and we need to give

SCHEDULING 111

the impression that execution is being directly handed off from one to
the other.

Note that blocked threads nearly always have the same functions
at the top of the call stack, SwitchThreads() and TScheduler::
Reschedule().

Also note that this handover in the emulator works equally well when
the new thread is the same as the old thread.

3.6.2.3 ‘‘Interrupts’’ and preemption

Interaction with the hardware in the emulator is always via the host
OS. As a result, there are no real interrupts to handle in the emulator.
Interaction with the host is always done using native threads, which make
use of the host OS APIs for timer services, file I/O, UI and so on.

The emulator creates a number of Win32 threads to act as ‘‘event’’ or
‘‘interrupt’’ sources. These are not Symbian OS threads, therefore they
are effectively unknown to the nanokernel scheduler. They run at a host
priority above that of the Symbian OS threads to ensure that they respond
to events immediately and cause preemption within the emulator.

The emulator provides two routines which act as the interrupt preamble
and post-amble, StartOfInterrupt() and EndOfInterrupt().
The preamble routine, StartOfInterrupt(), disables interrupts and
then suspends the host thread that is the current nanokernel thread.
This ensures that the ‘‘interrupt’’ behaves like a real interrupt, executing
while the current thread does nothing, even on multi-processor PCs. The
post-amble routine, EndOfInterrupt(), does something similar to the
ARM interrupt post-amble on a real phone – checking the kernel lock
state and the need for a reschedule. If a reschedule is needed, the routine
leaves the current thread suspended and causes a reschedule, otherwise
it resumes the thread and enables interrupts again.

Unlike on a real phone, the end of interrupt function cannot cause the
current thread to branch off to the scheduler because it is not safe to divert
a Win32 thread from an arbitrary location – this can cause the entire host
OS to hang. Instead we mark the current thread as preempted, leave
it suspended, and signal another dedicated interrupt-rescheduler thread
to do the reschedule on behalf of the preempted thread. This interrupt-
rescheduler thread is a nanokernel thread that spends its entire life inside
TScheduler::Reschedule() – it is not on the ready list and so the
nanokernel never selects it to be run, but EndOfInterrupt() can wake
it up when necessary to schedule the next thread.

When the nanokernel selects a preempted thread to run rather than
signaling the reschedule lock, the emulator must resume the host thread.
However, life is not that simple – there’s more to do. On a phone, when
the nanokernel schedules a thread, the kernel is locked. The kernel then
makes a final check of the iDfcPending and iRescheduleNeeded

112 THREADS, PROCESSES AND LIBRARIES

flags before unlocking and resuming where it left off. In the emulator, if we
merely resume the preempted thread, then we will just do the final item
in that list, and miss out the checks. This means that the current thread
must do the checks (restarting the reschedule if required) and unlock the
kernel on behalf of the preempted thread. This makes the handover to a
preempted thread rather more complex than it is on the mobile phone.
The beauty of this method is that no side effects are apparent to users of
the emulator. The Win32 version of the nanokernel has some pretty tricky
code in it, but this ensures that the rest of the kernel just works – because
it presents the same model as on real hardware.

3.6.2.4 Idling

In the emulator, there is no way to ‘‘idle the CPU’’ from the Symbian OS
null (idle) thread and the obvious alternative – going round in an infinite
loop – is not very nice to the PC!

The null thread calls NThread::Idle() to go into idle mode on both
the emulator and a phone. On the emulator, this sets a flag to indicate
that the emulator is idle, and then waits on the thread’s reschedule lock.
The EndOfInterrupt() function detects this state as a special case
and instead of using the interrupt-rescheduler thread, it just wakes up the
null thread. The null thread then reschedules. Next time the null thread
is scheduled, it returns from NThread::Idle() and so behaves in a
similar fashion to its counterpart on real phones.

3.7 Dynamically loaded libraries

I have talked about threads and processes; I will finish this chapter with
a short discussion on dynamically loaded libraries, or DLLs. You can find
more on this subject in Chapter 8, Platform Security and Chapter 10, The
Loader.

3.7.1 The DLibrary class
The kernel creates a kernel-side library object (DLibrary) for every DLL
that is explicitly loaded into a user process; that is, one that is the target
of an RLibrary::Load() rather than one that is implicitly linked to
by another executable. Library objects are specific to, and owned by, the
process for which they were created; if two processes both load the same
DLL, the kernel creates two separate DLibrary objects. A library has
two main uses:

1. It represents a link from a process to the global code graph. Each
process always has at least one such connection – the DPro-
cess::iCodeSeg pointer. This pointer, set up by the kernel at

DYNAMICALLY LOADED LIBRARIES 113

process load time, links each process to its own EXE code segment.
DLibrary objects represent additional links to the code graph,
created at run time.

2. It provides a state machine to ensure that constructors and destructors
for objects resident in .data and .bss sections are called correctly.

Libraries have two reference counts. One is the standard DObject
reference count (since DLibrary derives from DObject); a non-zero
value for this reference count simply stops the DLibrary itself being
deleted – it does not stop the underlying code segment being deleted or
removed from any process.

The second reference count (iMapCount) is the number of user
references on the library, which is equal to the number of handles on the
library opened by the process or by any of its threads. The kernel always
updates this count with the CodeSegLock mutex held. When the last
user handle is closed, iMapCount will reach zero and this triggers the
calling of static destructors and the removal of the library code segment
from the process address space.

The loader creates DLibrary objects on behalf of a client loading a
DLL. A process may not have more than one DLibrary referring to the
same code segment. If a process loads the same library twice, the kernel
will open a second handle for it on the already existing DLibrary and
its map count will be incremented.

A DLibrary object transitions through the following states during
its life:

• ECreated – transient state in which object is created. Switches to
ELoaded or EAttached when library and corresponding code seg-
ment are added to the target process

• ELoaded – code segment is loaded and attached to the target process
but the kernel has not called static constructors

• EAttaching – the target process is currently running the code seg-
ment static constructors. Transitions to EAttachedwhen constructors
have completed

• EAttached – static constructors have completed and the code seg-
ment is fully available for use by the target process

• EDetachPending – the last user handle has been closed on the
DLibrary but static destructors have not yet been called. Transitions
to EDetaching just before running static destructors

• EDetaching – the target process is currently running the code seg-
ment static destructors. Transitions to ELoaded when destructors
have completed.

114 THREADS, PROCESSES AND LIBRARIES

Let’s have a look at the Dlibrary class:

class DLibrary : public DObject
{

public:
enum TState

{
ECreated=0, // initial state
ELoaded=1, // code segment loaded
EAttaching=2, // calling constructors
EAttached=3, // all constructors done
EDetachPending=4, // about to call destructors
EDetaching=5, // calling destructors
};

public:
static TInt New(DLibrary*& aLib, DProcess* aProcess,

DCodeSeg* aSeg);
DLibrary();
void RemoveFromProcess();
virtual ∼DLibrary();
virtual TInt Close(TAny* aPtr);
virtual TInt AddToProcess(DProcess* aProcess);
virtual void DoAppendName(TDes& aName);

public:
TInt iMapCount;
TUint8 iState;
SDblQueLink iThreadLink; // attaches to opening/closing thread
DCodeSeg* iCodeSeg;
};

Key member data of DLibrary
iMapCount
Count of the number of times this library is mapped into the process;
equal to the number of user handles the process and its threads have on
this library.

iState
Records progress in calling user-side constructors or destructors during
library loading and unloading.

iThreadLink
Doubly linked list field, which is used to attach the library to the thread
that is running user-side constructors or destructors. This is needed to
enable cleanup if the thread terminates while running one of these
functions.

iCodeSeg
Pointer to the code segment to which this library refers.

3.7.2 Code segments
I mentioned that a library represents a link from a process to the global
code graph, and that this link is held in the iCodeSeg pointer. This
pointer denotes a kernel object known as a DCodeSeg.

SUMMARY 115

A DCodeSeg is an object that represents the contents of an executable,
relocated for particular code and data addresses. Executable programs
(EXEs) or dynamically loaded libraries (DLLs), execute in place (XIP) or
RAM-loaded – whatever the combination, the code is represented by a
DCodeSeg.

On EKA1, EXEs and DLLs were handled separately and differently,
which gave us problems when we came to load a DLL that linked back
to an EXE.

Under EKA2, the unification of the support for loading code under the
DCodeSeg has made matters much simpler. Multiple instances of the
same process will use the same DCodeSeg unless a RAM-loaded fixed
process needs different data addresses. Similarly, if a DLL is loaded into
several processes, the same DCodeSeg is attached to all the processes
(the code is shared), unless different data addresses are required. This
happens when a RAM-loaded DLL with writable static data is then loaded
into more than one fixed process, or into a combination of fixed and
non-fixed processes.

I will discuss this in greater depth in Chapter 10, The Loader.

3.8 Summary

In this chapter I have talked about threads in the nanokernel, and Symbian
OS threads, processes and libraries. Of course, these are fundamental
operating system concepts, and you will find that they form an important
basis for other parts of this book.

In the next chapter, I shall talk about some of the ways in which
threads and processes can communicate with each other.

4
Inter-thread Communication

by Andrew Rogers and Jane Sales

Be not deceived: evil communications corrupt good manners.

1 Corinthians 15:33

In the last chapter, I introduced Symbian OS threads. Now I will go
on to discuss some of the mechanisms that those threads can use to
communicate with one another.

Symbian OS provides several such mechanisms, including shared I/O
buffers, publish and subscribe, message queues and client-server. Each of
the methods has its particular merits and restrictions. I will examine each
of them in turn, discussing their implementation and the general class of
problem each is intended to solve. Since the most widely used of these is
the client-server mechanism used to communicate with system servers, I
will start there.

4.1 Client-server ITC

Client-server is the original Symbian OS inter-thread communication
(ITC) mechanism, having been present from the earliest implementations
of EPOC32 in the Psion Series 5 right up to the latest mobile phones
deployed on the secure platform of Symbian OS v9.

This mechanism allows a client to connect to a server using a unique,
global name, establishing a ‘‘session’’ that provides the context for all
further requests. Multiple sessions can be established to a server, both from
within a single thread and from within multiple threads and processes.
Clients queue messages in the kernel; the server then retrieves these
messages and processes each in turn. When the processing of a request
is finished, the server signals the client that its request is complete.
The implementation of the client-server mechanism guarantees request
completion, even under out-of-memory and server death conditions. The
combination of a robust service request mechanism and a service provider

118 INTER-THREAD COMMUNICATION

guaranteed to be unique within the system was designed to make the
client-server mechanism suitable for providing centralized and controlled
access to system resources.

The managing of central resources using the client-server paradigm can
be seen throughout Symbian OS, with all the major services provided by
Symbian OS being implemented using this method. The file server (F32),
the window server (WSERV), the telephony server (ETEL), the comms
server (C32) and the socket server (ESOCK) are all examples of central
resources managed by a server and accessed by a client interface to them.

However, my intention in this chapter is to give you the inner workings
of client-server. It is not to teach you how to write your own server based
on this framework, or to show you how to use any of the existing servers
within Symbian OS. For that, please refer to a Symbian OS SDK or
Symbian OS Explained.1 Since this book focuses on EKA2, I will only
discuss the newest version of client-server (IPCv2). I will summarize the
differences from the legacy client-server framework (IPCv1) in a separate
section at the end.

4.1.1 History
The design and architecture of the client-server system have evolved with
the platform. In the original, pre-Symbian OS v6.0 implementation of
client-server, a session was explicitly tied to the thread that had created
it. In Symbian OS v6.0, we generalized the concept of a session from this
very ‘‘client-centric’’ implementation by adding the concept of a ‘‘shared
session’’ that could be used by all the threads within the process.

Though they appeared less client-centric in the user API, we imple-
mented shared sessions within the kernel by creating objects tied to
the session to represent each ”share”. The share managed per-thread
resources for the session, including a handle to the client thread for the
server. The handle from the share that corresponded to the thread that
sent a given message was then passed in the message delivered to the
server, so that when the server performed an operation to access a client’s
address space using a message handle, it was actually performed in the
kernel using a handle associated with the client (in the share) rather than
the message itself.

With the advent of a secure platform on EKA2, Symbian OS client-
server has undergone a second evolution to an entirely ‘‘message-centric’’
architecture known as IPCv2. IPCv2 performs all accesses to memory in
a client’s address space using a handle that is explicitly associated with
a message, rather than the client that sent it. This allows us to deprecate
and then remove APIs that allow direct access to an arbitrary thread’s
address space with nothing more than a handle to that thread.

1 Symbian OS Explained: Effective C++ Programming for Smartphones, by Jo Stichbury.
Symbian Press.

CLIENT-SERVER ITC 119

Earlier versions of EKA2 supported the legacy client-server APIs (IPCv1),
using a special category of handle values, which directly referred to
kernel-side message objects. The kernel passed these back as the client
thread handle in legacy messages. When the kernel detected the use of
such a handle by legacy code during translation of a user-side handle
to a kernel-side object, it located the corresponding kernel-side message
object, extracted the client thread associated with that message, then used
it to perform the requested operation. This legacy support was removed
with the move to the secure Symbian OS v9.

Also, as part of the changes we made to implement a secure Symbian
OS, we chose several categories of kernel-side objects to be able to
be shared securely and anonymously between two separate processes.
Handles to such ‘‘protected’’ objects may be passed between processes
both by an extended ‘‘command line’’ API and via the client-server
mechanism. We have extended the ‘‘command line’’ API to allow a
parent to pass handles to its children, and we have extended the client-
server mechanism to enable a message to be completed with a handle
rather than a standard error code.

These ‘‘protected’’ objects can provide a mechanism for secure data
transfer between processes. In particular, this new class of objects includes
server sessions, so that a session to a server can be shared between two
separate processes. This means that in EKA2 a new method of sharing a
session has now become possible: global (inter-process) session sharing.
An interesting range of features can be designed using this new paradigm.
For example, secure sharing of protected files between processes can be
accomplished using a shared file server session.

4.1.2 Design challenges

The design of the kernel-side client-server architecture that I will describe
in more detail below is inherently a difficult matter. Even in the most
basic of configurations, with only a single client thread communicating
with a single-threaded server, there are several things that can hap-
pen concurrently:

• A client may send a message (asynchronously)

• A client may close a session

• Either the client or the server thread may die, resulting in kernel-side
object cleanup being invoked

• A server thread may complete a message (in a multi-threaded server,
possibly a different thread than the one owning the handle to the
kernel-side server object)

• The server may close the handle to the kernel-side server object.

120 INTER-THREAD COMMUNICATION

All of these actions require the state of kernel-side objects to be updated
and, since these actions may execute concurrently and preempt one
another, they need to be carefully synchronized to avoid corruption of
the kernel data structures. To make this task as simple and efficient as
possible, it was important that our design minimized the complexity of
these objects, their states and the transitions needed to perform client-
server communication.

Design simplicity was a key priority on EKA2. This was because, if the
required synchronization (using the system lock) is not performed in a
constant-order manner, unbounded delays can occur and there is no pos-
sibility of Symbian OS offering hard real-time guarantees. Also, care needs
to be taken to allow the server itself to respond to messages it has received
within bounded time limits, so that servers which offer real-time guarantees
themselves can be created. To this end, we added support in IPCv2 for asyn-
chronous session creation and destruction, allowing the server’s RunL()
duration to be small and bounded. In this way we have provided a platform
on which, for example, guaranteed multimedia services can be offered.

However, the design of client-server on EKA2 is further complicated
due to the need to provide a secure IPC architecture. This has meant
adding checks that operations performed on a client’s address space are
valid and providing a mechanism whereby the identity of a server may
be securely verified. It has also meant adding the ability for sessions to
be shared so that requirements for a secure platform such as secure file
sharing can be implemented using client-server.

I’ll now describe both the new user-side architecture of IPCv2 and the
kernel architecture that supports it.

4.1.3 User-side architecture – server
The key component in the user-side architecture is the server object
itself. This is simply a standard active object,2 queuing requests on an
asynchronous service API provided by the kernel to retrieve messages sent
to the server by its clients. On the completion of such a request (receiving
a message), the server active object’s RunL() usually dispatches the
message to a session object which has been created to manage the
connection between the server and its client.

Session objects manage the server-side resources associated with a ses-
sion and are created by the server when a connect message is received
from the client. In this case, the server’s RunL() calls the virtual NewSes-
sionL() which returns an instance of a CSession2derived class. You
would implement the server active object by deriving fromCServer2 and
the session object by deriving from CSession2. The server-side architec-
ture is shown in Figure 4.1 and CServer2 is implemented as follows:

2 For a comprehensive explanation of the use of active objects in Symbian OS C++,
consult Symbian OS Explained by Jo Stichbury, Symbian Press.

CLIENT-SERVER ITC 121

CSession2 CSession2 CSession2

CServer2

RServer2

DSession DSession DSession DServer

Thread-owned
handle'cookie' == address of CSession2

user

kernel

Figure 4.1 Server-side architecture

class CServer2 : public CActive
{

public:
enum TServerType

{
EUnsharableSessions = EIpcSession_Unsharable,
ESharableSessions = EIpcSession_Sharable,
EGlobalSharableSessions = EIpcSession_GlobalSharable,
};

public:
IMPORT_C virtual ∼CServer2() =0;
IMPORT_C TInt Start(const TDesC& aName);
IMPORT_C void StartL(const TDesC& aName);
IMPORT_C void ReStart();
inline RServer2 Server() const { return iServer; }

protected:
inline const RMessage2& Message() const;
IMPORT_C CServer2(TInt aPriority,

TServerType aType=EUnsharableSessions);
IMPORT_C void DoCancel();
IMPORT_C void RunL();
IMPORT_C TInt RunError(TInt aError);
IMPORT_C virtual void DoConnect(const RMessage2& aMessage);

private:
IMPORT_C virtual CSession2* NewSessionL(const TVersion& aVersion,

const RMessage2& aMessage) const =0;
private:
TInt iSessionType;
RServer2 iServer;
RMessage2 iMessage;
TDblQue<CSession2> iSessionQ;

protected:
TDblQueIter<CSession2> iSessionIter;
};

122 INTER-THREAD COMMUNICATION

The server keeps track of the current message it is processing (iMessage)
and manages a queue of the session objects so they can be cleaned up
during the destruction of the server (iSessionQ).

Upon reception of a (session) connect message, the server calls
NewSessionL() to create a new CSession2-derived session object
and then appends the new session object to the end of the server queue.
Finally, the server uses the connect message to pass a ‘‘cookie’’ (in the
form of the address of the newly-created session object) to the kernel,
which the kernel can then use to identify the particular session a given
message is associated with.

The server implementation can over-ride DoConnect() in order to
provide asynchronous session creation. It works in a similar way to the
method I described in the previous paragraph, except that the memory
allocation for the new session is performed in a separate thread and
the connect message is completed asynchronously, rather than after
a (potentially long) synchronous wait in DoConnect(). The separate
thread will simply consist of a base call to DoConnect() as there is no
public API to perform the actions of DoConnect() separately, such as
setting the session’s ”cookie”.

Your CServer2-derived server active object uses an instance of the
private class RServer2 – which holds a handle to the equivalent kernel-
side server object, DServer – to receive messages from the kernel.
The handle to the kernel-side kernel object, contained in the iServer
member, remains open throughout the lifetime of the server object and is
Close()d in its destructor.

The server active object receives messages from the kernel by queuing
a request on the RServer2. This is done automatically for you in
Start() after the kernel-side server object has been successfully created.
A request is also automatically requeued after processing a message
in the server’s RunL(). The request to receive another message from
the kernel is canceled in the server object’s DoCancel() and the
server active object Cancel()s itself in its destructor, as with any other
active object.

The kernel-side (DServer) object is created via a call to Start()
on your CServer2-derived object and the level of session sharability
the server will support, as enumerated in CServer2::TServerType, is
determined at this time. You specify the level of sharability a given session
actually has when a client calls RSessionBase::CreateSession().
The sharability of a new session is opaque to the server itself, which will
only know that a new session has been created. Therefore it is the kernel’s
responsibility to police sharability – both when creating new sessions and
also when opening handles to existing ones.
CSession2, from which you derive session objects used to manage

per-session resources in your server, is shown below:

CLIENT-SERVER ITC 123

class CSession2 : public CBase
{
friend class CServer2;

public:
IMPORT_C virtual ∼CSession2() =0;

private:
IMPORT_C virtual void CreateL(); // Default method, does nothing

public:
inline const CServer2* Server() const;
IMPORT_C void ResourceCountMarkStart();
IMPORT_C void ResourceCountMarkEnd(const RMessage2& aMessage);
IMPORT_C virtual TInt CountResources();
virtual void ServiceL(const RMessage2& aMessage) =0;
IMPORT_C virtual void ServiceError(const RMessage2& aMessage,

TInt aError);
protected:
IMPORT_C CSession2();
IMPORT_C virtual void Disconnect(const RMessage2& aMessage);

private:
TInt iResourceCountMark;
TDblQueLink iLink;
const CServer2* iServer;
};

The heart of the session object is the ServiceL()method. On reception
of a message, the server uses the cookie the kernel returns to it as a pointer to
a session object and then passes the message to that session by callingSer-
viceL(). The session class will then perform appropriate actions to fulfill
the request contained in the message and at some future point the message
will be completed to signal the completion of the request to the client.

The virtual method Disconnect() is used to allow the session
to implement asynchronous session deletion in a similar manner to that
described for asynchronous session creation using CServ-
er2::DoConnect().

The server can access the kernel-side message objects using RMes-
sagePtr2, which encapsulates both the handle to the message object
and descriptor APIs for accessing the client’s memory space using the
message. A small number of APIs to allow manipulation of the client
thread are available to allow the server to enforce certain behavior of its
client, for example, enforcing that the client passes certain parameters
by panicking it if it presents a message containing invalid values. Finally,
RMessagePtr2 also presents APIs that allow the security attributes of
the client to be examined and checked against predetermined security
policies. The security of these APIs is ensured as the kernel verifies that
the thread using them has a valid handle to a kernel message object.

The client constructs a message for a particular session by specifying
a ‘‘function number’’ to identify the operation that is being requested
and optionally up to four message parameters. These parameters may be
either plain integers, pointers or may be descriptors that the server will

124 INTER-THREAD COMMUNICATION

then be able to use to access the client’s address space. Using templated
argument types and an overloaded function that maps argument types
to a bitfield, the class TIpcArgs (which is used to marshall message
arguments in IPCv2) generates a bit mask at compile time which describes
the types of its arguments.

This bit mask is stored in the kernel-side message object. This allows
the kernel to check whether operations requested by the server using
the message are correct – for example, checking the source and target
descriptors are either both 8-bit or both 16-bit descriptors. It also allows
the kernel to check that the requested operation is permitted by the client,
for example by checking that when the server requests to write to a client
descriptor, the client descriptor is TDes-derived (modifiable) rather than
TDesC-derived (constant).

You should beware that though you can still pass pointers in IPCv2,
there are no longer any APIs to directly access memory in another thread’s
address space using an arbitrary pointer and a handle to the thread as
this is inherently insecure. The ability to pass a pointer between a client
and server is therefore only of any value when the client and server are
within the same process. In this case, the use of a pointer is obviously not
limited to pointing to a descriptor, but may also be used to point to an
arbitrary data structure containing information to be shared between the
client and server:

class RMessagePtr2
{

public:
inline RMessagePtr2();
inline TBool IsNull();
inline TInt Handle();

#ifndef __KERNEL_MODE__
inline TBool ClientDataCaging();
IMPORT_C void Complete(TInt aReason);
IMPORT_C void Complete(RHandleBase aHandle);
IMPORT_C TInt GetDesLength(TInt aParam);
IMPORT_C TInt GetDesLengthL(TInt aParam);
IMPORT_C TInt GetDesMaxLength(TInt aParam);
IMPORT_C TInt GetDesMaxLengthL(TInt aParam);
IMPORT_C void ReadL(TInt aParam,TDes8& aDes,TInt aOffset=0);
IMPORT_C void ReadL(TInt aParam,TDes16 &aDes,TInt aOffset=0);
IMPORT_C void WriteL(TInt aParam,const TDesC8& aDes,TInt aOffset=0);
IMPORT_C void WriteL(TInt aParam,const TDesC16& aDes,TInt aOffset=0);
IMPORT_C TInt Read(TInt aParam,TDes8& aDes,TInt aOffset=0);
IMPORT_C TInt Read(TInt aParam,TDes16 &aDes,TInt aOffset=0);
IMPORT_C TInt Write(TInt aParam,const TDesC8& aDes,TInt aOffset=0);
IMPORT_C TInt Write(TInt aParam,const TDesC16& aDes,TInt aOffset=0);
IMPORT_C void Panic(const TDesC& aCategory,TInt aReason);
IMPORT_C void Kill(TInt aReason);
IMPORT_C void Terminate(TInt aReason);
IMPORT_C TInt SetProcessPriority(TProcessPriority aPriority);

CLIENT-SERVER ITC 125

inline void SetProcessPriorityL(TProcessPriority aPriority);
IMPORT_C TInt Client(RThread& aClient,

TOwnerType aOwnerType=EOwnerProcess);
inline void ClientL(RThread& aClient,

TOwnerType aOwnerType=EOwnerProcess);
IMPORT_C TUint ClientProcessFlags();
IMPORT_C TSecureId SecureId();
IMPORT_C TVendorId VendorId();
inline TBool HasCapability(TCapability aCapability,

const char* aDiagnostic=0);
inline void HasCapabilityL(TCapability aCapability,

const char* aDiagnosticMessage=0);
inline TBool HasCapability(TCapability aCapability1,

TCapability aCapability2, const char* aDiagnostic=0);
inline void HasCapabilityL(TCapability aCapability1,

TCapability aCapability2, const char* aDiagnosticMessage=0);
inline TUid Identity() const { return SecureId(); }

#endif
protected:
TInt iHandle;
};

inline TBool operator==(RMessagePtr2 aLeft,RMessagePtr2 aRight);
inline TBool operator!=(RMessagePtr2 aLeft,RMessagePtr2 aRight);

RMessage2 expands the API provided by RMessagePtr2 by bringing
a copy of the message arguments and the cookie (CSession2 pointer)
stored in the kernel over into user space, allowing access to both. RMes-
sage2 also contains a number of spare words that do not correspond
to data stored in the kernel. One of these, iFlags, is used to provide
the ‘‘Authorised()’’ APIs which are used by a utility server base class,
CPolicyServer, which allows simple implementation of a server that
validates given security policies upon session creation and reception of
each message. For full details of CPolicyServer and its use, refer to a
recent Symbian OS SDK.

class RMessage2 : public RMessagePtr2
{
friend class CServer2;

public:
enum TsessionMessages

{
EConnect=-1,
EDisConnect=-2
};

public:
inline RMessage2();

#ifndef __KERNEL_MODE__
IMPORT_C explicit RMessage2(const RMessagePtr2& aPtr);
void SetAuthorised() const;
void ClearAuthorised() const;
TBool Authorised() const;

#endif

126 INTER-THREAD COMMUNICATION

inline TInt Function() const;
inline TInt Int0() const;
inline TInt Int1() const;
inline TInt Int2() const;
inline TInt Int3() const;
inline const TAny* Ptr0() const;
inline const TAny* Ptr1() const;
inline const TAny* Ptr2() const;
inline const TAny* Ptr3() const;
inline CSession2* Session() const;

protected:
TInt iFunction;
TInt iArgs[KMaxMessageArguments];

private:
TInt iSpare1;

protected:
const TAny* iSessionPtr;

private:
mutable TInt iFlags; // Currently only used for *Authorised above
TInt iSpare3; // Reserved for future use
friend class RMessage;
};

4.1.4 User-side architecture – client

The client-side architecture is shown in Figure 4.2.

CSession2

CServer2

RServer2

DSession DServer

RSessionBase

(shared)

RSubSession
Base

(shared)

client server

kernel

Process-owned handle

user

Thread-owned
handle

'cookie'==
Address of CSession2

Figure 4.2 Client-side architecture

The remainder of the user-side support for client-server consists of two
client base classes, one for sessions and another for sub-sessions. The
session class is RSessionBase, as follows:

CLIENT-SERVER ITC 127

class RSessionBase : public RHandleBase
{
friend class RSubSessionBase;

public:
enum TAttachMode

{
EExplicitAttach,
EAutoAttach
};

public:
inline TInt ShareAuto() { return DoShare(EAutoAttach); }
inline TInt ShareProtected()

{ return DoShare(EAutoAttach|KCreateProtectedObject); }
IMPORT_C TInt Open(RMessagePtr2 aMessage,TInt aParam,

TOwnerType aType=EOwnerProcess);
IMPORT_C TInt Open(RMessagePtr2 aMessage,TInt aParam,

const TSecurityPolicy& aServerPolicy, TOwnerType aType=EOwnerProcess);
IMPORT_C TInt Open(TInt aArgumentIndex, TOwnerType aType=EOwnerProcess);

protected:
IMPORT_C TInt Open(TInt aArgumentIndex,

const TSecurityPolicy& aServerPolicy, TOwnerType aType=EOwnerProcess);
inline TInt CreateSession(const TDesC& aServer,

const TVersion& aVersion);
IMPORT_C TInt CreateSession(const TDesC& aServer,

const TVersion& aVersion,TInt aAsyncMessageSlots);
IMPORT_C TInt CreateSession(const TDesC& aServer,

const TVersion& aVersion,TInt aAsyncMessageSlots,
TIpcSessionType aType,const TSecurityPolicy* aPolicy=0,
TRequestStatus* aStatus=0);

inline TInt CreateSession(RServer2 aServer,const TVersion& aVersion);
IMPORT_C TInt CreateSession(RServer2 aServer,const TVersion& aVersion,

TInt aAsyncMessageSlots);
IMPORT_C TInt CreateSession(RServer2 aServer,const TVersion& aVersion,

TInt aAsyncMessageSlots,TIpcSessionType aType,
const TSecurityPolicy* aPolicy=0, TRequestStatus* aStatus=0);

inline TInt Send(TInt aFunction,const TIpcArgs& aArgs) const;
inline void SendReceive(TInt aFunction,const TIpcArgs& aArgs,

TRequestStatus& aStatus) const;
inline TInt SendReceive(TInt aFunction,const TIpcArgs& aArgs) const;
inline TInt Send(TInt aFunction) const;
inline void SendReceive(TInt aFunction,TRequestStatus& aStatus) const;
inline TInt SendReceive(TInt aFunction) const;

private:
TInt SendAsync(TInt aFunction,const TIpcArgs* aArgs,

TRequestStatus* aStatus) const;
TInt SendSync(TInt aFunction,const TIpcArgs* aArgs) const;
IMPORT_C TInt DoShare(TInt aAttachMode);
TInt DoConnect(const TVersion &aVersion,TRequestStatus* aStatus);
};

Sub-sessions are simply a lightweight wrapper over the functionality of
session objects, as already described above. They are useful because it
is often the case that clients wish to use multiple instances of an API that
would otherwise be associated with the session, for example a client might
wish to have multiple instances of the file API from the file server. Sessions
are relatively heavyweight in terms of the kernel overhead associated with

128 INTER-THREAD COMMUNICATION

them, so rather than insist that a new session be created to support such
paradigms, we provide a simple mechanism for multiplexing multiple
‘‘sub-sessions’’ over a single session in the RSubSessionBase class.

You enable sub-session creation by specifying a specific function that
the server will use to create resources required to manage the sub-session.
As well as this, the sub-session creation function generates a ‘‘sub-session
cookie’’ that RSubSessionBase then stores, which is automatically
passed as the fourth argument of any future messages to that session.
(This leaves only three parameters for use by the sub-session requests.)
When a session object receives a request that it recognizes as being for
a sub-session, it uses the cookie in the fourth argument to identify the
sub-session and then processes the message accordingly. You should note
that the sub-session cookie is only shared by the client and server and is
opaque to the kernel, which sees it as any other message parameter. For
example, requests to the RFile API appear to the kernel as identical to
requests to the file server session API, RFs, of which it is a sub-session.

From the following declaration of RSubSessionBase, it can be seen
that it is simply a wrapper around the RSessionBase API implemented
using a private RSessionBase member and a copy of the sub-session
cookie used to identify the sub-session to the server:

class RSubSessionBase
{

public:
inline TInt SubSessionHandle() const;

protected:
inline RSubSessionBase();
IMPORT_C const RSessionBase Session() const;
inline TInt CreateSubSession(const RSessionBase& aSession,

TInt aFunction,const TIpcArgs& aArgs);
inline TInt CreateSubSession(const RSessionBase& aSession,

TInt aFunction);
IMPORT_C TInt CreateAutoCloseSubSession(RSessionBase& aSession,

TInt aFunction,const TIpcArgs& aArgs);
IMPORT_C void CloseSubSession(TInt aFunction);
inline TInt Send(TInt aFunction,const TIpcArgs& aArgs) const;
inline void SendReceive(TInt aFunction,const TIpcArgs& aArgs,

TRequestStatus& aStatus) const;
inline TInt SendReceive(TInt aFunction,const TIpcArgs& aArgs) const;
inline TInt Send(TInt aFunction) const;
inline void SendReceive(TInt aFunction,TRequestStatus& aStatus) const;
inline TInt SendReceive(TInt aFunction) const;

private:
RSessionBase iSession;
TInt iSubSessionHandle;
};

Note that because a thread blocks on the synchronous API, only one
synchronous server message may be sent by a thread at a time. This
allows a significant optimization in the allocation of kernel-side memory
used to hold messages.

CLIENT-SERVER ITC 129

The session and sub-session creation functions have new overloads in
IPCv2 that allow the session to be created asynchronously, so the server
cannot maliciously block the client whilst connecting to it.

The other methods of note in RSessionBase are the ShareXxx()
methods. Previously, in EKA1, a session could only be created in a non-
shared state. If sharing was required, then the client had to explicitly call
Share() (not present in IPCv2) or ShareAuto() to create a process-
relative session handle. A similar method has been added in EKA2 to
explicitly create a process-relative handle that is also ‘‘protected’’ and may
be passed to another process – ShareProtected().

However, creating a duplicate handle is an expensive operation, so
we have now provided a new overload of RSessionBase::Create-
Session() which allows the sharability of the session to be determined
from the creation of the session, thereby avoiding the need to perform
the expensive handle duplication operation. This then is the preferred
and recommended way of creating a shared session on EKA2. Before a
client in a separate thread or process can use a given session, the session
must either be created with the required level of sharability or a call to a
ShareXxx()method must be made before the separate thread or process
sends any messages to the session, or a panic will occur in the client.

If the return value from a client call to RSessionBase::Create-
Session() indicates that the server is not running, then the client DLL
may wish to launch the server process itself and then make another
attempt to create a session with the server. When doing this, the client
code needs to be able to detect whether and when the server has started
up successfully. To do this in the past, the client had to pass a structure
containing its thread ID and a pointer to a request status object in its
address space to the server via the server’s command line. The server
would then use this structure to signal successful startup to the client
using RThread::RequestComplete(). The introduction of thread
and process rendezvous, as described in Section 3.3.6, removes the need
for this mechanism and simplifies server startup code considerably.

4.1.5 Kernel-side architecture
4.1.5.1 Server – queue management

The kernel-side architecture reflects the structure of the user-side client-
server architecture it is designed to support. The first kernel-side object I’ll
discuss is the server object, corresponding to the RServer2 handle held
by the server process. The kernel-side server object has two purposes:

• To ensure the uniqueness of the user-mode server within the system

• To provide a FIFO queue of messages to be delivered to the server
thread. A client may deliver messages to the server at any time, but
the server thread only receives the messages one at a time as it
sequentially requests them from the kernel.

130 INTER-THREAD COMMUNICATION

The first requirement is easy to achieve: during server creation the kernel
adds the server object being added to a global object container for
servers. As I will show in the next chapter, object containers mandate the
uniqueness of names within them. Also, another check is performed at
server creation: the server may only specify a name beginning with ‘‘!’’ if
the server has the ProtServ capability. This allows the client to be certain
that servers with names beginning with ‘‘!’’ have not been spoofed by
some other malicious code.

To fulfill the second requirement, server objects use the state machine
shown in Figure 4.3 to manage their FIFO queue of messages.

IDLE
AWAITING
MESSAGE

MESSAGE
PENDING

SESSION
ATTACHED

DServer()~DServer()

3.

4., 5.

4., 5.

1., 2., 3., 5.

1., 2.

1. 2.

5.

3.

2.,3.

5.3.

1., 2.

Figure 4.3 Server object state machine

The labeled state transitions listed below are executed under the
protection of the system lock, to maintain state integrity. Each of these
transitions is designed to hold the system lock for constant execution
time. This maintains the real-time characteristics of the kernel as there
will always be a maximum, constant time for which the system lock will
be held before being released:

1. DSession::Add()

2. DSession::Detach()

CLIENT-SERVER ITC 131

3. DServer::Receive()

4. DServer::Cancel(),
DServer::Close() [when closing last reference]

5. DServer::Deliver()

The states in the above transition diagram are defined as follows:

Session queue Message queue [User] Server
request status

IDLE Empty Empty NULL

SESSION
ATTACHED

Non-empty Empty NULL

AWAITING
MESSAGE

Don’t care Empty Non-NULL

MESSAGE
PENDING

Don’t care Non-empty NULL

The implementation of this state machine can be seen in the methods
and members of the DServer class:

class DServer : public DObject
{

public:
DServer();
virtual ∼DServer();
virtual TInt Close(TAny*);
virtual TInt RequestUserHandle(DThread* aThread, TOwnerType aType);

// aMessage bit 0 = 0 -> RMessage, bit 0 = 1 -> RMessage2
void Receive(TRequestStatus& aStatus, TAny* aMessage);
void Cancel();
void Accept(RMessageK* aMsg);
void Deliver(RMessageK* aMsg);

public:
inline TBool IsClosing();

public:
DThread* iOwningThread; // thread which receives messages
TAny* iMsgDest; // where to deliver messages
TRequestStatus* iStatus; // completed to signal message arrival
SDblQue iSessionQ; // list of sessions
SDblQue iDeliveredQ; // messages delivered but not yet accepted
TUint8 iSessionType; // TIpcSessionType
};

The server object itself is created byExecHandler::ServerCreate(),
called (indirectly via RServer2) from CServer2::Start(). Once
ExecHandler::ServerCreate() has created the kernel-side server

132 INTER-THREAD COMMUNICATION

object, it opens a handle on the current (server) thread, so the pointer to
the server thread (iOwningThread) is always valid.

This is required because a process-relative handle may be created to
the server object by any thread in the server’s process, using Dupli-
cate() and hence the server objects may be held open after the server
thread terminates. The first handle to the server object that is created
and subsequently vested within the RServer2 will be a process-relative
handle if the server is anonymous (that is, has a zero-length name) and
thread-relative otherwise. To exercise control over the use of Dupli-
cate(), DServer over-rides DObject’s RequestUserHandle()
method, which is called whenever a user-mode thread wishes to create a
handle to an object. DServer enforces the policy that handles to it may
only be created within the server’s process. The server object then closes
the reference to the server thread in its destructor, so the thread object will
only ever be safely destroyed after the server object has finished using it.
DServer::Receive() and DServer::Cancel() provide the

kernel-side implementation of the private RServer2 API used to retrieve
messages for the server. These receive and cancel functions provide an
API for an asynchronous request to de-queue the message at the head of
the FIFO queue. After de-queuing a message, the request is completed on
the server thread. If a message is present in the server’s queue when the
request is made, this operation is performed immediately. Otherwise no
action is taken and the next message delivered to the DServer object is
used to immediately complete this request, rather than being placed on
the server’s queue.

The server thread may choose to block until a message is available
(for example, using User::WaitForRequest()) or may use another
method to wait for the request completion. In the case of a standard
Symbian OS server, the CServer2-derived class is an active object and
uses the active scheduler as a mechanism to wait for the request for the
next message to be completed.

The procedure of writing a message to the server process’s address
space and signaling it to notify it of the completion of its request for a
message is known as ‘‘accepting’’ a message. DServer::Deliver()
is the client thread’s API to deliver a message to the server’s message
queue. Both DServer::Receive() and DServer::Deliver() will
accept a message immediately, where appropriate. These methods both
call a common subroutine DServer::Accept(), which contains the
code to accept a message. It updates the message’s state to reflect the
fact the server has accepted its delivery before writing the message to the
server’s address space and finally signaling the server’s request status to
indicate completion of its request.

The kernel-side message object (RMessageK) is converted into the
correct format for user-side message object by using a utility classes
whose structure mirrors RMessage2:

CLIENT-SERVER ITC 133

class RMessageU2
{

public:
inline RMessageU2(const RMessageK& a);

public:
TInt iHandle;
TInt iFunction;
TInt iArgs[KMaxMessageArguments];
TUint32 iSpare1;
const TAny* iSessionPtr;
};

Note that the iSpare1 member of RMessageU2 is simply zeroed by the
kernel when writing the message to the user (that is, the server thread),
but the other ‘‘unused’’ members of RMessage2 will not be overwritten
by the kernel when it writes a message to user-space. A separate structure
is used here as the format of RMessageK is private to the kernel itself
and this class therefore provides translation between the internal message
format used by the kernel and the public message format of RMessage2
used by user-side code.

Most of the methods mentioned above can be written to hold the
system lock for a constant time with relative ease as they encompass tasks
such as adding to or removing from a doubly linked list, updating state
and performing a fast write of a small amount of data. However, when
the DServer object is closed for the last time in DServer::Close(),
the session list has to be iterated to detach all the sessions still attached to
the server. This must be done under the protection of the system lock so
that the server’s state is updated in a consistent manner. As there are an
arbitrary number of sessions to detach, this operation has an execution
time linearly proportional to the number of sessions, as opposed to a
constant execution time.

This operation is therefore carefully split up into n separate opera-
tions, each of which only hold the system lock for a constant time and
each of which leave the data structures in a consistent state. DServ-
er::Close() acquires the system lock before detaching each session
by calling DSession::Detach(), which will release the lock before
returning. DSession::Detach() is an operation made up of freeing an
arbitrary number of uncompleted messages that have been sent by that ses-
sion to the server. Again, this operation is split up by acquiring the system
lock before freeing each message and then releasing it again afterwards, so
the system lock is never held for more than a constant, bounded time whilst
one message is freed or one session is removed from the server’s queue.

To achieve the consistency required whilst splitting up these opera-
tions, the fact that a server or session is closing (iAccessCount is 0)
is used to restrict what actions may occur. For example, new sessions
cannot be attached to a server whilst it is closing and messages cannot
be completed whilst a session is closing.

134 INTER-THREAD COMMUNICATION

4.1.5.2 Sessions – delivery and message pool management

In the previous section, I described how sessions provide the context for
communication between the client and server. Specifically, the kernel
session objects manage the delivery of messages to the server and ensure
message completion, even under out-of-memory conditions. They also
manage user-mode access to a session, as specified by the session’s
‘‘sharability’’.

To ensure message completion, the session object maintains a queue of
message objects distinct from that of the server. This queue also includes
messages sent by the session that have not yet been completed by the
server. The interaction of this queue with both the lifetime of the client
and the server is controlled via the state machine shown in Figure 4.4.

PROCESSING
MESSAGE

DISCONNECT
PENDING

ATTACHED

UNATTACHED

IDLE

~DSession()

DSession::New()

1.

1., 2.

4.

2.

3.

5.

3.

4.

2.

4. 3.

CLOSING

6.

7.

Figure 4.4 Session object state machine

Again, the labeled state transitions listed below are executed under the
protection of the system lock to maintain state integrity. These transitions

CLIENT-SERVER ITC 135

are also designed to hold the system lock for a constant execution time,
in order to maintain the real-time characteristics of the kernel:

1. DSession::Send()

2. ExecHandler::MessageComplete()

3. DSession::Detach()

4. DSession::Close() [when closing last reference]
[no connect message pending or
not accepted by server]

5. DSession::CloseFromDisconnect()

6. ExecHandler::SetSessionPtr()

7. DSession::Close() [when closing last reference]
[connect message pending and
accepted by server]

The states in Figure 4.4 are defined like this:

Server queue
(of sessions)

Client references Message queue

ATTACHED Queued Open Empty

PROCESSING
MESSAGE

Queued Open Non-empty

CLOSING Queued Closed Non-empty,
contains
connect msg.

DISCONNECT
PENDING

Queued Closed Non-empty

UNATTACHED De-queued Open Empty

IDLE De-queued Closed Empty

The implementation of DSession to support this is as follows:

class DSession : public DObject
{

public:
DSession();
virtual ∼DSession();
virtual TInt Close(TAny*);
virtual TInt RequestUserHandle(DThread* aThread, TOwnerType aType);

136 INTER-THREAD COMMUNICATION

void Detach(TInt aReason);
RMessageK* GetNextFreeMessage();
RMessageK* ExpandGlobalPool();
void CloseFromDisconnect();
static TInt New(DSession*& aS, TInt aMsgSlots, TInt aMode);
TInt Add(DServer* aSvr, const TSecurityPolicy* aSecurityPolicy);
TInt MakeHandle();
TInt Send(TInt aFunction, const TInt* aPtr, TRequestStatus* aStatus);
TInt SendSync(TInt aFunction, const TInt* aPtr,

TRequestStatus* aStatus);
TInt Send(RMessageK* aMsg, TInt aFunction, const TInt* aPtr,

TRequestStatus* aStatus);
public:
inline TBool IsClosing();

public:
DServer* iServer; // pointer to kernel-side server object
SDblQueLink iServerLink; // link to attach session to server
const TAny* iSessionPtr;
// pointer to server-side CSession2 (user cookie)
TUint16 iTotalAccessCount;
TUint8 iSessionType; // TIpcSessionType
TUint8 iSvrSessionType;// TIpcSessionType
TInt iMsgCount;
// total number of outstanding messages on this session
TInt iMsgLimit;
// max number of outstanding messages on this session
SDblQue iMsgQ;
// q of outstanding msgs on this session (by iSessionLink)
RMessageK* iNextFreeMessage; // pointer to next free message in

// per-session message pool, if any
RMessageK* iPool; // pointer to per-session message pool, if any
RMessageK* iConnectMsg; // pointer to connect msg, if any
RMessageKBase iDisconnectMsg; // vestigial disconnect message
};

The session is a standard kernel reference-counted object that user-mode
clients hold references to via handles (I’ll discuss this mechanism in
the next chapter, Kernel Services). However, the lifetime of the session
must extend beyond that given by client handles, because it needs to
stay in existence whilst the server processes the disconnect message
that is sent to the server when a session is closed. To do this, we use
iTotalAccessCount, modified under the protection of the system lock,
to keep track of both whether there are any client references and when
the session is attached to a server, giving it a count of 1 for either, or 2 for
both. The IDLE state is equivalent to iTotalAccessCount reaching 0.

The creation of a session is performed as two distinct operations in two
separate executive calls by the client – firstly the creation of the kernel-
side session object itself and secondly the sending of the connect message
to the server. The second part of this operation is identical to sending
any other message to a server. However, since both a client can connect
asynchronously and the server can create a session asynchronously it is
now possible for a client to close its handle to the session before the
session object has been created in the server.

CLIENT-SERVER ITC 137

Normally, closing the last handle to the session would result in a discon-
nect message being immediately delivered to the server, but if this were
done in this case the disconnect message could be accepted by the server,
and would contain a null cookie as the session object had not yet been
created. There would then be a race between the server setting the cookie
after creating the session object and it completing the disconnect request.
If the disconnect message is completed first, the kernel-side session object
is no longer valid when the server tries to set the cookie using the con-
nect message and it will be panicked. Otherwise, if the session cookie is
set first, then the disconnect message will complete as a no-op, since the
cookie within it is null, and a session object is leaked in the server.

To avoid either of these situations, we have introduced the CLOSING
state. If a connect message has been delivered but not yet completed
when the last user handle to the session is closed, the delivery of the
disconnect message to the server is delayed until the session cookie is
updated to indicate successful creation of a user-side session object. If
the connect message completes without the cookie having been updated,
there is no user-side session object to clean up but a disconnect message
is still sent to ensure the lifetime of the session object extends until
the completion of other messages which may have been sent to the
unconnected session. If there is an undelivered connect message, this
is immediately removed from the queue to avoid the possibility of an
orphan session object being created.

Note that the ability to create process-relative session handles and the
asynchronous nature of sending a connect message mean that you can
send other messages to a server both before and after a connect message
has been sent, and before the connect message has been completed, so
care must be taken over this possibility. However, when a disconnect
message is sent no more messages may be sent to the session by virtue of
the fact that it is sent once all user-side handles to the session have been
closed. Therefore the disconnect message is always the last message to a
session that is completed by the server and the session object may be safely
destroyed after completing it, without causing lifetime issues for the server.

There are two methods to send synchronous and asynchronous mes-
sages – SendSync() and Send() (first overload above), respectively.
These validate certain preconditions, select an appropriate message object
to store the new message, and then pass the selected message object to
this method:

Send(RMessageK* aMsg, TInt aFunction, const TInt* aPtr,
TRequestStatus* aStatus);

This method populates the message object, increments the current
thread’s IPC count (DThread::iIpcCount), adds the message to the
session’s queue and delivers it to the server. If the server has terminated,
or is in the process of doing so, sending the message fails immediately.

138 INTER-THREAD COMMUNICATION

Neither Send() method permits the sending of a disconnect message,
since this is sent automatically by DSession::Close() when the last
client session handle is closed.

At the other end of a normal message’s life, it is completed in
ExecHandler::MessageComplete() (called from RMessage-
Ptr2::Complete()). If the message is a disconnect message, then exe-
cution is simply transferred toDSession::CloseFromDisconnect().
If not, then what happens next is pretty much the reverse of the send proce-
dure: the message is removed from the session queue, the sending thread’s
IPC count is decremented and the client thread’s request is completed. The
only exception to this is if the session is closing; this happens if the client
has closed all handles to the session but the disconnect message has not
yet been completed by the server. In this case the client thread’s request
is not completed.

Messages can also be completed from DSession::Detach(), which
is called either when the server terminates (that is, when the last reference
to the server is closed in DServer::Close()) or when completing a
disconnect message. In this case, the message is again removed from the
session queue, the sending thread’s IPC count decremented and the client
request is completed (if the session is not closing).

We have just seen that it is possible for a message not to be com-
pleted – this happens when the session is closing, as we saw above. And
yet previously I said that guaranteed message completion is one of the
properties of the client-server system. The explanation here is that the
client having an outstanding message when calling Close() on a session
is considered to be a client-side programming error. There is clearly a race
between the server completing such outstanding asynchronous requests
and the disconnect request being processed. Those requests processed
after the session has been closed cannot be completed whereas those
before can, so the behavior of client-server has always been undefined
by Symbian in this situation.

The actual behavior of EKA2 differs from EKA1 here. In EKA1, dis-
connect messages overtake all undelivered messages to the server and
these undelivered messages are discarded. Now, in EKA2, the server
processes all delivered messages before processing the disconnect mes-
sage – although, as we’ve seen, such messages can still not be completed
to the client. All this said, we don’t advise you to rely on this new behavior
of EKA2, because we explicitly state this to be a programming error and
may change the behavior of this area in future.

One of the other main functions of the session object is to control the
session’s ‘‘sharability’’. With the advent of a fully message-centric design,
there is no requirement for the session to hold a handle to the client thread,
and providing different levels of accessibility to a session – restricted to
one thread, restricted to one process or sharable with any thread – is now
a simple matter of recording the stated intentions of the user-mode server

CLIENT-SERVER ITC 139

in iSvrSessionType and then creating a handle to the session for any
client that is allowed access to it, when requested. That is, whether a
given thread can access a session is now determined purely by whether
it has a handle to the session or not as the access check is performed at
handle-creation time.

This accounts for the introduction of the new method DObj-
ect::RequestUserHandle(). Suppose a server only supports non-
sharable sessions. Then a user-mode thread with a handle to a session
could just duplicate that handle, making a process-relative handle, and
over-ride the settings of the server. ButDSession ’s over-ridden Reques-
tUserHandle() checks the value iniSvrSessionType to see whether
the requested sharing level is allowed by the server, and thereby enforces
the user-mode server’s requested policy on session sharing.

To maintain backwards compatibility, the user-side APIs for creat-
ing sessions default to creating a session that is ‘‘unshareable’’, even
if shared sessions are supported by the server. This ‘‘current sharability
level’’ – specified when creating the initial handle to the session, is stored
in iSessionType and is validated against the ‘‘sharability’’ level the
server supports. To share this session with other threads, the session has
either to explicitly create a session that supports the level of sharability
required (the preferred method) or subsequently call ShareAuto() (to
share within process) or ShareProtected() (to share between pro-
cesses), as required. If the ShareXxx() method succeeds, it creates a
new process-relative handle and closes the old one. The new session
creation overloads that allow the ‘‘sharability’’ of a session to be spec-
ified from session creation are the preferred method, as they avoid the
expensive operation of creating a new handle where it is not needed.

These new session creation overloads also support an optional security
policy that the client can use to verify the security credentials of the server
it is connecting to. Similarly, there are overloads of the new APIs to open a
handle to a session shared over client-server IPC or from a creator process
which allow the session to be validated against a security policy. This
allows you to prevent a handle to a spoof server being passed by these
mechanisms, as you may verify the identity of the server whose session
you are accepting a handle to. The initial session type and security policy
parameters are then marshalled into the call to DSession:: Add(),
where they are used to fail session creation if the server does not meet
the required policy.

The final responsibility of the session is to find – and allocate if
necessary – kernel memory for messages to be stored in. I will discuss
these message pools in the next section. At session creation time, you can
specify whether the session uses a pool specific to the session or a global
kernel pool. The session stores the type of pool it is using in iPool. If it is
using a per-session pool, then it maintains a pointer to the next available
free message in iNextFreeMessage.

140 INTER-THREAD COMMUNICATION

During a send, the session will then use one of the session’s disconnect
message, the thread’s synchronous message or the next free message from
the selected pool. If the session is using the global pool and there are no
more free messages the system lock is relinquished (to avoid holding it
for an unbounded period of time whilst allocating), the message pool is
expanded, then the lock is reclaimed and sending proceeds as before.

4.1.5.3 Messages – minimal states and message pool design

Next, I’ll consider the design of message pools, that is, the memory used
to store messages within the kernel. There is one important constraint
on the design of the message pools, namely that there must always be
a free message available for a session to send a disconnect message to
the server, so that resources may be correctly freed in OOM situations.
This disconnect message is naturally associated with the session whose
disconnection it is notifying and will always be available if the message is
embedded within the session object itself. To minimize the memory used
by this disconnect message object, we have designed the message object
to have a base class, RMessageKBase, which contains only the data
required for the disconnect message, and then derive from it the (larger)
message class, RMessageK, which is used for normal messages:

class RMessageKBase : public SDblQueLink
{

public:
TBool IsFree() const { return !iNext; }
TBool IsDelivered() const

{ return iNext!=0 && (TLinAddr(iNext) & 3)==0; }
TBool IsAccepted() const

{ return ((TLinAddr)iNext & 3)==3; }
public:
TInt iFunction;
};

class RMessageK : public RMessageKBase
{

public:
enum TMsgType {EDisc=0, ESync=1, ESession=2, EGlobal=3};
inline TInt ArgType(TInt aParam) const;
inline TInt Arg(TInt aParam) const;
void Free();
static RMessageK* NewMsgBlock(TInt aCount, TInt aType);
IMPORT_C DThread* Thread() const;
static RMessageK* MessageK(TInt aHandle, DThread* aThread);
IMPORT_C static RMessageK* MessageK(TInt aHandle);

public:
TInt iArgs[4];
TUint16 iArgFlags; // describes which arguments are descriptors/handles
TUint8 iPool; // 0=disconnect msg, 1=thread sync message,

// 2=from session pool, 3=from global pool

CLIENT-SERVER ITC 141

TUint8 iPad;
DSession* iSession; // pointer to session
SDblQueLink iSessionLink; // attaches message to session
DThread* iClient; // pointer to client thread (not reference counted)
TRequestStatus* iStatus; // pointer to user side TRequestStatus
};

After we have ensured that session cleanup works properly, the next most
important concern in designing the message allocation strategy is to mini-
mize the memory that the kernel uses for sending messages. In the original
client-server implementation of Symbian OS v5, a fixed number of mes-
sage objects were allocated for each session, resulting in poor message
object utilization, considering that most IPC calls were synchronous and
hence only one of the message objects was in use at any one time!

Analysis of the client-server system, by instrumenting EUSER and
EKERN, has shown that as many as 99% of the calls to RSession-
Base::SendReceive() are to the synchronous overload. Obviously,
a thread cannot send a synchronous message to more than one server at
a time, because it waits for the synchronous message’s completion inside
EUSER immediately after dispatching it. This means that we can use a
per-thread message object to avoid having to allocate message objects for
all the synchronous messages that are sent. This message object (RMes-
sageK) is embedded within the DThread object, and therefore avoids
allocation issues by being allocated as part of the thread object itself.

Thus all that remains to be determined is the allocation strategy for
message objects used by asynchronous IPC (such messages are typically
used for remote I/O such as sockets or for event notification). These
message objects are allocated on a per-session basis, or dynamically from
a global pool. As we only need a small number of them, the overhead for
non-utilization of these message objects is not large.

You may wonder why we do not insist on a global pool, and cut mem-
ory requirements further. This is because for real-time code a guaranteed
response time is important, and a global, dynamic pool does not provide
those guarantees (as it may require memory allocation in the kernel). This
means that we must provide the option of creating a per-session pool,
which allows the real-time code to manage the time it takes to process
an asynchronous request precisely. That said, it is more common for
servers to use asynchronous message completion for event notification,
in which case using the dynamic global pool becomes more attractive
due to its smaller memory footprint. This is therefore the recommended
option where real-time guarantees are not required for any asynchronous
IPC calls to the server.

This allocation scheme allows any number of threads to invoke syn-
chronous IPC on a server using the same session without having to
increase the session’s message pool and it also provides guaranteed
message sending for synchronous IPC.

142 INTER-THREAD COMMUNICATION

We have achieved further memory savings by minimizing the state
that is required within the message objects themselves. There are only
three states that a message can have, as shown in Figure 4.5.

FREE The message is not currently in use
DELIVERED The message has been sent but the server hasn’t

seen it yet
ACCEPTED The server has received the message but not yet

completed it.

To assure a message’s cleanup when a session closes, we attach it
to a session queue whilst it is not free. We also have to ensure no
message can persist beyond the lifetime of the thread that sent it, as
such a message can no longer be completed. By assuming a strategy that
messages should never be discarded prematurely (for example, when the
thread Exit() s), but only at the last possible moment (just before the
thread object is destroyed), we can avoid the complication of maintaining
an open reference on the thread and the associated state required for
this. When a thread exits, therefore, we need not iterate through a queue
to discard DELIVERED messages – they are simply allowed to propagate
through the server as usual. Instead of an open reference on the thread
in each message, we need only maintain a count of the outstanding
messages for each thread (in DThread::iIpcCount).

When a thread exits it checks this count and if it is non-zero it
increments its own reference count so it is not destroyed and sets a
flag (the top bit of the message count) to indicate this has been done.
Completing a message decrements the outstanding message count for
the client thread and if its value reaches 0x80000000, this means the

FREE

ACCEPTEDDELIVERED
DServer::Accept()

DServer::Deliver()

DSession::Detach()
ExecHandler::MessageComplete()

DSession::Detach()

Figure 4.5 Message object state machine

CLIENT-SERVER ITC 143

message count for the thread has reached zero and the flag has been
set. The extra reference on the thread is then closed, allowing it to be
safely destroyed.

Closing a session does not unilaterally discard DELIVERED messages
either – again they are simply allowed to propagate through the server.
This means that session close needs only to send the disconnect message
to the server and has no need to iterate its queue of messages.

So, we only need to perform message queue iteration either when
the server itself terminates or when the server completes a disconnect
message. In the latter case, the iteration is needed to free any remaining
ACCEPTED messages (no DELIVERED messages can remain since the
disconnect message is guaranteed to be the last message received from
that session). The messages concerned are not on any other queue so
there is no contention when we iterate over the session queue. When
the server itself terminates, the complete system of server and sessions
is frozen, because clients are not allowed to send a message to the
server whilst it is terminating, so again there is no contention on the
session queue when a message is being completed and hence no need
for an intermediate COMPLETED state to deal with delayed removal of
messages from the session queue.

The three states are then encoded in a minimal way into the doubly
linked list fields:

iLink.iNext iLink.iPrev

FREE NULL N/A

DELIVERED Valid address (multiple of 4)
[bottom bits == 00b]

N/A

ACCEPTED ∼(this)
[bottom bits == 11b]

∼&(server
DProcess)

4.1.5.4 Message handles

Another key design decision we took for message objects was not to
derive them from DObject. This means that they do not have standard
object containers and user handles. Rather, the user-side handle for an
RMessageK is in fact its address on the kernel heap. To verify the handles
that user-mode operations give, the kernel uses the fact that a user-side
component only ever has a valid handle to a message when it is in the
ACCEPTED state and does the following:

• Checks the address and size of the object are within the kernel heap

144 INTER-THREAD COMMUNICATION

• If so, reads the memory under an exception trap (the machine coded
versions of these functions use the magic exception immunity mech-
anism, see Section 5.4.3.1)

• Check that msg.iNext == ∼(& msg)
• Check that msg.iPrev == ∼(requestingThread->

iOwning Process).

If these tests pass, then the message object is taken to be valid and the
requested operation can proceed.

4.1.6 Changes for IPCv2

The main change from the IPCv1 implementation of client-server has
been the removal of the insecure APIs. These were:

class CSharableSession
class CSession
class CServer
class RMessagePtr
class RMessage
class RServer

RSessionBase::Share(TAttachMode aAttachMode=EExplicitAttach)
RSessionBase::Attach()
RSessionBase::Send(TInt aFunction,TAny* aPtr)
RSessionBase::SendReceive(TInt aFunction,TAny* aPtr,

TRequestStatus& aStatus)
RSessionBase::SendReceive(TInt aFunction,TAny* aPtr)
RSubSessionBase::CreateSubSession(RSessionBase&,TInt aFunction,

const TAny* aPtr)
RSubSessionBase::Send(TInt aFunction,const TAny* aPtr)
RSubSessionBase::SendReceive(TInt aFunction,const TAny* aPtr,

TRequestStatus&)
RSubSessionBase::SendReceive(TInt aFunction,const TAny* aPtr)
RThread::GetDesLength(const TAny* aPtr)
RThread::GetDesMaxLength(const TAny* aPtr)
RThread::ReadL(const TAny* aPtr,TDes8& aDes,TInt anOffset)
RThread::ReadL(const TAny* aPtr,TDes16 &aDes,TInt anOffset)
RThread::WriteL(const TAny* aPtr,const TDesC8& aDes,TInt anOffset)
RThread::WriteL(const TAny* aPtr,const TDesC16& aDes,TInt anOffset)
RThread::RequestComplete(TRequestStatus*& aStatus,TInt aReason)
RThread::Kill(TInt aReason)
RThread::Terminate(TInt aReason)
RThread::Panic(const TDesC& aCategory,TInt aReason)

We have replaced these APIs with the framework I have described
above. To aid migration to the new APIs, all EKA1-based Symbian
OS releases from 7.0 s onwards contain both the new Rendezvous()
thread/process APIs discussed in Section 3.3.6, and a functioning (but not
secure) implementation of the IPCv2 APIs.

ASYNCHRONOUS MESSAGE QUEUES 145

4.1.6.1 IPCv2 summary

To summarize, IPCv2 has brought the following benefits and features:

• Secure access to the client’s address space based on the permissions
and data types it specifies in messages to the server

• The ability to prevent spoofing of server names and to validate a
security policy against the server when connecting to a session or
opening a handle to a shared session

• Real-time server performance is possible through the use of asyn-
chronous session connect and disconnect operations

• The ability to share server sessions between processes

• Asynchronous creation of a connection with a server to prevent a
malicious server blocking a client indefinitely.

4.2 Asynchronous message queues

A message queue is a mechanism for passing data between threads,
which may be in the same process, or in different processes. The message
itself is usually an instance of a class, and its size must be a multiple of
4 bytes.

The asynchronous message queue mechanism provides a way to send
a message without needing to know the identity of a recipient, or indeed,
if anyone is actually listening.

You define and fix the size of the queue when you create it, choosing
the maximum number of messages it can contain and the size of those
messages. So, you would normally create a new queue to deal with mes-
sages of a particular type. There is no fixed maximum to either the message
size or the queue size – these are only limited by system resources.

Many readers and writers may share a single queue. Sending and
receiving messages are real-time operations and operate with real-
time guarantees.

We represent a message queue by a DMsgQueue kernel-side object,
to which the reader and the writer can open a handle. This is a reference-
counted object derived from DObject, which means that it is not
persistent; the kernel deletes it when the last handle to it is closed. The
queue itself is simply a block of memory divided into slots. Here is the
DMsgQueue class that manages it:

class DMsgQueue : public DObject
{

public:
enum TQueueState {EEmpty, EPartial, EFull};
enum {KMaxLength = 256};

public:

146 INTER-THREAD COMMUNICATION

∼DMsgQueue();
TInt Create(DObject* aOwner, const TDesC* aName,

TInt aMsgLength, TInt aSlotCount, TBool aVisible = ETrue);
TInt Send(const TAny* aPtr, TInt aLength);
TInt Receive(TAny* aPtr, TInt aLength);
void NotifySpaceAvailable(TRequestStatus* aStatus);
void NotifyDataAvailable(TRequestStatus* aStatus);
void CancelSpaceAvailable();
void CancelDataAvailable();
TInt MessageSize() const;

private:
void CancelRequest(DThread* aThread, TRequestStatus*& aStatus);
void CompleteRequestIfPending(DThread* aThread,

TRequestStatus*& aStatus, TInt aCompletionVal);
private:
TUint8* iMsgPool;
TUint8* iFirstFreeSlot;
TUint8* iFirstFullSlot;
TUint8* iEndOfPool;
DThread* iThreadWaitingOnSpaceAvail;
DThread* iThreadWaitingOnDataAvail;
TRequestStatus* iDataAvailStat;
TRequestStatus* iSpaceAvailStat;
TUint16 iMaxMsgLength;
TUint8 iState;
TUint8 iSpare;

public:
friend class Monitor;
};

Key member data of DMsgQueue
iMsgPool
A pointer to the block of memory used for the message slots.

iFirstFreeSlot
A pointer to the first free slot in the message pool, unless the pool is full,
iState==EFull.

iFirstFullSlot
A pointer to the first full slot in the message pool, unless the pool is
empty, iState==EEmpty.

iEndOfPool
A pointer to the byte of memory that is just past the end of the poll of
message slots.

iState
Whether the pool is empty, full or somewhere in between.

You perform actions (such as creation, opening, writing and reading) to a
message queue through a message queue handle, which is an RMsgQueue
object. This is a templated class, where the template parameter defines
the message type.
RMsgQueue is derived from RMsgQueueBase, which together form

a thin template class/base class pair. RMsgQueueBase provides the

KERNEL-SIDE MESSAGES 147

implementation, while RMsgQueue provides type safety. An RMs-
gQueueBase object is a valid message queue handle, but does not
offer the type safety that RMsgQueue does.

4.2.1 Visibility
A message queue can be:

1. Named and be visible to all processes – a global queue

2. Nameless, but accessible from other processes. A handle may be
passed to another process by a process currently owning a handle to
the queue, using a handle-sharing mechanism – a protected queue

3. Nameless and local to the current process, hence not visible to any
other process – a local queue.

The choice clearly depends on the use you have in mind for the queue.

4.3 Kernel-side messages
Kernel-side messages are a means of communication that are used to
communicate with a Symbian OS thread that is executing kernel-side
code. Typically, you would use this communication method if you were
writing a device driver – to communicate between your client thread,
usually a user-mode thread, and a supervisor-mode thread running the
actual device driver code.

The mechanism consists of a message containing data, and a queue
that is associated with a DFC. The DFC runs to process each message.

We represent a kernel-side message by a TMessageBase object; this
allows a single 32-bit argument to be passed, and returns a single 32-bit
value. If you want to pass more arguments, then you must derive a new
message class from TMessageBase.

Every Symbian OS thread has a TThreadMessage object embedded
within it. TThreadMessage is derived from TMessageBase, and con-
tains space for 10 extra 32-bit arguments. You can use these objects for
communication with device driver threads.

Both TMessageBase and TThreadMessage are defined in ker-
nel.h. The following example shows the TMessageBase class:

class TMessageBase : public SDblQueLink
{

public:
enum TState {EFree,EDelivered,EAccepted};

public:
TMessageBase() : iState(EFree), iQueue(NULL) {}
IMPORT_C void Send(TMessageQue* aQ);
IMPORT_C TInt SendReceive(TMessageQue* aQ);
IMPORT_C void Forward(TMessageQue* aQ, TBool aReceiveNext);

148 INTER-THREAD COMMUNICATION

IMPORT_C void Complete(TInt aResult, TBool aReceiveNext);
IMPORT_C void Cancel();
IMPORT_C void PanicClient(const TDesC& aCategory, TInt aReason);

public:
IMPORT_C DThread* Client();

public:
TUint8 iState;
TMessageQue* iQueue;
NFastSemaphore iSem;
TInt iValue;
};

Key member data of TMessageBase
iState
Indicates whether message is free, delivered or accepted.

iQueue
A pointer to the message queue to which the message was delivered.

iSem
A fast semaphore used to block the sending thread if the message was sent
synchronously. The iOwningThread field of this semaphore is used as
a pointer to the thread that sent the message.

iValue
Used to hold a single integer argument when the message is sent; holds
completion code when message is completed.

TMessageQue
The kernel sends kernel-side messages to a message queue, which is
represented by a TMessageQue object. This consists of a DFC and a
doubly linked list of received messages. The class is shown below:

class TMessageQue : private TDfc
{

public:
IMPORT_C TMessageQue(TDfcFn aFunction, TAny* aPtr,

TDfcQue* aDfcQ, TInt aPriority);
IMPORT_C void Receive();
IMPORT_C TMessageBase* Poll();
IMPORT_C TMessageBase* Last();
IMPORT_C void CompleteAll(TInt aResult);
using TDfc::SetDfcQ;

public:
inline static void Lock() {NKern::FMWait(&MsgLock);}
inline static void Unlock() {NKern::FMSignal(&MsgLock);}
inline void UnlockAndKick() {Enque(&MsgLock);}

public:
SDblQue iQ;
TBool iReady;
TMessageBase* iMessage;
static NFastMutex MsgLock;
friend class TMessageBase;
};

KERNEL-SIDE MESSAGES 149

Key member data of TMessageQue
TDfc (the base class)
This DFC is attached to the thread receiving the messages. It runs
whenever the message queue is ready to receive and a message is
available.

iQ
A doubly linked list of messages that have been delivered to this queue.

iReady
A Boolean flag indicating whether the message queue is ready to receive.
If TRUE, the DFC will run as soon as a message is delivered; if FALSE
the message will simply remain on the delivered queue and the DFC will
not run.

iMessage
Pointer to the last message accepted by the receiving thread.

Kernel-side messaging in operation
When a message is sent to the queue, either:

• The kernel accepts the message immediately, and the receiving
thread’s DFC runs. This happens if the message queue is ready to
receive, which is the case if the message queue is empty and the
receiving thread has requested the next message.

Or

• The kernel places the message on the delivered message queue, and
the DFC does not run. This happens if there are other messages queued
ahead of this one or if the receiving thread has not (yet) requested
another message.

A kernel-side message may be in one of three states at any time:

1. FREE – represented by the TMessageBase::EFree enum value.
This indicates that the message is not currently in use

2. DELIVERED – represented by the TMessageBase::EDelivered
enum value. This indicates that the message is attached to a message
queue but is not currently in use by the receiving thread. It may be
removed from the queue and discarded with no ill effects on the
receiving thread

3. ACCEPTED – represented by the TMessageBase::EAccepted
enum value. This indicates that the message is not attached to a
message queue but is currently in use by the receiving thread. The
message may not be discarded.

150 INTER-THREAD COMMUNICATION

Transitions between these states, including adding the message to and
removing it from a message queue, occur under the protection of the
global TMessageQue::MsgLock fast mutex. We need to use a mutex
to avoid queue corruption in the case of, for example, multiple threads
sending to the same message queue at the same time. By using a fast
mutex, we ensure that message-passing operations may only be invoked
from a thread context.

You can send kernel-side messages either synchronously or asyn-
chronously. Each TMessageBaseobject contains an NFastSemaphore
on which the sending thread will wait after sending a synchronous mes-
sage. The receiving thread signals the semaphore after the kernel has
processed the message and written the completion code. The kernel then
releases the sending thread, and when it runs, it picks up the return code.

The NFastSemaphore also contains a pointer to the sending
NThread; this serves to identify the sending thread and is therefore
set up for both synchronous and asynchronous message send. We
reference count this pointer – incrementing the access count of the orig-
inating DThread when the message is sent. This prevents the sending
DThread object disappearing if the thread terminates unexpectedly.
When the kernel completes the message it removes the extra access
asynchronously – the thread completing the message will not need to
close the DThread itself. We do this to avoid unpredictable execution
times for message completion. Also note that even messages that are
sent asynchronously must be completed; this is so that the kernel can set
the message state back to FREE and remove the access count from the
sending thread.

The kernel always sends the TThreadMessage objects embedded in
Symbian OS thread control blocks synchronously – this ensures that one
message per thread will always suffice. The kernel cancels these messages
if the corresponding thread terminates. Canceling an ACCEPTED message
has no effect, but canceling a DELIVERED message means that the kernel
will remove the message from the queue and also remove the access count
held by the message on the sending thread. Because of this, the receiving
thread should only use any of the member data of TMessageBase if the
message is in the ACCEPTED state.

4.4 Publish and subscribe

Publish and subscribe, also known as ‘‘properties’’, provides:

1. System-wide global variables

2. A new IPC mechanism, for asynchronous peer-to-peer communica-
tion between threads.

An overview is given in Figure 4.6.

PUBLISH AND SUBSCRIBE 151

category

single word or
multiple bytes

read write

keyidentity:

type:

security:

Publisher Subscriber

Property

Figure 4.6 Publish and subscribe overview

Publish and subscribe can be used by both user and kernel code,
through similar APIs, and so this method also allows communication
between user and kernel code.

From the user side, you would use the RProperty handle, defined in
e32property.h:

class RProperty : public RHandleBase
{

public:
enum { KMaxPropertySize = 512 };
enum { KMaxLargePropertySize = 65535 };
enum TType

{
EInt,
EByteArray,
EText = EByteArray,
ELargeByteArray,
ELargeText = ELargeByteArray,
ETypeLimit,
ETypeMask = 0xff
};

public:
IMPORT_C static TInt Define(TUid aCategory, TUint aKey,

TInt aAttr, TInt aPreallocate=0);
IMPORT_C static TInt Define(TUid aCategory, TUint aKey,

TInt aAttr, const TSecurityPolicy& aReadPolicy,
const TSecurityPolicy& aWritePolicy,

TInt aPreallocated=0);
IMPORT_C static TInt Delete(TUid aCategory, TUint aKey);
IMPORT_C static TInt Get(TUid aCategory, TUint aKey, TInt& aValue);
IMPORT_C static TInt Get(TUid aCategory, TUint aKey, TDes8& aValue);
IMPORT_C static TInt Set(TUid aCategory, TUint aKey, TInt aValue);

152 INTER-THREAD COMMUNICATION

IMPORT_C static TInt Set(TUid aCategory, TUint aKey,
const TDesC8& aValue);

IMPORT_C TInt Attach(TUid aCategory, TUint aKey,
TOwnerType aType = EOwnerProcess);

IMPORT_C void Subscribe(TRequestStatus& aRequest);
IMPORT_C void Cancel();
IMPORT_C TInt Get(TInt& aValue);
IMPORT_C TInt Get(TDes8& aValue);
IMPORT_C TInt Set(TInt aValue);
IMPORT_C TInt Set(const TDesC8& aValue);
};

From the kernel side, you use the RPropertyRef and TPropertySub-
sRequest classes defined in sproperty.h, and the TPropertyInfo
class defined in u32property.h. Note that TPropertySubsRequest
is on a single queue protected by the system lock.

class RPropertyRef
{

public:
RPropertyRef() {iProp = NULL;}
IMPORT_C TInt Attach(TUid aCategory, TInt aKey);
IMPORT_C TInt Open(TUid aCategory, TInt aKey);
IMPORT_C void Close();
IMPORT_C TInt Define(TInt aAttr, const TSecurityPolicy& aReadPolicy,

const TSecurityPolicy& aWritePolicy,
TInt aPreallocate=0, DProcess* aProcess = NULL);

IMPORT_C TInt Delete(DProcess* aProcess = NULL);
IMPORT_C TInt Subscribe(TPropertySubsRequest& aRequest,

DProcess* aProcess = NULL);
IMPORT_C void Cancel(TPropertySubsRequest& aRequest);
IMPORT_C TInt Get(TInt& aValue, DProcess* aProcess = NULL);
IMPORT_C TInt Set(TInt aValue, DProcess* aProcess = NULL);
IMPORT_C TInt Get(TDes8& aDes, DProcess* aProcess = NULL);
IMPORT_C TInt Set(const TDesC8& aDes, DProcess* aProcess = NULL);
IMPORT_C TBool GetStatus(TPropertyStatus& aStatus);

private:
TProperty* iProp;
};

class TPropertySubsRequest : public SdblQueLink
{

public:
TPropertySubsRequest(TPropertyCompleteFn aCompleteFn, TAny* aPtr)

{
iNext = NULL;
iCompleteFn = aCompleteFn;
iPtr = aPtr;
}

TPropertyCompleteFn iCompleteFn;
TAny* iPtr;

private:
friend class TProperty;
DProcess* iProcess;
};

PUBLISH AND SUBSCRIBE 153

class TPropertyInfo
{

public:
TUintiAttr;
TUint16 iSize;
RProperty::TType iType;
TSecurityPolicy iReadPolicy;
TSecurityPolicy iWritePolicy;
};

4.4.1 Key entities
There are three key entities in the publish and subscribe system. I will
describe them below; you may also want to refer back to the overview in
Figure 4.6.

Properties
This is data: either a single 32-bit data value or a variable-length set of
bytes, identified by a 64-bit integer.

Publishers
Publishers are threads that define and update a property.

Subscribers
Subscribers are threads that listen for changes to a property and can get
the current value of a property.

Now let’s have a look at properties in a little more detail.

4.4.2 Properties
Internally, the kernel stores a property as an instance of the TProperty
class, defined in sproperty.cpp. I will give a very cut-down version
here, as this is a surprisingly large class:

class TProperty
{

public:
static TInt Init();
static TInt Attach(TUid aCategory, TUint aKey, TProperty** aProp);
static TInt Open(TUid aCategory, TUint aKey, TProperty** aProp);
void Close();
TInt Define(const TPropertyInfo*, DProcess*);
TInt Delete(DProcess*);
TInt Subscribe(TPropertySubsRequest* aSubs, DProcess*);
void Cancel(TPropertySubsRequest* aSubs);
TInt GetI(TInt* aValue, DProcess*);
TInt GetB(TUint8* aBuf, TInt* aSize, DProcess*, TBool aUser);
TInt SetI(TInt aValue, DProcess*);
TInt SetB(const TUint8*, TInt aSize, DProcess*, TBool aUser);
const TUid iCategory;
const TUint iKey;

private:
enum { KCompletionDfcPriority = 2 };
static TDfc CompletionDfc;

154 INTER-THREAD COMMUNICATION

static SDblQue CompletionQue;
static DMutex* FeatureLock;

static TProperty* Table[KHashTableLimit];
TUint8 iType;
TUint8 iAttr;
TCompiledSecurityPolicy iReadPolicy;
TCompiledSecurityPolicy iWritePolicy;
TUint32 iOwner;
TUint iRefCount;

// The property value
// Meaningful for defined properties only
// (ie. iType != RProperty::ETypeLimit)
union // the value is protected by the system lock

{
TBuf* iBuf;
TInt iValue;
};

};

A property has three key attributes: identity, type and security.
The identity and type of a property is the only information that must be

shared between a publisher and a subscriber – there is no need to provide
interface classes or functions, though that may often be desirable.

Identity
A property is identified by a 64-bit integer made up of two 32-bit parts:
the category and the key.

A property is said to belong to a category, which is a standard Symbian
OS UID.

The key is a 32-bit value that identifies a specific property within
a category. The meaning applied to the key depends on the kind of
enumeration scheme set up for the category. At its simplest, a key can
be an index value. It can also be another UID, if you are designing the
category to be generally extensible.

Type
A property can be:

1. A single 32-bit value

2. A contiguous set of bytes, referred to as a byte-array. The length
of this can go as high as KMaxLargePropertySize, 65,535 bytes,
but real-time guarantees are made only if the length is below RProp-
erty::KMaxPropertySize, 512 bytes. Memory for the smaller byte
arrays may be allocated at definition time: if this is done publishing cannot
fail with KErrNoMemory, and we can satisfy those real-time guarantees

3. Unicode text. This is for properties and accessor functions that accept
Unicode descriptors, and is just a convenience for programmers wishing

PUBLISH AND SUBSCRIBE 155

to store Unicode text properties. The implementation treats Unicode text
as a byte-array; the API hides the detail.

Security
A property has two TCompiledSecurityPolicy members. One of
these is for read operations – that is, Get() and Subscribe() calls on
RProperty – and the other is for write operations – that is Set() calls
on RProperty.

These members are set up when the property is defined, passing in
two TSecurityPolicy parameters to the RProperty::Define()
function:

IMPORT_C static TInt Define(TUid aCategory, TUint aKey, TInt aAttr,
const TSecurityPolicy& aReadPolicy,
const TSecurityPolicy& aWritePolicy,

TInt aPreallocated=0);

You can turn to Chapter 8, Platform Security, for more information.

4.4.3 Using publish and subscribe
There are six basic operations that you can perform on a property: define,
delete, publish, retrieve, subscribe and unsubscribe.

I give an overview of these operations in the table below, and in
subsequent sections I will describe some of these functions in more detail.

Define Create a property variable and define its
type and access controls.

Delete Remove a property from the system.

Publish Change the value of a property.

Retrieve Get the current value of a property.

Subscribe Register for notification of changes to a
property.

Unsubscribe Say that you no longer want to be notified
of changes.

4.4.4 Defining a property
As we saw above, you define a property by using the RProp-
erty::Define() function to specify the attributes of the property.

You don’t have to define a property before it is accessed. This means
that either the publisher, or one of the subscribers, may define a property.

156 INTER-THREAD COMMUNICATION

On a secure implementation of Symbian OS, outstanding subscriptions
at the point of definition may be completed with KErrPermissionDe-
nied if they fail the security policy check.

Once defined, the property persists in the kernel until the operating
system reboots or the property is deleted. The property’s lifetime is not
tied to that of the thread or process that defined it. This means that it is
a good idea to check the return code from RProperty::Define() in
case that the property was previously defined and not deleted.

You can delete a property using the RProperty::Delete() func-
tion. The kernel will complete any outstanding subscriptions for this
property with KErrNotFound.

Note that only an instance of a process from the same EXE as the
process which defined the property is allowed to delete it, as the SID
of the process (as defined in the EXE image) is checked against the SID
of the defining process. Also note that in a secure implementation of
Symbian OS, you may only define a property with a category equal to the
SID of the process within which you are executing if the category being
defined is greater than KUidSecurityThresholdCategoryValue.
Any process may define a property with a category less than KUidSe-
curityThresholdCategoryValue if it has the WriteDeviceData
capability, to ease migration of legacy code whilst still enforcing security
on defining properties.

const TUid KMyPropertyCat={0x10012345};
enum TMyPropertyKeys= {EMyPropertyCounter,EMyPropertyName};

// define first property to be integer type
Tint r=RProperty::Define(KMyPropertyCat,EMyPropertyCounter,

RProperty::EInt);
if (r!=KErrAlreadyExists)
User::LeaveIfError(r);

// define second property to be a byte array,
// allocating 100 bytes
r=RProperty::Define(KMyPropertyCat,EMyPropertyName,

RProperty::EByteArray,100);
if (r!=KErrAlreadyExists)
User::LeaveIfError(r);

// much later on...

// delete the ‘name’ property
TInt r=RProperty::Delete(KMyPropertyCat,EMyPropertyName);
if (r!=KErrNotFound)
User::LeaveIfError(r);

4.4.5 Creating and closing a handle to a property
You carry out some property operations (such as defining and delet-
ing properties) by specifying a category and key, but other operations

PUBLISH AND SUBSCRIBE 157

(such as subscribing) require a reference to the property to be estab-
lished beforehand. Some operations, such as publishing, can be done in
either way.

To create a reference to a property, you use the RProp-
erty::Attach() member function. After this has completed suc-
cessfully, the RProperty object will act like a normal handle to a
kernel resource.

When the handle is no longer required, it can be released in
the standard way by calling the inherited RHandleBase::Close()
member function. You should note that releasing the handle does not
cause the property to disappear – this only happens if the property
is deleted.

As I said before, it is quite legitimate to attach to a property that has
not been defined, and in this case no error will be returned. This enables
the lazy definition of properties.

// attach to the ‘counter’ property
RProperty counter;
Tint r=counter.Attach(KMyPropertyCat,EMyPropertyName,EOwnerThread);
User::LeaveIfError(r);

// use the counter object...

// when finished, release the handle
counter.Close();

4.4.6 Publishing and retrieving property values
You can publish properties using the RProperty::Set() family of
functions, and read them using the RProperty::Get() family. You can
either use a previously attached RProperty handle, or you can specify
the property category and key with the new value. The former method is
guaranteed to have a bounded execution time in most circumstances and
is suitable for high-priority, real-time tasks. If you specify a category and
key, then the kernel makes no real-time guarantees. See Section 4.4.8 for
more on the real-time behavior of publish and subscribe.

The kernel reads and writes property values atomically, so it is not
possible for threads reading the property to get a garbled value, or for
more than one published value to be confused.

The kernel completes all outstanding subscriptions for the property
when a value is published, even if it is exactly the same as the existing
value. This means that a property can be used as a simple broadcast
notification service.

If you publish a property that is not defined, the Get() and Set()
functions just return an error, rather than panicking your thread. This
happens because you may not have made a programming error, see
Section 4.4.4.

158 INTER-THREAD COMMUNICATION

// publish a new name value
TFileName n;
RProcess().Filename(n);
TInt r=RProperty::Set(KMyPropertyCat,EMyPropertyName,n);
User::LeaveIfError(r);

// retrieve the first 10 characters of the name value
TBuf<10> name;
r=RProperty::Get(KMyPropertyCat,EMyPropertyName,name);
if (r!=KErrOverflow)
User::LeaveIfError(r);

// retrieve and publish a new value using the attached ‘counter’
// property
TInt count;
r=counter.Get(count);
if (r==KErrNone)
r=counter.Set(++count);

User::LeaveIfError(r);

If another thread is executing the same sequence to increment count,
then this last example contains a race condition!

4.4.7 Subscribing to properties
A thread requests notification of property update using the RProp-
erty::Subscribe()member function on an already attached property
object. You can only make a single subscription from a single RProp-
erty instance at any one time, and you can cancel this subscription
request later with the RProperty::Cancel() member function.

If you subscribe to a property, you are requesting a single notification
of when the property is next updated. The kernel does not generate an
ongoing sequence of notifications for every update of the property value.
Neither does the kernel tell you what the changed value is. Essentially,
the notification should be interpreted as ‘‘Property X has changed’’ rather
than ‘‘Property X has changed to Y’’. You must explicitly retrieve the new
value if you need it. This means that multiple updates may be collapsed
into one notification, and that you, as the subscriber, may not have
visibility of all the intermediate values.

This might appear to introduce a window of opportunity for a subscriber
to be out of sync with the property value without receiving notification
of the update – in particular, if the property is updated again before the
subscriber thread has the chance to process the original notification.
However, a simple programming pattern (outlined in the example below)
ensures this does not happen.

// Active object that tracks changes to the ‘name’ property
class CPropertyWatch : public CActive
{
enum {EPriority=0};

public:

PUBLISH AND SUBSCRIBE 159

static CPropertyWatch* NewL();
private:
CPropertyWatch();
void ConstructL();
∼CPropertyWatch();
void RunL();
void DoCancel();

private:
RProperty iProperty;
};

CPropertyWatch* CPropertyWatch::NewL()
{
CPropertyWatch* me=new(ELeave) CPropertyWatch;
CleanupStack::PushL(me);
me->ConstructL();
CleanupStack::Pop(me);
return me;
}

CPropertyWatch::CPropertyWatch() :CActive(EPriority){}
void CPropertyWatch::ConstructL()
{
User::LeaveIfError(iProperty.Attach(KMyPropertyCat,

KMyPropertyName));
CActiveScheduler::Add(this);
// initial subscription and process current property value
RunL();
}

CPropertyWatch::∼CPropertyWatch()
{
Cancel();
iProperty.Close();
}

void CPropertyWatch::DoCancel()
{
iProperty.Cancel();
}

void CPropertyWatch::RunL()
{
// resubscribe before processing new value to prevent
// missing updates
iProperty.Subscribe(iStatus);
SetActive();

// property updated, get new value
TFileName n;
if (iProperty.Get(n)==KErrNotFound)

{
// property deleted, do necessary actions here...
NameDeleted();
}

else
{
// use new value ...

160 INTER-THREAD COMMUNICATION

NameChanged(n);
}

}

4.4.8 Real-time issues
When designing this functionality, we wanted to ensure that publishing
a new value to a property was a real-time service, since time-critical
threads will surely need to invoke it. For example a communication
protocol could use publish and subscribe to indicate that a connection
has been established.

However, there can be an arbitrarily large number of subscriptions on
any given property, which makes publishing to that property unbounded.
We solved this problem by using a DFC queued on the supervisor thread
to do the actual completion of subscriptions. The publisher updates the
value of the property and the kernel then places the property on a queue
of properties for which notifications are outstanding. The DFC, in the
supervisor context, then drains the queue and notifies subscribers.

As I showed earlier, you should publish or retrieve properties by using
a previously attached RProperty handle, rather than by specifying the
property category and key with the new value. This is guaranteed to have a
bounded execution time, unless you are publishing a byte-array property
that has grown in size. In this case the kernel will have to allocate memory
for the byte-array, and memory allocation is an unbounded operation.

4.5 Shared chunks and shared I/O buffers
Shared I/O buffers and shared chunks are mechanisms which allow
you to share memory between a user-side process and a kernel-side
process, with a minimum of overhead. Such sharing avoids the expensive
and time-consuming act of copying (potentially) large amounts of data
around the system. Note that shared I/O buffers are a legacy mechanism
primarily aimed at providing compatibility with EKA1 and that shared
chunks, which are much more efficient and flexible, are the preferred
mechanism for sharing memory between device drivers and user threads
in EKA2. To understand how these mechanisms work, you need to know
a little more about how Symbian OS manages its memory, so I will cover
them in Chapter 7, Memory Models.

4.6 Summary
In this chapter, I have covered several of the mechanisms that EKA2
provides to allow communication between threads: client-server, message
queues, publish and subscribe, shared I/O buffers and client-server. In
the next chapter, I will describe how EKA2 provides services to user-
mode threads.

5
Kernel Services

by Jane Sales

On two occasions I have been asked (by members of Parliament!):
‘‘Pray, Mr. Babbage, if you put into the machine wrong figures, will the
right answers come out?’’ I am not able rightly to apprehend the kind of

confusion of ideas that could provoke such a question.

Charles Babbage

EKA2 provides a variety of services to user-mode threads. In this chapter I
will explain the mechanism it uses to do so, which we call an ‘‘executive
call’’, and then I will describe a few example services to give you a feel
for them.

Of course, the kernel does not just provide services for user-mode
threads – each part of the kernel provides services to the other parts of
the kernel too. I will consider interfaces between modules such as the
nanokernel and the memory model, and interfaces between the different
abstraction levels of the kernel, such as the independent layer and the
CPU layer.

But first of all I will look inside the basic object and handle mechanism
used by Symbian OS. This is at the heart of the communication between
the user side and the kernel.

5.1 Objects and handles

5.1.1 Handles – the RHandleBase class
User-side code always references a kernel-side object through an object
known as a handle. Handles are objects derived from the base class
RHandleBase:

class RHandleBase
{

public:
enum

162 KERNEL SERVICES

{
EReadAccess=0x1,
EWriteAccess=0x2,
EDirectReadAccess=0x4,
EDirectWriteAccess=0x8,
};

public:
inline RHandleBase();
inline TInt Handle() const;
inline void SetHandle(TInt aHandle);
inline TInt SetReturnedHandle(TInt aHandleOrError);
static void DoExtendedClose();
IMPORT_C void Close();
IMPORT_C TName Name() const;
IMPORT_C TFullName FullName() const;
IMPORT_C void SetHandleNC(TInt aHandle);
IMPORT_C TInt Duplicate(const RThread& aSrc,

TOwnerType aType=EOwnerProcess);
IMPORT_C void HandleInfo(THandleInfo* anInfo);
IMPORT_C TUint Attributes() const;

protected:
inline RHandleBase(TInt aHandle);
IMPORT_C TInt Open(const TFindHandleBase& aHandle,TOwnerType aType);

static TInt SetReturnedHandle(TInt aHandleOrError,
RHandleBase& aHandle);

TInt OpenByName(const TDesC &aName,TOwnerType aOwnerType,
TInt aObjectType);

private:
static void DoExtendedCloseL();

protected:
TInt iHandle;
};

Here you can see some of the fundamental methods that we can
perform on handles: we can open and close them, retrieve their short
name and their full name, and we can duplicate them. You can also
see that RHandleBase’s only member data is a single 32-bit integer,
iHandle. To show you how the kernel forms this integer, I will first
need to explain a container class, DObjectIx, which is known as the
object index. This class is a container for kernel-side objects derived from
DObject, which I will discuss first.

5.1.2 Reference-counted kernel objects
A large part of the kernel interface presented to user-side code is con-
cerned with creation and manipulation of kernel objects represented
by user-side RHandleBase-derived classes. These kernel objects have
some basic properties in common.

5.1.2.1 Reference counted

Kernel objects are reference counted: multiple references can exist to
each object and the kernel only destroys the object when all references
have been removed.

OBJECTS AND HANDLES 163

5.1.2.2 Accessed using handles

User-side code accesses kernel objects indirectly using handles, rather
than directly using pointers. The kernel translates a handle into a pointer
by looking it up in a thread or process handle array. The use of handles
allows the kernel to check the validity of kernel object references made
by user code.

5.1.2.3 Named

Kernel objects may have names that you can use to find the object.
Moreover, the name can be scoped relative to another kernel object (the
owner). I will expand more on this later.

5.1.2.4 The DObject class

As I mentioned earlier, kernel objects are represented using classes
derived from the DObject class. This base class provides the necessary
reference counts, object names and name scoping relative to the owner
object. DObject is in turn derived from DBase – this class provides
kernel-side behavior equivalent to that provided by the user-side class
CBase; that is, it zero-fills memory before object construction and pro-
vides a virtual destructor. It also offers the ability to trigger asynchronous
deletion of the object, which is important in time-critical code.

Here is a slightly cut-down version of the DObject class:

class DObject : public DBase
{

public:
enum TCloseReturn

{
EObjectDeleted=1,
EObjectUnmapped=2,
};

enum TObjectProtection
{
ELocal=0,
EProtected,
EGlobal,
};

public:
inline TInt Inc() {return NKern::SafeInc(iAccessCount);}
inline TInt Dec() {return NKern::SafeDec(iAccessCount);}
IMPORT_C DObject();
IMPORT_C ∼DObject();
inline TInt Open() { return(Inc()?KErrNone:KErrGeneral); }
IMPORT_C void CheckedOpen();
IMPORT_C virtual TInt Close(TAny* aPtr);
IMPORT_C virtual TInt RequestUserHandle(DThread* aThread,

TOwnerType aType);
IMPORT_C virtual TInt AddToProcess(DProcess* aProcess);
IMPORT_C TInt AsyncClose();

164 KERNEL SERVICES

IMPORT_C virtual void DoAppendName(TDes& aName);
IMPORT_C void DoAppendFullName(TDes& aFullName);
IMPORT_C void Name(TDes& aName);
IMPORT_C void AppendName(TDes& aName);
IMPORT_C void FullName(TDes& aFullName);
IMPORT_C void AppendFullName(TDes& aFullName);
IMPORT_C TInt SetName(const TDesC* aName);
IMPORT_C TInt SetOwner(DObject* aOwner);
IMPORT_C void TraceAppendName(TDes8& aName, TBool aLock);
IMPORT_C void TraceAppendFullName(TDes8& aFullName, TBool aLock);
inline DObject* Owner();
inline TInt AccessCount();
inline TInt UniqueID();
inline HBuf* NameBuf();
inline void SetProtection(TObjectProtection aProtection);
inline TUint Protection();

public:
TInt iAccessCount;
DObject* iOwner;
TUint8 iContainerID;
TUint8 iProtection;
TUint8 iSpare[2];
HBuf* iName;

public:
static NFastMutex Lock;
};

Key member data of DObject

iAccessCount
This counts how many references exist to the object – it is always non-
negative.

iOwner
This is a reference-counted pointer to the DObject (thread or process)
that is the owner of this object.

iContainerID
This is the ID of the DObjectCon that contains this object. I will discuss
this later in this chapter.

iName
This is a pointer to a kernel-heap-allocated descriptor that holds this
object’s name. It is NULL if the object is unnamed.

iProtection
This is a TObjectProtection value, which notes if the object is private
to the owning thread or process.

5.1.2.5 DObjects explained

The DObject class is new to EKA2. In EKA1 we derived our kernel
classes from the user library’s object class, CObject. In EKA2, we chose

OBJECTS AND HANDLES 165

to create a new, kernel-only, DObject class to break the dependency
between the kernel and the user library. In the same way, we created
DObjectIx for the kernel to use instead of CObjectIx.

When a user thread requests the creation of an object represented
by a handle, the kernel creates a DObject with an access count of 1,
representing the pointer returned to the creating thread. If another thread
then wishes to open this object, the kernel calls DObject::Open()
on its behalf, incrementing the DObject’s access count. We wanted
it to be possible to call this method from anywhere, even in an ISR
or DFC, so we prevented it from being over-ridden in a derived class.
The result is that DObject::Open() always atomically executes the
following operation:

if (iAccessCount==0)
return KErrGeneral;

else
{
++iAccessCount;
return KErrNone;
}

The access count is incremented, unless it was zero – this is an error,
because, as we’ve seen, every DObject is created with an access count
of 1.

The DObject::Dec() method does the opposite – it atomically exe-
cutes the following operation:

if (iAccessCount==0)
return 0;

else
return iAccessCount--;

The Open() and Dec() methods are not protected by fast mutexes;
they simply use atomic instructions or disable interrupts for a short time.

When a user thread closes a handle, the kernel invokes the DOb-
ject::Close(TAny*) method to remove a reference from the object.
It calls Dec(), then proceeds to delete the object if the returned value is
1, indicating that the last reference has been closed:

EXPORT_C TInt DObject::Close(TAny* aPtr)
{
if (Dec()==1)

{
NKern::LockSystem(); // in case it is still in use
NKern::UnlockSystem();
DBase::Delete(this);
return EObjectDeleted;
}

return 0;
}

166 KERNEL SERVICES

Since Close() may cause the freeing of memory on the kernel heap,
the rules about when kernel heap operations may be performed apply;
this means that we can’t call it from an ISR or a DFC, for example.
This contrasts with Open(), which as we’ve seen can be called from
anywhere. We therefore allow the Close() method to be over-ridden
by making it virtual.

The kernel deletes a DObject only when its access count becomes
zero – in fact, this always happens via the Close()method. It is possible
that a DObject with a zero access count is in the process of being
destroyed. This is why Open() must fail if the object’s access count
is zero.

The parameter aPtr passed to Close() is either NULL or a pointer
to the process that is closing a handle on the object. The kernel uses the
pointer when the object being closed is a chunk, to remove the chunk
from the process address space.
DObject also provides an AsyncClose() method. This is the same

as Close() except that the parameter is always NULL and the kernel
does the delete (if one is needed) asynchronously in the supervisor thread.
Of course, AsyncClose() will only work if the derived class does not
over-ride Close().

There are two names associated with a DObject – the name (also
known as the short name) and the full name.

The short name is either:

1. The string pointed to by iName

2. If iName=NULL, it is ‘‘Local-XXXXXXXX’’ where XXXXXXXX is the
hexadecimal address of the DObject.

Object short names can be up to 80 characters in length. This makes them
shorter than in EKA1, where the maximum was 128 characters. There’s
another difference too: EKA1 supported Unicode names, whereas in
EKA2, names must be in ASCII. We made this decision for several reasons:

• If the kernel were to support Unicode internally, then we would have
to duplicate many Unicode functions and large folding tables inside
the kernel

• An ASCII compare is much simpler than a Unicode folded compare,
so searching for objects by name is faster

• The naming of objects is a programmer convenience, and program-
mers generally write code in ASCII source files.

The object’s full name is longer; it can be anything up to 256 characters
in length. We define it recursively as the full name of the DObject’s
owner appended with ‘‘::<short name of this object>’’. The limit

OBJECTS AND HANDLES 167

of 80 characters on the length of the short name guarantees that the full
name cannot exceed 256 characters, because there can be a maximum
of three objects in the owner chain: the DObject might be owned by
a thread that is owned by a process. For example, a semaphore named
ALAZON, owned by the thread EPOS, in turn part of the LEXIS process,
would be called LEXIS::EPOS::ALAZON. If you’re worrying about
thread-relative threads, don’t – we no longer allow them in EKA2.

We use a global fast mutex, DObject::Lock, to protect the opera-
tions of getting an object’s name, setting its name and setting its owner.
We do this to avoid inconsistent results when one thread renames an
object while another is reading its name or full name. (Obviously, we
protect the setting of the owner because this changes the full name of
the object.)

The method that reads an object’s short name, DOb-
ject::DoAppendName(), can be over-ridden in a derived class. In fact,
the
DLibrary and DProcess classes do over-ride it, because they both
include the UID in the object name, and DProcess adds a generation
number too.

5.1.2.6 Object indexes and handles

Now that I’ve described the DObject class, I can return to the object
index class that is used to record the handles held by user threads or
processes on kernel objects.

A handle is a 32-bit integer, split into bit fields like this:

Bits Function

0-14 15-bit index into the DObjectIx holding the handle.

15 No close flag. If set to 1 the handle cannot be closed
using RHandleBase::Close().

16-29 14-bit instance count (taken from
DObjectIx::iNextInstance). This field is never
zero for a valid handle.

30 Local handle flag. If set to 1 the handle is thread-local,
otherwise it is process-global.

31 0 for normal handles, 1 for special handles. Supported
special handles are:
FFFF8000 – always refers to the current process
FFFF8001 – always refers to the current thread.

168 KERNEL SERVICES

Let’s have a look at the DObjectIx class, along with the
SDObjectIxRec structure that it makes use of:

struct SDObjectIxRec
{
TInt16 instance;
TInt16 uniqueID;
DObject* obj;
};

class DObjectIx : public DBase
{

public:
enum
{ENoClose=KHandleNoClose, ELocalHandle=0x40000000};

public:
IMPORT_C static DObjectIx* New(TAny* aPtr);
IMPORT_C ∼DObjectIx();
IMPORT_C TInt Add(DObject* aObj, TInt& aHandle);
IMPORT_C TInt Remove(TInt aHandle, DObject*& aObject, TAny*& aPtr);
IMPORT_C DObject* At(TInt aHandle,TInt aUniqueID);
IMPORT_C DObject* At(TInt aHandle);
IMPORT_C TInt At(DObject* aObject);
IMPORT_C TInt Count(DObject* aObject);
IMPORT_C DObject* operator[](TInt aIndex);
TInt LastHandle();
static void Wait();
static void Signal();
inline TInt Count();
inline TInt ActiveCount();

protected:
IMPORT_C DObjectIx(TAny* aPtr);

private:
void UpdateState();
TInt iNextInstance;
TInt iAllocated; // Max entries before realloc needed
TInt iCount; // At least 1 above the highest active index
TInt iActiveCount; // No of actual entries in the index
SDObjectIxRec* iObjects;
TAny* iPtr;
TInt iFree; // The index of the first free slot or -1.
TInt iUpdateDisabled;

public:
static DMutex* HandleMutex;
};

Key member data of DObjectIx

iNextInstance
This is a counter that starts at 1, and is incremented every time an object
is added to the index. It is incremented again if it would become zero
modulo 16384, so that the lower 14 bits range from 1 to 16383.

iAllocated
This is the number of slots currently allocated in the iObjects array.

OBJECTS AND HANDLES 169

iCount
This field is 1 + the highest index of any occupied slot in the iObjects
array.

iActiveCount
This is the number of occupied slots in the iObjects array.

iObjects
This is a pointer to the array of object index records. Each record contains
a pointer to a DObject, the instance counter modulo 16384 when the
entry was added and the unique ID of the DObjectCon in which the
DObject is held.

iPtr
This is a pointer to the process that is the ultimate owner of all handles in
this index (that is, the thread’s owning process for a thread-local handle
array). This is passed as a parameter to DObject::Close() when a
handle is closed.

Finding objects from handles
To translate a handle into a DObject pointer, the kernel follows the
following steps, which are shown graphically in Figure 5.1:

1. Uses bit 30 of the handle to choose a DObjectIx (either the current
thread’s or the current process’s handle array)

2. Takes the bottom 15 bits to use as an index, and checks this index
against the DObjectIx::iCount value to ensure it is within the
array

3. Uses the index to access an entry in the iObjects array of the
DObjectIx

4. Compares the handle’s instance value (bits 16–29) against the
instance value stored in the iObjects array entry.1 (We set the
latter from the DObjectIx::iNextInstance value when the
DObjectIx entry was made2)

5. If the two instance values are the same, then the handle is valid

6. Checks the unique ID value in the iObjects array entry to ensure
that the object pointed to is of the expected type

7. Finally, extracts the DObject pointer from the iObjects array
entry.

1 Note that the instance value provides protection against a stale handle being re-used
after it has been closed and after the kernel has reallocated its index slot to a new handle.
Handle lookup always occurs with the system locked to protect against changes in the
handle array while it is being examined.

2 Which is when the handle was created.

170 KERNEL SERVICES

5. Follow DObject* to
find object denoted by
handle

 2. Index into array of
 SDObjectIxRecs

1. Choose DObjectIx
= 0 - process's
= 1 - thread's

indexinstance 153031

iNextInstance

iAllocated

iCount

iArchiveCount

iObjects

DObject*uniqueIDinstance

DObjectIx

DObject

handle

SDObjectIxRec

3. Check instances
match

4. Check unique ID is
valid for this type of
object

Figure 5.1 Finding an object from a handle

Protection of handle mechanisms
The adding and removing of handles requires some care. The ker-
nel protects additions and removals from DObjectIx arrays with a
global mutex, DObjectIx::HandleMutex. The mutex allows the
Exec::HandleInfo() function to prevent any handle creation and
deletion while it inspects the handle array of every thread and process.

OBJECTS AND HANDLES 171

The kernel doesn’t protect the lookup of handles, though – this would
slow it down too much. Instead it looks up handles while holding only
the system lock.

If the iObjects array needs to grow as a result of adding a handle,
the kernel uses the Kern::SafeReAlloc() function. This allocates a
new larger block first, copies the old contents into it, fills the extra space
in the new block with zeros, and then acquires the system lock before
replacing the pointer with the address of the new block and deleting the
old block. This ensures that any code running with the system locked
always sees a valid handle array.

Since a handle contains an index into the iObjects array, the removal
of an entry from the iObjects array cannot result in all the later entries
being moved as that would make all the existing handles to those objects
invalid. Instead, the kernel sets the entry’s object pointer to NULL and
adds the entry to the front of the linked list of free slots – that is, it sets
iFree to point to the entry. When it next adds an object to the index, it
will use up the slot denoted by iFree.

5.1.2.7 Object containers

Object containers exist for two reasons:

1. So that the kernel can find objects by name

2. So that the kernel can enumerate all the objects of a certain type.

With some exceptions, such as internal kernel mutexes, whenever the
kernel creates a DObject-derived object it adds that object to the
DObjectCon that corresponds to the object’s type.

The kernel removes the object from the container when it deletes
it – which, as we saw earlier, happens when the object’s access count
drops to zero. In fact, the removal of the object from the container is
the last action that the kernel does before it frees the memory – because
it is the DObject destructor that removes the dying DObject from
the container.

When the kernel adds an object to a container, it checks that the
object’s full name is unique among the objects in that container. This
ensures that the kernel can find the object unambiguously using its
full name.

Each DObjectCon has its own DMutex that protects all accesses to
the container, including those that simply index into the container. The
kernel indexes into a DObjectConmuch more rarely than it indexes into
a DObjectIx, so the overhead of waiting on the mutex is not significant
in this case.

Array management for DObjectCon is simpler than for DObjectIx.
The first iCount slots are occupied with no gaps – removing an entry

172 KERNEL SERVICES

will move all the following entries down one. When the kernel adds a
new entry, it always goes at the end of the array.

Here is the DObjectCon class:

class DObjectCon : public DBase
{

protected:
enum {ENotOwnerID};

public:
∼DObjectCon();
static DObjectCon* New(TInt aUniqueID);
IMPORT_C void Remove(DObject* aObj);
IMPORT_C TInt Add(DObject* aObj);
IMPORT_C DObject* operator[](TInt aIndex);
IMPORT_C DObject* At(TInt aFindHandle);
IMPORT_C TInt CheckUniqueFullName(DObject* aOwner, const TDesC& aName);
IMPORT_C TInt CheckUniqueFullName(DObject* aObject);
IMPORT_C TInt FindByName(TInt& aFindHandle, const TDesC& aMatch,

TKName& aName);
IMPORT_C TInt FindByFullName(TInt& aFindHandle, const TDesC& aMatch,

TFullName& aFullName);
IMPORT_C TInt OpenByFullName(DObject*& aObject, const TDesC& aMatch);
inline TInt UniqueID() {return iUniqueID;}
inline TInt Count() {return iCount;}
inline void Wait() {Kern::MutexWait(*iMutex);}
inline void Signal() {Kern::MutexSignal(*iMutex);}
inline DMutex* Lock() {return iMutex;}

protected:
DObjectCon(TInt aUniqueID);
TBool NamesMatch(DObject* aObject, DObject* aCurrentObject);
TBool NamesMatch(DObject* aObject, const TDesC& aObjectName,

DObject* aCurrentObject);
public:
TInt iUniqueID;

private:
TInt iAllocated;
TInt iCount;
DObject** iObjects;
DMutex* iMutex;
};

Key member data of DObjectCon

iUniqueID
This is an identity number indicating the type of kernel object held
in this container. The value used is 1 + the corresponding value in
the TObjectType enumeration – for example the identity number for
threads is 1.

iAllocated
This is the number of slots currently allocated in the iObjects array.

SERVICES PROVIDED TO USER THREADS 173

iCount
This is the number of slots currently occupied in the iObjects array.

iObjects
This is the pointer to the array of pointers to DObjects that are currently
held in this container.

iMutex
This is the pointer to the DMutex mutex object that the kernel uses to
protect accesses to this container.

5.2 Services provided to user threads

5.2.1 Executive call mechanism

The kernel provides services to user-mode code using a mechanism that
we call executive calls, or exec calls for short.

Exec calls begin as a standard user-side function, and then use a
software exception as a gateway to allow them to enter kernel code. The
software exception instruction switches the CPU into supervisor mode
and starts the execution of kernel code at a defined entry point – see
Chapter 6, Interrupts and Exceptions, for more on this.

The CPU’s instruction set generally limits the number of possible entry
points from software interrupts or traps – for example, on an ARM CPU
there is only one SWI instruction to enter supervisor mode. Because of
this, we use a dispatcher in the nanokernel to decode a parameter passed
from user side, determine the function required and then call it. On ARM
CPUs, the parameter is the opcode used with the SWI instruction, and
this determines the function that the dispatcher calls.

This calling mechanism results in a very loose coupling between the
kernel and user processes, and this means that we can make design
changes within the kernel more easily.

5.2.1.1 Flow of execution in an executive call

Now I’ll show the flow of execution from a user-mode application to
supervisor-mode kernel code and back again. Let’s choose an example
to trace:

TUint8* Exec::ChunkBase(ChunkHandle)

This executive call returns a pointer to the start of a chunk belonging
to the calling thread. The parameter passed is the handle of the chunk
within the thread.

174 KERNEL SERVICES

EUSER

 Nanokernel

 Symbian OS Kernel

1.

2.

3.

4.

5.

user

kernel

User
Thread

Figure 5.2 Kernel executive call

You can follow my explanation in Figure 5.2.

1. User thread: Let’s assume that a user-side thread is executing the
following section of code:

RChunk newChunk=0;
newChunk=OpenGlobal(_L(‘‘SharedChunk’’),ETrue);
TUint* base=0;
base=newChunk.Base();

This code segment opens a shared chunk and stores the handle returned
in newChunk. Next it wants to find out the base address of this chunk,
which it does by calling RChunk::Base(). I will trace this operation
from the user side into the kernel, via an executive call.

The code for the RChunk::Base() method is found in the file
\e32\euser\us_exec.cpp and looks like this:

EXPORT_C TUint8 *RChunk::Base() const
{
return(Exec::ChunkBase(iHandle));
}

SERVICES PROVIDED TO USER THREADS 175

So RChunk::Base() calls Exec::ChunkBase(), which is in the user
library, EUSER.DLL.

2. User library: Exec::ChunkBase() is in the file \epoc32\in-
clude\exec_user.h, and is generated by entering ‘‘ABLD MAKE-
FILE GENEXEC’’ in the E32 directory. The ABLD tool takes the file
execs.txt, and uses it to generate the source code for the user-side
executive calls. The portion of execs.txt we are interested in
is this:

slow
{
name = ChunkBase
return = TUint8*
handle = chunk
}

You can see that it tells the tools to generate a function named ChunkBase
which returns a pointer to TUint, and which is passed a handle to
a chunk.

The generated Exec::ChunkBase() function looks like this:

__EXECDECL__ TUint8* Exec::ChunkBase(TInt)
{
SLOW_EXEC1(EExecChunkBase);
}

In \e32\include\u32exec.h we have:

#elif defined(__CPU_ARM)

// Executive call macros for AR
#define EXECUTIVE_FAST 0x00800000
#define EXECUTIVE_SLOW 0x00000000
#define __DISPATCH(n) \

asm("mov ip, lr "); \
asm("swi %a0" : : "i" (n));

#define FAST_EXEC0(n) __DISPATCH((n)|EXECUTIVE_FAST)
#define FAST_EXEC1(n) __DISPATCH((n)|EXECUTIVE_FAST)
#define SLOW_EXEC0(n) __DISPATCH((n)|EXECUTIVE_SLOW)
#define SLOW_EXEC1(n) __DISPATCH((n)|EXECUTIVE_SLOW)
#define SLOW_EXEC2(n) __DISPATCH((n)|EXECUTIVE_SLOW)
#define SLOW_EXEC3(n) __DISPATCH((n)|EXECUTIVE_SLOW)
#define SLOW_EXEC4(n) __DISPATCH((n)|EXECUTIVE_SLOW)

When you disentangle the macros, you can see that
Exec::ChunkBase() makes this SWI call to enter supervisor mode:

SWI EExecChunkBase

EExecChunkBase is an enumeration that gives the opcode for the
SWI call.

176 KERNEL SERVICES

3. Nanokernel dispatcher: We enter the nanokernel at the function
__ArmVectorSwi, in vectors.cia. This function makes much
use of the executive tables, which are defined like this:

GLREF_D const TUint32 EpocFastExecTable[];
GLREF_D const TUint32 EpocSlowExecTable[];

Essentially, the fast executive table consists of a number of 32-bit entries,
the nth of which is the address of the handler for the nth fast exec call.
The slow executive table consists of pairs of 32-bit entries, the first of
which is a set of attribute flags, and the second of which is the address
of the slow exec call handler. I will cover this subject in more detail in
Section 5.2.1.6.

The function __ArmVectorSwi first checks bit 23 of the ARM opcode
to find out whether this is a slow exec call or a fast one. If bit 23 is 1, then
this is a fast exec call, and the dispatcher will switch interrupts off before
indexing into the fast exec table, and calling the relevant kernel function.

In our case, bit 23 is 0, so ours is a slow exec call. Next the
dispatcher checks bit 31 in the attribute word of the slow exec table.
EExecChunkBase has this bit set, so the dispatcher locks the system by
taking the system lock fast mutex.

The dispatcher goes on to check another bit in the attribute word to
see if it should call the Symbian OS preprocessing handler, Prepro-
cessHandler, the address of which it discovers from the second word
of the slow exec table. The dispatcher always claims the system lock
before calling PreprocessHandler.

Again, in our case this bit is set, so the dispatcher calls Prepro-
cessHandler. I’ll discuss this in the next section.

On returning from PreprocessHandler, the dispatcher finally calls
the relevant OS function: in our case this is ExecHand-
ler::ChunkBase().

Finally the dispatcher checks a bit to see whether it should release the
system lock fast mutex, and after doing so if required, it returns to the
user library.

4. Preprocessing handler (optional): The preprocessing handler is part
of the Symbian OS kernel (rather than the nanokernel) and is found
in cexec.cia. It looks up handles to kernel objects.
The preprocessing handler has access to the following information:

• The arguments passed to the executive function, which include
the handle to look up. The preprocessing handler may modify
these arguments as part of its execution

• The attribute flags of the executive call, the bottom five bits of
which specify the type of kernel object that the handle refers to.

SERVICES PROVIDED TO USER THREADS 177

On return, the preprocessing handler will have replaced the handle with
a pointer to the kernel object to which it refers.

There are various special handles that the preprocessing handler
must pay attention to. Firstly, there are the two handles defined in
e32const.h:

//A flag used by the kernel to indicate the current process.
const TInt KCurrentProcessHandle=0xffff0000|KHandleNoClose;

//A flag used by the kernel to indicate the current thread.
const TInt KCurrentThreadHandle=0xffff0001|KHandleNoClose;

Then there are three special handle types:

// lookup IPC message handle, allow disconnect
EIpcMessageD=0x20,

// lookup IPC message handle, don’t allow disconnect
EIpcMessage=0x21,

// lookup IPC message client, don’t allow disconnect
EIpcClient=0x22,

Handles like of this type are ‘‘magic’’ values that refer to a client/server
IPC message. In the case of EIpcClient type, this means ‘‘the thread
that sent the message’’. The magic value is in fact the address of the RMes-
sageK object stored within the kernel! Don’t worry – the kernel performs
strict validation checks on this object to prevent security breaches.

Returning to our simpler example, the preprocessing handler merely
looks up the handle in the owning thread or process, and returns with a
pointer to the corresponding DChunk.

5. OS function: The exec handling function that the dispatcher calls
may be almost anywhere in kernel – in the nanokernel, the Symbian
OS kernel, the memory model or even the variant.
In our example, ExecHandler::ChunkBase() is in the file
sexec. cpp, which is part of the Symbian OS kernel. This function
simply retrieves the base of the chunk from the DChunk, like this:

TUint8 *ExecHandler::ChunkBase(DChunk* aChunk)
// Return the address of the base of the Chunk.

{
return (TUint8 *)aChunk->Base();
}

5.2.1.2 Context of executive call

An exec call executes in the context of the calling user-mode thread, not
that of any kernel thread. The only changes that happen on entry to the
kernel are:

178 KERNEL SERVICES

• The processor switches into supervisor mode

• The active stack changes from the current thread’s user stack to the
current thread’s supervisor stack.

Because of this, you can’t make an exec call from an interrupt service
routine or an IDFC, because in these situations there is no thread context.

5.2.1.3 Changes from EKA1

The exec call mechanism has changed considerably from EKA1 to EKA2.
On EKA1, exec calls borrow the kernel server or the null thread stack,
rather than running on the calling thread’s own supervisor stack as they do
on EKA2. For this, and other reasons, EKA1 exec calls have the following
restrictions:

1. They are not preemptible

2. They can’t block in the kernel

3. They can’t allocate and free kernel memory.

On EKA1, if a user-mode thread needed to call a service that allocated
or freed kernel memory (for example, a service that created or destroyed
objects derived from CObject), then that user-mode thread had to make
a special kind of kernel call, known as a kernel server call. This is no
longer the case in EKA2.

As we’ve seen, on EKA2 exec calls run on the supervisor stack of the
calling thread. This means that exec calls can be preempted and they can
block in the kernel. Furthermore, because EKA2 does not link to EUSER,
exec calls may allocate and free kernel memory.

5.2.1.4 Accessing user-mode memory

Earlier in this chapter, I said that an exec call runs in the context of the
calling thread. This means that on systems with an MMU and multiple
processes running in separate address spaces, the active address space
is still that of the process to which the calling thread belongs. It is
therefore theoretically possible for the kernel-side exec call to directly
access the memory of the user process that called it, by dereferencing a
pointer or using memcpy(). However, in practice we do not allow this.
This is because the exec call is executing kernel code with supervisor
privileges, and can therefore read and write anywhere in the processor’s
address space, which of course includes kernel memory. If the exec call
dereferences a pointer given to it by a user thread without checking that
pointer, then we are effectively giving the user thread the freedom to
access all of the address space too. This defeats platform security and

SERVICES PROVIDED TO USER THREADS 179

makes it more likely that an invalid pointer from the user application will
overwrite a key part of the kernel, crashing the mobile phone.

5.2.1.5 The kumem functions

Does this mean that exec calls can’t access the memory of the user
process that called them? No, because we provide the special kernel
functions kumemget(), kumemput() and kumemset() to dereference
the pointers that are passed from user code. You should use these
functions yourself if you are writing a device driver or an extension that
is passed pointers to user data from user-side code.

The kumem functions access memory with special CPU instructions
that perform the access at user privilege level – for example LDRT/STRT
on ARM. Here is the relevant portion of the kumemget() function, this
time on X86 for a change:

_asm mov ax, gs
_asm mov ds, ax
_asm call CopyInterSeg

On entry to the function, GS contains the data segment of the
caller – this is obviously a user-mode data segment in the case of an
exec call. We move GS to DS before we call CopyInterSeg(), which
copies ECX bytes from DS:ESI to ES:EDI. This means that the user’s data
segment is used as the source of the copy, and the memory move therefore
respects the privileges of the caller.

5.2.1.6 Slow and fast executive calls compared

I mentioned earlier that the dispatcher checks a bit in the SWI opcode to
determine whether the exec call is a slow or a fast one. In this section
I’ll discuss these two forms of exec call in more detail and point out the
differences between them.

Slow executive calls
Slow exec calls run with interrupts enabled and the kernel unlocked. This
means that they can be preempted at any point in their execution.

As we saw in the walk-through, slow exec calls have a mechanism
for automatically performing certain actions when in the dispatcher. This
mechanism relies on particular bits being set in the attribute word of the
slow executive table.

Using this mechanism, a slow exec call may:

• Acquire the system lock fast mutex before calling the kernel handler

• Release the system lock after calling the kernel handler

• Call a Symbian OS preprocessing handler to look up a Symbian OS
handle. In this case, the call always acquires the system lock too.

180 KERNEL SERVICES

A key difference between slow and fast execs is that the user side can
pass many more parameters to a slow exec call. In their standard form,
slow execs can have up to four direct 32-bit arguments and can return
one 32-bit value. If this isn’t enough, then the slow exec call can also
copy as many as eight additional 32-bit values from user space to the
current thread’s supervisor stack. If this is done, then we have to use one
of the four direct arguments to point to the additional arguments, so we
can pass a maximum of eleven arguments in total.

These extra exec call arguments are a new feature of EKA2 that is not
available on EKA1. On EKA1, you could pass extra arguments, but only
by passing a pointer to an arbitrary amount of additional user-mode data
as one of the four standard parameters. The EKA1 kernel would then
access this data directly, which, as I discussed in Section 5.2.1.4, is not
safe. EKA2 allows the extra arguments to be passed in a way that does
not compromise robustness or security, because the new kernel uses the
kumem functions to access the additional data.

The mechanism by which the extra parameters are passed is dependent
on the CPU architecture. If the processor has sufficient registers, then we
use those that are not already in use. For example, on ARM, we pass
the extra arguments in R4-R11; this means that the user-side Exec::
functions must save these registers and load the additional arguments
into them before executing the SWI instruction to enter the kernel. The
Exec:: functions must then restore those registers on return from the
kernel. The dispatcher pushes R4–R11 onto the supervisor stack and then
sets R2 (the third normal argument) to the address of the saved R4.

On X86, we use the third argument to pass a pointer to the additional
arguments in user memory. The dispatcher copies the specified number
of arguments from user memory space to the current thread’s supervisor
stack and modifies the third argument to refer to the copied arguments.
If the SWI opcode has its system lock bit set, then the dispatcher copies
the arguments before it acquires the system lock. We do it this way in
case an exception occurs during the copying of the additional arguments
because the supplied address is invalid. Then, if this does happen, the
kernel can terminate the current thread without a problem.

Regardless of the CPU architecture, the executive handler always
accesses the additional arguments by using the third normal argument as a
pointer to them. By the time the executive handler runs, the dispatcher will
have copied the additional arguments to the current thread’s supervisor
stack, and changed the third argument to refer to that copy. This means
that the executive handler does not need to check that the referenced
address is a valid user mode address.

Fast exec calls
As we saw earlier, slow exec calls run with interrupts enabled. Fast exec
calls, on the contrary, run with all interrupts disabled. This is another

SERVICES PROVIDED TO USER THREADS 181

difference from EKA1, where they ran with IRQ interrupts disabled and
FIQ interrupts enabled. Because of this, EKA2 fast exec calls must be very
short. There aren’t many of them, and typically they get or set a single,
easily accessible, item of kernel data. For example, there is a fast exec
call to get the current thread’s heap pointer.

We saw that slow exec calls can pass up to eleven parameters. Fast
exec calls, on the other hand, can only pass one 32-bit parameter. They
may also return a single 32-bit value.

5.2.1.7 Executive tables

I have already mentioned that we specify the range of valid fast and slow
executive calls and their associated handlers using two tables – the fast
executive table and the slow executive table. Every nanokernel thread
in the system has two pointers, one to each of these tables. The kernel
sets up these pointers when the thread is created, which means that the
available executive calls can be changed on a thread-by-thread basis. All
Symbian OS threads do in fact use the same tables, but this feature makes
it possible for threads in an RTOS personality layer to use different tables,
if desired. It is worth noting that you would only need to use this feature
if you had user-mode personality layer threads. If your threads only ever
run in supervisor mode, then you can call your required personality layer
services directly.

The fast executive table
The fast executive table is composed of a number of 32-bit entries, like so:

Word index Description

0 Number of fast executive calls supported.

n ≥ 1 Address of handler for fast executive call number n.

You can see that fast executive call 0 has no entry in the table.
This is because it is always assigned to wait on the current thread’s
request semaphore.

If a thread makes a fast executive call with a number that is greater
than or equal to the number of calls specified in the table, then the
kernel calls the invalid executive handler, which is specified in the slow
executive table.

The slow executive table
The slow executive table is composed of three single-word entries fol-
lowed by an arbitrary number of two-word entries, like so:

182 KERNEL SERVICES

Word index Description

0 Number of slow executive calls supported.

1 Address of handler for invalid call number.

2 Address of handler for argument preprocessing.

3+2n Attribute flags for slow executive call number n.

4+2n Address of handler for slow executive call number n.

If a thread makes a slow executive call with a number that is greater
than or equal to the number of calls specified in the table, then the kernel
calls the invalid executive handler, which is specified in word 1 of the
table. Invalid fast exec calls are routed here too, but even in this case the
kernel treats the invalid handler as a slow executive call with its attribute
flags all zero.

I’ve mentioned the attribute flags already in the walk-through and in
my discussions about the differences between slow and fast exec calls.
These flags determine any additional actions that the dispatcher performs
before calling the handler and after returning from it. Here are the details
of the functions associated with each bit:

Bit Description

31 If this bit is set to 1, the system lock fast mutex will be
acquired prior to calling the executive handler.

30 If this bit is set to 1, the system lock fast mutex will be
released after returning from the executive handler.

29 If this bit is set to 1, the preprocessing handler will be
called prior to calling the executive handler. Note that
if bit 31 is also set to 1, the system lock is acquired
before calling the preprocessing handler.

26, 27, 28 These bits make a three-bit wide field indicating the
number of additional arguments required by the
executive call. A value of 0 indicates that there are no
additional arguments; a value of n, where 1 ≤ n ≤ 7
indicates that there are n + 1 additional arguments.
Thus up to eight additional arguments may be specified.

EXAMPLE USER-ACCESSIBLE SERVICES 183

5.2.1.8 Kernel server calls

If you know EKA1, you may be wondering why I haven’t mentioned
kernel server calls. Let me explain a little bit about them, and then I hope
the reason will become clear.

As I’ve said, EKA1 makes use of the EUSER library. The heap functions
in EUSER allocate and free memory on the heap of the current thread.
This made it difficult for any EKA1 exec calls that resulted in the creation
(or destruction) of kernel objects – those objects must be created on the
kernel heap, but during the executive call the thread context is that of the
thread making the executive call.

So, to ensure that the memory was allocated on the kernel heap, we
had to engineer a switch to a kernel thread context. To do this, an EKA1
thread executes a special exec call that makes a request from the kernel
server thread and then blocks awaiting the reply. At the next reschedule,
the kernel server thread will run (as it is the highest priority thread in the
system) and obviously it can then create or destroy objects on its own
heap on behalf of the user thread.

EKA2 has its own memory allocation routines, and does not link to
EUSER. This means that EKA2 exec calls can allocate and free kernel
memory and we do not need kernel server calls.

5.2.2 Executive calls in the emulator
The emulator can’t use a software interrupt to implement executive calls,
so instead it uses a function call but with a special calling convention.

The executive dispatcher lives in the nanokernel, but the calls them-
selves are in the user library (EUSER.DLL). To prevent EUSER.DLL
depending on EKERN.EXE, this call is not done using the standard import
machinery. Instead, there is a function pointer to the dispatcher in EUSER,
which is initialized lazily to point to the first ordinal in EKERN.EXE – this
is the only export from EKERN that must be maintained in EKA2’s emu-
lator. The executive functions in EUSER first set up two parameters (the
executive number and the pointer to the parameters, which are all on the
thread stack), then they jump to the nanokernel dispatcher function.

The dispatcher then handles the executive in a way which is similar
to that on a phone: the executive function runs with the thread in
‘‘kernel mode’’, fast executive calls run with interrupts disabled and slow
executive calls can manipulate the system lock and have preprocessing
done on their parameters.

5.3 Example user-accessible services

In this section, I’m just aiming to give you a feel for the kind of services
that the kernel provides via EUSER, and how we decide to categorize
each exec call.

184 KERNEL SERVICES

5.3.1 Fast exec calls
As we saw, fast executive calls run with all interrupts off, so they must do
their tasks very quickly and then return to the user. Generally these calls
just get or set a single word of kernel memory. Here are some examples:

RAllocator* Exec::Heap()
Returns the current thread’s heap.

TUint32 Exec::FastCounter()
Returns the value of the fast counter, which can be used in profiling.

Exec::SetDebugMask(TUint32)
Sets the kernel’s debug bit mask to determine the level of printf()
debugging displayed on the serial port. Often used in debug code to
restrict debug printing to key areas of interest.

5.3.2 Slow exec calls
5.3.2.1 Services that don’t claim the system lock

These services are ones which do not need to lock the system to protect
them from their own side effects – that is, two concurrent calls to the
same exec call will not interfere with each other. These services often
read, rather than modify, kernel data. Examples are:

void Exec::IMB_Range(TAny* aBase, TUint aLength)
Performs all necessary cache management for the address range aBase
to aBase+aLength in order that whatever has been written there can
be executed. This is known as an instruction memory barrier (IMB).

TUint Exec::TickCount()
Returns the number of system ticks since boot.

void Exec::DebugPrint(TAny* aDebugText, TInt aMode)
Passes in a descriptor with text to print out as a debug string, and a mode
to print in.

5.3.2.2 Services that claim the system lock

As we’ve seen, certain slow exec calls have a bit set in their attribute
word to say that the dispatcher should lock the system before calling the
executive handler in the kernel. The main reason for this is to protect
certain kernel resources against multiple accesses.

Examples of this type of service are:

TUint32 Exec::MathRandom()
Returns a random number. Since this code is not re-entrant, the system
is locked.

EXAMPLE USER-ACCESSIBLE SERVICES 185

void Exec::CaptureEventHook()
The window server calls this function to capture the event hook. Only
one thread may own this event hook, so the system is locked to prevent
a second thread gaining access to the function before the first thread
has flagged that it has taken the hook by setting the kernel variable
K::EventThread to point to itself. On the secure kernel, this function
panics if the thread taking the event hook is not the window server thread.

Services passing handles
Certain slow exec calls have a bit set in their attribute word to say that the
dispatcher should call a preprocessing handler in the Symbian OS kernel
before calling the executive handler in the kernel. The preprocessing
handler takes the first argument of the slow exec call, which is always a
handle, and translates it into a DObject derived object pointer.

Any slow exec call that calls the preprocessing handler also claims the
system lock.

Examples of this type of service are:

TUint8* Exec::ChunkBase(ChunkHandle aHandle)

Returns a pointer to the start of a chunk.

TInt Exec::ThreadId(ThreadHandle aHandle)

Returns the ID of the given thread.

TlibraryFunction LibraryLookup(LibraryHandle
aHandle, TInt aFunction)

Returns the address of the required function number in the given library.

Services where the dispatcher doesn’t release the lock
These exec calls claim the system lock on entry, but don’t unlock it
on exit. This is because the exec handler functions release the system
lock themselves.

Examples of this type of service are:

void Exec::MutexWait(MutexHandle aHandle)

Waits on the given mutex.

void Exec::ProcessSetPriority (ProcessHandle
aProcess, TProcessPriority aPriority)

Sets the priority of the given process.

void Exec::SemaphoreSignalN(SemHandle aHandle,
TInt aNum)

Signals the given semaphore a number of times.

186 KERNEL SERVICES

5.3.3 HAL functions

As we’ve seen, the EKA2 kernel is not linked to, and never calls, the
user library, EUSER.DLL. This is a major difference from EKA1, which
often used the user library as a way to call its own services, going via an
executive call and a supervisor mode SWI to the required service, even
though it was already executing in supervisor mode.

Not only does EKA2 not call EUSER, it rarely makes a SWI call
either – clearly a good thing for its performance. In fact, there is only one
place where EKA2 does make a SWI call – Kern::HalFunction().
This function is used to request a service from a kernel extension, and
user threads call it via the function UserSvr::HalFunction().

The hardware abstraction layer, or HAL, consists of a set of hard-
ware or system attributes that can be set or read by software. These
are broken down into groups of like functionality, as enumerated by
THalFunctionGroup:

enum THalFunctionGroup
{
EHalGroupKernel=0,
EHalGroupVariant=1,
EHalGroupMedia=2,
EHalGroupPower=3,
EHalGroupDisplay=4,
EHalGroupDigitiser=5,
EHalGroupSound=6,
EHalGroupMouse=7,
EHalGroupEmulator=8,
EHalGroupKeyboard=9,
};

Each of these groups then has a set of attributes. For example, the first
group, EHalGroupKernel, has these attributes:

enum TKernelHalFunction
{
EKernelHalMemoryInfo,
EKernelHalRomInfo,
EKernelHalStartupReason,
EKernelHalFaultReason,
EKernelHalExceptionId,
EKernelHalExceptionInfo,
EKernelHalCpuInfo,
EKernelHalPageSizeInBytes,
EKernelHalTickPeriod,
EKernelHalMemModelInfo,
};

Each HAL group has a handler function that manages the group’s
attributes. This handler can be dynamically installed by using the function

SERVICES PROVIDED BY THE KERNEL TO THE KERNEL 187

Kern::AddHalEntry(). For example, some HAL groups correspond
to a particular hardware device, like the screen display or keyboards,
and the kernel extension or device drivers for these devices will install
a handler.

As I said earlier, the kernel accesses HAL functions via
Kern::HalFunction():

EXPORT_C __NAKED__ TInt Kern::HalFunction(TInt /*aGroup*/,
TInt /*aFunction*/, TAny* /*a1*/,

TAny* /*a2*/, TInt /*aDeviceNumber*/)
{
asm("ldr ip, [sp, #0] ");
asm("orr r0, r0, ip, lsl #16 ");
asm("mov ip, lr ");
asm("swi %a0" : : "i"(EExecHalFunction|EXECUTIVE_SLOW));
}

You can see that the first and second parameters are the group and the
number of the function. The remaining parameters, if present, are passed
to the HAL function itself.

5.4 Services provided by the kernel to the kernel

In the introduction to this book, I mentioned that we could consider the
architecture of EKA2 from a software layering perspective, as shown in
Figure 5.3, and went on to discuss the kind of software that appeared at
each layer.

In this chapter, I am more concerned with the services each layer
provides to the other layers.

NKern

Memory Model

Memory Model

Memory Model

NKern Symbian OS Kernel

Symbian OS Kernel

ASSP DLL

Variant DLL

Independent

Platform

Model

CPU

ASSP

Variant

Figure 5.3 Software layering

188 KERNEL SERVICES

5.4.1 Independent layer

5.4.1.1 Nanokernel

The static interface to the independent nanokernel is provided through
the class NKern, which is defined in nkern.h. The APIs in this class
cover a few key areas of interest, which I’ll discuss now.

Threads
NKern provides a static interface to nanothread manipulation, using an
NThread* parameter. This allows callers to create a nanothread, to kill
it, to suspend it, to release it and more. Here are a couple of examples:

static void ThreadKill(NThread* aThread)
static void ThreadSetPriority(NThread* aThread, TInt aPriority);

Timers
As we saw in Chapter 2, Hardware for Symbian OS, the kernel needs
hardware to provide a periodic tick interrupt; this timer must be started
from the ASSP’s or variant’s Init3() function. The period of this tick
determines the timer resolution and is usually set to 1 ms – hence it is
frequently known as the millisecond timer. The tick interrupt’s interrupt
handler calls the Tick() method in the nanokernel’s timer queue class,
NTimerQ.

Nanokernel timers provide the most fundamental system timing func-
tions in the operating system. Symbian OS tick-based timers and time-of-
day functions are both derived from nanokernel timers. In addition, the
nanokernel timer service supports timed wait services, if implemented.
The tick interrupt is also used to drive the round-robin scheduling for
equal-priority thread.

I will discuss timers in more detail in Section 5.5.

Fast semaphores and mutexes
The NKern semaphore and mutex APIs allow their callers to wait on and
signal nanokernel fast mutexes and semaphores. Here are the two fast
mutex APIs:

static void FMWait(NFastMutex* aMutex);
static void FMSignal(NFastMutex* aMutex);

Interrupts
The NKern interrupt APIs allow their callers to enable and disable
interrupts: globally, or to a certain level. For example:

static TInt DisableAllInterrupts();
void EnableAllInterrupts();

SERVICES PROVIDED BY THE KERNEL TO THE KERNEL 189

Read-modify-write
The NKern read-modify-write APIs allow their callers to atomically
increment or decrement a counter, preventing side-effects from two
threads attempting to access the same counter. For example:

static TInt LockedInc(TInt& aCount);
static TInt LockedDec(TInt& aCount);

Key concrete classes
The independent nanokernel also provides key classes that are used by
the rest of the kernel. I have covered or will cover these in other chapters,
so here it will suffice to enumerate them:

• NFastSemaphore

• NFastMutex

• TDfc.

5.4.1.2 Symbian OS kernel

The static interface to the independent Symbian OS is provided through
the class Kern, which is defined in kernel.h. The APIs in this class
cover a wide miscellany of topics, of which I’ll pick out a few.

Thread read and write
The Kern class provides APIs to allow other parts of the kernel to safely
read and write from threads’ address spaces.

static TInt ThreadDesRead(DThread* aThread, const TAny* aSrc,
TDes8& aDest, TInt aOffset, TInt aMode);

static TInt ThreadRawRead(DThread* aThread, const TAny* aSrc,
TAny* aDest, TInt aSize);

static TInt ThreadDesWrite(DThread* aThread, TAny* aDest,
const TDesC8& aSrc, TInt aOffset, TInt aMode,

Thread* aOrigThread);
static TInt ThreadRawWrite(DThread* aThread, TAny* aDest,

const TAny* aSrc, TInt aSize,
DThread* aOrigThread=NULL);

Access to kernel variables
In this case, a variety of examples is worth a thousand words:

static TTimeK SystemTime();
static DPowerModel* PowerModel();
static DObjectCon* const *Containers();
static TSuperPage& SuperPage();
static TMachineConfig& MachineConfig();
static DThread& CurrentThread();
static DProcess& CurrentProcess();

190 KERNEL SERVICES

Key concrete classes
At this level, the Symbian OS kernel provides the abstractions of key kernel
objects such as DThread, DProcess, and DChunk. I discuss these in
detail in Chapter 3, Threads, Processes and Libraries and Chapter 7,
Memory Models.

5.4.2 Platform (or image) layer
5.4.2.1 Memory model

The memory model is the only module in the platform layer, because
this layer is essentially concerned with executable images on disk, and
processes in memory. This means that there are only two possibilities at
the platform layer: EPOC for a real mobile phone platform or WIN32 for
the emulator.

The platform layer provides static APIs to the independent layer in the
class P, which is defined in kern_priv.h. This is very short, so I’ll show
you all of it:

class P
{

public:
static TInt InitSystemTime();
static void CreateVariant();
static void StartExtensions();
static void KernelInfo(TProcessCreateInfo& aInfo,

TAny*& aStack, TAny*& aHeap);
static void NormalizeExecutableFileName(TDes& aFileName);
static void SetSuperPageSignature();
static TBool CheckSuperPageSignature();
static DProcess* NewProcess();
};

You can see that the platform layer takes part, as expected, in certain
key initializations. It starts the system clock (reading the system time
on Win32, the RTC on a mobile phone), starts the extensions (includ-
ing the variant) and then creates the actual variant object by calling
A::CreateVariant(). I will talk about this more in Chapter 16, Boot
Processes.

Key concrete classes
The most important class with a platform specific implementation
is the Symbian OS process, DProcess. The implementation is pro-
vided by the derived DEpocProcess class on the EPOC platform and
DWin32Platform on the emulator.

5.4.3 Model layer
5.4.3.1 Memory model

The model layer is the place in which we have isolated all the kernel’s
assumptions about memory hardware and layout. The main functions that

SERVICES PROVIDED BY THE KERNEL TO THE KERNEL 191

this layer provides are low-level memory management – how the MMU
is used and how the address space is configured.

Symbian OS currently supports four memory models – one for the
WIN32 platform (the emulator model) and three for the EPOC platform
(moving, multiple and direct). If you want to find out more, turn to
Chapter 7, Memory Models.

There are two static interfaces to the memory model. The first is defined
in the class Epoc, in platform.h. This is a common interface to all
EPOC memory models, which is provided for use by extensions and
device drivers. It looks like this:

class Epoc
{

public:
IMPORT_C static void SetMonitorEntryPoint(TDfcFn aFunction);
IMPORT_C static void SetMonitorExceptionHandler(TLinAddr aHandler);
IMPORT_C static TAny* ExceptionInfo();
IMPORT_C static const TRomHeader& RomHeader();
IMPORT_C static TInt AllocShadowPage(TLinAddr aRomAddr);
IMPORT_C static TInt FreeShadowPage(TLinAddr aRomAddr);
IMPORT_C static TInt FreezeShadowPage(TLinAddr aRomAddr);
IMPORT_C static TInt AllocPhysicalRam(TInt aSize, TPhysAddr& aPhysAddr,

TInt aAlign=0);
IMPORT_C static TInt FreePhysicalRam(TPhysAddr aPhysAddr, TInt aSize);
IMPORT_C static TInt ClaimPhysicalRam(TPhysAddr aPhysAddr, TInt aSize);
IMPORT_C static TPhysAddr LinearToPhysical(TLinAddr aLinAddr);
IMPORT_C static void RomProcessInfo(TProcessCreateInfo& aInfo,

const TRomImageHeader& aRomImageHeader);
};

You can see that this interface provides functions for allocating physical
RAM, for finding information in ROM, and for converting linear addresses
to physical ones.

The second interface to the memory model is in class M, in
kern_priv.h. This consists of functions provided by the memory model
to the independent layer. Here it is:

class M
{

public:
static void Init1();
static void Init2();
static TInt InitSvHeapChunk(DChunk* aChunk, TInt aSize);
static TInt InitSvStackChunk();
static TBool IsRomAddress(const TAny* aPtr);
static TInt PageSizeInBytes();
static void SetupCacheFlushPtr(TInt aCache, SCacheInfo& c);
static void FsRegisterThread();

192 KERNEL SERVICES

static DCodeSeg* NewCodeSeg(TCodeSegCreateInfo& aInfo);
};

You can see that this class mainly provides initialization functions that
the independent layer calls during startup.

Key concrete classes
At this level you can find model specific implementations of many
key Symbian OS classes. For example, DMemModelChunk derives from
DChunk and DMemModelThread derives from DThread. On the EPOC
platform the DMemModelProcess class derives from DEpocProcess,
which in turn derives from DProcess. On the emulator the concrete
class representing a process is DWin32Process, which derives directly
from DProcess.

5.4.4 CPU layer
5.4.4.1 Nanokernel and Symbian OS kernel

The CPU layer is where we make assumptions about the particular
processor we’re running on – is it X86 or ARM? This is the layer in which
you might expect to see some assembler making an appearance. In fact, a
sizable proportion of the code in the ARM CPU layer of the Symbian OS
kernel is actually independent layer functionality that has been assembler
coded for improved performance.

There are two static interfaces to the CPU layer nanokernel and
Symbian OS kernel. The first is provided in the class Arm, which is
defined in arm.h, and is an interface to the ARM CPU layer for the use
of the variant. (There is a similar class X86 for the X86 CPU layer.) The
Arm class looks like this:

class Arm
{

public:
enum {EDebugPortJTAG=42};
static void Init1Interrupts();
static TInt AdjustRegistersAfterAbort(TAny* aContext);
static void GetUserSpAndLr(TAny* /*aReg[2]*/);
static void SetUserSpAndLr(TAny* /*aReg[2]*/);
IMPORT_C static void SetIrqHandler(TLinAddr aHandler);
IMPORT_C static void SetFiqHandler(TLinAddr aHandler);
IMPORT_C static TInt DebugOutJTAG(TUint aChar);
IMPORT_C static TInt DebugInJTAG(TUint32& aRxData);
IMPORT_C static void SetCpInfo(TInt aCpNum,

const SCpInfo* aInfo);
IMPORT_C static void SetStaticCpContextSize(TInt aSize);
IMPORT_C static void AllocExtraContext(TInt aRequiredSize);
static void CpInit0();
static void CpInit1();

SERVICES PROVIDED BY THE KERNEL TO THE KERNEL 193

static Uint64 IrqStack[KIrqStackSize/8];
static Uint64 FiqStack[KFiqStackSize/8];
static Uint64 ExceptionStack[KExceptionStackSize/8];
}

You can see that a key use case is to allow the variant to install primary
interrupt dispatchers.

The second interface class, class A, provided in kern_priv.h, con-
tains CPU layer APIs that are called by both the memory model and
independent layer – but mainly the latter.

class A
{

public:
static void Init1();
static void Init2();
static void Init3();
static void DebugPrint(const TDesC8& aDes);
static void UserDebugPrint(const TText* aPtr, TInt aLen,

TBool aNewLine);
static TInt CreateVariant(const TAny* aFile);
static TInt NullThread(TAny*);
static DPlatChunkHw* NewHwChunk();
static TPtr8 MachineConfiguration();
static void StartCrashDebugger(const TDesC8& aDes, TInt aFault);
static TInt MsTickPeriod();
static TInt CallSupervisorFunction(TSupervisorFunction aFunction,

TAny* aParameter);
static TInt VariantHal(TInt aFunction, TAny* a1, TAny* a2);
static TInt SystemTimeInSecondsFrom2000(TInt& aTime);
static TInt SetSystemTimeInSecondsFrom2000(TInt aTime);
};

Again you can see that a large part of this interface’s purpose is to
assist at initialization time.

5.4.4.2 Memory model

The memory model also appears in the CPU layer. In fact, the bottom
layer of the memory model is both CPU- and MMU-specific, as well as
specific to the type of memory model.

The key class that the memory model provides is ArmMmu (or X86Mmu
on X86 processors). This class is derived from Mmu, which in its turn is
derived from MmuBase. The methods provided by this class allow the
standard MMU operations, such as the mapping and unmapping of pages,
the changing of page permissions and so on. Here are a few examples:

virtual void Map(TLinAddr aLinAddr, TPhysAddr aPhysAddr, TInt aSize,
TPde aPdePerm, TPte aPtePerm, TInt aMapShift);

194 KERNEL SERVICES

virtual void Unmap(TLinAddr aLinAddr, TInt aSize);
virtual void ApplyTopLevelPermissions(TLinAddr anAddr, TUint aChunkSize,

TPde aPermissions);

Key concrete classes
At this level, you can see MMU-specific portions of key Symbian OS
classes, namely DArmPlatThread, DArmPlatChunk and DArmPlat-
Process.

5.4.5 Variant layer
The variant provides the hardware-specific implementation of the control
functions expected by the nanokernel and Symbian OS kernel.

The class Asic, provided in assp.h, contains pure virtual APIs, which
are to be provided by the variant and called by the CPU layer. So, if you
are creating a variant, you would derive it from the Asic class:

class Asic
{

public:
// initialisation

virtual TMachineStartupType StartupReason()=0;
virtual void Init1()=0;
virtual void Init3()=0;

// debug
virtual void DebugOutput(TUint aChar)=0;

// power management
virtual void Idle()=0;

// timing
virtual TInt MsTickPeriod()=0;
virtual TInt SystemTimeInSecondsFrom2000(TInt& aTime)=0;
virtual TInt SetSystemTimeInSecondsFrom2000(Tint aTime)=0;
virtual TUint32 NanoWaitCalibration()=0;

// HAL
virtual TInt VariantHal(TInt aFunction, TAny* a1, TAny* a2)=0;

// Machine configuration
virtual TPtr8 MachineConfiguration()=0;
};

The variant provides other interfaces that are available for use by
device drivers and extensions. A key example is the Interrupt class
provided in assp.h:

class Interrupt
{

TIMERS 195

public:
IMPORT_C static TInt Bind(TInt aId, TIsr aIsr, TAny* aPtr);
IMPORT_C static TInt Unbind(TInt aId);
IMPORT_C static TInt Enable(TInt aId);
IMPORT_C static TInt Disable(TInt aId);
IMPORT_C static TInt Clear(TInt aId);
IMPORT_C static TInt SetPriority(TInt aId, TInt aPriority);
};

The variant performs interrupt dispatch for the system; the methods in
the Interrupt class allow device drivers and extensions to install their
own interrupt handlers.

The CPU layer can also provide hardware-specific implementations of
HAL functions, although these may equally be implemented in the kernel
itself or in an extension.

5.5 Timers

Timers are both a fundamental need for the functioning of EKA2, and a
service that EKA2 provides to its users. In this section, I will discuss the
detailed operation of nanokernel and Symbian OS timers.

5.5.1 Nanokernel timers

Earlier in this chapter, I said that nanokernel timers, NTimer, provide the
most fundamental system timing functions in the operating system. Let’s
look now at how they are implemented.

The main requirements for NTimer are:

• Timers can be started and stopped from any kernel code – ISRs, IDFCs
or threads, so the timer start and stop functions should have small
deterministic execution times

• It should be possible to generate periodic timers with no drift due to
delays in servicing the timer

• It should be possible to disable the timer tick if the CPU is expected
to be idle for several ticks without affecting the accuracy of the timed
intervals, to minimize system power consumption.

The timer queue uses 67 separate doubly linked lists. Of these, the 32
pairs of final queues hold timers that are due to expire within the next 32
ticks. Of the other three, one is used to support timers whose handlers
are called back in a DFC (the completed queue) and the other two (the

196 KERNEL SERVICES

holding queue and the ordered queue) hold timers which are due to
expire more than 32 ticks in the future.

The timer queue contains a tick count, which is incremented on every
tick interrupt. The tick count modulo 32 determines which of the 32 pairs
of linked lists is checked on that tick. One list of the pair holds timers
that require the handler to be called at the end of the tick ISR itself, and
the other holds timers that require the handler to be called from a DFC
following the tick interrupt. This second list, if non-empty, is appended to
the end of the completed queue and the timer DFC is queued to process
the callbacks. A 32-bit mask is also maintained – this corresponds to the
32 pairs of final queues, with one bit representing each pair. A bit is set
if either of the corresponding pair of final queues has an entry.

If a timer is queued for a time less than 33 ticks in the future, the kernel
just places that timer on the respective final queue. Timers that are queued
for more than 32 ticks in the future are placed on the holding queue in
FIFO order. Every 16 ticks, the tick interrupt service routine checks the
holding queue, and if it is not empty, queues the timer DFC. This transfers
any timers on the holding queue that are now due to expire in less than
33 ticks to their respective final queue. It transfers timers that still expire
in more than 32 ticks to the ordered queue. As its name implies, entries
on this queue always appear in increasing order of expiry time.

The timer DFC also drains the ordered queue. Every 16 ticks the
interrupt service routine checks the ordered queue; if this is non-empty
and the first entry expires in less than 33 ticks, then the ISR queues a
DFC. The DFC will then walk the ordered queue, transferring entries to
the final queues, until it reaches the end of the ordered queue or reaches
an entry that expires in more than 32 ticks.

The kernel uses the ordered queue, in combination with the bit mask
for the final queues and the holding queue, to determine the number of
ticks until the next timer queue operation. In fact, this would generally be
done in the null (idle) thread, just before it puts the CPU into idle mode.
The null thread can then disable the timer tick for that number of ticks,
allowing the CPU to sleep undisturbed for longer, and possibly allowing a
lower-power sleep mode to be used. The bit mask for final queues is used
to determine the number of ticks before the next final queue expiry. If the
holding queue is non-empty, the number of ticks before the sort operation
is calculated from the tick number – the sort operation is triggered if the
tick count is zero modulo 16. If the ordered queue is non-empty, the time
at which transfer of the first entry (that is, the one that expires first) to the
relevant final queue would occur is calculated. The minimum of these
three time values gives the number of ticks that can be skipped. It can be
seen that this calculation has a small, predictable execution time, which
is just as well since it will be done with interrupts disabled.

To be able to cancel timers, we need to keep track of which queue
a timer is on. Each timer has a state that gives this information, and the

TIMERS 197

following states are defined:

• Idle. The timer is not linked into any queue and is not currently set
to expire. However the expiry handler may actually be running. No
action is required to cancel a timer in this state

• Holding. The timer is linked into the holding queue. To cancel a
timer in this state, simply remove it from the holding queue

• Transferring. The timer is in transit from the holding queue to the
ordered queue. It is not actually linked into either. To cancel a timer
in this state, no dequeuing is needed, but a flag must be set to notify
the timer DFC that the timer currently being transferred has been
canceled. The timer DFC will then abort the transfer

• Ordered. The timer is linked into the ordered queue. To cancel a
timer in this state, simply remove it from the ordered queue

• Critical. The timer is linked into the ordered queue and is currently
being inspected by the timer DFC while transferring another timer
from the holding queue to its correct position on the ordered queue.
To cancel a timer in this state it is removed from the ordered queue
and a flag is also set to notify the timer DFC that the current critical
timer has been canceled. The timer DFC will then restart the sort
operation

• Final. The timer is linked into the final queue corresponding to its
expiry time. To cancel a timer in this state, first remove it from the
queue, then check the two final queues corresponding to the expiry
time of the timer being canceled; if both are now empty, clear the
corresponding bit in the iPresent bit mask.

Timers for less than 32 ticks in the future will simply transition from Idle
to Final, whereas timers for longer periods will generally transition
through all these states.

When a timer expires, we set its state back to Idle just before call-
ing the timer handler. This means that care needs to be taken when
canceling a timer whose expiry handler runs in the timer DFC. If the
thread calling Cancel() has a priority above the timer DFC thread
or Cancel() is called from an ISR or IDFC then Cancel() may
occur during the execution of the timer handler. Since the state has
been set back to Idle, the cancel will not do anything. If the mem-
ory containing the timer control block is now freed and reassigned to
something else, contention may occur with the expiry handler. This is
not usually a problem since threads of such high priority will not usually
delete objects. It would, however, be a problem on an SMP system
since the canceling thread could overlap the handler even if it had a
lower priority.

198 KERNEL SERVICES

We provide two functions to start a nanokernel timer:

OneShot(aTime, aDfc)
This sets a timer for aTime ticks from now. If aDfc is TRUE, the callback
occurs in the context of the timer DFC, otherwise it occurs in the timer ISR.

Again(aTime)
This sets a timer for aTime ticks from its last expiry time. This is used
to implement periodic timers that are immune to delays in processing
the timer callbacks. The callback occurs in the same context as the
previous one.

Summary of nanokernel timer control block:

Field Description

iNext, iPrev Link pointers for linking the timer into timer queues.

iPtr Argument passed to callback function when timer completes.

iFunction Pointer to timer expiry handler function.

iTriggerTime Number of the tick at which timer is due to expire.

iCompleteInDfc Boolean flag – TRUE means run timer expiry handler in DFC,
FALSE means run it in ISR.

iState Indicates which queue the timer is currently linked into, if
any, and whether the timer is currently being moved.

Summary of nanokernel timer queue control block:

Field Description

iTickQ[32] 32 pairs of linked lists, one pair corresponding
to each of the next 32 ticks. One of the pair
holds timers to be completed in the tick ISR
and the other holds timers to be completed in
the timer DFC.

iPresent Bit mask corresponding to iTickQ[32]. Bit n
is set if and only if iTickQ[n] is
non-empty – that is at least one of the two
linked lists is non-empty.

TIMERS 199

Field Description

iMsCount The number of the next tick.

iHoldingQ Queue of timers that expire more than 32 ticks
in the future, ordered by time at which timers
were queued.

iOrderedQ Queue of timers that expire more than 32 ticks
in the future, ordered by expiry time.

iCompletedQ Queue of timers that have expired and are
waiting to have their handlers called back in
the timer DFC.

iDfc DFC used to transfer timers between queues
and to call back handlers for timers requiring
DFC callback.

iTransferringCancelled Boolean flag set if the timer that is currently
being transferred from iHoldingQ to
iOrderedQ is canceled. Cleared when a new
timer is removed from iHoldingQ for transfer
to iOrderedQ.

iCriticalCancelled Boolean flag set if the timer on the ordered
queue that is currently being inspected during a
sort is canceled. Cleared when the sort steps on
to a new timer.

iDebugFn Only used for testing/debugging.

iDebugPtr Only used for testing/debugging.

iTickPeriod The period of the nanokernel timer tick in
microseconds.

iRounding Spare entry for use by the ASSP/variant code
involved in generating the tick interrupt.

Figure 5.4 gives an approximate overview of the nanokernel timer and
shows how it fits with the Symbian OS tick timer, which I will cover in
the next section. To the left of the figure, you can see the control block of
the nanokernel timer, which has pointers to the final timer queues (timers
due to expire in less than 32 ticks) and pointers to the holding queue and

200 KERNEL SERVICES

A new Tick Timer is
requested

iHoldingQ

iOrderedQ

iTickQ[32]

Present

iMsCount >0

iCompletedQ

iDFC

iDebugFn

iCriticalCancelled 0/1

iTransferringCancelled 0/1

iRounding

iTickPeriod

iDebugPtr

Nano Timer Control Block

ISR NTimer 5 DFC NTimer 11 DFC NTimer 12

ISR NTimer 4 DFC NTimer 10 ISR NTimer 3

0 0 0 0 0 0 1 10 0 0 0 0 0 0 0 0 1 0 1 0 1
63, 62, 614, 3, 2, 1, 0

Time

ISR NTimer 2

DFC NTimer 8 DFC NTimer 9

DFC NTimer 7
ISR NTimer 1

DFC NTimer 4 DFC NTimer 5 DFC NTimer 6

DFC NTimer 1 DFC NTimer 2 DFC NTimer 3

Start DFC

End DFC

Drain Holding queue, moving entried
>32 ms ahead to time ordered

queue, and entries <32 ms to Final
Timer queues

Drain head of Ordered queue to final
queues, until entries >32 ms ahead

Drain Completed queue, executing
Timer callback for each

NTimer callback

Callback schedules Symbian OS
Timer DFC

End Callback

Symbian OS Timer DFC

Drain TTickQ, calling the callbacks

Reschedule next NTimer for next
Tick Timer event

End DFC

Tick Timers

iNext, iPrev

iLastDelta

iLastTicks

iRtc

iTickPeriod

iTicksPerSecond

iNominalTickPeriod

iInTick

iRounding

iPrevRounding

iLastMs

iMsTickPeriod

iTickDfc

iMsTimer

Symbian Timer 1 Symbian Timer 2 Symbian Timer 3

Symbian OS Tick Timer Control Block

0

31

iOrderedQ is kept in time order

KEY

Data pointer

Elaboration

Movement

Execution flow

0 1

3
2

4

8

5

7

C

A

E F

69

B

D

Final Timer Queues

DFC
based

ISR
based

Time

Some Callbacks will
be used to implement

Tick Timers

<32 ms away

<32 ms away

New timer set
>32 ms away

New timer set
<32 ms away

An NTimer is
scheduled for the

next Tick timer
event

DFC queued to
call timer back

Timer
completed

IMsCount++
mod 32

Check every
1 ms

Check every
16 ms

Queue DFC if
move neeeded

DFC for queue
transfer and

callback

>32 ms away

Figure 5.4 Nanokernel timers

ordered queue, for timers that are further in the future. You can also see
how Symbian OS tick timers interact with nanokernel timers – the head of
a doubly linked list of ‘‘SymbianTimers’’ (actually TTickLink objects)
is used to schedule a nanokernel timer for the next tick timer event.

TIMERS 201

The figure also shows how DFCs drain the nanokernel timer queues,
with some of the callbacks being used to schedule Symbian OS tick
timers – which I’ll discuss next.

5.5.2 Symbian OS tick timers

Tick timers are general-purpose interval timers that are used where there
is no need for high resolution or great accuracy. They correspond to the
timing functions available to user-side code on EKA1. We represent a
tick timer using a TTickLink object, which I will describe in detail
later in this section. We keep active TTickLink objects on a doubly
linked queue in order of expiry time. This queue is contained in a single
TTickQ object instance, along with other global state related to Symbian
OS timers. Adding TTickLinks to this queue is an O(N) operation so
we use a mutex, TTickQ::Mutex, to protect the queue.

The tick queue operates according to a notional ‘‘Symbian OS nominal
tick’’ which has a period of 15.625 ms (64 Hz frequency) – that is, the
behavior is the same as that which would be obtained by using a 64 Hz
periodic tick interrupt. In fact there is no such periodic tick – instead
a single NTimer is used to trigger expiry of TTickLink timers. It is
always set to expire either when the first TTickLink should expire or in
65536 Symbian OS ticks (1024 seconds), whichever is the sooner. The
limit is imposed to ensure that differences calculated in microseconds
never overflow a 32-bit signed quantity. When the NTimer expires, it
activates a DFC that runs in the Symbian OS timer thread (TimerThread).
This DFC dequeues and calls handlers for any TTickLink timers that
have expired, and then requeues the NTimer for the next TTickLink
timer expiry. The timer mutex is acquired at the beginning of the DFC
and released at the end, so the mutex is held while the expiry handlers
are called.

Under this system, adding a new TTickLink to the queue will
in general mean that we need to requeue the NTimer if the new
timer expires earlier than the previous earliest timer. The exception
to this rule is if the TTickLink is added from another TTickLink
expiry handler; in this case the main DFC routine will requeue the
NTimer after all TTickLink expiry handlers for this tick have been
called. We use the TTickQ::iInTick flag to indicate that the DFC
is in progress; it is set by the DFC after acquiring the timer mutex,
so the code to add a TTickLink (which also runs with the timer
mutex held) will see it set if and only if called from the tick DFC
itself.

We’ve seen that the usual NTimer resolution is 1 ms, which means
that a period of 15.625 ms cannot be generated exactly. And, of course,
the NTimer resolution may not be 1 ms for manufacturer/device-specific
reasons. Hence the TTickLink timer queue uses a ‘‘pulse swallowing’’

202 KERNEL SERVICES

type algorithm – it sets up the NTimer to generate intervals that are a
multiple of 1 ms, such that the average period of the Symbian OS tick
is 15.625 ms. For example, if a periodic TTickLink were active with
a period of 1 nominal Symbian OS tick, the NTimer would actually
trigger at either 15 ms or 16 ms intervals with five out of every eight
intervals being 16 ms and the other three out of eight being 15 ms. This
works by calculating the required NTimer interval in microseconds and
accumulating the error incurred in rounding to the period of NTimer.
The error is taken into account on the next calculation. In addition,
we use the zero-drift mode of NTimer, where the interval is timed
relative to the last timer expiry. In fact the Symbian OS timers are all
calculated relative to the last such expiry. A count of nominal ticks
is maintained to support the User::TickCount() function and a
similar count is maintained to serve as universal time. These counts
are updated at the beginning of the DFC that services the TTickQ.
The nanokernel tick count at which the NTimer triggered is saved
and the tick count and RTC count are incremented by the number of
nominal ticks elapsed between this and the previous NTimer expiry.
To obtain the current universal time in microseconds since 00:00:00
01-01-0AD (standard Symbian OS time storage format), we use the
following formula:

iRtc*iNominalTickPeriod + (NTickCount()-iLastMs-1)*NTimer period

where NTickCount() is the current NTimer tick count and the other
fields are defined in the tables below. The extra −1 in the second term
is due to the fact that NTickCount() is incremented immediately after
determining which timers to complete. This scheme allows the system
time to be obtained to a 1 ms resolution (or whatever the resolution of
NTimer is on a particular platform).

Summary of fields in TTickLink:

Field Description

iNext, iPrev Link pointers used to attach this object to the system
tick timer queue (TTickQ).

iDelta Number of OS ticks between the expiry of this timer
and the expiry of the following one (pointed to by
iNext). Never negative, but could be zero for timers
expiring at the same time.

iPeriod Period of this timer in OS ticks or zero for a one-shot
timer.

TIMERS 203

Field Description

iPtr Argument passed to callback function when this
timer expires.

iCallBack Pointer to function to be called when this timer
expires.

iLastLock If this timer is being used to implement a Symbian
OS ‘‘locked’’ timer, this holds the value of
TTickQ::iRtc at the last expiry of this timer. If this
timer is not being used for a locked timer or has not
yet expired, this value is −1.

Summary of fields in TTickQ:

Field Description

iNext, iPrev Link pointers used to point to first and last entries on a time-ordered
queue of TTickLink objects.

iLastDelta Number of OS ticks which elapse between the last tick timer expiry and
the time when iMsTimer next triggers – used to increment
iLastTicks and iRtc.

iLastTicks OS tick count at point when iMsTimer last triggered.

iRtc The absolute time at the point when iMsTimer last triggered, measured
in nominal OS ticks from 00:00:00 1st January 0AD.

iTickPeriod The current actual length of an OS tick in microseconds. This may differ
from the nominal tick period if a tracking system is being used to make
the iRtc value follow a hardware RTC. This value may change as a
result of the operation of any such tracking system.

iTicksPerSecond Number of nominal OS ticks in one second of elapsed time.

iNominalTickPeriod The nominal length of an OS tick in microseconds. This value is never
changed, unlike iTickPeriod.

iInTick Boolean flag set to indicate that processing of the tick queue initiated by
iMsTimer expiry is underway.

iRounding The number of microseconds added to the last delta value when
iMsTimer was last set up in order to make the period an integral
number of nanokernel timer ticks.

204 KERNEL SERVICES

Field Description

iPrevRounding The value of iRounding at the point where iMsTimer last triggered. Each time
the timer is queued, iPrevRounding is used in the calculation of when the
timer should trigger and the rounding applied to that time to obtain an integral
number of nanokernel ticks is stored in iRounding.

iLastMs The nanokernel tick count at which iMsTimer last triggered.

iMsTickPeriod The period of the nanokernel tick in microseconds.

iTickDfc DFC queued by the expiry of iMsTimer. Runs in context of TimerThread and
processes any Symbian OS timers which have just expired.

iMsTimer Nanokernel timer used to initiate Symbian OS timer processing. It is always
queued to trigger at the time when the next TtickLink timer should expire.

5.5.2.1 Second timers

Second timers are used when an event needs to occur at a specific
date and time of day rather than after a specified interval, and are
typically used for system alarms. They have a resolution of 1 sec-
ond. They will also power up the system at the expiry time if they
need to.

We represent a second timer by a TSecondLink object and attach
active timers to a TSecondQ absolute timer queue object, of which a
single instance exists. Each TSecondLink stores the absolute time at
which it should trigger (measured in nominal OS ticks from 00:00:00 1st

January 0AD UTC) and they are linked into the queue in chronological
order of expiry time, earliest first. The second timer queue is driven
from the tick timer queue. It contains a TTickLink timer which is set
to expire at either the trigger time of the first TSecondLink on the
queue or at the next midnight local time, whichever is the earlier. When
this TTickLink timer triggers, it calls back the handlers for TSec-
ondLink timers that have expired, and then requeues the TTickLink
timer. The same mutex (timer mutex) is used to protect the TTickQ and
TSecondQ objects, and the handlers are called with the timer mutex
held. We use the expiry at midnight to signal change notifiers that
midnight crossover has occurred. In a similar way to TTickQ, when
a new TSecondLink is queued, the TTickLink timer may need to
be canceled and requeued, unless it is queued from inside the TSec-
ondQ expiry handler. Again we use an iInTick field to indicate the
latter condition.

TIMERS 205

Summary of fields in TSecondLink:

Field Description

iNext, iPrev Link pointers used to attach this object to the system absolute timer
queue (TSecondQ).

iTime The absolute time when this timer should trigger, measured in
nominal OS ticks from 00:00:00 1st January 0AD.

iPtr Argument passed to callback function when this timer expires.

iCallBack Pointer to function to be called when this timer expires.

Summary of fields in TSecondQ:

Field Description

iNext, iPrev Link pointers used to point to first and last entries in a time-ordered
queue of TSecondLink objects.

iExpired Boolean flag set when any TSecondLink timer expires and cleared by
the power model just before initiating the machine power down
sequence. Used by the power model to abort power down if an
absolute timer expires during the power-down sequence.

iInTick Boolean flag set to indicate that processing of the second timer queue
initiated by iTimer expiry is underway.

iNextTrigger The absolute time when iTimer will next trigger, measured in
nominal OS ticks from 00:00:00 1st January 0AD.

iMidnight The absolute time of the next midnight, measured in nominal OS ticks
from 00:00:00 1st January 0AD.

iTicksPerDay Number of nominal OS ticks in 1 day.

iTimer TTickLink timer object used to initiate second queue timer
processing. It is always queued to trigger either at the time when the
next TSecondLink timer should expire or at the next midnight,
whichever is earlier.

iWakeUpDfc DFC used to restart the TTickQ and TSecondQ following machine
power down and power up and changes to the system time.

206 KERNEL SERVICES

5.6 Summary

In this chapter, I have described the wide variety of services that EKA2
provides, both to user-mode threads and within the kernel too. I have
also described the basic objects used by the kernel, and the handle
mechanism used to identify them.

A key part of the executive call was the SWI instruction, or software
interrupt, used to switch the processor from user mode to supervisor
mode. In the next chapter, I will look at software interrupts – and hardware
interrupts, exceptions, faults and traps – in more detail.

6
Interrupts and Exceptions

by Dennis May

Einstein argued that there must be simplified explanations of nature,
because God is not capricious or arbitrary. No such faith comforts the

software engineer.

Fred Brooks

When talking about microprocessors, we use the term exception to
refer to any event, other than the execution of explicit branch or jump
instructions, which causes the normal sequential execution of instructions
to be modified. On processor architectures with multiple privilege levels,
these events typically cause a transition from a less privileged execution
level to a more privileged one.

On the types of processor that run Symbian OS, there are many events
that cause exceptions. These events form six categories, which I will
describe in the next six sections of this chapter. Although the words
used to describe the categories are the same throughout the computer
industry, their exact meanings tend to differ – so, even if you are familiar
with this subject, please do skim these next few sections. In Symbian, we
categorize the events from the perspective of the software event handlers,
so our terms will probably not match the categories given by people who
define them from a processor architecture perspective.

Whenever an exception occurs, the processor stops what it was doing,
and begins execution in a defined state from a (new) defined location.
But before doing so, it may save some information, such as the program
counter, to allow the original program flow to be resumed. Whether this
occurs, and how much information is saved, depends on the nature of
the exception. I will say more on this later.

6.1 Exception types
6.1.1 Interrupts

An interrupt is an exception that is not caused directly by program
execution. In most cases, hardware external to the processor core signals

208 INTERRUPTS AND EXCEPTIONS

an interrupt – for example, peripheral devices indicate that they have
data available or require data to be supplied. What differentiates an
interrupt from other exceptions is that it occurs asynchronously to program
execution; in other words, it is not caused by the sequential execution of
an instruction. Usually an interrupt is serviced as soon as the currently
executing instruction is complete, although on some processors interrupts
may occur in the middle of an instruction, and on others not every
instruction can be followed by an interrupt.

Whenever an interrupt occurs the processor must save enough state to
allow the interrupted program to be resumed and to continue execution
precisely as if the interrupt had never occurred. This state always includes
the program counter, which specifies the address of the instruction that
would have been executed next, had the interrupt not occurred. The
saved state also includes the processor status and the condition code
register, which contains the interrupt mask level in effect at the time
the interrupt occurred. The processor will then disable interrupts whose
priority is lower than or equal to that of the one accepted.

Interrupts may be maskable or non-maskable. Maskable interrupts can
be disabled by software; they are then held pending until software enables
them again. There is no way to turn off non-maskable interrupts – they
are always recognized by the processor.

Although the way in which the processor handles interrupts and other
exceptions may be similar, the asynchronous nature of interrupts means
that their software handlers are very different. In this book, I will always
use the term exception to mean any exception other than an interrupt,
and I will always refer to interrupts explicitly by name.

6.1.2 Resets
A reset causes the processor to reinitialize its whole state, and to start
execution from a known location in memory. For example the ARM
processor will disable all interrupts, enter supervisor mode and fetch the
first instruction to be executed from physical address 0.

Most processors do not save any information about the program that
was executing when the reset happened – all of the processor’s state is
wiped clean. However, on some processors, this is not the case – the
processor only initializes enough state to allow it to deterministically
execute a boot sequence.

Resets may be caused by hardware, for example when power is first
applied to the system, or by software, for example when an unrecoverable
error is detected.

6.1.3 Aborts
An abort is an exception that occurs because of an unrecoverable error.
The processor may save some information relating to previous program

EXCEPTION TYPES 209

execution, but this can only be used for diagnostic purposes and does
not allow the kernel to recover the situation and continue execution of
the program.

Aborts occur if the programmer accesses nonexistent or unmapped
memory. They also occur when there is inconsistent processor state due
to a system programming error. An example of this happens on an IA-
32 processor if the programmer loads the ring 0 stack pointer with an
invalid address. Any attempt to use the stack would then cause a stack
fault exception. However, the processing of this exception requires that
information be pushed onto the ring 0 stack, which is invalid. This is a
system programming error.1

Depending on the nature of the error, an abort may be handled by the
processor as a reset or it may be handled in software. Aborts due to incor-
rect physical addresses will be handled in software, since it is possible that
the fault could be localized to a single program. However aborts due to
inconsistent processor state, such as the example given, cannot be recov-
ered by software and so are handled as a reset. In fact IA-32 processors
will halt in the case of the stack fault example given and external logic will
then reset the system. If the abort is handled in software, then the oper-
ating system may deal with it either by terminating the currently running
program or by triggering a software reset of the system. Symbian OS deals
with aborts by terminating the current thread of execution if it is a user
thread or by rebooting the system if the abort occurs in kernel-side code.

6.1.4 Faults
A fault is an exception that occurs during instruction execution, signifying
an error that may be recoverable – unlike an abort. The operating system
can attempt to rectify the cause of the fault and then retry the instruction.

An example of this is a page fault. Suppose an instruction references
a virtual memory address that is not currently mapped to any physical
memory page. An operating system that supports demand paging (any of
the common desktop operating systems) will first check that the virtual
address accessed is valid; if it is, it will load the page containing the
address referenced from backing store, and then retry the instruction.

6.1.5 Traps
A trap is an exception that replaces execution of a particular instruction.
The usual recovery action ends with program execution resuming at the
instruction after the one that caused the trap.

1 Another example can occur on processors such as the Motorola MCore M340 and the
Renesas SuperH, on which there are dedicated registers for handling exceptions. Whenever
an exception occurs, the processor flags these registers as in use and disables interrupts. The
system software must mark the registers as free after saving them and can only re-enable
interrupts after this. If another exception occurs while the registers are still marked as in use,
the processor treats this as an abort, because of the inconsistent processor state.

210 INTERRUPTS AND EXCEPTIONS

An example of this is an undefined instruction. This can be used to
aid the emulation of coprocessors or other hardware blocks that are not
physically present in the device. The instructions that normally access the
coprocessor or hardware will be treated as undefined instructions and
cause an exception; the exception handler emulates the missing hardware
and then program execution resumes after the trapped instruction.

6.1.6 Programmed exceptions
Programmed exceptions result from the execution of specific instruc-
tions whose sole purpose is to cause an exception. These are of great
importance to the functioning of an operating system. On a processor
with multiple privilege levels, application code usually runs at the lowest
privilege level, and the kernel of the operating system runs at the highest
privilege level. How then can an application call the operating system
to perform some task for it? The application cannot execute kernel code
using a standard call mechanism – instead it must cause an exception,
which executes at the highest privilege level. Programmed exceptions are
the means by which application code gains access to operating system
functionality, and for this reason they are also known as system calls.

When a system call is made, a call number is supplied – either as
part of the instruction opcode that causes the exception (for example the
ARM SWI instruction has 24 bits available for this), or in a register. The
exception handler uses this to index into the kernel’s system call table
to locate the address of the required kernel function. Enough processor
registers will be saved to make the system call appear as a standard
C function call, although this register saving may be split between the
kernel-side exception handler and a user-side shim2 which contains the
programmed exception instruction. For more details, please turn back to
Chapter 5, Kernel Services.

6.2 Exceptions on real hardware

In the following sections, I describe in detail the types of exception that
can occur on real hardware, and how they are handled on the ARM and
Intel IA-32 (also known as X86) processor architectures.

6.2.1 ARM
The ARM architecture uses banked registers and a fixed-size, fixed-
address vector table to deal with exceptions. In ARM terminology, there
are seven execution modes:

2 A shim is a small section of code which simply passes control to another piece of code
without doing any work itself other than possibly some rearrangement of parameters.

EXCEPTIONS ON REAL HARDWARE 211

1. User (usr). This is the only non-privileged mode – that is, certain
instructions cannot be executed in user mode, and the MMU will
block access to memory regions which are set up for privileged
access only. User mode is entered explicitly by executing any of the
instructions that write to the mode bits of the CPSR. Once the CPU is
executing in user mode, only an exception can cause a transition to
another mode. Under Symbian OS the majority of code (everything
other than the kernel, device drivers and board support package
code) executes in user mode.

2. System (sys). This is the only privileged mode that is not entered by
an exception. It can only be entered by executing an instruction that
explicitly writes to the mode bits of the CPSR. It is exited either by
writing to the mode bits of the CPSR or by an exception. Symbian OS
does not use system mode.

3. Supervisor (svc). This is a privileged mode entered whenever the
CPU is reset or when a SWI instruction is executed. It is exited either
by writing to the mode bits of the CPSR or by an exception other than
reset or SWI. With the exception of interrupt service routines and
most of the exception preambles, all Symbian OS kernel-side code
executes in supervisor mode.

4. Abort (abt). This is a privileged mode that is entered whenever a
prefetch abort or data abort exception occurs. Symbian OS makes
only minimal use of this mode – the exception preamble switches to
supervisor mode after saving a small number of registers.

5. Undefined (und). This is a privileged mode that is entered whenever
an undefined instruction exception occurs. Symbian OS makes only
minimal use of this mode – the exception preamble switches to
supervisor mode after saving a small number of registers.

6. Interrupt (irq). This is a privileged mode that is entered whenever
the processor accepts an IRQ interrupt. Under Symbian OS, service
routines for IRQ interrupts execute in this mode, unless nested
IRQs are supported. IRQ mode is exited either by writing to the
CPSR, for example when returning from the interrupt, or if another
exception occurs, for example an FIQ interrupt preempting the IRQ
service routine.

7. Fast Interrupt (fiq). This is a privileged mode that is entered whenever
the processor accepts an FIQ interrupt. Under Symbian OS, service
routines for FIQ interrupts execute in this mode. FIQ mode is exited
either by writing to the CPSR, for example when returning from the
interrupt, or if another exception occurs. Under Symbian OS, this
last case should never happen, because prefetch aborts, undefined
instructions and SWIs are prohibited in interrupt service routines, and
all interrupts are masked during an FIQ service routine.

212 INTERRUPTS AND EXCEPTIONS

The low 5 bits of the status register (CPSR) determine which mode is
currently active. ARM supports two privilege levels – privileged and non-
privileged. All execution modes except user mode are privileged. The
ARM architecture supports 16 general purpose registers, labeled R0–R15.
However, an instruction referring to one of these registers does not always
access the same physical register. Accesses to registers R8–R14 refer to
different physical registers depending upon the current execution mode.

Figure 6.1 illustrates which physical registers are accessed in each
execution mode. You can see that R0–R7 are the same across all
modes – the user mode registers are always used. We say that R0–R7 are
never banked.

R13 and R14 are banked across all modes apart from system mode –
each mode that can be entered because of an exception has its own R13

R0

R1

R2

R3

R4

R5

R6

R8

R9

R8_fiq

R9_fiq

R10

R11

R10_fiq

R11_fiq

R12 R12_fiq

R13_fiq

R14_fiq

R13

R14

R13_irqR13_undR13_abtR13_svc

R14_irqR14_undR14_abtR14_svc

R15 = PC

CPSR

SPSR_fiqSPSR_irqSPSR_undSPSR_abtSPSR_svc

usr sys svc abt und irq fiq

R7

Figure 6.1 ARM registers

EXCEPTIONS ON REAL HARDWARE 213

and R14. These registers generally hold the stack pointer and the return
address from function calls respectively.

Also, each mode that can be entered by an exception has a SPSR
(saved processor status register).

The actions taken by ARM CPUs on recognizing an exception are:

1. For exceptions other than resets, the CPU saves the return address
from the exception in the banked R14 for the respective exception
mode

2. For exceptions other than resets, the CPU copies the current value of
the CPSR to the SPSR for the respective exception mode

3. The CPU changes the execution mode to that appropriate for the type
of exception

4. The CPU disables normal (IRQ) interrupts. If it is processing an FIQ
(fast interrupt) it disables FIQs, otherwise it leaves them enabled

5. The CPU continues execution at the vector address for the exception
concerned. It always starts execution in ARM (not Thumb) mode.
This means that the first part of the exception handler must be written
in 32-bit ARM instructions rather than 16-bit Thumb instructions. Of
course the handler can change to Thumb mode if it wishes.

Figure 6.2 illustrates these actions.

0x00000018

PC

R14_irq SPSR_irq

modeTICPSR F

1 0 0x12

Figure 6.2 ARM CPU response to IRQ interrupt

When an exception is recognized, the processor only saves the return
address and CPSR. Of course an exception handler will need to make
use of some working registers too. The software handler must save these
on the stack, and then restore them from the stack before returning from
the exception. The banked R13 ensures that the exception handler has
access to a valid stack area to which it can save its working registers.

The following table lists all the exceptions supported by the ARM
architecture, along with the execution mode into which the exception
puts the processor and the vector address for the exception:

214 INTERRUPTS AND EXCEPTIONS

Exception Mode Vector Category

Reset svc 0 × 00 Reset

Undefined Instruction und 0 × 04 Fault, Trap or Abort

SWI svc 0 × 08 Programmed Exception

Prefetch Abort abt 0 × 0C Fault or Abort

Data Abort abt 0 × 10 Fault or Abort

IRQ irq 0 × 18 Interrupt

FIQ fiq 0 × 1C Interrupt

As you can see in the previous table, the ARM core directly supports
only two interrupt sources. External logic drives two signals, IRQ and
FIQ, to signal these interrupts. FIQ has a higher priority than IRQ; if both
are asserted simultaneously the FIQ is recognized first. What is more, IRQ
interrupts are masked when an FIQ is recognized but FIQ interrupts are
not masked when an IRQ is recognized. This means that FIQ interrupts
can usually interrupt the service routine for an IRQ interrupt. Registers
R8–R12 are banked for FIQ mode, which allows some FIQ interrupts to
be serviced without the need to save working registers on the stack. This
reduces the time taken to service the interrupt.

For most systems, and certainly for systems running Symbian OS,
more than two interrupt sources are required. Because of this, we use an
external interrupt controller. This accepts a number (typically 32 to 128)
of interrupt signals from various peripherals.

The interrupt controller may provide the following services:

• Allow individual interrupt sources to be masked

• Allow the processor to look in one central place to discover which
sources are currently pending

• Allow each source to be routed to either the IRQ or FIQ input to the
processor

• Allow edge-triggered inputs to be latched before being fed to the
processor.

The interrupt controller asserts the IRQ input to the processor if any
interrupt source is:

1. Pending

EXCEPTIONS ON REAL HARDWARE 215

2. Not masked

3. Routed to IRQ.

A similar rule applies to FIQ. On accepting an interrupt, the processor
must check the interrupt controller to discover which sources are both
pending and enabled. It then applies a software prioritization scheme to
select one of these to be serviced. When the service routine completes,
the procedure is repeated and another interrupt may be serviced. This
continues until there are no more pending interrupts.

6.2.2 Intel IA-32
Most RISC processors use exception handling schemes similar to the
one I described for ARM, in which special registers are used to hold
return information from exceptions. The IA-32 architecture, coming from
a CISC heritage, handles exceptions differently. The IA-32 architecture
has an explicitly designated stack pointer register, ESP, along with special
instructions that reference the stack (PUSH and POP). When it recognizes
an exception, an IA-32 processor will push the return address and return
status register onto the stack.

Before I go on to talk about IA-32 exception handling, it might be useful
if I describe IA-32 memory addressing. Since Symbian OS runs in IA-32
protected mode, I will only cover that mode here. IA-32 protected mode
uses a two-component memory address consisting of a segment selector
and a 16- or 32-bit offset. The segment selector is specified by one of six
16-bit segment selector registers, as shown in the following table:

Register Name Description

CS Code Segment Specifies the segment for all instruction fetches.
EIP specifies the offset component for instruction
fetches.

SS Stack Segment Specifies the segment for all explicit stack
instructions, including subroutine calls and returns
and exception handling. ESP specifies the offset for
explicit stack operations.

DS Data Segment Specifies the segment for data memory references
other than those to the stack.

ES Extra Segment Specifies the segment for data memory references
which explicitly indicate that ES is to be used.

FS Second Extra Segment Similar to ES.

GS Third Extra Segment Similar to ES.

216 INTERRUPTS AND EXCEPTIONS

The segment selectors are interpreted as follows:

• Bits 0 and 1 are known as the requestor privilege level (RPL) of the
selector

• Bit 2 specifies whether the selector is local (1) or global (0). Symbian
OS uses only global selectors

• Bits 3–15 form a 13-bit index into a descriptor table.

Bits 3–15 of the selector point to an 8-byte entry in the global descriptor
table (GDT), which gives the base address of the segment, its size,
privilege level and type (code, data, system information).

We find the effective memory address by adding the segment base
address from the GDT entry to the 16- or 32-bit offset. This effective
address is known as a linear address in IA-32 terminology. If paging is
disabled, it is used directly as a physical address, but if it is not, then it is
translated to a physical address using the page tables.

The IA-32 architecture supports four privilege levels (also known as
rings). Level 0 is the most privileged; all instructions and resources are
available at this level. Level 3 is the least privileged; application code
usually runs at this level.

The RPL of the selector currently in CS is known as the current priv-
ilege level (CPL) and specifies the privilege level of the code that is
currently executing. For segment registers other than CS, the RPL indi-
cates the privilege level of the code that originated the selector – hence
the name, requestor privilege level. So the RPL may not be the same
as the CPL of the code currently executing – for example the selector
may have been passed in as an argument from less privileged code.
The kumem functions use this method to ensure that user code is not
allowed to write with kernel privileges; see Section 5.2.1.5 for more
on this.

Symbian OS uses five segments and only privilege levels 0 and 3.
We have one level 0 code segment and one level 0 data segment, both
covering the entire 4GB linear address space. We also have one level
3 code segment and one level 3 data segment, each covering the lower
3GB of linear address space. Finally, we have a single task state segment,
which I will describe later in this chapter.

Returning to IA-32 exception handling, each exception other than
reset has an 8-bit vector number associated with it. Numbers 0 to 31
are reserved for standard exceptions such as interrupts, page faults and
division-by-zero, as described in the following table of all supported
exceptions on IA-32 architectures.

EXCEPTIONS ON REAL HARDWARE 217

Vector Description Category Error
code

– Reset Reset –

0 Division by zero Abort No

1 RESERVED

2 Non-maskable Interrupt (NMI) Interrupt No

3 Breakpoint Programmed
Exception

No

4 Overflow Abort No

5 Out of bounds (BOUND instruction) Abort No

6 Invalid opcode Trap or Abort No

7 Device not available Fault or Abort No

8 Double Fault Abort Yes

9 RESERVED

10 Invalid Task State Segment (TSS) Abort Yes

11 Segment not present Fault or Abort Yes

12 Stack segment error Abort Yes

13 General protection error Abort Yes

14 Page Fault Fault or Abort Yes

15 RESERVED

16 Floating point error Trap or Abort No

17 Alignment check error Abort Yes

18 Machine check error (Pentium and later) Abort No

19 SIMD Floating point exception (Pentium III and
later)

Trap or Abort No

20–31 RESERVED

32–255 User defined exception; either hardware
interrupt signaled via the INTR line or execution
of INT instruction

Programmed
Exception or
Interrupt

No

218 INTERRUPTS AND EXCEPTIONS

When an exception is recognized, the processor uses the vector
number to index the interrupt descriptor table (IDT). This is a table of
8-byte entries whose linear base is stored in the IDTR register. Each entry
contains one of the following:

• A task gate; these are not used by Symbian OS

• A trap gate; this specifies a new CS and EIP indicating an address to
which instruction execution should be transferred

• An interrupt gate; this is the same as a trap gate apart from the interrupt
mask behavior.

Since a new CS selector is specified, a change of privilege level can
occur when an exception is handled. The processor will not permit an
exception to transfer control to a less privileged level. On Symbian OS,
all exception handlers execute at level 0.

In the interests of security and robustness, it is a general principle
that more privileged code must not rely on the validity of any data or
addresses passed by less privileged code. So if an exception results in a
change of CPL, the processor changes the stack from the current SS:ESP,
which is accessible to less privileged code.

The processor uses the task state segment (TSS) in stack switching.
The task register (TR) contains a segment selector that refers to a TSS
descriptor in the GDT. The TSS descriptor specifies where in the linear
address space the TSS resides. The TSS contains various fields related to
the IA-32 hardware task switching mechanism but the only one relevant
to Symbian OS is the privilege level 0 initial stack pointer, SS0:ESP0.
When an exception occurs and control is transferred to privilege level
0 from a less privileged level, SS:ESP is loaded with the SS0:ESP0 value
from the TSS. In Symbian OS this is always set to point to the top of the
current thread’s supervisor stack.

With this background information given, I can now describe in detail
the response of an IA-32 processor to an exception:

1. The processor uses the exception vector number to index the IDT
and obtain the CS:EIP of the exception handler

2. If the new CS specified in the IDT necessitates a transfer to a more
privileged level, the processor loads SS and ESP from the currently
active TSS and then pushes the original SS and ESP onto the new
stack. All subsequent stack operations use the new stack

3. The processor pushes the EFLAGS register and then the current CS
and EIP values

4. If the IDT entry contains an interrupt gate, the processor clears the
IF flag so that maskable interrupts are disabled. A trap gate does not
affect the IF flag

INTERRUPTS 219

5. Depending on the type of exception, the processor may push an error
code

6. The processor transfers control to the handler indicated by the CS
and EIP values read from the IDT.

Like the ARM, the IA-32 architecture supports only two physical interrupt
inputs to the processor. However, these inputs behave very differently to
those on the ARM.

The NMI line always causes a vector 2 interrupt and may not be
masked by software. It is of limited use in most IA-32 systems. Most
hardware interrupts are directed to the INTR line. Interrupts signaled on
this line are maskable by clearing the IF flags in the EFLAGS register.

IA-32 processors are used with external interrupt controller hardware,
typically located in the motherboard chipset. The interrupt controller,
which accepts inputs from a number of interrupt sources, allows the inter-
rupt sources to be individually masked and prioritized. It also associates
a vector number with each interrupt source.

When an enabled interrupt source becomes active, the interrupt con-
troller signals an interrupt to the processor and passes the associated
vector number. If interrupts are enabled (IF = 1) the processor calls the
appropriate vector handler, as listed in the IDT. While the interrupt is in
service the interrupt controller prevents lower priority interrupt sources
from being signaled to the processor.

At the end of the software handler, the processor signals EOI (end of
interrupt) to the interrupt controller. At this point lower priority interrupts
can once more be signaled to the processor.

6.3 Interrupts

In this section, I will return to EKA2, and describe how it handles
interrupts.

6.3.1 EKA2 interrupt handling
There are four phases in the handling of any interrupt. Figure 6.3 illustrates
these four phases, and shows where in the kernel the code for each phase
is located.

Interrupts occur very frequently during normal system operation – the
system tick interrupts every millisecond and during some I/O operations,
such as bulk data transfer over USB, an interrupt may occur every 50 µs.
Because of this, the interrupt handling code is optimized for speed.
The fewest possible registers are saved at each stage and the entire
interrupt code path within the kernel and the dispatcher is written in
hand-optimized assembler.

220 INTERRUPTS AND EXCEPTIONS

Application Nanokernel ASSP Device Driver

Preamble

Dispatcher

ISR

Postamble

Hardware
Interrupt

Return from
Interrupt

Figure 6.3 Code flow during interrupt

6.3.1.1 Preamble

The first code to execute following the processor response to an interrupt
is the preamble, which is part of the nanokernel.

On ARM processors the preamble is entered directly from both the
IRQ and the FIQ vectors.

On IA-32 processors, each IDT entry points to a preamble entry stub
that saves the vector number, and then jumps to a common interrupt
preamble. The preamble’s job is to establish the correct processor state,
by taking care of any nonautomatic stack switching and register saving
before the dispatcher and interrupt service routine run. Because interrupts
are asynchronous to program execution, the preamble can make no
assumptions about the processor state on entry.

EKA2 uses a separate stack for interrupts. This means that we don’t
need to reserve stack space for interrupts on each thread’s supervisor
stack, which reduces RAM usage. Depending on processor architec-
ture, the switching of stacks may be performed automatically or by the
software preamble:

• On ARM-based hardware, the stack is switched automatically, since
an interrupt causes the processor to switch to mode irq or mode fiq
and thus R13 irq or R13 fiq becomes the active stack pointer

• On IA-32 hardware, the processor interrupt response includes a switch
to the current thread’s supervisor stack if the interrupt occurs in user
mode (CPL = 3). If the interrupt occurs in supervisor mode (CPL = 0),
no stack switch occurs and so the active stack may be a thread
supervisor stack or the interrupt stack, if another ISR was interrupted.

INTERRUPTS 221

On the first of a nest of interrupts, the preamble switches to a sep-
arate interrupt stack and saves the original stack pointer on the new
stack. This can be seen in lines 10–15 of the IA-32 preamble. The
IrqNestCount variable is initialized to −1, so if incrementing it
gives zero, this is the first of a nest of interrupts.

Symbian OS interrupt service routines are generally written in C++.
Each processor has a calling convention that specifies which registers
are preserved across function calls and which are not. On ARM, R0–R3,
R12 and CPSR are destroyed by function calls; on IA-32, EAX, ECX, EDX
and EFLAGS are destroyed by function calls. Lines 1 and 2 of the ARM
interrupt preamble, and lines 1, 2, 3, 6 and 7 of the IA-32 interrupt
preamble, save these registers.

ARM interrupt preamble

1 SUB LR, LR, #4
2 STMFD SP!, {R0-R3, R12, LR}
3 LDR R12, IrqHandler
4 LDR LR, ArmVectorIrq
5 LDR PC, [R12]

IA-32 interrupt preamble

1 PUSH DS
2 PUSH ES
3 PUSH EAX
4 MOV AX, SS
5 CLD
6 PUSH ECX
7 PUSH EDX
8 MOV DS, AX
9 MOV ES, AX
10 MOV EAX, ESP
11 INC DWORD PTR IrqNestCount
12 JNZ Nested
13 LEA ESP, IrqStackTop
14 PUSH EAX
15 Nested:
16 CALL [IrqHandler]

The preamble may need to set up more state, depending on the
processor architecture. On IA-32, the hardware interrupt response sets up
the SS and CS segment selectors, but not DS and ES. The preamble saves
these selectors, then sets them both equal to SS, which is the privilege
level 0 data segment covering the entire 4 GB linear address range. In
addition, it clears the D flag, so that the IA-32 repeated string operations
work in the forward direction, from low to high addresses.

On ARM, no further state setup is needed unless we want to support
nested interrupts. In this case, ISRs cannot execute in mode irq. This

222 INTERRUPTS AND EXCEPTIONS

is because a nested interrupt would corrupt R14 irq, which may hold
the return address from a subroutine called during execution of the first
ISR. So, if support for nested interrupts is required, a switch to mode sys
will occur during the preamble. If the interrupt occurred in mode sys (as
indicated by SPSR irq), it must be a nested interrupt, so R13 usr points
to the interrupt stack. If the interrupt occurred in any other mode, the
preamble saves R13 usr, then sets R13 usr to point to the top of the
interrupt stack. It must also save R14 usr, since it will be corrupted by
any subroutine calls made by the ISR.

6.3.1.2 Interrupt dispatcher

The role of the dispatcher is to determine the source of the interrupt and
to call the registered service routine for that source. It is written as part of
the base port for a given hardware platform. On platforms with an ASSP,
the dispatcher is usually part of the ASSP extension; otherwise it is part of
the variant.

On hardware without vectored interrupt support – which includes most
current ARM-based hardware – the dispatcher interrogates the interrupt
controller to establish which interrupts are both pending and enabled. It
then selects one of these according to a fixed priority scheme, and invokes
the corresponding service routine. Once the service routine is completed,
the dispatcher will loop and interrogate the interrupt controller again; this
continues until there are no more pending interrupts. In the code sample
Example ARM IRQ dispatcher, lines 5–8 discover which interrupts are
pending and select the one corresponding to the highest numbered bit in
the hardware IRQ pending register. If no interrupts are pending, line 7
returns from the dispatcher.

Example ARM IRQ dispatcher

1 STMFD SP!, {R4-R6, LR}
2 LDR R4, InterruptControllerBase
3 LDR R5, Handlers
4 dispatch:
5 LDR R12, [R4, #IRQPendingRegOffset]
6 CMP R12, #0
7 LDMEQFD SP!, {R4-R6, PC}
8 CLZ R3, R12
9 ADD R0, R5, R3, LSL #3
10 ADR LR, dispatch
11 LDMIA R0, {R0, PC}

On hardware with vectored interrupt support, which includes IA-32
architectures, the dispatcher knows immediately from the vector number
which interrupt source is involved. It immediately invokes the service
routine and then returns.

EKA2 typically allows only one service routine for each
interrupt – although since the dispatcher is outside the Symbian-supplied

INTERRUPTS 223

kernel, this decision is actually up to the base porter, who could easily
change this code to allow several service routines to be associated with
a single interrupt. It is fairly common among hardware designs to find
several interrupts attached to the same line on the interrupt controller.
This situation is normally handled by using a sub-dispatcher rather than
by registering several handlers with the main dispatcher. A sub-dispatcher
is a routine that is bound to a given interrupt source at system boot time,
and which performs a similar function to the main dispatcher, but only
for interrupts that are routed to a particular line. A common pattern is
that the main interrupt dispatcher is in the ASSP and this deals with the
different interrupt sources recognized by the on-chip interrupt controller.
Sub-dispatchers are in the variant, and these deal with interrupts from
‘‘companion’’ chips – peripheral devices external to the ASSP. These
chips generally produce a single combined interrupt output, which is
recognized as a single source by the main interrupt controller.

6.3.1.3 Interrupt service routines

The role of the interrupt service routine (ISR) is to perform whatever action
is necessary to service the peripheral that generated the interrupt and to
remove the condition that caused it to interrupt. This usually involves
transferring data to or from the peripheral.

ISRs may be located in the ASSP, variant, an extension or a device
driver. ISRs are typically written in C++, although some frequently used
ones such as the system tick ISR are written in assembler.

In Chapter 12, Drivers and Extensions, I will discuss ISRs in more detail,
but this is for the most part irrelevant in understanding how Symbian OS
handles interrupts. All we need to know now is that the ISR runs, and that
it may make use of a small number of OS services, as follows:

• It may queue an IDFC or DFC (which I will describe in Sections 6.3.2.2
and 6.3.2.3) or, in the case of the millisecond tick ISR, trigger a
reschedule directly if the current thread’s timeslice has expired

• It may queue or cancel a nanokernel timer

• It may disable or enable interrupts using APIs provided by the ASSP
or variant. I will talk about this more later.

Of these, the first is fundamental to the entire operation of the system.
This is the way in which external events cause the appropriate kernel-side
and user-side tasks to run.

6.3.1.4 Postamble

The postamble runs after the dispatcher returns, which it does when it has
serviced all pending interrupts. The goal of the postamble is to restore the
processor’s state and permit the interrupted program to resume. However
before this, it may need to schedule another thread to run.

224 INTERRUPTS AND EXCEPTIONS

The postamble performs the following actions:

1. It checks what code was running when the interrupt was triggered.
If that code was not running as part of a thread, then the postamble
returns from the interrupt immediately. This covers the case in which
one interrupt occurs during servicing of another. It also covers any
cases in which the processor is in a transitional state (a thread stack is
not active). Such a state can occur in ARM processors just after an abort
or undefined instruction exception. The processor enters mode abt or
mode und and the active stack is a shared exception stack rather than
a thread stack. This stack is only used briefly to save registers before
switching to mode svc. However because a non-thread related stack
is in use, rescheduling cannot occur. Lines 1, 4, 6 and 7 in the code
sample ARM IRQ postamble check for this – if the interrupted mode
is neither usr nor svc, we return from the interrupt immediately.

ARM IRQ postamble

1 MRS R0, SPSR
2 LDR R1, TheScheduler
3 ADD R12, SP, #24
4 AND R2, R0, #0x1F
5 LDR R3, [R1, #iKernCSLocked]
6 CMP R2, #0x10
7 CMPNE R2, #0x13
8 CMPEQ R3, #0
9 BNE IrqExit0
10 MOV R2, #0xD2
11 MSR CPSR, R2
12 LDR R2, [R1, #iRescheduleNeededFlag]
13 ADD R3, R3, #1
14 MOV LR, #0x13
15 CMP R2, #0
16 BEQ IrqExit0
17 STR R3, [R1, #iKernCSLocked]
18 MSR CPSR, LR
19 LDMDB R12!, {R1-R3}
20 STMFD SP!, {R1-R3}
21 LDMDB R12!, {R1-R3}
22 STMFD SP!, {R1-R3}
23 STMFD SP!, {R0, LR}
24 MOV R2, #0x13
25 MOV LR, #0x92
26 MSR CPSR, LR
27 ADD SP, R12, #24
28 MSR CPSR, R2
29 BL Reschedule
30 LDMFD SP!, {R1, LR}
31 ADD SP, SP, #24
32 MOV R12, SP
33 MOV R2, #0xD2
34 MSR CPSR, R2
35 MSR SPSR, R1
36 LDMDB R12, {R0-R3, R12, PC}

INTERRUPTS 225

37 IrqExit0:
38 LDMFD SP!, {R0-R3, R12, PC}

2. It checks if preemption is disabled – if this is the case, it returns from
the interrupt immediately (lines 5 and 8).

3. It checks if an IDFC (see Section 6.3.2.2) or a reschedule is pending;
if not, it returns from the interrupt immediately. Lines 10, 11, 12, 15,
16 are responsible for this. Note that the postamble must perform this
check with all interrupts disabled, not just those at the same hardware
priority as the one just serviced. If this were not the case, a higher
priority interrupt, such as an FIQ, could run and queue an IDFC
just after the current interrupt (IRQ) performed the check. The FIQ
postamble would not run the IDFC since it interrupted mode irq, and
the IRQ postamble would not run the IDFC since it already decided
there was no IDFC pending. The IDFC would then be subject to an
unpredictable delay, until either another interrupt occurred or the
current thread performed some action that resulted in rescheduling.

4. It disables preemption and re-enables interrupts (lines 13, 14, 17, 18).
It transfers all saved state from the interrupt stack to the supervisor
stack of the interrupted thread (lines 3 and 19–28). It calls the sched-
uler. This runs any pending IDFCs and then performs a context switch
if one is needed. The call to the scheduler returns when the inter-
rupted thread is next scheduled. Internally, the scheduler performs
context switches by switching stacks. Any thread that is not currently
executing has a call to the scheduler at the top of its call stack.

5. It restores the interrupted thread state from the supervisor stack and
returns from the interrupt (lines 30–36).

6.3.2 Interaction with scheduling
The processing required for an external event generally splits into a
number of stages with different response time requirements. For example,
consider a PPP connection over a serial port. The UART receives data
and stores it in its internal FIFO. When the FIFO is half-full, the UART
raises an interrupt, which must be serviced before the FIFO becomes
completely full to avoid data loss.

So, the first stage of processing is to move the data from the UART’s
receive FIFO to an internal memory buffer – and the deadline for this
is the time taken to receive half a FIFO of data. Let’s say that this is 8
characters at 115,200 bps, which gives us a time of 694 µs.

The second stage of processing is to perform PPP framing, verify the
frame check sequence, transition the PPP state machine and transmit any
acknowledgment required. The deadline for this is determined by the time
that the peer PPP entity will wait before timing out the acknowledgment.
This will be much longer than the first stage deadline, so second-stage

226 INTERRUPTS AND EXCEPTIONS

processing can occur at lower priority than the receive interrupt, in a
thread. In this way, further receive interrupts will preempt the second
stage processing of earlier frames.

In a similar way, the PPP thread must preempt other activities with
longer deadlines and long-running activities. The receive interrupt signals
the PPP thread that data is available, which triggers the preemption. In
general terms, processing for events with short deadlines should preempt
processing for events with longer deadlines. This is done by using threads
with differing priorities for the different types of event, with the most time
critical events being handled directly by ISRs.

6.3.2.1 The kernel lock

In previous sections, it has become clear that there must be a method
by which interrupts can cause the appropriate threads to run so that an
event can be processed. In this way, the response can occur in stages,
with the most urgent part being handled by the ISR itself and less urgent
parts being handled by threads of decreasing priority.

To ensure that response deadlines are met, the time between a hard-
ware interrupt being signaled and the ISR running must be bounded (that
is, it must have a maximum latency) and we want this latency to be
as short as possible. This translates into a requirement that interrupts be
enabled all the time apart from in sections of code whose execution time
is bounded and as short as possible. To satisfy this requirement, most
code, whether kernel- or user-side, executes with interrupts enabled. This
includes code that manipulates global structures such as the thread ready
list. To prevent such code from being re-entered and corrupting the global
structure, a preemption lock (iKernCSLocked, usually known as the
kernel lock) is employed.

The kernel lock is a simple counter that is normally zero. Sections of
code that need to protect themselves against rescheduling increment the
kernel lock at the beginning of the critical section and decrement it at
the end. Then, when an interrupt occurs, the kernel will only attempt a
reschedule if the kernel lock was zero at the time of the interrupt. This can
be seen in step 2 of the interrupt postamble described in Section 6.3.1.4,
and in lines 3 and 8 of the code sample ARM IRQ postamble.

Of course this method can only work if the ISR itself does not invoke
any of these critical sections of code. We disable rescheduling in certain
code sequences because they need to atomically manipulate structures
such as the thread ready list. Disabling rescheduling prevents a second
thread from running and modifying these structures while the first thread
is still halfway through its modification. However disabling rescheduling
does not disable interrupts, so an ISR that modified the thread ready list
directly would still conflict with threads modifying it. Therefore ISRs may
not add a thread to the ready list. In fact, they may not use any OS
services other than those listed in Section 6.3.1.3.

INTERRUPTS 227

6.3.2.2 IDFCs

Interrupts cause the scheduling of a thread by means of an Immediate
Deferred Function Call (IDFC). IDFCs are objects that specify a function
that will be called after the ISR, as soon as the system is in a suitable state.
We call them ‘‘immediate’’ because they normally run before returning
from the interrupt, not later on, in a kernel thread. The exception to this
is if the kernel was locked when the interrupt occurred, in which case
IDFCs are run immediately after the kernel is unlocked.

It works like this. First the ISR adds an IDFC to the IDFC pend-
ing queue, which is always accessed with interrupts disabled. When
the scheduler next runs, it calls the function associated with the IDFC
directly. (The function is not called by a thread.) This is how the state
of the kernel lock governs when IDFCs are called. If an interrupt occurs
when the kernel lock count is nonzero, the ISR runs but nothing else
happens. If an interrupt occurs when the kernel lock count is zero, the
ISR runs and afterwards, if IDFCs have been queued, the scheduler is
called and it runs the IDFCs. The IDFCs may add one or more threads
to the ready list, after which the scheduler may select a new thread
to run.

IDFCs are called in the same order in which they were originally
queued. They are called with interrupts enabled and with the kernel
lock count equal to 1; this guarantees that they will not be re-entered or
preempted, either by another IDFC or by a thread.

Most interrupts do not need further processing after the ISR has run. For
example, the system tick ISR runs every millisecond but, unless a timer
expires on this particular tick, no IDFCs need to run and no reschedule is
required. In this common case, to save the time taken to run the scheduler
(lines 17–36 in the code sample ARM IRQ postamble, as opposed to
line 38) we use a flag, known as the DFC pending flag, to indicate that
one or more IDFCs have been added to the pending queue. The interrupt
postamble only needs to call the scheduler if this flag is set. The flag is
reset when all pending IDFCs have been processed.

We use a similar flag, the reschedule needed flag, to indicate that
changes to the ready list have occurred that may require a new thread
to be scheduled. After IDFCs have been run, we will only select a new
thread to run if this flag is set; the flag is cleared as part of the reschedule.

There are two places where the scheduler, and hence IDFCs, may run.
The first is during the interrupt postamble (line 29 in the code sample
ARM IRQ postamble) and the second is at the point where a thread
releases the kernel lock.

In the first place, IDFCs will run if they were added by any of the ISRs
that ran during interrupt processing. A new thread will then be selected
to run if any of these IDFCs causes a thread with a priority greater than or
equal to that of the interrupted thread to become ready.

228 INTERRUPTS AND EXCEPTIONS

In the second place, IDFCs will run if they have been added by the
thread that held the kernel lock or by ISRs that ran while the kernel lock
was held. A new thread may then be selected for three different reasons:

1. If any thread with a priority greater than or equal to that of the
interrupted thread is made ready (either by the IDFCs or by the thread
that held the kernel lock)

2. If the thread that held the kernel lock removes itself from the ready
list

3. If thread priorities are changed by the thread that held the kernel
lock.

Figure 6.4 illustrates the processing of an IDFC in the case where the
kernel was originally locked and where no thread switch is required
following the IDFC.

Hardware
Interrupt

IDFC Queued

Kernel lock
released

No thread switch
required

time

IDFC

Scheduler

ISR

Thread

Figure 6.4 IDFC processing

6.3.2.3 DFCs

As I will explain in Section 6.3.2.4, IDFCs must be short and there are
restrictions on which kernel services they may use. For these reasons
IDFCs are rarely used directly except by RTOS personality layers. Instead,
ISRs generally use Deferred Function Calls (known as DFCs) when they
want to schedule a thread or perform other tasks not possible from within
the ISR itself. DFCs make use of IDFCs in their implementation, so ISRs
indirectly use IDFCs whenever they use DFCs.

A DFC is an object that specifies a function to be called in a particular
kernel thread. DFCs are added to DFC queues. Exactly one kernel thread is
associated with each DFC queue, but not all kernel threads are associated
with a DFC queue.

INTERRUPTS 229

DFCs have priorities that are between 0 and 7 inclusive. Within any
given DFC queue, the associated kernel thread schedules DFCs co-
operatively. It removes the highest priority DFC from the queue and calls
its function. When the function returns, the kernel thread processes the
next highest priority DFC; it processes DFCs with the same priority in
the order that they were added to the queue. Once there are no DFCs
remaining on the queue, the kernel thread blocks until another DFC is
added to the queue. Each DFC must run to completion before any others
on the same queue can run. However, since a different kernel thread
services each DFC queue, a DFC running in a higher priority thread may
preempt a DFC running in a lower priority thread.

A DFC may be queued from any context – from an ISR, IDFC or thread.
However, the kernel handles these contexts a little differently. If an ISR
queues a DFC, then the kernel adds it to the IDFC pending queue. (This
is possible because IDFCs and DFCs are objects of the same type.) Then,
when the scheduler runs, the nanokernel transfers the DFC to its final
(DFC) queue and, if necessary, makes the corresponding kernel thread
ready. Essentially, the DFC makes use of an IDFC with a callback function
supplied by the kernel, which transfers the DFC to its final queue. This
two-stage process is necessary because a DFC runs in a kernel thread and
ISRs are not allowed to signal threads; however IDFCs are. Of course, if an
IDFC or a thread queues a DFC, this two-stage procedure is not necessary;
instead the kernel adds the DFC is directly to its final (DFC) queue.

Figure 6.5 illustrates the processing of a DFC queued by an ISR in the
case where the kernel is unlocked when the interrupt occurs and where
the DFC thread has higher priority than the interrupted thread.

Hardware
Interrupt

Kernel not
locked

Thread 1
resumes

time

DFC
completes

DFC first runs
as IDFC

DFC runs in
Thread 2

Thread 2
made ready

Thread 1

DFC
Queued

ISR

Scheduler

IDFC

Thread 2

Figure 6.5 DFC processing

6.3.2.4 Kernel services in ISRs, IDFCs and DFCs

As I said earlier, to minimize interrupt latency we keep interrupts enabled
most of the time – the only exceptions being a small number of short

230 INTERRUPTS AND EXCEPTIONS

sections of code. Because of this, most operating system data structures
might be in an inconsistent state during an ISR. This means that, during
ISR processing, we can make no assumptions about the state of any of
the following:

• The thread ready list

• Nanokernel threads

• Fast mutexes and fast semaphores

• DFC queues

• Virtual memory mappings for most memory areas accessible from
user mode.

ISRs cannot manipulate any Symbian OS thread or wait object, since the
system lock fast mutex must be held while doing that. Nor can an ISR
access user memory, such as the stacks and heaps of a user-mode thread.
In fact, the only services available to ISRs are:

• Queuing IDFCs and DFCs

• Queuing and canceling nanokernel timers

• Enabling and disabling interrupts.

Earlier, I said that IDFCs would only run after an ISR if the kernel
were unlocked at the time the interrupt is serviced. This means that all
nanokernel objects will be in a consistent state when IDFCs run, and so
IDFCs can do a lot more than ISRs. They can:

• Make nanokernel threads ready

• Manipulate DFC final queues

• Signal fast semaphores

• Perform all operations available to ISRs.

However IDFCs may not block waiting for another thread to run. This is
because IDFCs run with the kernel locked, which means that the kernel
cannot reschedule. Since waiting on a fast semaphore or fast mutex
is effectively blocking, IDFCs cannot do this either. And to take this
argument to its conclusion, the prohibition on the use of fast mutexes in
IDFCs also means that they may not perform any operations on Symbian
OS threads or wait objects, since these are protected by the system lock
fast mutex.

Similarly, the address space of a non-running user process is only
guaranteed to be consistent when the system lock is held. Since it is not

INTERRUPTS 231

known which process is currently running when an IDFC runs, it may
not access any user memory. Another reason for this prohibition is that
exceptions are not tolerated during IDFCs.

Note that IDFCs run with preemption disabled, so they should be kept
as short as possible.

DFCs run in the context of a kernel thread. In principle, this could be
a bare nanokernel thread (NThread) but in practice, with the possible
exception of code running in an RTOS personality layer, DFCs run in
a Symbian OS kernel thread (DThread). This means that the full range
of kernel services is available to DFCs, including but not limited to
the following:

• Waiting on or signaling either nanokernel or Symbian OS wait objects

• Allocating or freeing memory on the kernel heap

• Accessing user memory

• Completing Symbian OS asynchronous requests (TRequestStatus).

6.3.2.5 Round-robin scheduling

The kernel schedules threads with equal priorities in a round-robin
fashion. That is, each thread executes for a certain amount of time (its
timeslice) and then the kernel schedules the next thread in cyclic order
with the same priority. We implement this using the iTime field in the
nanothread control block – this counts the number of nanokernel timer
ticks remaining in the thread’s time slice. The kernel decrements iTime
on each nanokernel tick provided this field was initially positive. If iTime
becomes zero, the kernel sets the reschedule needed flag, which causes
the scheduler to run at the next opportunity. This is the only occasion
where an interrupt triggers a reschedule directly rather than via an IDFC.

6.3.3 Using interrupts

6.3.3.1 The interrupt APIs

Device drivers and extensions gain access to interrupts via a generic
interrupt management API, which I will describe later. The base porter
implements this API in the ASSP module, if there is one, or in the variant,
if there is not. In systems with an ASSP, parts of the implementation
may remain in the variant – typically those parts dealing with interrupt
sources outside the ASSP and that make use of a second-level dis-
patcher. However, the public functions themselves will be implemented
in the ASSP.

The interrupt management API is encapsulated in a static class, Inter-
rupt, defined as follows:

232 INTERRUPTS AND EXCEPTIONS

typedef void (*TIsr)(TAny*);

class Interrupt
{

public:
static TInt Bind(TInt aId, TIsr aIsr, TAny* aPtr);
static TInt Unbind(TInt aId);
static TInt Enable(TInt aId);
static TInt Disable(TInt aId);
static TInt Clear(TInt aId);
static TInt SetPriority(TInt aId, TInt aPriority);
};

The interrupt management API uses a 32-bit integer identifier to specify
the interrupt source that is referred to. The mapping between interrupt
sources and numeric identifiers is usually defined in a public header file
exported from the ASSP module. A second public header file, exported
from the variant, defines identifiers for interrupt sources external to
the ASSP.

Next I shall describe each interrupt management method in turn.

TInt Interrupt::Bind(TInt aId, TIsr aIsr, TAny* aPtr);

This method associates an ISR with the interrupt source whose numeric
identifier is specified by parameter aId. Parameter aIsr specifies the
interrupt service routine. Following a successful return from Inter-
rupt::Bind(), interrupts from the specified source cause function
aIsr() to be called. The aPtr parameter is passed to aIsr as an
argument. This will typically be a pointer to some data required by the
ISR – for example the ‘‘physical channel’’ object for an interrupt in a
physical device driver.
Interrupt::Bind() returns an error code if the specified interrupt

identifier is invalid or if the requested interrupt source has already
been bound.

TInt Interrupt::Unbind(TInt aId);

This method disables interrupts from the specified interrupt source and
then removes any ISR that is currently bound to it. An error code is
returned if the interrupt identifier is invalid or if there is no ISR associated
with the interrupt source.

TInt Interrupt::Enable(TInt aId);

This method enables interrupts from the specified interrupt source. Note
that this only enables the interrupt source in the main interrupt controller;
further setup in the peripheral itself may be necessary before interrupts

INTERRUPTS 233

can actually occur. An error code is returned if the interrupt identifier
is invalid or if there is no ISR associated with the interrupt source. An
interrupt may not be enabled if it does not have an ISR associated with it.

TInt Interrupt::Disable(TInt aId);

This method disables interrupts from the specified interrupt source. Note
that it only disables the interrupt source in the main interrupt controller;
the peripheral itself is unaffected. An error code is returned if the interrupt
identifier is invalid.

TInt Interrupt::Clear(TInt aId);

This method clears any pending interrupt from the specified source. It
returns an error code if the interrupt identifier is invalid. This method is
rarely used – most interrupts are cleared either implicitly during servicing
or explicitly by writing to a hardware register. For example, a UART receive
interrupt is usually cleared by reading all available data from the UART
receive FIFO; a timer interrupt is cleared by writing to an acknowledg-
ment register. The Interrupt::Clear()method is generally only used
where the aId value is determined at runtime instead of being hard coded.

TInt Interrupt::SetPriority(TInt aId, TInt aPriority);

On hardware that supports multiple interrupt priority levels and that
allows interrupt sources to have their priorities set dynamically, this call
changes the hardware priority level of the specified interrupt source. The
method returns an error code if this functionality is not supported or if the
identifier is invalid. A typical use of this would be on ARM-based systems
where the interrupt controller allows each interrupt source to be routed to
either IRQ or FIQ. The board support package and device drivers for such
a platform would call the Interrupt::SetPriority() API during
initialization to configure the hardware to route each interrupt to either
IRQ or FIQ as appropriate.

6.3.3.2 APIs for IDFCs and DFCs

IDFCs and DFCs are both represented by objects of the TDfc class. The
public parts of this class are as follows:

typedef void (*TDfcFn)(TAny*);

class TDfc
{

public:
TDfc(TDfcFn aFn, TAny* aPtr);
TDfc(TDfcFn aFn, TAny* aPtr, TInt aPri);

234 INTERRUPTS AND EXCEPTIONS

TDfc(TDfcFn aFn, TAny* aPtr, TDfcQue* aQ, TInt aPri);
void Add();
void Cancel();
void Enque();
void Enque(NFastMutex* aMutex);
void DoEnque();
inline TBool Queued();
inline TBool IsIDFC();
inline void SetDfcQ(TDfcQue* aQ);
inline void SetFunction(TDfcFn aFn);
};

Now let’s look at these public functions in more detail:

TDfc(TDfcFn aFn, TAny* aPtr);

Whether the TDfc represents an IDFC or a DFC depends on how it
is constructed. This constructor initializes the TDfc object as an IDFC.
Function aFn will be called when the IDFC runs, and aPtr will be
supplied as the argument to aFn.

TDfc(TDfcFn aFn, TAny* aPtr, TInt aPri);
TDfc(TDfcFn aFn, TAny* aPtr, TDfcQue* aQ, TInt aPri);

These constructors initialize the TDfc object as a DFC. Function aFn
will be called when the DFC runs and aPtr will be supplied as the
argument to it. Parameter aPri specifies the priority of the DFC within
its DFC queue and must be between zero and seven inclusive. Parameter
aQ specifies which DFC queue the DFC will run on. The version of the
constructor without the parameter aQ will initialize the queue pointer to
NULL, and the DFC queue to be used must be set with SetDfcQ before
the DFC can be queued.

void Add();

This method places an IDFC or a DFC on the IDFC pending queue.
The method is idempotent – if the object is already queued, no action
is taken. This method is almost always called from an ISR. It may
also be called from an IDFC or a thread context with preemption dis-
abled, but it must not be called from a thread context with preemption
enabled.

void Cancel();

INTERRUPTS 235

This method removes an IDFC or DFC from any queue it is currently on.
If the object is not currently queued, no action is taken. You must only
call this method from IDFCs or threads, not from ISRs.

void Enque();
void DoEnque();

These methods place a DFC directly on its final queue without going
via the IDFC pending queue. They must not be called on a TDfc object
representing an IDFC. Both methods take no action if the DFC is already
queued. You can only call the DoEnque() from an IDFC or a thread
context with preemption disabled; it is the recommended way to queue
a DFC from inside an IDFC. You may also call Enque() from a thread
context with preemption enabled; it is the recommended way to queue a
DFC from a thread.

void Enque(NFastMutex* aMutex);

This method is equivalent to Enque() followed immediately and atomi-
cally by signaling the specified fast mutex. If aMutex is NULL, the system
lock is signaled. The call is atomic in that no reschedule may occur
between the DFC being queued and the fast mutex being released. This
method may only be called from a thread context.

The method is useful when both the thread queuing a DFC and the
DFC thread itself need to access a data structure protected by a fast mutex.
Let’s consider what would happen if it did not exist. The first thread would
acquire the mutex, update the structure, queue the DFC and then release
the mutex. If, as is commonly the case, the DFC thread had the higher
priority, a reschedule would occur immediately after the DFC was queued,
with the fast mutex still held. The DFC would immediately try to acquire
the mutex and find it locked, causing another reschedule back to the first
thread. Finally, the first thread would release the fast mutex and there
would be yet another reschedule back to the DFC thread, which could
then claim the mutex and proceed. The use of an atomic ‘‘queue DFC and
release mutex’’ operation eliminates the last two of these reschedules,
since the DFC thread does not run until the mutex has been released.

TBool IsQueued();

This method returns ETrue if the TDfc object is currently on the IDFC
pending queue or a DFC final queue.

TBool IsIDFC();

236 INTERRUPTS AND EXCEPTIONS

This method returns ETrue if the TDfc object represents an IDFC,
EFalse if it represents a DFC.

void SetDfcQ(TDfcQue* aQ);

This sets the DFC queue on which a DFC will run. It is intended for use
in conjunction with the TDfc constructor that does not specify a DFC
queue, which is used when the queue is not known at the time the DFC
is constructed. For example, this can happen in logical device drivers
where the DLogicalChannelBase-derived object contains embedded
DFCs, which are therefore constructed when the logical channel object
is instantiated. This occurs before the logical channel has been bound
to any physical device driver, so if the DFC queue is determined by the
physical device driver, the TDfc::SetDfcQ method must be used to
complete initialization of the DFCs once the queue is known.

The TDfc::SetDfcQ method must only be used on unqueued DFCs;
it will not move a queued DFC from one queue to another.

void SetFunction(TDfcFn aFn);

This sets the callback function to be used by an IDFC or DFC.

6.4 Aborts, traps and faults

In this section, I will describe how Symbian OS handles aborts, traps
and faults, and the uses it makes of them. I will use the generic term
‘‘exceptions’’ from here onwards to cover ‘‘aborts, traps and faults’’.

6.4.1 Response to exceptions

As with interrupts and system calls, the initial and final phases of exception
handling occur in the nanokernel. The higher level processing occurs in
a per-thread exception handler, which, for Symbian OS threads, is a
standard handler in the Symbian OS kernel. Next I shall discuss each of
these phases in more detail.

6.4.1.1 Preamble

The task of the exception preamble is similar to that of the interrupt
preamble – to establish the correct context for the exception handlers to
run, and to save the state of the system at the point where the exception
occurred. However there are two main differences. The first is that the
exception preamble saves the entire integer register set of the processor

ABORTS, TRAPS AND FAULTS 237

rather than just the minimum set required to restore the system state. The
reasons for this are:

1. Exceptions are often indicative of programming errors, especially
under Symbian OS, which doesn’t support demand-paged virtual
memory. Saving the entire register set allows us to generate more
useful diagnostics

2. If an exception is intentional rather than the result of a programming
error, we often need to modify the processor execution state before
resuming the original program. For example, to run a user-side
exception handler, we must modify the stack pointer and program
counter of the running thread before resuming

3. Exceptions are quite rare events, so the performance penalty in saving
and restoring all registers is acceptable.

The second difference from the interrupt preamble is that checks are
made on the state of the system at the point where the exception
occurred. Depending on the result of these checks, a kernel fault may
be raised. This is because exceptions, unlike interrupts, are synchronized
with program execution. Certain critical parts of kernel-side code are not
expected to cause exceptions – if they do, a kernel fault is raised. This
will immediately terminate normal system operation and either drop into
the kernel’s post-mortem debugger (if present) or (on a production device)
cause the system to reboot.

Handling exceptions on ARM processors
On ARM processors, exceptions cause a transition to mode abt or
mode und, and they disable IRQs but not FIQs. The exception modes
have a single, small, shared stack between them – they do not have a per-
thread stack. The preamble must switch the processor into mode svc, so
that the exception handler can run in the context of the thread causing the
exception, and the kernel can reschedule correctly. The ARM exception
preamble proceeds as follows:

1. Saves a small number of registers on the mode abt or mode und
stack, including the address of the instruction that caused the
exception

2. Checks the saved PSR to ensure that the exception occurred in either
mode usr or mode svc. If not, the exception must have occurred
either in an ISR or during the exception preamble itself. In either
case, this is a fatal error, and a kernel fault will be raised

3. Enables IRQ interrupts. IDFCs queued by IRQs or FIQs will not run
now, because the processor mode is abt or und, which is equivalent
to the kernel lock being held (see Section 6.3.1.4)

238 INTERRUPTS AND EXCEPTIONS

4. Checks if the kernel lock is currently held. If so, this is a fatal error,
as code holding the kernel lock is not allowed to fault. If not, locks
the kernel and switches to mode svc. The current thread’s supervisor
mode stack is now active

5. Checks that there is enough space remaining on the supervisor stack
to store the full processor state. If not, the supervisor stack has
overflowed, which is a fatal error

6. Transfers the registers saved on the mode abt or mode und stack to
the mode svc stack. Saves the rest of the processor registers on the
mode svc stack. Also saves the fault address register and the fault
status register, which give additional information about the cause of
an MMU-detected exception such as a page fault

7. Unlocks the kernel. Any deferred IDFCs and/or reschedules will
run now

8. Calls the exception handler registered for the current nanothread,
passing a pointer to the saved processor state on the stack.

Handling exceptions on IA-32 processors
On IA-32 processors, exceptions automatically switch to privilege level 0
and the current thread’s supervisor stack becomes active, as I described in
Section 6.2.2. The return address from the exception is either the address
of the aborted instruction for an abort or the address of the following
instruction for a trap, and the processor automatically saves this on the
supervisor stack along with the flag’s register. If the exception occurred
in user mode, the processor also automatically saves the user-side stack
pointer. The processor does not disable interrupts (because Symbian OS
uses trap gates for exceptions) and the preamble can be preempted at
any time. This is not a problem because the current thread’s supervisor
stack is active throughout the preamble. The IA-32 exception preamble
proceeds as follows:

1. If the exception does not push an error code onto the stack (see
Section 6.2.2), the preamble pushes a zero error code

2. Saves all processor integer registers and segment selectors on the
supervisor stack. Also pushes the fault address register; this is only
valid for page faults but is nevertheless stored for all exceptions

3. Checks the interrupt nest count. If it is greater than −1, then the
exception occurred during an ISR, which we treat as a fatal error

4. Checks if the kernel lock is currently held. If so, this is a fatal error

5. Calls the exception handler registered for the current nanothread,
passing a pointer to the saved processor state on the stack.

ABORTS, TRAPS AND FAULTS 239

6.4.1.2 Postamble

If the exception was not fatal, then the postamble runs after the nano-
thread’s exception handler has returned. The postamble restores all of
the processor state from the stack, with the exception of the supervisor
stack pointer. The processor will restore this automatically by popping
the saved state when it returns from the exception. The last instruction
of the exception postamble will be a ‘‘return from exception’’ instruc-
tion, which restores both the program counter and the status register.
Execution then returns to the saved program counter value, which means
that either the processor retries the aborted instruction or it executes
the instruction after the faulting one. It is worth pointing out that the
exception handler may previously have modified the saved state by
changing values in the stack, but these modifications only take effect at
this point.

6.4.1.3 Symbian OS exception handler

All Symbian OS threads are provided with a standard exception handler.
This implements several strategies for dealing with the exception. These
strategies are tried one after another until either one of them successfully
handles the exception or they all fail, in which case the thread causing
the exception is terminated.

Magic handler
The first strategy is the so-called ‘‘magic’’ handler. This works slightly
differently on the ARM and IA-32 versions of the kernel.

On ARM, the exception handler checks for a data abort occurring in
mode svc where the address of the aborted instruction is one of a short
list known to the exception handler. If these conditions are all satisfied,
the magic handler is used; this simply resumes execution at the instruction
after the aborted instruction with the Z (zero) flag set, and R12 set to the
data address that caused the data abort.

On IA-32, the exception handler checks for an exception occurring
at CPL = 0, that is, in supervisor mode, and checks the iMagicEx-
cHandler field of the current thread. If the latter is non-null and the
exception occurred at CPL = 0, the Symbian OS exception handler calls
the function pointed to by iMagicExcHandler, passing a pointer to the
processor state saved by the exception preamble. If this function returns
zero, it means that the magic handler has handled the exception and
modified the saved processor state appropriately (typically the saved EIP
will be modified), so the Symbian OS exception handler simply returns
and execution resumes according to the modified saved state. If the
return value is nonzero, the Symbian OS exception handler proceeds to
the TExcTrap strategy.

240 INTERRUPTS AND EXCEPTIONS

The magic handler is used to safely handle3 exceptions that are
caused by dereferencing user-supplied pointers in frequently used kernel
functions, such as DThread::RequestComplete(), which is used
to complete Symbian OS asynchronous requests. The advantage of the
magic handler is that it is very fast to set up – in fact on ARM it requires
no setup at all and on IA-32 we only need to write a single pointer to
the current thread control block. Fast set up is important, since the setup
overhead is incurred in the normal case where no exception occurs. The
disadvantage is that it can only be used in functions written in assembler
because the magic handler must inspect and manipulate saved processor
register values directly. In C++, we don’t know what register the compiler
is going to use for what.

TExcTrap handlers
The second strategy is the use of the TExcTrap class. This supports the
catching of exceptions in C++ code and allows the handler to be written
in C++. The price of this additional flexibility is that it takes longer
to set up the TExcTrap before executing the code that might cause
an exception.

A thread wishing to catch exceptions occurring in a section of code
allocates a TExcTrap structure on its supervisor stack and initializes it
with a pointer to the function that is to be called if an exception occurs.
The initialization function saves the processor registers in the TExcTrap
structure and attaches this structure to the thread. If an exception occurs,
the Symbian OS exception handler sees that the thread has installed a
TExcTrap handler and calls the nominated handler function, passing
pointers to the TExcTrap, the current thread and to the processor
context saved by the nanokernel exception preamble. The handler can
then inspect the saved context and any additional information passed in
the TExcTrap, and decide to either retry the aborted instruction or to
return an error code. In the latter case the processor registers saved in the
TExcTrap are restored to allow C++ execution to continue correctly.

Coprocessor fault handler
The two strategies for handling exceptions that I have just described allow
the catching of exceptions that occur with a fast mutex held. If neither of
these methods successfully handles the exception, and the current thread
holds a fast mutex, then the kernel will treat this as a fatal error. It does
this because all of the exception-handling schemes that I am about to
describe make use of fast mutexes.

The next check the kernel makes is for coprocessor faults. On ARM,
the check is for ‘‘undefined instruction’’ exceptions on coprocessor
instructions; on IA-32 the check is for ‘‘device not available’’ exceptions.

3 If it’s good enough for Star Trek, it’s good enough for me.

ABORTS, TRAPS AND FAULTS 241

If the exception is of this type, and there is a context switch handler
registered for the coprocessor involved, the registered handler is called.
(We don’t need to make the check on IA-32 as there is always a handler
for the IA-32 FPU.) The return value indicates whether the exception has
been handled successfully.

If the exception was handled successfully, the kernel restores the
processor state and then either retries the coprocessor instruction or
continues execution with the next instruction, depending on the reason
for the exception. Coprocessor handlers can be used for two different
purposes. One is to save and restore the coprocessor state as necessary
to enable multiple threads to use the coprocessor. When a new thread
attempts to use the coprocessor, an exception results; the exception
handler saves the coprocessor state for the previous thread and restores
the state for the current thread, and the instruction is then retried so it
can execute correctly in the context of the current thread. This scheme is
used for the IA-32 FPU and ARM VFP and I will describe it in more detail
in Section 6.4.2.2. The other purpose for a coprocessor handler is to
emulate a coprocessor that is not actually present. In this case execution
will resume after the coprocessor instruction.

Kernel event handlers
The exception is then offered to all the kernel event handlers. The kernel
calls each handler, passing a pointer to the processor context saved by
the nanokernel exception preamble. The handler has the option to handle
the exception, possibly modifying the saved processor context, and then
resume the aborted program. Alternatively, it may ignore the exception,
in which case it is offered to the next handler.

User-side exception handlers
If no kernel event handlers can deal with the exception, the last possibility
for handling it is a user-side exception handler. If the exception occurred
in user mode and a user-side exception handler is registered, then we
modify the user-mode stack pointer and the return address from the
exception to cause the current thread to run the user-side exception
handler as soon as it returns to user mode.

If none of the previous methods are able to handle the exception, the
current thread is terminated with the ‘‘KERN–EXEC 3’’ panic code.

6.4.2 Uses of exceptions
6.4.2.1 Trapping invalid pointers

Since Symbian OS does not support demand-paged virtual memory, any
occurrence of a page fault must come from the use of an invalid memory
pointer. In most cases this will result in the kernel terminating the thread
that caused the page fault. Exceptions to this rule are:

242 INTERRUPTS AND EXCEPTIONS

• If the invalid pointer was passed in by other code, such as a server
receiving a pointer from its client and using that pointer in an RMes-
sagePtr2::Read() or Write() call. In this case the exception is
caught within the kernel and an error code is returned to the server

• If the thread has set up a user-side exception handler to catch
page faults.

6.4.2.2 Coprocessor lazy context switch

IA-32 and some ARM CPUs have floating point coprocessors that contain
a substantial amount of extra register state. For example, the ARM vector
floating point (VFP) processor contains 32 words of additional registers.
Naturally, these additional registers need to be part of the state of each
thread so that more than one thread may use the coprocessor and each
thread will behave as if it had exclusive access.

In practice, most threads do not use the coprocessor and so we want
to avoid paying the penalty of saving the coprocessor registers on every
context switch. We do this by using ‘‘lazy’’ context switching. This
relies on there being a simple method of disabling the coprocessor; any
operation on a disabled coprocessor results in an exception. Both the
IA-32 and ARM processor have such mechanisms:

• IA-32 has a flag (TS) in the CR0 control register which, when set, causes
any FPU operations to raise a ‘‘Device Not Available’’ exception. The
CR0 register is saved and restored as part of the normal thread context

• The ARM VFP has an enable bit in its FPEXC control register. When the
enable bit is clear, any VFP operation causes an undefined instruction
exception. The FPEXC register is saved and restored as part of the
normal thread context

• Architecture 6 and some architecture 5 ARM devices also have a
coprocessor access register (CAR). This register selectively enables
and disables each of the 15 possible ARM coprocessors (other than
CP15 which is always accessible). This allows the lazy context switch
scheme to be used for all ARM coprocessors. If it exists, the CAR is
saved and restored as part of the normal thread context.

The lazy context-switching scheme works as follows. Each thread starts
off with no access to the coprocessor; that is, the coprocessor is disabled
whenever the thread runs.

When a thread, HAIKU, attempts to use the coprocessor, an exception
is raised. The exception handler checks if another thread, SONNET,
currently has access to (‘‘owns’’) the coprocessor. If so, the handler
saves the current coprocessor state in SONNET’s control block and then
modifies SONNET’s saved state so that the coprocessor will be disabled

ABORTS, TRAPS AND FAULTS 243

when SONNET next runs. If there wasn’t a thread using the coprocessor,
then the handler doesn’t need to save the state of the coprocessor.

Then coprocessor access is enabled for the current thread, HAIKU,
and the handler restores the coprocessor state from HAIKU’s control
block – this is the state at the point when HAIKU last used the coprocessor.
If this is the first time HAIKU has used the coprocessor, a standard initial
coprocessor state will have been stored in HAIKU’s control block when
HAIKU was created, and this standard state will be loaded into the
coprocessor. HAIKU now owns the coprocessor.

The exception handler then returns, and the processor retries the origi-
nal coprocessor instruction. This now succeeds because the coprocessor
is enabled.

If a thread terminates while owning the coprocessor, the kernel marks
the coprocessor as no longer being owned by any thread.

This scheme ensures that the kernel only saves and restores the
coprocessor state when necessary. If, as is quite likely, the coprocessor
is only used by one thread, then its state is never saved. (Of course, if
the coprocessor were to be placed into a low power mode that caused
it to lose state, the state would have to be saved before doing so and
restored when the coprocessor was placed back into normal operating
mode. However at the time of writing no coprocessors have such a
low-power mode.)

6.4.2.3 Debugging

Exceptions are used in debugging to set software breakpoints. The debug-
ger replaces the instruction at which the user wants to place a breakpoint
with an undefined instruction. When control flow reaches that point,
an exception occurs and the debugger gains control. Registers may be
inspected and/or modified and then execution resumes after the undefined
instruction. The debugger must somehow arrange for the replaced instruc-
tion to be executed, possibly by software emulation, before resuming exe-
cution. There is more on this subject in Chapter 14, Kernel-Side Debug.

6.4.3 APIs for exceptions
In the following sections, I will describe the kernel exception APIs that
are available to device drivers and extensions.

6.4.3.1 The XTRAP macro

This is a macro wrapper over the TExcTrap handlers that I described in
Section 6.4.1.3. The macro is used as follows:

XTRAP(result, handler, statements);
XTRAPD(result, handler, statements);

244 INTERRUPTS AND EXCEPTIONS

The specified statements are executed under a TExcTrap harness.
The parameter result is an integer variable that will contain the value
KErrNone after execution if no exception occurred. The macro XTRAPD
declares the variable resultwhereas XTRAP uses a preexisting variable.
The parameter handler is a pointer to a function with signature:

void (*TExcTrapHandler)(TExcTrap* aX, DThread* aThread, TAny* aContext);

This function is called if an exception occurs during the execution of
statements.

If XT_DEFAULT is specified as the handler parameter, a default
handler is used that returns an error code KErrBadDescriptor on any
exception.

Parameter aX points to the TExcTrap harness which caught the
exception, aThread points to the control block of the executing thread
and aContext points to a processor dependent structure which contains
the values of all the processor registers at the point where the exception
occurred. In fact this is simply the processor state information saved in
the exception preamble by the nanokernel. The ARM version of this is:

struct TArmExcInfo
{
TArmReg iCpsr;
TInt iExcCode;
TArmReg iR13Svc; // supervisor stack pointer
TArmReg iR4;
TArmReg iR5;
TArmReg iR6;
TArmReg iR7;
TArmReg iR8;
TArmReg iR9;
TArmReg iR10;
TArmReg iR11;
TArmReg iR14Svc; // supervisor mode LR
TArmReg iFaultAddress; // value of MMU FAR
TArmReg iFaultStatus; // value of MMU FSR
TArmReg iSpsrSvc; // supervisor mode SPSR
TArmReg iR13; // user stack pointer
TArmReg iR14; // user mode LR
TArmReg iR0;
TArmReg iR1;
TArmReg iR2;
TArmReg iR3;
TArmReg iR12;
TArmReg iR15; // address of aborted instruction
};

If the exception can be handled, the function should call:

aX->Exception(errorcode);

ABORTS, TRAPS AND FAULTS 245

This will cause the execution of the XTRAP macro to terminate imme-
diately without completing execution of statements; the results
variable is set to the errorcode passed in to the call.

If the exception cannot be handled, the function should just return.
The other exception handling strategies described in Section 6.4.1.3 will
then be attempted.

The XTRAP macro is used to catch exceptions occurring in supervisor
mode, typically in conjunction with the kumemget() and kumemput()
functions (described in Section 5.2.1.5) to access user-side memory from
places where it would not be acceptable to terminate the current thread
on an exception. Examples of these are code that runs with a fast mutex
held or inside a thread critical section. The XTRAP macro is the only way
to catch exceptions that occur with a fast mutex held.

6.4.3.2 Kernel event handlers

XTRAP handlers can only catch supervisor-mode exceptions in one
thread, and are normally used to catch exceptions within a single
function call. We use kernel event handlers when we want to catch
exceptions occurring in multiple threads or in user-mode over extended
periods of time. We implement kernel event handlers using the class
DKernelEventHandler, the public interface of which follows:

class DKernelEventHandler : public DBase
{

public:
// Values used to select where to insert the handler in the queue
enum TAddPolicy
{
EAppend,
};

enum TReturnCode
{

// Run next handler if set,
// ignore remaining handlers if cleared
ERunNext = 1,

// Available for EEventUserTrace only.
// Ignore trace statement if set.
ETraceHandled = 0x40000000,

// Available for hardware exceptions only.
// Do not panic thread if set.
EExcHandled = 0x80000000,
};

/** Pointer to C callback function called when an event occurs.
aEvent designates what event is dispatched.
a1 and a2 are event-specific.
aPrivateData is specified when the handler is created, typically a
pointer to the event handler.
The function is always called in thread critical section. */

246 INTERRUPTS AND EXCEPTIONS

typedef TUint (*TCallback)(TKernelEvent aEvent, TAny* a1, TAny* a2,
TAny* aP);

public:
// external interface
IMPORT_C static TBool DebugSupportEnabled();
IMPORT_C DKernelEventHandler(TCallback aCb, TAny* aP);
IMPORT_C TInt Add(TAddPolicy aPolicy = EAppend);
IMPORT_C TInt Close();
inline TBool IsQueued() const;
};

If you are writing an extension or a device driver and you want to
use a kernel event handler, follow these steps. First instantiate the
DKernelEventHandler class on the kernel heap. This requires two
parameters – aCb is a pointer to a function to be called back when any
notifiable event occurs, and aP is an arbitrary cookie which is supplied
as an argument to aCb when notifying an event.

After instantiating the class, call Add() on it to start receiving event
callbacks. From this point on, whenever a notifiable event occurs, the
kernel will call the specified function, aCb. It calls the function in the
context of the thread that caused the event, with the thread itself in a
critical section. The aEvent parameter to the callback indicates the event
the callback relates to; the value EEventHwExc indicates a processor
exception. For processor exception callbacks, parameter a1 points to the
saved processor state (for example, TArmExcInfo which I mentioned
previously) and parameter a2 is not used. The return value from the
handler function will take one of the following values:

• DKernelEventHandler::EExcHandled if the exception has been
handled and normal program execution should be resumed

• DKernelEventHandler::ERunNext if the exception has not been
handled and the next kernel event handler (if any) should be run.

6.4.3.3 ARM coprocessor handlers

On ARM-based hardware, Symbian OS provides additional APIs to sup-
port lazy context switching and software support for coprocessors. ARM
systems may have several coprocessors; examples of these are the Vector
Floating Point (VFP), DSP and motion estimation units.

Here is the coprocessor API:

const TInt KMaxCoprocessors=16;

enum TCpOperation
{
EArmCp_Exc, /* UNDEF exc executing a coproc instr */
EArmCp_ThreadExit, /* Coproc current owning thread exited */

ABORTS, TRAPS AND FAULTS 247

EArmCp_ContextInit /* Initialise coprocessor */
};

struct SCpInfo;
typedef TInt (*TCpHandler)(SCpInfo*, TInt, TAny*);

struct SCpInfo
{
TCpHandler iHandler; /*Hdler:contextswitch,init&threadexit*/
NThread* iThread; /*Current owning thread, NULL if none */
TUint16 iContextSize; /* context size for this coprocr */
TInt8 iCpRemap; /* Coproc no to remap this one to if >=0 */
TUint8 iSpare;
TInt iContextOffset; /* Offset in thread extra context */
};

class Arm
{
...

public:
static void SetCpInfo(TInt aCpNum, const SCpInfo* aInfo);
static void SetStaticCpContextSize(TInt aSize);
static void AllocExtraContext(TInt aRequiredSize);
static TUint32 Car();
static TUint32 ModifyCar(TUint32 aClearMask, TUint32 aSetMask);
static TUint32 FpExc();
static TUint32 ModifyFpExc(TUint32 aClearMask, TUint32 aSetMask);
...
};

The code responsible for handling the coprocessor (which may be in the
kernel or in the ASSP, the variant or an extension) should call the follow-
ing function during the Init1 initialization phase (see Chapter 16, Boot
Processes, for a detailed description of the system initialization phases):

Arm::SetCpInfo(TInt aCpNum, const SCpInfo* aInfo);

Parameter aCpNum specifies the number of the coprocessor whose han-
dler is being defined. Parameter aInfo specifies information about the
coprocessor, as follows:

• SCpInfo::iHandler specifies the function that should be called at
system boot if a thread exits or if an undefined instruction exception
occurs trying to access the coprocessor. The second parameter passed
to the function specifies which of these events has occurred, specified
by the TCpOperation enumeration

• SCpInfo::iThread specifies which thread owns the coprocessor.
On initialization this should be NULL

• SCpInfo::iContextSize specifies the size in bytes of the per-
thread context for this coprocessor

248 INTERRUPTS AND EXCEPTIONS

• SCpInfo::iCpRemap specifies whether this coprocessor is really
part of another coprocessor. If set to zero or a positive value, this
specifies the number of the primary coprocessor. All events for this
coprocessor will be redirected to the primary coprocessor. A value of
−1 indicates that no redirection is required

• SCpInfo::iContextOffset is calculated by the kernel and need
not be set. When the kernel calls back the handler function specified
in SCpInfo::iHandler it passes the following parameters:

TInt h(SCpInfo* aInfo, TInt aOp, TAny* aContext);

If aOp == EArmCp_ContextInit, the system is in the Init2 phase
of boot. The handler should initialize the coprocessor and then save its
state to the memory area pointed to by aContext. It should then disable
access to the coprocessor.

If aOp == EArmCp_ThreadExit, a thread is exiting. The handler is
called in the context of the exiting thread. If the exiting thread currently
owns the coprocessor, the handler should mark the coprocessor as
unowned, so that subsequent accesses do not try to save the state to a
thread control block that no longer exists.

If aOp == EArmCp_Exc, an undefined instruction exception has
occurred on an instruction targeted at this coprocessor. aContext points
to the register state saved by the nanokernel exception preamble. The
kernel calls the handler in the context of the thread attempting the instruc-
tion. If this is not the coprocessor’s current owning thread, the handler
should save the coprocessor state for the current owning thread and then
disable the coprocessor for that thread. It should then enable the copro-
cessor for the current thread and restore the current thread’s coprocessor
state. If the exception is successfully handled the handler should return
KErrNone, otherwise KErrGeneral.

The following functions are used to modify the access permissions for
a coprocessor:

Arm::ModifyCar(TUint32 aClear, TUint32 aSet);
Arm::ModifyFpExc(TUint32 aClear, TUint32 aSet);

The functions return the original value of the register that they modify.
Access to the VFP is controlled by the FPEXC register; access to other
coprocessors is controlled by the CAR. Since these functions modify the
hardware registers directly, they affect the current thread. To modify copro-
cessor access for another thread, the corresponding functions are used:

NThread::ModifyCar(TUint32 aClear, TUint32 aSet);
NThread::ModifyFpExc(TUint32 aClear, TUint32 aSet);

SUMMARY 249

These do not modify the hardware registers – instead they modify the
copy of those registers saved in the thread’s control block.

6.4.4 Exceptions in the emulator

The emulator installs an exception handler on its Windows threads so
that it can detect and handle exceptions occurring in Windows on that
thread. This is similar to the data abort exception vector in the ARM code
on a phone.

If the kernel is locked when an exception occurs the system halts, as
this is a fatal error.

If the kernel is unlocked, the first action on taking an exception is to
lock it. Next, we have to deal with the effect of a race condition between
exception handling and forced exit – otherwise it is possible that a thread
that has been killed will not actually die!

The exception handler then records the exception information and
causes the thread to ‘‘return’’ to a second exception handler once the
Windows exception mechanism has unwound. Running the second stage
outside of the Windows exception handler allows the nanokernel to be in
better control of the thread context; in particular it allows for the thread to
be panicked and so on. The kernel remains locked through this process,
so the saved exception data cannot be overwritten.

The second stage saves the full thread context including the original
instruction pointer (this allows debuggers to display a complete call
stack), then unlocks the kernel and invokes the nanokernel thread’s
exception handler. This handler can supply a final ‘‘user-mode’’ exception
handler and parameters which is invoked before returning to the original
exception location.

6.5 Summary

In this chapter, I’ve described interrupts and exceptions, and looked
at their causes and the way in which processors react to them. I’ve
shown how an operating system, in particular Symbian OS, makes use
of exceptions, and I’ve gone on to examine how EKA2 handles them in
detail. Finally, I have discussed the APIs that are available to allow you
to make use of exceptions in base ports and device drivers.

The management of CPU resources is one of the key tasks of an
operating system. The other is the management of memory, and it is this
that I shall discuss in the next chapter, Memory Models.

7
Memory Models

by Andrew Thoelke

A memory is what is left when something happens and does not
completely unhappen.

Edward de Bono

The kernel is responsible for two key resources on a device: the CPU and
the memory. In Chapter 6, Interrupts and Exceptions, I described how the
kernel shares the CPU between execution threads and interrupts.

In this chapter I will examine the high-level memory services provided
by EKA2, and the way that the kernel interacts with the physical memory
in the device to provide them. To isolate the kernel from different
memory hardware designs, this interaction is encapsulated in a distinct
architectural unit that we call the ‘‘memory model’’. As I describe the
different memory models provided with EKA2 you will find out how they
use the memory address space (the memory map) and their contribution
to overall system behavior.

7.1 The memory model

At the application level – and to a large extent when writing kernel-
side software – the main use of memory is for allocation from the free
store using operator new or malloc. However, there are some more
fundamental memory services that are used to provide the foundation
from which such memory allocators can be built.

The kernel has the following responsibilities related to memory man-
agement:

1. Management of the physical memory resources: RAM, MMU and
caches

2. Allocation of virtual and physical memory

252 MEMORY MODELS

3. Per-process address space management

4. Process isolation and kernel memory protection

5. The memory aspects of the software loader.

As well as providing these essential services, we wanted to ensure that
the design of the memory model does not impose hard or low limits on
the operating system. In particular:

• The number of processes should be limited by physical resources
rather than the memory model, and should certainly exceed 64

• Each process should have a large dedicated address space of 1–2 GB

• The amount of executable code that can be loaded by a process
should be limited only by available ROM/RAM.

We found that the provision of efficient services to carry out these
responsibilities is dependent on the memory architecture in the hardware.
In particular, a design that is fast and small for some hardware may prove
to be too slow or require too much memory if used on another. As
one of the aims of EKA2 was to be readily portable to new hardware,
including new MMU and memory architectures, we took all of the code
that implements the different memory designs out of the generic kernel
and provided a common interface. The resulting block of code we call
the ‘‘memory model’’. This is itself layered, as I have already briefly
described in Chapter 1, Introducing EKA2. I will repeat the key parts of
the illustration I gave there as Figure 7.1.

NKern

Memory Model

Memory Model

Memory ModelNKern

Symbian OS Kernel

Symbian OS Kernel

ASSP DLL

Variant DLL

Independent

Platform

Model

CPU

ASP

Variant

Figure 7.1 Memory model layering

At the highest level, we have to distinguish between a native imple-
mentation of EKA2 and an emulated one. In the former case, EKA2 is

MMUs AND CACHES 253

the OS that owns the CPU, the memory and all the peripherals, and
the system boots from a ROM image. In the latter case another ‘‘host’’
OS provides basic services to EKA2, including memory allocation and
software loading. This layer is referred to as the ‘‘platform’’.

As I mentioned in Chapter 1, Introducing EKA2, there are several ways
to design an MMU and cache. We want to provide the best use of
memory and performance for Symbian OS and so the different hardware
architectures result in different memory model designs. The basic choices
are as follows:

No MMU Direct memory model

Virtually tagged cache Moving memory model

Physically tagged cache Multiple memory model

Emulator Emulator memory model

I describe these different memory models in detail later in the chapter.
Even for identical memory architectures, different CPUs have different

ways of controlling the MMU and cache and the final layer in the memory
model, the ‘‘CPU’’ layer, supplies the specific code to control the memory
in individual CPUs.

7.2 MMUs and caches

7.2.1 MMU

Before describing how EKA2 uses the RAM in the device to provide the
memory services to the operating system and applications, it is worth
explaining how the hardware presents the memory to the software.

EKA2 is a 32-bit operating system, which means that it assumes that
all memory addresses can be represented in a 32-bit register. This limits
the amount of simultaneously addressable memory to 4 GB. In practice
there is far less physical memory than this, typically between 16 MB and
32 MB in the mobile phones available at the time of writing.

One of the important aspects of nearly all Symbian devices is that they
are ‘‘open’’ – they allow the user to install third-party native applications
and services. This is very different from a mobile handset based on an
embedded OS, and is very significant for the way the OS must manage
memory. It has several consequences:

1. In an embedded OS, one can determine the maximum memory
requirement of each component. Then, at compilation time, one can

254 MEMORY MODELS

allocate exactly the memory that is needed to each component. This
means that the exact amount of RAM needed is known when building
the product. ‘‘Static allocation’’ of this kind is not viable with an open
platform

2. There are certain types of application that ideally would use all avail-
able memory to provide maximum benefit to the user – for example,
web browsers encountering complex web sites. Providing each such
application with dedicated RAM would prove very expensive, partic-
ularly considering that most of this memory would be unused most
of the time

3. The built-in software can be tested as thoroughly as required by the
device manufacturer. However, third-party software added later can
threaten the stability and integrity of the device. A poorly written
or malicious program can be harmful if this software is allowed to
directly interfere with the memory of the OS.

These issues make it important to make use of a piece of hardware
found in higher-end devices: a memory management unit (MMU). This is
responsible for the memory interface between the CPU and the memory
hardware, which is typically a memory controller and one or more
memory chips.

The rest of this section explores the various key features of a MMU and
how EKA2 makes use of them.

7.2.1.1 Virtual addresses and address translation

One of the key services of an MMU is an abstraction between what the
software considers to be a memory address and the real physical address
of the RAM. The former is called the virtual address in this context and
the latter the physical address.

This disconnection between the address in the software and the
hardware address provides the mechanism to resolve the first two issues
associated with an ‘‘open’’ OS. In particular, the OS can allocate a large
range of virtual addresses for an application but only allocate the physical
memory as and when the application requires it. Allocation of virtual
addresses is often referred to as reserving, allocation of physical memory
as committing.

The MMU and OS must maintain a mapping from virtual addresses to
physical addresses in a form that allows the MMU to efficiently translate
from the virtual to physical address whenever a memory access occurs.
The most common structure used to hold this map is called a multi-level
page directory, and the hardware supported by Symbian OS specifically
supports two-level page directories. Some high-end CPUs now use three
or more levels in the MMU, particularly 64-bit processors that support

MMUs AND CACHES 255

virtual address ranges with more than 32 bits. Figure 7.2 shows what a
multi-level page directory might look like.

Level 1
Page Directory

Level 2
Page Table

Main memory
Page

Figure 7.2 A multi-level page directory

The first level in a two-level directory is commonly referred to as the
page directory. Conceptually there is just one of these directories used
to do the mapping, although this is not always literally true – and we’ll
examine that in the next section. The directory is just a table of references
to the items in the second level of the directory.

In the second level there are page tables. Typically there will be tens to
hundreds of these objects in the mapping. Each page table itself contains
a table of references to individual pieces of memory.

The memory itself has to be divided up into a collection of memory
pages or frames. MMUs often support a small range of different page
sizes: EKA2 prefers to use page sizes of 4 KB and 1 MB, but may also
make use of others if available.

Perhaps the best way to understand how a virtual address is trans-
lated into a physical address through this structure would be to work
through an example. To illustrate how address translation works, I shall
concentrate on how an ARM MMU translates an address that refers to
memory in a 4 KB page – this translation process is also called page
table walking.

Let’s suppose that a program has a string, ‘‘Hello world’’, at address
0x87654321 and issues an instruction to read the first character of
this string. Figure 7.3 illustrates the work done by the MMU to find the
memory page containing the string.

256 MEMORY MODELS

Level 1
Page Directory

Level 2
Page Table

Main memory
Page

"Hello world"

1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1

MMU
TTBR

Virtual address (32 bits)

5. Extract the address of
the memory page from
the page table entry

3. Extract the address of
the page directory from
the page directory entry

1. Extract the address
of the page directory
from the MMU register

2. Calculate the offset
into the page directory
using the high 12 bits
of the virtual address

4. Calculate the offset
into the page table
using the middle 8 bits
of the virtual address

6. Calculate the offset
into the page using
the low 12 bits of the
virtual address

Figure 7.3 Algorithm for translating virtual addresses

Currently, ARM MMUs have a page directory which contains 212

entries, each of which is 4 bytes – making the page directory 16 KB in
size. Each entry is therefore responsible for 220 bytes of address space,
that is, 1 MB. When this entry refers to a page table containing 4 KB
pages the page table will therefore have 28 entries. Again, each entry is 4
bytes, making the page table 1 KB in size.

First, the address provided by the program is broken up into three
pieces. These provide three separate indexes into the different levels of
the mapping.

Next the MMU locates the address of the page directory by reading its
Translation Table Base Register (TTBR). The topmost 12 bits of the virtual
address, in this case 0x876, is used as an index into the page directory.
The MMU reads the entry from the page directory and determines that it
refers to a page table for 4 KB pages.

Then, using the next 8 bits of the address, 0x54, as an offset into the
page table, the MMU can read the page table entry. This now provides
the physical address of the memory page.

The final 12 bits of the address are now combined with the page
address to create the physical address of the string and this is used to
fulfill the read request.

It is worth noting that the addresses in the TTBR, page directory entries
and page table entries are all physical addresses. Otherwise, the MMU

MMUs AND CACHES 257

would have to use page table walking to do page table walking and the
algorithm would never terminate!

Translation look-aside buffers
The algorithm described for translating addresses is quite simple, but if
you consider that it requires two additional external memory accesses for
each load or store operation it is easy to see that it is slow and inefficient.

To overcome this problem, MMUs provide a cache of the most recent
successful address translations, and this is called the Translation Look-
aside Buffer (TLB). This often stores the most recent 32 or 64 pages that
were accessed, and allows the MMU to very quickly translate virtual
addresses that correspond to one of those pages.

As with all caches, the kernel must manage the TLB to ensure that
when the kernel makes changes to the underlying page tables it also
modifies or discards any affected entries in the TLB.

TLBs are so effective that some MMUs do not provide the page-table
walking algorithm in hardware at all. Instead they raise a CPU exception
and expect that a software routine provided by the OS will look up the
translation and set a TLB entry (if successful) before resuming the memory
access that caused the exception. Although EKA2 could support this type
of MMU, a reasonable implementation would require that the MMU
provides special support for the software walking routine. For example,
if the MMU reserved a region of the virtual address space to be directly
mapped to physical memory without using the TLB, this would allow
the table walking algorithm to read the page directory and page tables
without incurring additional ‘‘TLB miss’’ exceptions.

7.2.1.2 Virtual address spaces

Earlier, I said that there is only one page directory in the mapping. This
is true at any given time as the MMU has only one TTBR register which
points to the base of the page directory. However, we can write to the
TTBR and tell the MMU to use a different page directory when translating
virtual addresses. This is one of the techniques that allows the same
virtual address to map onto different physical addresses at different times.

Why would we want to do this?
The format of the executable code in Symbian OS is the basis for one of

the reasons – in particular the way in which code refers to data. Symbian
uses a relocated code format, in which the code has the actual (virtual)
address of the data object. This is in contrast to relocatable code in which
data references are all made relative to some external reference, usually
a reserved register. It is almost amusing to note that only relocated code
requires a set of relocation data in the executable file format so that the
OS loader can correctly adjust all of the direct references within the code.

Consider an application, TERCET.EXE for instance, that has a global
variable, lasterror, used to record the last error encountered in the

258 MEMORY MODELS

program. Once this program has been loaded, linked and relocated there
will be several memory blocks used for the program, and within them a
direct reference from the program code to the address that the OS has
decided to use for the lasterror variable (see Figure 7.4).

Code

Heap

Static Variables

lasterror

Reference to
lasterror at
address 00500840

00500000

00700000

F0000000

Figure 7.4 Memory used to run TERCET.EXE

This seems fine, we have a memory block allocated at virtual address
0xF0000000 for the program code, and another allocated at virtual
address 0x00500000 for the program data, and in particular for the
lasterror variable. There will be others for the program execution stack
and the dynamic memory pool, or heap; however, unlike lasterror
these do not have direct references from the program code.

Now suppose that the OS needs to run a second instance of TER-
CET.EXE at the same time as the first. One of the definitions of a process
in the OS is an independent memory address space. So as a separate
process, the second copy of TERCET.EXE must have its own thread and
execution stack, its own heap and its own copy of the global variables.

One way to achieve this would be to make a second copy of the
program code and relocate this for different code and data addresses to
the first instance (see Figure 7.5). Notice that this requires the code to be
duplicated so that the second instance refers to a different location for the
lasterror variable. Symbian OS doesn’t do this for two reasons. Firstly,
duplicating the code uses more RAM – which is already in short supply.
Secondly, and more crucially, built-in software is usually executed in
place (XIP) from Flash memory and so it has already been relocated
for just one code and data address. And worse – we have discarded the
relocation data to save space in the Flash memory, so we cannot make a
copy of the code and relocate it for a new address.

MMUs AND CACHES 259

Second Instance

Code

Heap

Static Variables

lasterror

Reference to
lasterror at

address
01500840

00500000

00700000

F0000000 Code

Heap

Static Variables

lasterror

01500000

01700000

F1000000

First Instance

Figure 7.5 Memory used to run TERCET.EXE

So, in Symbian OS both instances of TERCET.EXEwill share the same
code memory – but this also implies that the address for lasterror is
the same in both processes, 0x00500840 (see Figure 7.6).

Second Instance

Shared Code

Heap

Static Variables

lasterror

Reference to
lasterror at
address 00500840

00500000

00700000

F0000000

Heap

Static Variables

lasterror

00500000

????????

First Instance

Figure 7.6 Running TERCET.EXE twice, sharing the code

We still need the two instances of TERCET.EXE to have separate
memory blocks for their variables, so that when an instance of the process
is running it finds its own variable mapped to address 0x00500840. So
we need a way for the same virtual address to translate to two different
physical addresses, depending on which process is currently running.

The solution is for each process in the OS to have its own mapping
from virtual to physical addresses, and this mapping is called the process

260 MEMORY MODELS

memory context. As I described in Chapter 3, Threads, Processes and
Libraries, when we schedule a new thread to run, part of the work that
has to be done is to determine if the new thread runs in the same process
as the old one. When this is not the case, the memory context has to be
changed to ensure that the correct mapping is used for virtual addresses
in the new thread and process.

How this is achieved in Symbian OS depends on the type of MMU,
and I describe this later in the chapter when I look at the different
memory models.

7.2.1.3 Memory protection

One of the issues that an open OS must address is how to protect the
operating system from software which is flawed or even malicious. If all
software has direct access to the device memory, then it is not possible
to limit the adverse effects that new software might have on a device.

We have already seen that the MMU provides an indirect mapping
from the virtual address used by the software and the physical address of
the memory provided by the OS. For each of the pages mapped by the
MMU, we can supply attributes that describe an access policy for that
memory. When used correctly and consistently by an OS this is a very
powerful feature:

• We can protect the kernel data from direct and indirect attacks from
user-mode programs

• We can protect the hardware that uses memory mapped I/O from
being accessed directly by user-mode programs

• We can allow a process to read and write its own memory, but deny
it access to that of any other process

• We can ensure that loaded software cannot be modified after loading
by marking it as read-only

• When this is supported by the MMU, we can ensure that general heap
and stack memory cannot be executed as program code, defending
against many buffer over-run type attacks

• We can provide memory that can be shared by just some of the
running processes.

Figure 7.7 illustrates these concepts by showing which memory should
be made accessible to a thread when running in user or supervisor modes.
The memory used by the kernel and two user programs, A and B, is shown
where A and B share some code and some data. The left-hand images
show memory accessible to a thread in program A in both user and
kernel mode – note that the kernel memory is inaccessible to user-mode
software. The top right image shows that program B cannot access

MMUs AND CACHES 261

Kernel Stacks
ROM
code

Kernel data

Kernel Heap

I/O memory

Program A
stacks

Common
buffer

Program B
stacks

Program A
heap

Program A
buffer

Program B
heap

Program A
code

Shared code
Program B

code

Program A thread in user mode

Kernel Stacks
ROM
code

Kernel data

Kernel Heap

I/O memory

Program A
stacks

Common
buffer

Program B
stacks

Program A
heap

Program A
buffer

Program B
heap

Program A
code

Shared code
Program B

code

Program B thread in user mode

Kernel Stacks
ROM
code

Kernel data

Kernel Heap

I/O memory

Program A
stacks

Common
buffer

Program B
stacks

Program A
heap

Program A
buffer

Program B
heap

Program A
code

Shared code
Program B

code

Program A thread in kernel mode

Kernel Stacks
ROM
code

Kernel data

Kernel Heap

I/O memory

Program A
stacks

Common
buffer

Program B
stacks

Program A
heap

Program A
buffer

Program B
heap

Program A
code

Shared code
Program B

code

Program C thread in user mode

Figure 7.7 Memory accessible to a thread in user and kernel modes

memory used by program A except for memory that has been shared
between these programs. The final image with program C, whose own
memory is not shown, shows that this program has no access to any of the
memory used by programs A and B. This demonstrates the ideal situation,
and, as I will describe later, the different memory models sometimes
provide less restricted access than is shown here for certain situations. Of
course, any such relaxation is made very carefully to preserve the value
of providing the memory protection in the first place.

7.2.1.4 Page faults

The MMU allows us to map all of a device’s RAM, 16 MB say, into
a much larger 4 GB virtual address space. Clearly many of the virtual
addresses cannot map onto physical memory. What happens if we try to
access one of these?

262 MEMORY MODELS

When walking through the page tables to translate an address, the
MMU may find an entry that is marked as empty, or not present (in the
page directory or a page table). When this occurs, the MMU raises a CPU
prefetch or data abort exception, depending on whether the memory
access was trying to read code or data.

Something very similar will occur if the MMU detects that the CPU is
not permitted to access the page because it does not currently satisfy the
access policy for the page.

In EKA2, this will usually result in a user-side thread terminating with
KERN-EXEC 3 (unhandled exception) or the OS rebooting in the case of
a kernel thread. I covered this in more detail in Chapter 6, Interrupts and
Exceptions.

Operating systems designed for personal computers all use page faults
and the MMU mapping to achieve another goal: demand paging. This is
a scheme in which the operating system can effectively pretend that it
has more physical memory than is really available. It does this by saving
to disk memory pages that have not been used recently, and allowing
another program to use the physical memory (for now). The memory
mapping is adjusted to record that the old page is now saved to disk and
is not present in memory. When this page is accessed once more a page
fault occurs, and a special fault handler determines that the contents of
the page are on disk, and arranges for it to be loaded back into spare
physical memory before restarting the program that faulted.

EKA2 does not support demand paging.

7.2.2 Cache

The second key element of the hardware memory sub-system is the
cache. This is very fast (1- or 2-cycle) memory that sits right next to
the CPU. The data in the most recently accessed memory is contained
here, substantially reducing the number of external memory accesses and
therefore improving performance and efficiency.

In Chapter 2, Hardware for Symbian OS, I have discussed caches in
some detail.

7.3 The memory model interface

The memory model is a distinct architectural block in the EKA2 kernel.
As a result the rest of the kernel can be almost entirely independent of
the chosen memory architecture and hardware support. To provide that
encapsulation, the memory model defines a standard API to which all
memory model implementations must conform.

The basic API is in the two classes P and M defined in kern_priv.h.
P denotes the API exposed by the platform layer in the EKA2 software

THE MEMORY MODEL INTERFACE 263

layer diagram, and M denotes the API exposed by the model layer in the
same diagram:

class P
{
public:
static TInt InitSystemTime();
static void CreateVariant();
static void StartExtensions();
static void KernelInfo(TProcessCreateInfo& aInfo, TAny*& aStack,

TAny*& aHeap);
static void NormalizeExecutableFileName(TDes& aFileName);
static void SetSuperPageSignature();
static TBool CheckSuperPageSignature();
static DProcess* NewProcess();
};

class M
{

public:
static void Init1();
static void Init2();
static TInt InitSvHeapChunk(DChunk* aChunk, TInt aSize);
static TInt InitSvStackChunk();
static TBool IsRomAddress(const TAny* aPtr);
static TInt PageSizeInBytes();
static void SetupCacheFlushPtr(TInt aCache, SCacheInfo& c);
static void FsRegisterThread();
static DCodeSeg* NewCodeSeg(TCodeSegCreateInfo& aInfo);
};

This appears to be a very small API indeed, but it does hide a few
secrets.

All but four of the functions are related to startup. The result of
invoking the startup functions is both to initialize the memory model
within the kernel, but also to configure the kernel for the memory model.
In particular:

M::Init1() During this initialization phase the process
context switch callback is registered with the
scheduler. This callback will be used for all
address space changes triggered by a context
switch.

M::SetupCacheFlushPtr() Provides the memory address to be used
by the cache manager when flushing the
caches.

The two most interesting functions here are P::NewProcess() and
M::NewCodeSeg(). These are not expected to return exact DProcess

264 MEMORY MODELS

and DCodeSeg objects, but rather classes derived from them. We had a
brief look at DProcess in Chapter 3, Threads, Processes and Libraries,
but what you should note is that it has a number of virtual members – and
among them are further factory functions DProcess::NewChunk() and
DProcess::NewThread() designed to return memory model-specific
classes derived from DChunk and DThread.

It is these four classes – DProcess, DThread, DChunk and DCode-
Seg – that provide the main API between the generic layers of the kernel
and the memory model.

7.3.1 DChunk
In Symbian OS, the chunk is the fundamental means by which the
operating system allocates memory and makes it available to code
outside of the memory model.

A chunk is a contiguous range of addressable (reserved) memory of
which a sub-set will contain accessible (committed) memory. On systems
without an MMU, the addresses are physical addresses, and the entire
chunk is accessible.

On systems with an MMU, Symbian OS provides three fundamental
types of chunk, depending on which sub-sets of the address range contain
committed memory.

1. NORMAL. These chunks have a committed region consisting of a
single contiguous range beginning at the chunk base address with a
size that is a multiple of the MMU page size

2. DOUBLE ENDED. These chunks have a committed region consisting
of a single contiguous range with arbitrary lower and upper endpoints
within the reserved region, subject to the condition that both the lower
and upper endpoints must be a multiple of the MMU page size

3. DISCONNECTED. These have a committed region consisting of an
arbitrary set of MMU pages within the reserved region – that is, each
page-sized address range within the reserved region that begins on a
page boundary may be committed independently.

Although it is obvious that a normal chunk is just a special case of a
double-ended chunk, and both of these are special cases of a discon-
nected chunk, we decided to separate the types because the specialized
forms occur frequently and we can implement them more efficiently
than the general purpose disconnected chunk. Figure 7.8 shows the dif-
ferent types of chunks and the common terminology used to describe
their attributes.

As with other types of kernel resource, you can create chunks that
are local, or private, to the creating process or chunks that are global.
Local chunks cannot be mapped into any other process and thus the

THE MEMORY MODEL INTERFACE 265

committed memory

reserved memory

size

size

bottom top

base size max. size

Normal chunk

Double-ended
chunk

Disconnected
chunk

Figure 7.8 Fundamental chunk types

operating system uses them for any memory that does not need to be
shared. Conversely, you can map a global chunk into one or more other
processes. A process can discover and map global chunks that are named,
whereas the only way for a process to access an unnamed global chunk
is for it to receive a handle to the chunk from a process that already
has one.

The operating system uses chunks for different purposes, and this
information is also specified when creating a chunk. The memory model
uses this information to determine where in the virtual address space to
allocate a chunk, which access permissions must be applied and how
to map the chunk into the kernel or user process memory context. The
kernel uses the TChunkType enumeration to describe the purpose of
the chunk to the memory model, and the following table explains the
different types:

Value Description

EKernelData There is a single chunk of this type used to manage
the global data for all XIP kernel-mode software, the
initial (null) thread stack and the dynamic kernel
heap. The virtual address for this chunk depends on
the memory model, but is set during ROM

266 MEMORY MODELS

Value Description

construction and extracted from the ROM header at
runtime. It is used to calculate the runtime data
addresses for relocating the XIP code in ROM.

EKernelStack There is single chunk of this type used to allocate all
kernel-mode thread stacks. The difference with
EKernelData is that the address range for this
chunk is reserved dynamically during boot.

EKernelCode There is at most a single chunk of this type, used to
allocate memory for all non-XIP kernel-mode code,
such as device drivers loaded from disk. It differs
from the previous type by requiring execute
permissions and I-cache management.

Edll EUserCode The kernel uses these chunks to allocate memory or
page mappings for non-XIP user-mode code. The
memory model determines how these chunks are
used and how code is allocated in them.

ERamDrive This chunk contains the RAM drive, if present. The
virtual address of the RAM drive is defined by the
memory model – this allows the contents to be
recovered after a software reboot.

EUserData General purpose chunks for user-mode processes.
The kernel uses these chunks for program variables,
stacks and heaps. May be private to a process or
shared with one or more other processes.

EDllData This chunk allocates memory for writable static
variables in user DLLs. The virtual address for this
chunk must be fixed by the memory model, as it is
used to calculate the runtime data address for XIP
code in the ROM. Non-XIP DLLs have their data
addresses allocated at load time.
Each user process that links to or loads a DLL that has
writable static data will have one of these chunks.

EuserSelfModCode This is a special type of user-mode chunk that is
allowed to contain executable code. For example, a
JIT compiler in a Java runtime would use one for the

THE MEMORY MODEL INTERFACE 267

Value Description

compiled code sequences. This type of chunk differs
from EUserData in the access permissions and also
the cache management behavior.

ESharedKernelSingle
ESharedKernelMultiple
ESharedIo

The kernel provides these shared chunk types for
memory that needs to be shared between device
drivers and user-mode programs. Unlike other
user-mode accessible chunks, these can only have
the mapping adjusted by kernel software, which
makes them suitable for direct access by hardware
devices.

ESharedKernelMirror Some memory models map shared chunks into the
kernel memory context using an independent
mapping – in this case, this chunk owns the
additional mapping.

Here is the DChunk class:

class DChunk : public DObject
{

public:
enum TChunkAttributes

{
ENormal =0x00,
EDoubleEnded =0x01,
EDisconnected =0x02,
EConstructed =0x04,
EMemoryNotOwned =0x08
};

enum TCommitType
{
ECommitDiscontiguous = 0,
ECommitContiguous = 1,
ECommitPhysicalMask = 2,
ECommitDiscontiguousPhysical =

ECommitDiscontiguous|ECommitPhysicalMask,
ECommitContiguousPhysical =

ECommitContiguous|ECommitPhysicalMask,
};

DChunk();
∼DChunk();
TInt Create(SChunkCreateInfo& aInfo);
inline TInt Size() const {return iSize;}
inline TInt MaxSize() const {return iMaxSize;}
inline TUint8 *Base() const {return iBase;}

268 MEMORY MODELS

inline TInt Bottom() const {return iStartPos;}
inline TInt Top() const {return iStartPos+iSize;}
inline DProcess* OwningProcess() const

{return iOwningProcess;}
public:
virtual TInt AddToProcess(DProcess* aProcess);
virtual TInt DoCreate(SChunkCreateInfo& aInfo)=0;
virtual TInt Adjust(TInt aNewSize)=0;
virtual TInt AdjustDoubleEnded(TInt aBottom, TInt aTop)=0;
virtual TInt CheckAccess()=0;
virtual TInt Commit(TInt aOffset, TInt aSize, TCommitType aCommitType=

DChunk::ECommitDiscontiguous, TUint32* aExtraArg=0)=0;
virtual TInt Allocate(TInt aSize, TInt aGuard=0, TInt aAlign=0)=0;
virtual TInt Decommit(TInt aOffset, TInt aSize)=0;
virtual TInt Address(TInt aOffset, TInt aSize,

TLinAddr& aKernelAddress)=0;
virtual TInt PhysicalAddress(TInt aOffset, TInt aSize,

TLinAddr& aKernelAddress,
TUint32& aPhysicalAddress,

TUint32* aPhysicalPageList=NULL)=0;
public:
DProcess* iOwningProcess;
TInt iSize;
TInt iMaxSize;
TUint8* iBase;
TInt iAttributes;
TInt iStartPos;
TUint iControllingOwner;
TUint iRestrictions;
TUint iMapAttr;
TDfc* iDestroyedDfc;
TChunkType iChunkType;
};

In the following table, I describe the meanings of some of DChunk’s
key member data:

Summary of fields in DChunk:

Field Description

iOwningProcess If the chunk is only ever mapped into a single process,
this is the process control block for the process that
created and owns this chunk. Otherwise this is
NULL.

iSize Size of committed memory in the chunk. Note that this
does not include the gaps in a disconnected
chunk.

THE MEMORY MODEL INTERFACE 269

Field Description

iMaxSize The reserved size of the chunk address region. This is
usually the actual size reserved which may be larger
than the requested size, depending on the MMU.

iBase The virtual address of the first reserved byte in the
chunk. This may change over time depending on which
user-mode process is currently running, and may also
be specific to a memory context that is not the current
one – so dereferencing this value directly may not yield
the expected results!

iAttributes A set of flags indicating certain properties of the chunk.
Some are generic – for example, double ended,
disconnected, memory not owned. Some are memory
model specific – for example, fixed access (protected
by domain), fixed address, code (on moving model) and
address allocation and mapping type flags on the
multiple model.

iStartPos The offset of the first committed byte in a double-ended
chunk. Not used for other chunk types.

iControllingOwner The process ID of the process that set restrictions on
chunk.

iRestrictions Set of flags that control which operations may be
carried out on the chunk. For example, this is used to
prevent shared chunks from being adjusted by
user-mode software. Shared chunks are described in
Section 7.5.3.2.

iMapAttr Flags to control how the chunk is mapped into memory.
Only used for shared chunks.

iDestroyedDfc A DFC that is invoked once the chunk is fully destroyed.
Chunk destruction is asynchronous and depends on all
references to the chunk being released – this enables
the device that owns the memory mapped by the chunk
to know when the mapping has been removed.

iChunkType The type of use that the chunk is put to. This is one of
the TChunkType values already described.

270 MEMORY MODELS

We specify the chunk API entirely in terms of offsets from the base
address. This is because the base address of a chunk is a virtual address,
and thus may change depending on the memory context – in particular,
different processes may have a different base address for the same chunk,
or the kernel may find a chunk at a different base address than user code
does. The precise circumstances under which the base address changes
depend on the memory model.

We create a chunk with a specified maximum size, which determines
the maximum size of the address range it covers; a chunk may never
grow beyond this size. The memory model reserves a suitable region
of virtual address space for the chunk which is at least as large as the
maximum size, though it may be larger, depending on the particular
MMU of the device.

The memory model provides chunk adjust functions which allow the
committed region within the chunk to be changed in accordance with
the chunk type:

Adjust() Set the end of the committed region of a normal chunk.
This will commit or release pages of memory as
required to achieve the new size.

AdjustDoubleEnded() Move one or both of the ends of the committed region
of a double-ended chunk.

Commit() Commit the pages containing the region specified. If
any of the pages are already committed this will fail – so
it is advisable to always specify page-aligned offsets.

Decommit() Release the pages containing the region specified. This
will ignore pages that are not committed without
reporting an error.

Allocate() Allocate and commit a region of the size requested.
Optionally allocate a preceding guard region (which is
not committed) and request larger than page-size
alignment.

7.3.2 DCodeSeg
A code segment is responsible for the loaded contents of an executable
image file, either an EXE or a DLL. This will be the relocated code and
read-only data, as well as the relocated initial state of writable data, if it
is present in the executable. We store this initial writable data in memory
to avoid the need to re-read and relocate this from the executable file
when initializing additional copies of the writable data section for the

THE MEMORY MODEL INTERFACE 271

executable. As Symbian OS does not encourage the use of writable static
data, this does not result in any significant waste of memory.

The code segment may own the memory for the code in different ways,
depending on the memory model. In some cases, a single disconnected
chunk manages all the memory for code segments, and in others the code
segment manages the pages of memory directly.

As an optimization, code that is part of an XIP ROM does not usually
have a code segment object to represent it in the kernel, unless it is
directly referenced by a DProcess or DLibrary object.

Here are the other main responsibilities of code segments:

• Recording important information for the code segment, such as the
code and data location, size and run address; the table of exception
handlers; the code entry point; the directory of exports and more

• Maintaining the record of dependencies it has on other code segments.
These are the dependencies that result from importing functions from
other DLLs. Note that these dependencies can be circular, because
mutual dependency between DLLs is legal. These dependencies are
used to determine which code segments should be mapped in or
out of a process as a result of a DLL being loaded or unloaded, or
to determine when a code segment is unused and can be destroyed
entirely

• Mapping the code segment into and out of a process address context
when DLLs are loaded and unloaded. How, or if, this happens
depends on how the memory model chooses to allocate and map
code segments.

Chapter 10, The Loader, provides a thorough description of how code
segments are used to manage executable code.

It is worth noting that EKA1 does not have a DCodeSeg object. In
EKA1, the responsibilities of DCodeSeg were partly in DLibrary class
and partly in DChunk. This arrangement suited the processor architectures
and ROM available at the time it was designed. The complete redesign
of this area for EKA2 was driven by the desire to exploit the very different
memory model for ARMv6, and a need for a far more scalable design
to manage hundreds of executables loaded from non-XIP Flash. EKA2
still has a DLibrary object, but it purely provides the kernel side of the
user-mode RLibrary interface to dynamic code.

7.3.3 DProcess

Within the OS, a process is a container of one or more threads (see
Chapter 3, Threads, Processes and Libraries) and an instantiation of an

272 MEMORY MODELS

executable image file (see Chapter 10, The Loader). However, we have
already seen that it is also the owner of a distinct, protected memory
context. This means that it is concerned with both owning the memory
belonging to the process (or being shared by the process), and also with
owning the mapping of that memory into its virtual address space.

The memory model must maintain enough information with its process
objects to be able to manage the process address context. This context is
used by the memory model in the following situations:

• Process context switch. The previous context and protection must
be removed from the MMU and the new one established. Chang-
ing the virtual to physical address map usually requires modifying
one or more MMU registers, and may require invalidation of now-
incorrect TLB entries and cache data due to changing the virtual to
physical mapping

• Process termination. The memory model must be able to release
all memory resources that the process owned or shared and return
them to the system. Failure to do this would obviously result in slow
exhaustion of the system memory and eventual reboot

• Inter-process communication – data transfers between processes.
When a thread needs to read or write memory belonging to another
process – this included when a kernel thread wishes to read or write
user-mode memory – the memory model must be able to locate and
map that memory to transfer the data.

7.3.4 DThread

Although the memory model is concerned with managing the process
address space, a number of the operations that depend on the implemen-
tation of the memory model are logically carried out on threads, and so
these operations are presented as members of the DThread class:

AllocateSupervisorStack()
FreeSupervisorStack()
AllocateUserStack()
FreeUserStack()

The management of supervisor and user-mode
thread stacks is memory model dependent.
MMU enabled memory models typically
allocate all thread stacks for a process in a
single disconnected user-mode chunk, with
uncommitted guard pages between each stack
to catch stack overflow. Similarly, the kernel
allocates all kernel-mode thread stacks in a
single kernel chunk with guard pages between
them.

THE MEMORY MODEL INTERFACE 273

ReadDesHeader()
RawRead()
RawWrite()

These support the kernel reading from and
writing to another thread’s user memory. These
methods will carry out any necessary checks to
ensure that the specified ‘‘remote’’ memory is
part of the thread’s user memory address space.
They can also check that the ‘‘local’’ memory
buffer is within the executing thread’s user
memory context.
This functionality is exposed to drivers via the
Kern::ThreadDesRead() and
Kern::ThreadRawRead() set of APIs,
which in addition will trap any exceptions
caused by unmapped addresses.
The user-mode client/server RMessagePtr2
APIs in turn use these for transferring data
buffers between a client and server.

ExcIpcHandler() This provides the exception handler used in
conjunction with the exception trap (see my
discussion of XTRAP in Chapter 6, Interrupts
and Exceptions) as part of the inter-process
copying I mentioned earlier. This enables an
exception caused by providing a faulty remote
address to be treated as an error response, but
one caused by a faulty local address to be
treated as a programming error, that is, a panic.

RequestComplete() This is the kernel side of the Symbian OS
programming patterns that use
TRequestStatus,
User::WaitForRequest() and active
objects. Requests are always completed
through this function, which writes the 32-bit
status word into the target (requesting) thread’s
memory.
As this is the basis for all inter-thread
communication, performance is paramount,
and so the memory model usually implements
this operation as a special case of writing to
another thread’s memory space.

274 MEMORY MODELS

7.4 The memory models

Up to this point we have looked at a number of the problems faced when
reconciling the need for Symbian OS to be open to third-party software,
and yet robust against badly written or malicious programs. However, I
have so far avoided providing the precise details of how these issues are
resolved in EKA2. The reason for this is that the best solution depends on
the design of the memory management hardware – and there are two very
different designs of the level 1 memory sub-system employed in ARM
processors. This has led to two different memory model implementations
for devices running Symbian OS on ARM processors.

We developed the first implementation on EKA1, in the early days of
Symbian OS, for version 3 of the ARM Architecture (ARMv3). The reason
this is known as the moving memory model will become apparent as I
explain its motivation and design. We developed and optimized this first
implementation gradually, all the way through to version 5 of the ARM
Architecture (ARMv5) and use it on both EKA1 and EKA2.

For version 6 of their architecture (ARMv6), ARM made a radical
departure from their previous MMU and cache designs. At this point it
made sense for Symbian OS to replace the moving model with a new
design, the multiple memory model, which would make the most of
the ARMv6 features and provide enhanced performance, reliability and
robustness for Symbian OS.

For both of these memory models, we will look at the hardware
architecture, describe how this is utilized to provide the memory model
services and present the memory map, which depicts the way that the
virtual address space is allocated to the OS.

For completeness, I will also briefly describe the two other memory
models provided with EKA2: the direct memory model, enabling EKA2 to
run without the use of an MMU, and the emulator memory model, which
we use to provide a memory environment on the emulator that matches
hardware as close as possible.

7.4.1 The moving model

We developed this memory model specifically for ARM processors up to
and including those supporting ARMv5 architecture.

7.4.1.1 Hardware

The ARM Architecture Reference Manual1 provides a detailed description
of the memory sub-system in ARMv5. Here I will describe those features
that have a significant impact on the memory model design.

1 ARM Architecture Reference Manual, by Dave Seal. Addison-Wesley Professional.

THE MEMORY MODELS 275

Virtual address mapping
In ARMv5, the top-level page directory has 4096 entries, each of which
is 4 bytes, making the directory 16 KB in size. Many operating systems
that provide individual process address spaces use the simple technique
of allocating a different page directory for each process – and then the
context switch between processes is a straightforward change to the
MMU’s base register (the TTBR). However, on devices with limited RAM,
we considered allocating 16 KB per process excessive and so we needed
an alternative scheme for managing multiple address spaces.

Protection
ARMv5 provides two systems for protecting memory from unwanted
accesses.

The first of these systems is the page table permissions: each page of
memory that is mapped has bits to specify what kind of access is allowed
from both user and supervisor modes. For example, a page can be marked
as read-only to all modes, or no-access in user modes but read/write for
supervisor modes. Obviously, memory that is not referenced in the current
address map cannot be accessed either.

The second protection system is called domains. ARMv5 supports up
to 16 domains. Each entry in the page directory contains a field to specify
in which domain this address range lies. Thus, every mapped page lives
in exactly one domain. The MMU has a register that controls the current
access to each domain, with three settings: access to the domain is not
allowed and always generates a fault, access to the domain is always
allowed and page table permissions are ignored, or access to the domain
is policed by the page table permissions.

Using domains allows large changes to the memory map and effective
access permissions to be made by small changes to the page directory
entries and to the domain access control register (DACR).

Caches
The ARMv5 cache design uses a virtually indexed and virtually tagged
cache – this means that the virtual address is used to look up the set
of cache lines that may contain the data being requested, and also to
identify the exact cache cell that contains the data. The benefits are that
no address translation is required if the data is in the cache, theoretically
reducing power requirements. In practice, the MMU must still check the
TLB to determine the access permissions for the memory.

However, as I discussed earlier, in a system that is managing multiple
address spaces we expect the same virtual address to sometimes refer
to two different physical addresses (depending on which process is
current). This form of multiple mapping is sometimes referred to as a
homonym – the same virtual address may ‘‘mean’’ more than one thing.
There are also situations where we might wish to use two different

276 MEMORY MODELS

virtual addresses to refer to the same physical memory, for example when
sharing memory between processes or with a peripheral. This other form
of multiple mapping is called a synonym – different virtual addresses have
the same ‘‘meaning’’.

Figure 7.9 illustrates the problem of homonyms in ARMv5. Only one
of the data items can be cached for the virtual address at any point in
time because the MMU uses the virtual address to identify that item in
the cache. We can only support the use of multiple overlapping address
spaces by removing the virtual address and data from the cache during

Page table 1

Page table 2

Page Directory Page Tables RAM Page

Data1

Physical
address 1
(PA1)

Set 1
Set 2
Set 3
Set 4

...

VA
Index tag: VA Data?

Cache

VA -> PA?
Entry 1
Entry 2
Entry 3

...

TLB

context
swich

Data2

Physical
address 2
(PA2)

Virtual Address
(VA)

Figure 7.9 Homonyms in ARMv5

THE MEMORY MODELS 277

a context switch between the processes, ensuring that any updates are
copied back to main memory. Otherwise the second process will only
ever see (and access) the first process’s memory.

In addition, the TLB cannot contain both of the mappings, and so the
memory model also invalidates the TLB during a process context switch.
As a result, a context switch that changes the virtual memory map impacts
both performance and power consumption.

The problem of synonyms on such hardware is illustrated in Figure 7.10.
This is slightly more complex, as the different virtual addresses will both
appear in the cache in different places. This can result in confusing effects,
because writing through one address may not be visible if read back
through the other. This can only be solved by ensuring that the memory
model does not map the same physical memory with two virtual addresses
at the same time, and that if the virtual address needs to be changed then
the cache data must be flushed.

Page table 1

Page table 2

Page Directory Page Tables RAM Page

Data

Physical
Address (PA)

Set 1
Set 2
Set 3
Set 4

...

VA1

VA2

Index tag: VA1 Data

tag: VA2 Data?

Cache

VA2 -> PA

VA1 -> PA
Entry 1
Entry 2
Entry 3

...

TLB

Virtual Address 1

Virtual Address 2

(VA1)

(VA2)

Figure 7.10 Synonyms in ARMv5

As with almost all new high-specification CPUs, the code and data
caches are separated – this is sometimes referred to as a Harvard cache. (In
Chapter 17, Real Time, I discuss the performance implications of different
cache types.) Aside from general benefits that the Harvard cache is known
to provide, the moving memory model specifically uses it to ensure that
the instruction cache does not need to be managed on a context switch.

278 MEMORY MODELS

7.4.1.2 Memory model concept

The moving memory model uses a single page directory for the whole
OS, and provides multiple overlapped process address spaces by moving
blocks of memory (changing their virtual address) during a context switch.
This is how the memory model derives its name.

Simple arithmetic shows that each page directory entry maps 1 MB of
address space. Changing the domain specified in the entry provides easy
control of the access policy for this memory range. The memory model
can move this address range, whilst simultaneously changing the access
permissions by writing a new entry in the page directory and resetting the
old entry (two 32-bit writes).

For example, suppose we have a page table that maps a set of
pages, each with ‘‘user no-access, supervisor read/write’’ permissions.
Now we create a page directory entry in the second position in a
page directory, allocate it to domain 0 and set the DACR to ignore-
permissions for this domain. We can now access the pages using the
address range 0x00100000-0x001fffff with full access from both
user and supervisor modes as the permission bits are being ignored. On a
context switch we remove this page directory entry and create a new one
in the seventh position, this time setting the domain to 1 (with the DACR
set to check-permissions for domain 1). After clearing the TLB entry for
the old address range we can no longer use address 0x00100000 to
access the memory. However, we can now use 0x00600000, but only
from supervisor mode as the permission bits are now being checked.
Figure 7.11 shows the effect of making these simple changes to the
page directory.

This is the essential idea that we use to provide each process with
identical virtual address spaces, but distinct and protected memory pages.
During a context switch, we first move the old process’s memory out
of the common execution address, making it inaccessible to user mode
at the same time, and then we move the new process’s memory to the
common execution address and make it accessible.

This is also one of the motivations behind the concept and imple-
mentation of the chunk, described in Section 7.3.1, which is the unit of
‘‘moving memory’’ within the higher layers of this memory model.

Unfortunately, as with many good ideas, this one is not without its
drawbacks. If you remember, I earlier described the problem that can be
caused by mapping memory at different virtual memory addresses, even
when spread out in time – and that the solution is to flush the cache.
This means that all modified data is copied back to main memory and
all cached data is discarded and must be reloaded from main memory
when required. As a result, a process context switch with this memory
model is dominated by the time spent flushing the cache, and is typically
100 times slower than a thread context switch (within the same process).
There is little hope that in future cache flushing will be made faster by

THE MEMORY MODELS 279

Page table 1

<empty>

<empty>

Page table 1

00100000

00600000

00100000

00600000

context
swich

Page Directory Page Table

Domain 0:
Full access

Domain 1:
Restricted

Figure 7.11 Remapping memory by modifying the page directory

new processors and memory, as performance gained there is lost flushing
ever larger caches.

The moving memory model employs some of the other ARMv5 fea-
tures, such as domains and split caches, to reduce the requirement for
cache flushing. However, it cannot be entirely removed and still consti-
tutes a measurable proportion of the execution time for Symbian OS.

It is interesting to note that ARMv5 provides an alternative to mul-
tiple page directories or moving page tables – the Fast Context Switch
Extensions. In this mode, the MMU translates the virtual address before
doing regular address translation using the page tables, and can eliminate
the expensive cache flush on a context switch. In this mode, the MMU
will replace the highest 7 bits of the virtual address with the value in
the FCSE PID register, if these bits were all zero. This means that virtual
addresses in the range 0x00000000 to 0x02000000 will be mapped to
some other 32 MB range before the page tables are walked. On a process
context switch all that is needed is to change the FCSE PID. Although
popular with other open operating systems using ARMv5, this limits the
system to 127 processes (the number of distinct, non-zero FCSE PID
values) and each process to a virtual address space of 32 MB including
code. The need for the kernel to use some of the memory map for other
purposes can reduce these limits significantly. These limitations were not
acceptable for Symbian OS.

280 MEMORY MODELS

7.4.1.3 Design

As I have already described, the moving memory model maintains a
single page directory for the whole OS. The rest of this section provides
a high-level view of the moving memory model design.

Address spaces
Allocated memory is always owned by a single-page table, and the page
table will be owned by a single chunk. Thus a chunk is always responsible
for a whole number of megabytes of virtual address space, and the base
address is always aligned on a megabyte boundary.

Each chunk is always present in exactly one place in the memory
map, and so all of the page tables that it owns will be referenced from
consecutive page directory entries. One consequence of this is that there
can never be more than 4096 distinct page tables at any one time.

The previous rule is not directly obvious from the requirements.
Memory that is not accessible to the currently executing process does not
always need to be in the memory map. However, much of Symbian OS
execution involves inter-process activity and the implementations of the
client/server system and thread I/O requests rely on having access to the
memory of a non-current process. If we ensure that this memory is directly
accessible to the kernel, we can simplify these algorithms considerably.

By default, the data chunks for a process are moving chunks and these
have two address ranges allocated for them. The first is the data section
address (or run address) which is the virtual address used by the process
that creates the chunk and the range is as large as the maximum size
for the chunk. The latter is necessary because the virtual address of the
chunk is specified to never change as the chunk grows or shrinks. When a
moving chunk is mapped into a second process, the memory model does
not guarantee that the virtual address in the second process matches that
in the first one. Thus the data section address is specific to each process
that has access to the chunk.

The second address is the kernel section address (or home address)
which is the virtual address occupied by the chunk when it is both
inaccessible to the currently running process and the current process is
not fixed – see the following optimizations section for an explanation of
fixed processes. Page directory entries are only reserved in the kernel
section for the currently committed memory in the chunk. If additional
page tables are added to the chunk later, a new kernel section address
will be allocated – this is not a problem as the kernel section address is
only ever used transiently for inter-process memory accesses.

The memory model manages the chunks that are accessible to each
process by maintaining for each process an address ordered list of all
data chunks that are mapped by the process. Each entry on this list also
contains the data section address for that chunk in the process. The chunk

THE MEMORY MODELS 281

itself knows about its kernel section address, and whether it is currently
mapped in the kernel section, or if it is mapped in the data section.

Protection
Using the memory moving technique shown in Figure 7.11, two domains
are used to provide protection between the currently running process and
the memory that should be inaccessible to the process, such as kernel
memory or that belonging to other processes. Although it might be more
obvious for the memory model to just use page permissions to achieve
this, modifying the page permissions during a context switch would
require changing every entry of the affected page tables – the scheme
using domains only requires that the memory model modifies a handful
of page directory entries.

Most chunks use page permissions that deny access from user mode,
but allow read/write access from supervisor modes. Chunks that are
not accessible to the current user process are allocated to domain 1,
while those that are accessible to the current user process are allocated
to domain 0. The domain access control register is set to allow all
access to domain 0 (ignoring the permission bits), but makes the MMU
check permissions for access to domain 1. This has the desired effect of
allowing a process to access its own memory from user mode (chunks
in the data section), but other memory is inaccessible except from
supervisor modes.

Some chunks have slightly different permissions to improve the robust-
ness of Symbian OS:

• Once loaded, all chunks containing code are marked as read-only, to
prevent inadvertent or malicious modification of software

• The mappings for the RAM drive are allocated to domain 3. This
domain is set to no-access by default, preventing even faulty kernel
code from damaging the disk contents. The RAM disk media driver is
granted access to this domain temporarily when modifying the disk
contents.

Figure 7.12 illustrates the effective access control provided by the
moving memory model, compared with the ideal presented earlier in
the chapter. Note that the only compromise for user-mode software
is the visibility of program code that has not been explicitly loaded
by the program. However, this memory model does make all memory
directly accessible from kernel mode. Kernel-mode software must already
take care to ensure that user processes cannot read or corrupt kernel
memory through the executive interface, so extending that care to guard
against incorrect access to another process does not add any significant
complexity to the OS.

282 MEMORY MODELS

Kernel Stacks
ROM
code

Kernel data

Kernel Heap

I/O memory

Program A
stacks

Common
buffer

Program B
stacks

Program A
heap

Program A
buffer

Program B
heap

Program A
code

Shared code
Program B

code

Program B thread in user mode

Kernel Stacks
ROM
code

Kernel data

Kernel Heap

I/O memory

Program A
stacks

Common
buffer

Program B
stacks

Program A
heap

Program A
buffer

Program B
heap

Program A
code

Shared code
Program B

code

Program B thread in user mode

Kernel Stacks
ROM
code

Kernel data

Kernel Heap

I/O memory

Program A
stacks

Common
buffer

Program B
stacks

Program A
heap

Program A
buffer

Program B
heap

Program A
code

Shared code
Program B

code

Program B thread in kernel mode

Kernel Stacks
ROM
code

Kernel data

Kernel Heap

I/O memory

Program A
stacks

Common
buffer

Program B
stacks

Program A
heap

Program A
buffer

Program B
heap

Program A
code

Shared code
Program B

code

Program B thread in kernel mode

Theory Moving Memory Model

Figure 7.12 Memory accessible to a thread in the moving memory model

Optimizations
Every time an operation requires the moving of at least one chunk, the
memory model must flush the relevant cache and TLB – therefore the
memory model design attempts to reduce the number of chunks that
need to be moved.

• A global chunk is used to allocate code segments. Thus code executes
from the same address in all processes. Additionally, code loaded by
one process is visible to the entire OS – although this is a compromise
for system robustness, it avoids a very expensive operation to adjust the
access permissions for all RAM-loaded code, and flush TLBs. Together

THE MEMORY MODELS 283

this ensures that the memory model never needs to flush the I-cache
on a context switch, significantly improving system performance

• Some chunks are fixed in memory, and their virtual address never
changes. In these cases, we use domains to control access to the
chunk by changing the DACR for the processes that are allowed
access. This can reduce the number of chunks that need to be moved
on a context switch

• Important and heavily used server processes can be marked as fixed
processes. Instead of allocating the data chunks for these processes
in the normal data section the memory model allocates them in
the kernel section and they are never moved. The memory model
allocates an MMU domain, if possible, to provide protection for the
process memory. The result is that a context switch to or from a fixed
process does not require a D-cache flush and may even preserve
the data TLB. One consequence of using this feature is that we can
only ever run a single instance of a fixed process, but this is quite
a reasonable constraint for most of the server processes in the OS.
Typical processes that we mark as fixed are the file server, comms
server, window server, font/bitmap server and database server. When
this attribute is used effectively in a device, it makes a notable
improvement to overall performance.

Memory map
Figures 7.13 and 7.14 show how the virtual address space is divided in
the moving memory model. These diagrams are not to scale and very
large regions have been shortened, otherwise there would only be three
or four visible regions on it!

7.4.1.4 Algorithms

In trying to understand how this memory model works it is useful
to walk through a couple of typical operations to see how they are
implemented.

Process context switch
The memory model provides the thread scheduler with a callback
that should be used whenever an address space switch is required.
I will describe what happens when the scheduler invokes that call-
back.

Switching the user-mode address space in the moving memory model is
a complex operation, and can require a significant period of time – often
more than 100 microseconds. To reduce the impact on the real time
behavior of EKA2 of this slow operation, the address space switch is
carried out with preemption enabled.

284 MEMORY MODELS

100000000
fff00000

iRomlinearBase

iUserCodeBase

iKernelCodeBase

iKernelLimit

65000000

iKernDataAddress

63000000

60000000

40000000

iDllDataBase

00000000

04000000

exception vendors

ROM - set from ROM script

RAM loaded user code - size
depends on physical RAM

beginning of kernel section -
calculated at ROM build time

RAM loaded kernel code -
size depends on physical RAM

fixed processes - usually 2 or
3MB each

kernel data and heap - set
from ROM script

primary i/o mappings set up
by the bootstrap

memory management -
see detailed map for this area

RAM Drive, if present

DLL static data - size
depends on physical RAM

data section, contains moving
process data

unmapped, null pointer trap

Figure 7.13 Full memory map for moving memory model

THE MEMORY MODELS 285

unused

page tables (up to 4096 * 1K)

unused

alt dcache flush area

dcache flush area

page table info (4096 * 8bytes = 32K)
page directory (16K)

unused

superpage / CPU page

62400000

62000000

61280000
61200000
61180000
61100000

61020000
61000000

60000000

63000000

unused

page tables (up to 4096 * 1K)

unused

alt dcache flush area

dcache flush area

page table info (4096 * 8bytes = 32K)
page directory (16K)

unused

superpage / CPU page

62400000

62000000

61280000
61200000
61180000
61100000

61020000
61000000

60000000

63000000

Figure 7.14 Memory management detail for moving memory model

The user-mode address space is a shared data object in the kernel,
as more than one thread may wish to access the user-mode memory
of a different process, for example during IPC or device driver data
transfers. Therefore, changing and using the user-mode address space
must be protected by a mutex of some form – the moving memory
model uses the system lock for this. This decision has a significant
impact on kernel-side software, and the memory model in particu-
lar – the system lock must be held whenever another process’s user-mode
memory is being accessed to ensure a consistent view of user-mode
memory.

The context switch is such a long operation that holding the system
lock for the entire duration would have an impact on the real time
behavior of the OS, as kernel threads also need to acquire this lock to
transfer data to and from user-mode memory. We tackle this problem
by regularly checking during the context switch to see if another thread
is waiting on the system lock. If this is the case, the context switch is
abandoned and the waiting thread is allowed to run. This leaves the
user-mode address space in a semi-consistent state: kernel software can
locate and manipulate any user-mode chunk as required, but when the
user-mode thread is scheduled again, more work will have to be done to
complete the address space switch.

286 MEMORY MODELS

The fixed process optimization described in the previous section relies
on the memory model keeping track of several processes. It keeps a
record of the following processes:

Variable Description

TheCurrentProcess This is a kernel value that is really the
owning process for the currently
scheduled thread.

TheCurrentVMProcess This is the user-mode process that last
ran. It ‘‘owns’’ the user-mode memory
map, and its memory is accessible.

TheCurrentDataSectionProcess This is the user-mode process that has
at least one moving chunk in the
common address range – the data
section.

TheCompleteDataSectionProcess This is the user-mode process that has
all of its moving chunks in the data
section.

Some of these values may be NULL as a result of an abandoned context
switch, or termination of the process.

The algorithm used by the process context switch is as follows:

1. If the new process is fixed, then skip to step 6

2. If the new process is not TheCompleteDataSectionProcess
then flush the data cache as at least one chunk will have to be moved

3. If a process other than the new one occupies the data section then
move all of its chunks to the home section and protect them

4. If a process other than the new one was the last user process then
protect all of its chunks

5. Move the new process’s chunks to the data section (if not already
present) and unprotect them. Go to step 8

6. [Fixed process] Protect the chunks of TheCurrentVMProcess

7. Unprotect the chunks of the new process

8. Flush the TLB if any chunks were moved or permissions changed.

Thread request complete
This is the signaling mechanism at the heart of all inter-thread commu-
nications between user-mode programs and device drivers or servers.

THE MEMORY MODELS 287

The part related to the memory model is the completion of the request
status, which is a 32-bit value in the requesting thread’s user memory.
The signaling thread provides the address and the value to write there to
the DThread::RequestComplete() method, which is always called
with the system lock held.

In the moving memory model, this is a fairly simple operation because
all of the user-mode memory is visible in the memory map, either in the
data section or in the home section. This function looks up the provided
address in the chunks belonging to the process, and writes the data to the
address where the memory is mapped now.

7.4.2 The multiple model
This memory model was developed primarily to support – and
exploit – the new MMU developed for ARMv6. However, it is more
generally applicable than the moving memory model and can also be
used with MMUs found on other popular processors such as Intel x86
and Renesas SuperH.

7.4.2.1 Hardware

As with the ARMv5 memory architecture, I refer you to the ARM Archi-
tecture Reference Manual for the full details of the level 1 memory
sub-system on ARMv6.

Virtual address mapping
As with ARMv5, the top-level page directory still contains 4096 entries.
However, in contrast with ARMv5 the page directory on ARMv6 can be
split into two pieces. Writing to an MMU control register, TTBCR, sets
the size of the first piece of the directory to contain the first 32, 64, . . .,
2048 or 4096 page directory entries, with the remainder being located in
the second page directory. To support this, the MMU now has two TTBR
registers, TTBR0 and TTBR1.

The MMU also has an 8-bit application space identifier register (ASID).
If this is updated to contain a unique value for each process, and the
memory is marked as being process-specific, then TLB entries created
from this mapping will include the ASID. As a result, we do not need to
remove these TLB entries on a context switch – because the new process
has a different ASID and will not match the old process’s TLB entries.

Protection
Although ARMv6 still supports the concept of domains, this feature is
now deprecated on the assumption that operating systems will opt to use
the more powerful features of the new MMU.

However, ARM have enhanced the page table permissions by the
addition of a never-execute bit. When set, this prevents the page being

288 MEMORY MODELS

accessed as part of the instruction fetching. When used appropriately, this
can prevent stack and heap memory being used to execute code, which
in turn makes it significantly harder to create effective security exploits
such as buffer over-run attacks.

Caches
The cache in ARMv6 has also been through a complete overhaul, and a
virtually indexed, physically tagged cache replaces the virtually indexed,
virtually tagged cache in ARMv5.

The cache is indexed using the virtual address, which enables the
evaluation of the set of cache lines that could contain the data to run in
parallel with the address translation process (hopefully in the TLB). Once
the physical address is available, this is used to identify the exact location
of the data in cache, if present.

The result of using a physically tagged cache is very significant – the
problems associated with multiple mappings are effectively removed.
When the same virtual address maps to different physical addresses
(a homonym) the cache can still store both of these simultaneously
because the tags for the cache entries contain distinct physical addresses
(see Figure 7.15).

Also, two virtual addresses that map to the same physical address
(a synonym) will both resolve to the same entry in the cache due to the
physical tag and so the coherency problem is also eliminated. This rather
nice result is not quite the whole picture – the use of the virtual address
as the index to the cache adds another twist for synonyms which I will
describe more fully later.

7.4.2.2 Memory model concept

The features of the ARMv6 MMU enable a number of the drawbacks of
the moving memory model to be eliminated without compromising on
the device constraints or OS requirements.

The split page directory of ARMv6 allows us to revisit the common
idea of having one page directory for each process. This time, instead of
requiring 16 KB for each process, we can choose to have just a part of
the overall page directory specific to each process and the rest can be
used for global and kernel memory. EKA2 always uses the top half (2 GB)
for the kernel and global mappings, and the bottom half for per-process
mapping. This reduces the per-process overhead to a more acceptable
8 KB, but retains up to 2 GB of virtual address space for each process.
For devices with smaller amounts of RAM (<32 MB) we go further and
only map the bottom 1 GB for each process reducing the overhead to
just 4 KB for each process. The name of the model comes from it using
multiple page directories.

The multiple memory model makes use of ASIDs to resolve the problem
of mapping the same virtual address to different physical addresses, while

THE MEMORY MODELS 289

the physically tagged cache ensures that multiple mappings of virtual
or physical addresses can be correctly resolved without needing to flush
data out of the cache. Figure 7.15 shows how these features allow the TLB
and cache to contain multiple process memory contexts simultaneously,
even when the processes map the same virtual address.

Page table 1

Page table 2

Page Directory 1 Page Tables RAM Page

Data1

Physical
address 1
(PA1)

Set 1
Set 2
Set 3
Set 4

...

VA
Index tag: PA1 Data1

Cache

ASID1:VA -> PA1
Entry 1
Entry 2
Entry 3

...

TLB

context
swich

Data2

Physical
address 2
(PA2)

Virtual Address
(VA)

Page Directory 2

ASID2:VA -> PA1

tag: PA2 Data2

Figure 7.15 Homonyms in ARMv6

When compared with the moving memory model, this design:

• Still provides up to 2 GB of per-process virtual address space

• Requires moderate additional memory overhead for each process
(4 or 8 KB)

290 MEMORY MODELS

• Has no requirement to flush the caches or TLBs on a context switch

• Does not make loaded program code globally visible

• Marks memory that holds data so that it cannot be executed as code.

The performance improvement that comes as a result of eliminating
the cache flush on context switch is the most significant benefit of this
memory model. It also ensures that this is a better memory model for
the future, as we will see continuing increases in cache size and CPU to
memory performance ratio.

The last two points in the previous list improve the robustness of the
OS as a whole, but also increase the protection provided for platform
security, which you can read more about in Chapter 8, Platform Security.

Revisiting the synonym problem
Although the multiple memory model is an improvement on the moving
memory model, it is not without its own complexities. The most awkward
issue is related to the solution for the synonym problem – providing
a second or alias virtual address for the same physical address. The
problem stems from the use of the virtual address as the initial index into
the cache to select the small set of lines from which to determine an
exact match using the physical address. Figure 7.16 primarily illustrates
the ideal situation with a synonym mapping – where the cache resolves
both virtual addresses to the same cache line and data.

However, the cache indexing is done using the lower bits of the virtual
address. For obvious reasons, the bottom 12 bits of the virtual address
and physical address are always identical (when using 4 KB pages). What
could happen if the cache uses 13 bits for the index?

Suppose that the page at physical address 0x00010000 was mapped
by two virtual addresses: 0x10000000 and 0x20001000. Then we write
to the memory at 0x10000230, which results in an entry in the cache in
the index set for 0x230 (low 13 bits) with the physical tag 0x00010230.
If we now try to read the address 0x20001230 (which according to our
mapping is the same memory), this will look up entries in the cache index
set for 0x1230 and not find the previous entry. As a result the cache
will end up containing two entries which refer to the original physical
address. The dotted entry in the cache in Figure 7.16 illustrates this effect.
This is the very problem we thought we had eliminated.

If the cache is small enough or the index sets within the cache large
enough (commonly known as the cache associativity), then no more than
12 bits are used for the virtual index. In this case, the problem does not
arise as there is a unique set within the cache for every physical address.
If 13 or more bits of the virtual address are used for the cache index,
then there can be multiple index sets in which a physical address may
be found – which one depends on the virtual address used to map it. The

THE MEMORY MODELS 291

Page table 1

Page table 2

Page Directory Page Tables RAM Page

Data

Physical
Address (PA)

Set 1
Set 2
Set 3
Set 4

...

VA1

VA2

Index tag: PA Data

tag: PA Data

Cache

VA2 -> PA

VA1 -> PA
Entry 1
Entry 2
Entry 3

...

TLB

Virtual Address 1

Virtual Address 2

(VA1)

(VA2)

Different coloured
virtual addresses
are still a problem

Figure 7.16 Synonyms in ARMv6

one or more bits of virtual address that select which of these sets are said
to determine the color of the page.

The solution adopted by EKA2 for this problem is to ensure that all
virtual to physical mappings share the same color – that is, all of the
virtual addresses used to map a given physical page must have the same
values for the bits that determine the color of the page. Thus every cache
lookup using any of these virtual addresses will resolve to the same entry
in the cache.

7.4.2.3 Design

In some respects the design of the multiple memory model is more
straightforward, as there is never the need to work out where some
memory happens to be at a given moment in time. If you know which
process has the memory and you have the virtual address, it is just a
matter of inspecting the process’s page directory to locate the mem-
ory – remembering, of course, that the addresses in the page directory
are physical addresses and translation to a virtual address is required to
inspect the page table.

In this model, the concept of a chunk is less fundamental to the overall
design. The design does not require such an object to exist – but as the

292 MEMORY MODELS

main interface between the memory model and the kernel is in terms of
chunks due to their significance for the moving memory model, they still
form an integral part of this memory model.

Address spaces
The kernel process owns the global page directory, which is referenced
by TTBR1. All of the pages mapped by this page directory are marked as
global, which means that the MMU will create global TLB entries that
can be used by any process.

The memory model allocates an ASID for each user-mode process.
ARMv6 only supports 256 distinct ASIDs and thus limits the OS to
running at most 256 concurrent processes. This is considered to be
sufficient! This also provides a limit for the number of per-process, or
local, page directories – so these are conveniently allocated in a simple
array. Memory is only committed for a local page directory when the
ASID is in use by a process. When a process is running, TTBR0 is set to
the local page directory for the process.

Depending on its type, the memory model will allocate a chunk in
the global page directory or in the local one. Examples of memory that is
allocated in the global directory:

• The global directory maps the XIP ROM as all processes must see this
code

• All processes share the locale data so this is allocated in the global
directory

• Any thread that is running in supervisor mode should have access to
kernel data and this is allocated in the global chunk.

Examples of memory that is allocated in the local directory:

• Stack and heap chunks that are private to the process

• Shared chunks that may also be opened by other processes

• Program code that is loaded into RAM.

The last two of these examples are memory that the operating system
can map into more than one process. Unlike the moving memory model,
however, chunks that can be shared between user processes always have
the same base address in all processes. The multiple memory model
achieves this by using a single address allocator for all memory that can
be shared. This also ensures that shared memory does not suffer from the
coloring problem as the virtual address is common to all processes.

In the moving memory model, the DProcess objects maintain a
collection of the chunks that they currently have access to. This is also

THE MEMORY MODELS 293

necessary to ensure that on a context switch the chunk is made accessible
to the program, as well as to allow address lookup when the process
is not in context. In the multiple model, this collection still exists but
only provides a means to track the number of times a given chunk has
been opened within the process so that it can be removed from the
memory map only after the last reference is closed. The process’s local
page directory maps the chunk to provide access when the program is
running, and to provide lookup for the memory model with the process
is not in context.

The model also keeps an inverse mapping from a shared chunk to
the processes that have opened it, so that the memory model can reflect
adjustments to the chunk size in all affected page directories.

Protection
Providing process memory protection with the multiple model is simpler
than with the moving model, which required domains to make it efficient.

Multiple page directories provide most of the protection: memory
that is private to a process is not present in the memory map when
another process is running. The use of ASIDs and the physically tagged
cache ensure that all cache data and mappings are only applied to the
owning process. Thus, unlike the moving memory model, the multiple
model applies full access permissions to memory mapped by the local
page directory.

The model applies supervisor-only permissions to kernel data mapped
by the global page directory, so that only supervisor modes can access this.

The model sets the never-execute permission on all data memory, such
as stacks and heaps. This prevents buffer-over-run attacks being used to
launch malicious code in the device.

Non-XIP user-mode program code is now mapped in the local page
directory rather than globally. This allows the memory model to restrict the
visibility of such code to just the processes that have explicitly loaded it.

The result is that the memory access matches the ideal situation
described in Section 7.2.1.3.

Memory map
Figures 7.17 and 7.18 show how the multiple memory model divides
virtual address space. I have depicted the case in which the local page
directory is 8 KB in size. Again, these diagrams are not to scale.

A final word on chunks
Some might suggest that the chunk is a very high-level interface to provide
the primary means of describing and controlling the memory allocated
and mapped by a process, and that a simpler, lower-level interface would
provide flexibility with less complexity.

The development of the disconnected chunk illustrates the need for
increasing flexibility and support for alternative allocation strategies.

294 MEMORY MODELS

primary I/O mappings setup up by bootstrap

memory management – see detailed map

exception vectors

extra kernel mappings
(I/O, RAM loaded device drivers)

kernel data, heap and stacks
page tables

RAM drive

user global area

ROM

RAM loaded code –
size depends on physical RAM

user shared data

DLL static data –
size depends on physical RAM

user local data

unmapped NULL pointer trap

fff00000

c9200000

c8000000

c4000000
c3000000

c0000000

a0000000

90000000

80000000

70000000

40000000

38000000

00400000
00000000

100000000

global
page

directory

local
page

directory

Figure 7.17 Full memory map for the multiple memory model

Within the multiple memory model there is an attempt to escape from
the notion that all memory belongs to a chunk in the handling of program
code that is loaded into memory.

However, because the moving memory model depends on the use of
chunks to describe all of its memory, while Symbian OS supports ARMv5,
chunks will continue to be the primary means of describing the memory
that is mapped by a process, and as the abstract interface between generic
kernel software and the memory model. Of course, even when no longer
demanded by the underlying memory hardware, the chunk will always
form part of the user-mode interface for memory management.

7.4.2.4 Algorithms

I will describe the same operations for the multiple memory model as I
did for the moving model to illustrate the design.

THE MEMORY MODELS 295

page directories (up to 256 * 16KB)

c1000000

c0100000

c0080000

c0040000

c0000000

page table info

ASID info (256 ASIDs)

super page/CPU page

c1400000

Figure 7.18 Memory management detail for the multiple memory model

Process context switch
The design of ARMv6 ensures that the address space switch is now a
simple operation. It is fast enough that it can be executed with preemption
disabled, making a process switch only marginally slower than a simple
thread switch.

The process context switch involves modifying two MMU registers:

• TTBR0 is set to the page directory for the new process

• CONTEXTID is set to the ASID for the new process.

The only extra work occurs if the new process contains user-mode ‘‘self-
modifying’’ code chunks, and was not the last such process to run, in
which case this function invalidates the dynamic branch prediction table
before returning.

Thread request complete
In contrast, this is now a more complex operation than the equivalent
in the moving memory model. This is because the memory to which we
need to write is not visible in the current address space,

This function can afford to use a different, faster, technique for writing
into another address space when compared with a general IPC data
copy, because it doesn’t need to simultaneously map both the signaling

296 MEMORY MODELS

and requesting process memory. Instead, the current nanokernel thread
changes its address space, effectively executing briefly within the memory
context of the target thread.

The memory model manages this sleight of hand by changing the
TTBR0 and CONTEXTID registers to the values for the target thread with
interrupts disabled. At the same time, it updates the current thread’s
iAddressSpace member to ensure that the right memory context is
restored if the next operation is preempted. Now that the current thread
has ‘‘jumped’’ into the target process address space, it can just write
the result code before restoring the MMU state to return to the original
address context.

Some care must be taken when writing to the request status to catch
the use of an invalid memory address. The system lock is held and
so RequestComplete() traps any exception and then processes the
failure once the address space has been restored.

7.4.3 The direct model

This memory model disables the MMU and the OS assumes a direct
mapping from virtual address to physical address. Although this enables
Symbian OS to run on hardware that has no MMU, Symbian OS does not
support this option in products as the lack of an MMU presents too many
limitations for the OS as a whole:

• The manufacturer must divide the physical memory at build time
between all the running processes in the OS, as memory chunks
cannot be grown and shrunk without an MMU. This makes it difficult
to support a variety of different memory-hungry use cases in a single
device without supplying an excessive amount of RAM

• There is no memory protection between different user-mode pro-
cesses or between user and kernel software – making the system
significantly less robust. It would certainly be unwise to consider
allowing such a device to support installation of additional software
after production.

However, there are times when it is useful to be able to run part of
Symbian OS – in particular the kernel and file server – with the MMU
disabled, such as when porting EKA2 to a new CPU or a new CPU family.
Such porting tasks are easier if the MMU is initially disabled to stabilize
the essential parts of the board support package without debugging new
memory hardware at the same time. Once EKA2 is running on the
hardware, the porting team can enable the MMU and tackle any memory
related problems independently.

THE MEMORY MODELS 297

7.4.4 The emulator model

As one might expect, we developed this memory model specifically
to support the emulator hosted by the Windows operating system. To
achieve the objectives set for the emulator regarding development and
demonstration, we made some compromises regarding true emulation of
the behavior of the hardware memory models.

It is here in the memory model that we find the most significant
differences between target and emulator kernels.

The emulator does not run on the ‘‘bare metal’’ of the PC hardware,
but is hosted as a process within the Windows operating system. As a
result, the low-level memory support in the emulator memory model uses
standard Windows APIs for basic memory allocation.

7.4.4.1 Virtual address mapping

The emulator runs as a single Win32 process, with the consequence
that it only has a 2 GB virtual address range for all memory allocation.
Compare this with a real device, where each application within the
OS typically has approximately 1 GB of virtual address space for its
own use.

To provide the programming model of the chunk, the emulator uses the
low-level VirtualAlloc() Windows API, which can reserve, commit
and release pages of the process address space. This also enables an
emulation of the page-wise allocation of RAM to a chunk, and allows
some approximation to be made of the amount of RAM being used by
the OS at any time. However, the emulator does not allocate all memory
in this way.

The emulator utilizes the Windows DLL format and the Windows
loader – LoadLibrary() and friends – to enable standard Windows
IDEs to be used for debugging of Symbian OS code in the emulator.
As a result, Windows allocates and manages the memory used for code
segments and the static data associated with DLLs and EXEs.

The emulator uses native Windows threads to provide Symbian OS
threads, again enabling standard development tools to debug multi-
threaded Symbian code. This results in Windows allocating and man-
aging the software execution stack for the thread. As is typical for
Windows threads, these stacks grow dynamically and can become
very large – unlike the fixed size, fully committed stacks on target
hardware.

7.4.4.2 Protection

The emulator runs within a single Windows process and thus within a
single Windows address space. All memory committed to the emulator

298 MEMORY MODELS

is accessible by any Symbian OS process within the emulator. As a
result, the emulator provides no memory protection between Symbian
OS processes, or between Symbian ‘‘user’’ and ‘‘kernel’’ memory.

Technically, it would be possible to make use of another Windows API,
VirtualProtect(), which allows a program to change the access per-
missions for a region of committed memory, to, for example, temporarily
make some memory inaccessible. The emulator could use this function
to allow the current emulated Symbian OS process to only access its own
memory chunks, and so provide some level of memory isolation between
Symbian OS processes within the emulator. However, this would result
in a poor multi-threaded debug experience as the memory for much of
the OS would be unreadable by the debugger.

7.5 Programmer APIs

In Sections 7.2, MMUs and caches, and 7.3, The memory model interface,
we looked at the very fundamental blocks of memory: the page and the
objects used in the interface between the generic kernel and the memory
model. Symbian OS provides a number of higher-level memory concepts
and objects to provide user-mode and kernel-mode programmers with
the right level of abstraction and control when allocating and using
memory:

• The chunk forms the basic API for almost all memory allocation and
ownership both inside the kernel and within user-mode processes

• One of the main consumers of chunks is the RHeap allocator class,
which provides a free store allocator on top of a chunk. There are
versions for both user- and kernel-side software. The standard C++
and C allocation functions use this allocator by default

• Kernel-mode software also has lower-level APIs designed for allocat-
ing memory, which are suitable for direct device or DMA access.
These include physically contiguous RAM, shared I/O buffers and
shared chunks.

7.5.1 Chunks

In Section 7.3.1, we looked at the principles of chunks, and how the
memory model provides support for them. In this section we look at the
programming interface for chunks.

Outside of the kernel executable, EKERN.EXE, kernel-mode software
only uses chunks directly for allocation when creating shared chunks,
and I will discuss these later in this section. The user-mode API for chunks
is the RChunk class:

PROGRAMMER APIs 299

class RChunk : public RHandleBase
{

public:
enum TRestrictions

{
EPreventAdjust = 0x01
};

public:
inline TInt Open(...);
IMPORT_C TInt CreateLocal(...);
IMPORT_C TInt CreateLocalCode(...);
IMPORT_C TInt CreateGlobal(...);
IMPORT_C TInt CreateDoubleEndedLocal(...);
IMPORT_C TInt CreateDoubleEndedGlobal(...);
IMPORT_C TInt CreateDisconnectedLocal(...);
IMPORT_C TInt CreateDisconnectedGlobal(...);
IMPORT_C TInt Create(...);
IMPORT_C TInt SetRestrictions(TUint aFlags);
IMPORT_C TInt OpenGlobal(...);
IMPORT_C TInt Open(RMessagePtr2,...);
IMPORT_C TInt Open(TInt);
IMPORT_C TInt Adjust(TInt aNewSize) const;
IMPORT_C TInt AdjustDoubleEnded(TInt aBottom, TInt aTop) const;
IMPORT_C TInt Commit(TInt anOffset, TInt aSize) const;
IMPORT_C TInt Allocate(TInt aSize) const;
IMPORT_C TInt Decommit(TInt anOffset, TInt aSize) const;
IMPORT_C TUint8* Base() const;
IMPORT_C TInt Size() const;
IMPORT_C TInt Bottom() const;
IMPORT_C TInt Top() const;
IMPORT_C TInt MaxSize() const;
inline TBool IsReadable() const;
inline TBool IsWritable() const;
};

This follows the standard handle pattern found with all kernel resources.
It is a fairly simple API with approximately half of the members being
ways to initialize the handle, either as a result of creating a new chunk
or by gaining access to an already existing one. The different versions
are used to create the different types of chunk and specify the visibility
of the chunk. The other half of the class members either provide access
to chunk attributes such as the base address (within the calling process
address space), or provide the user-mode API to the various chunk adjust
methods as already described in Section 7.3.1.

Aside from the use of global chunks to share memory between pro-
cesses, programmers only rarely use a chunk directly to allocate memory.
More often they utilize them as the underlying memory management for
some form of allocator.

7.5.2 Free store allocators and heaps
An allocator is an object that services requests to acquire and release
memory for a program. Behind every call to the new and delete

300 MEMORY MODELS

operators in C++, or to the malloc() and free() functions in C, is an
allocator. This object is concerned with taking the memory provided by
the OS, usually in multi-page sized blocks, and dividing it up so that an
application can use smaller pieces of it in an efficient manner.

7.5.2.1 Allocator APIs

The essential allocation support required for C++ and C is very similar,
and in particular an allocator that supports standard C programs is good
enough to implement support for C++. The key services of an allocator
are just these three functions:

malloc()
operator new()

Allocate and return a block of memory of at least the
requested size in bytes, otherwise return NULL if the
request cannot be satisfied. The allocator must ensure
that it meets the alignment requirements of all object
types. For example, the ABI for the ARM Architecture
requires 8-byte alignment.

free()
operator delete()

Release a block of memory previously allocated using
malloc() or realloc(). Following this call the
memory block should not be used by the program
again.

realloc() Grow or shrink a memory block previously allocated
using malloc() or realloc(), preserving the
contents and return the newly reallocated block. Note
that this could trivially be implemented using
malloc(), memcpy() and free(), but some
allocation schemes may be able to satisfy this request
‘‘in place’’, thus avoiding the potentially expensive
memory copy.

The last of these functions is clearly optional, and has no parallel in the
C++ allocation operators. Of course, C++ also allows the programmer
to provide specialized allocation services for a class by over-riding
the default implementation of operator new – perhaps to improve
performance, meet a strict alignment constraint, or to use a specific type
or part of the physical memory.

This simple API does not describe the behavior of a free store allocator
with multiple threads. The language standards do not define the behavior
in this situation because there would be a performance penalty to using a
thread-safe allocator in a single-threaded program. Thus the question of
thread-safety is left to the implementation to determine. I will come back
to how Symbian OS tackles this problem a little later.

PROGRAMMER APIs 301

7.5.2.2 Allocator strategies

If we examine the basic problem of dividing up pages of RAM into
different sized pieces, we find that there are several different techniques
for structuring and dividing the memory for allocation, and different
algorithms for selecting exactly which portion of memory will be used to
satisfy a particular allocation request.

Different allocation techniques have different ways of organizing their
memory and acquiring and releasing it from the operating system. In
Symbian OS an allocator is most likely going to use a chunk to provide
the lower-level allocation, and will pick the type of chunk that best fits
the allocation strategy and usage pattern. Here are some examples:

• Many free store allocators – that is, those supporting operator
new() in C++ or malloc() and free() in C – assume that the
storage is a single contiguous address range, and that requests for
additional pages of memory extend the current committed memory
at the ‘‘top’’. We can implement these using a standard chunk. The
standard ‘‘heap’’ allocator in Symbian OS is one such allocator

• Some memory managers for non-native programming systems, such
as Java, implement a handle/body system for objects – and effectively
require two dynamically re-sizable contiguous memory regions. We
can manage these two memory regions in a double-ended chunk,
with one region growing upwards and the other downwards

• More advanced allocators may not require fully contiguous memory
regions, and may also be able to release pages of memory back to
the OS when no longer used by the program. This may result in
better overall memory use in the OS. We use a disconnected chunk
to support these.

Why should we bother with so many possible choices of data structure
and algorithm for allocators? The simple answer is that there is no ‘‘ideal
allocator’’. All allocator designs will favor some attributes over others.
For example, some provide fast, real-time allocation but have a high
memory overhead; others have a minimal memory overhead, but have
poor worst-case performance. Different applications may need different
allocators to meet their requirements.

7.5.2.3 Allocators in Symbian OS

We realized that Symbian OS has to achieve two aims with the allocator
that it provides:

1. A good, general purpose allocator provided by default for all programs

302 MEMORY MODELS

2. The ability to customize or replace the default allocator for applica-
tions that have special requirements.

EKA1 met the first of these needs with the RHeap allocator class. EKA2
provides the same choice of default allocator, but now also meets the
second need by providing an abstract allocator class. This is the definition
of MAllocator in e32cmn.h:

class MAllocator
{

public:
virtual TAny* Alloc(TInt)=0;
virtual void Free(TAny*)=0;
virtual TAny* ReAlloc(TAny*, TInt, TInt =0)=0;
virtual TInt AllocLen(const TAny*) const =0;
virtual TInt Compress()=0;
virtual void Reset()=0;
virtual TInt AllocSize(TInt&) const =0;
virtual TInt Available(TInt&) const =0;
virtual TInt DebugFunction(TInt, TAny*, TAny*)=0;
};

The first three members are the basic allocator API that I described
earlier. The OS expects several other services from the allocator, as I
describe in the following table:

Alloc() Basic allocation function, foundation for malloc() and
similar allocator functions.

Free() Basic de-allocation function, basis for free(), etc.

ReAlloc() Reallocation function, basis for realloc().
There is an optional third parameter, to control allocator
behavior in certain situations. This enables an allocator to
provide compatibility with programs that may incorrectly
assume that all allocators behave like the original
RHeap::ReAlloc() function.

AllocLen() Return the allocated length for the memory block. This is
always at least as much as the memory requested, but is
sometimes significantly larger.

Compress() Release any unused pages of memory back to the OS, if
possible.
This function is deprecated, but retained for EKA1
compatibility. Allocators for EKA2 are expected to do this
automatically as a side effect of Free() rather than wait
for an explicit request.

PROGRAMMER APIs 303

Reset() Release all allocated memory – effectively equivalent to
Free() on all allocated blocks.

AllocSize() Returns the number of blocks and the number of bytes
currently allocated in this allocator.

Available() Returns the number of bytes in this allocator that are
unused and the largest allocation that would succeed
without requesting more pages of memory from the OS.

DebugFunction() Provide support for additional diagnostics, instrumentation
and forced failure of the allocator, typically implemented
only in a debug build of Symbian OS.

In practice, however, a concrete allocator will derive from the RAllo-
cator class. This is the class that defines the full behavior expected by the
free store API in Symbian OS. It provides commonly used additional func-
tionality to the allocator, such as support for calling User::Leave() on
allocation failure, rather than returning NULL. It also defines the forced
failure support expected by Symbian OS.

Here is the RAllocator class as defined in e32cmn.h:

class RAllocator : public MAllocator
{

public:
enum TAllocFail

{
ERandom,
ETrueRandom,
ENone,
EFailNext,
EReset
};

enum TDbgHeapType { EUser, EKernel };
enum TAllocDebugOp {ECount, EMarkStart, EMarkEnd,

ECheck, ESetFail, ECopyDebugInfo};
enum TReAllocMode

{
ENeverMove=1,
EAllowMoveOnShrink=2
};

enum TFlags {ESingleThreaded=1, EFixedSize=2};
enum {EMaxHandles=32};

public:
inline RAllocator();
TInt Open();
void Close();
TAny* AllocZ(TInt);
TAny* AllocZL(TInt);
TAny* AllocL(TInt);
TAny* AllocLC(TInt);

304 MEMORY MODELS

void FreeZ(TAny*&);
TAny* ReAllocL(TAny*, TInt, TInt=0);
TInt Count() const;
TInt Count(TInt&) const;
void Check() const;
void __DbgMarkStart();
TUint32 __DbgMarkEnd(TInt);
TInt __DbgMarkCheck(TBool, TInt, const TDesC8&, TInt);
void __DbgMarkCheck(TBool, TInt, const TUint8*, TInt);
void __DbgSetAllocFail(TAllocFail, TInt);

protected:
virtual void DoClose();

protected:
TInt iAccessCount;
TInt iHandleCount;
TInt* iHandles;
TUint32 iFlags;
TInt iCellCount;
TInt iTotalAllocSize;
};

We are still a step or two away from the APIs that programmers
typically use to allocate memory. Symbian OS implements the standard
C and C++ allocation functions using static members of the User class:

malloc()
operator new()

User::Alloc()

free()
operator delete()

User::Free()

realloc() User::ReAlloc()

These User functions need to identify an allocator object to pass on
the requests. The User::Allocator() function provides this service,
returning a reference to the RAllocator object that is designated as the
calling thread’s current allocator.

The User class provides more functions related to manipulating and
accessing the current allocator. Here is the relevant part of this class API:

class User : public UserHeap
{

public:
static TInt AllocLen(const TAny*);
static TAny* Alloc(TInt);
static TAny* AllocL(TInt);
static TAny* AllocLC(TInt);
static TAny* AllocZ(TInt);
static TAny* AllocZL(TInt);
static TInt AllocSize(TInt&);
static TInt Available(TInt&);

PROGRAMMER APIs 305

static TInt CountAllocCells();
static TInt CountAllocCells(TInt&);
static void Free(TAny*);
static void FreeZ(TAny*&);
static TAny* ReAlloc(TAny*, TInt, TInt);
static TAny* ReAllocL(TAny*, TInt, TInt);
static RAllocator& Allocator();
static RAllocator* SwitchAllocator(RAllocator*);
};

We can see the almost one-to-one correspondence of this API with the
API provided by RAllocator. The User class implements all of these
functions in the same way: get the current allocator object and invoke
the corresponding member function.

It is possible to replace the current allocator with an alternative one
using the User::SwitchAllocator() function, which returns the
previous thread allocator object. There are several reasons that this may
be desirable, for example:

• Replacing the default allocator provided by the OS with one that uses
a different allocation strategy better suited to the application

• Adding an adaptor to the allocator to provide additional instrumen-
tation or debugging facilities. In this case, the new allocator will
continue to use the previous allocator for the actual memory alloca-
tion but can intercept the actual allocation and de-allocation requests
to do additional processing.

7.5.2.4 RHeap – the default allocator

Symbian OS provides a single allocator implementation, RHeap, pro-
viding a low memory overhead and generally good performance. The
same approach is used for both the user-mode free store, and the kernel
free store. One can describe this allocator as a ‘‘first fit, address ordered,
free list allocator’’. It is a simple data structure, and the allocation and
de-allocation algorithms are fairly straightforward.
RHeap supports different usage models:

• Using preallocated memory to provide a fixed size heap, or using a
chunk to provide a dynamically sized heap

• Single-threaded or multi-threaded with light-weight locks

• Selectable cell alignment.

A dynamic RHeap uses a normal chunk, and so has a single region of
committed memory. Within that region, there will be both allocated and
free blocks. Each block is preceded by a 32-bit word which describes the
length of the block. The allocator does not need to track the allocated

306 MEMORY MODELS

blocks, as it is the program’s responsibility to do this and later free them.
The allocator does need to keep track of all the free blocks: it does this
by linking them into a list – the ‘‘free list’’. The allocator uses the space
within the free block (the first word) to maintain this list.

Free blocks that are neighbors in memory are coalesced into a single
free block, so at any time the heap consists of a repeated pattern of one
or more allocated blocks followed by a single free block. The free list
is a singly linked queue maintained in address order – this enables the
de-allocation algorithm to easily identify if the block being released is a
direct neighbor of a block that is already free.

The allocation algorithm searches the free list from the start until a
block is found that is large enough to satisfy the request. If the allocator
finds such a block, the allocator splits the free block into the requested
allocated block and any remaining free space, which is kept on the free
list. Sometimes the block is only just large enough for the request (or the
remaining space is too small to keep on the free list) in which case the
whole block is returned by the request. If there is no free block large
enough, the allocator tries to extend the chunk to create a larger free
block at the end of the heap to satisfy the request.

The de-allocation algorithm searches the free list to find the last free
block before the block being released and first one after it. If the block
being released is a neighbor of either or both of these free blocks they
are combined, otherwise the released block is just added into the list
between these two free ones.

These algorithms are simple and so in general performance is fast.
However, because both algorithms require the searching of an arbitrary
length list, the performance is cannot be described as ‘‘real-time’’. How-
ever, this is no worse than the memory model allocation for adjusting
chunks, which also does not have real-time behavior.

One drawback with this data structure is that large free blocks that
lie inside the heap memory are not released back to the OS – the
allocator can only release free memory that lies at the very end of
the heap. However, the data structure has a very low memory overhead
in general – approximately 4 bytes per allocated cell – though alignment
requirements for modern compilers increase this to approximately 8 bytes.

So RHeap, despite its limitations, provides an excellent general purpose
allocator for almost all applications within the OS. When better execution
or memory performance is required, you can create custom allocators for
individual applications.

7.5.3 Shared memory

In many cases, when an application must pass data across some memory
context boundary, such as between two processes or between user and
kernel contexts, it is most convenient to copy the data. This can be done in

PROGRAMMER APIs 307

a controlled manner that ensures the data being transferred belongs to the
sending memory context – and errors are reported correctly rather than
causing the wrong program to terminate. However, when the amount of
data to be transferred is large, or lower delays in transfer are required,
it is more useful to be able to transfer the memory itself rather than
copy the data. Some examples of such use cases would be streaming
multiple channels of high bit-rate audio data to a software ‘‘mixer’’ or
downloading large files over USB.

For any situation in which we need to share memory between two user-
mode processes, we could use one or more global chunks to achieve this.
Chunks can also be accessed by kernel-mode software or even directly
by DMA. There is a problem with this approach, however.

The chunks that I have described so far have the property that memory
is dynamically committed and released from the chunk at the request
of user-mode software. For example, the kernel grows the heap chunk
to satisfy a large allocation request, or releases some stack pages in
response to thread termination. So you can see that it is possible that
a page currently being accessed by a kernel thread or DMA might be
unmapped by another thread – probably resulting in a system crash.
The case of unmapping memory during DMA is particularly difficult to
diagnose because DMA works with the physical address and will continue
accessing the physical memory: the defect may only be discovered after
the memory model reassigns the memory to another process and then
suffers from ‘‘random’’ memory corruption.

To support the sharing of memory between hardware, kernel threads
and user programs, we need different types of memory object.

7.5.3.1 Shared I/O buffers

The simplest of these objects is the shared I/O buffer. Kernel software,
such as a device driver, can allocate a shared IO buffer to a fixed size, and
may subsequently map and unmap the buffer from user process address
space.

The major limitation with these buffers is that they cannot be mapped
into more than one user-mode process at the same time. These are
supported in EKA1, but have been superseded in EKA2 by the more
powerful shared chunk. As a result of this, we deprecate use of shared
I/O buffers with EKA2.

7.5.3.2 Shared chunks

A shared chunk is a more complex, though more capable, shared memory
object and can be used in almost all memory sharing scenarios. It
is very much like the global, disconnected chunk that I described in
Section 7.3.1, but with one distinct difference: memory can only be
committed and released by kernel code and not by user code.

308 MEMORY MODELS

A shared chunk is likely to be the answer if you are solving a problem
with some of the following demands:

• The memory must be created and controlled by kernel-mode software

• The memory must be safe for use by ISRs and DMA

• The memory can be mapped into multiple user processes at the same
time

• The memory can be mapped into multiple user processes in sequence

• The memory object can be transferred by user-side code between
processes or to another device driver.

A device driver can map a shared chunk into multiple user processes,
either in sequence or simultaneously. In addition, the driver can provide
a user program with an RChunk handle to the chunk. This allows the
user program to transfer the chunk to other processes and even hand it to
other device drivers without the support of the device driver that created
it originally.

See Chapter 13, Peripheral Support, for a fuller description of how
shared chunks can be used by device drivers.

7.5.3.3 Global and anonymous chunks

As I have already mentioned, global chunks provide the most flexible
way of sharing memory between user-mode processes. An anonymous
chunk is a global chunk with no name; this restricts the discovery and
access of the chunk from other processes. However, the limited value of
anonymous chunks for sharing between kernel and user software has also
been highlighted.

A global chunk is likely to be the solution if you are solving a problem
with some of the following demands:

• The memory must be created and controlled by user-mode software

• The memory is not accessed directly from DMA/ISR

• The memory can be mapped into one or more user processes at the
same time.

I will again point out that opening a shared chunk in two processes at
the same time does not always guarantee that they will share the same
address for the data. In fact, closing a chunk and re-opening it at a later
point within a single program may result in a different base address being
returned!

MEMORY ALLOCATION 309

7.5.3.4 Publish and subscribe

There are, of course, other reasons for wanting to share memory, such
as having some data that is global to the whole OS. In this case it is the
universal access to the data and not the reduction in copying overhead
that drives the desire for sharing.

Once again, a global chunk might serve this purpose on some
occasions. But if the quantity of data is small, it is not possible to
retain the chunk handle or data address between accesses, or some
control is required for access to the data then another approach is
needed.

Publish and subscribe may be the answer, as one way to look at this
service is as a set of ‘‘global variables’’ that both user- and kernel-mode
software can access by ID. The service also provides access control for
each value, based around the platform security architecture, and some
real-time guarantees. See Chapter 4, Inter-thread Communication, for a
detailed description of this service.

7.6 Memory allocation

The following tables provide a comparison across the various memory
models of how the memory models reserve and allocate the memory
used for different purposes within the OS.

7.6.1 Kernel memory

Moving memory model Multiple memory model Emulator
model

Supervisor mode
stack

Allocated as pages from the kernel’s ‘‘SvStack’’
disconnected chunk, with 4 K uncommitted
guard pages in between.

There is no
supervisor
‘‘mode’’.

Non-XIP device
driver code

Allocated as pages in the
global ‘‘KERN$CODE’’
disconnected chunk.

Allocated as pages in the
kernel’s ‘‘$CODE’’
disconnected chunk.

Allocated by
the Windows
loader.

Non-XIP device
driver static data

Allocated in the kernel heap. Allocated by
the Windows
loader.

Free store/heap
cells

Allocated in the kernel heap, which uses the kernel’s dynamic
‘‘SvHeap’’ chunk.

310 MEMORY MODELS

Moving memory model Multiple memory model Emulator
model

I/O address
space

Some mapped by the bootstrap into reserved region.
Otherwise created as mappings in the kernel section.

n/a

I/O and shared
buffers

Created as chunks within the kernel section. Created using a
chunk.

7.6.2 User memory

Moving model Multiple model Emulator
model

User-mode
stack

Allocated as pages from the process’s ‘‘$DAT’’
disconnected chunk, with 8 K uncommitted
guard pages in between.

Allocated by
Windows when the
thread is created.

Non-XIP code Allocated and mapped
as pages in the global
‘‘USER$CODE’’
disconnected chunk.

Allocated as pages in the
User Code section.
Mapped into the process
in the process’s
‘‘$CODE’’ disconnected
chunk.

Allocated by the
Windows loader.

EXE static data Allocated as pages at the beginning of the
process’s ‘‘$DAT’’ chunk.

Allocated by the
Windows loader.

DLL static data Allocated as pages from the process’s
‘‘DLL$DATA’’ disconnected chunk.

Allocated by the
Windows loader.

Free
store/heap
cells

Allocated in the current allocator. By default this is a heap in an
unnamed, private, dynamic chunk.

Chunks Further chunks can be created and are allocated in the user section of
the address space.

Thread Local
Storage (TLS)

Each word of TLS is allocated in a map on the kernel heap. Access to
the TLS data requires use of a kernel executive call.

Publish &
subscribe
properties

Property data is allocated on the kernel heap, allowing it to be shared
and protected.

LOW MEMORY 311

7.7 Low memory

On modern desktop computers, we certainly notice when the system runs
out of memory: everything begins to slow down, the hard disk starts to get
very busy and we get warning messages about running low on memory.
But we aren’t generally informed that there is not enough memory to
carry out a request, as we would have been on a desktop system 10 years
ago – instead the system will struggle on, even if it becomes unusable.

This change in behavior is mainly because of demand paging and
virtual memory systems – the OS has the ability to save to disk a copy
of memory that has not been accessed recently and then copy it back in
to main memory again the next time a program tries to use the memory.
This way, the system can appear to have far more physical memory than
it really has. One side effect is that the ‘‘hard’’ limit of memory capacity
has become a softer restriction – very rarely will an application find that
a memory allocation request fails.

7.7.1 Handling allocation failure
As I said earlier, Symbian OS does not support demand paging and
has small amounts of physical memory when compared with desktop
devices. This combination means that all kernel, system and application
software must expect that all memory allocation requests will fail from
time to time. The result is that all software for Symbian OS must be
written carefully to ensure that Out of Memory (OOM) errors are handled
correctly and as gracefully as possible.

As well as correctly handling a failure to allocate memory, a server or
application must also manage all of its allocated memory. Long running
services (such as the kernel) must be able to free memory that was acquired
for a resource when a program releases that resource – the alternative is
the slow ‘‘leakage’’ of memory over time, eventually resulting in memory
exhaustion and system failure.

For user-side code, the TRAP and Leave mechanism, and the cleanup
stack provide much of the support required to manage memory allocation
and recovery on failure. These services are covered extensively in books
such as Symbian OS C++ for Mobile Phones.2

Within the EKA2 kernel, there are no mechanisms such as TRAP,
Leave and the cleanup stack. This contrasts with EKA1, in which we
used the TRAP mechanism inside the kernel. Our experience shows
that the use of TRAP, Leave and the cleanup stack make user-side
code simpler, more readable and often more compact. However, this
experience does not carry over to the implementation of EKA2 – the
presence of fine-grained synchronization and possibility of preemption at

2 Symbian OS C++ for Mobile Phones: Professional Development on Constrained
Devices, by Richard Harrison. Symbian Press.

312 MEMORY MODELS

almost all points in the code often requires more complex error detection
and recovery code. Additionally, optimizations to accelerate important
operations or to reduce context switch ‘‘thrashing’’ remove the symmetry
that is desirable for using a cleanup stack push/pop protocol.

So instead of providing an equivalent to TRAP, the kernel provides
a number of supporting services that help ensure that threads executing
in kernel mode do not leak memory, even during long running kernel
services when it is quite possible that the thread may be terminated.

Thread critical sections
These bear little relation to the user-side synchronization primitive of the
same name, RCriticalSection. Rather, these are code regions during
which the thread cannot be unilaterally suspended or terminated – the
thread will only act on suspend or exit requests once it leaves the critical
section. The kernel uses these extensively to ensure that when a thread
is modifying a shared data structure in the kernel, the modifications will
run to completion rather than the thread stopping part way through.

Holding a fast mutex places a thread in an implicit critical section,
as the scheduler depends on the fact that such a thread cannot block or
otherwise be removed from the ready list.

Exception trapping
When inside a critical section, it is illegal for a thread to do any action
that would result in the kernel terminating it – such as panicking it (due
to invalid user arguments) or terminating it because it took an exception.
The latter scenario can occur if a kernel service must copy data from
memory supplied by the user-mode program, but the memory pointer
provided is invalid.

This makes the copying of user-mode data difficult, particularly when
the thread needs to hold the system lock at the same time (which is an
implicit thread critical section). EKA2 provides an exception handling
and trapping system, XTRAP, which behaves in a similar way to the user-
side TRAP/Leave, but instead it can catch hardware exceptions such as
those generated by faulty memory access. The kernel most frequently uses
XTRAP to safely copy user-mode memory while inside a thread critical
section. Any errors reported can then result in the thread safely exiting
the critical section before reporting the failure.

Transient objects
Occasionally a thread needs to allocate a temporary object during part
of a kernel executive call. As the owning reference to this object is
the thread’s registers and call stack, the thread would have to enter a
critical section to prevent a memory leak happening if the thread were
terminated. However, thread critical sections make error handling more
complex as they require the use of exception trapping and deferring of
error reporting until the critical section is released.

LOW MEMORY 313

We provide some help here: each DThread in the kernel has two
members to hold a DObject on which the thread has a temporary
reference, and a temporary heap cell. If non-null, iTempObj and iExt-
TempObj are closed and iTempAlloc is deleted during thread exit
processing. Kernel code can use these members to ‘‘own’’ such tempo-
rary objects during an executive call, enabling the thread to release the
critical section earlier.

7.7.2 System memory management
It is quite possible to write a single application that manages its own
memory carefully, handles OOM scenarios and can adjust its behavior
when less memory is available. However, a single application cannot
easily determine whether it should release some non-critical memory (for
example, a cache) so that another application can run.

However, the kernel provides some support to the system as a whole, to
enable the implementation of system-wide memory management policies,
typically within a component in the UI.

The memory model keeps track of the number of unused pages of mem-
ory. When this goes below a certain threshold, the kernel completes any
RChangeNotifier subscriptions with EChangesFreeMemory. When
the amount of free memory increases the kernel signals the notifiers again.
In addition, should any RAM allocation request fail due to insufficient
memory, the kernel signals the notifiers with EChangesOutOfMemory.

The EUSER function UserSvr::SetMemoryThresholds() sets
two values that control when the memory model should signal the
notifiers.

Typically, the UI component responsible for managing the system
memory policy will set the thresholds and then monitor the notifier for
indications that free memory is getting low or has been exhausted. When
this occurs, the system might employ various strategies for freeing some
currently used memory:

• The manager can request that applications reduce their memory
consumption. For example, a browser could reduce a RAM cache it is
using, or a Java Virtual Machine could garbage collect, and compact
its memory space

• The manager can request (or demand) that applications and OS
services that have not been used recently to save any data and then
exit. This is quite acceptable on a phone, as the user-concept of
running many applications at once is still very much one that is tied
to computers and not to phones.

The mechanism by which such requests arrive at an application are
presently specific to the UI, if they are used at all.

314 MEMORY MODELS

In some respects, you can envisage this system level memory manager
as implementing an application level garbage collector. In future, it may
well be that the algorithms used for selecting which applications should
be asked to release memory or exit will borrow ideas from the already
established problem domain of garbage collecting memory allocators.

7.8 Summary

In this chapter I have talked about the way in which the memory model
makes use of the physical memory, the cache and the MMU to provide
the memory services required by both the Symbian OS kernel- and
user-mode programs.

I also showed how the MMU is used to provide memory protection
between processes. In the next chapter, I will talk about how we build on
this basis to provide a secure operating system.

8
Platform Security

by Corinne Dive-Reclus

Computers are like Old Testament gods; lots of rules and no mercy.

Joseph Campbell

In this chapter I will introduce a new concept – that of platform security.
I will not explore this subject in too great a depth here, as it will shortly
be the subject of a book of its own.1 Instead, I will discuss how the
core operating system components contribute to the implementation of
platform security on Symbian OS.

8.1 Introduction

EKA2 was designed specifically for mobile phones, and so we had to
meet the security requirements of both the mobile phone industry and
the users of those mobile phones. This meant that we had to understand
those requirements in detail, and in particular to understand the impact
they would have on the essential components of the operating system,
such as the kernel, the file server and the loader.

To decide how we could implement security in a mobile phone, it was
important that we were aware of the user’s perception of her phone, and
the main differences between the well-known desktop environment and
the mobile phone environment:

• For our typical end-users, mobile phones are not like computers:
people expect them to be simple to use, reliable and predictable

• Mobile phones are personal: people do not share their mobile phones
with others as they share their landline phone or family PC.

1 Platform Security for Symbian OS, by Craig Heath. Symbian Press.

316 PLATFORM SECURITY

When we asked users what security they expect from a mobile phone,
they responded:

1. I don’t want nasty surprises when I receive my telephone bill

2. I want my private data to stay private!

So why not just re-use all the security measures from a desktop computer?
The answer, of course, is that phones have specific characteristics, linked
to the physical device itself and the way that it is used, that make them
fundamentally different from the desktop environment:

1. There are the limitations imposed by the device itself – compared
to a desktop, the screen is small and the keyboard is limited. This
restricts the amount of information that can be displayed to the user
(typically just one or two short sentences) and also the number and
complexity of passwords the user is willing to enter

2. There is no IT support department to rely on: the user must not be
asked questions that she cannot comprehend

3. The operating system is hidden: files and even processes are invisible.
Let’s take the case of the Sony Ericsson P900: when the user clicks
on an application, she does not know (and should not need to know)
whether this is starting a new process or re-using an existing one.
Therefore the user should not be asked to make a security decision
based on the name of a process or a file.

So the main goals of Symbian’s platform security architecture were:

1. To protect the phone’s integrity, because users want reliable phones

2. To protect the user’s privacy

3. To control access to networks, because users care about their bills.

Our constraints on platform security were:

4. It must be easy for developers to use

5. It must be fast and lightweight

6. It must only expose security policy to users when they can under-
stand it.

The platform security architecture of Symbian OS is based on three
key concepts:

1. The OS process is the unit of trust

UNIT OF TRUST 317

2. Capabilities are used to control access to sensitive resources

3. Data caging protects files against unauthorized access.

I shall now talk about these concepts in more detail.

8.2 Unit of trust

We define a unit of trust as the smallest entity to which we grant a set of
permissions.

8.2.1 Concept

A phone only has a single user, so the security policy is not about
protecting different users from each other, as in a desktop environment.
Instead, it is about controlling exactly what applications are allowed
to do when they run. It was clear that we should choose the unit of
trust to be the process, because this is already the fundamental unit of
memory protection on Symbian OS. (As I’ve shown in previous chapters,
the kernel cannot protect individual threads from each other if they are
running in the same process, because they all have unpoliced access to
the same memory.) We identified three main levels of trust, and these are
shown in Figure 8.1.

8.2.1.1 The Trusted Computing Base (TCB)

The Trusted Computing Base (TCB) is responsible for maintaining the
integrity of the device and for applying the fundamental rules of platform
security. Very few components – the kernel, the file server and, on open

Trusted Computing Base

Trusted Computing Environment

Applications

Figure 8.1 Processes and trust

318 PLATFORM SECURITY

devices, the software installer and its registry – are part of the TCB
and have unrestricted access to the device’s resources. The rest of the
operating system implicitly trusts these to behave correctly; because of
this, all TCB code is reviewed very strictly.

8.2.1.2 The Trusted Computing Environment (TCE)

Beyond the core of the TCB, other system components require access to
some, but not all, sensitive system resources. For example, the window
server requires direct access to keyboard events, but not to the ETEL
server. The Trusted Computing Environment is composed of these key
Symbian OS components that protect the device resources from misuse.
In Symbian OS, server programs are used to control access to shared
resources, so we define the TCE as the set of all system servers.

8.2.1.3 Applications

The final level of trust is ordinary applications. In most cases, these
will not have any capabilities that can endanger the integrity of the
phone, because they will access sensitive resources through components
in the TCE and the TCB. In certain circumstances they may require
capabilities – to access information private to the user, network services
or local connectivity.

8.2.2 The kernel’s role
As I mentioned before, the components in the TCB need to be entirely
trustworthy – and because of this they are reviewed very carefully. The
key component of the TCB is the main subject of this book, the kernel.

In a secure environment, the first duty of the kernel is to ensure the
availability of hardware resources that critical processes require, and to
provide access to those resources in a short, bounded period of time. I
will discuss the real-time aspects of the kernel in Chapter 17, Real Time,
and so will not dwell on them further here.

The second duty of the kernel is to provide strong protection of the
process memory space (including its own) to guarantee that processes
are protected against each other and therefore that the behavior of a
trusted process cannot be compromised by another process. This aspect
of the kernel is covered in Chapter 7, Memory Models, and again I will
not discuss it further here. Instead I will proceed to enumerate the new
security features of EKA2.

8.2.2.1 Access to user-mode memory

Any access to user-mode memory from within privileged code (that is,
the kernel and device drivers) uses special accessor and copy methods

UNIT OF TRUST 319

to apply user-mode memory permissions to the access. This ensures that
invalid data pointers passed to kernel functions by user processes do not
cause the kernel to fail. See Section 5.2.1.5 for more details.

8.2.2.2 Thread stacks and heaps

Thread stacks and heaps are ‘‘private’’ chunks: they cannot be mapped
and made accessible to processes other than their owner.

8.2.2.3 Process memory overwritten

When the kernel allocates memory to a process, it overwrites it with
zeroes, to prevent any private data from the previous owner being
accessible to the new process.

8.2.2.4 New IPC framework

We have replaced the existing Symbian OS inter-process communica-
tion (IPC) framework API (V1) with one designed for trusted IPC (V2).
Please refer to Chapter 4, Inter-thread Communication, for more details.
Here is an overview of the new features of the framework that provide
increased security:

• The new server-side IPC classes have a ‘‘2’’ added to the EKA1 name
to indicate that this is the version 2 of the IPC mechanism: for example,
CSession2, CServer2, RServer2, RMessage2, RMessagePtr2

• We have removed old, insecure methods that allowed reading and
writing arbitrary process data (for example, RThread::ReadL())
and we have replaced them with methods that only allow access to
data areas specifically passed by the client in a message (for example,
RMessagePtr2::ReadL()). Now the server can only access data
that is associated with a valid message and it must now use the
RMessagePtr2 class to do this. This also means that the data is not
available to the server after it has processed the message

• Parameters passed in an IPC request are now typed for increased
robustness. For extra security, their lengths are also specified, even in
the case of a pointer, to ensure that the server will not read or write
more than the client expected to disclose: any attempt to read before
the pointer’s address or beyond its length will fail.

8.2.2.5 ARM v6 never-execute bit

If the hardware supports it, then EKA2 will take advantage of the ARMv6
never-execute bit in the page permissions (see Chapter 7, Memory Mod-
els, for more on this). This is used to deny the execution of code from

320 PLATFORM SECURITY

stacks, heaps and static data, with the aim of preventing buffer-overflow
attacks. (These inject malicious code into stacks or heaps over the limit
of an array passed as a function parameter to trick a process into exe-
cuting that code.) EKA2 only allows execution from execute-in-place
ROM images, software loaded by the Symbian OS loader and explic-
itly created ‘‘local code’’ chunks (for compiled Java code such as JIT
or DAC).

8.3 Capability model

8.3.1 Concept
A capability is an authorization token that indicates that its owner has been
trusted to not abuse resources protected by the token. This authorization
token can grant access to sensitive APIs such as device driver APIs or to
data such as system settings.

8.3.2 Capability rules
The following capability rules are fundamental to the understanding
of platform security. They strongly reenforce the first concept that the
process is the unit of trust. They are worth reading carefully; they are
somewhat less obvious than they may first appear.

Rule 1. Every process has a set of capabilities and its capabilities
never change during its lifetime.

To build a Symbian OS executable, you have to create a project file
(MMP). The Symbian OS build tools now require an additional line that
defines what capabilities should be given to the executable in question.
The build tools will read the MMP file and write the desired capabilities
into the resulting binary, just as they do with UIDs.

MMP files are used to associate capabilities with every sort of
executable code. Programs (.EXE), shared libraries (.DLL) all have their
capabilities defined in this way. When it creates a process, the kernel
reads the capabilities from the header of the program file on disk and
associates those capabilities with the process for the remainder of its life-
time. The kernel stores the capabilities in memory, which is inaccessible
to user-mode processes, to prevent tampering. It provides user-side APIs
to allow user-side code to check that a process requesting a service has a
specific set of capabilities.

In the following example, litotes.exe has been assigned two
capabilities, ReadUserData and WriteUserData. These grant the
application access to APIs that access and modify the user’s private data,
such as contacts.

CAPABILITY MODEL 321

// litotes.mmp
TARGET litotes.exe
TARGETTYPE exe
UID 0x00000000 0x00000123
SOURCEPATH ..\litsource
SOURCE litotes.cpp
USERINCLUDE ..\include
SYSTEMINCLUDE \epoc32\include
...
CAPABILITY ReadUserData WriteUserData

Symbian OS provides three main methods for programs to use services
provided by other executables:

1. Loading a DLL and calling its API

2. Making requests of server programs

3. Loading and calling a device driver.

In each case, the caller’s capabilities must be checked. I will explain how
this is done, taking each of these cases in turn.

8.3.2.1 Loading a DLL

As mentioned earlier, a DLL is executable code and its binary will contain
a set of capabilities. But a DLL must always execute within the context
of a process – the process that loads the DLL – and rule 1 stated that the
capabilities of a process can never change. Together, these statements
imply that the DLL code must run at the same capability level as the
loading process. This leads to the principle of DLL loading, rule 2:

Rule 2. A process cannot load a DLL that has a smaller set of
capabilities than it has itself.

The need for this constraint follows from the fact that all DLL code
runs at the capability level of the loading process. This means that DLL
capabilities are different to process capabilities, in that they don’t actually
authorize anything; they only reflect the confidence placed in them to
not abuse or compromise a host process with those capabilities.

DLL capabilities are policed by the loader, and so are checked only at
load time. After that, all the code contained in the DLL will run with the
same capabilities as the code directly owned by the process. This means
that it will be subject to the same capability checking when it accesses
services provided by other processes.

Rule 2b. A DLL cannot statically link to a DLL that has a smaller set
of capabilities than it has itself.

322 PLATFORM SECURITY

Rule 2b is a corollary of rule 2, as you can see if you replace the
word ‘‘process’’ in rule 2 with the words ‘‘loading executable’’ – but it is
clearer to restate it as I have just done.

The Symbian OS loader directly resolves static linkage between the
loading executable (program or library) and the shared library. So, when
a library is linked to another library, the loader does not take into account
the top-level program. To see why, let’s look at an example. Assume that
a DLL, METAPHOR, with capability ReadUserData, wants to statically
link to a DLL without this capability, SIMILE. When the linker resolves
this static direct linkage, it does not know whether METAPHOR will be
statically linked to a program with or without ReadUserData. If the final
program EPITHET does have ReadUserData, and if METAPHOR were
statically linked to SIMILE, then this would be unsafe as SIMILE might
compromise EPITHET ’s use of ReadUserData capability.

Hence the secure route is to always reject the linkage when the linked
DLL has a smaller set of capabilities than the linking one. This is illustrated
in Figure 8.2.

EPITHET.exe

METAPHOR.dll

SIMILE.dll

linked to

linked to

STEP 1: EPITHET.exe is loaded first

None

ReadUserData

None

Final result: all code runs without any capability

EPITHET.exe

METAPHOR.dll

SIMILE.dll

linked to: NOT OK

linked to

STEP 2: EPITHET2.exe is now loaded

None

ReadUserData

None

Final result: all code will run with capability ReadUserData, including SIMILE
that is not trusted with this privilege.

EPITHET2.exe

linked to: OK

ReadUserData

CONCLUSION:
To enforce security in all cases, METAPHOR.dll must not be allowed to load SIMILE.dll

Figure 8.2 Capability rules and DLL linking

Rule 2 and its corollary prevent malicious or un-trusted code being
loaded into sensitive processes, for example a plug-in into a system server.
The rules also encourage the encapsulation of sensitive code inside well-
known processes. The loader provides this security mechanism for all
processes; relieving them of the burden of identifying which DLLs they
can safely load or link to.

The following examples show how these rules are applied in the cases
of statically and dynamically loaded DLLs respectively.

CAPABILITY MODEL 323

8.3.2.2 Examples for statically linked DLLs

Assume that the program PLOT.EXE is statically linked to the library
RHYME.DLL and the library RHYME.DLL is statically linked to the library
REASON.DLL.

Example 1
Also assume that:

1. PLOT.EXE holds Cap1 and Cap2

2. RHYME.DLL holds Cap1, Cap2 and Cap3

3. REASON.DLL holds Cap1 and Cap2.

Then the load fails because RHYME.DLL cannot load REASON.DLL
according to rule 2b.

Example 2
Also assume that:

1. PLOT.EXE holds Cap1 and Cap2

2. RHYME.DLL holds Cap1, Cap2 and Cap3

3. REASON.DLL holds Cap1, Cap2 & Cap3 and Cap4.

Then the load succeeds; however RHYME.DLL cannot acquire the Cap4
capability held by REASON.DLL, and PLOT.EXE cannot acquire the
Cap3 capability held by RHYME.DLL due to rule 1.

8.3.2.3 Examples for dynamically loaded DLLs

Assume that the program PLOT.EXE dynamically loads the library
RHYME.DLL and the library RHYME.DLL then dynamically loads the
library REASON.DLL.

Example 1
Also assume that:

1. PLOT.EXE holds Cap1 and Cap2

2. RHYME.DLL holds Cap1, Cap2 and Cap3

3. REASON.DLL holds Cap1 and Cap2.

The load succeeds because PLOT.EXE can load RHYME.DLL and
REASON.DLL. You should note that the loading executable is the
process PLOT.EXE and not the library RHYME.DLL, because the RLi-
brary::Load() request that the loader processes is sent by the process

324 PLATFORM SECURITY

PLOT.EXE. The fact that the call is within RHYME.DLL is irrelevant: once
loaded the code from RHYME.DLL is run with the same capability set as
PLOT.EXE (rule 1).

Example 2
Also assume that:

1. PLOT.EXE holds Cap1 and Cap2

2. RHYME.DLL holds Cap1, Cap2 and Cap3

3. REASON.DLL holds Cap1, Cap2 and Cap4.

Then the load succeeds because PLOT.EXE can load RHYME.DLL and
REASON.DLL. Because of rule 1, the code loaded from RHYME.DLL and
REASON.DLLwill be run with the same capability set as PLOT.EXE – that
is Cap1 and Cap2.

8.3.3 Client-server
The servers that make up the TCE police incoming requests from their
clients to ensure that those clients hold the required capabilities. For
example, if a client asks the ETEL server to make a phone call, ETEL
checks that the client has the ‘‘network services’’ capability.

An alternative approach to restricting access that is sometimes used
in security architectures is a check based on the caller’s identity, using,
for example, an access control list. The approach used by Symbian
OS platform security is preferable, because adding a new requester (for
example a new client of ETEL) does not impact the security policy of the
enforcer, ETEL.

A server typically offers many functions to its clients, and each of these
functions can require a different set of different capabilities, or none at
all. The capabilities required may also differ according to the data the
client passes to the server – for example, the file server’s function to open
a file does not require any capabilities if the client wants to open its own
files, but requires a system capability if the client wants to open a file that
it does not own.

This security check does not affect the way in which IPC messages are
formatted. It would be pointless to require a client to pass its capabilities
to the server directly, since a badly behaved client could lie about
them. Instead, the kernel adds client capabilities to the IPC message as it
transfers the call from the client to the server side.

Figure 8.3 shows an application ODE.EXE that wants to dial a phone
number by invoking RCall::Dial(). This method is just a front-end to
a client-server IPC communication.

The kernel receives the IPC message and adds ODE ’s capabilities to it
before dispatching it to the ETEL server. ETEL can trust it to do this, since
the kernel is part of the TCB.

CAPABILITY MODEL 325

thread

RCall::Dial(n)

Network
Services

C32 serverETEL server

Network
Services

ODE.exe C32exe.exe

IPC

Physical DD

Logical DD

CommDD

kernel

user

process
boundary

User capabilities System capabilities

KEY

Figure 8.3 Runtime capability checking

ETEL can access ODE ’s capabilities via the RMessage2 class. It verifies
that ODE has the network services capability before accepting the request.

Several classes exist to help servers check access to their services:

• The server should derive from CPolicyServer

• Mapping of IPC messages and security policies are defined by using
CPolicyServer::TPolicy

• Security policies are defined by using TPolicyElement which
provides verification services such as:

IMPORT_C TBool CheckPolicy (RMessagePtr2 a MsgPtr, const char*
aDiagnostic=0) const

These classes hide the format used to store capabilities. They are a useful
abstraction guaranteeing binary compatibility to developers by isolating
them from changes in the underlying internal format.

326 PLATFORM SECURITY

Now suppose that ODE.EXE does not have the network services
capability. What happens if ODE decides to bypass ETEL by talking to
C32 directly? This will not work – C32, knowing that some requests can
come from external processes, does its own policing.

What will happen if ODE decided to talk to the base band device
drivers directly? This still will not work: these device drivers cannot be
used without the system capability CommDD.

Or perhaps you might think that you could write your own device
driver to access the hardware. That will not work either – device drivers
run within the same process space as the kernel, and the rules described
in Section 8.3.1 would require this device driver implementation to have
at least the same set of capabilities as the kernel itself.

The key points that you should bear in mind from this discussion are:

• Capabilities are only worth checking when a process boundary could
be crossed

• The kernel is the trusted intermediary between a client and a server.

8.3.4 Device drivers
Device drivers run inside the kernel and so have access to all the
resources of the mobile phone, without restriction. They are implicitly
part of the TCB. Because of this, it is very important that drivers check
the capabilities of user-side processes and that they protect themselves
against bad parameters passed in by a client. For example, if a malicious
client passes a pointer into another process or even the kernel, and the
device driver does not check that the client has the correct permissions
to access that memory, then the client is able to bypass platform security
and fool the driver into returning secret data.

The general rules for device driver writers are:

1. Check that the client has sufficient capabilities to access the func-
tionality provided by the driver

2. Do not trust any parameters passed in by the client; check that all
parameters are valid

3. Do not use pointers passed by the client directly – always use the
kernel functions that access the memory using the client’s permissions
(kumemget(), kumemput(), Kern::ThreadDesRead() and so
on)

4. Device driver channels cannot be passed between processes.

For device drivers that are split into LDD and PDD parts, the recom-
mended practice is to perform all client capability checking at the LDD
level. This ensures the policy is provided consistently and securely across
all physical driver implementations.

DATA CAGING 327

8.4 Data caging
8.4.1 Concept

The capability model is the most fundamental concept of platform
security. Data caging, another key concept, is much more specific: it
is about file access control. As I said at the beginning of this chapter,
phones are single-user devices, so the emphasis is not on controlling the
user’s access to files, but on controlling the file access of the various
processes running on her phone.

One point to bear in mind is that, compared to a typical desktop
environment, phones are resource-constrained – they may have limited
storage space, slow processors and limited battery life. It is vital that
platform security does not reduce the speed of file access, or increase
power consumption or the size of file system itself.

The solution that we came up with was to move away from traditional
access control lists, and to implement a fixed access control policy that
can be fully described by the following sentence:

Rule 3. The access rules of a file are entirely determined by its
directory path, regardless of the drive.

We identified four different sets of access rules, which we represent by
four separate directory hierarchies under the root ‘‘\’’.

8.4.1.1 \sys

Only TCB processes can read and write files under this directory. This
directory tree contains data vital to the integrity of the platform, such as
executables.

8.4.1.2 \resource

All processes can read files in this directory, but only TCB processes can
write to them. This directory mostly contains bitmaps, fonts and help files
that are not expected to change once installed.

8.4.1.3 \private

The file server provides all programs with a private sub-directory under
\private, regardless of their level of trust. Only the appropriate process,
TCB processes and the backup server can read and write files in a process’s
private directory. Other processes may neither read nor write.

8.4.1.4 All other root files and directories

There is no restriction on what a process can do to a file stored in any
other directory, including the root directory itself. These are all completely
public spaces.

328 PLATFORM SECURITY

8.4.2 Implementation
8.4.2.1 Program SID

Each program must be assigned a unique identifier, called the secure
identifier or SID, so that the kernel can provide a private space for each
program. At ROM-build time and install time, the system will guarantee
that each SID is uniquely associated with one executable. SIDs are
assigned at compile time and specified in MMP files. If the MMP file does
not define a SID, then the tool chain will use UID3 as the SID. If the
program does not have a UID3, then the value of KNullUid is assigned.
As a consequence, all processes with no SID and a null UID will share
the same private directory.

8.4.2.2 Capabilities and file access

As well as the SID, there are two capabilities that we created to control
access to data-caged directories:

1. TCB – grants write access to executables and shared read-only
resources

2. AllFiles – grants read access to the entire file system; grants write
access to other processes’ private directories.

The access rules are summarized in the following table:

Capability required to:

Read Write

\resource none TCB

\sys AllFiles TCB

\private\<ownSID> none none

\private\<other> AllFiles AllFiles

\<other> none none

It may sound strange that TCB processes also need the AllFiles
capability to be able to read under \sys. This decision was made for the
following reasons:

• Capabilities should be fully orthogonal to each other: one should
not be a subset of another. This is to eliminate the use of OR in
capability checking, which creates ambiguity about what a capability
really grants

DATA CAGING 329

• We identified a need to provide a capability to grant read access to
the entire file system without implying that write access to \sys had
to be granted: this reflects the distinction that has been made between
TCB and TCE processes.

8.4.2.3 The role of the file server and the loader

All executables are now stored under \sys\bin. The file server enforces
the rule that only TCB processes can write into this directory, to ensure
that executables cannot be modified. Non-TCB processes cannot inject
new code into existing executables and cannot change the capability
set. This is a powerful way of ensuring the integrity of executables
without requiring that each executable has to be signed and its signature
verified every time it is loaded. If executables are installed in directories
other than \sys\bin, then this is harmless, as the loader will refuse to
load them.

This means that normal processes can no longer scan for executa-
bles, as they will not have the permissions to do so. The path of an
executable is therefore irrelevant, and only the drive, name and type
of file are important. This gives Symbian OS the flexibility to organize
the storage of its executables at it sees fit without breaking backwards
compatibility. In Symbian OS v9, all executables are stored in \sys\bin;
there are no subdirectories. It is even more important than before to
choose a ‘‘good’’ name for your executables, for example by prefix-
ing them with your company name. If any clash is identified at install
time, the software installer will indicate the conflict to the user and
cancel the installation. This may seem harsh, but it is a very effective
measure against Trojan horse attacks in which a malicious file tries
to be seen as a legitimate one. Another side effect of this decision is
that loading is faster, since we have reduced the number of directo-
ries to scan and simplified the algorithm used to decide which file to
load. See Chapter 10, The Loader, if you want to find out more about
file loading.

What about installed binaries on removable media – including those
that are subst-ed as internal drives? In this case the path <drive>:\sys
\bin cannot be deemed to be secure, because the removable medium
might have been removed and altered elsewhere. Some tamper evidence
is needed to detect whether the contents of a binary file have been
changed since they were known to be safe – which was when they were
installed. To do this when it first installs an executable onto a removable
medium, the Symbian OS installer takes the additional step of computing
a secure hash of the binary and storing this in the tamper-proof \sys
directory on the internal drive.

Subsequent attempts to load the binary from that medium will fail if a
second hash computed at load time does not match the one stored in the
internal \sys directory, or if the internal hash does not exist at all.

330 PLATFORM SECURITY

8.4.2.4 Sharing files between processes

Symbian OS has a variety of ways of allowing processes to share data,
including publish and subscribe, DBMS (Symbian’s relational database)
and the central repository (Symbian’s service to share persistent settings).
These methods, and others, have their uses, but nevertheless we still
need a means for one process to share a file with another process under
controlled conditions. For example, a messaging application might wish
to launch a viewer application on a message attachment, but without
revealing all other attachments to that viewer process, or revealing the
attachment to all other process. EKA2 gives us the basic building blocks,
by providing a way of sharing handles across processes, and the file server
supports this feature for file handles.

The process that owns the file opens it in a mode that cannot be
changed by the process receiving the file handle without the file server
rechecking that file’s access policy against the receiving process’s cre-
dentials.

The receiving process gets access to a shared session and file handles,
but it does not get access to the shared file’s parent directory or to other
files in the same parent directory.

If you want to share files like this, you should be aware that, in the
owning process you should open a file server session specifically for file
sharing, open any files you wish to share and no others, and then close
the session as soon as it is no longer needed (that is, once the receiving
process has done what it needs to with the shared files). This is because
the session handle is shared, along with the file handle, which means
that any other files opened by the owning process in that session may be
accessible to the receiving process, which could then increment the file
handle numbers and gain access to other files. Not conforming to this
rule is a security hole.

For more information on shared file handles, please refer to Chapter 9,
The File Server.

8.5 Summary

In this chapter, I have introduced you to the key concepts in the Sym-
bian OS implementation of platform security. Although I have not fully
explored the subject, I hope that I have demonstrated how the kernel,
loader and file server have been designed to play their part in making
Symbian OS a secure platform. I have shown that this support is pro-
vided independently of cryptographic and authentication mechanisms to
reduce the impact on the performance of the system and dependency
upon those mechanisms:

• Capabilities are used to associate permissions to a program indepen-
dent of the origin of the program

SUMMARY 331

• Capabilities are used to prevent a program from loading a library that
could compromise it.

Finally, I have discussed the file server and its role in data caging.
I have shown that data caging provides safe storage for binaries and
sensitive data, thus keeping them out of the reach of badly written or
malicious code.

In the next chapter, I will explain the operation of the file server.

9
The File Server

by Peter Scobie

RAM disk is not an installation procedure.

Unknown

The file server component, also referred to as F32, manages every file
device on a Symbian OS phone; it provides services to access the files,
directories and drives on those file devices. This component also contains
the loader, which loads executable files (DLLs and EXEs). The loader is
covered in Chapter 10, The Loader, and in this chapter I will concentrate
on the file server.

9.1 Overview

9.1.1 Hardware and terminology
9.1.1.1 Internal drive hardware

We always designate the main ROM drive as ‘‘Z:’’ on a Symbian OS
mobile phone. This drive holds system executables and data files and its
contents (known as the ROM image) are created by the mobile phone
manufacturer when building the device. In fact, the ROM image is nor-
mally programmed into Flash memory – Flash is nonvolatile memory that
can be programmed and erased electronically. The use of programmable
memory for this read-only drive allows the manufacturer to replace or
upgrade the ROM image after initial manufacture. In the past, Symbian
OS products sometimes used masked ROM to hold the ROM image (or
part of it) but this is rarely done now. It takes time to fabricate a masked
ROM device with the image and once this has taken place, it is not
possible to upgrade the software.

A Symbian OS phone will also have at least one internal drive which
provides read/write access, and which the OS uses for the permanent
storage of user data. Again, mobile phone manufactures tend to use

334 THE FILE SERVER

Flash memory for this internal drive. Indeed, in certain circumstances, the
same memory device can be used for both code and user data storage.
Flash memory is made using either NAND or NOR gates – each having
significantly different characteristics. Symbian OS supports the storage of
code and user data on both NAND and NOR Flash.

Some early Symbian OS products used a RAM disk as the main
user data storage device. RAM disks use the same memory as system
RAM. Rather than being of fixed size, the system allocates memory to
them from the system pool as files are created or extended. Likewise, it
frees the memory as data is deleted from the drive. But RAM is volatile
storage – data is lost when power is removed. To provide permanent
storage, the device has to constantly power the RAM, even when the
device is turned off, and it must supply a backup battery to maintain
the data, should the main supply fail. Flash memory, on the other hand,
retains its contents when power is removed and is also low power and
low cost. Because of this, Flash has replaced RAM for permanent user
data storage.

Mobile phones do occasionally still make use of a RAM disk, however.
If the file server finds that the main user-data drive is corrupt when
Symbian OS boots, then it can replace this with a RAM disk, providing a
temporary work disk to the OS and allowing the main one to be restored.
It can then mount the corrupt disk as a secondary drive, which allows a
disk utility to recover data, where possible, and then reformat the drive.

9.1.1.2 Removable media devices

Many Symbian OS phones support removable media devices such as
MultiMediaCard (MMC), Secure Digital card (SD card), Memory Stick
or Compact Flash (CF). The file server allocates each removable media
socket one or more drives, allowing read/write access while a memory
card is present. Being removable, these devices have to be formatted in
a manner that is compatible with other operating systems. The devices
I have mentioned are all solid state rather than rotating media storage
devices, but miniature rotating media devices are likely to be used more
widely in future, due to their low cost and high capacity. Rotating media
devices require more complex power management because of the higher
current they consume and their relatively slow disk spinup times.

I will discuss Symbian OS support for MultiMediaCards in Section 13.5.

9.1.1.3 File server terminology

Many types of media device, such as MultiMediaCards and SD cards,
require every access to be in multiples of a particular sector size, usually
512 bytes. Thus, the sector is the smallest unit that can be accessed.
Other types of media device, such as the ROM, don’t have this constraint
and allow access in any multiple of a byte.

OVERVIEW 335

Throughout this chapter, I will often refer to a media device as a
disk. The memory on a disk may be divided into isolated sections,
called partitions. Information on the size and location of each partition
is generally stored at a known point on the disk – the partition table.
For example, most MultiMediaCards keep a partition table in the first
sector of the disk. Even when a device has only a single partition, it will
still generally have a partition table. Each separate partition that is made
available on a Symbian OS mobile phone is enabled as a different drive.

Drives that are allocated to removable media, may, over time, contain
different volumes, as the user inserts and removes different removable
media devices. So a volume corresponds to a partition on a disk that has
been introduced into the system at some time.

9.1.2 F32 system architecture overview
The entire file server system consists of the (shaded) components displayed
in Figure 9.1.

The file server, like any other server in Symbian OS, uses the
client/server framework. It receives and processes file-related requests
from multiple clients. The file server runs in its own process and uses
multiple threads to handle the requests from clients efficiently. Clients
link to the F32 client-side library (EFSRV.DLL), whose API I will describe
in Section 9.2. The file server executable, EFILE.EXE, contains two
servers – the file server itself (which I will describe in detail in Section 9.3)
and the loader server, which loads executables and libraries. I will cover
this in Chapter 10, The Loader.

Because of the differing characteristics of the various types of disk that
Symbian OS supports, we need a number of different media formats. For
example, removable disks are FAT formatted to be compatible with other
operating systems, and the ROM drive uses a format scheme which is
efficient for read operation, but which wouldn’t be suitable if writes to the
drive were required. In general, the file server does not concern itself with
the detail of each file system; instead we implement the different media
formats as separate file systems, components that are ‘‘plugged into’’ the
file server. (The exception to this is the ROM file system, which is built into
the file server, for reasons that I will discuss in Section 9.1.2.3.) File system
components are polymorphic DLLs that have the file extension ‘‘.FSY’’.
These DLLs are dynamically loaded and registered with the file server,
normally at system boot time. Figure 9.1 shows a file server configuration
with two file systems loaded, ELOCAL.FSY and ELFFS.FSY. I will
describe these and other file systems in Section 9.4.

Before a particular drive can be accessed, it must have a file system
associated with it, whereupon it can be said that the drive is mounted.
Again, the file server generally carries out this process at system boot time,
once the file systems have been loaded. Mounting also involves deter-
mining the basic parameters associated with the drive (drive capacity,

336 THE FILE SERVER

File server
client 1

File server
client-side library

(EFSRV.DLL)

(EFILE.EXE)

File system

(ELOCAL.FSY)

File server
extension

(NANDFTL.FXT)

User-library
(EUSER.DLL)

File server
plug-in

(VSCAN.PXT)

Local media sub-system

TBusLocalDrive

File serverLoader
ROM FS

user

kernel

File server
client 2

File server
client 3

File system

(ELFFS.FSY)

TBusLocalDrive

Figure 9.1 F32 system architecture

free space and so on) and initializing the drive specific data held by the
file server. A loaded file system may be mounted on more than one drive.

The file systems gain access to the mobile phone’s internal and
removable disks via a set of device drivers known as the local media
sub-system. These drivers are split into a logical device driver layer – the
local media LDD (ELOCD.LDD) and a physical device driver layer. The
physical device drivers are called media drivers. The user-side interface to
the local media sub-system is provided by the class TBusLocalDrive
whose methods are exported from the user library (EUSER.DLL). The
main functions it provides are those to read, write and format regions of

OVERVIEW 337

each drive’s memory area. I describe the local media sub-system in detail
in Section 13.3.

Again, the ROM drive is an exception, as we do not access it through
the local media sub-system. Instead, the bootstrap maps this memory area
to be user-readable, and the file-server accesses it directly.

For other drives though, theTBusLocalDrive class provides the user-
side interface to the physical media. Often, when a file system is mounted
on a particular drive, it will interface directly with the TBusLocalDrive
instance for that drive. This is the case for the file system ELFFS.FSY
shown in the diagram.

However, it is possible to add an extension layer between the file
system and the TBusLocalDrive object for a particular drive. These
extension layers are known as file server extensions and they are executed
user-side. They provide a way to add functionality to a standard file system
that is only required for a certain type of drive. They are built as a separate
component, and have the file extension .FXT. The file server provides
APIs to install an extension and then associate it with a particular drive.
For example, as you will see later, a special translation layer is needed
to run a FAT file system over a NAND Flash device. Since this layer is
not required when using FAT on a RAM disk or a MultiMediaCard, it
would not be appropriate to add this functionality to the FAT file system
component itself. Instead, we can implement the Flash translation layer
(FTL) as a file server extension (NANDFTL.FXT), and use it only on NAND
local drives.

The file server also supports file server plug-ins. Built as separate
components, with the file extension .PXT, the plug-ins register with the
file server and are then able to intercept requests from any file server
clients. Plug-ins can be used to support virus scanning, file compression
and file encryption software. The plug-in can set a filter for particular
types of request (for example file open) and for requests involving a
particular path or drive. When a request is intercepted, the plug-in is
given the opportunity to issue its own file server requests using the
normal F32 client API (so it can scan the file being opened, for example)
before deciding on whether to allow the original request to resume.
Alternatively, the plug-in can fail the request. The file server allows more
than one plug-in to register at the same time. It maintains a strict policy
on the order in which it notifies the plug-ins, should their request filters
coincide. So, for example, if both a virus scanner and a file-compression
plug-in were installed, then the compression software would have to
decompress a file before the virus scanner scanned it.

9.1.2.1 Drive letters

The file server supports a maximum of 26 drives, each identified (in
DOS-like convention) by a different drive letter (A: to Z:). As I said earlier,
the main ROM drive is always designated as the last drive, Z:.

338 THE FILE SERVER

Apart from on the emulator, sixteen of the drives (C: to R:) are normally
reserved as local drives – that is, they are available for mounting drives
on media devices that are located within the phone. Of these, C: is always
designated as the main user data drive, and any removable media device
is generally designated as D: or E:.

The remaining 9 drives are available as remote drives, or substi-
tuted drives.

9.1.2.2 F32 on the Symbian OS emulator

On the Symbian OS emulator, any of the 26 drives can be used for map-
ping to native drives – that is, mapping directories on the host machine’s
file system to drives on the Symbian OS file server. We do this by using an
emulator-specific Symbian OS file system, which converts the Symbian
OS file server calls into calls onto the host operating system’s file system.
There are two default emulator drives – Z:, which represents the target
phone’s ROM, and C:, which represents the phone’s main user-data
storage drive. However, by editing the emulator configuration file (usu-
ally EPOC.INI), you can reconfigure these drives to map to alternative
locations, and you can map additional native drives.

The emulator is generally configured with only these native drives
enabled. However, you can enable additional drives that use emulator
builds of the file systems that are used on the actual hardware plat-
forms – for example the Symbian OS FAT file system. You can do this
either by editing the emulator configuration file or by configuring ESTART
(see Section 13.3.1 and Chapter 16, Boot Processes). This can be a useful
aid when developing a new file system or debugging an existing one.
Apart from the ROM file system, all the standard Symbian OS file systems
can be used in this way. The majority of the source code for the emulator
builds of these file systems is the same as that used for the hardware plat-
forms. Indeed, the same applies for the logical layer of the local media
sub-system. However, these drives use emulator specific media drivers
which normally read and write to a binary file on the host machine to
emulate the memory area of the disk rather than accessing any media
hardware directly.

9.1.2.3 F32 startup

The file server loads and runs early in the Symbian OS boot sequence,
immediately after the kernel has been booted. Obviously, we need a
special loading mechanism since at this stage neither the loader nor the
ROM file system is available. We use a special statement in the ROM
image specification (that is, the ROM obey file), to designate the file
server as the secondary process in the system. The result is that the main
ROM header holds the address of its image in ROM to allow a kernel

THE FILE SERVER CLIENT API 339

extension to start it. (Once the file server is running, the loader can start
all the other executables in the system.)

Once the file server is loaded, its main thread runs and installs the
ROM file system. Again, without the loader and the ROM drive, this can’t
be done in the same way as a normal file system – this is why we build
the ROM file system into the file server executable, rather than having
it as a separate library. Next, the file server starts the loader thread, and
then an F32 startup thread.

The startup thread, which is a separate thread to allow it to use the
file server client API, now runs and continues file server initialization. It
initializes the local media sub-system and then executes ESTART.EXE
from Z: before exiting.
ESTART completes the file server initialization process, performing

operations such as loading and mounting the file systems. Finally it
initiates the startup of the rest of Symbian OS. To do this, it usually
launches SYSSTART.EXE, the system startup process, but if this is not
present, it launches the window server, EWSRV.EXE, instead. Developers
who are creating a new phone platform usually customize ESTART to
perform platform specific initialization of the file server or other low-level
components. In Chapter 16, Boot Processes, I will cover system boot in
more depth.

9.1.2.4 The text shell

Within the F32 source tree, we have implemented a simple text shell
(ESHELL.EXE), which presents the user with a DOS-like command
prompt. The shell can be used for running console-mode test programs
in a minimal Symbian OS configuration that includes only E32 and F32
components. We also provide a minimal window server (EWSRV.EXE) in
the E32 source tree too.

9.2 The file server client API

We have seen that the file server allows clients to access files, directories
and drives on the Symbian OS phone. Client programs access the F32
services by linking to EFSRV.DLL, which provides the client API defined
in f32file.h.
STDLIB (the Symbian OS implementation of the standard C library)

uses this API to add a thin mapping layer to implement POSIX-compliant
file services. However, in this section I will describe only the file server
client API, as this is the most common way for system applications to
access file services. In this book, I will provide only an overview of the

340 THE FILE SERVER

client API. For more detail, the reader should refer to Symbian OS C++
for Mobile Phones.1

Not surprisingly, most file services involve communication with the file
server. (Only a small number are handled client-side, an example being
the services provided by the TParseBase-derived file name parsing
classes – see Section 9.2.4.)

9.2.1 RFs class – the file server session
All access from client to file server takes place via a file server session.
A session is established thus: the client creates an instance of the file
server session class, RFs, and connects it to the server using the method
RFs::Connect(). Clients may have more than one session open simul-
taneously. The kernel assembles the data for session-based requests into
a message and passes a message handle to the server. The file server
processes the message and passes the result back to the client.

The file server’s clients are normally in different processes to the file
server – exceptions are the Symbian OS loader, the F32 startup thread
(which I described in Section 9.1.2.3), and file server plug-ins. Because of
this, most requests on the file server involve the kernel context switching
between processes, which can be an expensive operation. However, the
file server is a fixed process, which reduces the impact of the context
switch considerably (see Section 7.4.1.3).

The file server doesn’t use client-side buffering. This is because the
way in which its services are used and the types and formats of files it
manages are so varied that there aren’t any situations in which this could
be consistently beneficial. Instead, higher-level Symbian OS components
(such as STORE) implement techniques to minimize the number of calls
they make on the file server.

We associate a current path, including a drive letter, with every file
server session. Only one path is supported per session. The file server
initializes the path when the client connects the RFs object, and changes
it only as the client directs.

Many of F32’s services are provided by the RFs class itself. These
include the following groups of services:

• Drive and volume information. Examples include:

– DriveList() to get a list of the available drives

– Volume() to get volume information for a formatted device

• Operations on directories and their entries. Examples include:

– Entry() to get the entry details of a file or directory

1 Symbian OS C++ for Mobile Phones: Professional Development on Constrained
Devices, by Richard Harrison. Symbian Press.

THE FILE SERVER CLIENT API 341

– GetDir() to get a filtered list of a directory’s contents

– MkDir() to create a directory

• Change notification. Examples include:

– NotifyChange() to request notification of changes to files or
directories

– NotifyDiskSpace() to request notification when the free disk
space on a drive crosses a specified threshold value

• File name parsing. Examples include:

– Parse() to parse a filename specification

• System functions concerning the state of a file system. Examples
include:

– CheckDisk() to check the integrity of the specified drive

– ScanDrive() to correct errors due to unexpected power down
of the phone

• Management of drives and file systems. Examples include:

– SetSubst() to create a substitute drive – one drive acting as
shortcut to a path on another

– AddFileSystem() to add a file system to the file server

– MountFileSystem() to mount a file system on a drive.

9.2.2 Sub-session objects

A client may use a session to open and access many different files and
directories, and F32 represents each of these by a separate object while
it is in use by the client. These objects are known as sub-session objects.
There are four sub-session classes:

• The RFile class for creating and performing operations on files

• The RDir class for reading entries contained in a directory

• The RFormat class for formatting a drive

• The RRawDisk class, which enables direct drive access.

Creating sub-sessions is much less expensive than opening new sessions.
Sub-sessions provide an independent channel of communication within
the session. If a client closes a session, the file server automatically closes
any associated sub-sessions. This ensures that all fileserver resources are
properly freed.

342 THE FILE SERVER

RSessionBase

Close()

RFs

Connect()

RFile RDir RFormat RRawDisk

RSubSessionBase
iSubSessionHandle : TInt

1 n
iSession

Figure 9.2 F32 client-side classes

Figure 9.2 shows these client-side classes.
RSessionBase is the base class for a handle to a session with any

Symbian OS server. We derive from this in the file server to provide
the RFs class. RSubSessionBase is the client-side handle to a sub-
session. From this, we derive the RFile, RDir, RFormat and RRawDisk
sub-session classes that I’ve already introduced.

As I will explain later, each of these client-side session and sub-session
objects has a corresponding object on the server-side. Should the client
thread terminate unexpectedly before closing the session, then the kernel
will send a disconnect message to the file server which will close the
session and all its sub-session objects.

It is good practice to close the sub-session objects as soon as they are
finished with – to free the corresponding server-side resources involved.
Otherwise they will remain allocated until the owning session is closed.

9.2.2.1 RFile class – for creating and performing operations on files

The RFile class represents an individual file. It provides methods to
create a new file and open an existing file, as well as methods to read
from and write to a file, seek to a position within a file, and get or set a
file’s attributes.

When a client opens a file, it specifies a sharing mode which indicates
how (if at all) other programs can access the same file while it is open.
If it opens a file with exclusive access, then no other client can access
the file until the first client closes it. Read-only sharing means that other
clients may access the file – but only for reading. Finally, a client can
open a file and allow shared access with other clients for both reading
and writing. If a file is already open for sharing, then another program
can only open it using the same share mode as that with which it was
originally opened. The client can also specify an access mode indicating

THE FILE SERVER CLIENT API 343

how the file will be accessed by this particular RFile object. This can
specify either read-only access or read/write access. The access mode
has to be compatible with the sharing mode.

The RFile class also provides methods to lock and unlock a range of
bytes within a file. A locked region is accessible only through the RFile
object that claimed the lock. Locking can be used to synchronize updates
to a file when more than one program has read/write access to it.

There are a number of variants of the file read and write methods,
including synchronous and asynchronous versions. The synchronous
version sends the message to the server and waits for the response,
suspending the client thread. The asynchronous version returns as soon
as the message is sent, allowing the client thread to continue execution
while the server processes the request; the client supplies a reference to
a TRequestStatus object, which the file server signals on completion.

The RFile class also provides methods to read or to change the
various attributes of a file, such as RFile::Size() to return the size of
a file in bytes and RFile::SetSize() to change the size of a file.

9.2.2.2 RDir class – for reading directory entries

This class is used to read the entries contained in a directory. Like
the RFile class, it contains both synchronous and asynchronous read
methods.

9.2.2.3 RFormat class – for formatting a drive

This class is only used when formatting a drive. This process can take a
great deal of time for a large drive, and so the operation is performed in
stages, with control returning to the client at the end of each stage. Stages
can be performed synchronously or asynchronously. A drive cannot be
formatted while any client has files or directories open on it.

9.2.2.4 RRawDisk class – for direct drive access

This class is used for direct disk access – allowing raw read and write
operations to the drive. As with formatting, direct access cannot take
place while files or directories are open on the drive.

9.2.3 High level file server services
Symbian OS supports a variety of high-level file server services. We
implement this higher-level functionality within the client library rather
than the server, and each API generally leads to a sequence of calls being
made to the file server.
CFileMan provides file management services such as moving, copy-

ing and deleting one or more files in a path. It allows the client to

344 THE FILE SERVER

use wildcards in the specification of the paths and files concerned.
CFileMan methods can be configured to operate recursively, which
means that they will act on all matching files that they find through-
out the source directory’s hierarchy. These functions may be performed
synchronously or asynchronously. When they operate asynchronously,
the operation takes place in a separate thread from the calling client
thread. The CFileManObserver class allows user notification during
the operation.

The TFindFile class provides methods to search for files in one or
more directories either on a single drive or on every available drive in
turn. We provide versions of this that accept wildcards in the file specifier.
CDirScan is used to scan through a directory hierarchy, upwards

or downwards, returning a filtered list of the entries contained in each
directory.

9.2.4 File names

The file server supports long file names. A full file name may contain up
to 256 16-bit characters and consists of four components:

• The drive – a single letter and a colon

• The path – a list of directories separated by backslashes which starts
and ends with a backslash

• The filename – this consists of every character from that which follows
the last backslash to the character preceding the final dot (if an
extension is specified)

• The extension – which consists of every character after the final dot
(after the final backslash).

For example: ‘c:\dirA\dirB\dirC\file.ext’.
Symbian provides three classes for parsing filenames, each derived from
TParseBase (the base class for filename parsing). All three classes allow
you to test whether a particular component is included in a specified
filename, and if so, to extract it:

• TParse – this version contains a TFileName object as a buffer to
store a copy of the parsed filename. TFileName defines a descriptor
long enough to hold the longest file name. Being 256 characters long,
it is a relatively large object and should be used with care. For instance,
you should avoid allocating or passing a TFileName on the stack

• TParsePtr – this version refers to an external, modifiable buffer

• TParsePtrC – This version refers to an external buffer that cannot
be modified.

THE FILE SERVER CLIENT API 345

The last two versions should be used in preference to the first to minimize
stack usage.

9.2.5 Data caging and sharing file handles

The EKA2 version of Symbian OS is normally built with platform security
enabled. In this secure version, the file server employs the data caging
scheme, which I described in Chapter 8, Platform Security.

The central theme of data caging is that the file server designates a
certain area on the drives that it controls as a restricted system area. This
area is only accessible to programs that are part of the Trusted Computing
Base (TCB) – that is the kernel, the file server, and the software installer.
All executables are located within this system area and the OS will refuse
to execute code from anywhere else. In addition, each non-TCB process
has its own individual private file area that only it (and a small number
of other special components) has access to. We provide a third resource
area, which is read-only for non-TCB processes and holds read-only files
that are to be shared publicly. All remaining file areas are public and any
program can read from them and write to them.

So the data caging mechanism allows processes, and the OS itself, to
hide private files from other processes. However, there will be circum-
stances in which a process will need to share a private file with another
chosen process. In other words, a situation in which we want to keep a
file safe from most processes, but want the ability to grant access to a
chosen process without that process having to have special capabilities.
Also we don’t want to reveal the full (and private) path of the file in order
for the recipient to open it (although we can allow the recipient to know
the file’s name and extension).

To support this, the EKA2 version of the file server provides new RFile
methods that allow a process to pass an open file to another process.
Sharing an open file is a two-stage operation. The owner of the RFile
object first needs to transfer it to the other process. The RFile class
provides three methods for this purpose:

• RFile::TransferToServer() – for passing from client to server

• RFile::TransferToClient() – for passing from server to client

• RFile::TransferToProcess() – for passing from one process
to another process.

Let’s take a closer look at the last of these, as an example:

TInt RFile::TransferToProcess(RProcess& aProcess,
TInt aFsHandleIndex, TInt aFileHandleIndex) const;

346 THE FILE SERVER

This transfers the RFile sub-session object to the process specified by the
first argument. In doing this, the file server generates a duplicate handle
on this same sub-session object. However, this handle is only useable in
the context of the session on which it was created and so the file server
must share the session as well as the sub-session object. The duplicate
sub-session handle and the session handle are passed to the other process
using two of that process’s sixteen environment slots. (The slot numbers
are specified in the second and third parameters.) The sending process
can continue to access the file after it has transferred it. If the sending
process closes the file and the session, then the corresponding file server
objects are not destroyed – because they have been transferred.

To access the open file that was transferred, the receiving process must
adopt the RFile object. Again, three different methods are provided,
corresponding to the three file transfer methods:

• RFile::AdoptFromClient() – for a server adopting a file from
a client

• RFile::AdoptFromServer() – for a client adopting a file from
a server

• RFile::AdoptFromCreator() – for one process adopting a file
from another.

Again, let’s look at the last of these as an example:

TInt RFile::AdoptFromCreator(TInt aFsIndex, TInt aFileHandleIndex);

This is used to adopt an open file that was sent using the Trans-
ferToProcess() method. The file server retrieves the session and
sub-session handles from the environment data slots specified in the two
arguments – these must correspond with those specified in the transfer
function. The receiving process can then access the file as it would any
other open RFile object. The adopted file retains the access attributes
that were set when the sending process opened the file.

Although the receiving process shares the session that was used to
open and transfer the file, it doesn’t have to adopt and manage this
shared session directly. Once the receiving process closes the RFile
object, both the session and sub-session file server objects are destroyed
(assuming the sending process has already done likewise).

Because the session is shared between the two processes involved,
it is recommended that the sending process opens a file server session
specifically for the transfer. Other files opened in the same session by
the sending process could be accessible by the receiving process, which
could pose a security risk.

THE FILE SERVER 347

9.3 The file server

As we have seen, the file server handles requests from its clients for all
mounted drives. It is a system server, which means that if it panics, the
whole OS is restarted. The main file server thread is always one of the
highest priority user threads running on the system.

9.3.1 Interfacing with clients

Figure 9.3 shows a diagram of the server-side classes that form the
interface with F32 clients.

CServerFs

RunL()

CSessionFs

iPath : HBufC*
iDisconnectRequest : CFsMessageRequest

ServiceL()

RMessage2

iFunction : TInt
iArgs[4] : TInt

Complete()

CFileCB

iFileName : HBufC*
iSize : TInt
iAtt : TInt
iModified : TTime

CFsDispatchObject
iRequest : CFsRequest

CFsObjectIx TOperation
iIsSync : TBool

Initialise()
DoRequestL()
IsSync()

CFileShare

iMode : TUint
iPos : TInt

CDirCB
iAtt : TUint

CFormatCB CRawDiskCB

n

1

1

1

1

n
iFile

iHandlesiMessage

iServer

iSessionQ

Figure 9.3 Server-side classes forming the interface with the F32 clients

CServerFs is a singleton that is derived from CServer2, the Sym-
bian OS client/server framework’s server class. CServerFs is an active
object; each time a client request is received, its event-handling method,
RunL(), is called to accept that request from the client thread and
forward it to the relevant server-side client session.
CServerFs handles the creation of the server-side sessions. A client

requests a connection by calling RFs::Connect(), which sends
a connect message to the server. If connection is successful, this
leads to the creation of an instance of the class CSessionFs, the

348 THE FILE SERVER

server-side session object. The session is initialized in the method CSes-
sionFs::CreateL(). CServerFs maintains a queue, iSessionQ,
of all the sessions open on it.

Each time the server receives a request from an open session, it calls
the request servicing method of the relevant session:

void CSessionFs::ServiceL(const RMessage2& aMessage)

The details of every client request are contained in a message object,
RMessage2, which is passed as an argument to the service method.
RMessage2 contains a 32-bit operation identifier, which is read by the
server using RMessage2::Function(). It also holds a copy of the
request arguments – up to four 32-bit values. After handling a request, the
server conveys a 32-bit result back to the client by calling the message
object’s base class method:

void RMessagePtr2::Complete(TInt aReason) const

The class TOperation encapsulates a type of operation that the server
is able to perform. It contains various data members that categorize
the operation, as well as two important methods. The first is TOp-
eration::Initialise(), which the server calls prior to request
execution. This method parses and preprocesses the data supplied by the
client. The second method is TOperation::DoRequestL(), which
performs the requested operation. The server holds a constant array of
TOperation objects, containing a separate entry for each operation that
it is capable of performing. (This is of the order of 90 different opera-
tions.) The session’s ServiceL() method uses the operation identifier
to index this array and obtain the corresponding TOperation object for
the request.

When a client closes a session, the server will receive a disconnect
message and then call this method:

void CSessionFs::Disconnect(const RMessage2& aMessage)

As we will see shortly, session disconnection can involve more than just
deleting the session object.

For each of the client-side sub-session objects that I mentioned in the
previous section, there is a corresponding server-side object, and these
are all managed by their associated session. The following table lists the
server-side sub-session objects and their client/server relationship:

THE FILE SERVER 349

Server-side
class

Description Corresponding
client-side class

CFileShare Abstraction for a client view of an
open file.

RFile

CDirCB Abstraction of an open directory. RDir

CFormatCB Abstraction of a format operation. RFormat

CRawdiskCB Abstraction for direct drive access. RRawDisk

Each time the file server creates a server-side sub-session object, for
example because a client calls RFile::Create(), it adds this object
to the object index (CSessionFs::iHandles) of the session to which
the object belongs. This generates a unique sub-session handle that the
server returns to the client-side object, which stores it. After this, the
handle is passed as a message argument in each request involving the
same sub-session, to identify the appropriate server-side object. If the
client closes the session, the file server will first close any sub-session
objects still remaining in the object index. Each sub-session class is
derived from CFsDispatchObject, which deals with the closing of
these objects.

The CFileCB class represents an open file – the server has to create
an instance of this class before access to a particular file is possible.
CFileCB contains the full file name (including drive and extensions),
the file size, the file attributes and the last time the file was modi-
fied.

If you look at the previous table, you can see that an RFile object
is actually a handle on a CFileShare rather than a CFileCB. This is
because many clients may have the same file open, and CFileShare
corresponds to one client’s particular view of the open file. CFileShare
stores the current file position for its client, together with the mode in
which the file was opened. A CFileCB object remains instantiated by
the server as long as there are one or more CFileShare objects open on
it. Once the last share is closed, then the file server closes the CFileCB
object too.

To further illustrate the relationship between the CFileCB and
CFileShare classes, Figure 9.4 shows two clients, each with files open.
Client 1 has a single file open. Client 2 has two files open, but one of
them is the same as the one opened by Client 1.

350 THE FILE SERVER

file server

RFile

RFile
RFs RFile RFs

CSessionFs

CObjectIx CFileShare

CFileCB
CFileCB

CFileShare

CFileShare CObjectIx

CSessionFs

client 2 client 1

iHandles

iHandles

Figure 9.4 The relationship between CFileShare and CFileCB

9.3.2 Processing requests
The EKA1 version of the file server is single-threaded. This single thread
processes all requests, for all drives. When the thread blocks, waiting on
an I/O operation on a particular drive, it is unable to process requests for
any other drive.

We took the opportunity to improve the file server design in EKA2. It
is multi-threaded and allows concurrent access to each drive. As well as
the main file server thread, there is normally a thread for each logical
drive, and a thread for handling session disconnection. So, for example,
while the server is processing a request to write a large block of data to
a multimedia file on a removable media drive, it is still able to accept
and process a read request to an INI file on the main internal user data
drive. This design also enables the file server to support file systems for
remote drives. These are drives that are connected to the mobile phone
via a network connection. Requests to a remote drive could take a very
long time to complete. Such requests block the thread associated with
the remote drive, but, because it is multi-threaded, the file server can still
access the other drives in the system.

A client using asynchronous requests can have requests outstanding
concurrently on more than one drive from a single session. With the

THE FILE SERVER 351

multi-threaded scheme, these can truly be handled concurrently. On
EKA1, although the client may be given the impression that they are
handled concurrently, in fact they are processed sequentially.

Figure 9.5 illustrates the running F32 threads in a Symbian OS phone
that has a single drive. The main file server thread initially handles all
client requests. It goes on to service those requests that don’t require any
access to the media device itself and those that won’t block a thread,
before completing them and returning the result to the client. These
requests must not block since this will delay the entire file server from
processing new requests.

Session
disconnect

thread

Drive
thread

Main
file server

thread

FSY

CSessionFs::ServiceL()

CSessionFs::Disconnect()

Figure 9.5 The F32 threads

The main thread passes any requests that involve a call down to the file
system or that may block to a separate drive thread. We allow requests on
drive threads to be ‘‘long-running’’ operations. While these drive threads
are busy or blocked handling a request, new requests for the drive are
added to a drive-thread queue. In most circumstances, it queues requests
in a FIFO order. (There is only one exception to this, which I will talk
about later.) All drive threads have the same priority, which is slightly less
than that of the main file server thread.

There is a certain overhead in transferring requests to a separate drive
thread, and so we avoid this where possible. Some types of drive, such
as the ROM drive and the internal RAM drive, never perform ‘‘long-
running’’ operations and never block the thread. We designate such
drives ‘‘synchronous drives’’, and process all requests for them in the
main file server thread – synchronous drives do not have a separate drive
thread. However, even with asynchronous drives, we can handle certain
requests without access to the media device itself – for example, requests

352 THE FILE SERVER

to set or retrieve information held by the file server. We classify these
types of operation as ‘‘synchronous operations’’ and the main file server
thread always processes these too. (The Boolean member of the TOp-
eration class – iIsSync indicates which operations are synchronous;
see Figure 9.3.) I will now list some examples of synchronous operations:

• RFs::NotifyChange()

• RFs::Drive()

• RFs::SetSessionPath().

As we have seen, when a client closes a session, this can result in the file
server having to close down sub-sessions – and this may mean that it has
to write to disk. For example, if closing a CFileShare object results in
the server closing a CFileCB object too, the server may need to flush
the current size of the file to the disk. If the file is on an asynchronous
drive, then this will have to be handled by the drive thread. Also, before
the file server destroys a session, it needs to clean up any outstanding
requests for that session – and these may be queued or in progress on one
or more drive threads. In this case, we may need to wait for a drive thread
to unblock before the requests can be unqueued. Again, we can’t tie
up the main file server thread while these session termination operations
take place, and this is why we use a separate thread to manage session
disconnection.

Figure 9.6 shows a diagram of the server-side classes that deal with
the processing of a request.

CFsRequest

iDriveNumber : TInt
iScratchValue : TInt64

Dispatch()
Process()

CSessionFs

CRequestThread

iWaitingLock : RSemaphore
iListLock : RFastLockn 1

iList

Receive()
DeliverFront()
DeliverBack()

CFsInternalRequest

TOperation

CFsMessageRequest
iMessage : RMessage2

CDriveThread
iDriveNumber : TInt

CDisconnectThread
iRequest : CFsInternalRequest

iSession iOperation

CFsClientMessageRequest

iSrc : TParse
iDest : TParse

Figure 9.6 The F32 server-side classes which perform request processing

THE FILE SERVER 353

9.3.2.1 Request objects

The abstract class, CFsRequest, encapsulates a request within the file
server, and we use it to pass these requests from one server thread to
another. The initiating thread, which will either be the main file server
thread or the session disconnect thread, generates a request object. If
the initiating thread cannot handle the request, then this delivers it to
the target thread, which will be either a drive thread or the session
disconnect thread. The initiating thread may need to store the request in
the target thread’s request queue until it can be processed. CFsRequest
has a reference to the corresponding TOperation object for the request,
iOperation. It also has a pointer to the session that originated the
request, iSession, and a member holding the number of the drive on
which the request is to be performed, iDriveNumber.

Most requests come from file server clients. However, the server can
generate internal requests too:

• CancelSessionOp. The session disconnect thread generates this
request, and it is delivered to all drive threads, requesting them to
cancel any requests they hold for the session being closed

• DispatchObjectCloseOp. This is generated when a sub-session
object is closed. As I have already mentioned, sub-session closure can
result in a write to disk. Because of this, sub-session closure has to
be carried out on the correct drive thread for the object. This means
that the initiating thread must issue a DispatchObjectCloseOp
request to the appropriate drive thread.

A separate class derived from CFsRequest represents each different type
of request. CFsMessageRequest encapsulates requests originating from
a client, and CFsInternalRequest represents an internal file server
request. Each of these classes has different Complete() methods. Com-
pletion of a CFsMessageRequest results in the request-handling thread
signaling back to the client, by calling RMessagePtr2::Complete().
Completion of an internal request means that the handling thread will
signal the file server thread that initiated the request.

Some client requests involve one or even two file names as argu-
ments, and so CFsClientMessageRequest, derived from CFsMes-
sageRequest is provided. This contains two TParse members to hold
this information. The first such member is iSrc, which is used by
requests which involve a source path name such as RFile::Create()
and RFile::Read(). Requests that involve both a source and a desti-
nation path, such as RFs::Rename() and RFile::Replace(), also
use the second TParse member, iDest.

Each request processed by the server needs a separate request object,
and it is the job of the RequestAllocator class to manage the
allocation and issuing of new requests. To keep request handling time as

354 THE FILE SERVER

short as possible, the request allocator preallocates blocks of empty client
request objects. During file server startup, when the first client request is
received, it creates the first block of fifteen request objects and adds them
to a free list. If ever a request object is required but the allocator’s free list
is empty, it then allocates a further block of fifteen request objects – up
to a maximum of 45. If the allocator ever needs more objects than this,
it switches to a new strategy, whereby it allocates and frees individual
request objects.

The allocator is responsible for returning the correct type of object for
the particular request. When a request object is no longer required, the
server informs the allocator, and it returns the object to the free pool.

However, the file server has to be able to handle session and sub-
session closure requests without the possibility of failure. This means that
for these requests, it must not be necessary for the RequestAllocator
to issue new request objects, in case there are none free and there is not
enough free memory to allocate a new one. To cope with this, we ensure
that the file server always allocates the necessary request objects ahead
of receiving a session or sub-session close request. We do this like so:

• Sub-session closure. Each request to open a sub-session results in
the request allocator setting aside an internal request object, Dis-
patchObjectCloseOp, to handle sub-session closure

• Session closure. This involves two further types of request in addition
to sub-session closure. These are:

◦ A request issued from the main thread to the disconnect thread to
commence session disconnect. Every CSessionFs object has a
‘‘SessionDiconnectOp’’ message request object as one of its
private members (iDisconnectRequest) – see Figure 9.3

◦ A request to clean up outstanding requests for the session. The
session disconnect thread has a CancelSessionOp internal
request object as one of its private members (CDisconnect-
Thread::iRequest) – see Figure 9.6.

9.3.2.2 Server threads

As I have already mentioned, as well as the main file server thread, there
are two other types of file server threads: the drive threads and the session
disconnect thread. Unlike the main thread, which processes each new
request as it is received, these other threads may be busy or blocked
when a new request arrives, and so they employ a request queue to
hold any pending requests. The base class CRequestThread (shown
in Figure 9.6) encapsulates a file server thread that accepts requests into
a queue and then processes them. Requests can be added to either the
start or the end of its doubly linked list, iList. The fast semaphore

THE FILE SERVER 355

iListLock prevents access to the list from more than one thread at
once. From the CRequestThread entry point, the thread initializes
itself and then calls CRequestThread::Receive() in readiness to
receive requests. This method waits for a request to arrive from another
thread – at which point it calls the request’s Process() method. While
the request list is empty, CRequestThread waits on the semaphore
iWaitingLock. This is signaled by other threads whenever they deliver
a new request and the CRequestThread is idle.

The class CDriveThread, which is derived from CRequestThread,
handles requests that are carried out on a particular logical drive. The file
server creates an instance of this class for each asynchronous drive on
the phone, when the drive is mounted. The FsThreadManager class,
which contains only static members, manages drive thread allocation
and access. When the file server needs to mount a file system on a
logical drive, its main thread calls the FsThreadManager to create
the corresponding drive thread. However, the mounting of a file system
involves an access to the disk itself, and this can only be done from the
correct drive thread, so the main thread then sends a mount request to
the newly created drive thread. On drive dismount, the drive thread exits,
but the file server does not free the drive thread object.

The class CDisconnectThread, also derived from CRequest-
Thread, handles session disconnect requests. The file server creates
one instance of this class during startup to handle all session disconnect
requests. This object is never deleted.

9.3.2.3 Synchronous request handling

Figure 9.7 shows the program flow for the synchronous request:
RFs::Drive(). (This request returns drive information to the client.)

Main
file server

thread

RFs::Drive()

RMessagePtr2::Complete()

CSessionFs::ServiceL()
 RequestAllocator::GetMessageRequest()
 CFsRequest::Dispatch()
 TOperation::DoRequestL()

Figure 9.7 Program flow for a synchronous request

On receiving the request, the file server calls CSession-
Fs::ServiceL() which executes in the main thread. This acquires
a request object, identifies the appropriate TOperation object for this
request type and then dispatches the request. CFsRequest::Dis-
patch() first calls TOperation::Initialise() to validate the

356 THE FILE SERVER

arguments supplied by the client. Next it checks whether or not the
operation is synchronous using TOperation::IsSync(). Since the
request is synchronous, the main thread processes the request by calling
TOperation::DoRequestL(). Finally, the main thread completes the
client request by calling RMessagePtr2::Complete().

9.3.2.4 Asynchronous request handling

Figure 9.8 shows the program flow for the asynchronous request RFile::
Create() (which creates and opens a file).

RFile::Create()

CSessionFs::ServiceL()
 RequestAllocator::GetMessageRequest()
 CFsRequest::Dispatch()

Drive
thread

RMessagePtr2::Complete()

Request Queue

Main
file server

thread
CFsRequest

'EFsFileCreate'

CRequestThread::Receive()
 TOperation::DoRequestL()

FSY

Figure 9.8 Program flow for an asynchronous request

On receiving the request, again the file server calls CSessionFs::
ServiceL() to acquire a request object and initialize it with the
appropriate TOperation object. Still in the main thread, CFsRe-
quest::Dispatch() calls TOperation::Initialise(), which
parses the name of the file supplied. This time, however, the call to
TOperation::IsSync() reveals that the operation is asynchronous,
and so the main thread dispatches the request to the appropriate drive
thread. Once it has done this, it is able to accept other client requests.

When the drive thread retrieves the request from its queue, it pro-
cesses it by calling TOperation::DoRequestL(). This involves
interaction with the file system and the underlying media sub-system.
Finally, the drive thread completes the client request by calling RMes-
sagePtr2::Complete().

9.3.2.5 Session disconnection

Figure 9.9 shows the first phase of program flow for session disconnection,
RFs::Close(). On receiving the request, the file server’s main thread

THE FILE SERVER 357

RFs::Close()

CRequestThread::Receive()
 TOperation::DoRequestL()
 CFsRequest::Dispatch()

Session
disconnect

thread

Drive
thread

Request Queue

Request Queue

CFsRequest
'CancelSessionOp'

CSessionFs::Disconnect()
 CFsRequest::Dispatch()

Main
file server

thread
CFsRequest

'SessionDiscOp'

CRequestThread::Receive()
 TOperation::DoRequestL()

FSY
(for sync drives)

Figure 9.9 Program flow for the first phase of session disconnection

calls CSessionFs::Disconnect(). This method first closes any open
sub-session objects for synchronous drives. (They can’t be closed later,
when the disconnect thread issues sub-session close requests to the
asynchronous drives, because the main thread is not designed to accept
internal requests.)

The next phase is the cleanup of any outstanding requests for the
session. However, the main thread passes the responsibility for this and
the completion of session disconnection to the disconnect thread by
dispatching a ‘‘disconnect session’’ (SessionDiconnectOp) request
to it. (Remember that for session disconnect, the server can’t use the
request allocator to acquire this request object, and instead it must use
the session’s request object: CSessionFs::iDisconnectRequest. I
discussed this in Section 9.3.2.1.)

When the disconnect thread retrieves the request from its queue, it
issues an internal CancelSessionOp request to each drive thread in

358 THE FILE SERVER

turn, asking each thread to cancel any requests queued for the session
in question. (Requests in progress will be allowed to complete, since
the drive thread doesn’t check its queue again until it has completed
its current request). The cancel request is inserted at the front of each
drive thread queue, so that it will be the next request fetched by each
drive thread. Each drive thread will later signal the completion of its
CancelSessionOp request to the disconnect thread.

Figure 9.10 shows the second phase of the program flow for session
disconnection, RFs::Close(). Now that the disconnect thread has
ensured the cleanup of any outstanding requests for the session, it is
able to finish processing the ‘‘disconnect session’’ request it received
from the main thread. If any sub-sessions objects remain open – only
for asynchronous drives now – then the disconnect thread closes them.
Sub-session closure may require the server to write to a disk, so it does
this by issuing another internal request, DispatchObjectCloseOp, to
each drive concerned.

~CSessionFs()
 CFsDispatchObject::Close()
 CFsRequest::Dispatch()

Session
disconnect

threadRMessagePtr2::Complete()

FSYDrive
thread

Request Queue

CRequestThread::Receive()
 TOperation::DoRequestL()

CFsRequest
'DispatchObjectCloseOp'

Figure 9.10 Program flow for the second phase of session disconnection

Again each drive thread signals back completion to the disconnect
thread. Finally, the session-disconnect thread completes the original
client request by calling RMessagePtr2::Complete().

THE FILE SERVER 359

9.3.3 Interfacing with the file system

Figure 9.11 shows a diagram of the server-side classes that form the
interface with a file system, with a FAT file system implementation shown
as an example. I will now describe these classes.

CFsMessageRequest
iScratchValue : TUint

TDrive

iCurrentMount : CMountCB*
iDriveNumber : TInt
iAtt : TUint
iChanged : TBool
iSubstedDrive : TDrive*
iSubst : HBufC*

TOperation

DoRequest()
Initialise()

CMountCB

iVolumeName : HBufC*
iUniqueID : TUint
iSize : TInt64
iLockMount : TInt

CFileSystem

CFileCB

CDirCB

CFatFileSystem CFatMountCB CFatFileCB CFatDirCB

iOperation

iDrive

iDrive iMount

iFsy

1

n

iMount

iMountQ

iMount

1

1

EFILE.EXE
EFAT.FSY

Figure 9.11 The F32 server-side classes forming the interface with the file system

9.3.3.1 TDrive class

We’ve seen that the file server supports 26 drives (A: to Z:); the TDrive
class is the file server’s abstraction for a logical drive. It maintains a
TDrive instance for each drive, whether or not the drive is currently
mounted. As I mentioned in Section 9.1.2, mounting a drive means
associating a file system with it. TDrive contains the member iFSys,
which is a pointer to a file system factory class, CFileSystem. When
iFSys is NULL, the drive is not mounted. (Some drives are available for
drive substitution but substitute drives have no associated file system.)

360 THE FILE SERVER

The TDrive data member iAtt holds a bit-mask of the drive
attributes. These attributes are fixed while the drive is mounted with
a particular file system. The set of possible drive attributes is as follows:

Attribute Description

KDriveAttLocal Drive is local. Uses the local media
sub-system (not ROM or remote).

KDriveAttRom A ROM drive.

KDriveAttSubsted Drive is a substitute to a path on
another drive.

KDriveAttInternal Drive is internal (as opposed to
removable).

KDriveAttRemovable Drive is removable.

KDriveAttRemote Drive is remote.

KDriveAttTransaction Drive employs a file system which is
transactional (this is used by STORE).

In fact, in the context of drives, the term ‘‘mount’’ is a little over-used,
since we also talk about a volume being ‘‘mounted’’ on a drive. The class
CMountCB is an abstraction of a volume (or partition). For removable
media devices, the file server creates a different CMountCB object for
each volume introduced into the system. If the user removes a volume
from the phone with a sub-session object still open on it (for example,
an open file), then the file server cannot destroy the corresponding
CMountCB object.
TDrive maintains an object container, iMount, holding all the open

mounts on its drive. TDrive also keeps a separate CMountCB pointer,
iCurrentMount, corresponding to the volume that is currently present
on the phone. For a CMountCB object to be destroyed, there must
be no sub-session objects open on it and it must not be the current
mount.

The Boolean member TDrive::iChanged indicates a possible
change of volume, and is important for removable media drives. At
startup, the file server passes down to the local media sub-system the
address of iChanged for each local drive that is enabled on the phone.
The local media sub-system will then update this variable each time there
is a card insertion or removal event for the drive concerned.

THE FILE SERVER 361

Each volume contains a unique identifier – for example, FAT partitions
contain a unique ID field in their boot sector. The file server reads this ID
when it mounts the volume on the drive and stores it in the corresponding
mount object, CMountCB::iUniqueID. If the user changes the media
in the drive, then when the file server next accesses that drive, it will find
iChanged to be true. The file server then reads the unique ID directly
from the new volume to determine if the volume has changed. The server
compares the unique ID that it has just read with the ID of each existing
mount object stored in the mount queue, to see if it already knows about
this volume. If it does, then the corresponding mount object becomes the
current mount again. If it does not, then it creates a new mount object.

9.3.3.2 CMountCB class

The volume abstraction, CMountCB, has members holding the size of
the volume in bytes, iSize, and the volume name, iVolumeName. It
also has a member iMountQ, which is a list of all the files open on the
volume.

Its member, iLockMount, is a lock counter, which tracks whether
files or directories are opened, and whether a format or raw disk access is
active on the volume. The server checks iLockMount prior to processing
format and raw disk requests on the drive, as these can’t be allowed while
files or directories are still open. Similarly it checks this member before
opening files or directories on the drive to ensure that a format or raw
disk access is not in progress.

9.3.3.3 Request dispatch

Now let us look in a little more detail at what happens when a client
request is dispatched to a drive thread.

As I described in Section 9.3.2.4, before it dispatches the request
to the drive thread, the server’s main thread calls TOperat-
ion::Initialise() to preprocess and validate the data supplied
by the client. This may involve assembling a full drive, path and filename
from a combination of the data supplied and the session’s current path.
If the request involves a sub-session object (for example, CFileShare)
then this process of validation will lead to the identification of the target
sub-session object. Rather than discarding this information and recalcu-
lating it again in the drive thread when request processing commences,
the main thread saves a pointer to the sub-session object in the scratch
variable CFsRequest::iScatchValue so that the drive thread can
re-use it.

It is also at this initial stage that the main thread translates a request
specifying a substituted drive. The data member TDrive::iSubsted-
Drive provides a pointer to the true drive object (or the next one in the
chain), and TDrive::iSubst holds the assigned path on this drive.

362 THE FILE SERVER

The drive thread commences its processing of the request by call-
ing TOperation::DoRequestL(). It identifies the appropriate server
object to be used to perform the request (often via the scratch variable).
Requests translate into server objects as follows:

Client request Server object

RFs CMountCB

RFile CFileCB

RDir CDirCB

RFormat CFormatCB

RRawDisk CRawDiskCB

Request execution continues with the drive thread calling methods on
the server object. The first thing it normally does is to check that the target
drive is mounted with a volume.

These server object classes form the major part of the API to the file
systems. This API is a polymorphic interface – each server object is an
abstract class that is implemented in each separate file system DLL. The
server manipulates these server objects using the base class’s API and this
allows it to work with different file systems in different DLLs. In this way,
request processing is passed down to the appropriate file system.

9.3.4 Notifiers

As I mentioned in Section 9.2.1, the file server API allows clients to
register for notification of various events. These include:

• Standard change notification events:

– Changes to any file or directory on all drives

– Disk events such as a drive being mounted, unmounted, formatted,
removed and so on

• Extended change notification events. These are changes to a particular
file or directory on one or more drives

• Disk space notification events: when free disk space on a drive crosses
a specified threshold value.

The client calls to register for notification are asynchronous: they return
to the client as soon as the message is sent to the file server. The server

THE FILE SERVER 363

doesn’t complete the message until the notification event occurs (or the
request is canceled). This completion signals the notification back to the
client.

The server creates a notification object for each notification request.
Figure 9.12 shows a diagram of the classes concerned. CNotifyInfo
is the base class for each notification. This contains an RMessagePtr2
member, iMessage, which the server uses to complete the request
message when the notification event occurs. It also contains the member
iSession, which is a pointer to the session on which the notification
was requested. On session closure, the file server uses this to identify any
notifiers still pending for the session and cancel them.
CNotifyInfo also stores a pointer to the client’s request status object,

iStatus,which the client/server framework signals if the notifier is com-
pleted. We need this to handle the client’s cancellation of a specific noti-
fication request. For example, the client can cancel a request for change

FsNotify

TDiskSpaceQue

CDiskSpaceInfo
iThreshold : TInt64

TChangeQue
CNotifyInfo

iType : TInfoType
iStatus : TRequestStatus*
iMessage : RMessagePtr2
iSession : CSessionFs*

CStdChangeInfo
iChangeType : TNotifyType

CExtChangeInfo
iName : TFileName

iDiskSpaceQues iChangeQues

iHeaderiHeader

n n

11

1

27

1

27

Figure 9.12 The F32 server-side notifier classes

364 THE FILE SERVER

notification using RFs::NotifyChangeCancel(TRequestStatus&
aStat), where aStat supplies a reference to the request status object
of the notifier to cancel. The member iStatus is used to identify the
specific notifier concerned.

We derive CStdChangeInfo from CNotifyInfo for standard
change notifiers. This in turn is a base class for the extended change
notifier class, CExtChangeInfo. This class’s member iName holds the
name of the specific file or directory associated with the notifier. We also
use the CDiskSpaceInfo class, which represents a disk space notifier.

The server uses the static class FsNotify to manage the notification
objects. FsNotify keeps two separate sets of queues, one set for change
notifiers and one set for disk space notifiers. Each set has 27 queues
within it, one for each supported drive and one more to hold notifiers
that apply to all drives.

Users of the F32 notification APIs should be aware of the potential for
performance degradation. Each time the server completes any request,
it may also have to complete a pending notifier. The server checks the
TOperation object of the request it is completing, to determine if the
request type is one which could potentially trigger either a disk space
or a change notifier. If it is, then the server iterates through two queues
checking for notifiers in need of completion. (Two queues because one
is for the current drive, and one is for notifiers that apply to all drives.)
In the case of extended change notifiers, a certain amount of pathname
comparison is required, and for disk space notifiers, the amount of free
disk space needs recalculating. If there are a large number of notifiers
pending, then this can have an impact on file server performance.

9.4 File systems
The file server receives all client requests, but it never accesses the media
devices directly. Instead, it passes any requests that require access to
the directories and files on the device to a file system. Each file system
employs a media format which is appropriate for the characteristics of
the devices that use it. Most file systems are implemented as separate file
server plug-in DLLs, the exception being the ROM file system, which is
built as part of the file server itself. File system DLLs are assigned the file
extension: FSY.

Symbian OS supports the following file systems:

• The ROM file system is used for code storage on execute-in-place
(XIP) media such as NOR Flash. XIP refers to the capability to execute
code directly out of the memory

• The log Flash file system (LFFS) for user-data storage on NOR Flash

• The FAT file system for user-data storage on NAND Flash, internal
RAM drives and removable media

FILE SYSTEMS 365

• The Read-Only file system (ROFS) for code storage on non-XIP media
such as NAND Flash. Code on non-XIP media first has to be copied
into RAM for execution.

It is possible for developers to implement their own file system. Normally
they would then customize ESTART to load and mount this file system
during file server startup. I describe the necessary APIs in Section 9.4.1.6.

9.4.1 File system API

As I mentioned in Section 9.3.3.3, a loadable file system is a polymorphic
DLL providing plug-in functionality to the file server by implementing the
predefined file system interface classes, which are abstract classes. Each
file system implements the API by defining and implementing concrete
classes derived from each abstract class.

File systems are dynamically loaded by the file server at runtime – a
new one can be added and mounted on a drive without the need to restart
the server or interrupt any connected file server sessions. File systems
contain a single exported function, which the file server calls when the
file system is added to it. This export is a factory function that returns
a pointer to a new file system object – an instance of a CFileSystem-
derived class. The CFileSystem-derived class is itself a factory class for
creating each of the other file system objects. Having called this export,
the server is able to call all other file system functions through the vtable
mechanism.

The file system API is defined in f32fsys.h. In the following sections,
I will discuss the classes of which it is comprised.

9.4.1.1 The CFileSystem class

This is a factory class, which allocates instances of each of the other
objects that form the file system API: CMountCB, CFileCB, CDirCB and
CFormatCB. The file server has only a single CFileSystem instance
for each loaded file system – even when that file system is mounted on a
number of drives.

9.4.1.2 The CMountCB class

This class, which I introduced in Section 9.3.3.2, is the abstraction of a
volume. The file server creates an instance of CMountCB for each volume
introduced into the system.

The functionality that the file system supplies through this class roughly
corresponds to that contained within the RFs class. So, taking as an
example the method RFs::MkDir() to make a directory, we find that
program flow moves from this client function into TDrive::MkDir()

366 THE FILE SERVER

in the file server and then on to CFatMountCB::MkDirL() in the FAT
file system (FAT.FSY). Here is another example:

Client DLL File server FAT.FSY
RFs::Rename() → TDrive::Rename() → CFatMountCB::RenameL()

9.4.1.3 The CFileCB class

This class represents an open file. The functionality this class supplies
roughly corresponds to the methods contained in the RFile class. Again,
let’s follow the program flow using the FAT.FSY as an example:

Client DLL File server FAT.FSY
RFile::Read() → CFileShare class → CFatFileCB::ReadL()

The file server has a single object container, which references every
CFileCB object, across all the drives in the system.

9.4.1.4 The CDirCB class

This class represents the contents of an open directory. This supplies
functionality corresponding to the methods contained in the RDir class.
Again, the file server has a single object container that references every
CDirCB object across all the drives in the system.

9.4.1.5 The CFormatCB class

This class represents a format operation.

9.4.1.6 Loading and mounting a file system

We add file systems to the file server by calling the client method:

TInt RFs::AddFileSystem(const TDesC& aFileName) const

The argument aFileName specifies the name of the FSY component to
be loaded. As I mentioned in Section 9.1.2.3, ESTART normally does
file-system loading during file server startup.

Once it has been successfully added, a file system can be mounted on
a particular drive using the method:

TInt RFs::MountFileSystem(const TDesC& aFileSystemName, TInt aDrive) const

FILE SYSTEMS 367

In this method, aFileSystemName is the object name of the file system
and aDrive is the drive on which it is to be mounted.

The EKA1 version of the file server requires a nominated default file
system, which must be called ELOCAL.FSY. The EKA2 version of the
file server places no such restriction on the naming of file systems, or in
requiring a default file system.

If you are developing file systems, there are two methods available
which are useful for debugging:

TInt RFs::ControlIo(TInt aDrive,TInt,TAny*,TAny*)

This is a general-purpose method that provides a mechanism for
passing information to and from the file system on a specified drive. The
argument aDrive specifies the drive number, but the assignment of the
last three arguments is file system specific.

Additionally, the following method can be used to request asyn-
chronous notification of a file system specific event:

void RFs::DebugNotify(TInt aDrive,TUint aNotifyType,
TRequestStatus& aStat)

The argument aDrive specifies the target drive number, aNotify-
Type, specifies the event, and aStat is a reference to a request status
object that is signaled when the event occurs.

To trigger the notifier, the file system calls the following method, which
is exported by the file server:

void DebugNotifySessions(TInt aFunction,TInt aDrive)

The argument aFunction specifies the event that has occurred and
aDrive indicates the drive on which this has occurred.

So for example, if when testing, it is required for the test program
to issue a particular request when a certain condition occurs in a file
system then using DebugNotifySessions(), the file system can be
configured to complete a pending debug notification request whenever
the condition occurs.

All these methods are only available in debug builds.

9.4.2 The log Flash file system (LFFS)

I introduced Flash memory in Section 9.1.1, where I mentioned the
different types of Flash that we support in Symbian OS. We designed the
log Flash file system to enable user-data storage on NOR Flash devices.

368 THE FILE SERVER

9.4.2.1 NOR Flash characteristics

Flash is nonvolatile memory which can be erased and rewritten. Reading
from NOR Flash is just like reading from ROM or RAM. However, unlike
RAM, data cannot be altered on Flash just by writing to the location
concerned. Flash must be erased before a write operation is possible, and
we can only do this erasing in relatively large units (called blocks). To
erase, the phone software must issue a command and then wait for the
device to signal that the operation is complete. The erase sets each bit
within a block to one. Write operations, which are issued in the same
way as erases, can then change bits from one to zero – but not from zero
to one. The only way to change even a single zero bit back to a one is to
erase the entire block again.

Imagine that we need to modify just one byte of data in a block,
changing at least one bit from zero to one. (Assume also that we cannot
perform the modification by writing to an alternative location in the
block that has not yet been written to.) Then, to do this, we have to
move all the other valid data in the block to another freshly erased
location, together with the updated byte. The new location now replaces
the original block – which can then be erased and becomes available for
reuse later.

Another characteristic of Flash that we had to consider in our design
is that it eventually wears out – there is a limit to the number of times a
block can be erased and rewritten.

9.4.2.2 The log

The LFFS is specifically designed to operate with NOR Flash and to protect
itself against power loss. To do this, it keeps a log of all its operations
(hence the ‘‘log’’ part of the name). It records each modification to the
data in the file system by adding an entry at the end of the log describing
the operation. So, if a new file is created, this information is added as a
log. If the file is subsequently deleted, a log entry indicating that the file
is no longer available is added to the log.

Each log entry is of fixed size (32 bytes) and includes a flag that
indicates the completion status of the operation. Before each operation
is started, the LFFS creates its log entry which it adds to the log with
a completion status of ‘‘not complete’’. It then performs the operation,
and only when this is fully complete does it modify the status in the
log entry to ‘‘complete’’. If an operation is incomplete when power is
removed then, when power is restored, the LFFS undoes the operation
and any space it had consumed is reclaimed. This system ensures that
power loss does not corrupt the file system – although data that is only
partially written is lost.

The LFFS uses the key characteristic of NOR Flash to implement
this scheme. We’ve seen that generally we can’t change Flash contents

FILE SYSTEMS 369

without a prior erase cycle. However, we implement an ‘‘incomplete’’
flag status using bits in the one state, and so we can rewrite this flag to
zero (the ‘‘complete’’ state) without the need for an erase.

A set of operations are often related to each other, in that the whole
set must either be completed, or the set of operations should fail. In other
words, all the changes must be committed atomically. As an example of
this, consider a large file write involving several data blocks. To handle
this requirement, the LFFS uses a transaction mechanism. It marks all
log entries that are part of the same transaction with the transaction
ID number. It also marks the first entry with a transaction start flag,
and the last entry with a transaction end flag. This ensures that partial
transactions are never regarded as valid. Either the transaction succeeds
and all the associated operations are valid, or the transaction fails and
all the operations are invalid. As I mentioned earlier, the LFFS undoes
invalid operations, and reclaims the space they consume.

9.4.2.3 File and directory structure

Normal file and directory data storage is completely separate from the log.
This data is arranged into File Data Blocks (FDBs), which are, by default,
512 bytes in size. However, you could build the LFFS to use larger blocks
(up to 4 KB) by changing a constant in one of its configuration header
files. Although using a fixed data block size is wasteful of memory for
small files, this allows the FDB pointer information to use an FDB index
rather than an absolute address, which reduces the data management
overhead.

Each FDB has an associated log entry that describes the purpose of the
block and provides a pointer to it. However, the log is mainly intended
as a record of changes and does not provide a permanent mechanism
to track the FDBs that hold a file’s data. Instead, the LFFS uses three
structures to hold this information.

The first of these structures is an I-node. Each file has a single I-node
that holds file-specific data, such as the file type, the file size and a unique
I-node number (which is essential in identifying the file).

An I-node also contains fourteen FDB pointers. These are known as
the direct pointers, and they hold address information for up to fourteen
FDBs that make up the file. With an FDB size of 512 bytes, this structure
alone can handle files of up to 7 KB. For larger files, a second structure
is involved – the indirect block (IDB). IDBs contain 64 pointers, each
addressing either FDBs or further IDBs. The LFFS supports up to four
layers of IDBs, giving a maximum file size of approximately 8 GB. An
I-node has an indirect pointer for each layer of IDBs.

The organization of a file with a first-level IDB is shown in Figure 9.13.
The LFFS gives the FDBs in a file sequential numbers, starting at zero. It
gives IDBs the same number as the first FDB that they point to.

370 THE FILE SERVER

I-Node

FDB#0

FDB#1

FDB#13

Direct
pointers

IDB#14
Indirect
pointer

FDB#14

FDB#15

FDB#77
Level 1
Indirect
Block

Figure 9.13 The organization of files in the LFFS which uses a first level IDB

The following table lists the fields contained in an I-node:

Field Size (in bytes) Description

I-node number 4 The I-node number of the file.

Reference count 2 The number of directory entries referring to
this I-node. This is always 1.

File type 2 The type of file referred to by the I-node. The
value can be any of the following:

1 = User data file
2 = Directory file
3 = Metadata file.

File length 4 The number of data bytes in the file.

Data block size 4 The size of the FDBs referred to by the
I-node and IDBs.

Direct pointers 4 * 14 Pointers to the first 14 FDBs in the file. The
first pointer is to FDB#0, the second is to
FDB#1, etc.

FILE SYSTEMS 371

Field Size (in bytes) Description

Indirect pointer L1 4 Pointer to a level 1 IDB. The IDB contains
pointers to the FDBs following those found
through the direct pointers.

Indirect pointer L2 4 Pointer to a level 2 IDB. The IDB is the root
of a 2 level tree with pointers to the FDBs
following those found through Indirect
pointer L1.

Indirect pointer L3 4 Pointer to a level 3 IDB. The IDB is the root
of a 3 level tree with pointers to the FDBs
following those found through Indirect
pointer L2.

Indirect pointer L4 4 Pointer to a level 4 IDB. The IDB is the root
of a 4 level tree with pointers to the FDBs
following those found through Indirect
pointer L3.

The LFFS uses a third structure to track the I-nodes: the LFFS partition
contains a single I-file, which holds an array of pointers to the I-nodes.
It adds new I-node references to the I-file at the array entry given by the
I-node number. When it deletes a reference to an I-node from the I-file,
it sets the array entry to zero. This indicates that the I-node is not in use
any more, and a new file can reuse the I-node number.

Collectively, these FDB tracking structures are known as the LFFS
metadata. However, the metadata doesn’t hold filename or directory
information. Instead, we store this information in directory files. These
are really just normal data files, except that they are used by the file
system, and are not directly visible to clients. A directory file contains an
entry for each file in that directory. Directory entries contain the name of
the file and the number of the I-node that points to the file’s data blocks.
A directory entry’s size depends on the length of the filename, which can
be at most 256 characters.

I-node number 2 always points to the root directory.

9.4.2.4 Segments

To manage the erasing of blocks, the LFFS uses the notion of a segment. A
segment is the smallest unit of media space that the file system can erase
and consists of one or more consecutive erase blocks. The LFFS views
the entire NOR device as a consecutive series of segments. It stores log
entries and data entries (file data blocks and metadata) into each segment.

372 THE FILE SERVER

It stores the log starting at the bottom of the segment growing upwards,
and the data entries at the top, growing downwards. Figure 9.14 shows
the layout of a segment.

new data entries
added here

new log entries
added here

Data entries
grow down from
highest address

Log entries grow
up from lowest

address

Figure 9.14 The layout of an individual LFFS segment

In this way, the log is split across segments, but log entries always
occupy the same segment as their corresponding data entries. The LFFS
adds log and data entries to the current segment until that segment
eventually becomes full – at which point it moves on to the next erased
segment.

Figure 9.15 shows a section of an LFFS partition containing four
segments. The segment 2 is the current segment. Segment 1 is full, but
segments 3 and 4 are empty.

As it adds and modifies file data, the LFFS moves on from one segment
to the next, until it approaches a point where it is running out of media
space. However, the total amount of valid data on the device will almost
certainly be much less than the capacity of the device.

9.4.2.5 Reclaiming outdated media space

When file data is modified, the LFFS has to replace each FDB affected. It
adds the replacement FDBs together with their associated log entries to

FILE SYSTEMS 373

1 2 3 4

empty

user data

log

Key

Figure 9.15 The organization of the LFFS across multiple segments

the current segment. At this point, the old FDBs and associated log entries
have become out-dated. The LFFS will eventually have to reclaim this
space to allow further updates to the drive. However, the LFFS has not yet
finished the file update, since it must also change the metadata to point to
the new FDBs. This means modifying the file’s I-node and IDBs – which
will generate yet more out-dated log and data entries. (However, as I will
explain in Section 9.4.2.6, this metadata update is deferred until later.)
When file data is deleted, this also leaves out-dated log and data entries,
which the LFFS needs to reclaim.

Reclaiming out-dated media space is not simple, as this space will
normally be spread across many segments, and these segments will also
contain valid data. The reclaim process has to identify the segment with
the largest amount of dirty data, copy any valid data from that segment,
and then erase the segment allowing it to become active again. The LFFS
can’t allow the device to run out of free space before it attempts a reclaim,
because it needs reserve space into which to move the valid data before
erasing. It has to reserve at least a segment to ensure this does not happen.

The choice of which segment to reclaim is actually more complex
than I have just described. I mentioned earlier that Flash blocks have a
limit on the number of erase cycles they can handle. To mitigate this,
the LFFS employs a wear-leveling scheme. This scheme aims to keep the
erase count of each of the segments roughly equal, to avoid premature
failure due to some blocks being used more than others. The LFFS stores
the erase count of each segment in a segment header, and the reclaim
algorithm takes this into account when identifying the next segment for
reclaim. It avoids a segment containing a lot of dirty data but with a high
erase count.

Reclaiming a segment can be a slow process. First, the LFFS must
copy valid data to another segment, and then it must erase the blocks
contained by that segment. If the LFFS did not perform space reclamation
until it needed space to service a request, then its performance would be

374 THE FILE SERVER

poor. Instead, the LFFS tries to reclaim early by using a reclaim thread.
This is a low priority thread that uses what would otherwise be CPU idle
time to reclaim data.

9.4.2.6 Roll forward

When the user modifies a file, the LFFS does not update the metadata
as part of the same transaction that updates the FDBs. Instead it defers
the metadata update until later. It can do this because it can extract
the information it needs from the log. We call this update of metadata
from the log ‘‘roll-forward’’. To improve performance, the LFFS generally
performs roll-forward in batches, using the same low priority background
thread that it uses to perform early reclaim. If power is lost after the LFFS
has updated the FDBs, but before it updates the metadata, then the write
operation is still regarded as successful, because the LFFS can rebuild the
metadata from the log when power is restored.

However, the LFFS cannot allow too many metadata updates to accu-
mulate, because this affects reclaiming. This is because it cannot reclaim
any segment that contains FDBs whose metadata it has not rolled forward,
because this reclaim could destroy information needed to reconstruct the
metadata.

9.4.2.7 Caching

The LFFS maintains a cache which holds both read data and pending
write data. This cache includes all types of data – not only FDBs, but also
metadata and log entries. The cache tracks the pending write data for
each file separately, and can therefore act on cached data from only one
file. For example, data for a single file can be flushed without having to
flush data for any other file. If you are building the LFFS for a new phone
platform, you can configure the size of this cache by changing a constant
in one of the LFFS configuration header files.

There is also a separate read-ahead cache that reads log entries in
groups, for efficiency.

9.4.2.8 Error recovery

If, during a reclaim, the LFFS detects an erase failure on a block, then it
marks the entire segment that contains that block as being bad (and no
longer available for use). Again, it stores this information in the segment
header. The LFFS then identifies another segment for reclaim, leaving the
client unaware of the error.

If the LFFS detects a write failure on the current segment, then it
reattempts the same write in the next available position on the same
segment. It repeats this, moving further through the segment until the

FILE SYSTEMS 375

write eventually succeeds. This may require the LFFS to move on to the
next free segment. Again, the client is unaware of any error. If it has
suffered a write error, it is likely that the damaged sector will also suffer
an erase error if it is ever reclaimed, which will cause it to be marked as
bad at that point. However, assuming the damaged sector is still capable
of being read, any valid data it contains will be moved to another segment
as part of the normal reclaim process.

By configuring one of the LFFS configuration header files, developers
who are creating a new phone platform can build the LFFS so that it keeps
segments in reserve to replace bad segments, so that drive capacity isn’t
reduced in erase failure situations.

9.4.3 The FAT file system
Symbian OS uses the VFAT file system for user-data storage on various
media types including removable media, internal RAM and NAND Flash.

On a FAT-formatted volume, the data area is divided into clusters, with
a cluster being the smallest unit of data storage that can be allocated to
a file. On a given volume, each cluster is the same size and is always a
whole number of sectors (see Section 9.1.1.3). Cluster size varies between
volumes, and depends on the size of the volume.

A File Allocation Table (FAT) structure is used to track how clusters
are allocated to each file. Since the original version of the FAT file system
became available, it has been enhanced to support larger volumes. Now
there are different FAT file system types, corresponding to differences in
the size of the entries used in the FAT data structure. These include FAT12
for 12-bit entries, FAT16 for 16-bit entries and FAT32 for 32-bit entries.
Directory information is stored in a directory table, in which each table
entry is a 32-byte data structure. The VFAT version of the standard supports
long file names, up to 255 characters in length – previous versions
supported only ‘‘8.3’’ filenames that can only have eight characters, a
period, and a three-character extension. The FAT and VFAT standards are
described in many publications and I will not describe them in any more
detail here.

To ensure that Symbian OS phones are compatible with other operating
systems, it was essential that we used the FAT file system on our removable
media. Data on a removable media card that has been formatted and
updated on a Symbian OS phone must be fully accessible when removed
and introduced into other computer systems, such as a card reader
connected to a PC – and vice versa. In some cases, compatibility with
other systems can also mandate that internal drives be FAT formatted.
This is because some Symbian OS phones support remote access from
a host machine (such as a desktop computer) to one or more of their
internal drives, by exposing these as USB mass storage devices. For this to
work without a special driver on the host machine, these internal drives
must be FAT-format.

376 THE FILE SERVER

Symbian OS always formats internal RAM drives using FAT16.
Symbian OS actually provides two builds of the FAT file system – one

that supports only FAT12 and FAT16, and a second that supports FAT32
as well. This is because not all Symbian OS licensees require support for
FAT32.

9.4.3.1 Rugged FAT version

We build both FAT12/16 and FAT32 in a rugged configuration by
default – although developers who are creating a new phone platform
can enable the standard version if they wish. The rugged FAT version
provides tolerance to situations in which write operations are interrupted
due to power failure. This only happens when there is an unexpected loss
of battery power, not from the user’s normal power down of the phone,
because in this case the file server can complete the operation before
turning off.

The rugged version alters the way in which the file system updates the
FAT tables and directory entries, but this alone can’t completely eliminate
the possibility of an error due to unexpected power removal. However,
it also incorporates a ScanDrive utility, which the file server runs when
power is restored to the disk – and this can fix up any such errors. For
example, ScanDrive can detect and correct inconsistencies between the
FAT table and the directory entries, to reclaim lost clusters. It does this by
generating its own version of the FAT table from analyzing the directory
entries and then comparing this with the current FAT table. ScanDrive runs
at system boot, but only if the phone has been unexpectedly powered
down. In normal power down situations, the Symbian OS shutdown
server (SHUTDOWNSRVS.EXE) sends notification to the file server of
orderly shutdown, using the F32 method RFs::FinaliseDrives().
The file server passes notification down to the FAT file system, and this is
then able to update a status flag on the FAT disk. When it starts up, the
file system checks the status flag, allowing it to only run ScanDrive when
it is needed.

However this power-safe, rugged scheme only applies if the underlying
local media sub-system can guarantee atomic sector writes – that is, a
sector involved in a write operation is never left in a partially modified
state due to power removal, but is either updated completely, or left
unmodified. We can provide this guarantee for internal FAT drives that
use a translation layer over NAND Flash.

For removable media devices, unexpected power removal may result
from the removal of the card from the phone, as well as from the loss
of power from the battery. For these devices, we can’t usually guarantee
atomic sector writes. However, we can minimize the possibility of card
corruption due to unexpected power removal, using schemes such as
not allowing writes when the battery voltage is low. Another way of

FILE SYSTEMS 377

minimizing corruption is the use of a card door scheme that provides
early warning of the possibility of card removal. Unfortunately these
schemes can’t catch everything – consider the situation where the phone
is accidentally dropped, resulting in the battery being released during a
write operation. We could protect against corruption in this scenario with
the use of a backup battery that preserves system RAM while the main
battery is missing, so that we can retry the original write operation when
the main supply is restored. Unfortunately, the use of a backup battery is
not popular with phone manufacturers, due to the increase in the bill of
materials for the phone.

9.4.3.2 Caching

When we use the FAT file system on either removable media or NAND
Flash drives, we always employ two caching schemes to improve perfor-
mance.

The first of these is a cache for the FAT itself. The file system caches the
entire FAT into RAM, for all drives formatted using FAT12 or FAT16, and
for any drives formatted using FAT32 whose FAT is smaller than 128 KB.
This is a ‘‘write-back with dirty bit’’ type of cache scheme, with the file
system flushing all dirty segments at certain critical points throughout
each file server operation. This cache is used so that short sequences
of updates to the FAT can be accumulated and written in one go. The
frequency of cache flushes is higher, for a given operation, if the file
system is configured for rugged operation. The segment size within this
cache is 512 bytes. This corresponds to the smallest unit of access for the
sector-based media that the cache is used for.

However, for larger drives formatted with FAT32, the size of the FAT
becomes too large for it to be entirely cached into RAM. Instead, only
part of the table is cached. The cache stores up to 256 segments and
employs an LRU (Least Recently Used) scheme when it needs to replace
a segment. Each segment is still 512 bytes long.

The other type of cache, which we use on NAND Flash and removable
media drives, is a metadata cache. This caches the most recently accessed
directory entries together with the initial sectors of files. Caching the first
part of a file improves the speed of the file server when it is handling client
requests to read file UIDs. Each cache segment is again 512 bytes and the
file system is built allowing a maximum cache size of 64 segments. Once
more, we use an LRU replacement scheme. However, this is a ‘‘write
through’’ type cache – it always reflects the contents of the drive.

9.4.3.3 User-data storage on NAND Flash

NAND Flash characteristics
In Section 9.4.2.1, I described the characteristics of NOR Flash. NAND
Flash is similar. It is nonvolatile memory that can be erased and rewritten.

378 THE FILE SERVER

Write operations change bits from one to zero, but an entire block must
be erased to change a bit from a zero to a one. Again, there is a limit to
the number of times a block of NAND Flash can be erased and rewritten.

However, there are a number of differences between the characteristics
of NAND and NOR Flash:

• Unlike NOR Flash, NAND Flash devices are not byte-addressable –
they can only be read and written in page-sized units. (These pages
are 512 bytes or larger, but are always smaller than the erase block
size)

• The geometry and timing characteristics of NAND and NOR Flash
are different. NAND devices tend to have smaller blocks than NOR
devices. Program and erase operations are faster on NAND Flash

• NAND Flash has a low limit on the possible number of partial program
cycles to the same page. (After being erased, all bits are in the ‘‘one’’
state. Writing to a page moves some of the bits to a ‘‘zero’’ state. The
remaining bits at ‘‘one’’ can still be changed to zero without an erase,
using a subsequent write operation to the same page. This is called a
partial program cycle.)

As I mentioned at the start of Section 9.4.2, we designed the LFFS
specifically to enable user-data storage on NOR Flash. The differences
in the NAND Flash characteristics that I have listed mean that LFFS is
not a suitable file system for user-data storage on NAND Flash. The most
fundamental issue is the low limit on the number of partial page program
cycles that are possible on NAND Flash. As we saw, LFFS relies on being
able to perform partial programs to update the completion status of each
log entry.

The Flash translation layer (FTL)
Instead, Symbian OS uses the FAT file system for user-data storage on
NAND Flash. FAT is a file system better suited to the page read/write unit
size of NAND.

However, because NAND pages have to be erased prior to a write,
and because erase blocks contain multiple pages, we need an additional
translation layer for NAND, to provide the sector read/write interface that
FAT requires. This is the NAND Flash translation layer (FTL).

The translation layer also handles another characteristic of NAND
Flash. When NAND devices are manufactured, they often contain a num-
ber of faulty blocks distributed throughout the device. Before the NAND
device is shipped, its manufacturer writes information that identifies the
bad blocks into a spare region of the NAND device. That is not all – as
the FTL writes to good blocks on the device, there is a chance that these
will fail to erase or program, and become bad. The likelihood of this

FILE SYSTEMS 379

occurring increases the more a block is erased. To handle these issues,
the translation layer implements a Bad Block Manager (BBM), which
interprets the bad block information from the manufacturer and updates
it with information about any new bad blocks that it detects. The BBM
also controls a reservoir of spare good blocks, and it uses these to replace
bad ones encountered within the rest of the device.

The translation layer handles wear leveling, employing a scheme very
similar to that used by LFFS. It also provides a system for ensuring the
integrity of the data in situations of unexpected power removal, making
sure that data already successfully committed to the device is not lost
in such a situation – even if power removal occurs part-way through a
write or erase operation. Indeed, the FTL is so robust that it can handle
the situation in which power removal occurs while it is in the process of
recovering from an earlier, unexpected, power removal.

The NAND FTL implementation may be split between a user-side
file server extension (see Section 9.1.2) and a media driver. It can
also be implemented wholly kernel-side in a media driver. The sec-
ond scheme tends to result in a smaller number of executive calls
between user-side code and the media driver which makes it slightly
more efficient.

The first NAND FTL version released by Symbian employed a scheme
split between a file server extension and a media driver. We had to split
it this way on EKA1, and so we chose the same scheme for EKA2 to
provide compatibility between the two versions of the kernel. We later
implemented a version of the FTL for EKA2 entirely within a NAND media
driver. Whichever scheme is used, the FTL and BBM software is generic to
any NAND Flash device. However, the media driver contains a hardware
interface layer, which is specific to the particular NAND device in use.

Figure 9.16 shows the components required to support user-data stor-
age on NAND Flash memory.

File delete notification
The FTL operates more efficiently as the amount of free space on the drive
increases, since it can make use of the unallocated space in its sector
re-mapping process. When a file is truncated or deleted on a FAT device,
any clusters previously allocated to the file that become free are marked as
available for reuse within the FAT. Normally, the contents of the clusters
themselves are left unaltered until they are reallocated to another file.
But in this case, the underlying FTL can’t benefit from the additional free
space – it is not aware that the sectors associated with these clusters are
now free. So, when the FAT file system is required to free up clusters – for
example, in the call CFatMountCB::DeleteL() – it calls down to the
next layer using the method:

CProxyDrive::DeleteNotify(TInt64 aPos, TInt aLength)

380 THE FILE SERVER

This provides notification that the area specified within the arguments
is now free. If this layer is a file server extension implementing the FTL,
then it can now make use of this information. If no extension is present,
then the call can be passed down to the TBusLocalDrive interface,
and on to the media driver where again an FTL can make use of the
information.

9.4.3.4 Removable media systems

Those Symbian OS phones that support removable media devices must
provide a hardware scheme for detecting disk insertion or removal, and
it is the local media sub-system that interfaces with this. The file server
needs to receive notification of these media change events so that it
can handle the possible change of volume, and also so it can pass the
information on to any of its clients that have registered for disk event
notification.

I have already described (in Section 9.3.3.1) how the file server receives
notification of a possible change of volume by registering a data member
of the appropriate TDrive class with the local media sub-system.

I also mentioned (in Section 9.3.4) that a client might register for
notification of disk events, such as the insertion of a new volume. Instead
of using this same TDrive mechanism to handle client notifiers, the
file server uses a slightly different scheme. It creates an instance of the
CNotifyMediaChange class for each removable media socket. This is
an active object that requests notification of media change events, again
via the local media sub-system. Each time a request is completed, the
active object handles any pending client notifiers and then reissues a
request on the local media sub-system for the next media change event.

Media change events are involved in a third notification scheme. For
certain critical media access failures, the file server sometimes needs
to display a dialogue box on the screen prompting the user to take
some action to avoid disk corruption. This dialogue box is launched by
an F32 critical notifier. It is used by the FAT file system in situations
where a read or write failure has occurred that could result in corruption
of the metadata on a volume. These situations include updates to the
FAT tables and directory entries, and also running the ScanDrive utility.
The dialogue box is only displayed on particular read/write errors. For
removable media, these include errors caused by card power-down as a
result of a media change event – in this case, the dialogue box prompts
the user to replace the disk immediately to avoid disk corruption.

We implement the critical notifier in the class CAsyncNotifier.
Each drive can own an instance of this class, and any file system can
use it to provide a notifier service. That said, currently only the FAT file
system uses it.

FILE SYSTEMS 381

CAsyncNotifier uses the RNotifier user library class, which
encapsulates a session with the extended notifier server – part of the Sym-
bian OS UI system. When a file system needs to raise a user notification,
it creates a session with the notifier server and issues a request on it,
specifying the text for the dialogue box. Until the user has responded to
the notification, and the request completes back to the file server, the
drive thread on which the error occurred is suspended. During this time
the file server is unable to process any other requests for that drive. Once
the notification has completed, the original operation can be reattempted
if needed – for example if the user replaced the disk and selected the
‘‘retry’’ dialogue button.

Since the EKA2 file server has a separate thread per drive, the pro-
cessing of requests on unaffected drives can continue as normal while a
notification is active. It is not so simple to support user notification on the
EKA1 version of F32. Here, because it has only a single thread, the file
server has to nest its active scheduler so that it can accept a limited set of
other requests while the notification is being handled.

File server clients can enable or disable critical notifiers on a per
session basis using the method RFs::SetNotifyUser(). The default
state is for notifiers to be enabled.

9.4.4 The read-only file system (ROFS)

The read-only file system is part of the scheme used to support the storage
of code (that is, ROM components) on non-XIP media such as NAND
Flash.

9.4.4.1 The core OS image

As I mentioned in Section 9.4.3.3, NAND Flash devices are not byte-
addressable, and they can only be read or written in page-sized units.
As a result, they do not support code execute in place (XIP). This means
that we need a RAM-shadowing scheme for code stored on NAND
devices – the code must be read from the Flash into RAM from where it
is then executed. Code on the Flash device must be stored in separate
partitions from those used for data storage. Since the code partition is a
read-only area, we don’t need a FAT format and we can use a simpler
linear layout, which is similar to the layout we use for the ROM file
system.

One approach we could take is to shadow the entire NAND code
area. However, this would use up a lot of RAM! Instead, we normally
shadow only a subset of the ROM components permanently, and load
the remainder into RAM only when access to them is required.

If you are porting Symbian OS to a new phone platform, you can choose
which OS components are permanently shadowed when you specify the

382 THE FILE SERVER

contents of the ROM image. At a minimum, this needs to include the
kernel, kernel extensions, media drivers, file server, file systems and
ESTART. You can include additional components – obviously there is a
trade-off between the speed gained by having a component permanently
shadowed, against the amount of RAM this consumes. These permanently
shadowed components are stored on the Flash device as a separate core
OS image. At startup, a core loader program, which is one of the programs
used to boot the OS, permanently shadows this entire image in RAM. The
core loader does this shadowing before even the standard Symbian OS
bootstrap has run.

The phone manufacturer can choose to have the entire core OS image
compressed, to reduce the amount of Flash space this consumes. The
core loader has to detect whether this is the case and decompress the
image where necessary. However, the core OS image is loaded as a
single entity and so the core loader does not need the ability to interpret
the file system format within it.

9.4.4.2 The ROFS image

The remaining OS components, which are not included in the core OS
image, are only loaded into RAM when they are required. The scheme
we use loads entire executables and data files into RAM on demand, in
much the same way as we load executables from a removable disk. This
is not the same as a demand paging scheme, in which components are
loaded at a finer granularity (that of a hardware page, usually 4 KB) and
in which we would need a more proactive scheme to unload code from
RAM that we deem to be no longer in active use.

The ROFS is the entity that reads these OS components from NAND
Flash and interprets the linear format of this code area, which is known
as the ROFS image.

The standard Symbian OS loader (which I discuss in Chapter 10, The
Loader) copies entire executables and library files from the ROFS image
to RAM, using the file server and the ROFS to read them. The ROFS image
also contains data files, such as bitmap files. Clients of the file server issue
requests to read sections of these data files, and again the file server uses
ROFS to read them from NAND Flash memory. Individual executable
files within the ROFS image may be compressed, and it is the job of the
standard loader to detect this, and decompress them at load time.

ROFS uses the NAND media driver to read from the NAND device in
the same way as the FAT file system does. The NAND region allocated
for the ROFS code image may contain bad blocks and again ROFS uses
the bad block manager in the media driver to interpret these.

To improve performance, ROFS caches all its metadata (its directory
tree and file entries) in RAM. The ROFS file format places file UIDs in
the metadata, as well as at the start of the file itself. This means that

FILE SYSTEMS 383

these UIDs are permanently cached, avoiding the need to make short,
inefficient reads from the Flash to retrieve them.

ROFS also employs a small cache for the file data area.
Figure 9.16 shows all the components needed to support code and

data storage on NAND Flash memory – including ROFS and the core
loader.

9.4.4.3 Booting the OS from NAND Flash

Since it is not possible to execute code directly from NAND Flash
memory, a phone using NAND Flash for code storage has to provide
hardware assistance so that the processor is able to begin fetching code
and can start to boot Symbian OS. Many platforms include a hardware
boot loader. This is logic associated with the NAND device that includes
a small RAM buffer, and it has the effect of making a small part of the
start of the NAND device become XIP.

This XIP area is often very small, typically less than 1 KB, and may be
too small to contain the core loader program. Instead a smaller miniboot
program is normally the first code to execute, and its function is to locate
the core loader program’s image, copy it into RAM and then execute it.

Although, as we’ve seen, the NAND manufacturing process leaves a
certain number of faulty blocks distributed throughout the device, usually
the manufacturer of the device will guarantee that the first block is good.
If the core loader can be contained within this block, then the miniboot
program doesn’t have to deal with bad blocks at all.

Next the core loader program executes. Its function is to locate the
core OS image, copy it entirely into RAM and then find and execute the
standard Symbian OS bootstrap. The core loader has to handle existing
bad blocks within the core OS image, but not the detection and handling
of new bad blocks. It may also have to decompress the core OS image.

The miniboot program and the core loader do not have access to the
normal Symbian OS NAND media driver, and so they have to duplicate
some of its functionality. If you are creating a new phone platform, you
must provide miniboot and core loader programs to suit your particular
NAND hardware configuration. Symbian provides reference versions of
these, which you can customize.

You must program the following images into the NAND Flash memory
for a phone to be able to boot from NAND Flash:

• The miniboot program

• The core loader program

• The core OS image

• The primary ROFS image (and possibly images for secondary ROFS
partitions)

384 THE FILE SERVER

• A partition table providing information on the location of all these
images.

As well as these, phone manufactures will often also program a prefor-
matted user data image into NAND Flash, so that this is available as soon
as the device is first booted.

Phone manufactures must produce tools to program this data into the
phone’s NAND Flash memory. Symbian provides a reference tool which
we use on our standard hardware reference platforms, and which you can
refer to. This is the nandloader, NANDLOADER.EXE. When programming
NAND Flash, we include this tool in a normal text shell ROM image,
which we program onto our platform’s NOR Flash memory. The platform
boots from this image and runs the nandloader which allows the user to
select and program the various component images into the NAND Flash.
These images can be included in the nandloader ROM image or supplied
separately on a removable media card. Finally the user can restart the
platform, which this time boots from the images now programmed onto
the NAND Flash.

9.4.5 The composite file system

The composite file system is unlike any of the file systems I’ve described
so far. Although it implements the file system API that I introduced in
Section 9.4.1, it doesn’t directly use either the local media sub-system
or a file server extension, as a standard file system would. Instead, it
interfaces with a pair of child file systems. The composite file system is
another part of the scheme we use to support code storage on NAND
Flash.

Once the core loader has loaded the core OS into RAM, the standard
ROM file system (which is embedded into the file server) provides access
to its components in RAM. The ROFS provides access to the rest of the OS
components, which it copies from NAND Flash on demand. Normally,
the file server would mount two different file systems on two separate
drives, but file server clients expect to find all the ROM components on a
single drive – the Z: drive. So we use the composite file system to combine
both file systems. This file system is a thin layer, which simply passes
requests from the file server to either (or both of) the ROM file system or
the ROFS. The composite file system uses the concept of a primary and
secondary file system, where the primary file system is always accessed
first. In this case, ROFS is the primary file system, since the majority of
files are located there.

At system boot, the standard ROM file system is the only file system
that is accessible until ESTART loads and mounts the other file systems.
Before this, on a phone using NAND for code storage, only the core
OS components are available on the Z: drive. ESTART then loads the

SUMMARY 385

composite file system, dismounts the standard ROM file system and
mounts the composite file system on the Z: drive in its place. At this point
the entire ROM image becomes available on the Z: drive.

Figure 9.16 shows the components required to support code and
data storage on NAND Flash, including the composite file system –
ECOMP.FSY.

File Server (EFILE.EXE) ROMFS

FAT File system
(ELOCAL.FSY)

NAND FTL
(NANDFTL.FXT)

Composite File system
(ECOMP.FSY)

ROFS
(EROFS.FSY)

CORE OSROFS

C: Z:

Bad Block Manager

Hardware Interface Layer

Media Driver

Bad Block Interpreter

Hardware Interface Layer

Core Loader

USER DATA AREA ROFS IMAGE CORE OS IMAGE MINIBOOT
&

CORE LOADER

RAM

Read()

NAND
Flash

Read()
Write()
Format()user

kernel

S/W Component NAND memory section RAM memory

software
hardware

KEY

Figure 9.16 The components involved in supporting code and data storage on NAND Flash

9.5 Summary

In this chapter, I have described the F32 system architecture including a
brief overview of the client API, followed by a more detailed description

386 THE FILE SERVER

of the design of the file server. Next I described the file systems in
general terms before looking in detail at the log Flash file system (LFFS),
the FAT file system, the read-only file system (ROFS) and the composite
file system. In Chapter 10, The Loader, I will describe the loader server,
which is also part of the F32 component.

10
The Loader

by Dennis May and Peter Scobie

It said, ‘‘Insert disk #3’’ but only two will fit!

Unknown

The file server process contains a second server, the loader server, whose
purpose is to load executables (that is, DLLs and EXEs). It runs in a
separate thread from the main file server and is implemented using the
Symbian OS client-server framework.

In this chapter I describe the process of loading executables and the
management of executable code in Symbian OS. In Section 10.3, I show
how the loader server operates: how it handles client requests, how it
interacts with the file server and I introduce some of the kernel-side
code management services. In Section 10.4, I describe kernel-side code
management in more detail.

However, before any of this, we should start by examining the format
of the executable files that the loader has to handle.

10.1 E32 image file format

This is the Symbian OS executable file format. Symbian provides tools
to convert from standard object file formats into the E32 image format:
you would use the PETRAN pre-processing tool to convert PE format files
(as output by GCC98r2 for example). Similarly, you would use ELFTRAN
to convert from the ELF format files produced by ARM’s RealView
compiler.

You can configure these conversion tools to produce compressed
executable files and it is the responsibility of the loader to detect a
compressed executable and decompress it on loading.

E32 image files consist of up of nine sections, in the order specified as
follows:

388 THE LOADER

1) The image header
The E32ImageHeader. I describe this in Appendix 2, The E32Image-
Header.

2) Code section – .text
This section contains the executable code.

3) The constant data section – .rdata
This section contains constant (read-only) data. It doesn’t exist as a
separate entity in an E32 image file. It may exist in the PE or ELF
format file from which the E32 image file is derived, but the tools then
amalgamate it into the .text section.

4) The import address table (IAT)
This table contains an entry for each function imported by the executable,
as follows:

Offset Description

00 Ordinal of import 1

04 Ordinal of import 2

. . .

4(n − 1) Ordinal of import n

4n NULL

For each function that the executable imports, the file will contain an
import stub function within the code section. When executed, each stub
will load the program counter with the value from the corresponding
entry of the IAT.

Therefore, when the executable is loaded, the loader has to fix up each
entry in the IAT, replacing the ordinal number with the run address of
the imported function. It has to calculate the address using the contents
of the .idata section of this executable together with the .edata section of
the DLL that exports the function requested.

Note that executables originating from ELF format files don’t contain
an IAT. For these, the tools fix up the import stubs directly – they obtain
the location of the stub from the import data section.

The order of the entries in the IAT corresponds precisely with the order
that imports are listed in the .idata section.

5) The export directory – .edata
The export directory is a table supplying the address of each function
exported from this executable. Each entry holds the start address of the
function as an offset relative to the start of the code section:

E32 IMAGE FILE FORMAT 389

00 Address of 1st function exported from this executable.

04 Address of 2nd function exported from this executable.

. . .

4n − 4 Address of last function exported from this executable.

The order of exports in the table corresponds to the order in the DEF
file for this executable. The table is not null terminated. Instead, the
number of entries in the table is available from the file’s image header.

6) Initialized data section – .data
This section contains the initialized data values that are copied to RAM
when this executable runs.

7) Import data section – .idata
This section contains data on each function that this executable imports.
The loader uses this information to identify each referenced DLL that it
also needs to load. Additionally, the loader uses this information to fix up
each entry in the import address table (IAT).

The format of this section is as follows:

Field Description

Size A word holding the size of this section in
bytes (rounded to 4-byte boundary).

Import block for DLL1

Import block for DLL2

.

Import block for DLLn

Name of DDL1 NULL terminated ASCII string.

Name of DLL2 NULL terminated ASCII string.

.

Name of DLLn NULL terminated ASCII string.

As well as the file name itself, the DLL name string also includes
the required third UID. If the file was built with the EKA2 tool set, the

390 THE LOADER

name string will also contain the required version number of the DLL
(see Section 10.3.1). The loader will have to match all of these when it
searches for the imported DLL. The format of the name is as follows, with
UID and version in hexadecimal:

<filename>{versionNum}[uid3]<extension>
for example, efsrv{00010000}[100039e4].dll

The format of each import block depends on whether the executable
originated from a PE or an ELF format file. For PE derived files, it has the
following format:

Offset Description

00H Offset of DLL name from start of .idata section.

04H Number of imports for this DLL.

For PE-derived executables built with the EKA1 tool set, this import
block also contains a list of ordinals for the DLL concerned. However, this
information is a duplicate of that contained in the import address table,
so import blocks no longer contain this information when built with the
EKA2 tool set.

Import blocks for ELF derived files have the following format:

Offset Description

00H Offset of DLL name from start of .idata section.

04H Number of imports for this DLL.

08H The location of import stub for the 1st function imported from this DLL.
(This is an offset within the code segment of the importing executable
to the location that will be fixed up with the address of the imported
function.)

0CH The location of import stub for the 2nd function imported from this DLL.

.

The location of import stub for the last function imported from this
DLL.

8) Code relocation section
This section contains the relocations to be applied to the code section.
The format of the table is shown next:

E32 IMAGE FILE FORMAT 391

Offset Description

00H The size of the relocation section in bytes (rounded to 4-byte
boundary).

04H Number of relocations.

08H Relocation information.

0CH Relocation information.

.

Nn 00000H

The format used for the relocation information block differs slightly
to the standard Microsoft PE format. It consists of a number of sub-
blocks, each referring to a 4 KB page within the section concerned. Each
sub-block is always a multiple of 4 bytes in size and has the following
format:

Offset Description

00H The offset of the start of the 4 KB page relative to the section being
relocated.

04H The size of this sub-block in bytes.

08H 2 byte sub-block entry.
The top 4 bits specify the type of relocation:
0 – Not a valid relocation.
1 – Relocate relative to code section.
2 – Relocate relative to data section.
3 – Try to work it out at load time (legacy algorithm).
The bottom 12 bits specify the offset within the 4 K page of the item
to be relocated.

0AH 2 byte sub-block entry.

.

9) Data relocation section
This section contains the relocations to be applied to the data section.
The format of the table is the same as that for code relocations.

392 THE LOADER

The nine sections that I have just listed apply to the structure of the
executable files as they are stored on disk. However, once an executable
has been loaded by the Symbian OS loader, it consists of two separately
relocatable regions (or sections). The first is the code section, which
includes the code, import stubs, constant data, IAT (if present) and the
export directory (.edata). The second is the data section, which includes
the un-initialized data (.bss) and initialized data (.data).

10.2 ROM image file format
The format that I described previously applies to executables that are
located on drives which are not execute-in-place (XIP) – for example,
executables contained within a NAND Flash ROFS image, on the user-
data drive (C:) or a removable media disk (D:). On such media, executable
code first has to be loaded into RAM (at an address which is not fixed
beforehand) before it can be run. However, by definition, for executables
stored in XIP memory (such as ROM) there is no need to load the code
into RAM for execution.

The ROMBUILD tool assembles the executables and data files destined
for the ROM into a ROM image. The base address of the ROM and the
address of the data sections are supplied to this tool as part of the
ROM specification (that is, the obey file) when it is run. In fact, for
certain executables, ROMBUILD itself calculates the address of the data
sections. These include fixed processes, variant DLLs, kernel extensions,
device drivers and user-side DLLs with writeable static data. With this
information, ROMBUILD is able to pre-process the executables, perform
the relocations and fix up the import stubs. The result is that on XIP
memory, executables have a format that is based on E32 image format
but differs in certain ways, which I will now list:

• They have a different file header, TRomImageHeader, which is
described in Appendix 3, The TRomImageHeader

• They have no IAT; it is removed and each reference to an IAT entry is
converted into a reference to the associated export directory entry in
the corresponding DLL

• They have no import data (.idata) section; it is discarded

• They have no relocation information; it is discarded

• They include a DLL reference table after the .data section. This is a list
of any libraries referenced, directly or indirectly, by the executable
that have static data. In other words, libraries with initialized data
(.data) or un-initialized data (.bss) sections. The file header contains a
pointer to the start of this table. For each such DLL referenced in the
table, the table holds a fixed-up pointer to the image header of the
DLL concerned. See the following table:

THE LOADER SERVER 393

Offset Description

00H Flags.

02H Number of entries in table.

04H Image header of 1st DLL referenced.

08H Image header of 2nd DLL referenced.

.

nn Image header of last DLL referenced.

These differences mean that the size of these files on ROM is smaller
than the corresponding E32 image file size.

Another consequence of the pre-processing of the IAT and the removal
of the import section for ROM files is that it is not possible to over-ride
a statically linked DLL located in ROM by placing a different version of
this referenced DLL on a drive checked earlier in the drive search order,
such as C:.

10.3 The loader server

The RLoader class provides the client interface to the loader and is
contained in the user library, EUSER.DLL. However, user programs have
no need to use this class directly – and indeed they must not use it since
it is classified as an internal interface. Instead the RLoader class is used
privately by various file server and user library methods. These include:

• RProcess::Create() – starting a new process

• RLibrary::Load() – loading a DLL

• User::LoadLogicalDevice() – loading an LDD

• RFs::AddFileSystem() – adding a file system.

RLoader is derived from RSessionBase and is a handle on a session
with the loader server. Each request is converted into a message that is
sent to the loader server.

Unlike the file server, the loader server supports only a small number
of services. These include:

• Starting a process – loading the executable concerned

394 THE LOADER

• Loading a DLL

• Getting information about a particular DLL. (This includes information
on the DLL’s UID set, security capabilities and module version)

• Loading a device driver

• Loading a locale

• Loading a file system or file server extension.

10.3.1 Version numbering

In EKA1, it is only possible for one version of a particular executable to
exist in a Symbian OS phone at any time. This is not the case for EKA2,
whose loader and build tools support version numbering – a scheme that
associates a version number with each executable. In this scheme, import
references state the version number of each dependency. This makes it
possible for us to make changes to an executable that are not binary
compatible with the previous version, since we can now place both the
new and old versions on the device simultaneously. The import section
of any preexisting binary that has a dependency on this executable will
indicate that it was built against the old version, allowing the loader to
link it to that version. At the same time, the loader links new or re-built
binaries to the new version. In some cases, rather than have two entire
versions of the same DLL, the old version can be re-implemented as a
shim DLL, using the functionality in the new DLL, but presenting the
original DLL interface.

The EKA2 tools tag each executable with a 32-bit version num-
ber, which is stored in the image file header (see Appendix 2, The
E32ImageHeader and Appendix 3, The TRomImageHeader, for details).
This number is made up of a 16-bit major and a 16-bit minor number.
Regarding linkage, each entry in an executable’s import table now speci-
fies the required version number of the DLL concerned (see Section 10.1
for details). Where two or more versions of an executable exist on a
device, both will generally reside in the same directory to save the loader
searching additional directories. (Indeed, if platform security is enabled,
they must reside in the same restricted system directory.) To prevent
file name clashes, older versions have the version number appended
to the file name (for example, efsrv{00010000}.dll), whereas the
latest version has an unadorned name (for example, efsrv.dll). When
searching for a candidate executable to load, the loader ignores any
version number in the file name – but subsequently checks the version
number in the header.

The EKA2 tools tag an executable with a default version number of
either 1.0 (for GCC98r2 binaries) or 10.0 (for binaries built with an EABI
compliant compiler). The same applies for the default version specified in

THE LOADER SERVER 395

each element of the import table. This allows inter-working with binaries
built with pre-EKA2 versions of the tools, which are assumed to have
the version 0.0. (Executables which pre-date versioning can only ever be
introduced on non-XIP media. This is because all ROM resident binaries
in EKA2-based systems will be built with the new tools.)

We assign a new version number to a DLL each time its published
API is changed. If the change is backward compatible (for example, just
adding new APIs) and all executables that worked with the original will
continue to work with the new version, then we only increment the minor
number.

When the new version removes or breaks an existing API, then we
increment the major number and reset the minor number to zero. We
assign modified APIs a new ordinal number, and remove the original
ordinal (leaving a hole). This means that, whether an API is removed or
modified, it appears that it has been removed. Of course, it will generally
be the case that we break compatibility for just a small number of APIs
and the majority of APIs will remain compatible. Executables that don’t
use removed APIs can then continue to run successfully against the new
version. So, whenever APIs are removed, we include information in the
image header to indicate which exports are affected (see Appendix 2, The
E32ImageHeader, for more details).

When it is loading an executable and resolving import dependencies,
if the loader finds more than one DLL in the search path that matches the
requested name, UID and security capabilities, but has differing version
numbers, then it employs the following selection algorithm:

1. If there is a DLL in this set with the requested major version number
and a minor version number greater than or equal to the requested
minor version number, then it uses that one. If there is more than one
of these, then it uses the one with the highest minor version number

2. If no DLL exists satisfying (1), the loader looks for a DLL with a higher
major version number than the one requested. If there is more than
one of these, then it selects the one with the lowest major version
number and the highest minor version number. If the executable
does not request any exports that no longer exist in this DLL, then the
loader uses it

3. If no DLL exists satisfying (1) or (2), the loader looks for a DLL with
the requested major version number. If there is more than one of
these, it finds the one with the highest minor version number. If the
executable currently being loaded does not request any exports that
are not present in this DLL, then the loader uses it

4. If no DLL exists satisfying either (1), (2) or (3) then the load fails.

An implication of the previous algorithm is that as the loader searches for
an executable across multiple drives (and multiple paths in non-secure

396 THE LOADER

mode), it can’t afford to stop at the first match. Instead it has to continue
to the end of the search and then evaluate the best match. Fortunately,
platform security cuts down the number of paths which have to be
searched. The loader cache, which I describe in Section 10.3.3, also
reduces the impact of this searching.

10.3.2 Searching for an executable

The EKA2 version of F32 is normally built with platform security
enabled – see Chapter 8, Platform Security, for more on this. In this
secure version, the loader will only load executables from the restricted
system area, which is located in the ‘‘\sys \bin’’ directory of a given
drive.

In non-secure mode, the loader will load executables from any direc-
tory. However, there are a default set of directories where executables are
generally located and the loader scans these directories when searching
for an executable to load.

10.3.2.1 Search rules on loading a process

When a client calls RProcess::Create() to start a new process, it
specifies the filename of the executable (and optionally the UID type).
If the filename includes the drive and path, then the task of locating the
executable is straightforward. When either of these is not supplied, the
loader has a fixed set of locations that it searches. This set is much more
limited when platform security is enabled. The search rules that it uses
are as follows:

1. If the filename includes a path but no drive letter, then the loader
searches only that path, but it does this for all 26 drives

2. If the filename doesn’t contain a path, then instead the loader searches
each of the paths that I will now list, in the order given. (Again, for
each of these, if a drive letter was supplied then the loader searches
these paths only on this specified drive. However, if no drive was
supplied either, then it checks all listed paths on all 26 drives)

◦ sys\bin
◦ system\bin (non-secure mode only)

◦ system\programs (non-secure mode only)

◦ system\libs (non-secure mode only).

When searching all 26 drives, the search order starts with drive Y: and
then works backwards through to drive A:, followed finally by the Z:
drive. Searching the Z: drive last makes it possible for us to over-ride a

THE LOADER SERVER 397

particular EXE in the ROM drive by replacing it with an updated version
on an alternative drive that is checked earlier in the search order, for
example, the C: drive.

When loading a process, the loader follows these rules to select which
executable to load:

• Check that the filename and extension match

• Check that the UID type matches (if specified)

• Out of all possible matches, select the one with the highest ver-
sion number. (Remember, the selection algorithm I described in
Section 10.3.1 applies only when resolving import dependencies.)

Once the process executable is loaded, the loader goes on to resolve
all its import dependencies. For a non-XIP executable, the name of each
DLL that it statically links to is contained in the import data section of
the image. The module version and third UID are included in the DLL
name (as I discussed in Section 10.1) – but the path and drive are not.
Therefore the loader again has to search a fixed set of locations for each
dependency:

1. The drive and path that the process executable was loaded from

2. All of the paths listed, in the order given, on all 26 drives in turn:

◦ sys\bin
◦ system\bin (non-secure mode only)

◦ system\libs (non-secure mode only).

When loading DLL dependencies, the properties that the loader checks
when searching for a match are more substantial:

• Check that the filename and extension match

• Check that the third UIDs match

• Check that the candidate DLL has sufficient platform security capabili-
ties compared with the importing executable. Refer to Section 8.4.2.1
for precise details of this capability check

• Check that the module versions are compatible. This could potentially
include checking the export table bitmap in the image header of a
candidate DLL to ensure that an export hasn’t been removed.

As I mentioned in Section 10.3.1, when resolving import dependencies,
the version numbering selection scheme means that the loader must
continue to the end of the search and evaluate the best match.

398 THE LOADER

10.3.2.2 Search rules when loading a library

When a client calls RLibrary::Load() to dynamically load a library,
it may provide a path list as well as the filename of the DLL. Again, if
the filename includes the drive and path, the loader loads the DLL from
that location. However, if it does not, then the loader searches each of
the paths specified in the path list before searching the standard paths for
DLL loading, which I listed in the previous paragraph. Again, once the
DLL is loaded, the loader goes on to resolve its import dependencies in
the same way as I described previously.

10.3.3 The loader cache

From the previous section, you can see that the loading of an executable
that has dependencies can involve the loader searching many directories
on multiple drives. Furthermore, to determine if a candidate executable
fully matches the criteria required by the client or importing executable,
then the loader must read header information from those files that match
the required filename.

To read directory entries and file headers, the loader server needs
to makes requests on the file server and so it permanently has a file
server session open. But to optimize the speed at which executables are
loaded, and to reduce the number of requests made to the file server, we
implemented a loader cache.

For a small number of directories, the loader caches the names of
every file that they contain. It stores only the files’ ‘‘rootnames’’ in ASCII.
The ‘‘rootname’’ is the basic name and extension with any version or
UID information removed. We use ASCII since names of executables
do not include Unicode characters. (As I showed in Section 10.1, the
import section of the image file specifies the names of implicitly linked
libraries as 8-bit strings, so an executable with a Unicode name cannot
be accommodated within the E32 image format.)

When the loader searches for an executable, if it gets a possible ‘‘hit’’
on a cached root name entry, it further populates the entry (if it hasn’t
already done so) opening the file and reading the image header to extract
the following file data:

• UID triplet

• Module version

• Security information

• Export bitmap – for V-formatted headers (see Appendix 2, The
E32ImageHeader).

THE LOADER SERVER 399

The cache can contain file entries for up to six different directories. It
maintains all the file entries for these directories for every mounted drive
on the system. It also stores the path to each directory in a linked list.

The class diagram for the loader cache is shown in Figure 10.1. We
encapsulate each cached directory by a TDirectoryCacheHeader
object. This has an array of pointers, iCache, to all its cached file entries,
each of which is represented by an instance of a TFileCacheRecord
class, holding the rootname of the file and other cached file data. The
pointers are sorted by name, allowing us to perform a binary search for a
given rootname.

TDriveCacheHeader

CCacheNotifyDirChange

gDriveFileNameCache[26]

TFileCacheRecord

TPathListRecord TPathListRecordTPathListRecord

iNotify

1

1

1

n

1

n

iPath

iNext

iCache

"\sys\bin" "\system\bin" "\system\programs"

iDirectoryList

TDirectoryCacheHeader

iNext

Figure 10.1 Class diagram for the loader cache

We represent each of the 26 drives by a TDriveCacheHeaderobject;
this has a list: iDirectoryList of all the current cached directories
on it.

We encapsulate the path name of every cached directory by a TPath-
ListRecord object; there is a linked list of up to six of these. In fact,
the loader always caches the default directories that it uses. So, in non-
secure mode, it always caches these directories: sys\bin, system\bin,

400 THE LOADER

system\programs and system\libs. In secure mode, it always
caches the directory sys\bin. Because of this, the loader only recy-
cles the remainder of the six entries between other directories. Because
the loader tends to search the same paths on each drive, for each directory
path there will generally be a corresponding directory cache on each of
the active drives.

When performing a search, the loader quickly iterates through the
path list, checking whether the directory in question is already cached.
Assuming it is, the loader navigates to the corresponding TDirecto-
ryCacheHeader object via the appropriate drive object, where it can
then scan through each of the file entries.

The cache must accurately reflect the directory filenames for those
directories that it holds. Any changes to these must trigger a refresh before
the next query results are returned. The loader uses file server notifications
for this purpose – one for each drive\path. The CCacheNotifyDir-
Change class handles change notification. Each time a notification is
triggered, the loader destroys that directory cache for the corresponding
drive. This has the effect of forcing a cache reload for that directory when
the drive\path is next queried.

10.3.4 Code and data section management

On Symbian OS, the low level abstraction describing a segment of code
is the DCodeSeg class, a kernel-side object that I will describe in detail
in Section 10.4.1. This class represents the contents of an executable
that has been relocated for particular code and data addresses. Each
DCodeSeg object has an array of pointers to the other code segments to
which it links. In this section I will concentrate on how the loader uses
DCodeSeg objects.

The code segment object for a non-XIP image file owns a region of
RAM, and it is into this that the loader copies the code and data prior
to execution. The kernel allocates space in this RAM region for the code
section, the constant data section, the IAT (if present), the export directory
and the initialized data section, in that order. The loader applies code
and data relocations to this segment.

XIP image files, by definition, can have their code executed directly
from the image file. Likewise, the initialized data section and export
directory can be read directly. Because of this, there is no need for a RAM
region and instead the DCodeSeg object just contains a pointer to the
ROM image header for that file.

The loader needs to create new code segments and manage those that
it has already created. For this purpose, it has a private set of executive
functions, grouped with other loader services into the E32Loader class,
which is contained in the user library. Only threads in the file server

THE LOADER SERVER 401

process may use these functions – the kernel panics any other thread
trying to use them.

Once it has created a code segment for non-XIP media, the kernel
returns the base addresses of the code area and the initialized data area
within the segment to the loader. These are known as the code load and
data load addresses respectively, and the loader uses them when copying
in the various sections from the image file. The kernel also returns the
code and data run addresses, and the loader uses this information when
applying code and data relocations.

To conserve RAM, the kernel shares code segments whenever possible,
and generally only one is required for each executable, even when
this is shared between processes – I list the only exceptions later, in
Section 10.4.1. So, for example, where a process has been loaded twice,
generally the kernel will create only one main code segment for that
process. Both processes have their own separate global data chunks,
however. When each of these processes is first run, the contents of the
initialized data section is copied out of the code segment into this global
data chunk.

10.3.5 Loader classes

In Figure 10.2 I show the main classes that the loader server uses. The
E32Image class encapsulates a single executable image. When starting
a process or dynamically loading a DLL, the loader creates an instance

TLdrInfo

RLdrReq

RImageFinder

iReq

iRomImageHeader iHeader

iRequestedUids : TUidType
iHandle : TInt
iRequestedVersion : TUint32

iFileName : HBufC8*
iPath : HBufC8*

TCodeSegCreateInfo
iHandle : TAny*

E32Image

TRomImageHeader E32ImageHeader

TProcessCreateInfo

Figure 10.2 Class diagram for the loader server

402 THE LOADER

of this class for the main executable and each statically linked DLL. (For
non-XIP media, that includes every implicitly linked DLL, for XIP media,
it only includes those which have static data.) The E32Image class has a
pointer to a header object appropriate to the type of executable – either
a TRomImageHeader object for XIP or an E32ImageHeader object
for non-XIP media. The object denoted by iHeader holds a RAM copy
of the entire E32ImageHeader, whereas iRomImageHeader points
directly to the original header in ROM.

The E32Image class is derived from the class TProcessCreate-
Info, which adds information that is only required when creating a new
process – such as stack size, heap size and so on. In turn, TProcess-
CreateInfo is derived from TCodeSegCreateInfo, which is used
to assemble the data required to create a DCodeSeg object. The data
member iHandle is a pointer to corresponding kernel-side DCodeSeg
object and is used as a handle on it.

The RLdrReq class encapsulates a request on the loader. This is used
to store request information copied from the client thread, such as the
filename of the executable to load or a path list to search. It is derived
from the TLdrInfo class, which is used to pass request arguments from
client to server and, if a load request completes successfully, to return a
handle on a newly loaded executable back to the client.

The loader uses the RImageFinder class when searching for a
particular image file. To perform a search, this uses a reference to an
RLdrReq object, iReq, which is the specification for the file being
searched for.

10.3.6 Loading a process from ROM

Let us look at the steps involved in loading a process – first looking at the
more straightforward case where this is being loaded from ROM.

10.3.6.1 Issuing the request to the server

The client calls the following user library method (or an overload of it):

TInt RProcess::Create(const TDesC &aFileName, const TDesC &aCommand,
const TUidType &aUidType, TOwnerType aType)

The argument aFileName specifies the filename of the executable to
load. The descriptor aCommand may be used to pass a data argument
to the new process’s main thread function. The argument aUidType
specifies a triplet of UIDs which the executable must match and aType
defines the ownership of the process handle created (current process or
current thread).

THE LOADER SERVER 403

This method creates an RLoader session object and calls its Con-
nect() method, which results in a connect message being sent to the
server. Once the connection is established, control returns to the client
thread. This then calls RLoader::LoadProcess(), which assembles
the arguments passed from the client into a message object and sends this
to the server. The kernel then suspends the client thread until the loader
completes the request.

On receipt of the message, the server calls the request servicing function
belonging to the relevant session, CSessionLoader::ServiceL().
This creates an RLdrReq, a loader request object, and populates it with
data such as the filename, command descriptor and so on, reading these
from the client thread. Next it allocates an E32Image object for the
main process executable and calls the LoadProcess() method on it.
Figure 10.3 illustrates this first phase.

RProcess::Create

CServerLoader::NewSessionL

CSessionLoader::ServiceL

E32Image::LoadProcess

RLoader::LoadProcess

RLoader::Connect

client thread loader thread

user

kernel

Figure 10.3 Issuing the request to the loader server

10.3.6.2 Locating the process executable

The next task to be performed is to search for the main executable file.
The loader creates an RImageFinder object and sets its member iReq
to the newly created request object, which contains the data specifying
the executable. It calls the finder’s Search()method – commencing the
search scheme as outlined in the first part of Section 10.3.2.1. Assuming
the search is successful, the loader now populates the main E32Image
object with information on the executable file it has found, by calling the
E32Image::Construct() method.

Figure 10.4 shows this second phase. Note that we assume here that
the paths searched are not held in the loader cache, and so searching
involves making requests on the file server to read the directory entries.
The loader also needs to open candidate files to read information from
their ROM image header, but this is not shown in the figure. Because
the entire ROM image is always mapped into user-readable memory,

404 THE LOADER

E32Image::LoadProcess

TDrive::DirOpen

CSessionFs::ServiceL

CDirCB::ReadL

RDir::Open

RImageFinder::Search

loader thread file server thread

E32Image::Construct

RDir::Read

CSessionFs::ServiceL

user

kernel

Figure 10.4 Locating the process executable

the loader can access the ROM image headers via a pointer rather than
having to use the file server to read them.

10.3.6.3 Creating the code segment and process

The next stage is to check whether a DCodeSeg object correspond-
ing to this executable already exists (that is, the executable is already
currently loaded). To do this, the loader uses the executive function
E32Loader::CodeSegNext() to request that the kernel search its
entire list of code segments looking for one with a ROM image header
pointer that matches with the one about to be loaded. If a match is found,
the loader sets E32Image::iHandle for this segment, and then opens
it for a second process.

The loader now calls the executive function E32Loader::Process-
Create() to request that the kernel create the process structure, main
thread and global data chunk. This results in a DProcess object being
created for the process. If no DCodeSeg object was found to exist earlier,
this in turn leads to the creation of a DCodeSeg object for this executable.
As I have said, since this is a code segment for a ROM executable, there
is no associated memory area and no need to load any code into the
segment from the executable file or perform any code relocations.

I describe this phase of process loading in more detail at the start of
Section 10.4.3.

10.3.6.4 Processing imports

Next the loader must load any DLLs that the executable depends on and
which contain static data. To do this, it gets the address of the DLL refer-
ence table from the ROM image header and starts to process the entries.
Each entry holds a pointer to the image header of the DLL concerned
and, for each, the loader generates a further E32Image object, which
it then populates with information read from the corresponding image

THE LOADER SERVER 405

header. The loader must also obtain a DCodeSeg object for each entry.
This is a procedure that starts in a similar manner to the one performed
earlier – searching through the list of existing code segments. However,
if it needs a new DCodeSeg object, the loader calls the executive func-
tion E32Loader::CodeSegCreate() to create the object, followed by
E32Loader::CodeSegAddDependency() to register the dependency
in code segments between importer and exporter. If any dependencies
themselves link to other DLLs, then they too must be loaded and the
loader may call the function that handles loading dependant DLLs,
E32Image::LoadDlls(), recursively to process these.

Now the loader calls the executive function E32Loader::CodeSeg-
Loaded() for each new DCodeSeg object created (except that of the
DCodeSeg belonging to the process executable itself) to mark these as
being loaded.

I describe the kernel’s involvement in this DLL loading in more detail
in Section 10.4.4.

Figure 10.5 shows the program flow as the loader creates the process
and handles its import dependencies.

E32Image::Construct

E32Image::LoadProcess

loader thread

E32Loader::ProcessCreate

E32Image::FinaliseDllsE32Loader::CodeSegNext

ExecHandler::CodeSegNext

ExecHandler::ProcessCreate ExecHandler::CodeSegLoaded

ExecHandler::CodeSegCreate

E32Loader::CodeSegCreate

E32Image::LoadDlls

E32Image::ProcessImports

E32Loader::CodeSegLoaded

user

kernel

Figure 10.5 Creating the process and handling its import dependencies

10.3.6.5 Completing the request

In the final stage of loading a process, the loader calls the executive
function E32Loader::ProcessLoaded() to update the state of the
new process’s thread. (If the DCodeSeg object of the process executable
is new, and not shared from a preexisting process, this internally marks
the DCodeSeg object as being loaded.) This function also generates a
handle on the new process, relative to the original client thread. The
loader then writes the handle back to the client.

Next, the loader deletes all the image objects it has created for the
executables involved and closes its own handle on the new process.

406 THE LOADER

Finally it completes the original load process message, and control
returns to the client thread. This closes the RLoader session object and
the method RProcess::Create() finally returns.

I describe the kernel involvement in this final phase in more detail at
the end of Section 10.4.3.

Figure 10.6 shows this last phase.

kernel

RProcess::Create CSessionLoader::ServiceL

E32Image::LoadProcessRLoader::LoadProcess

client thread loader thread

E32Loader::ProcessLoaded

ExecHandler::ProcessLoaded

user

Figure 10.6 Completing the request

Assuming the process load was successful, the client then needs to
resume the new process for it to run. However, the loader has done its
job by this stage and is not involved in this.

The kernel then calls the process entry point, which creates the main
thread heap. Next it copies the initialized data section to its run address
and clears the un-initialized data area. Then it calls constructors for the
EXE itself and for implicitly linked DLLs. Finally it calls the process’s
public entry point, the E32Main() function.

There are a number of differences in the way an executable is loaded
from ROM on EKA2, compared to EKA1. Firstly, in EKA1 a third server,
the kernel server, is involved; this runs in supervisor mode. The loader
makes a request on the kernel server, asking it to create the new process.
On EKA2, process creation is done in supervisor mode too – but in the
context of the loader server. Secondly, in EKA1, the loader copies the
initialized data section from ROM to the global data run address as part
of the process load operation. However, in EKA2, this data copying is
performed kernel-side, and is deferred until the initialization phase of
process execution.

10.3.7 Loading a process from non-XIP media
This is similar to the loading of a process from XIP media, but more
complex. Since the media is non-XIP, the code must be loaded into RAM

THE LOADER SERVER 407

for execution. Also, since the import sections and relocations have not
been fixed up in advance, these sections need to be processed too.

10.3.7.1 Locating the process executable

The first difference occurs at the point where the loader searches for
the process executable. If it needs to load header information from a
candidate file (on a loader cache ‘‘miss’’), then this requires a full file
server read request, rather than relying on the ROM image being memory
mapped.

10.3.7.2 Creating the code segment and process

The next difference occurs when the loader calls E32Load-
er::ProcessCreate() and the kernel creates a DCodeSeg object
for the process executable. Since the process is not XIP, the kernel allo-
cates a RAM code segment, associates this with the DCodeSeg object
and returns the code load address within this segment.

The loader now needs to load the entire code section from the image
file into this code segment at the code load address. If it is a compressed

DProcess

A.EXE

B.DLL

D.DLLC.DLL

E.DLL

F.DLL

Figure 10.7 Sample non-XIP code graph

408 THE LOADER

DProcess

A.EXE

B.DLL

D.DLLC.DLL

Figure 10.8 Code graph with some XIP modules

DProcess

A.EXE

D.DLL

Figure 10.9 Code graph with all XIP modules

THE LOADER SERVER 409

executable, the loader also needs to decompress the code section as it
loads it. However, unlike on EKA1, the code segment does not have
user-write permissions and so the loader can’t directly copy data into it.
Instead it uses an executive function to perform this in supervisor mode.
If decompression is required, the loader reads portions of the code from
the file into a buffer, decompresses it, and then makes use of the user
library function UserSvr::ExecuteInSupervisorMode() to move
it from buffer to code segment in supervisor mode. If decompression
isn’t needed, then no special scheme is required to transfer the code
in supervisor mode. The loader simply issues a file server read request,
specifying the code load address as the target address. A media driver
will perform the transfer and this can use the kernel inter-thread copy
function to write to the code segment.

The loader then reads all the rest of the image (after the code section)
from the file into a temporary image buffer in one operation, again
decompressing if necessary.

Next the loader checks the header information to determine whether
the file contains a code relocation section. If so, the loader reads the
relocation information from the image buffer and calls a function in
supervisor mode to perform each of the relocations on the code section
just loaded. (This essentially involves the loader calculating the difference
between the code run address provided by the kernel and the base address
that the code was linked for. Then it applies this adjustment to a series of
32 bit addresses obtained from the relocation section – see Section 10.1
for more detail.)

If the executable contains an export directory, then the loader fixes
up each entry for the run address and writes it into the kernel-side code
segment, after the IAT. Again, it uses an executive function to perform
this in supervisor mode. (This is only required for PE-derived images. ELF
marks export table entries as relocations, so the loader deals with them
as part of its code relocation handling.)

If the executable contains an initialized data section, then the loader
now copies this from the image buffer into the code segment at the data
load address supplied (which is in fact immediately after the code, IAT
and export directory).

If the image contains a data relocation section, then the loader applies
these relocations in much the same way as it handled code relocations.

10.3.7.3 Processing imports

Next the loader must load all the DLLs referenced by this executable that
are not already loaded (rather than just those that contain static data as
was the case for XIP images). The procedure is similar to that described
for an XIP executable. However, with non-XIP files, the dependency
information is contained in the import section rather than a DLL reference

410 THE LOADER

table and it specifies the names of the DLLs rather than pointers to their
image headers. Hence, for each import block, the loader has to follow the
DLL search sequence described in Section 10.3.2.1. It reads each import
block from the image buffer and processes it in turn. If a dependency
needs to be loaded from non-XIP media, the loader again has to load and
relocate its code and data sections, fix up the export tables and so on, in
much the same way that it is loading the main executable.

Once this is done, the loader now has to fix up the IAT for the main
executable and any dependencies that it has just loaded from non-XIP
media. It examines the import sections of each of these executables,
which are now loaded in a series of image buffers. It processes the import
blocks in turn, identifying the corresponding exporter and loading its
export table into a buffer. Then it calls a supervisor function to fix up the
entries in the IAT that correspond with this export table.

Once it has processed all the dependencies, the process load request
now continues in much the same way as it did for XIP media.

For executables loaded from non-XIP media, the calling of the execu-
tive function E32Loader::CodeSegLoaded() for the new DCodeSeg
objects marks the point when the loader has finished loading any data
into these segments.

10.3.8 Loading a library file

There are various overloads of the method to load a library but all
eventually call:

TInt RLibrary::Load(const TDesC& aFileName, const TDesC& aPath,
const TUidType& aType, TUint32 aModuleVersion)

The argument aFileName specifies the name of the DLL to be loaded.
The descriptor aPath contains a list of path names to be searched, each
separated by a semicolon. The argument aType specifies a triplet of UIDs
which the DLL must match and aModuleVersion specifies the version
that the DLL must match. As versioning was introduced for EKA2, this
final argument is not present in the EKA1 version of the method.

This method first creates an RLoader session object and establishes
a connection with the loader server. Next it calls RLoader::Load-
Library(), which assembles the request arguments into a message
object and sends this to the server.

On receipt of the message, the server handles the request in a sim-
ilar manner to process load requests. It reads the arguments from the
client thread and searches for the specified DLL, following the sequence
described in Section 10.3.2.2. Then it creates a DCodeSeg object for the
DLL and, if loading from non-XIP media, copies the code and initialized
data sections into this segment, performing any relocations necessary.

THE LOADER SERVER 411

last user handle closed
destructors needed

library
reloaded

last user handle closed
no destructors needed

added to process
constructors needed

added to process
no constructors needed

Exec::LibaryDetach

Exec::LibraryDetached

Exec::LibraryAttach

INITIAL STATE

user-side constructors
run while in this state

user-side destructors run
while in this state

Exec::
LibraryAttached

ECreated

ELoaded

EAttaching

EAttached

EDetachPending

EDetaching

Figure 10.10 DLibrary state machine

Next it processes any dependencies for the DLL and marks every new
code segment created as now being fully loaded.

Next it calls the executive function, E32Loader::Library
Create(), which creates a DLibrary object and returns a handle
to it. See Section 10.4.4 for more details on this.

Finally, the loader server writes the handle back to the client, deletes
the image objects it has created and completes the load library message.
Control returns to the client thread which closes the RLoader session
object.

If the library was loaded successfully, then the method RLibrary::
Init() is called, still in the context of the client thread. This in turn calls
the executive function E32Loader::LibraryAttach() to extract the
list of entry points for the DLL and all its dependencies. Each entry point

412 THE LOADER

is called in turn, passing in the value KModuleEntryReasonProces-
sAttach as the entry reason. This runs any C++ constructor functions
for static objects associated with these DLLs.

Finally, a call of the executive function E32Loader::Library-
Attached() signals that the entry points have been completed –
marking the library as being attached. The method RLibrary::Load()
now returns.

Note that, in EKA2, the public DLL entry-point, E32Dll(TDll-
Reason) is no longer invoked. This function must be present in every
EKA1 DLL, to be called when the DLL is attached to or detached from a
process or thread. Unfortunately, this entry-point system cannot provide
any guarantees that E32Dll() will be called with the appropriate
parameter at the specified time. Because it is not possible to support
this functionality reliably, EKA2 removes support for it. This removal
simplifies the kernel-side architecture for managing dynamically loaded
code, which improves reliability and robustness.

10.4 Kernel-side code management

The kernel maintains a representation of all the code resident in the
system. The representation includes information on which modules link
to which other modules (the code graph), which processes each module
is used by and whether a given module consists of XIP ROM-resident
code or non-XIP RAM-loaded code. The generic concepts involved are
implemented in the Symbian OS kernel, but the memory model is
responsible for the details of how memory is allocated for RAM-loaded
code, and how it is mapped into the address space of each process.

The kernel and memory model only allocate memory for code storage
and store information about loaded code; they do not actually load the
code. The user-mode loader thread, described in the preceding sections,
is responsible for loading images from the file system into RAM, relocating
them to the addresses allocated by the kernel and resolving linkages to
other modules prior to execution.

10.4.1 Code segments
As we have seen, the main object involved in the management of code
is the code segment (DCodeSeg). This represents the contents of a single
image file (EXE or DLL) relocated for particular code and data addresses.
Note that in some memory models, the kernel will create more than one
code segment from the same image file if different data section addresses
are required. Of course this is expensive in terms of RAM usage, so it only
happens if absolutely necessary. The kernel only loads multiple copies
where a code segment has writeable static data and is loaded into multi-
ple processes in such a way that the data cannot be at the same address in

KERNEL-SIDE CODE MANAGEMENT 413

all those processes. For example, on the moving memory model, a fixed
process cannot have its data at the same address as a non-fixed process.

A code segment can be created from an execute-in-place (XIP) image
file, in which case it just contains a pointer to the TRomImageHeader
for that file. Alternatively it can be created from a non-XIP image file;
in this case the code segment owns an amount of RAM into which the
loader copies the code. The kernel keeps all code segments on three
separate lists. There is a doubly linked list (DCodeSeg::GlobalList)
to which it adds code segments in order of creation. There is an array
of pointers to DCodeSeg, sorted in lexicographic order of the root
name (DCodeSeg::CodeSegsByName). Finally there is an array of
pointers to DCodeSeg sorted in order of code run address (DCode-
Seg::CodeSegsByAddress). The kernel uses the two sorted lists to
allow it to perform a fast binary search for code segments by name,
and to allow fast location of the code segment that contains a given
run address (to enable C++ exception unwinding to work). The kernel
protects these lists, and all other aspects of the global code graph, by the
DCodeSeg::CodeSegLock mutex.

Each code segment has an array of pointers to the other code segments
to which it implicitly links, thus defining a global code graph (iDepCount
specifies how many other code segments this one links to, iDeps points to
an array of pointers to the DCodeSeg s on which this one depends). This
graph is exact for RAM-loaded code segments (that is, all code segments
and dependencies are present) but it is reduced for XIP code segments.
This reduction takes the form of transitively closing the dependence
graph, and then omitting any XIP code segments that have no .data or
.bss, or are kernel extensions or variants, and are not the explicit target
of a load request. (We avoid creating code segments for these since no
actual work is required to load them – the code is always visible, being
XIP, and no data initialization is required since there is either no data or
it has been initialized by the kernel before the loader even started up.
Effectively these DLLs are always loaded.)

A code segment can have various attributes (iAttr), as follows:

• ECodeSegAttKernel – this indicates that the code is intended to
execute in supervisor mode. Such code segments will be accessible
only in privileged processor modes

• ECodeSegAttGlobal – this indicates that the code should be visible
to all user processes regardless of whether they have explicitly loaded
it. Used for locales

• ECodeSegAttFixed – this is only used in the moving memory
model; it indicates that an EXE code segment is associated with a fixed
process and so will be fixed up for a non-standard data address

• ABI attribute – this is a 2-bit field indicating which ABI a code segment
conforms to. (ABI stands for Application Binary Interface and covers

414 THE LOADER

such things as the calling convention used to pass parameters to
functions and receive the return value and the manner in which objects
are laid out in memory.) Currently we define two ABIs – GCC98r2
and EABI. We use this attribute to facilitate systems in which multiple
ABIs coexist, and multiple versions of the same DLL are present. If we
are finding an already-loaded code segment, we must find the one
with an ABI matching the importing code segment.

Code segments without either kernel or global attributes are standard
user code segments. The kernel needs to attach such code segments to a
process before they can execute. It will either perform the attach operation
at process load time (for the EXE code segment and its dependencies) or
when a running process loads a DLL. Each process maintains a list of all
code segments directly attached to it (DProcess::iExeCodeSegpoints
to the main code segment for the process, DProcess::iDynamicCode
is an array of all explicitly dynamically loaded code segments, each
with its corresponding DLibrary object). This list only contains directly
loaded code segments, not those present solely because they are implicitly
linked to by another code segment. Depending on the memory model,
non-XIP code segments may either be visible to all user processes or
visible only to those user processes to which they have been attached.
The multiple memory model uses the latter scheme; the other memory
models use the former. Kernel code segments are attached to the kernel
process, but they are not mapped and unmapped; the code segment
is visible from privileged modes immediately on creation. Global code
segments do not need to be attached to any process. They are visible to
all processes immediately after creation.

A code segment also has flags (iMark), as follows:

• EMarkListDeps – temporarily used to mark code segments during
traversal of the code graph to add code segments to a dependency list

• EMarkUnListDeps – temporarily used to mark code segments dur-
ing traversal of the code graph to remove code segments from a
dependency list

• EMarkLdr – indicates that the code segment is in use by a load
operation

• EMarkLoaded – indicates that the code segment and all its depen-
dencies are fully loaded and fixed up

• EMarkDataFlagsValid – indicates that the DataInit and Data-
Present flags are valid (taking into account dependencies)

• EMarkDataFlagsCheck – used to mark that a code segment has
been visited when calculating the DataInit and DataPresent
flags

KERNEL-SIDE CODE MANAGEMENT 415

• EMarkData – indicates that this code segment has .data/.bss and
is not an extension or variant (so may require initialization at load
time – extensions and variants are loaded and initialized before the
loader comes into existence so don’t need to be initialized as a result
of any loader operation)

• EMarkDataInit – indicates that either this code segment or one in
the sub-graph below it is a DLL with writeable static data, excluding
extensions and variants

• EMarkDataPresent – indicates that either this code segment or
one in the sub-graph below it has writeable static data, excluding
extensions and variants. Note that the difference between EMark-
DataPresent and EMarkDataInit is that the former includes EXEs
with writeable static data whereas the latter does not

• EMarkDebug – reserved for debuggers.

We need some form of reference count for code segments to cope
with the case in which several processes are using a code segment
(for example, two instances of the same EXE or two processes loading
the same DLL); the kernel can only destroy a code segment when all
processes have relinquished their reference on it. A code segment should
only be destroyed if no currently running process depends on it, and
such dependence may be indirect via implicit linkages from other code
segments. We could have done this by reference counting the dependency
pointers from each code segment. However, because there may be cycles
in the code graph, this scheme makes it difficult to determine when a
code segment may actually be removed. The way to do this would be
to traverse the graph in the reverse direction – from the exporting code
segment to the importing code segment – to see if any process is currently
using any of the code segments. This would mean that we would need
to maintain two sets of dependence pointers for each code segment, one
pointing in each direction in the dependence graph.

In the reference counting scheme we actually use, we do not reference
count the dependency pointers. Instead, the reference count of each
code segment is equal to the number of processes which currently have
the code segment loaded, plus 1 if the (user-side) loader is currently
working with the code segment. We indicate the latter case by setting the
EMarkLdr flag in the iMark field. When the kernel creates a DCodeSeg
object, its access count is 1 and the EMarkLdr flag is set. Following a
successful load, each code segment in the new dependency tree will be
in this state (unless it was already loaded, in which case the access count
will be greater than 1). The kernel then adds the entire dependency tree
to the address space of the loader’s client process (or the newly created
process if an EXE is being loaded), which causes the access count of
each code segment to be incremented. Finally, during loader cleanup,

416 THE LOADER

the kernel decrements the access counts of all code segments with the
EMarkLdr flag set and resets the flag, which leaves all code segments
with the correct access count according to the previous rule. The kernel
performs the second and third steps (traversing dependence trees or the
global code segment list and modifying the access counts of several code
segments) with the CodeSegLock mutex held. The access counts of all
code segments must be consistent with the previous rule whenever this
mutex is free.

To conserve RAM, the kernel shares code segments whenever possible.
There will generally only be one code segment for each loaded EXE or
DLL with the same code being shared between all processes. There are
some exceptions, which all arise from memory model specific restrictions
on data addresses:

• On the moving memory model, non-fixed processes share the same
data addresses and so they can share all code segments. Fixed pro-
cesses must have unique data addresses, since we designed them so
that a context switch to or from a fixed process should require no
change in the virtual to physical memory map. Symbian OS exe-
cutables and DLLs do not use position independent code or data,
so if a DLL needs to have its .data and .bss at a different address in
different processes, the kernel must load multiple copies of the DLL
and relocate each copy for different code and data addresses. This
means that any code segments which either have .data or .bss sections
or which implicitly link to other such code segments must be unique
to that process

• On the direct memory model and the emulator, all processes must
have unique data addresses and so sharing is possible only for code
segments which don’t have .data/.bss sections and which don’t link
implicitly (directly or indirectly) to any such code segments.

If such an exceptional case is encountered with a non-XIP image file, the
kernel will create a second code segment (that is, a second RAM-loaded
copy of the code) from the same image file and relocate it for a different
data address. If an exceptional case is encountered with an XIP image
file, the kernel can’t do this, since XIP files no longer have relocation
information present. In this case, the load request is rejected.

To implement sharing of code segments, the loader will search for an
already loaded code segment with a root file name (ignoring the drive and
path, just including the file name and extension) matching the requested
file before attempting to create a new code segment. The kernel provides
a ‘‘find matching code segment’’ function for this purpose. It finds the
next fully loaded code segment (that is, one that is relocated, and has
all imports loaded and fixed up) that matches the provided UIDs and
attributes and that can be loaded into the client process. The loader then

KERNEL-SIDE CODE MANAGEMENT 417

checks the filename and, if it matches, opens a reference on the matching
code segment and on each member of the sub-graph below it, marking
each one with EMarkLdr.

To support the exceptional cases where sharing is not allowed, a code
segment may have one of two restrictions on its use:

1. If the iExeCodeSeg field is non-null, it indicates that this code
segment may only be loaded into a process with that EXE code
segment. A code segment which links directly or indirectly to an EXE
will have this field pointing to the code segment representing that
EXE. This restriction arises in the case where the code segment has
an EXE code segment in the sub-graph below it. When this restriction
applies, the code segment could potentially be loaded into multiple
processes, but these processes must all be instantiations of the same
EXE file

2. If the iAttachProcess field is non-null, it indicates that this code
segment may only be loaded into that specific process. This restriction
arises in the case where the code segment, or one in the sub-graph
below it, has .data or .bss and this data must reside at a unique
address, for example if the code segment is loaded into a fixed
process in the moving memory model. When the iAttachProcess
field is non-null, the iExeCodeSeg field points to the EXE code
segment of the attach process. The iAttachProcess pointer is
reference counted.

Figures 10.7, 10.8 and 10.9 show example code graphs. They depict a
process instantiated from an EXE file which links implicitly to five DLLs.
Figure 10.7 shows the graph which results where all these modules are
non-XIP. Shaded modules signify the presence of writeable static data.
Figure 10.8 shows the graph which results from loading the same process
if two of the DLLs (E.DLL and F.DLL) are in XIP ROM. Since these DLLs
are XIP and they have no writeable static data, they do not appear in the
code graph. Figure 10.9 shows the graph resulting from loading the same
process where all modules are in XIP ROM. Only the EXE and any DLLs
with writeable static data appear in the code graph.

10.4.2 Libraries

The kernel creates a kernel-side library object (DLibrary) for every DLL
that is explicitly loaded into a user process (in other words, one that is the
target of an RLibrary::Load rather than a DLL that is implicitly linked
to by another DLL or EXE). Library objects are specific to, and owned by,
the process for which they were created; if two processes both load the
same DLL, the kernel creates two separate DLibrary objects. A library
has two main uses:

418 THE LOADER

1. It represents a link from a process to the global code graph. Each pro-
cess has at least one such connection – the DProcess::iCodeSeg
pointer links each process to its own EXE code segment. The loader
creates this link when loading the process. DLibrary objects repre-
sent additional such links that the kernel creates at run time

2. It provides a state machine to ensure constructors and destructors for
objects resident in .data and .bss are called correctly.

Libraries have two reference counts. One is the standard DObject
reference count (since DLibrary derives from DObject); a non-zero
value for this reference count simply stops the DLibrary itself being
deleted – it does not stop the underlying code segment being deleted or
removed from any process. The second reference count (iMapCount)
is the number of user references on the library, which is equal to the
number of handles on the library opened by the process or by any of
its threads. This is always updated with the CodeSegLock mutex held.
When the last user handle is closed, iMapCount will reach zero and
this triggers the calling of static destructors and the removal of the library
code segment from the process address space. (We need a separate count
here because static destructors for a DLL must be called in user mode
whenever a library is removed from a process, and those destructors must
be called in the context of the process involved. However, the normal
reference count may be incremented and decremented kernel-side by
threads running in other processes, so it would not be acceptable to call
destructors when the normal reference count reached zero.) The loader
creates DLibrary objects on behalf of a client loading a DLL. A process
may only have one DLibrary referring to the same code segment. If a
process loads the same library twice, a second handle will be opened on
the already existing DLibrary and its map count will be incremented.

A DLibrary object transitions through the following states during its
life, as shown in Figure 10.10.

• ECreated – transient state in which object is created. Switches to
ELoaded or EAttached when library and corresponding code seg-
ment are added to the target process. The state transitions to ELoaded
if constructors must be run in user mode and directly to EAttached
if no such constructors are required; this is the case if neither the DLL
itself nor any DLLs that it depends on have writeable static data

• ELoaded – code segment is loaded and attached to the target process
but static constructors have not been called

• EAttaching – the target process is currently running the code seg-
ment static constructors. Transition to EAttachedwhen constructors
have completed

KERNEL-SIDE CODE MANAGEMENT 419

• EAttached – static constructors have completed and the code seg-
ment is fully available for use by the target process

• EDetachPending – the last user handle has been closed on the
DLibrary (that is, the map count has reached zero) but static
destructors have not yet been called. Transitions to EDetaching just
before running static destructors

• EDetaching – the target process is currently running the code seg-
ment static destructors. Transitions to ELoaded when destructors
have completed, so that if the library is reloaded by another thread in
the same process before being destroyed, the constructors run again.

Problems could be caused by multiple threads in a process loading and
unloading DLLs simultaneously – for example, static constructors running
in one thread while destructors for the same DLL run in another thread.
To prevent this, each process has a mutex (the DLL lock), which protects
static constructors and destructors running in that process. The mutex is
held for the entire duration of a dynamic library load from connecting
to the loader to completion of static constructors for the DLL. It is also
held when unloading a library, from the point at which the iMapCount
reaches zero to the point where the code segment is unmapped from the
process following the running of static destructors. The kernel creates the
DLL lock mutex, named DLL$LOCK, during process creation, but it is
held while running user-side code; it is the only mutex with this property.

10.4.3 Loading a process

The kernel’s involvement in process loading begins after the loader has
completed its search for the requested executable image and decided
which of the available files should be used to instantiate the new pro-
cess. The loader will have created an E32Image object on its heap,
to represent the new image file it is loading. The loader then queries
the kernel to discover if the selected image file is already loaded. The
E32Loader::CodeSegNext() API, which, like all the E32Loader
functions, is a kernel executive call, is used for this purpose. If the selected
image file is an XIP image, the loader will already have found the address
of the TRomImageHeader describing it. In this case, the kernel will
search for a code segment derived from the same TRomImageHeader.
If the selected image file is not an XIP image, the loader will know the
full path name of the image file and will have read its E32Image header.
The kernel will search for a code segment with the same root name, same
UIDs and same version number. In either case, if the kernel finds that the
code segment is already loaded, it returns a ‘‘code segment handle’’ to
the loader. This is not a standard Symbian OS handle but is actually just
the pointer to the kernel-side DCodeSeg object. The loader then calls

420 THE LOADER

E32Loader::CodeSegInfo() on the returned handle; this populates
the E32Image object with information about the code segment being
loaded, including full path name, UIDs, attributes, version number, secu-
rity information, code and data sizes, code and data addresses and export
information. The loader then calls E32Loader::CodeSegOpen() on
the handle. This call checks the EMarkLdr flag on the code segment;
if this flag is clear, it sets the flag and increments the reference count of
the code segment. The E32Loader::CodeSegOpen() function then
performs the same operation recursively on all code segments in the
sub-graph below the original one. At the end of this, the loader has a
reference on the code segment and on all the code segments upon which
it depends, so these will not be deleted.

If the kernel does not find the selected code segment, the loader pop-
ulates the E32Image object with information read from the E32Image
header of the selected file.

The loader then calls E32Loader::ProcessCreate(), passing in
the E32Image object; the latter derives from TProcessCreateInfo,
which contains all the information the kernel needs to create a new
process. Figure 10.2 illustrates the relationship of these classes.

The kernel-side handler, ExecHandler::ProcessCreate(), ver-
ifies that the calling thread belongs to the F32 process and then does
some argument marshaling to pass the parameters over to the kernel
side. It then calls Kern::ProcessCreate() to do the actual work; this
function is also used by the startup extension (EXSTART.DLL) to create
the F32 process after the kernel has booted.

Actual process creation proceeds as follows:

1. The kernel creates an object of the concrete class derived from
DProcess. There is only one such class in any given system
(DArmPlatProcess or DX86PlatProcess) and its definition
depends on both the processor type and the memory model in use.
The generic kernel code calls the function P::NewProcess() to
instantiate such an object. Once created, this object will contain all
the information that the kernel needs to know about the process

2. The kernel stores the command line, UIDs and security information
(capabilities, SID and VID) in the new process. It sets the DObject
name to be the root name of the image file used and calculates
the generation number as one greater than the highest generation
number of any existing process with the same root name and third
UID. If you retrieve the full name of a process, it will be in the
form name.exe[uuuuuuuu]gggg, where name.exe is the root
filename, uuuuuuuu is the third UID in hexadecimal, and gggg is
the generation number in base 10

3. The kernel allocates an ID to the process. Process and thread IDs
occupy the same number space, beginning at 0 and incrementing

KERNEL-SIDE CODE MANAGEMENT 421

for each new process or thread. If the 32-bit ID reaches 232 –1,
the kernel reboots to ensure uniqueness of IDs over all time. We
consider it highly unlikely that this would occur in practice since it
would require the system to be active for a very long time without
rebooting due to power down

4. The kernel creates the process-relative handles array (DObjectIx)
for the new process

5. The kernel creates the process lock and DLL lock mutexes

6. Some platform-dependent initialization of the process object now
occurs. Under the moving memory model running on an ARM
processor, the kernel just allocates an ARM domain to the process
if it is a fixed address process and there is a free domain. Under
the multiple memory model, the kernel allocates the process a
new OS ASID, a new page directory and a new address allocator
(TLinearSection) for the process local address area. Chapter 7
describes OS ASIDs and the address areas used in the multiple
memory model. The kernel maps the new page directory at the vir-
tual address corresponding to the allocated OS ASID and initializes
it – it copies all global mappings into it if necessary and clears the
local mapping area

7. If the process is being created from an already existing code segment,
the kernel attaches the existing code segment to the new process. It
increments its reference count and creates the process data/bss/stack
chunk using the data and bss size information in the code segment.
At this point it checks that the run address of the .data section
created matches the run address expected by the code segment.
If this is not the case (for example, an attempt to create a second
instance of a fixed XIP process with .data and/or .bss), the process
creation fails

8. If the process is not being created from an existing code segment,
the kernel creates a new code segment using the information passed
in by the loader. It increments the reference count of the code
segment, so that it becomes 2 – one for the loader, one for the
new process. I will describe code segment creation in more detail
later in the chapter, but essentially, for non-XIP code, the kernel
allocates an address and maps RAM to store the code and the initial
values of the initialized data. For all code segments, it allocates
a data address if necessary. For EXE code segments, the kernel
creates the new process’s data/bss/stack chunk using the data/bss
size information passed from the loader. Finally, the kernel passes
run and load addresses for both code and data back to the loader

9. The kernel creates the process’s first thread. It sets its DObject
name to Main, and sets its stack and heap sizes to the values passed

422 THE LOADER

by the loader; these values were originally read from the E32Image
header. The kernel marks the thread as ‘‘process permanent’’,
which means that if it exits for any reason, the kernel will kill the
whole process including any threads that are created after this main
one. It also marks the thread as ‘‘original’’, which signifies that it
is the first thread. This information is used by the process entry
point code – the original thread causes the process static data to
be initialized and E32Main() to be called, whereas subsequent
threads cause the specified thread entry point to be called. The first
thread is created with an M-state of DThread::ECreated, so it
cannot yet be resumed

10. The newly created process is added to the process object container
(DObjectCon)

11. The kernel creates a handle from the calling thread (the loader) to
the new process and passes this handle back to the loader.

After E32Loader::ProcessCreate() completes, if a new code seg-
ment has been created, the loader needs to load and relocate the code (if
not XIP) and load all DLLs to which the new EXE code segment implicitly
links – see Section 10.4.4 for more details of this.

Finally, after it has resolved all dependencies, the loader calls
E32Loader::ProcessLoaded(). This performs the following actions:

1. If a new EXE code segment was created for the process, the kernel
calls DCodeSeg::Loaded() on it. This performs steps 1 to 3 of the
CodeSegLoaded() function, described at the end of Section 10.4.4

2. The kernel maps the EXE code segment and all the code segments
on which it depends into the process and increments their reference
counts

3. The kernel sets the EMarkLoaded flag of the EXE code segment to
enable it to be reused to launch another instance of the process

4. The kernel changes the first thread’s M-state to DThread::EReady;
it is now ready to be resumed

5. The kernel creates a handle from the loader’s client to the new
process; the client will eventually use this handle to resume the new
process.

After E32Loader::ProcessLoaded() has completed, the loader
copies the new handle to the process back to the client, and cleans
up the E32Image object corresponding to the new process. Finally, it
completes the client request and control returns to the client.

KERNEL-SIDE CODE MANAGEMENT 423

10.4.4 Loading a library

Similarly to process loading, the kernel’s involvement in library loading
begins after the loader has completed its search for the requested DLL
image and decided which of the available files should be loaded. The
loader will have created an E32Image object on its heap to represent
the new image file being loaded. This procedure is carried out by
the loader function E32Image::LoadCodeSeg(), which then calls
E32Image::DoLoadCodeSeg() to perform the actual load; this latter
function is also called while resolving implicit linkages to load the
implicitly linked DLLs. In a similar way to process loading, the loader
then queries the kernel to discover if the selected image file is already
loaded. It makes an additional check while searching for a matching
code segment – it must be compatible with the process it is destined to
be loaded into. An incompatibility can result from any of the following
considerations:

• If a code segment links directly or indirectly to an EXE, it may only be
loaded into a process instantiated from that EXE. This is because only
one EXE file can be loaded into any process; an EXE cannot be loaded
as a DLL

• If a code segment has writeable static data or links directly or indirectly
to such a code segment, it may only be loaded into a process with
which the address of the static data is compatible. This rule affects the
moving and direct memory models. A code segment with writeable
static data loaded into a fixed process will not be compatible with
any other process, and such a code segment loaded into a moving
process will be compatible with all moving processes but not with
fixed processes.

If the kernel finds that the selected code segment or the file being loaded
is an XIP DLL with no .data/.bss and is not the explicit target of the
load request, the function E32Image::DoLoadCodeSeg() returns at
this point. If the DLL is already loaded the function will have populated
the E32Image object with information about the already-loaded DLL,
including its code segment handle. Execution then proceeds in the same
way as it would after the creation of a new code segment.

If the kernel does not find the selected code segment, the E32Image
object is populated with information read from the E32Image header of
the selected file.

The loader then calls E32Loader::CodeSegCreate(), passing in
the E32Image object; the latter derives from TCodeSegCreateInfo,
which contains all the information the kernel needs to create a new
code segment. Figure 10.2 illustrates the relationship of these classes.
The kernel-side handler ExecHandler::CodeSegCreate() verifies

424 THE LOADER

that the calling thread belongs to the F32 process, and then does some
argument marshaling to get all the parameters over to the kernel-side, this
time including a handle to the loader’s client process, since that is the
process into which the new code segment will be loaded. Actual code
segment creation then proceeds as follows:

1. The kernel creates a DMemModelCodeSeg object; this is the con-
crete class derived from DCodeSeg. There is only one such class in
any given system and its definition depends on the memory model
in use. The generic kernel code calls the memory model function
M::NewCodeSeg() to instantiate such an object. Once created,
this object will contain all the information that the kernel needs
about the code segment

2. The kernel copies the UIDs, attributes, full path name, root name,
version number and dependency count (count of number of code
segments to which this one implicitly links) into the object. It
allocates an array to store the dependency linkages that make up
the code graph immediately below this code segment

3. If the code segment is XIP, the kernel stores a pointer to the
corresponding TRomImageHeader in it

4. If the code segment is a user-side EXE, then the process object with
which the code segment was created will have been passed as a
parameter. The kernel now creates the data/bss/stack chunk for that
process and commits sufficient memory to it to hold the process’s
.data and .bss sections. On the multiple memory model, this chunk is
always at the same virtual address – 0x00400000 on both ARM and
IA32. On the moving memory model, the virtual address depends
on whether the process is fixed or moving and, if fixed, whether
it is XIP. If XIP, the kernel uses iDataBssLinearBase from
the TRomImageHeader. Moving processes have their .data/.bss at
0x00400000

5. If the code segment is XIP, the kernel copies the EMarkData,
EMarkDataPresent and EMarkDataInit flags from the TRo-
mImageHeader, and sets the EMarkDataFlagsValid flag (since
the ROM builder has already looked at all the dependencies).
It reads the addresses of code and data, entry point, exception
descriptor and export directory from the TRomImageHeader and
passes them back to the loader. On the moving memory model,
an XIP code segment with writeable static data loaded into a fixed
process is marked as only available to that process by setting the
iAttachProcess field of the code segment to point to the process

6. If the code segment is not XIP, the kernel allocates memory to
hold size and address information, and copies the size information

KERNEL-SIDE CODE MANAGEMENT 425

from the information passed by the loader. If the code segment
has writeable static data, the kernel sets the EMarkData, EMark-
DataPresent, and EMarkDataFlagsValid flags, and also sets
the EMarkDataInit flag if the code segment is not an EXE code
segment. If the code segment does not have writeable static data,
the kernel cannot determine the status of these flags until it has
resolved all dependencies

7. For non-XIP code segments on the moving memory model, the
kernel allocates an address and commits memory in either the
kernel or user code chunks to hold the actual code. For kernel-side
code segments with writeable static data, the kernel allocates space
on its heap to store the data. For user-side code segments with
writeable static data, the allocation of the data address depends
whether the code segment is destined for a fixed or moving process.
For moving processes, the kernel allocates an address in the DLL
data address range (0x30000000 to 0x3FFFFFFF), but does not
yet commit the memory. For fixed processes, the kernel creates the
process DLL data chunk if necessary and then commits memory to
it to hold the static data

8. Non-XIP code segments in the multiple memory model can be user,
kernel or global (on the moving model, global is the same as user,
since all code is visible to all processes). For kernel code segments,
the kernel allocates an address for and commits memory to a special
kernel code chunk to hold the code itself, and allocates space for
writeable static data on the kernel heap. For global code segments,
the kernel allocates an address for and commits memory to a special
global code chunk to hold the code itself – writeable static data is
not permitted. For user code segments, the kernel allocates an
address in the standard user code range and, if necessary, in the
user data range too. It allocates sufficient physical RAM pages to
hold the code and attaches them to the code segment. At this point,
memory is not yet allocated for any static data. The kernel then
maps code pages into the current process (F32), at the allocated
address

9. The kernel adds the code segment to the three global code segment
lists: unordered, ordered by name and ordered by run address

10. The kernel sets the iAsyncDeleteNext field (usually zero for
a DBase-derived object) to point to the code segment itself. This
property is used subsequently in kernel executive calls that take a
code segment handle to verify that the handle refers to a valid code
segment object

426 THE LOADER

11. The kernel passes the updated code segment information, including
the allocated load-time and run-time addresses for the code and
data sections, back to the loader.

After the new code segment is created, the loader reads in the code
from the file system and relocates it to the address allocated by the
kernel. The loader also examines the import section of the loaded DLL
and loads all implicitly linked DLLs. This is a recursive process, since
each new DLL will have its own implicit linkages, which will require
further DLLs to be loaded. When all required DLLs have been loaded, the
loader resolves all import references between them. Then the loader calls
E32Loader::CodeSegLoaded() on each one, finishing with the DLL
that was the explicit target of the original load request. In this function,
the kernel performs the following actions:

1. It performs an IMB (Instruction Memory Barrier) operation on the
address range of the loaded code. This ensures coherence between
the D and I caches on a Harvard cache architecture. (ARM processors
with separate instruction and data caches (everything after ARM7) do
not maintain coherence between these two caches. So if a memory
location is resident in the data cache and is dirty, that is, the value
has been modified but not written back to main memory, the new
value will not be fetched by an instruction fetch to that location.
To ensure that the correct instruction is executed, it is necessary to
clean the data cache – to write any modified data in the cache back
to main memory – and to invalidate the instruction cache)

2. On the multiple memory model, if the code segment is a standard
user-side code segment, the kernel unmaps it from the loader address
space. If the code segment is kernel code, the kernel changes the
permissions for the mapping from supervisor read/write to supervi-
sor read-only. If the code segment is global code, it changes the
permissions from supervisor read/write to user read-only

3. The kernel traverses the code graph recursively to ensure that the
EMarkDataPresent and EMarkDataInit flags are set correctly
for each code segment

4. Finally the kernel sets the EMarkLoaded flag to indicate that the
code segment is fully loaded and ready for use.

At this point, the DLL and all the DLLs on which it depends have been
loaded. This is the point at which execution continues after querying the
kernel (in the case where the DLL was already loaded). The loader then
calls the kernel function E32Loader::LibraryCreate(), passing in
the code segment handle of the main subject of the load and a handle
to the loader’s client thread. In this call the kernel first looks at the client

SUMMARY 427

process to discover if a DLibrary representing the loaded code segment
already exists in that process. If it does, the DLL is already loaded into
that process, so the only thing to do is to change the DLibrary state
to EAttached if it was originally EDetachPending (since the C++
destructors have not been called there is no need to call the constructors
again), and to create a new handle from the client thread or process to
the DLibrary, which is then passed back to the loader.

If there is no DLibrary in the client process corresponding to the
loaded code segment, the kernel creates a new DLibrary object and
attaches it to the process. Then it maps the new code segment and all the
code segments in the sub-graph below it into the process address space
(and increments their reference counts correspondingly). It creates a new
handle from the client thread or process to the new DLibrary and passes
it back to the loader. If the main code segment has the EMarkDataInit
flag set, the kernel sets the state of the DLibrary to ELoaded, since
C++ constructors must be run before it is ready for use; otherwise it sets
the DLibrary state to EAttached.

Control then returns to the loader, which writes the new handle back
to the client and then completes the load request, at which point control
returns to the client thread.

10.5 Summary

In this chapter I have described the process of loading executables and
the management of executable code in Symbian OS, from both the file
server’s perspective, and the kernel’s. In the next chapter, I shall go on to
look at another key user-mode server, the window server.

11
The Window Server

by Douglas Feather

‘‘The truth of the matter is that
window management under X
is not yet well understood.’’

The Xlib Programming Manual

The window server (or WSERV) works in conjunction with almost every
part of Symbian OS, from the kernel to the applications, with the only
real exception being the communications sub-systems. Its two main
responsibilities are screen management and event management. WSERV
receives events from the kernel and passes them to its clients (which are
normally applications). It receives commands from clients and updates
the screen accordingly. My discussion of these two key responsibilities
will make up the backbone of this chapter.

WSERV is started during system boot and runs continually throughout
the life of the system. It is a standard system server, being a derived
class of CServer2 (or CPolicyServer from Symbian OS v9 onwards)
called CWindowServer.

In this chapter I shall also cover animation DLLs (anim DLLs), which
are a plug-in to WSERV. I will discuss what an anim DLL is, how to create
one and how an anim DLL interacts with events. To illustrate this, I will
develop a simple handwriting recognition system.

And of course I will cover windows in great depth – different types
of windows, window classes on both the client and server sides, how
window objects link together (the window tree), the different regions that
windows have, different window effects and how clients can draw to
windows. But first I will consider WSERV as the kernel’s event handler.

11.1 The kernel’s event handler
During system bootup, WSERV calls the function UserSvr::Capture-
EventHook(), which tells the kernel that WSERV wants to become

430 THE WINDOW SERVER

the kernel’s event handler. To actually receive the events, WSERV
then has to call the function UserSvr::RequestEvent(TRawEvent-
Buf& aBuf, TRequestStatus& aStatus), passing in the request
status of the active object CRawEventReceiver, which will then run
whenever the kernel has an event waiting. In this way, the kernel passes
all its events (for example, digitizer and key events) to WSERV, which
then has to perform further processing on these events.

WSERV is not just a simple pipe that passes events on to its clients.
It does a lot of processing on the events, discarding some events, acting
upon others, creating new events and deciding which client to send the
event to. The set of event types that is passed between the kernel and
WSERV is not exactly the same as the set of event types that is passed
between WSERV and its clients. The kernel is not the only source of events;
clients can also generate them, as can anim DLLs and WSERV itself.

As well as passing events to clients, WSERV can pass them to
anim DLLs.

11.2 Different types of events

In this section I will list the different types of events that WSERV deals
with, and give a brief description of what each type is for. I will describe
both the set of events passed from the kernel to WSERV and the set passed
from WSERV to the client. Figure 11.1 gives an overview of the paths that
events can take within the system. It shows three different threads: the
kernel, WSERV and a client of WSERV – the boundaries between these
threads are represented by the three dividing lines. The three small boxes
represent processing that goes on inside WSERV itself.

Anims

Processing

Client Queues

client WSERV

kernel

user

Figure 11.1 WSERV event flow

DIFFERENT TYPES OF EVENTS 431

Although Figure 11.1 does not give the complete picture, it should
suffice to give you a feel for how events pass through WSERV.

11.2.1 Events from the kernel to WSERV

The events that are passed from the kernel to WSERV are listed in the class
TRawEvent::TType. Several of these are to do with pointer events. In
the following table, I only list a representative set of the pointer events:

Raw events

Events Purpose

ENone A dummy value that is not actually used.

EPointerMove The pointer or pen has moved position. This could be a
move or drag event.

EPointerSwitchOn The digitizer was pressed and this caused the device to
power up.

EKeyDown A key on the keyboard was pressed.

EKeyUp A key on the keyboard was released.

ERedraw The emulator has received a Win32 redraw event.

ESwitchOn The device has just been powered up.

EActive The emulator window has gained focus.

EInactive The emulator window has lost focus.

EUpdateModifiers The modifier key settings have changed. Sent by the
emulator when it regains focus.

EButton1Down The pen or mouse button 1 has been pressed.

EButton1Up The pen or mouse button 1 has been released.

ESwitchOff The device is about to be switched off.

ECaseOpen The case on a clam-shell device has been opened.

ECaseClose The case on a clam-shell device has been closed.

432 THE WINDOW SERVER

I will discuss what happens to key and pointer events later in this
chapter. The following table shows how WSERV responds to all the other
raw events in the system:

WSERV events

Event Response

ERedraw On the emulator, there is a bitmap managed by the screen
driver component that contains the complete copy of the
display. WSERV calls the function: CFbsScreen-
Device::Update(const TRegion& aRegion)
passing in the full screen area, which updates the screen
from the bitmap.

ESwitchOn Stops the keyboard repeat timer. Puts up the password
window if one has been set. Switches on the screen
hardware by calling UserSvr::WsSwitchOn-
Screen(). Sends on events to clients that have requested
this notification.

EInactive Stops keys auto-repeating.

EUpdateModifiers Resets the state of all the modifier keys.

ESwitchOff If a client has registered itself for switch-off events, then
WSERV sends an event to that client. Otherwise it powers
down the device by calling: UserHal::SwitchOff().

EKeyRepeat Nothing.

ECaseOpen Same as ESwitchOn except that it does not power up the
screen hardware.

ECaseClose Sends an event to the client that has registered itself to
deal with switching off. (Does not power down if such a
client does not exist.)

11.2.2 Events from WSERV to its clients

In the next two tables, I show the list of events that WSERV sends to its
clients. I will discuss key and pointer events in more detail later in this

DIFFERENT TYPES OF EVENTS 433

chapter. The first table contains events that WSERV sends to the relevant
client whenever they occur:

Non-client registered events

Event Meaning

EEventNull Should be ignored.

EEventKey A character event.

EEventKeyUp A key up event.

EEventKeyDown A key down event.

EEventPointer An up, down, drag or move pointer event.

EEventPointerEnter The pointer has moved over a window.

EEventPointerExit The pointer has moved away from a particular
window.

EEventPointerBufferReady A buffer containing pointer drag or move
events is ready for delivery.

EEventDragDrop A special kind of pointer event. These events
can be requested by clients so that they can
receive UI widgets by dragging and releasing.

EEventFocusLost The window has just lost focus.

EEventFocusGained The window has just gained focus.

EEventPassword Sent to the owner of the password window
when the password window is displayed.

EEventMessageReady A message has arrived from another
application.

EEventMarkInvalid Internal use only, never sent to clients.

EEventKeyRepeat Not sent to clients, sent to key click makers.

434 THE WINDOW SERVER

In the next table I show events that WSERV only sends to clients that reg-
ister for them – most of these events can be sent to more than one client:

Client-registered events

Event Meaning

EEventModifiersChanged One or more modifier keys have changed
their state.

EEventSwitchOn The machine has just been switched on.
(This event is not generated on a phone,
but is generated on, for example, a Psion
Series 5 PDA.)

EEventWindowGroupsChanged Sent when a group window is destroyed
or named.

EEventErrorMessage Sent when an error, such as out-of-
memory, occurs in WSERV. (For more
details, see the documentation for
TEventCode in the Symbian Developer
Library’s C++ component reference
section.)

EEventSwitchOff Sent to the client dealing with switch off.

EEventKeySwitchOff Sent to clients dealing with switch off if
the off key is pressed.

EEventScreenDeviceChanged Sent when the screen size mode changes.

EEventFocusGroupChanged Sent when the focused group window
changes.

EEventCaseOpened Sent when the clam-shell device is
opened.

EEventCaseClosed Sent to the client dealing with switch off
when the clam-shell is closed.

EEventWindowGroupListChanged Sent when there is a change in group
window order.

HOW WSERV PROCESSES EVENTS 435

11.3 How WSERV processes events

WSERV processes events in many stages; some of these are general to
all events, in particular the way in which WSERV queues events for the
client. Other stages are specific to certain types of events. For example,
both pointer events and key events have to undergo special processing.

The first stage WSERV goes through is to process the pointer
events – this is so that the main processing of pointer events later on
receives pointer events of a standard type. WSERV does various things at
this point:

• Filters out Win32 move events for the emulator of a pen-based device

• Where the co-ordinates the kernel has delivered to WSERV are relative
to the last position, converts them to absolute co-ordinates for a virtual
pointer cursor

• For real devices (that is, not the emulator), WSERV rotates co-ordinates
to the current screen rotation. (Screen rotation allows address of the
screen in a co-ordinate set rotated by 0, 90, 180 or 270 degrees from
the physical co-ordinates of the screen)

• Offsets the co-ordinates to the current screen origin and scaling

• If pointer events are being limited to a sub rectangle of the display,
then WSERV restricts the co-ordinates if they are outside of this area.

It is worth noting that rotation does not need to be taken into account in
the emulator, because the fascia bitmap rotates, and so the co-ordinates
the kernel receives from Win32 are already rotated.

We support the screen origin and scaling functionality from Symbian
OS v8.1. By using screen origin and scaling, a user interface designer
can allow different applications to address the pixels of the screen with
different co-ordinate sets.

Under some circumstances, WSERV turns off its heart beat timer – this
normally happens when a client calls RWsSession::PrepareFor-
SwitchOff() so that the processor can be powered down to save
battery power. In response to each event from the kernel WSERV turns
this timer back on (if it’s off).

Next WSERV passes the event to any anim DLL that has registered
itself as being interested in events. The anim DLL registers by calling
the function MAnimGeneralFunctions::GetRawEvents(ETrue).
To deliver the event to the anim DLL, WSERV calls the function: MEven-
tHandler::OfferRawEvent(). The anim DLL can consume the event

436 THE WINDOW SERVER

so that WSERV does no further processing; to do this it should return
ETrue from the OfferRawEvent function, otherwise it should return
EFalse.

From this point onward WSERV treats the different types of events in
different ways. This is shown for all events other than key and pointer
events, in the ‘‘WSERV events’’ table above.

11.4 Processing key events

There are three kernel events that are directly related to keys: EKeyDown,
EKeyUp and EUpdateModifiers. To process these key events, WSERV
uses an instance of a CKeyTranslator-derived object. This object
understands character mappings and modifier keys, and its main purpose
is to tell WSERV which characters a particular key press should map to.
For example, pressing the ‘‘a’’ key could result in ‘‘a’’ or ‘‘A’’, and it is
CKeyTranslator that analyzes the state of the shift keys and determines
which it should be.

The event EUpdateModifiers is passed straight through to the
CKeyTranslator object. The kernel generates this event in the emu-
lator when the emulator window gains focus from another Windows
applications. The data passed with the event tells us the current state of
all the modifier keys, and enables the emulator to take into account any
changes the user has made to modifier keys while other applications on
the emulator host had focus.

11.4.1 Key ups and downs

WSERV processes each up and down event thus:

• It logs the event, if logging is enabled

• It tells the keyboard repeat timer object about the event

• It passes the event to the keyboard translator object

• It checks for any modifier changes

• It queues the key up/down event

• It performs further processing to create the character event (if there is
to be one).

The keyboard-repeat-timer object controls auto repeating of key presses.
WSERV only receives a single up or down event from the kernel, no matter
how long the key is pressed. If a key press maps to a character, WSERV
starts a timer, and every time that timer goes off, WSERV generates another
instance of the character for the client queue. If the client is responding

PROCESSING KEY EVENTS 437

promptly to the events, then it will get many events for that character,
and the timer will have generated all but the first of them.

When a new key down event occurs, WSERV must inform the timer,
so that it can cancel the current repeat – this is needed because any key
press should change the character the timer generates. Similarly, when
a key up event occurs, WSERV informs the timer, so that it can stop the
repeat if the key up comes from the currently repeating character.

WSERV calls the keyboard translator object next, using the function:

TBool TranslateKey(TUint aScanCode, TBool aKeyUp,
const CCaptureKeys &aCaptureKeys, TKeyData &aKeyData)

As you can see, WSERV passes the scan code of the key event, a Boolean
to say whether the key is an up or down event, and the current list of
capture keys. The key translator object returns a TBool saying whether the
key maps to a character event or if it does, the key translator also returns
the following details of the character event in the TKeyData object:

• The code of the character

• The current state of all the modifiers

• Whether the key has been captured.

If the key is captured, the key translator also returns:

• A handle indicating which window captured the object

• Another handle which WSERV uses for its own capture keys.

WSERV capture keys or hotkeys are system wide. There are hotkeys for
increasing or decreasing contrast, toggling or turning the backlight on or
off and more – you can see the full list in the enum THotKey.

Clients can request events to let them know when certain modifier keys
change their state. When this happens, WSERV checks all client requests
to see if any are requesting information about the particular change that
has occurred. For each such request, WSERV queues an event to the
relevant client.

WSERV has to decide which client to send the up or down key
event to. Usually it chooses the client that owns the currently focused
window – the only exception is if a particular client has requested the
capture of up and down events on that particular key. WSERV also sends
the event to the key click plug-in in case there is a sound associated with
this event.

WSERV now processes those key up or down events that the key
translator object decided gave rise to character events. This processing is
quite involved and I will describe it in the next section.

438 THE WINDOW SERVER

11.4.2 Character events
The main steps WSERV performs in processing character events are:

• Calls the key click plug-in

• Deals with capture keys (including WSERV capture keys)

• Determines who should receive the event

• Checks to see if the event has a long capture

• Checks to see if repeat timer should start

• Queues the event.

First, WSERV sends the event to the key click plug-in, if there is one.
The key translator object has already returned a flag to say whether the
character event should be captured, so WSERV checks this and sets the
destination for the event accordingly. If the key has not been captured,
then WSERV sends the event to the currently focused window. If the event
was captured but WSERV is currently displaying the password window,
then WSERV only sends the event if it was captured by the same group
window as the password window.

If the character event is one of WSERV’s capture keys, then WSERV
will have captured it itself. In this case, WSERV will process the event
immediately and not send it on to a client.

If the key is either:

• A long capture key, or

• There is currently no repeating key, and the key is allowed to be
auto-repeatable

then the repeat timer is started.
Long capturing is a feature that we added in Symbian OS v7.0. It

allows a long press of a key to be treated differently from a quick tap. The
long-key-press event and the short-key-press event yielded by a single
physical key press can differ both in their destination client and the actual
character code generated. This feature allows a quick press of a number
key on a phone to enter a number into the ‘‘dial number’’ dialogue, while
a longer press of the same key could launch the contacts application and
jump to first contact starting with a certain letter.

11.5 Processing pointer events

The processing of pointer events is much more complicated than the
processing of key events. This is because WSERV calculates which

PROCESSING POINTER EVENTS 439

window to send the event to from the exact location of the click. Pointer
grabbing and capturing affect it too.

The normal sequence of pointer events starts with a pointer down
event, is followed by zero or more pointer drag events, and ends with a
pointer up event. It is possible for all of these events to go to the window
visible on the screen at the location that they occur. However, there
are two features that clients can use to vary this behavior: grabbing and
capturing.

If a window receives a down event and it is set to grab pointer events,
then WSERV sends all the drag events and the following up event to
that window, even if they actually take place over other windows. If a
window is capturing, and the down event is on a window behind it, then
the window that is capturing will receive the event. If that window is also
grabbing, then it will receive the following drag and up events too.

In practice, most windows will grab pointer events and some windows
will also capture them too. Capturing allows dialogs to prevent pointer
events from being sent to windows behind them.

WSERV takes the following major steps during the processing of pointer
events:

• Calculates the actual window the pointer event is on

• Determines if another window’s grabbing or capturing means that it
should get the pointer event

• Queues enter and exit events if the current window has changed

• Tells the key click plug-in about the pointer event

• For move and drag events, checks the window to see if it doesn’t want
such events

• If the window has requested it, stores move and drag events in a
pointer buffer

• If window has a virtual keyboard and the event occurs on one of the
virtual keys, converts the event to a key event

• Checks the event to see if it should be a double-click event, and if a
drag-drop event is needed too.

WSERV calculates the actual window that a pointer event occurs in by
analyzing the window tree in a recursive way. Starting with top-level
client windows, it finds the foremost window at that level that contains
the point on which the user clicked. Then it goes on to check each of this
window’s children, and so it continues, until there are no more children
or none of the children contain the point. Then WSERV analyses the
windows in the same way again, but this time it checks the capturing flag
of each window to see if it should be capturing the event.

440 THE WINDOW SERVER

When WSERV adds a move or a drag event to the client queue, it
checks the event that is currently at the end of the client queue, and if
this is an identical event apart from the co-ordinates, then WSERV will
just replace the old event with the new one. This means that the client
won’t get very fine-grained information on pen or mouse moves. This
is no problem, indeed it is beneficial, for most applications, but for a
drawing application it is not ideal. So, for such applications, WSERV can
alternatively store all the events that it gets from the kernel in a buffer,
and the client will then get a block of them delivered at once.

11.6 Client queues

WSERV uses client queues to store events while they are waiting to be
delivered to the client. There are three different queues for each client;
each of these stores a different type of event:

• Redraw events

• Priority key events

• All other events (main queue).

We designed priority key events initially for the OPL programming
language and this is the only application to use them to date. While
an OPL program was running, the user could press Ctrl+Esc and this
would immediately terminate the program. This was because this key
was delivered via the priority key queue and so could by-pass all other
events.

More generally, we have three queues so that the client can treat
different events with different active-object priorities. In general, a client
wants to receive pointer and key events before any redraw events that are
already queued, so it sets the priority on its active objects for the redraw
queue to be lower than those for the main queue.

When WSERV has an event for the client, it places the event in the
queue and completes the request status that client has supplied for that
queue, so the client knows that there is at least one event waiting. But the
system may be busy and WSERV may generate many events before the
client has the chance to ask for an event. This means that WSERV has to
deal with the problem of the queues overflowing.

11.6.1 Overflow in the priority key queue

We designed this queue to take a single key press instructing the appli-
cation to close; this means that in this queue we are not interested in
multiple occurrences of that key press. So the queue only ever holds the

CLIENT QUEUES 441

last key press that has the relevant special status – if a new event comes
along before the old one is delivered, then the old one is overwritten.

11.6.2 Overflow in the redraw queue
The redraw queue is an array that lists all of the client’s windows currently
needing a redraw. The array is ordered from front to back so that the
window to be redrawn first is the foremost one. If there is enough memory
available, the array could expand indefinitely – except that each window
can only appear in it once.

If at any time the array cannot be extended, then the redraw queue
sets a flag to say that the array is not complete. When the array becomes
empty and the flag is set, WSERV scans all the client’s windows to find
one that needs a redraw. Only when it has scanned all the windows will
it clear the flag.

11.6.3 Overflow in the event queue
WSERV uses many tactics to avoid or reduce the effect of overflow in this
queue. However, they are not foolproof – it might happen that, in very
extreme situations, an event could be lost. However, this has not, to our
knowledge, happened in practice, or if it has, it has shown no side effects!

The event queue is a global heap cell – there is only one event queue
for the whole system. WSERV grows and shrinks this cell as the number of
clients changes. The size of the queue is about 48+2*(number of clients)
entries and each entry is 40 bytes, the size of a TWsEvent.

The heap cell is divided into sections and each client is allocated a
section. WSERV also has the freedom to change the size of each client
section within the cell, growing or shrinking the other clients’ sections in
response. A particular client’s section can have between 2 and 32 entries.

If WSERV needs to queue an event, and there isn’t room in the client’s
section, then obviously it will first try to expand the client’s section up
to its maximum size of 32 entries. (If the client’s section already has 32
entries, then WSERV tries to purge that client’s queue – in other words,
it tries to find an event that it can delete.) To do this, WSERV first tries
to find other clients that have room in their sections and shrink those
sections. If this fails, then WSERV makes an attempt to purge an event
from one of the other clients’ queues. The focused client is the last to be
chosen for this operation – WSERV will only purge the focused client’s
queue if none of the other queues have events that can be purged. If the
purge fails then the event will be discarded.

To purge events from a client queue, WSERV will try a variety of
tactics, including:

• Deleting an associated pair of up and down pointer events. (If the
associated up event hasn’t been received yet, it will even delete a
down event and later delete the next matching up event)

442 THE WINDOW SERVER

• Deleting key up or down events from the non-focused client queue

• Deleting matched pairs of key up and down events from the focused
client queue. (Most applications ignore these events)

• Merging two modifier change events and deleting one of them

• Deleting matched pairs of focused lost and gained events

• Deleting repeated switch on events

• Deleting these events: key events, pointer enter and exit events, drag
drop events, pointer buffer ready events and the following pointer
events: drag, move, button repeat and switch on.

11.7 A simple handwriting animation DLL

In this section, I will develop a simple handwriting animation DLL. I won’t
attempt real character recognition, but I will show all the surrounding
framework, including getting the pointer events, drawing the ink on the
screen and sending a character event to the application. My intention is
to explain the basics of anim DLLs, and especially to show how they can
deal with events.

We originally designed anim DLLs for clocks in Symbian OS v5. At
this time they provided two main features:

• Accurate timing information. Simple use of a relative CTimer, for
example, would provide a clock that would update slower than real
time

• The ability for user code to draw to a window while executing inside
the same thread as WSERV, thus avoiding delays caused by IPC.

11.7.1 Creating an anim DLL
There are two parts to an anim DLL: the anim DLL itself, which is a
plug-in to WSERV, and the client-side code that loads the anim DLL, and
controls it.

It is possible to give an anim DLL the standard type ‘‘DLL’’ in the MMP
build file, but then you would need to do more work to set it up correctly.
It is better to define it with type ANI:

TARGETTYPE ANI

The client-side code then calls the following function to load the anim
DLL:

TInt RAnimDll::Load(const TDesC &aFileName)

A SIMPLE HANDWRITING ANIMATION DLL 443

WSERV then responds by calling ordinal 1 in the anim DLL. This function
should return a sub-class of CAnimDll to the server:

EXPORT_C CAnimDll* CreateCAnimDllL()
{
return new(ELeave) CHandWritingAnimDll();
}

This CAnimDll sub-class normally has only one function, which creates
the anim DLL plug-in object:

class CHandWritingAnimDll : public CAnimDll
{

public: //Pure virtual function from CAnimDLL
CAnim* CreateInstanceL(TInt aType);
};

Each anim DLL can supply many different sorts of anim DLL objects, and
each one can be instantiated many times. But my example handwriting
anim DLL will only provide one such object, so the implementation of
this function is quite simple:

CAnim* CHandWritingAnimDll::CreateInstanceL(TInt)
{
return new(ELeave) CHandWritingAnim();
}

CreateInstanceL() is called in response to one of the four overloads
of the RAnim::Construct() client-side functions:

TInt Construct(const RWindowBase &aDevice, TInt aType,
const TDesC8 &aParams);

TInt Construct(const RWindowBase &aDevice, TInt aType,
const TDesC8 &aParams, const TIpcArgs& aIpcArgs);

TInt Construct(const RWsSprite &aDevice, TInt aType,
const TDesC8 &aParams);

TInt Construct(const RWsSprite &aDevice, TInt aType,
const TDesC8 &aParams, const TIpcArgs& aIpcArgs);

11.7.2 The two types of anim DLL

Originally, anim DLLs only provided the ability to draw to a single
window per anim object. This type of anim DLL is now called a ‘‘window
anim’’, and to create one you would return an object derived from
CWindowAnim from CreateInstanceL().

To provide digital ink on-screen, we developed a new type of anim
that allowed drawing to a sprite. This is known as a ‘‘sprite anim’’, and

444 THE WINDOW SERVER

to create one you would return an object derived from CSpriteAnim
from CreateInstanceL(). The relationships between these, and other,
classes are shown in Figure 11.2.

MEventHandler CBase CGraphicsContext

OfferRawEvent()

CSpriteAnim
iSpriteFunctions

CWindowAnim
iWindowFunctions

FocusChanged()
Redraw()

CAnimGc

CBitmapContext

CAnim
iFunctions

Animate()
Command()
CommandReplyL()

Figure 11.2 Animation class hierarchy

There are two types of functions in the anim interface. Firstly, there are
functions in the anim that WSERV calls. These are shown in the diagram
as member functions of the four classes: MEventHandler, CAnim,
CSpriteAnim and CWindowAnim; they are all pure virtual functions
and so the anim writer has to provide implementations for the relevant
set of these functions, depending on which class she has derived from.

The WSERV functions that an anim can call are provided by means of
the member data shown in Figure 11.2. There are four in all, shown with
the class they belong to in parentheses:

• iFunctions (MAnimGeneralFunctions)

• iSpriteFunctions (MAnimSpriteFunctions)

• iWindowFunctions (MAnimWindowFunctions)

• iGc (CAnimGc).

CAnimGc provides drawing functions that the window anim uses to draw
to its window.

Thus our example CHandWritingAnim is a sub-class of CSprite-
Anim.

A SIMPLE HANDWRITING ANIMATION DLL 445

11.7.3 Functions a sprite anim must provide

All the derived classes of CSpriteAnim must provide all the virtual
functions of that class, CAnim and MEventHandler, so part of our class
definition will be:

class CHandWritingAnim : public CSpriteAnim
{

public:
∼CHandWritingAnim();
//pure virtual functions from CSpriteAnim
void ConstructL(TAny* aArgs);
//pure virtual functions from MEventHandler
TBool OfferRawEvent(const TRawEvent& aRawEvent);
//pure virtual functions from CAnim
void Animate(TdateTime* aDateTime);
void Command(TInt aOpcode,TAny* aArgs);
TInt CommandReplyL(TInt aOpcode,TAny* aArgs);

private:
TInt iState;
CFbsBitmapDevice* iBitmapDevice;
CFbsBitmapDevice* iMaskBitmapDevice;
CFbsBitGc* iSpriteGc;
TBool iIsMask;
CPointStore* iPointStore;
};

I will talk about the purpose of these functions in the following
sections.

11.7.3.1 Construction

The first anim DLL function that will be called is CSpriteAnim::
ConstructL. WSERV calls this function when responding to the client’s
call to RAnim::Construct(). The parameter aArgs passed to the
ConstructL function is a pointer to a copy of the content of the
descriptor that was originally passed in to the client-side Construct
function. It will normally need casting to the correct type.

void CHandWritingAnim::ConstructL(TAny*)
{
TSpriteMember* spriteMember=iSpriteFunctions->GetSpriteMember(0);
iIsMask=(spriteMember->iBitmap->Handle()

!=spriteMember->iMaskBitmap->Handle());
iBitmapDevice=CFbsBitmapDevice::NewL(spriteMember->iBitmap);
if (iIsMask)

iMaskBitmapDevice=CFbsBitmapDevice::NewL(spriteMember->iMaskBitmap);
iSpriteGc=CFbsBitGc::NewL();
iSpriteGc->Reset();
iState=EHwStateInactive;

446 THE WINDOW SERVER

iPointStore=new(ELeave) CPointStore();
iPointStore->ConstructL();
iSpriteFunctions->SizeChangedL();
...
}

The call to GetSpriteMember() returns details of the sprite that this
anim is allowed to draw to. Usually, sprites can animate. To do this, a
client needs to give a sprite several members – each member contains
one frame of the animation. In this case, the client only needs to create
one frame for the ink and thus we specify a value of ‘‘0’’ as the parameter
in this function call. This is then checked to see if the client has provided
separate bitmaps for the mask and the sprite content. Drawing to any
graphics object, such as a bitmap or the screen, requires a device for
that object. From a device, we can create a graphics context (or GC)
and use this to do the drawing. We now create the following objects – a
CFbsBitmapDevice for each bitmap and a single CFbsBitGc which
can be used on both bitmaps.

The state member, iState, is initialized to say that no handwriting
recognition is currently required. Since the shape drawn on the screen is
to be converted to a character, we create a point store so that the detailed
shape of the ink can be recorded. The call to SizeChangedL() is part
of the standard, general initialization of a sprite. It sets up the backup
bitmap for the sprite, which needs to be the size of the largest frame. This
function will go on to set the parameters for the ink, such as color and
line width – this is not shown in the previous code segment.

11.7.3.2 Receiving events

Events are received when WSERV calls the function: MEventHand-
ler::OfferRawEvent(), see Section 11.3, How WSERV processes
events. Remember that this function was pure virtual in the base class,
and so I have an implementation in my CHandwritingAnim class. By
default, WSERV will not pass events to anims, so if the anim wants to
receive the events, it has to call the function MAnimGeneralFunc-
tions::GetRawEvents(), passing in the parameter ETrue. Once an
event has been passed to the Anim DLL, it has to return a TBool to say if
it has consumed the event (ETrue) or not (EFalse):

TBool CHandWritingAnim::OfferRawEvent(const TRawEvent &aRawEvent)
{
if (iState==EHwStateDeactive)

return EFalse;
switch (aRawEvent.Type())

{
case TRawEvent::EButton1Down:

A SIMPLE HANDWRITING ANIMATION DLL 447

return HandlePointerDown(aRawEvent.Pos());
case TRawEvent::EPointerMove:

return HandlePointerMove(aRawEvent.Pos());
case TRawEvent::EButton1Up:

return HandlePointerUp(aRawEvent.Pos());
default:

return EFalse;
}

}

The first thing this function does is to check to see if handwriting is
turned on. If it is not, it will return EFalse to tell WSERV to process
the event itself. It also does this if the event is not a pointer event; this
is what the default part of the switch statement is for. This function
then calls three other functions that will process the pointer events. I
have not shown an implementation of these functions, but will note that
it would be advisable for them to adopt the strategy that if the user
clicks and holds for a certain length of time, then this should be treated
as a pointer to be sent to applications, rather than for drawing digital
ink.

11.7.3.3 Animating

The Animate() function is designed for receiving periodic events to
update the clock.

void Animate(TDateTime* aDateTime);

By default, WSERV does not call this virtual function. If an anim does
want it to be called, then the anim should call this function:

void MAnimGeneralFunctions::SetSync(TAnimSync aSyncMode);

The parameter specifies how often to call the Animate() function. The
options are:

enum TAnimSync
{
ESyncNone,
ESyncFlash,
ESyncSecond,
ESyncMinute,
ESyncDay,
};

Clearly ESyncNone means that WSERV never animates. The remaining
three values tell WSERV to call the animate function after the specified
time intervals.

448 THE WINDOW SERVER

The second value is slightly different. It tells WSERV to animate twice
a second. However, these animations are not evenly spaced, every half
a second – they happen on the second and after 7/12 of a second. This
is so that when the separator character (the ‘‘:’’ in ‘‘12:45:37’’) flashes
it will be visible for slightly longer than it is invisible. (WSERV uses the
same internal timer to flash the cursor (and sprites), which also are visible
for slightly longer than they are invisible.)

To do these animations, WSERV uses a lock timer (possibly the only
use of a lock timer in Symbian OS). This timer makes it easy for WSERV
to determine if the system is running slowly. Its API is:

void CTimer::Lock(TTimerLockSpec aLock);

The parameter specifies a particular twelfth of a second. The first time
the function is called, the kernel will signal the associated active object
when it reaches that point in the second. The second time the function
is called, the kernel will only signal the active object if the requested
twelfth of the second is within a second of the first requested point. If it
is not, the function will return with an error, showing that the system is
very busy.

Suppose, for example, that a clock uses this timer to update a display of
seconds. Each second, the clock calls the lock timer to ask to be notified
when the current second is over. At the next second boundary, the kernel
signals the active object. If the active object runs and re-queues itself
within that second, everything is fine. If the system is busy and by the
time the active object runs and re-queues itself, the second had passed,
then the active object will complete with an error telling the clock that it
needs to reset itself, rather than just doing an increment.

When WSERV gets an error back from the lock timer, it tells the
anim that it should reset itself by passing the current date-time to the
animate function. (When things are running normally, it passes NULL to
this function.)

Although the handwriting anim does not need to do any animation,
it does need a timer. Instead of creating its own timer, it uses the
CTimer::Lock() function to receive timer notifications – I will say
more on this later.

11.7.3.4 Client communication

The following functions can both receive commands from the client side:

TInt CAnim::CommandReplyL(TInt aOpcode, TAny* aArgs)=0;
void CAnim::Command(TInt aOpcode, TAny* aArgs)=0;

One difference between them is that the first one can also return a TInt
value to the client. It can do this either by returning the value to send back

A SIMPLE HANDWRITING ANIMATION DLL 449

to the client, or by leaving – the leave code will then be sent to the client.
Another difference between these two functions is that the first one is sent
directly to the window server. This is done because the client needs to
know the return value before any more of its code can execute, while the
second function will just be stored by WSERV on the client side and sent
to the server side later. WSERV calls these functions in response to the
client calls to the RAnim functions CommandReply() and Command(),
respectively:

void CHandWritingAnim::Command(TInt aOpcode,TAny* aArgs)
{
THandAnimArgUnion pData;
pData.any=aArgs;
switch (aOpcode)

{
case EHwOpActivate:

Activate();
break;

case EHwOpDeactivate:
Deactivate();
break;

case EHwOpSetDrawData:
SetDrawData(pData.DrawData);
break;

default:
iFunctions->Panic();
}

}

The previous function shows three commands that the client can call
on the handwriting anim. These are to turn the handwriting recognition
on and off, and to change some display settings, such as line-width and
color. The client has to pass a large block of data with this call; this is
passed into the function with an untyped pointer. To avoid a cast, we
use a union, but of course this provides no more type safety that a cast
would – it just makes the code more readable.

union THandAnimArgUnion
{
const TAny* Any;
const TBool* Bool;
const THandwritingDrawData* DrawData;
};

The CommandReplyL() function also provides two functions that the
client can call:

TInt CHandWritingAnim::CommandReplyL(TInt aOpcode, TAny* aArgs)
{
THandAnimArgUnion pData;

450 THE WINDOW SERVER

pData.any=aArgs;
switch (aOpcode)

{
case EHwOpSpriteMask:

SpriteChangeL(*pData.Bool);
break;

case EHwOpGetLastChar:
return iLastGeneratedCharacter;

default:
iFunctions->Panic();
}

return KErrNone;
}

The first function allows the client to change the bitmaps that are actually
used to draw the ink. There is no return value from this function, but it
can fail. In this case it will leave and the leave value will be returned to
the client. The second function returns the last generated character to the
client.

11.7.4 Handling pointer events and updating the sprite

When a pointer down is received, the anim sets a timer. It does this
because the pointer event might be a click on a UI feature rather than the
start of the drawing of some digital ink. If the user clicks and holds until
the timer expires, or clicks and releases without moving the pen, then this
indicates a click on a UI feature.

The following routine deals with pointer move events. It only has to
deal with them when the handwriting is active and the pen is down,
so most states just return EFalse to say that the event has not been
consumed:

TBool CHandWritingAnim::HandlePointerMove(TPoint aPoint)
{
switch (iState)

{
case EHwStateWaitingMove:

{
cont TInt KMinMovement=5
TPoint moved=aPoint-iCurrentDrawPoint;
if (Abs(moved.iX)< KMinMovement && Abs(moved.iY)< KMinMovement)
return ETrue;

iSpriteFunctions->Activate(ETrue);
DrawPoint();
iState=EHwStateDrawing;
}

case EHwStateDrawing:
break;

default:
return EFalse;
}

DrawLine(aPoint);

A SIMPLE HANDWRITING ANIMATION DLL 451

UpdateSprite();
return ETrue;
}

If we are still waiting for the timer to expire (iState==EHwState-
WaitingMove), and the point is still close to the original down, then the
move event is ignored – but it is still consumed. If not, the anim makes
the sprite visible by calling the Activate() function, then draws a point
into the sprite, and updates the state to indicate that drawing is in progress.
It then calls the following function to draw a line into the sprite bitmap:

void CHandWritingAnim::DrawLine(TPoint aEndPoint)
{
iSpriteGc->Activate(iBitmapDevice);
iSpriteGc->SetPenSize(TSize(iDrawData.iLineWidth,

iDrawData.iLineWidth));
iSpriteGc->SetPenColor(iDrawData.iLineColor);
iSpriteGc->MoveTo(iCurrentDrawPoint);
iSpriteGc->DrawLineTo(aEndPoint);
if (iMaskBitmapDevice)

{
iSpriteGc->Activate(iMaskBitmapDevice);
iSpriteGc->SetPenSize(TSize(iDrawData.iMaskLineWidth,

iDrawData.iMaskLineWidth));
//Mask must be drawn in black
iSpriteGc->SetPenColor(KRgbBlack);
iSpriteGc->MoveTo(iCurrentDrawPoint);
iSpriteGc->DrawLineTo(aEndPoint);
}

iCurrentDrawPoint=aEndPoint;
iPointStore->AddPoint(aEndPoint);
}

The anim uses the same graphics context to draw to the sprite bitmap
and to the mask bitmap – it activates that context on the bitmap device
of the bitmap in which the drawing is to be done. If there is no mask,
then the anim will use the bitmap itself as the mask, and so the ink will
have to be drawn in black. If there is a mask, then the line of the digital
ink needs to be drawn into the mask and the bitmap. In this case, it
should be drawn in black in the mask, but any color can be used for
the ink in the bitmap. WSERV stores the end point of the line, so that it
can use it as the starting point of the line the next time this function is
called. It also stores the point in a buffer so that later on the character
recognition algorithm can make an analysis of the ink shape. After the
bitmaps are updated, the code calls this function to update the screen (see
CHandWritingAnim::HandlePointerMove earlier in the chapter):

void CHandWritingAnim::UpdateSprite()
{
TRect drawTo;

452 THE WINDOW SERVER

iSpriteGc->RectDrawnTo(drawTo);
iSpriteFunctions->UpdateMember(0,drawTo,EFalse);
}

When any drawing is being done, BITGDI keeps track of which pixels
have been drawn to – or at least a bounding rectangle of those pixels. This
rectangle is not always pixel perfect, but serves as a good approximation.
This rectangle is retrieved by calling RectDrawnTo() and this same
function also resets the rectangle. Then the function calls the update
member function. This is a function provided by WSERV to all sprite
anims and its purpose is to correct the screen in the area of this rectangle.

The normal way to update a sprite is to remove it and then draw it
again to the screen – but of course if this is done, the screen will flicker. In
Symbian OS v5u, we added a way to update a sprite without flicker – this
is the function used in the previous code and defined thus:

void MAnimSpriteFunctions::UpdateMember(TInt aMember
,const TRect& aRect,TBool aFullUpdate);

The third parameter to this function tells WSERV whether it should
do a full update of the sprite by removing it and redrawing it, or
just do an incremental update by redrawing the sprite to the screen.
Obviously, when drawing digital ink, the ink only increases, so if we
do an incremental update we will get the correct screen content. (It’s
worth noting that there is one circumstance in which WSERV will do a
full update even if an incremental one is requested. If there is no mask
bitmap, then the way the bitmap is drawn to the screen is determined
by the iDrawMode member of the TSpriteMember class. If this is not
EDrawModePEN, then WSERV will always do a full update.)

11.7.5 Sending events
There are two situations in which the anim will need to send (or create)
an event. The first is when the ink is converted to a character. The second
is when the timer goes off, without the user having moved the pen from
the position where it was clicked down. Since the down event itself was
consumed, the anim will need to resend it so that the client code can act
upon it. This is done in the following code:

void CHandWritingAnim::CharacterFinished()
{
iState=EHwStateInactive;
iLastGeneratedCharacter=iPointStore->GetChar();
TKeyEvent keyEvent;
keyEvent.iCode=iLastGeneratedCharacter;
keyEvent.iScanCode=iLastGeneratedCharacter;

A SIMPLE HANDWRITING ANIMATION DLL 453

keyEvent.iModifiers=0;
keyEvent.iRepeats=0;
iFunctions->PostKeyEvent(keyEvent);
iPointStore->ClearPoints();
iSpriteFunctions->Activate(EFalse);
ClearSprite();
}

void CHandWritingAnim::SendEatenDownEvent()
{
TRawEvent rawEvent;
rawEvent.Set(TRawEvent::EButton1Down

,iCurrentDrawPoint.iX,iCurrentDrawPoint.iY);
iFunctions->PostRawEvent(rawEvent);
iState=EHwStateInactive;
}

There are two functions that allow an anim to send events and they are
both illustrated in the previous code and defined in MAnimGeneral-
Functions. This is one of the classes that allows anims to call functions
on WSERV:

void PostRawEvent(const TRawEvent& aRawEvent) const;
void PostKeyEvent(const TKeyEvent& aRawEvent) const;

PostRawEvent() is used by an anim to send the down event. It allows
the sending of any raw event (that is, one of the set of events that the
kernel sends to WSERV) into WSERV for processing. It’s worth noting that
the first thing that WSERV will do with the event is to pass it back to any
anims that are receiving events – so it would be easy for code to create an
infinite loop with bad use of this function! You can send most key events
using PostRawEvent(), but you would have to send a key up event,
a key down event and in some cases up and down events for modifier
keys too. This is the reason for the existence of the second function,
PostKeyEvent(), which allows the sending of an EEventKey event.

11.7.6 Client-side code – construction
The client has to create both the anim and the sprite. A class, CHand-
Writing, is used to own and manage both of these. I have written this
class to allow it to be included into any other project that wants to own
the handwriting anim:

class CHandWriting : public CBase
{

public:
CHandWriting(RWsSession& aSession);
void ConstructL(TSize aScreenSize, RWindowGroup& aGroup,

TBool aUseSeparateMask);

454 THE WINDOW SERVER

∼CHandWriting();
void SetMaskL(TBool aUseSeparateMask);
void ToggleStatus();

private:
void CreateSpriteL(TSize aScreenSize, RWindowGroup& aGroup,

TBool aUseSeparateMask);
void LoadDllL();
void FillInSpriteMember(TSpriteMember& aMember);

private:
RWsSession& iSession;
RAnimDll iAnimDll;
RHandWritingAnim iAnim;
RWsSprite iSprite;
CFbsBitmap *iBitmap;
CFbsBitmap *iMaskBitmap;
TBool iActive;
};

The sprite has to be created first as this has to be passed to the function
that constructs the anim. We do this using the following two routines:

void CHandWriting::CreateSpriteL(TSize aScreenSize,
RWindowGroup& aGroup,TBool aUseSeparateMask)

{
TInt color,gray; //Unused variables
TDisplayMode mode=iSession .GetDefModeMaxNumColors(color,gray);
iBitmap=new(ELeave) CFbsBitmap();
User::LeaveIfError(iBitmap->Create(aScreenSize,mode));
TSpriteMember member;
member.iMaskBitmap=iBitmap;
if (aUseSeparateMask)

{
iMaskBitmap=new(ELeave) CFbsBitmap();
User::LeaveIfError(iMaskBitmap->Create(aScreenSize,mode));
member.iMaskBitmap=iMaskBitmap;
}

User::LeaveIfError(iSprite.Construct(aGroup,TPoint(),
ESpriteNoChildClip|ESpriteNoShadows));

FillInSpriteMember(member);
iSprite.AppendMember(member);
}

void CHandWriting::FillInSpriteMember(TSpriteMember& aMember)
{
aMember.iBitmap=iBitmap;
aMember.iInvertMask=ETrue; //Must be inverted
aMember.iDrawMode=CGraphicsContext::EDrawModePEN;

//Ignored when using mask
aMember.iOffset=TPoint(); //Must be 0,0
aMember.iInterval=0;
//Not used as only one TSpriteMember in sprite
}

We construct the sprite by calling iSprite.Construct() in the third
line from the end of the first routine. All sprites have to be associated with

A SIMPLE HANDWRITING ANIMATION DLL 455

a window, and they will always be clipped to the area of that window. If
you specify a group window, as I do in the previous code, then the sprite
will be allowed to display over the whole screen. By default, the sprite
will also be clipped to the window’s visible area. In this case, however,
my code specifies the flag ESpriteNoChildClip, which means that
this clipping is not done. Thus the hand writing will always be able
to appear over the whole screen, even if the group window involved
is behind other windows. The other flag, ESpriteNoShadows, means
that even if there is a shadow-casting window above the sprite window,
WSERV will not shadow the pixels of the sprite. Once the sprite has been
created, I add a member or frame to it. This is done in the final two lines
of the function.

The other point of note in this function is the color depth with
which the sprite’s bitmaps are created. When sprites are drawn to the
screen, WSERV uses either BitBlt() or BitBltMasked() from the
CFbsBitGc class. These functions execute much faster when the bitmap
that they are drawing and the bitmap or screen that they are drawing it
to have the same color depth. For a sprite that is normally viewed over
a window, it is best to set the sprite’s bitmaps to the same color depth
as the window. However, for the handwriting anim, where the sprite is
effectively viewed over the whole screen, it is best to choose the default
color mode of windows, since most applications will be running with
this color depth. You can find out what this is by calling the function
GetDefModeMaxNumColors().

Having created the sprite, we can create the anim. There are two stages
to this – first we ask WSERV to load the anim DLL and then we create
the instance of the sprite animation. We do this using the following two
functions, the second being called by the first:

void CHandWriting::LoadDllL()
{
_LIT(DllName,"HandAnim.DLL");
TInt err=iAnimDll.Load(DllName);
if (err==KErrNone)

err=iAnim.Construct(iSprite);
if (err==KErrNone)

{
iAnim.Activate();
iActive=ETrue;
}

User::LeaveIfError(err);
}

TInt RHandWritingAnim::Construct(const RWsSprite& aDevice)
{
TPtrC8 des(NULL,0);
return RAnim::Construct(aDevice,0,des);
}

456 THE WINDOW SERVER

To load the anim DLL, you must give WSERV the name of the DLL
involved. You do this using an RAnimDll object. Then you need an
RAnim-derived class – since the interface of RAnim is protected to force
you to derive from it. The interface to the anim constructor has three
parameters. These are the sprite of the window, a type and the configu-
ration data packed in to a descriptor. The type allows one anim DLL to
have many anim types, this being the way to specify which one to create.
In my example, the handwriting anim only has one type, and there is no
configuration data used.

11.7.7 Other client-side code

RHandWritingAnim contains several other functions for communicat-
ing with the anim. Here are a couple of examples:

void RHandWritingAnim::SetDrawData(const THandwritingDrawData& aDrawData)
{
TPckgBuf<THandwritingDrawData> param;
param()=aDrawData;
Command(EHwOpSetDrawData,param);
}

TInt RHandWritingAnim::GetLastGeneratedCharacter()
{
return CommandReply(EHwOpGetLastChar);
}

The first of these functions tells the handwriting animation to draw
the digital ink differently (that is, with different color or line width).
This requires the sending of data to the anim – this is packaged into a
descriptor using the TPckgBuf class. Since no return value is needed,
it can just use the RAnim::Command() function. This will in turn
be passed to the function CHandWritingAnim::Command() func-
tion.

The second function is passed the code of the last generated character.
There is no data to send with this request, so it doesn’t need to use a
TPckgBuf, but since it does require a reply, it uses RAnim::Command-
Reply() and this request gets sent in turn to the function CHand-
WritingAnim::CommandReplyL().

11.8 Window objects and classes

Windows are the mechanism that Symbian OS uses to control access
to the screen. They are rectangular by default and may overlap each

WINDOW OBJECTS AND CLASSES 457

other. They have a front to back order, and this defines which of two
overlapping windows is in front. Applications may create and destroy
windows. Windows are individually addressable, and an application can
draw to only one of its windows at a time. Typically an application will
have many windows.

Windows are important since they allow different applications to draw
to different parts of the screen at the same time. Furthermore, applications
do not need to concern themselves with which part of the screen they are
allowed to draw to. An application just draws to its window, and only if
that window is visible will it appear on the screen.

In the following sections, I will cover the window tree, the ways in
which WSERV navigates this structure, window classes and their structure,
the properties of windows, drawing windows and more. I will also cover
Direct Screen Access (DSA), which could also be described as drawing
without windows.

11.8.1 Diagram of the window tree

Figure 11.3 shows the relationships between different windows. It is
presented as an upside down tree. It shows what different window types
can appear at which point in the tree.

Figure 11.3 shows four types of windows (although one of them, Group
Win, is never displayed and so is not a window as windows are defined
above). This diagram is an object diagram in which each row can only
contain objects of a certain class type. The different types of windows
shown are:

• The root window. WSERV creates this window; it is not directly
accessible to any client. It is used as a starting point for the window
structure and exists throughout the life of the system. On multiple
screen devices there will one of these for each screen

• Group windows. These windows can only be direct children of the
root window. WSERV’s client creates them, but they do not have
any associated screen area. They provide a way for a client to group
together some of its windows, so that it can move them together

• Top client window. The third row in the figure consists only of top
client windows. These windows are displayable, and so a client will
need at least one of these

• Client windows. All the subsequent rows of the diagram consist of
client windows. A client can have anything from no client windows
to multiple levels of nested client windows.

458 THE WINDOW SERVER

Root Win

Group Win

Top Client

Client Win

Client Win

Group Win

Top Client

Client Win

Client Win

Group Win

Top Client

Client Win

Client Win

...

...

...

...

Parent ChildSibling

KEY

Figure 11.3 Relationships between windows

The following table shows the classes that represent these types of
windows, on both the client and server side:

Window type Client-side class Server-side class

Root Window <none> CWsRootWindow

Group Window RWindowGroup CWsGroupWindow

Top Client Window Subclass of RWindowBase CWsTopClientWindow

Client Window Subclass of RWindowBase CWsClientWindow

WINDOW OBJECTS AND CLASSES 459

11.8.2 Traversing the window tree

Figure 11.3 contains three different types of arrows. These represent
pointers to objects, and give the structure of the window tree thus:

• Parent. These are the arrows that point upward. All windows have
a pointer to their parent window on the line above. (Since the root
window doesn’t have a parent, its pointer will be NULL)

• Child. These are the diagonal arrows down to the left. They show
that if a window has any child windows, then it will have a pointer
to the first, usually the oldest, such window. (By default the pointer
will denote the first window created, but of course the order of the
children can be changed, so this is not always the case)

• Sibling. These are the arrows going across to the right. They show that
each window knows the next oldest window with the same parent.
Siblings form a singly linked list of all windows with the same parent.
(As for the child pointer, this oldest to youngest ordering holds at the
time the windows are created, but may subsequently be altered.)

These pointers are defined in the server-side class CWsWindowBase,
which is the base class for all server-side window classes, as I will show
later. You can use the pointers to move through the window objects in
various ways. For example, to get to the oldest sibling of your parent, you
navigate using iParent->iChild.

Let’s look at a more complex example of the use of these pointers. The
following function updates the pointers when a window is removed from
the window tree:

void CWsWindowBase::Disconnect()
{
if (iParent!=NULL)

{
CWsWindowBase** prev=&iParent->iChild;
while ((*prev)!=this)
prev=&(*prev)->iSibling;

*prev=iSibling;
}

}

When a window is removed from the window tree, only one pointer
needs to be updated. If the window is the oldest child of its parent, then
the parent’s child pointer needs to be updated. If it is not, then its next
oldest sibling’s iSibling pointer needs updating. In both cases, the
pointers need to be updated to point to the next younger sibling.

460 THE WINDOW SERVER

11.8.3 Walking the window tree
There are many occasions when the window tree must be traversed in
the front to back order, for example:

• When a window is made invisible and the windows that it was
covering up need to be exposed

• When a window is made visible and the windows behind it are
covered up.

There is a single algorithm for doing the traversal, which is used in many
places throughout WSERV, and which I will discuss in this section.

There are two rules that define the front to back order of windows as
they are shown on the display:

• A child window is always in front of a parent window

• If two windows are children of the same parent then the older is in
front of the younger.

The first rule has the consequence that the root window is always the back-
most window. One of the root window’s jobs is to clear areas of the display
where there are no other windows visible. The color it will use can be set
by calling the function RWsSession::SetBackgroundColor().

The walk window tree mechanism is implemented in a single function,
CWindowBase::WalkWindowTree(), which uses the three pointers
that link all windows to traverse the windows in the correct order.
WalkWindowTree() takes a class with a virtual function as a parameter,
and on each new window it finds, it calls the virtual function passing the
window as a parameter.

One of the parameters of this function is: TWalkWindowTreeBase&
aWalkClass. Figure 11.4 shows some of the derived classes and the
virtual function on this class – DoIt().

TWalkWindowTreeFindInvalid

TWalkWindowTreeFocusGained

TWalkWindowBase

Dolt()

TWalkWindowTreeRegionBase
iRegion

Dolt2()

TWalkWindowTreeSetFaded

TWalkWindowTreeKillRegion

TWalkWindowTreeExposeTWalkWindowTreeCover

Figure 11.4 Walking the window tree

WINDOW OBJECTS AND CLASSES 461

In all, there are over 20 classes deriving from TWalkWindowTree-
Base for a variety of different purposes. Some operations only apply to
visible windows, hence the need for TWalkWindowTreeRegionBase.
One of the members of this class is a region, which is initialized to the
whole area of the screen. When the operation is applied to each window,
the visible area of that window is subtracted from the region and when
this region becomes empty no more windows are scanned.

11.8.4 Class structure of windows

Figure 11.5 shows all the classes that we use to represent windows,
on both the server and the client sides. You can see that the class
structure on the two different sides is not quite the same. The purpose of
RWindowTreeNode and CWindowBase is to represent a window that

server

CWsBackupWindow

client

RWindowGroup CWsWindowGroup

RWindow

RDrawableWindow

RBackedUpWindow

CWsRedrawMsgWindow

CWsBlankWindow

CWsWindowRedraw

CWsTopClientWindow

CWsClientWindow

CWsWindow

RWindowBase

RBlankWindow

RWindowTreeNode CWsWindowBase

CWsRootWindow

Figure 11.5 Window classes

462 THE WINDOW SERVER

fits into the window tree at any point. The equivalence of the window-
group classes is clear. Yet the other part of the class structure takes a
very different shape. On the client side, the class structure is determined
by the drawing functionality that each class provides. On the server side,
the class structure is more closely related to the window’s position in
the window tree. The difference in drawing behavior is determined by a
plug-in object, which is a class deriving from CWsWindowRedraw.

When we consider windows from the drawing point of view, there are
three types of windows: blank windows, bitmap backup windows and
redraw windows. I will describe the exact differences between these sorts
of windows in later sections of this chapter.

The root window, being a derived class of CWsWindow, also has a
plug-in drawing object. Its type is ‘‘blank window’’ since it is only ever
drawn with a solid color; this is shown by a dotted line in the figure.

11.9 Properties of windows

In this section I will discuss a selection of the properties of the different
classes of windows. With the exception of the root window, which
WSERV creates during bootup, all other windows are created at the
request of a WSERV client. Clients are said to own the windows they
create. The owner has control of certain properties of the window, while
others are assigned by WSERV.

11.9.1 Properties held by all windows

Properties held by all windows include:

• Parent

• Oldest or first child

• Next sibling

• Client handle

• Ordinal priority.

I’ve discussed the first three of these properties in earlier sections. The
client handle is a value that the owner of the window gives to WSERV
when it is created. It is very important that this value be unique amongst
all windows owned by the client, otherwise the client code will not work
as expected. In debug builds, WSERV enforces the uniqueness of the
values, and panics the client if they are duplicated.

Ordinal priority is closely related to another window property, known
as ordinal position. Ordinal priority is a value set by the owner of a

PROPERTIES OF WINDOWS 463

window and it is stored on the server side. Ordinal position concerns
a window’s position among the other children of its parent. This value
isn’t stored explicitly, but can be calculated by analyzing the structure
of the server-side window classes. The rule is that if two children of
the same parent have different ordinal priority then the one that has the
highest will always be older and therefore in front of the one with the
lowest. If we have a group of children, all with the same priority, then
their ordinal position will start at zero and increase through consecutive
positive integers. For example, suppose that a window has five children,
two of ordinal priority ten and three of ordinal priority zero. Then the two
with ordinal priority ten will be the oldest, and in front of the others, and
their ordinal positions will be zero and one. Similarly, the three of ordinal
priority zero will have ordinal positions zero, one and two.

One use of ordinal priority is to make sure a group window comes
in front (or behind) other group windows. For example, the group win-
dow associated with the application picker in the UIQ interface has a
negative ordinal priority to ensure that it appears behind all the normal
applications, which by default have zero for their ordinal priority.

11.9.2 Properties of group windows
Properties of group windows include:

• Name

• Identifier

• Screen device.

The identifier is a number from 1 to 10,000 inclusive that WSERV
assigns to each group window. The numbers are unique across all group
windows in existence at any one time; they are also allocated cyclically
so that when a group window is destroyed, it is unlikely that its identifier
will be used again immediately. Identifiers give applications a way of
discovering all of the group windows in the system at any time. The APIs
in RWsSession use identifiers as a means of referring to group windows:

TInt SetWindowGroupOrdinalPosition(TInt aIdentifier, TInt aPosition);
TInt GetWindowGroupClientThreadId(TInt aIdentifier, TThreadId &aThreadId);
TInt GetWindowGroupHandle(TInt aIdentifier);
TInt GetWindowGroupOrdinalPriority(TInt aIdentifier);
TInt SendEventToWindowGroup(TInt aIdentifier, const TWsEvent &aEvent);
TInt FindWindowGroupIdentifier(TInt aPreviousIdentifier,

const TDesC& aMatch, TInt aOffset=0);
TInt FindWindowGroupIdentifier(TInt aPreviousIdentifier,

TThreadId aThreadId);
TInt SendMessageToWindowGroup(TInt aIdentifier,TUid aUid,

const TDesC8 &aParams);

464 THE WINDOW SERVER

These functions allow group windows to be listed, interrogated and
re-ordered.

There are two API functions for setting and getting a group window’s
name in the RWindowGroup class. In addition, there is one API function
in the RWsSession class:

TInt GetWindowGroupNameFromIdentifier(TInt aIdentifier,
TDes &aWindowName);

Group window names are used so that the system can get a list of running
applications.

It is normal for a WSERV client to create a screen device, CWsScreen-
Device, which has an associated object of class DWsScreenDevice
created in the server. The first screen device created by a client becomes
the primary screen device for that client. This screen device will be
assigned to each group window that that client creates. Group windows
created before the primary screen device are never associated with a
screen device.

The association of group windows with screen devices is used in
systems with more than one screen size mode. (In future, it will also be
used in systems with more than one screen.) In this case, each screen
device has a screen size mode associated with it. If the current system
screen size mode differs from the screen device’s screen size mode, then
WSERV will make all of the group windows and their children invisible.

11.9.3 Properties of client windows

Client windows have two screen modes and many different areas or
regions.

11.9.3.1 Screen modes

The two screen modes (or color depths) are both associated with the
screen mode that the client requests. One of these is the drawing mode,
which specifies which set of colors can be drawn to the window. The
other mode is the hardware mode, which is the minimum mode that the
hardware needs to be switched into so that this window can be displayed
correctly. A window can request its own drawing mode, but by default
WSERV will give it the mode that is specified in the WSINI.INI file using
the keyword WINDOWMODE. WSERV calculates the actual drawing
mode that a window will get using the requested mode and the modes
available on the hardware. In Symbian OS, color modes are specified
using the enum TDisplayMode. These have a naming convention,
depending on whether they are gray scale or color, and the number of
colors they contain. So, for example, EColor64K is a mode with 65536

PROPERTIES OF WINDOWS 465

Request
mode

Drawing
mode

Hardware
mode

EGray16 EGray16 EColor4K

EColor256 EColor256 EColor4K

EColor64K EColor64K EColor64K

EColor16M EColor64K EColor64K

non-gray colors. Here are some examples of how the modes get assigned
to windows for hardware that supports EColor4K and EColor64K:

The drawing mode is changed to the one requested, unless it requires
more colors than the hardware supports.

11.9.3.2 Regions

Windows have many different regions associated with them. I will now
discuss some of these. In Symbian OS, we provide a base class, TRegion,
which has several derived classes. These classes store a list of disjoint
rectangles and can be used to describe a two-dimensional area. There are
many manipulation functions for these classes, including functions to add
and intersect regions. WSERV makes extensive use of these classes – this
is why we recommend that you machine code these classes when porting
Symbian OS to new hardware.

Calculating the regions is a time-consuming business. Because of this,
WSERV caches the regions after it has first calculated it. Then the next
time it needs it, it uses the cached value. This of course means that when
an operation takes place that might have changed one of the cached
regions, WSERV must discard them all.

Base area
This is the area that the client specifies using the function RWindow-
Base::SetShape(). However, the more rectangles that there are in
the region describing the area, the greater the processing required when
these windows are visible. Thus circular or triangular windows will be
particularly inefficient.

By default, windows are rectangular and the same size as their parent.
This means that they are full screen if their parent is a group window.
Their size can be changed by using the SetSize() function (defined
in RWindow or RBlankWindow) or by the SetSizeErr() function
(defined in RWindowBase).

466 THE WINDOW SERVER

Visible area
This is an area that WSERV calculates for each window. It is the area of
the window that is not obscured by any other window.

Invalid area
This is the area of a window that is waiting for a redraw. Areas may need
redrawing after any of the following:

• They become visible when another window is destroyed or made
invisible

• Their window is made visible

• Their window is positioned so it is partly outside the screen and then
moved back onto the screen

• Part of their window loses its shadow

• Their window becomes unfaded

• The client calls Invalidate() on the window.

Only instantiations of RWindow can have invalid areas, since WSERV
knows how to draw other window types (see latter section on drawing of
windows). The invalid area must be contained in the visible area.

When a window has invalid areas, then WSERV will send it a redraw
event. The client can discover the invalid area using the GetInvalidRe-
gion() function.

Drawing area
This is the area that WSERV clips drawing to. It is calculated differently,
depending on whether the window is being redrawn or not. If it’s not
being redrawn, then the drawing area is just the visible area less the
invalid area. If the window is being redrawn, then the drawing area is the
area being redrawn (that is, the area validated by the redraw) less any
area that has become invalid since the redraw started.

Shadow area
This is the area of the window that is currently in shadow. When WSERV
draws to a window, it actually does the drawing twice. First it draws to
the part of the drawing region that is not in shadow, and then it draws to
the part that is in shadow. The shadow flag is set for the second drawing.

11.10 Drawing to windows

In this section, I will discuss the different ways to draw to a window and
the mechanisms in WSERV to support them.

DRAWING TO WINDOWS 467

11.10.1 Drawing of blank windows

WSERV handles the drawing of all blank windows (RBlankWindow) for
the client. The client can specify a color for WSERV using the func-
tion SetColor(TRgb aColor). When drawing the window, WSERV
must take account of the fact that this window could be faded (by calling
the RWindowTreeNode::SetFaded() or RWindowBase::Fade-
Behind() functions) and that the window could have shadows cast
on it. This means that when drawing a blank window, WSERV can use
any of four different colors.

11.10.2 Drawing of backup content windows

A client requiring this kind of window must instantiate the class RBack-
upWindow. These windows could also be called bitmap backup win-
dows, because WSERV keeps the content of the window in a bitmap,
so that when the window would otherwise become invalid, WSERV can
draw it from the bitmap without needing any co-operation from the
owner. WSERV creates a bitmap that is the same size and color depth as
the window, and uses this bitmap to mirror the content of the window.
Because of the existence of the bitmap, the client must specify the win-
dow’s color depth when it creates the window. If the client subsequently
wants to change the window’s size, then the operation may fail if there is
not enough memory to change the size of the bitmap.

There are two ways in which the bitmap can be used. When the
window is created, the bitmap will store all the parts of the window that
are not fully represented on the screen. Situations in which the window’s
content is not fully represented on the screen include:

• Parts of the window are behind other windows or outside the
screen’s area

• Parts of the window that have shadow cast upon them

• The window is faded

• There is not enough memory to calculate the area that is fully
represented.

However, if the window owner calls the function MaintainBackup()
on its window object, then all of the content will also be stored in the
bitmap as it changes. The disadvantage of doing this is that most pixels of
the window will be drawn twice, to the screen and to the bitmap.

There are two ways in which the two drawings can differ slightly.
Firstly, if you are using the DrawBitmap() function, which scales things
depending on the twips size of the relevant objects, then the scaling
onscreen and in the backup bitmap can be different. This is because

468 THE WINDOW SERVER

the screen and backup bitmap will have slightly different twips to pixel
mappings. (This is because the only way to guarantee the same mapping
would be to create a backup bitmap the same size as the screen, and
of course this would be a waste of memory if the window was small.
In any case, the differences are small, being due to rounding errors.)
Secondly, the exact color shade can change when copying the content
from the screen to the bitmap and back again. If the window is EColor4K
then the bitmap will also be EColor4K. However, the screen may be
EColor64K because another window that requires this mode is also
visible. Even though EColor64K has a much richer set of colors, they are
not a superset of the colors in EColor4K, and sometimes the mappings
from one to the other won’t be the most ideal.

11.10.3 Drawing to redraw windows

A client requiring this kind of window must instantiate the class RWindow.
Unlike the windows described in the previous section, WSERV requires
co-operation from the client to keep the content of these windows correct.
It does this by sending redraw messages to the client telling it that the
window content needs redrawing. This happens in the circumstances
listed in Section 11.9.3.2, under the title ‘‘Invalid area’’.

A redraw window is either in redraw mode, or not. The mode changes
how drawing takes place – the main difference being the drawing area
used. This is described in Section 11.9.3.2.

Drawing outside of a redraw is rare in Symbian OS, because of the
way that Cone deals with drawing. Cone is a component that makes
use of WSERV APIs and provides a framework for the controls used
in applications. When a client calls the DrawNow() function on a
CCoeControl, the control invalidates the whole of the control’s area
and then draws it all again in a redraw.

However, there is nothing to stop a particular application bypassing
this mechanism to draw outside of a redraw. This is usually done to
update the current content of the window because the application’s
model has changed – for example, if the user has tapped a key and added
another character to a word processor document. This is one of the few
situations in which drawing occurs outside of a redraw in Symbian OS.
This is because the drawing is done by the component FORM rather than
through the normal framework of a control.

Drawing inside a redraw is typically done because an update of the
window is needed. That is, part of the window’s area has become invalid.
WSERV requests a redraw by sending a redraw message to the client
to tell it that a specified window needs redrawing. The redraw message
also contains a rectangle, to reduce the area of the window that the
client needs to draw. The rectangle is the bounding rectangle – that is the
smallest rectangle that contains all of the invalid area. The application

DRAWING TO WINDOWS 469

calls the functions BeginRedraw() and EndRedraw() on the window
object to indicate to WSERV when it wants to do a redraw.

The BeginRedraw() function has two variants – one that takes a
rectangle and one that doesn’t; if the one without a rectangle is used,
WSERV will take the rectangle to be the whole of the window. The area
that will be drawn by WSERV in response to the draw command is the
rectangle that was specified in the BeginRedraw() function, intersected
with the invalid region. Clearly, if the rectangle specified is greater than
the rectangle from the redraw event, then this makes no difference to the
redraw. If, it is smaller, then the redraw will only be for part of the invalid
region. This will then mean that WSERV must issue another redraw for the
remainder of the area that needs drawing. Of course, all this is assuming
that no part of the window is invalidated or covered up between WSERV
signaling that a redraw is needed and the client acting on the redraw.
(If this were to happen, the details become more complicated, but the
general principles remain the same.)

Since, in general, a redraw will only draw to part of the window, it is
important that the same state of the model (that is, the last drawn content)
be reflected in the redraw. To see why, suppose that an application’s
model changes, but it does not update its window immediately. Then, if
it receives a redraw event before it has done the update, it must draw the
previous state of the model – because if it drew the current state of the
model, part of the window would show the old state while part showed
the new. Cone circumvents this requirement, since it always invalidates
and redraws the area of the whole control. This means that all the pixels
will always be drawn – and so it is safe for the client application to draw
the new state of the model.

This section covers redraws from when Symbian OS was first released,
until Symbian OS v7.0. In later releases, we have added two new
features that complicate things further. These are flicker-free redrawing
and redraw command storing, and I will discuss them after I have
explained a window property known as ‘‘backup behind’’, which allows
redrawing to be avoided in certain circumstances.

11.10.4 Backup behind
Backup behind is a property that you can give to any displayable window
as you construct it. It is particularly useful for short-lived windows, such
as dialogs.

When such a window first becomes visible, WSERV creates a bitmap
and copies into it the part of the screen that will be obscured by this
window. Then, when the window is deleted, WSERV doesn’t need to
issue redraws to the windows that were covered, but can use the backup
bitmap to restore them.

This feature is expensive on memory, since it requires a bitmap and a
region. Thus we limit its use to one window at a time, and say that if a

470 THE WINDOW SERVER

second window requests this functionality, then the first window will lose
it. It is also worth noting that this feature can fail due to lack of memory.
However, it works in simple situations and can be very useful in avoiding
the IPC required by a redraw.

11.10.5 Flicker-free redrawing

We introduced this feature in Symbian OS v7.0s. For it to work, we need
at least one full-screen off-screen bitmap (known as the OSB). There will
be one OSB if the keyword ‘‘FLICKERFREEREDRAW’’ is present in the
WSINI.INI file, and from Symbian OS v8.0 onwards, there will be two
OSBs if the keyword ‘‘TRANSPARENCY’’ appears in this file.

When the OSB exists, WSERV uses it for all redraws. When WSERV
receives the begin redraw command, all the graphics contexts are redi-
rected to draw to the OSB. Then, when the end redraw command is
received, WSERV copies the content of the off-screen bitmap back to the
screen.

The advantage of this is that no pixel will be changed on the
screen more than once, removing the chance of flicker during the
redraw.

There is one functionality change as a result of drawing in this way.
Before we introduced this feature, the content of the window was not
changed in the begin redraw step. In particular, if a pixel was not drawn,
it would remain unchanged. But now, since the whole area that is being
validated by the redraw will be copied from the OSB to the screen in the
end redraw, even pixels that are not drawn will be copied from the OSB.
Since the content of the OSB is undefined, this is obviously undesirable.
So, to avoid this problem, we set the area that is being drawn to the
background color of the window (or white if it doesn’t have one) in
the OSB. However, this has been known to cause problems for some
drawing code, which assumed that the previous screen content was still
there.

11.10.6 Redraw command storing

In Symbian OS v8.0, we added support for transparent windows. This
feature requires that WSERV be able to draw the content of windows upon
demand. When the client draws a window, WSERV stores the redraw
commands. It does this for all windows, not just windows that might be
involved with transparency.

The advantage of this to the client is that, so long as it doesn’t change
the content of the window, it doesn’t have to redraw that window each
time part of it becomes invalid – WSERV will just reprocess the commands
that it has stored. However, if the content of the window does change,
then the client must tell WSERV, so that it can discard the commands

DIRECT SCREEN ACCESS 471

it has stored. The client can do this by calling Invalidate() on the
window object for the area that has changed. It’s worth noting that before
this feature came along, a client could rely on WSERV issuing a redraw
when a window was made visible, and use this as a signal to update its
content.

11.11 Direct screen access

This could be described as ‘‘drawing without windows’’, since the draw-
ing commands do not go through WSERV.

Before we introduced this feature, clients could create a screen device
object and a graphics context object (defined by the BITGDI compo-
nent – CFbsScreenDevice and CFbsBitGc), and then use the latter
to draw to any area of the screen. The problem was that this would write
over any application that happened to be on the screen at the time! So we
designed the direct screen access (DSA) feature to give a well-behaved
application a means of drawing directly to the screen using the previously
mentioned classes, but restricting it only to the area in which its window
is visible. The DSA mechanism allows an application to determine the
visible area of its window and also to receive notification when that
visible area changes.

To do DSA, a client needs to create an instance of CDirectScreen-
Access. This class has a very simple interface with only six public
functions:

static CDirectScreenAccess* NewL(RWsSession& aWs,
CWsScreenDevice& aScreenDevice, RWindowBase& aWin,
MDirectScreenAccess& aAbort);

∼CDirectScreenAccess();
void StartL();
inline CFbsBitGc* Gc();
inline CFbsScreenDevice*& ScreenDevice();
inline RRegion* DrawingRegion();

The first function constructs the object, and the second destroys it. The last
three functions provide the objects that you use to do the drawing. The
graphics context is already active on the screen, and its clipping region is
set to the area that you are allowed to draw to. The last two functions that
I list provide a screen device set to the current color depth of the screen
and the region that you are allowed to draw to. This is provided in case
you ever need to reset the clipping region of the graphics context.

The third function, StartL, is the function that you need to call to
inform WSERV that you want to start doing DSA. During this function
call, the three objects returned by the inline functions will be set up. After
you have called this function, you can safely draw to the screen using the
provided graphics context.

472 THE WINDOW SERVER

When WSERV detects that the visible area of the window may be
changing, it notifies the client. The client receives this notification
through one of the two callback functions that it provided (specified
in the class MDirectScreenAccess, and passed by the client as
the last parameter to the NewL of the CDirectScreenAccess class).
They are:

virtual void AbortNow(RDirectScreenAccess::TTerminationReasons aReason)
virtual void Restart(RDirectScreenAccess::TTerminationReasons aReason)

The first of these functions is called by the DSA framework to tell
the client to abort. When the client has aborted, WSERV must be
informed. The framework will do this for you, but only after the client
has returned from the AbortNow() call. This means that this func-
tion should do the minimum amount of work and return as quickly as
possible.

When WSERV tells the client that it needs to abort its DSA, it waits
to receive the acknowledgment from the client that it has done so.
However, it doesn’t wait for ever, since the client may have entered some
long running calculation or even an infinite loop. So WSERV also waits on
a timer. If the timer expires before the client acknowledges, then WSERV
continues. If, later on, WSERV gets notification from the client that it has
aborted the DSA, then WSERV will invalidate the region in which the
DSA was taking place, just in case there had been a conflict between the
DSA and another client.

Here are a few other restrictions on what you can do in the Abort-
Now() function. You can’t call WSERV, because then a temporary
deadlock will occur. This is because WSERV is waiting to receive the
client’s acknowledgment that it has aborted, and so will not be able to
service the call. Also, since you are not allowed to make calls to WSERV
in the AbortNow() function, you can’t restart the DSA in this function.
This is where the other callback is needed, the Restart() function.
The DSA framework has set up an active object to call this function
and it should be called during the next active object run in that thread.
The purpose of this function is to give the client the earliest possible
opportunity to restart the DSA with the new area.

There is one final restriction on clients performing DSA. This is that,
while the DSA is in operation, the client should not make any call to
WSERV that will affect the visible area of the window in which the DSA
is taking place. Again, if this were to happen, it will cause temporary
deadlock – since the client will be waiting for WSERV to make the
requested window rearrangement, and WSERV will be waiting for the
client to acknowledge that the DSA has aborted.

PLATFORM SECURITY IN WSERV 473

11.12 Platform security in WSERV

11.12.1 WSERV’s command buffer

In Symbian OS, platform security is enforced on client server bound-
aries (for more on this, see Chapter 8, Platform Security). WSERV is no
exception to this. However, because of WSERV’s command buffer, the
implementation differs from that of other servers. Other servers receive
a single command sent by the client with a single call to either RSes-
sionBase::Send() or the RSessionBase::SendReceive(), and the
kernel can be instructed which commands (specified with the aFunc-
tion parameter) need which security capabilities. WSERV has one main
command which is called in this function:

TInt RWsSession::DoFlush(const TIpcArgs& aIpcArgs)
{
return SendReceive(EWservMessCommandBuffer,aIpcArgs);
}

This command tells the server that there is a command buffer waiting
for it. WSERV places many individual commands into this command
buffer, saying which server object to send the command to, which
command or function to execute on that object and any parameters for
that command. Each of these commands potentially needs to be policed
for the capabilities of the client. Thus we have to do the policing in the
server code that executes the commands.

On the server side, each command buffer is unpacked in the function
CWsClient::CommandBufL(), which passes the commands onto this
functions:

virtual void CWsObject::CommandL(TInt aOpcode,const TAny *aCmdData)=0;

or at least the version of this function in the respective derived class.
This means that we must do the policing in the respective CommandL()
function.

11.12.2 What things does WSERV police?

WSERV checks for three different capabilities – SwEvent, WriteDe-
viceData and PowerMgmt. The details of which APIs police which
capabilities are given in any Symbian OS SDK, so there is no need for
me to reiterate here. Instead I will describe the type of API that is policed
with each of these capabilities, and the motivation for this policing.

474 THE WINDOW SERVER

There are various client-side functions that can be used to send an
event to a WSERV client. Examples are RWsSession::SendEventTo-
WindowGroup and RWsSession::SimulateRawEvent. These func-
tions are policed by SwEvent to spot rogue applications that generate
events designed to break other applications.

WSERV has many global settings that can be changed by any client.
These include keyboard repeat rate, system pointer cursor list, default
fading parameters and current screen size mode. Since these settings
affect all clients of WSERV, we must intervene if rogue applications try to
set them to bad values. So we police them using WriteDeviceData.

WSERV has two APIs that are concerned with switching off the mobile
phone. One of these is RWsSession::RequestOffEvents(), which
an application calls if it wants to receive off events. Only one application
can receive these events, as it is then in charge of making sure that the
system is ready to be turned off (for example, ensuring all data is saved)
and then calling the kernel to power down the device. The other function,
RWsSession::PrepareForSwitchOff() is called to tell WSERV to
stop its timer so that the processor can be switched off – if the timer
continued to run it would wake the processor up again. These APIs are
both protected by PowerMgmt.

11.13 Summary

WSERV has a major role to play in all aspects of the UI of any device.
It has rich APIs for dealing with all aspects of event handling, window
management and drawing window content, as well as code for managing
the different types of event and holding them until clients are ready to
receive them. WSERV provides a variety of ways of drawing to the screen,
including anim DLLs, redraw windows and direct screen access.

In the next chapter, I shall discuss device drivers and extensions.

12
Device Drivers and Extensions

by Stefan Williams
with Tony Lofthouse

It is pitch dark. You are likely to be eaten by a grue.

Zork I

In the previous chapters of this book, I have concentrated on the funda-
mental concepts and services that make up the EKA2 kernel, and have
introduced some of the fundamental hardware resources that the kernel
requires, such as the interrupt controller provided in the ASSP class to
provide the access to the millisecond timer interrupt.

The aim of this chapter is to explain how hardware resources are
provided to the system as a whole. For example, the file server requires
access to a variety of media storage devices, while the window server
requires access to the LCD display and touch screen. This chapter will
study the frameworks that exist to allow us to provide support for such
devices.

In particular, I will cover:

• The device driver architecture – an overview of device drivers and
their place in Symbian OS

• Kernel extensions – these are key modules required by the kernel at
boot time, and this section explains how they are created and used
by Symbian OS

• The HAL – this section explains how the hardware abstraction layer
is used by extensions and device drivers to provide standard device-
specific interfaces to user-side code

• Accessing user memory safely – this section explains how to ensure
that you are writing safe kernel-side code, fundamental to the stability
of the system

476 DEVICE DRIVERS AND EXTENSIONS

• Device drivers – the user’s interface to hardware and peripherals. This
section explains the EKA2 device driver model

• Differences between EKA1 and EKA2 – how the device driver model
changed in the EKA2 release of the kernel.

12.1 Device drivers and extensions in Symbian OS

In Chapter 1, Introducing EKA2, I introduced the various hardware and
software components that make up a typical Symbian OS device, and
showed the modular architecture as in Figure 12.1.

HAL

ESTARTEFILE
(file server)

EWSRV
(window server)

EUSER
(user library)

MMU CPU

nano
kernel

memory
model

EKERN
(kernel)

software

hardware

user

kernel

BSP
boundary

Peripherals
Pic

& timer

ASSP

variant

Platform
Specific

Layer

Platform
Indepent

Layer
LDD

PDD

DEVICE
DRIVER

EXTENSION

RTOS
PERSONALITY

LAYER
(EXTENSION)

privilege
boundary

physical
boundary

Figure 12.1 Symbian OS overview

12.1.1 What is a device driver?
The role of a device driver is to give a user-side application access to
peripheral resources without exposing the operation of the underlying
hardware, and in such a manner that new classes of devices may be
introduced without modification of that user-side code.

Also, since access to hardware is usually restricted to supervisor-mode
code, the device driver (which runs kernel-side) is the means of access to
these resources for user-mode client threads.

Device drivers are dynamically loaded kernel DLLs that are loaded
into the kernel process after the kernel has booted (either by user request,

DEVICE DRIVERS AND EXTENSIONS IN SYMBIAN OS 477

or by another layer of the OS). They may be execute-in-place (XIP) or
RAM loaded, and like other kernel-side code may use writeable static
data. (For more details on the differences between XIP and RAM loaded
modules, please refer to Chapter 10, The Loader.)

Extensions are merely special device drivers that are loaded automati-
cally at kernel boot. I shall say more about them later.

12.1.2 Device driver architecture
The Symbian OS device driver model uses two types of kernel DLL – the
logical device driver (LDD) and the physical device driver (PDD). See
Figure 12.2. This flexible arrangement provides a level of abstraction that
assists in porting between platforms and in adding new implementations
of device drivers without impacting or modifying common code and APIs.

12.1.2.1 The logical device driver

The LDD contains functionality that is common to a specific class
of devices. User-side code communicates with an LDD via a simple
interface class, derived from RBusLogicalChannel, which presents a

RBusLogicalChannel

LDD

PDD

hardware
device

DriverApiClass

User code
interaction

kernel

user

hardware

software

Figure 12.2 Overview of the device driver architecture

478 DEVICE DRIVERS AND EXTENSIONS

well-defined driver-specific API. We use the term ‘‘channel’’ to refer to a
single connection between a user-side client and the kernel-side driver.

Since hardware interfaces vary across platforms, an LDD is usually
designed to perform generic functionality, using a PDD to implement the
device-specific code.

LDDs are dynamically loaded from user-side code but may perform
some initialization at boot time if they are configured to do so. I’ll explain
how this is achieved when I discuss the use of extensions.

Symbian provides standard LDDs for a range of peripheral types (such
as media drivers, the USB controller and serial communications devices).
However, phone manufacturers will often develop their own interfaces
for custom hardware.

12.1.2.2 The physical device driver

The physical device driver is an optional component, which contains
functionality that is specific to a particular member of the class of devices
supported by the LDD. The PDD typically controls a particular peripheral
on behalf of its LDD, and obviously it will contain device-specific code.
The PDD communicates only with its corresponding LDD, using an API
defined by the logical channel, so it may not be accessed directly from
a user-side application. The role of the PDD is to communicate with the
variant, an extension, or the hardware itself, on behalf of the LDD.

To illustrate this, consider the example of a serial communications
device. The generic serial communications LDD (ECOMM.LDD) defines
the user-side API and the associated kernel-side PDD interface for all
serial devices. It also provides buffering and flow control functions that
are common to all types of UART. On a particular hardware platform,
this LDD will be accompanied by one or more PDDs that support the
different types of UART present in the system. (A single PDD may support
more than one device of the same type; separate PDDs are only required
for devices with different programming interfaces.) This is demonstrated
in the following .oby file, which specifies that the ROM should contain:

1. The generic serial communications LDD (ECOMM.LDD)

2. Two device-specific PDDs (EUART1.PDD, EUART2.PDD).

device[VARID] = \Epoc32\Release\Arm4\Urel\16550.PDD
\System\Bin\EUART1.PDD

device[VARID] = \Epoc32\Release\Arm4\Urel_SSI.PDD
\System\Bin\EUART2.PDD

device[VARID] = \Epoc32\Release\Arm4\Urel\ECOMM.LDD
\System\Bin\ECOMM.LDD

Both PDDs interface with the generic LDD, which presents a common
interface to the hardware to any user of the communications device.

DEVICE DRIVERS AND EXTENSIONS IN SYMBIAN OS 479

Further examples include:

Driver LDD Associated PDD

Sound Driver ESOUND ESDRV

Ethernet Driver ENET ETHERNET

Local Media Sub-system ELOCD MEDNAND

MEDLFS

MEDMMC

Similarly to LDDs, PDDs may be configured to perform initialization
at boot time.

12.1.3 Kernel extensions

Fundamentally, kernel extensions are just device drivers that are loaded
at kernel boot. However, because of this, their use cases are somewhat
specialized.

By the time the kernel is ready to start the scheduler, it requires
resources that are not strictly defined by the CPU architecture. These are
provided by the variant and ASSP extensions, which I have discussed
in Chapter 1, Introducing EKA2. These extensions are specific to the
particular platform that Symbian OS is running on, and permit the phone
manufacturer to port the OS without re-compiling the kernel itself.

After initializing the variant and ASSP extensions, the kernel continues
to boot until it finally starts the scheduler and enters the supervisor thread,
which initializes all remaining kernel extensions. At this point, all kernel
services (scheduling, memory management, object creation, timers) and
basic peripheral resources (interrupt controller and other ASSP/variant
functionality) are available for use.

Extensions loaded at this late stage are not critical to the operation of
the kernel itself, but are typically used to perform early initialization of
hardware components and to provide permanently available services for
devices such as the LCD, DMA, I2C and peripheral bus controllers.

The final kernel extension to be initialized is the EXSTART extension,
which is responsible for loading the file server. The file server is responsi-
ble for bringing up the rest of the OS. (If you want to find out more about
system boot, turn to Chapter 16, Boot Processes.)

In Figure 12.1, the extension consists of two components – the
platform-independent layer (PIL) and platform-specific layer (PSL). These
are analogous to the LDD/PDD layering for device drivers that I discussed

480 DEVICE DRIVERS AND EXTENSIONS

earlier. To make porting an extension to a new hardware platform easier,
the PIL is generally responsible for providing functionality common
to versions of the extension (such as state machines and so on) and
defining the exported API, with the PSL taking on the responsibility of
communicating directly with the hardware. Therefore, when porting to a
new hardware platform only the PSL should require modification.

Note: Some device drivers use the same concept and split the PDD into
platform-independent and platform-specific layers. One such example is
the local media sub-system – this consists of a generic LDD interface
suitable for all media drivers, and a PDD interface which is further
divided to handle common device interfaces such as ATA/PCMCIA,
NAND or NOR Flash.

12.1.4 Shared library DLLs
The most basic way to offer peripheral resources to other components
within the kernel (not to user-mode applications) is to develop a simple
kernel DLL (by specifying a targettype of KDLL in the extension’s
MMP file). Kernel DLLs can provide a static interface through which other
kernel components gain access to the hardware:

class MyKextIf
{

public:
IMPORT_C static TUint32 GetStatus();
IMPORT_C static void SetStatus(TUint32 aVal);
};

EXPORT_C TUint MyKextIf::GetStatus()
{ return *(volatile TUint32 *)(KHwBaseReg); }

EXPORT_C void MyKextIf::SetStatus(TUint aVal)
{ *(volatile TUint32 *)(KHwBaseReg) = aVal; }

Of course, a shared library DLL may offer any functionality that may
be of use from other components within the kernel (not only access
to peripheral resources). However, a kernel DLL is not defined as an
extension so is not initialized by the kernel at boot time, so can’t make
use of writeable static data. Using a kernel extension opens up the
opportunity to provide a much richer interface.

12.1.5 Static data initialization
Kernel-side DLLs, such as device drivers and extensions, are only ever
loaded and used by a single process, the kernel itself. Hence, they only
need one copy of static data (of course, if several threads within the same
process require access to this data, the usual care must be taken to avoid
synchronization issues).

DEVICE DRIVERS AND EXTENSIONS IN SYMBIAN OS 481

Writeable static data for ROM-resident kernel-mode DLLs (that is, those
declared in the rombuild.obyfile with the keywords variant,device
or extension) is appended to the kernel’s static data. Initialization
of variant and extension data occurs at kernel boot time, while
initialization of device data occurs at device driver load time. Writeable
static data for RAM-resident device drivers is placed in an extra kernel
data chunk which is mapped with supervisor-only access.

It is important to note that since the kernel itself loads extensions,
they are never unloaded. Therefore, the destructors for any globally
constructed objects will never be called.

12.1.6 Entry points

Each type of kernel DLL has a unique set of characteristics that define
how and when the kernel loads them during boot; these are defined by
the form of the DLL’s entry point. Symbian provides three different entry
points, in three different libraries, and you select one by choosing which
of these libraries to link against. The tool chain will automatically link in
the appropriate library depending on the value of the ‘‘targettype’’
field in the DLL’s MMP file:

Targettype Library DLL type

VAR EVAR.LIB Variant kernel extension

KEXT EEXT.LIB Kernel extension

PDD EDEV.LIB Physical device driver DLL

LDD EDEV.LIB Logical device driver DLL

The main entry point for all kernel DLLs is named _E32Dll, and
its address, represented by TRomImageHeader::iEntryPoint, is
obtained from the image header. This in turn invokes the DLL spe-
cific entry point _E32Dll_Body, the behavior of which depends on the
type of kernel DLL being loaded.

Note: There is a fourth library, EKLL.LIB, which is imported when
specifying the KDLL keyword for shared library DLLs. Kernel DLLs of this
type contain no static data or initialization code, so contain a simple stub
entry point.

Before I describe in detail how the kernel controls the initialization of
kernel DLLs are during boot, let’s take a look at how each library entry
point handles construction and destruction of its global C++ objects.

482 DEVICE DRIVERS AND EXTENSIONS

12.1.6.1 Construction of C++ objects

Variant extensions – EVAR.LIB
Since the kernel loads the variant extension once, the variant entry point
only constructs the DLL’s global C++ objects. Destructors are never
called:

GLDEF_C TInt _E32Dll_Body(TInt aReason)
//
// Call variant and ASIC global constructors
//
{
if (aReason==KModuleEntryReasonVariantInit0)

{
TUint i=1;
while (__CTOR_LIST__[i])
(*__CTOR_LIST__[i++])();

AsicInitialise();
return 0;
}

return KErrGeneral;
}

Kernel extensions – EEXT.LIB
As with the variant extension, the kernel loads an extension once during
boot, so it only constructs the DLLs global C++ objects and never calls
their destructors:

GLDEF_C TInt _E32Dll_Body(TInt aReason)
//
// Call extension global constructors
//
{
if (aReason==KModuleEntryReasonExtensionInit1)

{
TUint i=1;
while (__CTOR_LIST__[i])
(*__CTOR_LIST__[i++])();

}
return KernelModuleEntry(aReason);
}

Device drivers – EDEV.LIB
The kernel loads and unloads device drivers dynamically, so it constructs
global C++ objects when loading the DLL, and destroys them when
unloading it:

GLDEF_C TInt _E32Dll_Body(TInt aReason)
//
// Call global constructors or destructors
//

DEVICE DRIVERS AND EXTENSIONS IN SYMBIAN OS 483

{
if (aReason==KModuleEntryReasonProcessDetach)

{
TUint i=1;
while (__DTOR_LIST__[i])
(*__DTOR_LIST__[i++])();

return KErrNone;
}

if (aReason==KModuleEntryReasonExtensionInit1 ||
aReason==KModuleEntryReasonProcessAttach)

{
TUint i=1;
while (__CTOR_LIST__[i])
(*__CTOR_LIST__[i++])();

}
return KernelModuleEntry(aReason);
}

12.1.6.2 Calling entry points

As the previous code shows, the kernel invokes _E32Dll with a reason
code, which it uses to control how DLLs are loaded. Each reason code is
passed during a particular stage in the boot process.

KModuleEntryReasonVariantInit0
Before initializing the variant, the kernel initializes the .data sections for
all kernel extensions and passes the reason code KModuleEntryRea-
sonVariantInit0 to all extension entry points. Typically, only the
variant extension handles this reason code and, as we have already seen,
this is responsible for constructing global C++ objects before invoking
AsicInitialise() to initialize the ASSP.

In Chapter 1, Introducing EKA2, I pointed out that the base port might
be split into an ASSP and a variant. Under this model, the generic ASSP
class forms a standard kernel extension that exports its constructor (at the
very least). The ASSP class must be initialized at the same time as the
variant, so it also exports the function AsicInitialise() to allow its
global C++ constructors to be called.

After it has initialized both the variant and the ASSP extensions, the
kernel obtains a pointer to the Asic derived variant specific class by
calling the variant’s first exported function:

EXPORT_C Asic* VariantInitialise()

This class is described in Chapter 5, Kernel Services.
At the end of this process, all of the extensions’ .data sections are

initialized, and the variant and ASSP extensions are constructed and ready
for the kernel to use.

484 DEVICE DRIVERS AND EXTENSIONS

KModuleEntryReasonExtensionInit0
The kernel passes this reason code to all extension entry points that it
calls after it has started the scheduler.

This reason code is an inquiry, asking whether the extension has
already been initialized. It allows extensions that use the KModuleEn-
tryReasonVariantInit0 reason code to perform initialization, as I
described earlier. If the extension is already loaded, returning any error
code (other than KErrNone) will prevent the next stage from being
performed.

The ASSP DLL returns KErrGeneral in response to this reason code
to report that it has already been initialized by the variant, as does the
crash monitor, which hooks into the variant initialization phase to provide
diagnostics of the kernel boot process.

If the extension is not already loaded, the kernel will invoke its DLL
entry point with the reason code KModuleEntryReasonExtension-
Init1.

KModuleEntryReasonExtensionInit1
The kernel passes this reason code to all extension entry points after
it has verified that the extension has not already been initialized. This
causes the DLL entry point to initialize global constructors before calling
KernelModuleEntry to initialize the extension itself.

Note that the ASSP kernel extension has already been initialized by
this point so will not receive this reason code at this point in the boot
process.

KModuleEntryReasonProcessAttach and
KModuleEntryReasonProcessDetach
These reason codes are only handled by EDEV.LIB, which is specifi-
cally intended to support dynamically loadable DLLs (device drivers).
KModuleEntryReasonProcessAttach is directly equivalent to
KModuleEntryReasonExtensionInit1 and is used to initialize the
driver’s constructors. Conversely, KModuleEntryReasonProcessDe-
tach calls the driver’s destructors. These are called when the relevant
code segment is created or destroyed, as described in Chapter 10, The
Loader.

12.1.7 Accessing user process memory

Kernel drivers and extensions need to ensure that read and write oper-
ations involving user process memory are performed safely. There are
two scenarios to consider when servicing requests from a user process,

DEVICE DRIVERS AND EXTENSIONS IN SYMBIAN OS 485

depending on whether the request is serviced in the context of the calling
thread or a kernel thread.

12.1.7.1 Servicing requests in calling thread context

Requests may be fully executed in the context of the calling thread
with supervisor-mode privileges. Therefore, if a process passes an invalid
address to the handler or device driver, and that address happens to be
within the memory of another process or even the kernel itself (either
as a result of programming error or deliberate intention), then writing to
this address could result in memory corruption and become a potential
security risk.

Therefore, you should never attempt to write to user memory directly,
either by dereferencing a pointer or by calling a function such as memcpy.
Instead, you should use one of the following kernel functions:

void kumemget(TAny* aKernAddr, const TAny* aAddr, TInt aLength);
void kumemget32(TAny* aKernAddr, const TAny* aAddr, TInt aLength);
void kumemput(TAny* aAddr, const TAny* aKernAddr, TInt aLength);
void kumemput32(TAny* aAddr, const TAny* aKernAddr, TInt aLength);
void kumemset(TAny* aAddr, const TUint8 aValue, TInt aLength);

void umemget(TAny* aKernAddr, const TAny* aUserAddr, TInt aLength);
void umemget32(TAny* aKernAddr, const TAny* aUserAddr, TInt aLength);
void umemput(TAny* aUserAddr, const TAny* aKernAddr, TInt aLength);
void umemput32(TAny* aUserAddr, const TAny* aKernAddr, TInt aLength);
void umemset(TAny* aUserAddr, const TUint8 aValue, TInt aLength);

These provide both word and non-word optimized equivalents to a
memcpy function. You should use the kumemxxx versions if your code
can be called from both user- and kernel-side code; this ensures that the
operation is performed with the same privileges as the current thread.
You may use the umemxxx versions if the operation is guaranteed not to
be called from kernel-side code. The principles behind these functions
are explained in detail in Section 5.2.1.5.

The memget/memput methods described previously are useful when
the source and destination pointers and the lengths are provided. How-
ever, many APIs make use of descriptors, for which the kernel provides
optimized functions. These allow descriptors to be safely copied between
the user and kernel process, while maintaining the advantages such as
runtime bounds checking that descriptors provide:

Kern::KUDesGet(TDes8& aDest, const TDesC8& aSrc);
Kern::KUDesPut(TDes8& aDest, const TDesC8& aSrc);

486 DEVICE DRIVERS AND EXTENSIONS

Kern::KUDesInfo(const TDesC8& aSrc, TInt& aLength, TInt& aMaxLength);
Kern::KUDesSetLength(TDes8& aDes, TInt aLength);

Finally, if you want to copy a descriptor safely in a way that enables
forward and backward compatibility (for example, when communicating
capability packages that may evolve between versions), use the following
methods:

Kern::InfoCopy(TDes8& aDest, const TDesC8& aSrc);
Kern::InfoCopy(TDes8& aDest, const TUint8* aPtr, TInt aLength);

These provide compatibility by copying only as much data as required
by the target descriptor. If the source is longer than the maximum length
of the target, then the amount of data copied is limited to the maximum
length of the target descriptor. Conversely, if the source is shorter than
the maximum length of the target, then the target descriptor is padded
with zeros.

12.1.7.2 Servicing requests in kernel thread context

If a request is made from user-side code to perform a long running
task, control is usually passed back to the user process, while the task
completes in a separate kernel thread. Under these circumstances, you
are no longer in the context of the user thread when you want to transfer
data, so you should use the following methods:

Kern::ThreadDesRead(DThread* aThread, const TAny* aSrc,
TDes8& aDest, TInt aOffset, TInt aMode);

Kern::ThreadRawRead(DThread* aThread, const TAny* aSrc,
TAny* aDest, TInt aSize);

Kern::ThreadDesWrite(DThread* aThread, TAny* aDest, const TDesC8& aSrc,
TInt aOffset, TInt aMode, DThread* aOrigThread);

Kern::ThreadRawWrite(DThread* aThread, TAny* aDest, const TAny* aSrc,
TInt aSize, DThread* aOrigThread=NULL);

Kern::ThreadDesRead(DThread* aThread, const TAny* aSrc,
TDes8& aDest, TInt aOffset);

Kern::ThreadDesWrite(DThread* aThread, TAny* aDest, const TDesC8& aSrc,
TInt aOffset, DThread* aOrigThread=NULL);

Kern::ThreadGetDesLength(DThread* aThread, const TAny* aDes);
Kern::ThreadGetDesMaxLength(DThread* aThread, const TAny* aDes);
Kern::ThreadGetDesInfo(DThread* aThread, const TAny* aDes,

TInt& aLength, TInt& aMaxLength,
TUint8*& aPtr, TBool aWriteable);

These all take a handle to the client thread as their first argument. You
must obtain this while you are still in user context (such as when the

DEVICE DRIVERS AND EXTENSIONS IN SYMBIAN OS 487

request is first received, or as we shall see later, when a channel to a
device driver is first opened) and store it for use later, when the operation
has completed:

//request comes in here
iClient=&Kern::CurrentThread();
((DObject*)iClient)->Open();

Calling Open() on the client thread increments its instance count to
ensure that the thread is not destroyed while you are performing the
request. When the operation has completed and data has been transferred,
you should decrement the threads instance count by calling Close().
Then, if the thread is closed while the operation is in progress, thread
destruction will be deferred until you have called Close() and the
thread’s usage count has dropped to zero.

12.1.8 Validating the capabilities of the calling thread

As we saw in Chapter 8, Platform Security, many APIs must be governed
by security capabilities, to avoid an untrusted application gaining access
to privileged functionality. You can see this in the LCD HAL handler that
I describe in Section 12.3, where the EDisplayHalSetState function
requires the client to have power management capabilities. Such API
policing prevents untrusted applications from being able to deny the user
access to the screen.

You use the following kernel API to validate thread capabilities:

TBool Kern::CurrentThreadHasCapability(TCapability aCapability,
const char* aContextText)

This API simply checks the capabilities of the current thread’s process
against that specified by aCapability and returns EFalse if the test
fails, at which point you should return an error code of KErrPermis-
sionDenied to the client and abandon the request. The ‘‘C’’ style string
in the second parameter is an optional diagnostic message that is output to
the debug port in debug builds (the __PLATSEC_DIAGNOSTIC_STRING
macro is used to allow the string to be removed in release builds without
changing the code).

A request may require more than one capability. If this is the
case, you should make several calls to Kern::CurrentThreadHas-
Capability, since the TCapability enumeration is not specified as
a bitwise field.

488 DEVICE DRIVERS AND EXTENSIONS

12.2 Kernel extensions

Since the ASSP and variant modules are initialized before the kernel is
initialized, and the kernel loads all extensions before the file server (which
itself is loaded by an extension), then there must be some special mech-
anism in place to load these modules. And indeed there is – extensions
are simply execute-in-place DLLs that are specified at ROM build time,
allowing the build tools to place the address of the extension in the ROM
header. This allows the kernel to initialize extensions without using the
loader.

12.2.1 Installing an extension

To install a kernel extension into a Symbian OS ROM image, you need
to specify one of the following keywords in the kernel’s OBY file:

Variant: The variant extension

Extension: A standard kernel or ASSP extension

The ROMBUILD tool uses these to build the ROM header (repre-
sented by the TRomHeader class), which contains two extension lists –
iVariantFile contains the list of variants, and iExtensionFile
contains the list of all other extensions.

As a consequence of this, extensions are always initialized in the
order at which they appear in the kernel’s IBY file. This is an extremely
desirable feature, as many extensions and device drivers depend on other
extensions being present to initialize. The MMC controller is a good
example of this, as it depends on the power management extension and
possibly the DMA framework too.

Note that although you can specify more than one variant keyword
to include several variant extensions in the ROM, the kernel will only
initialize one of them. Each variant DLL contains an identifier which
specifies which CPU, ASIC and variant it was built for. The build tools
place this information in the ROM header, and the bootstrap may later
modify it when it copies it to the kernel superpage, thus providing the
ability to create multi-platform ROMs. The same principle applies to
standard extensions. However, this feature is rarely used in a production
device due to ROM budget constraints.

12.2.2 Extension entry point macros

You should define the extension entry point, KernelModuleEntry,
when writing a kernel extension, and interpret the supplied reason codes

KERNEL EXTENSIONS 489

according to the rules I have described. For example, a standard kernel
extension entry point would look something like this:

TInt KernelModuleEntry(Tint aReason)
{
if (aReason==KModuleEntryReasonExtensionInit0)

return KErrNone;
if (aReason!=KModuleEntryReasonExtensionInit1)

return KErrArgument;

//... do extension specific initialisation here
}

Since all extensions follow the same pattern (and it’s easy to make a
mistake and difficult to debug what has gone wrong), the kernel provides
you with a set of standard macros (defined in kernel.h) that do the
hard work for you:

DECLARE STANDARD EXTENSION
This is defined by the kernel as follows:

#define DECLARE_STANDARD_EXTENSION()
GLREF_C TInt InitExtension();
TInt KernelModuleEntry(TInt aReason)

{
if (aReason==KModuleEntryReasonExtensionInit0)

return KErrNone;
if (aReason!=KModuleEntryReasonExtensionInit1)

return KErrArgument;
return InitExtension();
}

GLDEF_C TInt InitExtension()

Thus reducing the entry point for a standard extension to:

DECLARE_STANDARD_EXTENSION()
{
// Initialisation code here
}

DECLARE STANDARD ASSP
The ASSP extension entry point simply re-invokes the DLL entry point to
initialize the extension’s constructors:

#defineDECLARE_STANDARD_ASSP() \
extern "C" { GLREF_C TInt _E32Dll(TInt); }

\
GLDEF_C TInt KernelModuleEntry(TInt aReason) \
{ return (aReason==KModuleEntryReasonExtensionInit1)\

?KErrNone:KErrGeneral; } \

490 DEVICE DRIVERS AND EXTENSIONS

EXPORT_C void AsicInitialise() \
{ E32Dll(KModuleEntryReasonExtensionInit1); }

Thus reducing the entry point for the ASSP to:

DECLARE_STANDARD_ASSP()

You only need to declare this – you don’t need to write any extra code.

12.2.2.1 Extensions on the emulator

Since the emulator is based on the Windows DLL model and there is
no ROMBUILD stage involved, we are not able to specify the order in
which extensions are loaded at build time. To solve this problem, the
Symbian OS emulator has its own mechanism for loading extensions,
which ensures that the behavior of the emulated platform is identical to
that of target hardware.

The kernel loads the emulator’s variant extension explicitly by name
(ECUST.DLL) and invokes the exported VariantInitialise() func-
tion. This registers the extensions to be loaded by publishing a Pub-
lish/Subscribe key named ‘‘Extension’’:

if (iProperties.Append("Extension",
"winsgui;elocd.ldd;medint.pdd;medlfs.pdd;
epbusv.dll;mednand.pdd") == NULL)

return KErrNoMemory;

The emulator-specific parts of the kernel that would be responsible for
loading extensions from ROM on target hardware are then able to read
this string and explicitly load each DLL in the order it appears in the list.

You should modify this list if you are developing extensions that
need to be loaded into the emulator. The code can be found in
the Wins::InitProperties() function in the source file \wins
\specific\property.cpp.

12.2.3 Uses of extensions

In this section I will explain some of the most common uses of extensions
within Symbian OS. Many extensions such as the power framework,
peripheral bus and USB controllers provide asynchronous services for
multiple clients – which are usually other extensions and device drivers.
The following code demonstrates a common pattern that is used to
provide such an interface using an extension.

The interface is usually exported from the extension via a simple static
interface class. In this example, the DoIt() function will perform some

KERNEL EXTENSIONS 491

long running peripheral task, followed by a client callback function being
invoked to indicate completion:

class TClientInterface // The Client API
{

public:
IMPORT_C static TInt DoIt(TCallback& aCb);
};

class DMyController : public DBase // Internal API
{

public:
DMyController();
TInt Create();

private:
TInt DoIt(TCallback& aCb);
static void InterruptHandler(TAny* aSelfP);
static void EventDfcFn(TAny* aSelfP);

private:
TDfc iEventDfc;
};

DMyController* TheController = NULL;

EXPORT_C TInt TClientInterface::DoIt(TCallback* aCb)
{
return TheController->DoIt(aCb);
}

The client API uses a global instance of the DMyController object,
which is initialized in the extension entry point:

DECLARE_STANDARD_EXTENSION()
{
DMyController* TheController = new DMyController();
if(TheController == NULL)

return KErrNoMemory;
return TheController->Create();
}

So all we need to do now is provide the functionality. The simple example
that follows simply registers the client callback and talks to the hardware
to perform the operation (the detailed mechanism isn’t shown here).
Upon receiving an interrupt, a DFC is queued within which the client’s
callback function is invoked:

DMyController:: DMyController()
: iEventDfc(EventDfcFn,this,1)
{
iEventDfc.SetDfcQ(Kern::DfcQue0());
}

492 DEVICE DRIVERS AND EXTENSIONS

TInt DMyController::Create()
{
return RegisterInterruptHandlers();
}

void DMyController::DoIt(TCallback& aCb)
{
RegisterClientCallback(aCb); // Implementation
EnableInterruptsAndDoIt(); // not shown
}

void DMyController::InterruptHandler(TAny* aSelfP)
{
DMyController& self = *(DMyController*)aSelfP;
self.iEventDfc.Add();
}

void DMyController::EventDfcFn(TAny* aSelfP)
{
DMyController& self = *(DMyController*)aSelfP;
self.NotifyClients();
}

Of course, a real example would do a little more than this, but this is the
basic concept behind several extensions found in a real system.

To build this example, you would use the following MMP file:

#include <variant.mmh>
#include "kernel\kern_ext.mmh"

target VariantTarget(mykext,dll)
targettype kext
linkas mykext.dll

systeminclude .
source mykext.cpp

library ekern.lib

deffile ∼\mykext.def

epocallowdlldata
capability all

The following keywords are of particular importance when building a
kernel-side DLL:

VariantTarget – to enable the same source code and MMP files to
produce unique binaries for each variant, the VariantTarget macro
is used to generate a unique name. Each variant provides its own
implementation of this macro in its exported variant.mmh file. Without
this macro, each variant would build a binary with the same name and
would overwrite the binaries produced for other variants.

KERNEL EXTENSIONS 493

The Lubbock variant defines the VariantTarget macro as:

#define VariantTarget(name,ext) _lubbock_##name##.##ext

targettype – by specifying a targettype of kext in the MMP file,
we instruct the build tools to link with EEXT.LIB. This provides the correct
version of the _E32Dll_Body entry point to initialize kernel extensions.

epocallowdlldata – This informs the build tools that you intend the
DLL to contain static data. If you omit this keyword and attempt to build
a DLL that requires a. data or. bss section you will encounter one of the
following errors:

‘‘Dll ’<dllname>’ has initialised data.’’

‘‘Dll ’<dllname>’ has uninitialised data.’’

12.2.3.1 Event services

Event services are associated with a single user thread, usually the window
server, which calls the UserSvr::CaptureEventHook() interface to
register itself as the system wide event handler. The thread registers
a TRequestStatus object by calling UserSvr::RequestEvent();
this enables the thread to respond to queued events. Events from hardware
such as the keypad, keyboard or digitizer (touch screen) are typically each
delivered by their own kernel extension. Taking a keypad as an example,
the DECLARE_STANDARD_EXTENSION() entry point will initialize the
keypad hardware. Key presses will generate interrupts, and their service
routine will queue a DFC, which will add key input events to the event
service queue using the Kern::AddEvent() interface.

The following example shows a key down event for the backspace key
being added to the event queue:

TRawEvent event;
event.Set(TRawEvent::EKeyDown, EStdKeyBackspace);
Kern::AddEvent(event);

See Chapter 11, Window Server, for more details on how events are
captured and processed.

12.2.3.2 Optional utilities

Symbian OS provides crash debugger and crash logger utility modules.
The crash debugger provides post-mortem analysis of fatal errors that
may occur during development – usually it is not present in a production
ROM. The crash logger, on the other hand, is often placed in production

494 DEVICE DRIVERS AND EXTENSIONS

ROMs so that, for example, the phone manufacturer can diagnose errors
that result in a factory return. It is basically a crash debugger that dumps
its diagnostic output to a reserved area of persistent storage.

Both modules are implemented as kernel extensions. We want them to
be available as early as possible, to provide diagnostics of errors that occur
during the early stages of the kernel boot sequence. Because of this, their
initialization process is slightly different to other extensions. Rather than
using the DECLARE_STANDARD_EXTENSION()macro, they implement
their own version of the KernelModuleEntry() interface, which will
register the modules with the kernel during the variant initialization phase,
the phase in which all kernel extensions are called with the entry point
reason KModuleEntryReasonVariantInit0.

See Chapter 14, Kernel-Side Debug, for more details on the crash
logger and monitor modules.

12.2.3.3 System services

Kernel extensions are also used to provide services to systems outside the
kernel, as the following examples demonstrate:

The local media sub-system (ELOCD)
The local media sub-system is a logical device driver that registers as an
extension to provide early services to user-side code (in particular, the
file server and the loader) during the boot process.

The local media sub-system’s kernel extension provides an exported
interface class used by media drivers (which are also device drivers and
kernel extensions) to register themselves with the system. Because of
this, the local media sub-system must be located earlier in the ROM
image than the media drivers. ELOCD also registers a HAL handler for
EHalGroupMedia to allow user-side frameworks to query the registered
media drivers.

For more details on the local media sub-system and media drivers,
please refer to Chapter 13, Peripheral Support.

EXSTART
EXSTART is another important extension that must be in the ROM.
This extension doesn’t export any interfaces – instead its entry point
simply queues a DFC to run once, after all kernel-side initialization has
completed. This DFC is responsible for locating and starting the file server
executable (also known as the secondary process). More information on
this process is provided in Chapter 16, Boot Processes.

12.3 The hardware abstraction layer

I mentioned earlier that the local media sub-system registers a hardware
abstraction layer (HAL) handler to publish information about registered

THE HARDWARE ABSTRACTION LAYER 495

drives to user-side processes. In this section, I’ll explain what the HAL
does and describe the kinds of services it provides.

Symbian OS defines a set of hardware and information services via the
HAL interface. HAL functions are typically simple get/set interfaces, and
are used by both kernel and user code.

The OS defines a range of HAL groups, each of which can have a HAL
handler function installed. Each HAL group represents a different type
of functionality. The following table shows the mapping between each
HAL entry (enumerated in THalFunctionGroup) to the associated HAL
function (defined in u32hal.h):

EHalGroupKernel TkernelHalFunction

EHalGroupVariant TVariantHalFunction

EHalGroupMedia TMediaHalFunction

EHalGroupPower TpowerHalFunction

EHalGroupDisplay TdisplayHalFunction

EHalGroupDigitiser TdigitiserHalFunction

EHalGroupSound TSoundHalFunction

EHalGroupMouse TMouseHalFunction

EHalGroupEmulator TEmulatorHalFunction

EHalGroupKeyboard TKeyboardHalFunction

Note: The maximum number of HAL groups is defined by KMaxHal-
Groups (currently set to 32). Because of the limited availability of HAL
groups, I recommend that if you do need to add a new group, you should
allocate a number from the top end of the available range to avoid conflict
with any extension that Symbian may make in the future.

At OS boot, the kernel automatically installs the following handlers:

EHalGroupKernel
The HAL functions in TKernelHalFunction return kernel specific
information such as the amount of free RAM, the kernel startup reason and
the platform’s tick period. The kernel implements these functions itself.

EHalGroupVariant
This HAL group accesses the variant kernel extension. If you are writing
a variant extension, then you must provide an implementation of the

496 DEVICE DRIVERS AND EXTENSIONS

variant HAL handler within the Asic::VariantHal() method of your
variant class. This provides a simple low level interface through which
the caller can obtain the processor speed and machine ID, select the
active debug port, and control the debug LEDs and switches.

EHalGroupDisplay
The LCD extension provides the HAL functions defined by TDisplay-
HalFunction, which include functions to retrieve the current operating
mode of the display, set the contrast, modify the palette and switch the
display on or off. This is usually one of the first set of HAL functions that
you would implement during a base port.

EHalGroupPower
If a power model is registered with the kernel, it will handle the HAL
functions defined by TPowerHalFunction. This provides an interface
to retrieve information on the state of the power supply, battery capacity
and case open/close switches.

Several other HAL groups also have handlers that are implemented and
registered by various modules in the OS, depending on the hardware
supported by the mobile device.

12.3.1 Registering HAL entries
The Kern class exports the following methods to allow modules to
register and deregister a HAL group handler:

TInt AddHalEntry(TInt aId, THalFunc aFunc, TAny* aPtr);
TInt AddHalEntry(TInt aId, THalFunc aFunc, TAny* aPtr,

TInt aDeviceNumber);
TInt RemoveHalEntry(TInt aId);
TInt RemoveHalEntry(TInt aId, TInt aDeviceNumber);

Note: An extension is unlikely to remove a HAL entry as extensions are
never unloaded from the system. However, device drivers are dynamically
loaded so must remove their handlers as part of their shutdown process.

The arguments to the AddHalEntry APIs are the ID of a HAL group,
a pointer to the handler function and a pointer to a data structure that
will be passed to the handler function. A handler may also take a device
number as an argument, so that it can be made device-specific. For
example, a second video driver could make itself a handler for display
attributes by calling:

Kern::AddHalEntry(EHalGroupDisplay, &handler, this, 1).

The device number for a HAL function is determined by the top 16 bits
of the associated HAL group number passed to the function. If a handler
already exists for the HAL group, this handler will not be registered.

THE HARDWARE ABSTRACTION LAYER 497

The HAL handler function prototype is defined by THalFunc.

typedef TInt (*THalFunc)(TAny*,TInt,TAny*,TAny*);

The arguments to this are the pointer registered with the HAL handler,
the HAL function number and two optional arguments, the definition of
which are dependent on the HAL function. They are usually used to read
or write data passed from the client to the handler.

Let’s take a look at how the LCD extension registers its HAL handler
with the system. This is done when the extension is initialized:

DECLARE_STANDARD_EXTENSION()
{
// create LCD power handler
TInt r = KErrNoMemory;
DLcdPowerHandler* pH = new DLcdPowerHandler;

// LCD specific initialisation omitted for clarity

if(pH != NULL)
{
r = Kern::AddHalEntry(EHalGroupDisplay, halFunction, pH);
}

return r;
}

This creates the LCD driver and registers a HAL handler (halFunction)
for the EHalGroupDisplay group, passing a pointer to the LCD driver
for context when the handler is invoked.

When a client makes a HAL request, halFunction is invoked, which
is implemented as follows (most HAL functions omitted for clarity):

LOCAL_C TInt halFunction(TAny* aPtr, TInt aFunction, TAny* a1, TAny* a2)
{
DLcdPowerHandler* pH=(DLcdPowerHandler*)aPtr;
return pH->HalFunction(aFunction,a1,a2);
}

TInt DLcdPowerHandler::HalFunction(TInt aFunction, TAny* a1, TAny* a2)
{
TInt r=KErrNone;
switch(aFunction)

{
case EDisplayHalScreenInfo:
{
TPckgBuf<TScreenInfoV01> vPckg;
ScreenInfo(vPckg());
Kern::InfoCopy(*(TDes8*)a1,vPckg);
break;
}

498 DEVICE DRIVERS AND EXTENSIONS

case EDisplayHalSecure:
kumemput32(a1, &iSecureDisplay, sizeof(TBool));
break;

case EDisplayHalSetState:
{
if(!Kern::CurrentThreadHasCapability(ECapabilityPowerMgmt, NULL))

return KErrPermissionDenied;

if ((TBool)a1)
WsSwitchOnScreen();

else
WsSwitchOffScreen();

}

default:
r=KErrNotSupported;
break;

}
return r;
}

Note in particular how this example performs API policing and safely
accesses user-side memory using the APIs described in Sections 12.1.7
and 12.1.8. These are absolutely essential when implementing HAL
handlers, device drivers or any other service that responds to requests
from user-side code.

12.4 Device drivers

In this section of the chapter I’ll be discussing device drivers in a little
more depth. I’ll talk about the execution model, and about how to create
a device driver. I’ll also discuss how user code interacts with a device
driver. To make this concrete, I’ll be walking through the creation of
my own device driver, a simple comms driver. But first, let’s look at the
device driver counterpart to the extension’s entry point macros.

12.4.1 Device driver entry point macros

DECLARE STANDARD LDD and DECLARE STANDARD PDD
The following macros are provided to support device driver LDDs and
PDDs:

#define DECLARE_STANDARD_LDD() \
TInt KernelModuleEntry(TInt) \

{ return KErrNone; } \
EXPORT_C DLogicalDevice* CreateLogicalDevice()

DEVICE DRIVERS 499

#define DECLARE_STANDARD_PDD() \
TInt KernelModuleEntry(TInt) \

{ return KErrNone; } \
EXPORT_C DPhysicalDevice* CreatePhysicalDevice()

This would be implemented in an LDD as follows:

DECLARE_STANDARD_LDD()
{
return new DSimpleSerialLDD;
}

Notice that KernelModuleEntry does not provide any initialization
hooks. As we shall see later, LDDs and PDDs are polymorphic DLLs
which are dynamically loaded after the kernel has booted. Instead, this
macro defines the first export to represent the DLL factory function.

DECLARE EXTENSION LDD and DECLARE EXTENSION PDD
Although device drivers are dynamically loadable DLLs, there may be
some instances where a device driver must perform some one-off initial-
ization at boot time. For example, media drivers register themselves with
the local media sub-system at boot time to provide information about the
number of supported drives, partitions and drive numbers prior to the
driver being loaded (this is described in detail in Chapter 13, Peripheral
Support).

To support this, you should use the DECLARE_STAND-
ARD_EXTENSION macro previously described, in conjunction with the
following macros to export the required factory function:

#define DECLARE_EXTENSION_LDD() \
EXPORT_C DLogicalDevice* CreateLogicalDevice()

#define DECLARE_EXTENSION_PDD() \
EXPORT_C DPhysicalDevice* CreatePhysicalDevice()

12.4.2 Device driver classes
Throughout this chapter I shall be referring to the various classes that make
up the EKA2 device driver framework. Figure 12.3 gives an overview of
these classes which you can refer back to while you are reading this
chapter.

In Figure 12.3, the white boxes represent classes provided by the EKA2
device driver framework. The shaded boxes indicate classes that must be
implemented by the device driver.

Two components make up the logical device driver (LDD) – the
LDD factory (derived from DLogicalDevice) and the logical channel

500 DEVICE DRIVERS AND EXTENSIONS

DLogicalDevice

DDriver1Factory

The LDD factory

iDevice

iPhysicalDevice

iPdd

DLogicalChannelBase

iDfcQ

iMsgQ

DLogicalChannel

DDriver1Channel

TMessageQue

TDfcQue

DPhysicalDevice

DDevice1PddFactory

The PDD factory

DBase

DDriver1

DDriver1Device

The physical channel

The logical channel

Figure 12.3 The EKA2 device driver classes

(derived from DLogicalChannelBase). The LDD factory is responsible
for creating an instance of the logical channel, which, as I described in the
overview in Section 12.1.2.1, contains functionality that is common to a
specific class of devices (such as communications devices). A user-side
application communicates with the logical channel via a handle to the
logical channel (RBusLogicalChannel).

Similarly, two components make up the physical device driver
(PDD) – the PDD factory (derived from DPhysicalDevice) and
the physical channel (derived from DBase). As I also described in
Section 12.1.2.2, the physical channel is responsible for communicating
with the underlying hardware on behalf of the more generic logical
channel. The physical channel exists purely to provide functionality to
the logical channel, so is not directly accessible from the user side.

Note: In Figure 12.3, two shaded boxes appear in the physical channel
(DDriver1 and DDriver1Device). These represent a further abstrac-
tion known as the platform-independent and platform-specific layers
(PIL/PSL). The PIL (DDriver1) contains functionality that, although not
generic enough to live in the logical channel, is applicable to all hardware
that your driver may be implemented on. The PSL (DDriver1Device)
contains functionality that is too specific to belong in the LDD or PSL,
such as the reading and writing of hardware-specific registers. Such

DEVICE DRIVERS 501

layering is often beneficial when porting your device driver to a new
platform, but is optional – so it is up to you when designing your device
driver to determine if such layering is appropriate.

12.4.3 The execution model

When a device driver is loaded and a channel is opened to it, it is ready
to handle requests. EKA2 provides two device driver models, which are
distinguished by the execution context used to process requests from user-
side clients. In the first model, requests from user-side clients are executed
in the context of these clients, in privileged mode. This functionality is
provided by the DLogicalChannelBaseclass, as shown in Figure 12.4.

DLogicalChannelBaseDModel1Channel

User Thread
(Running user-side)

User Thread
(Running kernel-side)

kernel

user

Figure 12.4 Requests handled in user thread context

Alternatively, the DLogicalChannel class provides a framework that
allows user-side requests to be executed in the context of a kernel thread,
as shown in Figure 12.5.

DLogicalChannelBaseDLogicalChannelDModel2Channel

User Thread

kernel

user

Driver Thread

Figure 12.5 Requests handled in kernel thread context

In the latter model, a call to a device driver goes through the following
steps:

1. The user-side client uses an executive call to request a service from
a driver

2. The kernel blocks the client thread and sends a kernel-side message
to the kernel thread handling requests for this driver

502 DEVICE DRIVERS AND EXTENSIONS

3. When the kernel thread is scheduled to run, it processes the request
and sends back a result

4. The kernel unblocks the client thread when the result is received.

This model makes device-driver programming easier because the same
kernel thread can be used to process requests from many user-side clients
and DFCs, thus serializing access to the device driver and eliminating
thread-related issues. Several drivers can use the same request/DFC kernel
thread to reduce resource usage.

There are two kinds of request: synchronous and asynchronous.

12.4.3.1 Synchronous requests

You would typically use a synchronous request to set or retrieve some
state information. Such a request may access the hardware itself, but
usually completes relatively quickly. Synchronous requests are initiated
by a call to RBusLogicalChannel::DoControl(), which does not
return until the request has fully completed.

12.4.3.2 Asynchronous requests

An asynchronous request is one which you would typically use to perform
a potentially long running operation – for example, one that transmits or
receives a block of data from the hardware when it becomes available.
The time taken for such a request to complete depends on the operation
performed, and during this time the client user-side thread may be able
to continue with some other processing. Asynchronous requests are
initiated by a call to RBusLogicalChannel::DoRequest(), which
takes a TRequestStatus object as an argument and normally returns
control to the user as soon as the request has been issued. Typically,
hardware will indicate completion of an operation by generating an
interrupt, which is handled by an interrupt service routine (ISR) provided
by the driver. This in turn schedules a DFC, which runs at some later
time in the context of a kernel-side thread and signals the client user-side
thread, marking the asynchronous request as complete.

More than one asynchronous request can be outstanding at the same
time, each one associated with its own TRequestStatus object, and
each identified by a specific request number. The device driver frame-
work puts no explicit limit on the number of concurrent outstanding
asynchronous requests; any limit must be enforced by the driver itself.
However, the API to cancel a request uses a TUint32 bit mask to spec-
ify the operations to be cancelled, which implicitly prevents you from
uniquely identifying more than 32 concurrent request types.

12.4.4 User-side access to device drivers
To put the previous introduction into context, let’s take a look at how a
user-side application would typically go about initializing and using

DEVICE DRIVERS 503

a simple device driver. The following example shows how a user
application might access a serial port. This application simply echoes
KBufSize characters from the serial port – of course, a real application
would be more complex than this, and would be likely to make use of the
active object framework to handle the transmission and reception of data.

TInt TestSerialPort()
{
// Load the physical device
TInt err = User::LoadPhysicalDevice(_L(“16550.PDD”));
if (err != KErrNone && err != KErrAlreadyExists)

return err;

// Load the logical device
err = User::LoadLogicalDevice(_L(“SERIAL.LDD”));
if (err != KErrNone && err != KErrAlreadyExists)

return err;

// Open a channel to the first serial port (COM0)
RSimpleSerialChannel serialPort;
err = serialPort.Open(KUnit0);
if (err != KErrNone)

return err;

// Read the default comms settings
TCommConfig cBuf;
TCommConfigV01& c=cBuf();
serialPort.Config(cBuf);

c.iRate = EBps57600; // 57600 baud
c.iDataBits = EData8; // 8 data bits
c.iParity = EParityNone; // No parity
c.iStopBits = EStop1; // 1 stop bit

// Write the new comms settings
err = theSerialPort.SetConfig(cBuf);
if(err == KErrNone)

{
TRequestStatus readStat, writeStat;
TUint8 dataBuf[KBufSize];
TPtr8 dataDes(&dataBuf[0],KBufSize,KBufSize);

// Read some data from the port
serialPort.Read(readStat, dataDes);
User::WaitForRequest(readStat);
if((err = readStat.Int()) == KErrNone)

{
// Write the same data back to the port
serialPort.Write(writeStat, dataDes);
User::WaitForRequest(writeStat);
err = writeStat.Int();
}

}
serialPort.Close();
return(err);
}

504 DEVICE DRIVERS AND EXTENSIONS

This example demonstrates some of the following fundamental device
driver concepts:

• Loading of a logical and physical device
User::LoadLogicalDevice
User::LoadPhysicalDevice

• Opening a channel to the device driver
RSimpleSerialChannel::Open

• Performing a synchronous operation
RSimpleSerialChannel::Config
RSimpleSerialChannel::SetConfig

• Performing an asynchronous operation
RSimpleSerialChannel::Read
RSimpleSerialChannel::Write

• Closing the channel to the device driver
RSimpleSerialChannel::Close

In the following sections I’ll be discussing the underlying principles
behind each of these concepts, both from a user-side perspective and
how these operations are translated and implemented by the kernel and
device driver.

12.4.4.1 Loading the driver from user-side code

As I have previously mentioned, device drivers are kernel DLLs that
are initialized by the loader in the same manner as any other DLL;
this contrasts with the extensions I mentioned previously, which are XIP
modules initialized explicitly by the kernel without the use of the loader.
Before a client can use a device driver, its DLLs must be loaded using a
combination of the following APIs:

TInt User::LoadLogicalDevice(const TDesC &aFileName)
TInt User::LoadPhysicalDevice(const TDesC &aFileName)

These functions ask the loader to search the system path for the required
LDD or PDD. If you don’t supply a filename extension, then the required
extension (.LDD or .PDD) will be added to the filename. If the file is
found, its UID values are verified to make sure the DLL is a valid LDD or
PDD before the image is loaded. Once loaded, the kernel proceeds to call
the DLL entry point as described in Section 12.1.6, and this constructs
any global objects in the DLL.

After loading the DLL, the loader calls its first export immediately.
LDDs and PDDs are polymorphic DLLs, and the first export is defined
as the factory function required to create an object of a class derived

DEVICE DRIVERS 505

from either DLogicalDevice for an LDD, or DPhysicalDevice for
a PDD. (I’ll describe these classes in detail in the next section.)

As I described in Section 12.2.2, the kernel defines two macros,
DECLARE_STANDARD_LDD and DECLARE_STANDARD_PDD, which are
used by the device driver to define both the kernel module entry point
and the exported factory function, as shown in the following example:

DECLARE_STANDARD_LDD()
{
return new DSimpleSerialLDD;
}

If the device driver needs to perform some one-off initialization at
system boot time, you should ensure that it is also an extension.
In this case, you would use the DECLARE_STANDARD_EXTENSION
macro discussed in Section 12.2.2 to define the custom kernel module
entry point, and use the alternative DECLARE_EXTENSION_LDD and
DECLARE_EXTENSION_PDD macros to export the factory function.

Note: If you are using this feature to allocate resources early in the boot
process, consider carefully whether such initialization would be better
off being deferred to some later point in the process (such as when the
driver is actually loaded or a channel is created). Any resources allocated
at boot time will remain allocated until the system is rebooted, which
may not be the behavior that you are looking for.

Once the factory object is created, the kernel calls its second phase
constructor, Install(). You must register an appropriate name for
the newly created LDD or PDD factory object with this function (see
the following example), as well as performing any other driver-specific
initialization as required. If this function is successful, the kernel will add
the named object to its kernel object container. The kernel reserves two
object containers specifically to maintain the list of currently loaded LDD
and PDD factory objects:

Object Container Name

DLogicalDevice ELogicalDevice <ldd>

DPhysicalDevice EphysicalDevice <ldd>.<pdd>

All future references to the name of the device driver should now refer
to the object name, rather than the LDD/PDD filename.

The object name is also used to associate a PDD with a specific class
of LDD – I’ll talk about this more later in the chapter.

Note: Some device drivers deviate from the standard ‘‘<ldd>.<pdd>’’
naming convention and define a different prefix for PDD names than the

506 DEVICE DRIVERS AND EXTENSIONS

LDD name. These are usually drivers that don’t rely on the kernel’s
automatic PDD matching framework, and I’ll talk about this later.

So, in our simple serial driver, the Install() functions would look
something like this:

// Simple Serial LDD

_LIT(KLddName,"Serial");
TInt DSimpleSerialLDD::Install()
{
return(SetName(&KLddName));
}

// Simple 16550 Uart PDD

_LIT(KPddName,"Serial.16550");
TInt DSimple16550PDD::Install()
{
return(SetName(&KPddName));
}

I’ve already mentioned that the Install() function may also be used
to perform any initialization that should take place when the driver is first
loaded. For example, the driver may create a new kernel thread, allocate
shared memory or check for the presence of a required kernel extension
or hardware resource.

12.4.4.2 Verifying that devices are loaded

Symbian OS provides iterator classes to enable applications to identify
which kernel objects are currently present in the system. In particular,
TFindPhysicalDevice and TFindLogicalDevice may be used to
identify which device drivers are currently loaded:

class TFindPhysicalDevice : public TFindHandleBase
{

public:
inline TFindPhysicalDevice();
inline TFindPhysicalDevice(const TDesC& aMatch);
IMPORT_C TInt Next(TFullName& aResult);
};

These are derived from TFindHandleBase, a base class which performs
wildcard name matching on kernel objects contained within object
containers, from which a number of classes are derived to find specific
types of kernel objects:

class TFindHandleBase
{

public:

DEVICE DRIVERS 507

IMPORT_C TFindHandleBase();
IMPORT_C TFindHandleBase(const TDesC& aMatch);
IMPORT_C void Find(const TDesC& aMatch);
inline TInt Handle() const;

protected:
TInt NextObject(TFullName& aResult,TInt aObjectType);

protected:
/**
The find-handle number.
*/
TInt iFindHandle;

/**
The full name of the last kernel-side object found.
*/
TFullName iMatch;
};

Each iterator class provides its own implementation of Next, which calls
the protected NextObject method providing the ID of the container to
be searched:

EXPORT_C TInt TFindPhysicalDevice::Next(TFullName &aResult)
{
return NextObject(aResult,EPhysicalDevice);
}

For example, to find all physical devices present in the system, we would
use TFindPhysicalDevice as follows:

TFindPhysicalDevice findHb;
findHb.Find(_L(“*”));
TFullName name;
while (findHb.Next(name)==KErrNone)

RDebug::Print(name);

This is precisely the mechanism used by the text window server’s PS
command, which produces the output shown in Figure 12.6.

Figure 12.6 Using the text shell’s command

508 DEVICE DRIVERS AND EXTENSIONS

12.4.4.3 Unloading the driver

A user-side application can unload an LDD or PDD using one of the
following APIs:

TInt User::FreeLogicalDevice(const TDesC &aDeviceName)
TInt User::FreePhysicalDevice(const TDesC &aDeviceName)

Note that an object name (aDeviceName) is used in this instance, rather
than the file name that was used when loading the device. These functions
enter the kernel via the executive call:

TInt ExecHandler::DeviceFree(const TDesC8& aName, TInt aDeviceType)

The aDeviceType parameter identifies the necessary object container
(EPhysicalDevice or ELogicalDevice) within which the object is
located by name. If the kernel finds the object, it closes it, which will
result in deletion of the object and its code segment, if it is not in use by
another thread:

DLogicalDevice::∼DLogicalDevice()
{
if (iCodeSeg)

{
__DEBUG_EVENT(EEventUnloadLdd, iCodeSeg);
iCodeSeg->ScheduleKernelCleanup(EFalse);
}

}

The function call ScheduleKernelCleanup(EFalse) unloads the
associated DLL with module reason KModuleEntryReasonProcess-
Detach, ensuring that the any static data initialized at DLL load time
is destroyed. The EFalse parameter indicates that the code segment is
not to be immediately destroyed (since we are still using the code to run
the destructor), but is to be added to the garbage list and scheduled for
deletion when the null thread next runs.

12.4.5 Opening the device driver

In the previous section, I discussed how device drivers are loaded, creating
LDD and PDD factory objects. The next step in using a device driver is
to open a channel through which requests can be made. User-side code
does this by making a call to RBusLogicalChannel::DoCreate().
(In reality, a client cannot call this method directly, since it is protected. It
is called indirectly, via a driver-specific wrapper function, usually named
Open(), although this doesn’t affect our current discussion.)

DEVICE DRIVERS 509

inline TInt DoCreate(const TDesC& aDevice,
const TVersion& aVer, TInt aUnit,
const TDesC* aDriver,
const TDesC8* anInfo,
TOwnerType aType=EOwnerProcess,
TBool aProtected=EFalse);

The client provides the name of the LDD (again, giving the object name
that uniquely identifies the LDD factory), the supported version number,
the unit number, an optional PDD name and an optional extra information
block. For example:

DoCreate(_L("Serial"), version, KUnit0, NULL, NULL);
DoCreate(_L("Serial"), version, KUnit0, _L(“16550”), NULL);

These examples demonstrate the two different mechanisms that the kernel
device driver framework provides for opening channels to device drivers:

1. Automatic search for a suitable physical device (no PDD name is
specified)

2. User-specified physical device (a PDD name is provided).

I will discuss both of these methods in the following sections, in which I
will show how channels are created using LDD and PDD factory objects.

12.4.5.1 Creating the logical channel – the LDD factory

When you call RBusLogicalChannel::DoCreate(), it performs an
executive call to create the kernel-side instance of a logical channel
(DLogicalChannelBase) before initializing the client-side handle:

EXPORT_C TInt RBusLogicalChannel::DoCreate(
const TDesC& aLogicalDevice,
const TVersion& aVer,
TInt aUnit,
const TDesC* aPhysicalDevice,
const TDesC8* anInfo,
TInt aType)

{
TInt r = User::ValidateName(aLogicalDevice);
if(KErrNone!=r)

return r;
TBuf8<KMaxKernelName> name8;
name8.Copy(aLogicalDevice);

TBuf8<KMaxKernelName> physicalDeviceName;
TChannelCreateInfo8 info;
info.iVersion=aVer;
info.iUnit=aUnit;

510 DEVICE DRIVERS AND EXTENSIONS

if(aPhysicalDevice)
{
physicalDeviceName.Copy(*aPhysicalDevice);
info.iPhysicalDevice = &physicalDeviceName;
}

else
info.iPhysicalDevice = NULL;

info.iInfo=anInfo;

return SetReturnedHandle(Exec::ChannelCreate(name8,
info, aType),*this);

}

The info parameter is of type TChannelCreateInfo, which encap-
sulates the user-supplied version, unit number and optional information
block:

class TChannelCreateInfo
{

public:
TVersion iVersion;
TInt iUnit;
const TDesC* iPhysicalDevice;
const TDesC8* iInfo;
};

The channel creation mechanism in Exec::ChannelCreate makes
use of the DLogicalDevice and DPhysicalDevice factory objects
that the kernel created when it loaded the device drivers. The logical
device is defined in kernel.h as follows:

class DLogicalDevice : public DObject
{

public:
IMPORT_C virtual ∼DLogicalDevice();

IMPORT_C virtual TBool QueryVersionSupported(
const TVersion& aVer) const;

IMPORT_C virtual TBool IsAvailable(TInt aUnit,
const TDesC* aDriver,

const TDesC8* aInfo) const;

TInt ChannelCreate(DLogicalChannelBase*& pC,
TChannelCreateInfo& aInfo);

TInt FindPhysicalDevice(DLogicalChannelBase*
aChannel, TChannelCreateInfo& aInfo);

virtual TInt Install()=0;
virtual void GetCaps(TDes8& aDes) const =0;
virtual TInt Create(DLogicalChannelBase*&aChannel)=0;

public:
TVersion iVersion;

DEVICE DRIVERS 511

TUint iParseMask;
TUint iUnitsMask;
DCodeSeg* iCodeSeg;
TInt iOpenChannels;
};

This is an abstract base class – a device driver must provide an imple-
mentation of the GetCaps(), Create() and Install() methods, as
these are used by the framework when creating the channel.

To create a channel, the kernel-side executive handler, ExecHan-
dler::ChannelCreate, first uses the supplied LDD name to search
the ELogicalDevice container for an associated DLogicalDevice
factory object. If it finds one, it increments the factory’s instance count
before validating the supplied unit number against the value of the
KDeviceAllowUnit flag in iParseMask, using the following rules:

1. If the device supports unit numbers, the unit number must be within
the range of 0 to KMaxUnits (32).

2. If the device does not support unit numbers, the aUnit parameter
must be KNullUnit.

You need to initialize iVersion and iParseMask in the constructor
of your DlogicalDevice-derived LDD factory to determine how your
device driver is loaded. For example, if my serial driver needs the client to
specify a unit number and the relevant PDD to be present in the system,
I would code the constructor like this:

DSimpleSerialLDD::DSimpleSerialLDD()
{
iParseMask = KDeviceAllowPhysicalDevice |

KDeviceAllowUnit;
iVersion = TVersion(KCommsMajorVersionNumber,

KCommsMinorVersionNumber,
KCommsBuildVersionNumber);

}

The following table summarizes the usage of iVersion and iParse-
Mask:

iVersion The interface version supported by this LDD. This is used
to check that an LDD and PDD are compatible, so you
should increment it if the interface changes. The version
checking API, Kern::QueryVersionSupported(),
assumes that clients requesting old versions will work
with a newer version, but clients requesting new versions
will not accept an older version.

512 DEVICE DRIVERS AND EXTENSIONS

iParseMask This is a bit mask indicating a combination of:

– KDeviceAllowPhysicalDevice
The LDD requires an accompanying PDD

– KDeviceAllowUnit
The LDD accepts a unit number at channel creation
time

– KDeviceAllowInfo
The LDD accepts additional device-specific info at
channel creation time

– KDeviceAllowAll
A combination of all of these.

iUnitsMask No longer used by the LDD; present for legacy reasons.

Once the factory object has been identified and its capabilities
validated, the kernel calls the driver’s channel factory function, DLogi-
calDevice::Create(). This function is responsible for creating an
instance of the logical channel (derived from DLogicalChannelBase)
through which all subsequent requests to the driver will be routed:

TInt DSimpleSerialLDD::Create(DLogicalChannelBase*& aChannel)
{
aChannel = new DSimpleSerialChannel;
return aChannel ? KErrNone : KErrNoMemory;
}

The kernel returns a pointer to the newly created channel to the framework
via a reference parameter, returning an error if it is unable to create the
channel. The framework stores a pointer to the DLogicalDevice that
created the channel in the channel’s iDevice field (so that its reference
count may be decremented when the channel is eventually closed), and
increments iOpenChannels.

If the logical device specifies that it needs a PDD (indicated by
the KDeviceAllowPhysicalDevice flag in iParseMask), then the
kernel locates a suitable PDD factory, which is used to create the device-
specific physical channel – I will cover this in more detail in the next
section. The kernel stores a pointer to the newly created physical channel
in the iPdd member of the logical channel.

The kernel framework will now initialize the newly created
DlogicalChannelBase-derived object by calling DLogicalChan-
nelBase::DoCreate(), passing in the information contained in the
TChannelCreateInfo package supplied by the user. This is the log-
ical channel’s opportunity to validate the supplied parameters, allocate
additional resources and prepare the hardware for use.

DEVICE DRIVERS 513

If initialization is successful, the kernel adds the newly created logical
channel into the ELogicalChannel object container, and creates a
handle, which it returns to the user-side client. If it is not, the kernel
closes the logical channel and any associated physical device and returns
a suitable error.

Note: Being a handle to a kernel object, the client side RBusLogi-
calChannel handle inherits the standard handle functionality described
in Chapter 5, Kernel Services. By default, the kernel creates an RBusLog-
icalChannel handle with ELocal and EOwnerProcess attributes,
thus restricting usage to the process that opened the channel. Protection
may be promoted to EProtected by specifying aProtected = ETrue
in RBusLogicalChannel::DoCreate. This will allow the handle to
be shared with other processes using the IPC mechanisms available for
handle sharing. The handle may never be promoted to an EGlobal
object.

12.4.5.2 Creating the physical device – the PDD factory

Some LDDs don’t require a physical device to be present (two examples
being the local media sub-system which takes responsibility for loading its
own media drivers and the USB controller which communicates directly
with a kernel extension). But the majority of LDDs do need a PDD, since
most device drivers rely on hardware with more than one possible variant.

A physical channel is nothing more than a simple DBase-derived
object, and as such has an interface that is determined only by the LDD
with which it is associated. (Contrast this with the logical channel, which
must be derived from DLogicalChannelBase and conforms to a glob-
ally defined interface). It is the responsibility of the DphysicalDevice-
derived PDD factory to validate and create the physical channel:

class DPhysicalDevice : public DObject
{

public:
enum TInfoFunction

{
EPriority=0,
};

public:
IMPORT_C virtual ∼DPhysicalDevice();
IMPORT_C virtual TBool QueryVersionSupported(const TVersion& aVer)

const;
IMPORT_C virtual TBool IsAvailable(TInt aUnit, const TDesC8* aInfo)

const;

virtual TInt Install() =0;
virtual void GetCaps(TDes8& aDes) const =0;
virtual TInt Create(DBase*& aChannel, TInt aUnit, const TDesC8* aInfo,

const TVersion& aVer) =0;
virtual TInt Validate(TInt aUnit, const TDesC8* aInfo, const TVersion&

aVer) =0;

514 DEVICE DRIVERS AND EXTENSIONS

IMPORT_C virtual TInt Info(TInt aFunction, TAny* a1);
public:
TVersion iVersion;
TUint iUnitsMask;
DCodeSeg* iCodeSeg;
};

Notice that this looks very similar to DLogicalDevice – not surprising
since they perform an almost identical task. However, there are a few
differences in the physical device:

• iParseMask does not exist

• A Validate() method must be provided to support the logical
device in searching for suitable PDDs. (I’ll show an example imple-
mentation of this later)

• An optional Info() method may be provided to provide additional
device-specific information about the driver. This is currently only
used by media drivers (as you can see in Chapter 13, Peripheral
Support).

Now, let’s look at PDD loading in a little more detail.

User-specified PDD
If a PDD name was supplied in the call to RBusLogicalChan-
nel::DoCreate(), the kernel first validates the name to ensure that
it is a match for the logical channel (that is, it compares the supplied
‘‘<ldd>.<pdd>’’ name with the wildcard string ‘‘<ldd>.*’’).

If the name is valid, the kernel uses it to locate the corresponding
DPhysicalDevice object in the EPhysicalDevice container.

It then calls the Validate() method on this object, passing the unit
number, optional extra information block and version number. This is
the PDD’s opportunity to verify that the version number matches that
of the requesting logical channel, and that the requested unit number is
supported:

TInt DSimpleSerialPDD::Validate(TInt aUnit, const
TDesC8* /*anInfo*/, const TVersion& aVer)
{
if(!Kern::QueryVersionSupported(iVersion,aVer)

return KErrNotSupported;
if (aUnit<0 || aUnit>=KNum16550Uarts)

return KErrNotSupported;
return KErrNone;
}

Automatic search for PDD
Alternatively, if the user-side does not provide a PDD name, but the logical
device requires a PDD to be present, then the kernel makes a wildcard

DEVICE DRIVERS 515

search for all DPhysicalDevice objects with the name ‘‘<ldd>.*’’.
For each such object, it calls the Validate() function, and the first one
which returns KErrNone is taken to be the matching PDD. Note that the
order of DPhysicalDevice objects within the container is influenced
only by the order in which the PDDs were originally loaded.

Note: This mechanism is useful when there are many PDDs supporting
a single LDD, and it is not known in advance which of these PDDs
support a given unit number.

Once a suitable physical device has been identified, the kernel opens
it (incrementing its reference count) and places the pointer to the DPhys-
icalDevice in the logical channel’s iPhysicalDevice, so that its
reference count may be decremented if an error occurs or the channel
is closed.

Finally, the kernel calls DPhysicalDevice::Create() on the
matching PDD, again passing the unit number, optional extra information
block and version number. The device driver must provide this method;
it is responsible for creating and initializing the actual DBase derived
physical channel:

TInt DSimpleSerialPDD::Create(DBase*& aChannel, TInt
aUnit, const TDesC8* anInfo, const TVersion& aVer)
{
DComm16550* pD=new DComm16550;
aChannel=pD;
TInt r=KErrNoMemory;
if (pD)

r=pD->DoCreate(aUnit,anInfo);
return r;
}

Again, the newly created physical channel is returned by reference, and
the kernel places a pointer to it in the logical channel’s iPdd field for
later use.

12.4.5.3 Advanced LDD/PDD factory concepts

In the previous section, I discussed the basic mechanism by which the
LDD and PDD factory classes are used to create a physical channel.
Most device drivers follow this simple model, but the framework also
provides additional functionality that may be useful for more complex
implementations.

Obtaining device capabilities from user-side code
Both DLogicalDevice and DPhysicalDevice define three virtual
functions that I haven’t yet explained: QueryVersionSupported,
IsAvailable and GetCaps. You can implement these in a device
driver if you want to provide device capability information to user-side
code before it opens a channel. The functions are accessible via the

516 DEVICE DRIVERS AND EXTENSIONS

RDevice class, which is the user-side handle representing the kernel-side
LDD factory object. You can obtain this by opening the handle by name,
or using the TFindLogicalDevice class described in Section 12.4.4.2:

class RDevice : public RHandleBase
{

public:
inline TInt Open(const TFindLogicalDevice& aFind,

TOwnerType aType=EOwnerProcess);
IMPORT_C TInt Open(const TDesC& aName,

TOwnerType aType=EOwnerProcess);
IMPORT_C void GetCaps(TDes8& aDes) const;
IMPORT_C TBool QueryVersionSupported(

const TVersion& aVer) const;
IMPORT_C TBool IsAvailable(TInt aUnit,

const TDesC* aPhysicalDevice,
const TDesC8* anInfo) const;

#ifndef __SECURE_API__
IMPORT_C TBool IsAvailable(TInt aUnit,

const TDesC* aPhysicalDevice,
const TDesC16* anInfo) const;

#endif
};

The implementation of these APIs is driver dependent. For example, our
simple serial port may report its version number in the following manner:

class TSimpleSerialCaps
{

public:
TVersion iVersion;
};

void DSimpleSerialLDD::GetCaps(TDes8& aDes) const
{
TPckgBuf<TSimpleSerialCaps> b;
b().iVersion=TVersion(KCommsMajorVersionNumber,

KCommsMinorVersionNumber,
KCommsBuildVersionNumber);

Kern::InfoCopy(aDes,b);
}

And the user application might obtain this information in this way:

RDevice theLDD;
TInt err = theLDD.Open(_L("Serial"));
if(err == KErrNone)
{
TPckgBuf<TSimpleSerialCaps> c;
theLDD.GetCaps(c);
TVersionName aName = c().version.Name();
RDebug::Print(_L("Serial Ver = %S\n"), &aName);
theDevice.Close();
}

DEVICE DRIVERS 517

Advanced PDD identification
I have described how a logical device may use the KDeviceAllow-
PhysicalDevice flag to enable the framework to either find a PDD by
name, or by wildcard search. If an LDD does not specify this parameter,
it is free to perform its own search for a suitable physical device. In fact,
this is precisely the mechanism used by the local media sub-system.

The kernel provides the following kernel-side iterator, which is similar
in concept to the user-side TFindPhysicalDevice:

struct SPhysicalDeviceEntry
{
TInt iPriority;
DPhysicalDevice* iPhysicalDevice;
};

class RPhysicalDeviceArray : public
RArray<SPhysicalDeviceEntry>
{

public:
IMPORT_C RPhysicalDeviceArray();
IMPORT_C void Close();
IMPORT_C TInt GetDriverList(const TDesC& aMatch,

TInt aUnit,
const TDesC8* aInfo,

const TVersion& aVersion);
};

This class gives the same results as the automatic PDD search provided
by the kernel, and it allows a logical channel to identify suitable phys-
ical devices according to its own rules. If using this scheme, it is the
responsibility of the channel to maintain the list of channels that it has
opened, and to define its own identification mechanism. For example,
the local media sub-system defines the aUnit parameter to represent
the media type of a media driver. For more advanced mechanisms, the
aInfo parameter may be used to specify device-specific information
when Validate() is called.

12.4.6 Interacting with a device driver
In previous sections, I have explained how device drivers are loaded and
channels are opened using the device driver framework. The next stage
is to service requests issued from user-side code. There are three main
classes involved:

1. RBusLogicalChannel – the user-side channel handle

2. DlogicalChannelBase – the kernel-side channel (receives
requests in the context of the client thread)

3. DLogicalChannel – the kernel-side channel (receives requests in
the context of a separate kernel thread).

518 DEVICE DRIVERS AND EXTENSIONS

Note: In fact, there are four classes if you include the physical channel,
DPhysicalChannel, but since this is a device specific interface, I won’t
discuss its use until we start looking at our serial driver in more detail.

I have already touched on these classes when discussing how device
drivers are loaded and the channel is opened. Now I shall discuss how
these are actually used in the context of a real device driver.

12.4.6.1 RBusLogicalChannel – the user-side channel handle

The RBusLogicalChannel class is a user-side handle to a kernel-side
logical channel (DLogicalChannelBase), and provides the functions
required to open a channel to a device driver and to make requests:

class RBusLogicalChannel : public RHandleBase
{

public:
IMPORT_C TInt Open(RMessagePtr2 aMessage, TInt aParam,

TOwnerType aType=EOwnerProcess);
IMPORT_C TInt Open(TInt aArgumentIndex, TOwnerType

aType=EOwnerProcess);
protected:
inline TInt DoCreate(const TDesC& aDevice,

const TVersion& aVer,
TInt aUnit,
const TDesC* aDriver,
const TDesC8* anInfo,
TOwnerType aType=EOwnerProcess,
TBool aProtected=EFalse);

IMPORT_C void DoCancel(TUint aReqMask);

IMPORT_C void DoRequest(TInt aReqNo, TRequestStatus& aStatus);
IMPORT_C void DoRequest(TInt aReqNo, TRequestStatus& aStatus,

TAny* a1);
IMPORT_C void DoRequest(TInt aReqNo, TRequestStatus& aStatus,

TAny* a1,TAny* a2);

IMPORT_C TInt DoControl(TInt aFunction);
IMPORT_C TInt DoControl(TInt aFunction, TAny* a1);
IMPORT_C TInt DoControl(TInt aFunction, TAny* a1,TAny* a2);

private:
IMPORT_C TInt DoCreate(const TDesC& aDevice,

const TVersion& aVer,
TInt aUnit,
const TDesC* aDriver,
const TDesC8* aInfo,
TInt aType);

};

Note: If you have access to the EKA2 source code, you will find that the
real class is slightly more complex than the version given here. The extra
methods and data are mainly provided to maintain binary compatibility
with the EKA1 kernel, since this is the user-side interface to the device

DEVICE DRIVERS 519

driver. See Section 12.5 for more on the differences between the EKA1
and EKA2 device driver framework.
RBusLogicalChannel provides the following functionality:

• Creation of the logical channel (discussed in the previous section)

• DoRequest – performs an asynchronous operation

• DoControl – perform a synchronous operation

• DoCancel – cancel an outstanding asynchronous request.

See Figure 12.7. All but two of the methods provided by RBusLogi-
calChannel are protected, so the client can do nothing useful with this
class directly; it needs a derived interface, specific to the implementation
of the device driver. The usual way to do this is to provide a header file
to define the class and an inline file to provide the implementation, and
include both in the client-side code at build time. As an example, let’s
look at how I would provide an interface to my example serial driver:

class RSimpleSerialChannel : public RBusLogicalChannel
{

public:
enum TVer

{
EMajorVersionNumber=1,
EMinorVersionNumber=0,
EBuildVersionNumber=KE32BuildVersionNumber
};

enum TRequest
{
ERequestRead=0x0,
ERequestReadCancel=0x1,
ERequestWrite=0x1,
ERequestWriteCancel=0x2,
};

enum TControl
{
EControlConfig,
EControlSetConfig
};

public:
#ifndef __KERNEL_MODE__
inline TInt Open(TInt aUnit);
inline TVersion VersionRequired() const;
inline void Read(TRequestStatus& aStatus, TDes8& aDes);
inline void ReadCancel();
inline void Write(TRequestStatus& aStatus, const TDesC8& aDes);
inline void WriteCancel();
inline void Config(TDes8& aConfig);
inline TInt SetConfig(const TDesC8& aConfig);

#endif
};

#include <simpleserial.inl>

520 DEVICE DRIVERS AND EXTENSIONS

RDriver1 RBusLogicalChannel

GetConfig()

SetConfig()

SendData()

ReceiveData()

SendDataCancel()

ReceiveDataCancel()

DoControl()

DoRequest()

DoCancel()

DLogicalChannel

Request() Request() = 0

DLogicalChannelBase

kernel
user

The shaded box represents
a class implemented by the

example driver

Figure 12.7 Mapping the user-side API to RBusLogicalChannel

The implementation is in the corresponding inline file:

#ifndef __KERNEL_MODE__
_LIT(KDeviceName,"Serial");

inline TInt RSimpleSerialChannel::Open(TInt aUnit)
{
return(DoCreate(KDeviceName,VersionRequired(),

aUnit,NULL,NULL));
}

inline TVersion RSimpleSerialChannel::VersionRequired() const
{
return(TVersion(EMajorVersionNumber,

EMinorVersionNumber,
EBuildVersionNumber));

}

inline void RSimpleSerialChannel::Read(TRequestStatus&aStatus,
TDes8& aDes)

{
TInt len=aDes.MaxLength();
DoRequest(ERequestRead,aStatus,&aDes,&len);
}

inline void RSimpleSerialChannel::ReadCancel()
DoCancel(ERequestReadCancel);

inline void RSimpleSerialChannel::Write(TRequestStatus& aStatus,
const TDesC8& aDes)

DEVICE DRIVERS 521

{
TInt len=aDes.Length();
DoRequest(ERequestWrite,aStatus,(TAny *)&aDes,&len);
}

inline void RSimpleSerialChannel::Config(TDes8& aConfig)
DoControl(EControlConfig,&aConfig);

inline TInt RSimpleSerialChannel::SetConfig(const TDesC8& aCfg)
return(DoControl(EControlSetConfig, (TAny *)&aCfg));

#endif

Note: These headers are also included in the kernel-side implementation
of the device driver, so that it can pick up the version number and request
number enumerations. This is why #ifndef__KERNEL_MODE__ is used
around the user-side specific methods.

Next I will look at how the kernel handles communication from the
user-side application, using the DLogicalChannelBase object.

12.4.6.2 DLogicalChannelBase – the kernel-side channel

DLogicalChannelBase is the kernel-side representation of the user-
side RBusLogicalChannel. It is an abstract base class, the implemen-
tation of which is provided by the device driver:

class DLogicalChannelBase : public DObject
{

public:
IMPORT_C virtual ∼DLogicalChannelBase();

public:
virtual TInt Request(TInt aReqNo, TAny* a1, TAny* a2)=0;

IMPORT_C virtual TInt DoCreate(TInt aUnit,
const TDesC8* aInfo,
const TVersion& aVer);

public:
DLogicalDevice* iDevice;
DPhysicalDevice* iPhysicalDevice;
DBase* iPdd;
};

I have already discussed the meaning of several members of this class
when explaining how a logical channel is created:

• iDevice – a pointer to the LDD factory object that created this logical
channel. The framework uses it to close the LDD factory object when
the channel is closed

• iPhysicalDevice – a pointer to the PDD factory object that cre-
ated the physical channel. The framework uses it to close the PDD
factory object when the channel is closed

522 DEVICE DRIVERS AND EXTENSIONS

• iPdd – a pointer to the physical channel associated with this logical
channel. It is used by the logical channel itself when communicating
with the hardware and by the framework to delete the physical
channel when the logical channel is closed.

iPhysicalDevice and iPdd are only provided by the framework
if the logical device has specified that a physical channel is required
by specifying the KDeviceAllowPhysicalDevice flag in DLogi-
calDevice::ParseMask.

12.4.6.3 Creating the logical channel

The virtual DoCreate() method is the logical channel’s opportunity
to perform driver-specific initialization at creation time (see Section
12.4.5.1). The device driver framework calls it after creating the logical
channel:

TInt DoCreate(TInt aUnit, const TDesC8* aInfo, const TVersion& aVer);

Typically, a device driver would use this function to perform the following
actions:

• Validate that the user-side code has sufficient capabilities to use this
device driver

• Validate the version of the driver that the user-side code requires

• Initialize any DFC queues needed by the device driver. (Interrupt han-
dlers would rarely be initialized here – this is usually the responsibility
of the physical channel)

• Create and initialize its power handler.

This is how my simple serial driver does it:

TInt DSimpleSerialChannel::DoCreate(TInt aUnit, const TDesC8* /*anInfo*/,
const TVersion &aVer)

{
if(!Kern::CurrentThreadHasCapability(ECapabilityCommDD,_

_PLATSEC_DIAGNOSTIC_STRING("Checked by SERIAL.LDD
(Simple Serial Driver)")))

return KErrPermissionDenied;
if (!Kern::QueryVersionSupported(TVersion(

KCommsMajorVersionNumber,
KCommsMinorVersionNumber,
KCommsBuildVersionNumber),aVer))

return KErrNotSupported;

// initialise the TX buffer
iTxBufSize=KTxBufferSize;

DEVICE DRIVERS 523

iTxBuffer=(TUint8*)Kern::Alloc(iTxBufSize);
if (!iTxBuffer)

return KErrNoMemory;
iTxFillThreshold=iTxBufSize>>1;

// initialise the RX buffer
iRxBufSize=KDefaultRxBufferSize;
iRxCharBuf=(TUint8*)Kern::Alloc(iRxBufSize<<1);
if (!iRxCharBuf)

{
Kern::Free(iTxBuffer);
return KErrNoMemory;
}

iRxDrainThreshold=iRxBufSize>>1;

return KErrNone;
}

Performing the capability check
This should be the very first thing that you do in your DoCreate()
method. You need to check that the client has sufficient capabilities to
use this driver (see Section 12.1.8 and Chapter 8, Platform Security, for
more information on the EKA2 security model).

Check the version
My DoCreate() method also verifies that the version of the device
driver is compatible with that expected by the client. As I described
in Section 12.4.6.1, both the user and the kernel side share a common
header file at build time, and this provides the version number of the API.
The kernel provides the Kern::QueryVersionSupported()method
to enforce a consistent set of rules to all APIs, and this returns ETrue if
the following conditions are satisfied:

• The major version of the client is less than the major version of the
driver

• The major version of the client is equal to the major version of the
driver and the minor version of the client is less than or equal to the
minor version of the driver.

12.4.6.4 The request gateway function

If you refer back to the DLogicalChannelBase class I showed earlier,
you may notice that there are no direct equivalents to the DoControl,
DoRequest and DoCancel methods that RBusLogicalChannel pro-
vides. This is because all requests enter the driver via the logical channel’s
Request() gateway method (see Figure 12.8):

virtual TInt Request(TInt aReqNo, TAny* a1, TAny* a2)=0;

524 DEVICE DRIVERS AND EXTENSIONS

RBusLogicalChannel

DoControl()

DoRequest()

DoCancel()

DLogicalChannelBase

Request() = 0

[implemented by a
derived class]

kernel
user

User-side API

Figure 12.8 The request gateway function

The request gateway function takes a request number and two undefined
parameters, which are mapped from the RBusLogicalChannel as
follows:

RBusLogicalChannel DLogicalChannelBase

DoControl(aFunction) Request(aFunction, 0, 0)
DoControl(aFunction, a1) Request(aFunction, a1, 0)
DoControl(aFunction, a1, a2) Request(aFunction, a1, a2)

DoRequest(aReqNo, aStatus) Request(∼aReqNo, &aStatus, &A[0, 0])
DoRequest(aReqNo, aStatus, a1) Request(∼aReqNo, &aStatus, &A[a1, 0])
DoRequest(aReqNo, aStatus, a1, a2) Request(∼aReqNo, &aStatus, &A[a1, a2])

DoCancel(aReqMask) Request(0x7FFFFFFF, aReqMask, 0)

DEVICE DRIVERS 525

The following code shows how the RBusLogicalChannel::Do-
Control() method is implemented:

EXPORT_C TInt RBusLogicalChannel::DoControl(TInt aFunction,
TAny *a1,TAny *a2)

{
return Exec::ChannelRequest(iHandle,aFunction,a1,a2);
}

And here we show how an RBusLogicalChannel::DoRequest
method is implemented. You can see that the stack is used to pass
parameters a1 and a2. (This stack usage is represented in the previous
table as \&A[a1,a2].)

EXPORT_C void RBusLogicalChannel::DoRequest(TInt aReqNo,
TRequestStatus &aStatus,

TAny *a1, TAny *a2)
{
TAny *a[2];
a[0]=a1;
a[1]=a2;
aStatus=KRequestPending;
Exec::ChannelRequest(iHandle,∼aReqNo,&aStatus,&a[0]);
}

There is in fact little difference between DoControl() and DoRe-
quest() as far as the kernel is concerned, so DoControl() could
theoretically perform asynchronous operations by passing the address
of a TRequestStatus as one of the user parameters – this is a valid
optimization to make under some circumstances. However, you should
be aware that, although the DLogicalChannelBase framework does
not make any assumptions as to the format of the parameters supplied,
they are crucial to the operation of the DLogicalChannel class – so
any deviation from this pattern should be performed with care.

When understanding the operation of device drivers, it is crucial to
understand the context of requests coming from user-side. These requests
arrive at the gateway function via the following executive call:

__EXECDECL__ TInt Exec::ChannelRequest(TInt, TInt, TAny*, TAny*)
{
SLOW_EXEC4(EExecChannelRequest);
}

This is a slow executive call which takes four parameters. It runs in
the context of the calling thread, with interrupts enabled and the kernel
unlocked, so it can be preempted at any point of its execution. The
following parameters are defined for this handler:

526 DEVICE DRIVERS AND EXTENSIONS

DECLARE_FLAGS_FUNC(0|EF_C|EF_P|(ELogicalChannel+1),
ExecHandler::ChannelRequest)

Referring back to Chapter 5, Kernel Services, this means that the call is
be preprocessed (as indicated by the EF_P[KExecFlagPreProcess]
flag) to obtain the kernel-side object from the supplied user handler using
the ELogicalChannel container, which in turn implies that it must
hold the system lock (as indicated by the EF_C[KExecFlagClaim]
flag). After preprocessing, the kernel invokes this executive handler:

TInt ExecHandler::ChannelRequest(DLogicalChannelBase*
aChannel, TInt aFunction, TAny* a1, TAny* a2)

{
DThread& t=*TheCurrentThread;
if (aChannel->Open()==KErrNone)

{
t.iTempObj=aChannel;
NKern::UnlockSystem();
TInt r=aChannel->Request(aFunction,a1,a2);
NKern::ThreadEnterCS();
t.iTempObj=NULL;
aChannel->Close(NULL);
NKern::ThreadLeaveCS();
return r;
}

K::PanicCurrentThread(EBadHandle);
return 0;
}

The executive handler calls DLogicalChannelBase::Request(),
so this runs in the context of the calling (client) thread. Before calling the
request function, the kernel (a) increments the channel’s reference count,
(b) stores the pointer to the channel in the iTempObj member of the
current thread and (c) releases the system lock. Since the request function
may be preempted at any time, these measures ensure that:

• If the current thread exits, the channel is safely closed after servicing
the request

• Another thread cannot close the channel until the request function
completes.

12.4.6.5 Using DLogicalChannelBase::Request

In the previous section we discussed the context within which DLog-
icalChannelBase::Request() is called. This has implications for
the design of a device driver using this function. Consider the following
points:

DEVICE DRIVERS 527

1. A device driver is likely to use hardware interrupts that queue a DFC
on a kernel thread for further processing. This kernel thread can
preempt the Request() method at any time

2. Several threads (in the process that opened the channel) may use a
single instance of the channel concurrently

3. Several concurrent operations may require access to the same hard-
ware and registers.

So, in all but the simplest device drivers, it is unlikely that the driver will
get away with supporting only one asynchronous operation at a time.
Depending on the requirements of the driver, it may be acceptable for
the client to issue a second request without having to wait for the first
to complete – and the same applies to issuing a synchronous request
while an asynchronous request is outstanding. Since the completion of
an asynchronous operation occurs in a kernel-side DFC thread, and may
preempt any processing that the device driver does in user context, you
must take great care to avoid synchronization issues – the kernel does not
do this for you.

Request synchronization
Most device drivers are either written to perform all processing within
the calling thread context, or to perform all processing within the kernel
thread. The former is not generally acceptable for long running tasks,
as this effectively blocks the client thread from running. A simple way
to provide synchronization of requests in the latter case is to provide a
single DFC per request (all posted to the same DFC queue). This scheme
provides serialization of requests and guarantees that one operation is
not preempted by another operation. However, this may not always be
a practical solution as it takes time to queue a DFC and time for it to be
scheduled to run. If you are performing a simple request (such as a read
from a fast hardware register), this delay may be unacceptable.

Device drivers can support a combination of fast synchronous requests
(handled in the context of the client thread) and long running asyn-
chronous requests (handled in the context of one or more kernel threads),
each of which may require access to the same resources. The kernel
provides a set of primitives that should be used when addressing such
synchronization issues.

First, the kernel provides a set of primitives to allow you to safely per-
form operations such as increment, decrement, swap or read/modify/write:

TInt NKern::LockedInc(TInt& aCount)
TInt NKern::LockedDec(TInt& aCount)
TInt NKern::LockedAdd(TInt& aDest, TInt aSrc)
TUint32 NKern::LockedSetClear(TUint32& aDest,

TUint32 aClearMask,

528 DEVICE DRIVERS AND EXTENSIONS

TUint32 aSetMask)
TUint8 NKern::LockedSetClear8(TUint8& aDest,

TUint8 aClearMask,
TUint8 aSetMask)

TInt NKern::SafeInc(TInt& aCount)
TInt NKern::SafeDec(TInt& aCount)
TAny* NKern::SafeSwap(TAny* aNewValue, TAny*& aPtr)
TUint8 NKern::SafeSwap8(TUint8 aNewValue, TUint8& aPtr)

And of course, for synchronization, the nanokernel’s fast semaphores and
mutexes are available:

void NKern::FSWait(NFastSemaphore* aSem);
void NKern::FSSignal(NFastSemaphore* aSem);

void NKern::FMWait(NFastMutex* aMutex);
void NKern::FMSignal(NFastMutex* aMutex);

However, as the number of request types increases, and we add new
DFCs and synchronization objects, the complexity of the driver rises
dramatically. What we would like to do is to serialize our requests
using a message queue, which is the very scheme employed by the
DLogicalChannel framework and which I will explain in the next
section.

12.4.7 DLogicalChannel

The DLogicalChannel class is provided to address the synchronization
issues I mentioned previously. It supplies a framework within which
user-side requests are executed in the context of a single kernel-side
thread. It derives from DLogicalChannelBase and makes use of a
kernel-side message queue and its associated DFC queue. Additionally,
DLogicalChannel overrides the Close() method so that close events
are handled safely within the same DFC queue.

Here’s how DLogicalChannel is defined in kernel.h:

class DLogicalChannel : public DLogicalChannelBase
{

public:
enum {EMinRequestId=0xc0000000, ECloseMsg=0x80000000};

public:
IMPORT_C DLogicalChannel();
IMPORT_C virtual ∼DLogicalChannel();
IMPORT_C virtual TInt Close(TAny*);
IMPORT_C virtual TInt Request(TInt aReqNo, TAny* a1, TAny* a2);
IMPORT_C virtual void HandleMsg(TMessageBase* aMsg)=0;
IMPORT_C void SetDfcQ(TDfcQue* aDfcQ);

DEVICE DRIVERS 529

public:
static void MsgQFunc(TAny* aPtr);

public:
TDfcQue* iDfcQ;
TMessageQue iMsgQ;
};

iDfcQ is a pointer to a DFC queue used to handle client requests.
iMsgQ is a message queue used to handle client requests.

12.4.7.1 The DFC queue

A driver based on DLogicalChannel provides a DFC queue to the
framework at channel creation time. DLogicalChannel uses this queue
to dispatch messages in response to user-side requests received by the
Request() function. The driver may use one of the standard kernel
queues or provide its own, and to avoid synchronization issues, this
queue will usually be the same queue that it uses for DFCs related to
hardware interrupts and other asynchronous events. For example, I would
initialize my serial driver to use a standard kernel queue like this:

TInt DSimpleSerialChannel::DoCreate(TInt aUnit,
const TDesC8* anInfo, const TVersion &aVer)

{
// Security and version control code as shown in the
// previous example are omitted for clarity.
SetDfcQ(Kern::DfcQue0());
iMsgQ.Receive();
return KErrNone;
}

The pattern I have just shown puts the selection of the DFC queue into the
LDD, which is useful if all the physical channels are likely to talk to the
same hardware registers or memory, because it ensures that all requests
for all channels will be serviced in the same kernel thread.

The kernel provides two standard DFC queues (running on two dedi-
cated kernel threads, DfcThread0 and DfcThread1). These are avail-
able for use by device drivers and are obtained using Kern::DfcQue0()
and Kern::DfcQue1(). DfcThread0 is a general-purpose low prior-
ity thread, which is currently used by serial comms, sound, Ethernet,
keyboard and digitizer device drivers, and is suitable for simple device
drivers without very stringent real-time requirements. DfcThread1 is a
higher priority thread and should be used with care, since inappropriate
use of this thread may adversely affect the accuracy of nanokernel timers.

Some device drivers create and use their own thread. This may be
specified by the logical channel as I have described previously, or by the
physical device itself. The local media sub-system uses the latter method.

530 DEVICE DRIVERS AND EXTENSIONS

The LDD provides a generic interface suitable for all types of media
driver, and to allow multiple media drivers to operate concurrently, each
media driver is responsible for specifying a DFC queue within which to
service requests.

The caution I gave earlier about using DfcThread1 is even more
appropriate if your driver creates a thread with higher priority than Dfc-
Thread1. In both cases, you must take care not to delay the nanokernel
timer DFC by more than 16 ticks.

The following code shows how my logical channel queries the physical
device to obtain a device-specific DFC queue:

TInt DSimpleSerialChannel::DoCreate(TInt aUnit, const TDesC8* anInfo,
const TVersion &aVer)

{
// Security and version control code as shown in the
// previous example are omitted for clarity.
SetDfcQ(((DComm*)iPdd)->DfcQ(aUnit));
iMsgQ.Receive();
return KErrNone;
}

The physical channel can creates its DFC queue using the following
kernel API:

TInt r=Kern::DfcQInit(&iDfcQ, iPriority, iName);

Alternatively, the physical channel can obtain the DFC queue from some
other source, such as a kernel extension. For example, consider the
peripheral bus controller which services removable media devices such
as PC Card and SDIO devices. Such a controller would typically use a
dedicated DFC thread to synchronize its requests, which would be made
available for use by device drivers.

DFC queue usage tips
Tip 1: Since several drivers may share the same DFC queue, then the
minimum latency of a DFC is the sum of the execution times of all other
DFCs executed beforehand. Therefore, DFCs should be kept as short as
possible, especially those on shared queues.

Tip 2: Consider your allocation of DFC priorities carefully when
designing your device driver. If some events are more critical than others,
you can use DFC priorities to ensure that these are serviced before
lower priority events. For example, a cable disconnect or media removal
notification may be given a higher priority than data transfer events
to allow your driver to take emergency action and recover gracefully.
However, if you are using a shared DFC queue then choose your priorities
carefully to avoid affecting other drivers.

DEVICE DRIVERS 531

Tip 3: If the DFC queue is obtained from a kernel extension, the queue
will be available throughout the life of the system. However, if you create
the queue (when the PDD or LDD is opened) then you must destroy it
(when the PDD or LDD is unloaded) to avoid resource leaks. There is no
kernel API to destroy a DFC queue from outside the DFC queue’s own
thread, so the standard way to do this is to post a ‘‘cleanup’’ DFC to the
queue.

12.4.7.2 The message queue

I described message queues in Chapter 4, Inter-thread Communication.
In this section, I shall talk about how device drivers make use of message
queues.
DLogicalChannel uses a message queue (iMsgQ) to allow multiple

requests from several client-side threads to be queued and handled
sequentially by a single kernel-side DFC. This is illustrated in Figure 12.9.

RBusLogicalChannel

DoControl()

DoRequest()

DoCancel()

DLogicalChannelBase

Request()

TMessageQue iMsgQ; TMessageQue

SDblQue

TThreadMessage
User-side client thread

user
kernel

Figure 12.9 The driver’s message queue framework

The message queue consists of a DFC and a doubly linked list of
received messages (TThreadMessage objects). Each user-side thread
owns its own TThreadMessage object as shown in Figure 12.10.

When issuing a request to a device driver, the driver framework pop-
ulates the thread’s TThreadMessage object with the supplied request

532 DEVICE DRIVERS AND EXTENSIONS

SDblQueLink
TMessageBase

TThreadMessage

SDblQueLink
TMessageBase

TThreadMessage

SDblQueLink
TMessageBase

TThreadMessage

SDblQue TMessageQue

Kernel-side thread
handling the DFC

queue

User-side client thread 1 User-side client thread 2 User-side client thread 3

SendReceive() adds the
thread's message onto the
message queue

user
kernel

DFC

Figure 12.10 The message queue and user threads

parameters before adding the message to the message queue using
SendReceive():

EXPORT_C TInt TMessageBase::SendReceive(TMessageQue* aQ)
{
Send(aQ);
NKern::FSWait(&iSem);
return iValue;
}

The calling thread is blocked until the message is delivered and the
driver signals that it has received the message by completing it, using
TMessageBase::Complete(). This does not necessarily mean that
the requested operation is done – merely that the message has been
received and the driver is ready to accept a new one. If the driver thread is
asked to perform a long running task, it will later use a TRequestStatus
object to signal completion to the client. Since all messages are delivered
to the same DFC queue, this has the effect of serializing requests from
multiple threads.

The message queue is constructed during the construction of the DLog-
icalChannel, and it is specified as a parameter to that construction in
this way:

EXPORT_C DLogicalChannel::DLogicalChannel()
: iMsgQ(MsgQFunc,this,NULL,1)
{
}

The NULL parameter is the DFC queue, which in this example is initialized
in the DoCreate() function:

SetDfcQ(Kern::DfcQue0());
iMsgQ.Receive();

DEVICE DRIVERS 533

SetDfcQ is inherited from DLogicalChannel, and is responsible for
storing the DFC queue and passing it on to the message queue:

EXPORT_C void DLogicalChannel::SetDfcQ(TDfcQue* aDfcQ)
{
iDfcQ=aDfcQ;
iMsgQ.SetDfcQ(aDfcQ);
}

Note that in DoCreate(), I called iMsgQ.Receive() immediately
after setting up the message queue with the appropriate DFC queue.
This marks the queue as ready, so that the first message to be received
will be accepted immediately. If a message is already available, iMsgQ.
Receive() immediately queues a DFC to service this message within
the context of the device driver’s chosen thread. DLogicalChannel
defines its message queue function like this:

void DLogicalChannel::MsgQFunc(TAny* aPtr)
{
DLogicalChannel* pC=(DLogicalChannel*)aPtr;
pC->HandleMsg(pC->iMsgQ.iMessage);
}

HandleMsg() is the pure virtual function implemented by the device
driver to handle the incoming requests, and I’ll explain this in detail
shortly. First, I’ll explain how messages are added to the queue.
DLogicalChannel provides its own implementation of the

Request() gateway function:

EXPORT_C TInt DLogicalChannel::Request(TInt aReqNo, TAny* a1, TAny* a2)
{
if (aReqNo<(TInt)EMinRequestId)

K::PanicKernExec(ERequestNoInvalid);
TThreadMessage& m=Kern::Message();
m.iValue=aReqNo;
m.iArg[0]=a1;
if (aReqNo<0)

{
kumemget32(&m.iArg[1],a2,2*sizeof(TAny*));
}

else
m.iArg[1]=a2;

return m.SendReceive(&iMsgQ);
}

Remember that this is running in the context of the user-side client thread.
This means that Kern::Message() obtains the client thread’s message
object and uses this as a placeholder for the request arguments supplied.

534 DEVICE DRIVERS AND EXTENSIONS

EXPORT_C TThreadMessage& Kern::Message()
{
return TheCurrentThread->iKernMsg;
}

Now, you may remember that when I discussed the user-side APIs
representing the logical channel (Section 12.4.6.4), I described how
synchronous requests pass a request number and up to two optional
request arguments, while asynchronous requests pass the compliment
of the request number, a pointer to a TRequestStatus object and a
user-side structure containing two function arguments:

RBusLogicalChannel DLogicalChannelBase

DoControl(aFunction) Request(aFunction, 0, 0)
DoControl(aFunction, a1) Request(aFunction, a1, 0)
DoControl(aFunction, a1, a2) Request(aFunction, a1, a2)

DoRequest(aReqNo, aStatus) Request(∼aReqNo, &aStatus, &A[0, 0])
DoRequest(aReqNo, aStatus, a1) Request(∼aReqNo, &aStatus, &A[a1, 0])
DoRequest(aReqNo, aStatus, a1, a2) Request(∼aReqNo, &aStatus, &A[a1, a2])

DoCancel(aReqMask) Request(0x7FFFFFFF, aReqMask, 0)

A negative request number indicates that an asynchronous DoRequest()
operation is being made, so the DLogicalChannel knows to extract
the arguments in the appropriate manner (that is, the second argument
is allocated on the client stack and represents two arguments which
must both be copied and stored before the calling function goes out of
scope). A positive number indicates that the operation does not require
any special treatment other than a direct copy of the message arguments.
Once the arguments have been copied from the user-side thread into the
request message, the message is delivered to the appropriate thread using
SendReceive(&iMsgQ).

12.4.7.3 Closing the logical channel

DLogicalChannelBase does not provide its own Close() method,
but instead relies on the default implementation of the reference count-
ing DObject::Close() method to destroy the channel. In contrast, a
DlogicalChannel-based driver makes use of the message queue to

DEVICE DRIVERS 535

destroy the channel. This is necessary because there may be an outstand-
ing DFC or asynchronous request that must be cancelled or completed
before we are able to close the channel completely.

A special message, ECloseMsg, is reserved for this purpose, and is
issued by DLogicalChannel::Close() as shown:

EXPORT_C TInt DLogicalChannel::Close(TAny*)
{
if (Dec()==1)

{
NKern::LockSystem();
NKern::UnlockSystem();
if (iDfcQ)
{
TThreadMessage& m=Kern::Message();
m.iValue=ECloseMsg;
m.SendReceive(&iMsgQ);
}

DBase::Delete(this);
return EObjectDeleted;
}

return 0;
}

As you can see, this close message is treated exactly the same as any other
message, and is delivered to the driver’s thread to give it the opportunity to
cancel or complete any outstanding DFCs or requests before the channel
is finally destroyed. The calls to NKern::LockSystem() followed by
NKern::UnlockSystem()may look odd, but this ensures that nobody
else is using the object while the close message is sent and the channel
subsequently deleted.

12.4.7.4 Handling messages in the device driver

Messages are handled in a DLogicalChannel-derived device driver
using the HandleMsg() function. Here is my serial driver’s implemen-
tation:

void DSimpleSerialChannel::HandleMsg(TMessageBase* aMsg)
{
TThreadMessage& m=*(TThreadMessage*)aMsg;
TInt id=m.iValue;
if (id==(TInt)ECloseMsg)

{
Shutdown();
m.Complete(KErrNone, EFalse);
return;
}

else if (id==KMaxTInt)
{
// DoCancel
DoCancel(m.Int0());

536 DEVICE DRIVERS AND EXTENSIONS

m.Complete(KErrNone,ETrue);
return;
}

if (id<0)
{
// DoRequest
TRequestStatus* pS=(TRequestStatus*)m.Ptr0();
TInt r=DoRequest(∼id,pS,m.Ptr1(),m.Ptr2());
if (r!=KErrNone)
Kern::RequestComplete(iClient,pS,r);

m.Complete(KErrNone,ETrue);
}

else
{
// DoControl
TInt r=DoControl(id,m.Ptr0(),m.Ptr1());
m.Complete(r,ETrue);
}

}

Most device drivers follow this pattern, as it draws a clean separation
between the different types of request. I use the function ID (obtained from
m.iValue) to determine if the message is a synchronous or asynchronous
request, or a cancel request or a close message. After invoking the
necessary handler function, I complete the message, which unblocks
the client thread and allows further messages to be processed by the
DLogicalChannel message-handling framework.

You should also notice also how errors are reported. A synchronous
request reports its return value directly to the client, passing the error
code via in the call to m.Complete(). (RBusLogicalChannel::Do-
Control() returns a TInt.) An asynchronous request always completes
its message with KErrNone, and reports errors back to the client using
the client’s TRequestStatus object. (RBusLogicalChannel::Do-
Request() has a void return type). This ensures that if the client
is using the active object framework, then the framework’s CAc-
tive::RunError() method will be invoked if an error occurs when
handling an asynchronous request.

12.4.7.5 Handling synchronous requests

Handling a synchronous request is simple – here’s my DoControl
method for the simple serial port channel:

TInt DSimpleSerialChannel::DoControl(TInt aFunction, TAny* a1, TAny* a2)
{
TCommConfigV01 c;
TInt r=KErrNone;

switch (aFunction)
{
case RSimpleSerialChannel::EControlConfig:

DEVICE DRIVERS 537

{
TPtrC8 cfg((const TUint8*)&iConfig, sizeof(iConfig));

r=Kern::ThreadDesWrite(iClient,a1,cfg,
0,KTruncateToMaxLength,iClient);

break;
}

case RSimpleSerialChannel::EControlSetConfig:
{
memclr(&c, sizeof(c));
TPtr8 cfg((TUint8*)&c,0,sizeof(c));

r=Kern::ThreadDesRead(iClient,a1,cfg,0,0);
if(r==KErrNone)

r=SetConfig(c);
break;
}

default:
r=KErrNotSupported;

}
return(r);
}

The RSimpleSerialChannel::EControlConfig case corresponds
to the synchronous user-side API RSimpleSerialChan-
nel::Config() which was defined in Section 12.4.6.1, RBusLogi-
calChannel – the user-side channel handle. To handle this request, a
constant pointer descriptor is created to point to the configuration data
to be returned to the client, and it is safely written back to user space
using the Kern::ThreadDesWrite() API. (Remember, when using
DLogicalChannel, all requests are handled within the context of a
kernel thread so the appropriate API must be used when writing to user
space as described in Section 12.1.7.2.) Note the use of KTruncate-
ToMaxLength – this ensures that the length of data copied back to user
space does not exceed the length of the user-side descriptor, and is good
practice when passing structures that may change size in future releases
of the driver.
RSimpleSerialChannel::EControlSetConfig corresponds to

the synchronous user-side API RSimpleSerialChannel::Set-
Config(). This is handled in a similar manner to the previous case, this
time using the Kern::ThreadDesRead()API to read the configuration
data from user space.

12.4.7.6 Handling asynchronous requests

Similarly, asynchronous requests are usually handled by a DoRequest()
method which is responsible for setting up the hardware to create an event
that will complete the request at some point in the future.

538 DEVICE DRIVERS AND EXTENSIONS

Depending on the nature of the device driver, it may be possible
to handle several outstanding asynchronous requests simultaneously.
Consider my serial port example for a moment – a duplex link allows
simultaneous transmission and reception of data, so I want to allow both
a read and a write request to be outstanding simultaneously. However,
I want to prevent a client from requesting two simultaneous operations
of the same type. The serial port driver handles this by maintaining a
copy of the outstanding read/write request status objects (iRxStatus
and iTxStatus), and panicking the client if it receives a second request
of the same type as an outstanding one. (Panicking is the right thing
to do here, as the client’s behavior indicates that it has a serious bug.)
Other device drivers, such as the local media sub-system, do allow
simultaneous requests of the same type to be issued, since a single
instance of a media driver may be servicing several file systems which
access different partitions on the disk. Such scenarios are handled by
forwarding the requests to an internal queue, from which any deferred
requests are handled when it is convenient to do so.

Here’s how asynchronous requests are handled in my example serial
driver:

TInt DSimpleSerialChannel::DoRequest(TInt aReqNo,
TRequestStatus* aStatus, TAny* a1, TAny* a2)

{
if(iStatus==EOpen)

Start();
else

return(KErrNotReady)

TInt r=KErrNone;
TInt len=0;
switch (aReqNo)

{
case RSimpleSerialChannel::ERequestRead:
{
if(iRxStatus)

{
Kern::ThreadKill(iClient,EExitPanic,
ERequestAlreadyPending,KLitKernExec);

return(KErrNotSupported);
}

if(a2)
r=Kern::ThreadRawRead(iClient,a2, &len,sizeof(len));

if(r==KErrNone)
{
iRxStatus=aStatus;
InitiateRead(a1,len);
}

break;
}

case RSimpleSerialChannel::ERequestWrite:
{

DEVICE DRIVERS 539

if(iTxStatus)
{
Kern::ThreadKill(iClient,EExitPanic,
ERequestAlreadyPending,KLitKernExec);

return(KErrNotSupported);
}

if(!a1)
a1=(TAny*)1;

r=Kern::ThreadRawRead(iClient,a2,&len,sizeof(len));
if(r==KErrNone)

{
iTxStatus=aStatus;
InitiateWrite(a1,len);
}

break;
}

default:
return KErrNotSupported;

}
return r;
}

Both ERequestRead and ERequestWrite requests follow the same
basic pattern. First, the status of the device is checked to determine if the
channel is currently open, and if so the hardware is prepared for data
transfer by calling ::Start():

void DSimpleSerialChannel::Start()
{
if (iStatus!=EClosed)

{
PddConfigure(iConfig);
PddStart();
iStatus=EActive;
}

}

Since the configuration of a port is specific to the underlying hardware, a
call is made to the PDD to set up the required configuration:

void DComm16550::Configure(TCommConfigV01 &aConfig)
{
// wait for uart to stop transmitting
Kern::PollingWait(FinishedTransmitting,this,3,100);

// Select the UART, clear bottom two bits
iUart->SelectUart();

TUint lcr=0;
switch (aConfig.iDataBits)

{
case EData8:

540 DEVICE DRIVERS AND EXTENSIONS

lcr = T16550UartIfc::K16550LCR_Data8;
break;

// ... etc
}

switch (aConfig.iStopBits)
{
case EStop1: break;
case EStop2:
lcr |= T16550UartIfc::K16550LCR_Stop2;
break;

}
switch (aConfig.iParity)

{
case EParityEven:
lcr |=
T16550UartIfc::K16550LCR_ParityEnable |

T16550UartIfc::K16550LCR_ParityEven;
break;

// ... etc
}

iUart->SetLCR(lcr|K16550LCR_DLAB);
iUart->SetBaudRateDivisor(BaudRateDivisor[(TInt)aConfig.iRate]);
iUart->SetLCR(lcr);
iUart->SetFCR(T16550UartIfc::K16550FCR_Enable |

T16550UartIfc::K16550FCR_RxReset |
T16550UartIfc::K16550FCR_TxReset |
T16550UartIfc::K16550FCR_TxRxRdy |
T16550UartIfc::K16550FCR_RxTrig8);

}

Notice the use of the Kern::PollingWait() API. I don’t want to
change the port configuration while the UART is transmitting, as this
may lead to lost or badly formed data. Since there can be at most
16 bytes of data outstanding (the size of my TX FIFO), then I may
simply poll the FIFO until it is fully drained. But rather than waste
power and CPU cycles doing this in a code loop, I would prefer
that the current thread be put to sleep for a while before checking
the status again. The Kern::PollingWait() API allows me to do
this. It first checks the supplied polling function (FinishedTrans-
mitting()) before sleeping the current thread for the specified poll
interval (100 mS). This process is repeated until the poll period expires or
the polling function returns ETrue. Be aware that if you are using
this API (or any other method of polling which sleeps the current
thread) then all the other drivers sharing the DFC thread will also be
blocked until the poll is complete. You should take care to ensure that
you don’t inadvertantly affect the operation of other drivers in the sys-
tem – particularly if you are running within any of the standard kernel
threads.

Similarly, it is the responsibility of the PDD to set up and enable any
interrupt-specific configuration:

DEVICE DRIVERS 541

TInt DComm16550::Start()
{
// if EnableTransmit() called before Start()
iTransmitting=EFalse;
iUart->SetIER(T16550UartIfc::K16550IER_RDAI |

T16550UartIfc::K16550IER_RLSI |
T16550UartIfc::K16550IER_MSI);

Interrupt::Enable(iInterruptId);
return KErrNone;
}

Once the hardware is successfully configured, DSimpleSerialChan-
nel::DoRequest() determines the actual request to be handled
(ERequestRead or ERequestWrite) and reads the corresponding
request parameters.from user space in exactly the same way as I described
when I looked at the handling of synchronous requests in the previous
section.

If you refer back to my original definition of the RSimpleSeri-
alChannel API in Section 12.4.6.1, you can see that the message
parameters consist of a TRequestStatus object, a 32-bit length (allo-
cated on the user-side stack), and a pointer to a user-side descriptor.
These are represented by the aStatus, a1 and a2 parameters respec-
tively. Before starting the request, I must first obtain the length parameter
from the user-side stack using the Kern::ThreadRawRead() API,
because the stack will go out of scope once the request has been
issued (see Section 12.4.6.1 for the implementation of RSimpleSeri-
alChannel::DoRead()). The client-side descriptor (passed in the a2
parameter) is extracted in a similar manner inside the call to Ini-
tiateRead() or InitiateWrite(). The implementation of these
functions is not shown here, but the same principle applies – the pointer
to the user-side data must be safely obtained before the request com-
pletes since the user-side stack may go out of scope once the request
is issued (the observant reader will notice that in our example user-
side function shown in Section 12.4.4 this will not happen because a
call to User::WaitForRequest() is made immediately after issuing
the request. However, this is a simplified use case – a real application
would make use of the active object framework, so you must ensure
that your device driver is designed to handle asynchronous requests
without making any assumptions as to the behavior of the user-side
application).

After the request parameters have been successfully read, the address
of the internal request status is stored (in iRxStatus or iTxStatus) so
the client can be signaled when the operation is complete. Finally, a call
to InitiateRead(a1,len) or InitiateWrite(a1,len) which
will start the asynchronous operation requested, eventually signaling the
client from a DFC when it has completed.

542 DEVICE DRIVERS AND EXTENSIONS

12.4.7.7 Cancelling asynchronous requests

If the client cancels the asynchronous operation that I described in the
previous section, the framework will issue a request with the special value
of KMaxTInt(0x7FFFFFFF).

Looking back at Section 12.4.7.4 you can see how the request gateway
function intercepted this request:

...
else if (id==KMaxTInt)
{
// DoCancel
DoCancel(m.Int0());
m.Complete(KErrNone,ETrue);
return;
}

The implementation of my DoCancel method is responsible for:

• Determining which operation is to be cancelled (specified in the first
message parameter)

• Tidying up resources specific to the request being cancelled, and
cancelling any outstanding DFCs or timers

• Signaling the client that the operation has been cancelled.

void DSimpleSerialChannel::DoCancel(TInt aMask)
{
TInt irq;
if(aMask&RSimpleSerialChannel::ERequestReadCancel)

{
iRxOutstanding=EFalse;
iNotifyData=EFalse;
iRxDesPtr=NULL;
iRxDesPos=0;
iRxLength=0;
iRxError=KErrNone;
iRxOneOrMore=0;
iRxCompleteDfc.Cancel();
iRxDrainDfc.Cancel();
iTimer.Cancel();
iTimerDfc.Cancel();
Complete(ERx,KErrCancel);
}

if(aMask&RSimpleSerialChannel::ERequestWriteCancel)
{
irq=DisableIrqs();
iTxPutIndex=0;
iTxGetIndex=0;
iTxOutstanding=EFalse;
iTxDesPtr=NULL;
iTxDesPos=0;

DEVICE DRIVERS 543

iTxDesLength=0;
iTxError=KErrNone;
RestoreIrqs(irq);
iTxCompleteDfc.Cancel();
iTxFillDfc.Cancel();
Complete(ETx,KErrCancel);
}

}

12.4.7.8 Closing the device driver

When the client has finished with the device driver, an ECloseMsg will
be dispatched to our message handler to allow the driver to tidy free
up resources and perform other hardware-specific operations before the
channel is finally destroyed (see Section 12.4.7.3):

void DSimpleSerialChannel::Shutdown()
{
if (iStatus == EActive)

Stop();

Complete(EAll, KErrAbort);

iRxDrainDfc.Cancel();
iRxCompleteDfc.Cancel();
iTxFillDfc.Cancel();
iTxCompleteDfc.Cancel();
iTimer.Cancel();
iTimerDfc.Cancel();
}

This is similar to the behavior I described in the previous section, when
I talked about the cancellation of an asynchronous request. However,
there are some fundamental differences:

• The hardware interface is shut down, using ::Stop()

• All outstanding requests are completed with KErrAbort.

Note also that I do not worry about clearing down any of my member
data, since this will be the last message to be received before the channel
is finally deleted.

12.4.7.9 Summary

In this section I have discussed the DLogicalChannel framework
using a simple serial device driver as an example. I’ll now conclude by
discussing some of the differences between the EKA1 and EKA2 device
driver frameworks.

544 DEVICE DRIVERS AND EXTENSIONS

12.5 Differences between EKA1 and EKA2

Before concluding this chapter, I will discuss the fundamental differences
between the EKA1 and EKA2 device driver models. I do not intend to
explain how to port an existing device driver from EKA1 to EKA2 – please
refer to the Device Driver Kit (DDK) documentation, which is available
to Symbian Partners, for a detailed explanation of how to do this.

The device driver model in EKA2 has not changed that much from
EKA1. EKA1’s model was based on the LDD and the PDD and shares
such concepts as the LDD factory, the logical channel, the PDD factory
and the physical channel with EKA2. The differences are in the detail of
how the model is implemented.

The main change is in the way user-side requests are routed and
handled kernel side. As you’ve seen, in EKA2 requests from user-side
clients can be executed in the context of a DFC running in a separate
kernel-side thread. This means that code running kernel-side can now
block – in EKA1 this would have halted the system.

12.5.1 Changes to the user-side API
Both EKA1 and EKA2 use the RBusLogicalChannel class to provide
the client-side API to a device driver. On EKA1, this is defined as follows:

class RBusLogicalChannel : public RHandleBase,
public MBusDev

{
protected:

IMPORT_C TInt DoCreate(const TDesC& aDevice,const TVersion& aVer,
const TDesC* aChan,TInt aUnit,const TDesC* aDriver,

const TDesC8* anInfo,TOwnerType aType=EOwnerProcess);
IMPORT_C void DoCancel(TUint aReqMask);
IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus);
IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus,TAny* a1);
IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus,TAny*

a1,TAny* a2);
IMPORT_C TInt DoControl(TInt aFunction);
IMPORT_C TInt DoControl(TInt aFunction,TAny* a1);
IMPORT_C TInt DoControl(TInt aFunction,TAny* a1,TAny* a2);
IMPORT_C TInt DoSvControl(TInt aFunction);
IMPORT_C TInt DoSvControl(TInt aFunction,TAny* a1);
IMPORT_C TInt DoSvControl(TInt aFunction,TAny* a1,TAny* a2);

private:
TInt CheckBusStatus();
TInt DoCheckBusStatus(TInt aSocket);
};

This defines four separate types of device driver call:

• RBusLogicalChannel::DoControl – perform a synchronous
device driver function

DIFFERENCES BETWEEN EKA1 AND EKA2 545

• RBusLogicalChannel::DoSvControl – perform a synchronous
device driver function in the kernel server context

• RBusLogicalChannel::DoRequest – initiate an asynchronous
device driver operation

• RBusLogicalChannel::DoCancel – prematurely terminate an
asynchronous device driver operation.

As I described in Section 12.4.6.4, there is little distinction between these
operations in EKA2, since all calls are routed to a single gateway function.
However, to reduce the effort involved in porting a device driver from
EKA1 to EKA2, we have maintained the binary compatibility of this
interface (but not the source compatibility). Here’s the EKA2 version of
the RBusLogicalChannel class in full:

class RBusLogicalChannel : public RHandleBase
{

public:
IMPORT_C TInt Open(RMessagePtr2 aMessage,TInt aParam,TOwnerType

aType=EOwnerProcess);
IMPORT_C TInt Open(TInt aArgumentIndex, TOwnerType

aType=EOwnerProcess);
protected:

inline TInt DoCreate(const TDesC& aDevice, const TVersion& aVer,
TInt aUnit, const TDesC* aDriver, const TDesC8* anInfo,

TOwnerType aType=EOwnerProcess, TBool aProtected=EFalse);
#ifndef __SECURE_API__

IMPORT_C TInt DoCreate(const TDesC& aDevice,const TVersion& aVer,
const TDesC* aChan,TInt aUnit,const TDesC* aDriver,

const TDesC8* anInfo,TOwnerType aType=EOwnerProcess);
#endif

IMPORT_C void DoCancel(TUint aReqMask);
IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus);
IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus,TAny* a1);
IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus,TAny*

a1,TAny* a2);
IMPORT_C TInt DoControl(TInt aFunction);
IMPORT_C TInt DoControl(TInt aFunction,TAny* a1);
IMPORT_C TInt DoControl(TInt aFunction,TAny* a1,TAny* a2);
IMPORT_C TInt DoSvControl(TInt aFunction);
IMPORT_C TInt DoSvControl(TInt aFunction,TAny* a1);
IMPORT_C TInt DoSvControl(TInt aFunction,TAny* a1,TAny* a2);
private:
IMPORT_C TInt DoCreate(const TDesC& aDevice, const TVersion& aVer,

TInt aUnit, const TDesC* aDriver, const TDesC8* aInfo, TInt aType);
private:

// Padding for Binary Compatibility purposes
TInt iPadding1;
TInt iPadding2;
};

Note in particular that, on EKA1 any allocation or freeing of memory on
the kernel heap must occur within the kernel server, hence the use of

546 DEVICE DRIVERS AND EXTENSIONS

the DoSvControl() API. On EKA2, any device driver can now allocate
and free memory on the kernel heap providing that either it runs in the
context of a kernel-side thread, or, if it runs in the context of a user-side
thread it enters a critical section before performing the heap operation
by calling NKern::ThreadEnterCS(). However, to make porting a
device driver from EKA1 to EKA2 easier we have maintained this API.

The EKA2 version of RBusLogicalChannel contains eight padding
bytes to maintain binary compatibility with existing EKA1 clients. These
bytes correspond to the member data contained within the now depre-
ciated MBusDevClass from which the EKA1 version of RBusLogi-
calChannel was derived.

In summary, here’s how these operations translate into kernel-side
calls on EKA1 and EKA2:

User-side API –
RBusLogicalChannel

DoControl(aFn)
DoControl(aFn, a1)
DoControl(aFn, a1, a2)

DoSvControl(aFn)
DoSvControl(aFn, a1)
DoSvControl(aFn, a1, a2)

DoRequest(aFn, aStat)

DoRequest(aFn, aStat, a1)

DoRequest(aFn, aStat, a1, a2)

DoCancel(aReqMask)

EKA1–Kernel-side
DLogicalChannel

DoControl(aFn, 0, 0)
DoControl(aFn, a1, 0)
DoControl(aFn, a1, a2)

DoControl(aFn, 0, 0)
DoControl(aFn, a1, 0)
DoControl(aFn, a1, a2)

DoRequest(aFn, 0, 0)

DoRequest(aFn, a1, 0)

DoRequest(aFn, a1, a2)

DoCancel(aReqMask)

EKA2–Kernel-side
DLogicalChannelBase

Request(aFn, 0, 0)
Request(aFn, a1, 0)
Request(aFn, a1, a2)

Request(aFn, 0, 0)
Request(aFn, a1, 0)
Request(aFn, a1, a2)

Request(~ aFn,
&aStat, &A[0, 0])

Request(~ aFn,
&aStat,&A[a1, 0])

Request(~ aFn,
&aStat, &A[a1, a2])

Request(0x7FFFFFFF,
aReqMask, 0)

This highlights a fundamental difference between the EKA1 and EKA2
device driver models – the kernel no longer stores the TRequestStatus
pointers (aStat) on your behalf for pending asynchronous operations.
There is no limit to the number of outstanding requests that can be
handled by a device driver on EKA2, so it is your responsibility as a
device driver writer to maintain a list of outstanding requests should you
need this functionality.

DIFFERENCES BETWEEN EKA1 AND EKA2 547

RBusLogicalChannel

DoSvControl() DoControl() DoRequest() DoCancel()

Client thread

DoControl() DoRequest() DoCancel()

Driver's logical channel class

user
kernel

EKA1

RBusLogicalChannel

DoSvControl() DoControl() DoRequest() DoCancel()

Client thread

Request()

DLogicalChannel

user
kernel

EKA2

Driver's logical channel class

HandleMsg()

DoControl() DoRequest() DoCancel()

Driver's
DFC thread

Figure 12.11 Comparison of the EKA1 and EKA2 device driver models

548 DEVICE DRIVERS AND EXTENSIONS

12.5.2 Choice of device driver model

In EKA1, the functions DoControl(),DoRequest() and DoCancel()
that you implemented in your logical channel class all ran in the context
of the user-side thread. On EKA2, you have the choice of implementing a
device driver based on DLogicalChannelBase (in which case requests
run in the context of the client thread) or DLogicalChannel (in which
case requests run in a DFC in the context of a kernel-side thread as shown
in Figure 12.11).

When porting a device driver from EKA1 to EKA2, you may find it
easier to use the functionality provided by the DLogicalChannel class,
as this helps to avoid synchronization issues by handling all requests in
the context of a single thread. If you follow the pattern I described in
Section 12.4.7.4, you can simplify migration to the new device driver
model by implementing your HandleMsg() to determine the type of
request, and then call your existing DoControl(), DoCancel() and
DoRequest() functions. Of course, you can now rename these, giving
them any name you wish, as the names are no longer mandated by the
device driver framework.

In EKA1, you could access user memory directly from your kernel-side
code. Although this is exceedingly bad practice, it does work. In EKA2,
you are unlikely to get away with it as the kernel may (depending on
memory model) panic the system with KERN-EXEC 3). You must ensure
that you follow the rules set out in Section 12.1.5.

12.5.3 More detailed API changes

In previous sections I have described the fundamental differences between
the EKA1 and EKA2 device driver models, but this is in no way a definitive
list. For a more detailed discussion of the changes between EKA1 and
EKA2 device driver models, please refer to the DDK (available to Symbian
Partners).

12.6 Summary

In this chapter I have introduced kernel extensions and device drivers. I
have shown how these are managed by the kernel framework and might
be implemented by a device driver provider using a simple serial driver
as an example. Next I will take a look at the support that Symbian OS
provides for peripherals such as MultiMediaCard and USB.

13
Peripheral Support

by Peter Scobie

The nice thing about standards is that there are so many of them to
choose from.

Andrew Tannenbaum

In this chapter, I begin by describing more of the services available to
device drivers. Then I go on to describe a number of specific device driver
implementations – among them media drivers, the MultiMediaCard driver
and the USB driver.

The first service, one that device drivers frequently make use of, is
direct memory access, or DMA.

13.1 DMA

13.1.1 DMA hardware

DMA hardware allows data to be transferred between a peripheral and
system memory without the intervention of the processor. It is used to ease
the burden on the processor of servicing peripherals that produce frequent
interrupts. This applies equally to transfers involving data received by the
phone (data taken from the peripheral and stored in a buffer) or data
transmitted by the phone (data taken from a buffer and pushed to the
peripheral).

A hardware DMA controller manages a set of DMA channels, each
channel providing one direction of communication between the memory
and the peripheral (either transmit or receive). Because of this, full duplex
communication with a peripheral requires the use of two channels. Many
controllers also support DMA transfer directly from one area of system
memory to another.

Individual DMA transfer requests can be set up on each channel.
These requests can involve a considerable amount of data – an amount

550 PERIPHERAL SUPPORT

that would otherwise involve the processor servicing a series of interrupts.
But the use of DMA means that only one processor interrupt is generated,
at the end of the transfer. For certain types of peripheral data transfer, such
as bulk transfer over full-speed USB, the use of DMA becomes essential
to avoid the CPU consuming an excessive proportion of its available
bandwidth servicing interrupts.

Symbian OS phones normally provide one or more DMA channels
dedicated to the LCD controller, for the transfer of pixel data between a
frame buffer and the LCD interface. The LCD controller typically manages
these DMA resources itself and they are not available to the main Symbian
OS DMA framework, which I am about to describe.

In addition to these LCD channels, most phone platforms provide
a limited number of general-purpose DMA channels. Platforms have
differing strategies on how these channels are allocated. Some may fix
the allocation of each DMA channel to a particular peripheral. Others
allow ‘‘dynamic’’ allocation. This second method provides a pool of
DMA channels that can be allocated to any peripheral on a first-come
first-served basis. This could allow the platform to provide DMA services
to more peripherals than there are DMA channels – assuming that device
drivers free up DMA channels when they are not in use. With this scheme,
however, there is a risk that a device driver might request a DMA channel
but find that none are free. So the Symbian OS software framework
normally fixes the allocation of DMA channels to particular devices, even
when the hardware does not impose this.

Normally, DMA hardware reads and writes directly to physical address
space, bypassing the MMU. Let’s examine the simplest type of DMA
request involving a one-shot transfer to or from a single, physically
contiguous memory region. In this case, the DMA channel is supplied
with information on the transfer source and destination (each being either
a physical memory address or a peripheral identifier), together with the
number of bytes to transfer. The request is initiated and the controller
interrupts the processor once either the transfer completes successfully,
or an error occurs.

DMA controllers often provide support for data to be transferred as a
continuous stream as well as a one-shot transfer. This requires more than
one set of transfer registers for each channel, allowing a double-buffer
scheme to be employed. While the controller is transferring data using
one set of registers, the software can simultaneously be programming
the second set ready for the next transfer. As soon as the first transfer
completes, the controller moves on to process the second one, without
interrupting data flow. At the same time the controller signals the end
of the first transfer with an interrupt, which signals the software to begin
preparing the third – and so on.

Some DMA controllers support scatter-gather mode. This allows a
DMA channel to transfer data to and from a number of memory locations

DMA 551

that aren’t contiguous, all as a single request. The control software has
to supply information to the DMA controller, describing the transfer as a
linked list of data structures, each specifying part of the transfer. These
data structures are known as descriptors. (Not to be confused with the
same term widely used in Symbian OS to refer to the family of TDesC
derived classes!) The DMA controller acts on each descriptor in turn, and
only interrupts the processor at the end of the descriptor chain. Some
controllers allow the descriptor chain to be extended while transfer is in
progress – another way to facilitate uninterrupted data transfer.

Figure 13.1 shows a setup for scatter-gather DMA transfer from two
disjoint blocks of memory into a peripheral.

Source Address

Dest. Address

Transfer length

Next descriptor

Source Address

Dest. Address

Transfer length

End of list mark
Descriptor pool

Block A

Block B

Peripheral
DMA

Controller

System Memory

Scatter-gather list

Descriptor
address
register

Figure 13.1 Scatter-gather DMA transfer

The scatter-gather list contains two linked descriptors – each providing
information on one of the blocks. This list is supplied by the control
software, which also loads a descriptor address register in the DMA
controller with the address of the first descriptor. The actual descriptor
format is generally hardware dependent and often more complex than
that shown in the diagram. For example, it may contain information on
the addressing mode for the source and destination addresses.

For each channel that involves peripheral-related DMA transfer, the
controller normally has to be programmed with information on the burst
size and port width of the peripheral. Burst size is the amount of data that

552 PERIPHERAL SUPPORT

has to be transferred to service each individual DMA request from the
peripheral device. Many peripherals employ a FIFO buffer and for these,
the burst size depends on the size of the FIFO and the threshold level
within the FIFO that triggers a DMA request from it (for example, FIFO
half-empty or quarter-empty). The port width specifies the granularity of
data transfer (for example, byte, half-word and so on).

13.1.2 DMA software framework

Symbian OS provides kernel-side DMA services through its DMA frame-
work. We leave the choice of whether or not a particular device will
use DMA for data transfer to the developers who are creating a new
phone platform – and because of this, the consumers of this service are
generally components such as physical device drivers (PDDs) and the
platform-specific layers of peripheral bus controllers (see Section 13.4).
The framework itself is divided into a platform-independent layer (PIL)
and a platform-specific layer (PSL), with both parts being combined
into the kernel-side DLL, DMA.DLL. As with most platform-specific
components, the PSL interfaces with the controller hardware via func-
tions exported from the variant or ASSP DLL. Figure 13.2 shows this
arrangement.

Physical Device
Driver (PDD)

Platform Independent Layer

Platform Specific Layer

ASSP / Variant

DMA Controller

Physical Device
Driver (PDD)

DMA framework
(DMA.DLL)

kernel
hardware

Figure 13.2 DMA.DLL

DMA 553

DMA support may be required by certain peripheral services that are
started at system boot time. Because of this, the DMA framework is
implemented as a kernel extension and is normally one of the first of
these to be initialized by the kernel.

Drivers may request a transfer involving a memory buffer that is
specified in terms of its linear address. As I explained in Chapter 7,
Memory Models, this contiguous linear memory block is often made up
of non-contiguous physical areas. Even when a transfer request involves
a physically contiguous region of memory, the total length of the trans-
fer may exceed the maximum transfer size that the underlying DMA
controller supports. You don’t need to worry about this though – the
Symbian OS DMA framework performs any fragmentation necessary, due
either to requests exceeding the maximum transfer size, or to buffers
not being physically contiguous. The framework specifies each fragment
with a separate descriptor. If the controller doesn’t support scatter-gather
then each fragment has to be handled by the framework as a separate
DMA transfer – but the framework insulates the device driver from this
detail, by only signaling completion back to the driver at the end of the
entire transfer.

Figure 13.3 shows a diagram of the classes that make up the DMA
framework.

TDmac

TDmaChannel

SDmaDesHdr

SDmaDesHdr

SDmaDesHdr

TDmaSgChannelTDmaDbChannelTDmaSbChannel

TPlatSgChannelTPlatDmac SPlatDmaDesc

DDmaRequest

iController

PIL

PSL

1 niChannels

1

n

iCurHdr

iChannel

iReqQ

iFirstHdr

iNext

iLastHdr

1

n

Figure 13.3 Class diagram for the DMA framework

The framework includes the singleton TDmac, which is the abstraction
of the DMA controller. This object manages all the DMA channels and
defines the main interface between the PIL and PSL. It is an abstract class
with each phone platform deriving a controller object from it. This is
shown as TPlatDmac on the diagram.

554 PERIPHERAL SUPPORT

TDmaChannel is the base class for a DMA channel. We derive three
different channel classes from this as follows:

• TDmaSbChannel – a single-buffer DMA channel

• TDmaDbChannel – a double-buffer DMA channel

• TDmaSgChannel – a scatter-gather DMA channel.

These in turn are base classes, and the programmers creating a new phone
platform will derive a platform-specific channel object from whichever of
these is appropriate for the buffering scheme that the controller hardware
provides. In the diagram, I’ve assumed scatter-gather mode and shown it
as TPlatSgChannel. When the DMA framework extension is initialized
at system boot time, an instance of this derived channel class is created
for each general-purpose hardware channel that the controller manages.

The TDmaChannel class is one of the two major elements of the DMA
API provided to device drivers. (The other is the DDmaRequest class
that I will introduce later.) The main public parts of this class and data
members are as follows:

class TDmaChannel
{

public:
// Information passed by client when opening channel

struct SCreateInfo
{
/** ID used by PSL to select channel to open */
TUint32 iCookie;
/** Number of descriptors this channel can use. */
TInt iDesCount;
/** DFC queue used to service DMA interrupts. */
TDfcQue* iDfcQ;
/** DFC priority */
TUint8 iDfcPriority;
};

public:
static TInt Open(const SCreateInfo& aInfo, TDmaChannel*& aChannel);
void Close();
void CancelAll();
inline TBool IsOpened() const;
inline TBool IsQueueEmpty() const;

protected:
TDmac* iController; //DMAC this channel belongs to.
TDfc iDfc; //Transfer complete/failure DFC.
SDmaDesHdr* iCurHdr; //Fragment being transferred.
SDblQue iReqQ; //Being/about to be transferred request queue.
TInt iReqCount; //Number of requests attached to this channel
};

The TDmaChannel class has a pointer to the controller object that
manages the channel: iController. It also owns a DFC object iDfc,
which is called whenever a request for this channel completes.

DMA 555

Next I will describe the public TDmaChannel methods:

static TInt Open(const SCreateInfo& aInfo, TDmaChannel*& aChannel);

This static method opens the DMA channel identified by the infor-
mation supplied within the parameter aInfo. If the controller is able to
open the channel successfully, then it returns a pointer to the appropriate
channel object in aChannel. A device driver must open each channel
that it needs to use – it normally attempts this in its initialization. You
can see the format of the structure passed by the driver in the class
definition I’ve just given – it includes a 32-bit channel identifier, which
the platform-specific layer uses to identify the corresponding channel
object. The rest of the information in the structure specifies the channel
configuration. This includes the queue that is to be used for the chan-
nel’s DFC, and the priority of this DFC relative to others in the same
kernel thread.

It is normal for a driver to close any DMA channels used when it has
finished with them. It generally does this when the driver itself is being
closed using the channel method:

void Close();

A channel should be idle when it is closed. The following channel
method is used to cancel both current and pending requests:

void CancelAll();

The framework uses descriptor objects to hold transfer request infor-
mation, whether or not the controller supports scatter-gather. Con-
trollers that do support scatter-gather need the descriptor information
to be supplied in a format that is specific to that particular hard-
ware controller. This is shown as the SPlatDmaDesc structure on
the diagram. If the controller doesn’t support scatter-gather, then the
framework uses a default descriptor structure, SDmaPseudoDes (not
shown on the diagram). The pseudo descriptor contains the follow-
ing information listed. Hardware-specific descriptors generally contain
similar information:

1. Transfer source location information. This can be either the address of
a memory buffer or a 32-bit value identifying a particular peripheral.
For memory addresses, this may hold either the linear or physical
address of the buffer

2. Transfer destination location information (same format as 1)

556 PERIPHERAL SUPPORT

3. The number of bytes to be transferred

4. General information, such as whether the source/destination is a
memory address or a peripheral identifier, whether memory addresses
contain linear or physical addresses and whether these need to be
post-incremented during transfer

5. 32-bits of PSL-specific information provided by the client.

For controllers that do support scatter-gather, because the hardware
imposes the structure of the descriptor, it is difficult to include any addi-
tional descriptor information required by the framework alone. Therefore,
the framework associates a separate descriptor header with each descrip-
tor. This is the SDmaDesHdr structure. The descriptor header is generic
and the PIL manipulates descriptors via their associated header. The
framework still creates associated descriptor headers even when pseudo
descriptors are used.

Each time a driver opens a channel, it has to supply information
on the number of descriptors that the framework should reserve for
it. This depends on the buffering scheme being used and the maxi-
mum number of DMA requests that are likely to be outstanding at any
time.

The class DDmaRequest encapsulates a DMA request over a channel.
This is the second main element of the DMA device driver API. The main
public parts of this class and data members are as follows:

class DDmaRequest : public DBase
{

public:
// Signature of completion/failure callback function
typedef void (*TCallback)(TResult, TAny*);

public:
DDmaRequest(TDmaChannel& aChannel, TCallback aCb=NULL,

TAny* aCbArg=NULL, TInt aMaxTransferSize=0);
∼DDmaRequest();
TInt Fragment(TUint32 aSrc, TUint32 aDest, TInt aCount,

TUint aFlags, TUint32 aPslInfo);
void Queue();

public:
TDmaChannel& iChannel; //Channel this request is bound to
TCallback iCb; //Called on completion/failure
TAny* iCbArg; //Callback argument
TInt iDesCount; //Number of fragments in list
SDmaDesHdr* iFirstHdr; //The first fragment in the list.
SDmaDesHdr* iLastHdr; //The last fragment in the list.
};

Typically a driver will allocate itself one or more request objects for each
channel that it has open. The constructor for the DDmaRequest class is

DMA 557

as follows:

DDmaRequest(TDmaChannel& aChannel, TCallback aCb=NULL, TAny* aCbArg=NULL,
TInt aMaxTransferSize=0);

In constructing a request object, the driver must specify the channel
with which it is to be used: aChannel. It must also supply a call-
back function, aCb, which the channel DFC will call when the request
completes (either following successful transfer or due to an error). The
next parameter, aCbArg, is a driver-specified argument that will be
saved by the framework and passed as an argument into the callback
function. Often a device driver will pass in a pointer to itself, allow-
ing the callback function to access driver member functions when it is
invoked. The final parameter, aMaxTransferSize, is used if the driver
needs to specify the maximum fragment size to be applied during the
transfer. If the driver does not specify this, then the transfer size defaults
to the maximum transfer size that the DMA controller supports, so this
parameter is only used when a particular peripheral needs to impose a
smaller limit.

Section 13.2.6.1 contains example code showing how a driver might
open a DMA channel and construct a request object.

To initiate a DMA transfer, the driver supplies the transfer details and
then queues the request object on the channel. Each channel maintains
a queue of transfer requests, TDmaChannel::iReqQ. Once a transfer
request is complete, the framework de-queues it and invokes the request
callback function. The driver is then able to reuse the request object for
a subsequent transfer.

A driver is able to queue a series of requests on a channel and,
if the channel supports double buffering or scatter-gather, then the
framework will manage these so that they are transferred as an unin-
terrupted stream. However, the framework does continue to invoke
each request callback as each request is completed. It’s worth noting
that the DMA device driver API does not allow a driver to specify a
transfer that involves two or more disjoint memory buffers as a sin-
gle DMA request. But, as I have just explained, if the driver queues
separate requests for each memory buffer, the framework can take
advantage of a scatter-gather facility to transfer these as an uninter-
rupted stream.

If a channel is being used to transfer an uninterrupted stream of data,
then the channel request queue may contain several requests – the first
being the one in progress, and those remaining being pending requests.
Information on the total number of requests queued on a channel at any
time is held in its data member, TDmaChannel::iReqCount.

Before a request is queued, the driver has to specify the details of the
transfer and then allow the framework to analyze these and possibly split

558 PERIPHERAL SUPPORT

the overall request into a list of smaller transfer fragments. To do this, the
driver calls the following method:

TInt Fragment(TUint32 aSrc, TUint32 aDest, TInt aCount, TUint aFlags,
TUint32 aPslInfo);

Arguments aSrc and aDest specify the transfer source and destination
respectively. Each of these can be a linear address, a physical address or
a 32-bit value identifying a particular peripheral. This format is specified
by bit masks in the argument aFlags, which also indicates whether
memory addresses need to be post-incremented during transfer. Argument
aCount holds the number of bytes to transfer and clients may use
aPslInfo to specify 32-bits of PSL-specific information.

Where these request arguments specify a memory buffer in terms of
its linear address, this contiguous linear memory block may consist of
non-contiguous physical areas. In such cases, the fragmentation means
that the framework must split this area into smaller, physically contiguous,
fragments. Later, in Section 13.1.3, I will discuss methods that you can
use to avoid the need for this fragmentation, with the driver allocating
memory buffers that are physically contiguous.

The framework may also have to split large transfers into a series of
smaller fragments – each being smaller than or equal to the maximum
transfer size.

In this way, the framework breaks up the request into a series of
descriptors, each specifying how to transfer one fragment. Each descriptor
has an associated descriptor header, and these headers are formed into
a linked list. The transfer request object contains pointers to the first and
last headers in this list: iFirstHdr and iLastHdr respectively. When
there is more than one request queued on the channel, then the headers
of all the requests are linked together into a single linked list. During
transfer, the channel maintains a pointer to the header corresponding to
the descriptor currently being transferred, TDmaChannel::iCurHdr.
To illustrate this arrangement, Figure 13.4 shows a channel with a three-
fragment request being transferred, and a two-fragment request pending.
The fragment that is currently being transferred is the last one of the first
request.

Once a request has been fragmented, the driver needs to queue it on
its associated channel:

void Queue();

If this channel is idle, the framework transfers the request immediately;
otherwise it stores it on a queue for transfer later. Once the transfer
completes, either successfully or with an error, the framework executes

DMA 559

TDmaChannel

DDmaRequest

DDmaRequest

SDmaDesHdr

SDmaDesHdr

SDmaDesHdr

SDmaDesHdr

SDmaDesHdr SPlatDmaDesc

SPlatDmaDesc

SPlatDmaDesc

SPlatDmaDesc

SPlatDmaDesc

iFirstHdr

iReqQ

iCurHdr

iLastHdr

iFirstHdr

iLastHdr

iNext

iNext

iNext

iNext

Figure 13.4 Transferring fragmented requests

the callback function associated with the request object. Here the driver
should check and handle any transfer errors and queue another DMA
transfer if it needs to.

Section 13.2.6.3 contains example code showing how a driver might
perform a DMA data transfer.

If you are working with DMA, you need to pay special attention to
the way in which you handle data transfers that turn out to be shorter
than the requested length, leaving the DMA request outstanding. This is
most likely to happen on DMA reads (that is, transfers from peripheral to
memory buffer). The normal way in which you would handle this is to
timeout the transfer after an appropriate period, at which point the DMA
transfer is cancelled. You may then need to initiate the retransmission of
the entire data sequence. Alternatively it may be necessary to recover any
data that has been transferred to the buffer. If the amount received is not
an exact multiple of the burst size, then there may also be data residing
in the peripheral FIFO (in other words, trailing bytes).

13.1.3 Memory allocation for DMA transfer
The DMA framework is not responsible for managing the memory buffers
used for the DMA transfer. This is left to the users of the framework.

560 PERIPHERAL SUPPORT

You can’t safely perform DMA transfer directly to or from memory that
has been allocated to a user process in the normal way – that is, to user
chunks. There are a number of reasons for this:

1. While a DMA transfer is in progress to the user chunk, the owning
user process might free the memory – or the kernel might do so,
if the process dies. This is a problem because the freed memory
could be reused for other purposes. Unaware of the reallocation, the
DMA controller would continue with the transfer, using the physical
addresses supplied, and trash the contents of the newly allocated
memory. You can overcome this problem by ensuring that the driver
opens the chunk representing the user memory for the duration of
the transfer – but this can be inefficient

2. A process context switch may change the location of the memory. To
be suitable for DMA, the memory needs to be available to the kernel
at a fixed location

3. The peripheral may mandate DMA to a specific physical memory
region and the allocation of user-mode memory doesn’t allow this
attribute to be specified

4. Since the DMA controller interfaces directly with the physical address
space, it bypasses the MMU, cache and write buffer. Hence, it is
important to ensure that DMA memory buffer and cache are coherent.
One way to achieve this is to disable caching in the buffers used for
DMA transfer. Again, the allocation of user-mode memory doesn’t
allow these caching and buffering options to be specified.

You can avoid all these problems by allocating the DMA buffers kernel-
side, and so it is usual for device drivers that support DMA to do the
allocation of memory that is to be used for DMA transfers themselves.

The example code that follows shows how a driver would use a
hardware chunk to allocate a buffer that is non-cacheable and non-
bufferable to avoid cache incoherency issues. This creates a global
memory buffer – accessible kernel-side only. By using RAM pages that are
physically contiguous, this also avoids the issue of memory fragmentation.

TUint32 physAddr=0;
TUint32 size=Kern::RoundToPageSize(aBuffersize);

// Get contiguous pages of RAM from the system’s free pool
if (Epoc::AllocPhysicalRam(size,physAddr) != KErrNone)
return(NULL);

// EMapAttrSupRw – supervisor read/write, user no access
// EMapAttrFullyBlocking – uncached, unbuffered

DPlatChunkHw* chunk;

DMA 561

if(DPlatChunkHw::New(chunk,physAddr,
size,EMapAttrSupRw|EMapAttrFullyBlocking) != KErrNone)
{
Epoc::FreePhysicalRam(physAddr,size);
return(NULL);
}

TUint8* buf;
buf=reinterpret_cast<TUint8*>(chunk->LinearAddress());

On the other hand, you may have reasons that make it preferable to
allocate DMA buffers that are cached – for instance if you want to per-
form significant data processing on data in the buffer. You can do this
using the same example code – but with the cache attribute EMapAt-
trFullyBlocking replaced with EMapAttrCachedMax. However,
to maintain cache coherency, you must then flush the cache for each
DMA transfer.

For a DMA transfer from cacheable memory to peripheral (that is, a
DMA write), the memory cache must to be flushed before transfer. The
kernel provides the following method for this:

void Cache::SyncMemoryBeforeDmaWrite(TLinAddr aBase, TUint aSize,
TUint32 aMapAttr);

For DMA transfer from peripheral to cacheable memory (that is, a DMA
read), the cache may have to be flushed both before and after transfer.
Again, methods are provided for this:

void Cache::SyncMemoryBeforeDmaRead(TLinAddr aBase, TUint aSize,
TUint32 aMapAttr);

void Cache::SyncMemoryAfterDmaRead(TLinAddr aBase, TUint aSize);

It’s worth pointing out that only kernel-side code can access the types
of hardware chunk I’ve described so far. So, if the ultimate source or
destination of a data transfer request is in normal user memory, you
must perform a two-stage transfer between peripheral and user-side
client:

1. DMA transfer between peripheral and device driver DMA buffer

2. Memory copy between driver DMA buffer and user memory.

Obviously a two-stage transfer process wastes time. How can it be
avoided? In the previous example buffer-allocation code, if you set the
access permission attribute to EMapAttrUserRw rather than EMapAt-
trSupRw, the driver creates a user-accessible global memory buffer. The
driver must then provide a function to report the address of this buffer as

562 PERIPHERAL SUPPORT

part of its user-side API. Note that you can’t make these chunks accessible
to just a limited set of user processes and so they are not suitable for use
when the chunk’s contents must remain private or secure.

A much more robust scheme for avoiding the second transfer stage is
for client and driver to use a shared chunk as the source or destination of
data transfer requests between peripheral and user accessible memory. I
will discuss this in the next section.

13.2 Shared chunks

As described in Section 7.3.1, chunks are the means by which memory
is allocated and made available to code outside of the memory model. In
Symbian OS, we represent chunks by DChunk objects, and we support
various types of these. I mentioned user chunks and hardware chunks
in the previous section, and discussed the problems with DMA transfer
involving these chunk types.

In this section I describe a third type of chunk – the shared chunk. These
provide a mechanism for device drivers to safely share memory buffers
with user-mode code. Shared chunks are only available on EKA2. They
should not be confused with global chunks, (created for example using
RChunk::CreateGlobal()) which are also accessible by multiple
user processes. However global chunks, being a type of user chunk, have
all the problems that I listed in the previous section when accessed by
device drivers.

Another type of chunk is the shared I/O buffer. These are supported
in EKA1, but deprecated in EKA2, and also allow memory to be safely
shared between kernel and user code. However, unlike shared chunks,
these buffers have the drawback that only one user-side process at a time
can open them. Another difference is that, for a user-side application to
access a shared chunk, it must create a handle for that chunk and assign
it to an RChunk object. For shared I/O buffers, there is no user-mode
representation. Instead the user process is generally just supplied with
an address and size for the buffer by the driver that performs the user
process mapping.

We represent a shared chunk with a DChunk object. This class is
internal to the kernel – it has no published methods – but instead the
Kern class publishes a set of methods for performing operations on shared
chunks. The following sections describe these methods and provide an
example of their use.

13.2.1 Creating a shared chunk

Only kernel-side code can create shared chunks, by using the follow-
ing function:

SHARED CHUNKS 563

TInt Kern::ChunkCreate(const TChunkCreateInfo& aInfo,
DChunk*& aChunk, TLinAddr& aKernAddr, TUint32& aMapAttr);

The argument aInfo is used to supply details of the attributes of the chunk
required. If chunk creation is successful, the function returns with aChunk
containing a pointer to the new chunk object. This object owns a region
of linear address space, but it is empty – the kernel has not committed
any physical RAM to it. You have to map either RAM or I/O devices
to the chunk before it can be used. The argument aKernAddr returns
the base address of this linear address space in the kernel process – only
kernel code can used this address. The argument aMapAttr returns
the mapping attributes that apply for the chunk created. The caller will
often save this value and pass it as an argument into the DMA cache
flushing functions described in Section 13.1.3. I will talk more about
these mapping attributes later in this section.

The structure TChunkCreateInfo is used to specify the attributes of
the required chunk. This is defined as follows:

class TChunkCreateInfo
{

public:
enum TType

{
ESharedKernelSingle = 9,
ESharedKernelMultiple = 10,
};

public:
inline TChunkCreateInfo();

public:
TType iType;
TInt iMaxSize;
TUint32 iMapAttr;
TUint8 iOwnsMemory;
TInt8 iSpare8[3];
TDfc* iDestroyedDfc;
TInt32 iSpare32[2];
};

The member iType specifies the type of shared chunk, which can be
one of the following values:

Type Description

EsharedKernelSingle A chunk that may only be opened by one
user-side process at a time.

EsharedKernelMultiple A chunk that may be opened by any number of
user-side processes.

564 PERIPHERAL SUPPORT

The member iMaxsize specifies the size of the linear address space
to reserve for the chunk.

The member iMapAttr specifies the caching attributes for the
chunk’s memory. This should be constructed from the cache/buffer val-
ues for the TMappingAttributes enumeration defined in the file
\e32 \include\memmodel\epoc\platform.h. Frequently used val-
ues are:

1. EMapAttrFullyBlocking for no caching

2. EMapAttrCachedMax for full caching.

However, it is possible that the MMU may not support the requested
caching attribute. In this case, a lesser attribute will be used, with this
being reported back to the caller of Kern::ChunkCreate() via the
parameter aMapAttr.

You should set the member iOwnsMemory to true if the chunk is to
own the memory committed to it. This applies where that memory is
RAM pages from the system’s free pool. If I/O devices will be committed
to the chunk or RAM set aside at system boot time, then iOwnsMemory
should be set to false.

You can supply a pointer to a DFC, iDestroyedDfc. This DFC is
then called when the chunk is destroyed.

The members iSpare8[3] and iSpare32[2] are reserved for future
expansion.

13.2.2 Destroying a shared chunk

Chunks are reference-counted kernel objects. When the kernel creates
them, it sets the reference count to one, and each subsequent open
operation increases this count by one. Closing a chunk decrements
the access count by one. When the count reaches zero, the chunk is
destroyed. Shared chunks are closed using the following function:

TBool Kern::ChunkClose(DChunk* aChunk);

The parameter aChunk is a pointer to the chunk that is to be closed. If
this results in the chunk object being destroyed then the function returns
true, otherwise it returns false.

The kernel may destroy chunks asynchronously, and so they may still
exist after the close function returns. If you need to know when a chunk
is actually destroyed, then you should supply a DFC when you create the
chunk, using the member iDestroyedDfc of the TChunkCreateInfo
argument. The kernel then queues the DFC when it finally destroys the
chunk, which is after the point when the kernel guarantees that the

SHARED CHUNKS 565

memory mapped by the chunk will no longer be accessed by any
program.

13.2.3 Committing memory to a shared chunk

Once a shared chunk has been created, you need to commit either RAM
or I/O devices to it before it can be used. We provide four functions
for this.

The first function that I show is used to commit a set of RAM pages with
physically contiguous addresses from the system’s free pool of memory:

TInt Kern::ChunkCommitContiguous(DChunk* aChunk, TInt aOffset, TInt aSize,
TUint32& aPhysicalAddress);

The argument aChunk is a pointer to the chunk into which the memory
should be committed.

The argument aSize holds the size of the region to commit, and
aOffset holds an offset within the chunk’s linear address space that
should become the start of the committed memory region. The units for
both these arguments are bytes and both must be a multiple of the MMU
page size. (Use the function Kern::RoundToPageSize(TUint32
aSize) to round up to the size of an MMU page).

On return, the final argument, aPhysicalAddress, is set to the
physical address of the first page of memory that has been committed.
This is useful for DMA transfer. By using aPhysicalAddress as a base,
you can specify memory locations within the committed area in terms
of physical address, saving the DMA framework from the overhead of
converting from a linear address.

This function can create a buffer within the shared chunk, which is
equivalent to the physically contiguous buffer created in the example
code in Section 13.1.3.

We provide a similar function, which commits an arbitrary set of RAM
pages from the system’s free pool. In this case these aren’t necessarily
physically contiguous:

TInt Kern::ChunkCommit(DChunk* aChunk, TInt aOffset, TInt aSize);

You can use a third function to commit a specified physical region to a
shared chunk. For example, a region that represents memory mapped I/O
or RAM that was set aside for special use at boot time:

TInt Kern::ChunkCommitPhysical(DChunk* aChunk, TInt aOffset, TInt aSize,
TUint32 aPhysicalAddress);

566 PERIPHERAL SUPPORT

The first three arguments are identical to those described for the first
version of the function. The fourth argument, aPhysicalAddress, is
the physical address of the memory to be committed to the chunk (which
again must be a multiple of the MMU page size).

The fourth function is similar, except that this time the physical region
is specified as a list of physical addresses. The list must contain one
address for each page of memory to be committed, with the length of the
list corresponding to size of the region to be committed:

TInt Kern::ChunkCommitPhysical(DChunk* aChunk, TInt aOffset, TInt aSize,
const TUint32* aPhysicalAddressList);

13.2.4 Providing access to a shared chunk from user-side code

As I have already mentioned, before a user-side application can have
access to the memory in a shared chunk, the kernel must create a handle
to the chunk for it. The following function is used to create such a
handle. If successful, the function also maps the chunk’s memory into
the address space of the process to which the specified thread belongs. It
also increases the access count on the object:

TInt Kern::MakeHandleAndOpen(DThread* aThread, DObject* aObject)

The argument aThread specifies the thread which is to own the handle
and aObject specifies the shared chunk to which the handle will refer.
The function returns the handle (that is, a value greater than zero) if it is
successfully created. Otherwise, a standard error value (less than zero) is
returned.

The handle is normally passed back to the user thread, where it is
assigned to an RChunk object, using one of the methods derived from
RHandleBase – either SetHandle() or SetReturnedHandle().
Once this has happened, it normally becomes the responsibility of that
application to close the handle once it no longer needs access to the
shared chunk.

13.2.5 Providing access to a shared chunk from kernel-side code

A user application that has obtained access to a shared chunk from one
device driver may wish to allow a second driver access to that shared
chunk. In this case, the second device driver needs a method to obtain
a reference to the chunk object and the addresses used by the memory
it represents. Before code in the second device driver can safely access
the memory in the shared chunk, it must first open that chunk. Once this
is done, the reference counted nature of chunk objects means that the

SHARED CHUNKS 567

shared chunk and its memory will remain accessible until it closes the
chunk again.

A user application can pass a shared chunk handle to a device driver,
which can then use the following function to open it:

DChunk* Kern::OpenSharedChunk(DThread* aThread, TInt aChunkHandle,
TBool aWrite);

The argument aChunkHandle supplies the handle value, and aThread
is the thread in which this is valid. You use the Boolean aWrite to
indicate whether you intend to write to the chunk memory or not. To
give an example of how you might use this argument, imagine that
the user application intends to write to a chunk that contains read-
only memory – in this case, the error that is returned can be handled
gracefully when the chunk is opened rather waiting until a fault occurs
much later on.

The function returns a pointer to the chunk if the chunk handle is valid
for the thread concerned, is of the correct shared chunk type and opens
successfully. If the function is successful in opening the chunk, the access
count on the chunk will of course be incremented.

In some cases, a user application and a driver would have been
able to transfer data using a shared chunk, except that the driver only
supports a descriptor-based API, rather than an API designed specifi-
cally for shared chunks. A similar scenario is where driver and user
application can transfer data via a shared chunk, but the user applica-
tion obtained the data source or destination information from another
application, and so this was presented to it as a normal descriptor
rather than a chunk handle. In both cases, the driver will receive infor-
mation on the data, via a descriptor, in the form of an address and
a size.

If the driver wishes to optimize the case in which the data address
resides in a shared chunk, it won’t be able to use the open function I
described previously, since it doesn’t have a chunk handle. Instead it can
make use of the following method below to speculatively attempt to open
a shared chunk:

DChunk* Kern::OpenSharedChunk(DThread* aThread, const TAny* aAddress,
TBool aWrite, TInt& aOffset);

If the address aAddress supplied is within a shared chunk that is mapped
to the process associated with thread aThread, then the function returns
a pointer to the chunk. If not, then it returns zero. When a chunk
pointer is returned, the chunk access count is incremented and the
argument aOffset returns the offset within the chunk corresponding to
the address passed.

568 PERIPHERAL SUPPORT

Let’s make this clearer with an example. Suppose we have a media
driver that is designed to optimize data transfer to data addresses that are
within a shared chunk. For example, a request might come via the file
server from a multimedia application to save data to a file from a buffer in
a shared chunk. The file server and media driver only support descriptor-
based APIs, but if the driver uses the Kern::OpenSharedChunk()
function, then we can still optimize the transfer using the shared
chunk.

Once the driver has opened the chunk, it next needs to obtain the
address of the data within it. Remember that shared chunks may contain
uncommitted regions (gaps) and the driver needs to detect these to avoid
making an access attempt to a bad address, which would cause an
exception. There are two functions provided for this – the first obtains just
the linear address, the second also obtains the physical address. Taking
the first of these:

TInt Kern::ChunkAddress(DChunk* aChunk, TInt aOffset, TInt aSize,
TLinAddr& aKernelAddress)

If chunk aChunk is a shared chunk, and if the region starting at offset
aOffset from the start of the chunk and of size aSize (both in
bytes) contains committed memory, then the function succeeds. In this
case, the argument aKernelAddress returns the linear address in
the kernel process corresponding to the start of the specified region.
However, if the region isn’t within the chunk, or the whole region doesn’t
contain committed memory, then an error is returned. Now the second
function:

TInt Kern::ChunkPhysicalAddress(DChunk* Chunk, TInt aOffset, TInt aSize,
TLinAddr& aKernelAddress, TUint32& aMapAttr, TUint32& aPhysicalAddress,

TUint32* aPageList)

The first four arguments are identical to those described for the previous
function. If the function is successful, the argument aMapAttr will
contain the mapping attributes that apply for the chunk, and the argument
aPhysicalAddress will contain the physical address of the first byte
in the specified region. The argument aPageList returns the addresses
of each of the physical pages that contain the specified region.

13.2.6 An example driver using a shared chunk for DMA transfer

To illustrate how shared chunks can be used, let us consider as an
example a minimal device driver for an unspecified peripheral. Our
driver supports only one type of request – the asynchronous transmission

SHARED CHUNKS 569

of data out of the phone from a memory buffer residing within a shared
chunk. The user-side interface to the driver is as follows:

const TInt KMyDeviceBufSize=0x2000; // 8KB

class RMyDevice : public RBusLogicalChannel
{

public:
enum TRequest

{ EWriteBuf=0x0,EWriteBufCancel=0x1,};
enum TControl

{ EGetChunkHandle,EGetBufInfo,};
#ifndef __KERNEL_MODE__
public:
inline TInt Open();
inline TInt GetChunkHandle(RChunk& aChunk);
inline TInt GetBufInfo(TInt aBufNum,TInt& aBufOffset);
inline void WriteBuffer(TRequestStatus& aStatus,

TInt aBufNum,TUint aBufOffset,TInt aLen);
#endif
};

The driver creates a shared chunk when it is opened. At the same time,
it commits memory to two separate buffers within the chunk, each of
size KMyDeviceBufSize, and each containing physically contiguous
RAM pages.

To gain access to these buffers, the user application must first cre-
ate a handle on the chunk, using the method GetChunkHandle().
This maps the chunk’s memory into the address space of the pro-
cess. The application obtains a pointer to the base of this region using
the method RChunk::Base(). The application must then determine
the offsets of the two buffers relative to this base address using the
method GetBufInfo() – the argument aBufNum specifying the buffer
and aBufOffset returning its offset.

Now the application can fill a buffer with the transmission data – taking
care not to access beyond the perimeter of the buffer, as this would
normally cause it to panic. Finally, the application issues a request to
transmit the contents of the buffer using the method WriteBuffer().
The argument aBufNum identifies which buffer should be used for the
transfer and the argument aBufOffset provides the offset within this
to start the transfer from. Argument aLen provides the number of bytes
to transfer.

When exchanging information on data locations within a shared chunk
between driver and user code, you must always take care to specify this
information as an offset rather than an address, since the chunk appears
at different addresses in the address spaces of the different processes. Of
course, the same applies when exchanging this information between user
processes.

570 PERIPHERAL SUPPORT

Again, since this user-side interface header is also included in the
kernel-side implementation of the driver, I use #ifndef__KER-
NEL_MODE__ around the user-side specific methods to prevent com-
piler errors when building the kernel-side driver – see Section 12.4.6.1
for more details.

Here is the driver class definition:

// Driver object making use of shared chunks
class DMyDevice : public DBase
{
...

private:
TInt CreateChunk(TInt aChunkSize);
void CloseChunk();
TInt MakeChunkHandle(DThread* aThread);
TInt InitDma();
static void WrDmaService(DDmaRequest::TResult aResult, TAny* aArg);
TInt InitiateWrite(TInt aBufNo,TUint aBufOffset,

TInt aLen,TRequestStatus* aStatus);
private:
DThread* iClient;
TRequestStatus* iWrStatus;
DChunk* iChunk;
TLinAddr iChunkKernAddr;
TUint32 iBuf1PhysAddr;
TUint32 iBuf2PhysAddr;
TDmaChannel* iDmaChannel;
DDmaRequest* iDmaRequest;
};

The member iChunk is a pointer to the shared chunk created and
iChunkKernAddr is the base address of this in the kernel process. The
member iClient is the user thread that opened the channel. This will
be used when creating a handle on the shared chunk for that thread.
The members iBuf1PhysAddr and iBuf2PhysAddr save the physical
addresses of the two buffers. This information will allow us to specify
physical rather than linear addresses for DMA data transfers from these
buffers, which is more efficient.

13.2.6.1 Operations on opening and closing the driver

The following code shows how the driver creates the shared chunk and
commits memory to the pair of buffers. It commits physically contiguous
RAM pages and disables caching. Each buffer is the shared chunk equiv-
alent of that created in the example code, shown in Section 13.1.3. In
this case, we leave an uncommitted page either side of each buffer; these
act as guard pages. If the user application writes beyond the buffer region
when it is filling one of the buffers with the transmission data, this will
panic the application rather than corrupting adjacent memory regions in
the chunk:

SHARED CHUNKS 571

TInt DMyDevice::CreateChunk(TInt aChunkSize)
{
// Round the chunk size supplied upto a multiple of the
// MMU page size. Check size specified is large enough.
aChunkSize=Kern::RoundToPageSize(aChunkSize);
__ASSERT_DEBUG(aChunkSize>=((3*KGuardPageSize)+

(KMyDeviceBufSize<<1)),Panic(KMyDevPanicChunkCreate));

// Thread must be in critical section to create a chunk
NKern::ThreadEnterCS();

// Create the shared chunk.
TChunkCreateInfo info;
info.iType = TChunkCreateInfo::ESharedKernelMultiple;
info.iMaxSize = aChunkSize;
info.iMapAttr = EMapAttrFullyBlocking; // No caching
info.iOwnsMemory = ETrue; // Using RAM pages
info.iDestroyedDfc = NULL; // No chunk destroy DFC
DChunk* chunk;
TUint32 mapAttr;
TInt r = Kern::ChunkCreate(info,chunk,iChunkKernAddr, mapAttr);
if (r!=KErrNone)

{
NKern::ThreadLeaveCS();
return(r);
}

// Map two buffers into the chunk – each containing
// physically contiguous RAM pages. Both buffers
// surrounded by 4K guard pages.
TInt bufOffset=KGuardPageSize;
r=Kern::ChunkCommitContiguous(chunk,bufOffset,

KMyDeviceBufSize,iBuf1PhysAddr);
if (r==KErrNone)

{
bufOffset+=(KMyDeviceBufSize+KGuardPageSize);
r=Kern::ChunkCommitContiguous(chunk,bufOffset,

KMyDeviceBufSize,iBuf2PhysAddr);
}

if (r!=KErrNone)
Kern::ChunkClose(chunk); // Commit failed – tidy-up.

else
iChunk=chunk;

NKern::ThreadLeaveCS();
return(r);
}

The following code shows how the driver closes the chunk again:

void DMyDevice::CloseChunk()
{
// Thread must be in critical section to close a chunk
NKern::ThreadEnterCS();

// Close chunk
if (iChunk)

Kern::ChunkClose(iChunk);

572 PERIPHERAL SUPPORT

// Can leave critical section now
NKern::ThreadLeaveCS();
}

Next we see how the driver initializes the DMA objects required for data
transfer. First it opens a DMA channel for data transfer. In this simple
example, it only asks the framework to reserve one descriptor, since we
assume a controller supporting a single buffer scheme and we allow only
one DMA request to be outstanding at any time.
KPlatDevice1TxChan is the platform-specific channel identifier,

which in this example selects data transmission over the peripheral
device concerned. The driver elects to use DFC thread 0 to queue the
DMA channel’s DFC. Next it constructs a single request object, specifying
the callback function as DMyDevice::WrDmaService() and passing
a pointer to itself as the callback argument:

TInt DMyDevice::InitDma()
{
// Open and configure the channel for data
// transmission
TDmaChannel::SCreateInfo info;
info.iCookie = KPlatDevice1TxChan;
info.iDesCount = 1;
info.iDfcPriority = 4;
info.iDfcQ = Kern::DfcQue0();

TInt r = TDmaChannel::Open(info,iDmaChannel);
if (r!=KErrNone)

return(r);

// We’re only ever going to have one
// outstanding transfer
iDmaRequest = new DDmaRequest(*iDmaChannel, DMyDevice::WrDmaService,

this);
if (iDmaRequest == NULL)

return(KErrNoMemory);
return(KErrNone);
}

13.2.6.2 Getting a handle on the shared chunk

Next we see the how the driver creates the chunk handle for the user-
thread concerned:

The inline code that follows shows how the user application assigns
the handle created for it by the driver to the RChunk object passed into
the ‘‘get handle’’ method:

inline TInt RMyDevice::GetChunkHandle(RChunk& aChunk)
{
return aChunk.SetReturnedHandle (DoControl(EGetChunkHandle));
}

SHARED CHUNKS 573

TInt DMyDevice::MakeChunkHandle(DThread* aThread)
{

TInt r;
// Thread must be in critical section to make a handle
NKern::ThreadEnterCS();
if (iChunk)
r=Kern::MakeHandleAndOpen(aThread,iChunk);
else
r=KErrNotFound;
NKern::ThreadLeaveCS();
return(r);
}

13.2.6.3 DMA data transfer using the shared chunk

The user application initiates data transfer using the following method:

TInt RMyDevice::WriteBuffer(TRequestStatus& aStatus, TInt aBufNum,
TUint aBufOffset,TInt aLen);

Next we see how the driver initiates transfer over the DMA channel in
response to this. To calculate the source memory address, it combines
the buffer offset passed by the client with the physical address of the start
of the buffer that it saved earlier. KPlatDevice1TxId is the transfer
destination information – an identifier for the peripheral concerned:

TInt DMyDevice::InitiateWrite(TInt aBufNo, TUint aBufOffset,
TInt aLen,TRequestStatus* aStatus)

{
// Validate buffer no, buffer offset
// and length supplied
iWrStatus=aStatus;

// Platform specific code to enable TX on device
TUint32 src=(aBufNo==1)?iBuf2PhysAddr:iBuf1PhysAddr;
TUint32 dest=KPlatDevice1TxId;
TInt r=iDmaRequest->Fragment((src+aBufOffset),
dest,aLen,(KDmaMemSrc|KDmaIncSrc|KDmaPhysAddrSrc),0);

if (r != KErrNone)
return(r);

iDmaRequest->Queue();
return(KErrNone);
}

Finally we see the driver’s DFC callback function handing the end of the
DMA transfer. In this example, it simply checks whether the transfer was
successful or not and completes the request back to the user application.
In a more complex implementation it might check if there is more data to
be transferred:

574 PERIPHERAL SUPPORT

void DMyDevice::WrDmaService(DDmaRequest::TResult aResult, TAny* aArg)
{
DMyDevice &driver = *((DMyDevice*)aArg);

// Platform specific code to disable TX on device
TInt r = (aResult==DDmaRequest::EOk) ? KErrNone : KErrGeneral;
Kern::RequestComplete(driver.iClient, driver.iWrStatus,r);
}

13.3 Media drivers and the local media sub-system

13.3.1 Local media sub-system overview

Media drivers are a form of PDD (physical device driver) that are used
almost exclusively by the file server to access local media devices.
Phones contain both fixed media devices that are internal to the phone
such as NAND/NOR flash disks, and removable media devices such as
MultiMediaCards and SD cards. The set of media drivers installed on a
device, together with a local media LDD (logical device driver) and a
user-side interface class, are referred to as the local media sub-system.
Figure 13.5 shows an overview of the architecture. In this example, I
show a Symbian OS phone containing three local drives:

1. A NAND user data drive (C:)

2. A MultiMediaCard drive (D:)

3. Code stored in NAND (Z:).

As we saw in Section 9.3.3.1, the file server supports at most 26 drives,
each identified by a different drive letter (A: to Z:). For the file server, the
TDrive class is the abstraction of a logical drive, and when a drive is
mounted, this class provides the interface with the associated file system.
Of the 26 drives supported, 16 are allocated as local drives – that is,
they are available for mounting drives on media devices that are located
within the phone. This is more than on EKA1, which only supports nine
local drives.

The interface to the local media sub-system is provided by the TBus-
LocalDrive class. Each instance of this user-side class represents a
channel of communication with a local drive and to establish a channel,
a client must connect a TBusLocalDrive object to a specified drive. A
single instance of the TBusLocalDrive class can be switched between
different drives.

The file server always contains 16 separate TBusLocalDrive
instances – one for each local drive. Those drive objects that correspond

MEDIA DRIVERS AND THE LOCAL MEDIA SUB-SYSTEM 575

TDrive TDrive TDrive

FSY/FXT FSY/FXT FSY/FXT

TBusLocalDrive TBusLocalDrive TBusLocalDrive

C: (NAND User Data) D: (MultiMediaCard) Z: (NAND code)

File Server

Local media LDD
(ELOCD.LDD)

NAND media driver
(MEDNAND.PDD)

MultiMediaCard media driver
(MEDMMC.PDD)

MultiMediaCard peripheral
bus controller

(EPBUSMMC.DLL)

Hardware I/F
USER DATA

AREA
CODE IMAGE

user
kernel

NAND Flash MMC

kernel
hardware

Figure 13.5 Local media sub-system overview

to the drives that are supported on a particular platform are kept
permanently connected. Each of the file systems and the file server
extensions access their respective drive hardware using the corresponding
file server local drive object. Programs other than the file server may
also instantiate their own TBusLocalDrive object to access a local

576 PERIPHERAL SUPPORT

drive – for example, a low-level disk utility might do this. So you can see
that two or more channels can be open on the same drive simultaneously.

Local drives are distinguished by their drive number (0–15). ESTART is
an executable started during system boot, which completes the initializa-
tion of the file server and is responsible for handling the mapping between
drive letter and the local drive number. This can be configured for each
platform. However, apart from the emulator, most platforms adopt the
default local drive-mapping scheme, which is:

Local drive number Drive letter

0 C:

1 D:

2 E:

.

14 Q:

15 R:

Figure 13.5 shows drive Z: mapped to a local drive, which seems
to deviate from the mapping scheme I’ve just described. In fact, this
mapping to Z: happens because the composite file system combines
the ROFS and ROM drives into a single drive designated as Z: – see
Section 9.4.5. Without the composite file system, the ROFS local drive
would be mapped to a drive letter in the range shown in the previous
table.

The rest of the local media sub-system consists of kernel-side com-
ponents. This includes a logical device driver layer called the local
media LDD (ELOCD.LDD) together with a set of installed media drivers,
which are essentially physical device drivers. However, the local media
sub-system differs in a number of ways from a standard device driver
configuration, as I will now describe.

The local media LDD abstracts various aspects of an interface with
a local media device: for example, the handling of disks that have
been divided into more than one partition. This LDD is involved in
any connection to a local drive – which means that any functionality
specific to a particular family of media device (NAND, MultiMediaCard
and so on) is implemented in the media driver rather than the LDD.
The result is that rather than each media driver abstracting just the
platform specifics, it generally also includes a portion that is generic
across those platforms that support the same family of media. Indeed,

MEDIA DRIVERS AND THE LOCAL MEDIA SUB-SYSTEM 577

certain media drivers don’t directly control the hardware interface at
all – instead they use the services provided by a peripheral bus controller
(see Section 13.4) that handles hardware interfacing. Such media drivers
then become completely platform-independent and are built as part of the
set of generic E32 components. An example of this is the MultiMediaCard
driver, which uses the generic services of the MultiMediaCard peripheral
bus controller.

Other media drivers do control the hardware interface themselves, and
so contain both platform-specific and generic elements. These drivers
are built as part of the platform variant, but they do include generic
source files from E32 as well as variant-related source. The NAND
flash media driver is an example of this type of driver. As with most
platform-specific components, this type of media driver interfaces with
the media hardware via functions exported from the variant or ASSP
DLLs.

The EKA2 local media sub-system architecture differs from that pro-
vided on EKA1, where there is no local media LDD. The EKA1 architecture
is less modular as in this case the kernel contains the equivalent function-
ality.

Figure 13.5 shows the file server mounting the two NAND device
partitions as two separate drives. When both are connected, two open
channels exist on the NAND device. However, rather than this resulting
in two separate PDD objects, requests for both channels are fed into a
single media driver PDD object. This is another aspect that differs from a
standard driver configuration.

Before it is possible to connect to a local drive, a media driver or
kernel extension must have registered for that drive. Registering involves
specifying a local media ID that identifies the media device family. After
this is done, only media drivers that support that particular family will
open on that drive. On a particular platform, there may be multiple media
drivers present for a certain media ID. A media driver may support only
a small sub-set of the media devices within that family: for example, the
sub-set might be constrained to devices from a particular manufacturer,
or to devices with a particular part number. So a ROM image might
include two versions of a NAND media driver to support two different
NAND parts that the phone could be built to contain. However, other
media drivers will include support for a wider sub-set and some drivers,
for example the MultiMediaCard media driver, aim to support the whole
family of devices.

The set of media IDs that are supported and the list of local drives that
are allocated to each ID are highly dependent on the target hardware
platform. Each variant includes the header file, variantmediadef.h,
where this information is specified.

Removable media drives normally involve a Symbian OS peripheral
bus controller as well as a media driver to manage the removable media

578 PERIPHERAL SUPPORT

bus. Here, the platform-specific code lies in the controller extension
rather than the media driver, and so it is normally the controller that
registers for such drives. In this situation, there could be multiple media
drivers associated with that controller, each supporting a different type of
removable memory card. For example, a platform including the SD card
controller may contain drivers for both the user and protected area SD
card sections.

The following table lists the possible media IDs. The association
between ID and media device family can vary between platforms. What
is essential is that each media family supported on the platform has
a unique ID. However, the most common media types supported on
Symbian OS have acquired default IDs which are shown in the table:

Local media ID Default media device
family

EFixedMedia0 Internal RAM

EFixedMedia1 NOR flash

EFixedMedia2 NAND flash

EFixedMedia3 –

EFixedMedia4 –

EFixedMedia5 –

EFixedMedia6 –

EFixedMedia7 –

ERemovableMedia0 MultiMediaCard/SD

ERemovableMedia1 PC card

ERemovableMedia2 Code Storage Area (SDIO)

ERemovableMedia3 –

Note that the definition of media IDs for removable media devices has
altered between EKA1 and EKA2. On EKA1, the ID indicates the slot (or
socket) number rather than the media device family.

Media drivers and the local media LDD are generally built as combined
device driver and kernel extension components. Being extensions means
that the kernel will call their DLL entry points early in its boot process

MEDIA DRIVERS AND THE LOCAL MEDIA SUB-SYSTEM 579

(before the file server is started), and it is at this stage that each media
driver registers itself for one or more of the local drives.

Later on, during the initialization of the file server, a separate F32
startup thread runs, and this continues local media sub-system initializa-
tion. It loads the local media LDD and then attempts to load all media
drivers it finds, by searching for ‘‘MED*.PDD’’ in the system directory
(\Sys\Bin\) on the ROM file system (Z:). Like any other drivers, media
drivers and the local media LDD export a function at ordinal 1 to create
a driver factory object – and the kernel calls this export for each driver as
they are loaded. Once the relevant factory objects have been created, it
becomes possible to connect to the corresponding local drives.

ESTART completes the initialization of the file server. As well as being
responsible for configuring the mapping between drive letter and the
local drive number, it is also responsible for assigning an appropriate
file system, and possibly a file server extension to each active drive.
However, this has to be co-ordinated with the media ID assigned for each
of these drives – that is, with the contents of variantmediadef.h for
the platform concerned.

ESTART may use one of two methods for determining this local
drive file system configuration. The first is to use a platform-specific
local drive mapping file – an ASCII text file which specifies precisely
which file system/extension to associate with which local drive. (This
can also be used to customize the mapping between drive letter and
the local drive number.) The second method is to allow ESTART to
automatically detect which file system to mount on which local drive,
by allowing it to interrogate the capabilities of each local drive and then
use this information to decide an appropriate FSY. This second scheme
is not as efficient as the first and therefore tends only to be used for
development reference platforms, where the flexibility of drive mapping
is more important than the time taken to boot the system. The local drive
file system configuration performed by ESTART is discussed further in
Chapter 16, Boot Processes.

During ESTART, the file server connects to all the active drives on
the platform and reads their drive capabilities. So before file server
initialization is complete, media drivers will normally be open on all
these drives.

13.3.2 User-side interface class

Figure 13.6 shows the derivation of the TBusLocalDrive class. Nor-
mally, the user-side interface to a device driver consists solely of an
RBusLogicalChannel-derived class containing only inline methods.
In this case, RLocalDrive provides this thin class. However, here we
further derive TBusLocalDrive from RLocalDrive to provide the
local media user interface and this contains functions exported from the

580 PERIPHERAL SUPPORT

RBusLogicalChannel

RLocalDrive

TBusLocalDrive

Figure 13.6 Derivation of TBusLocalDrive

user library (EUSER.DLL). TBusLocalDrive adds code to handle the
user-side processing of drive format and password protection operations.
However, the main reason for the derivation of TBusLocalDrive from
RLocalDrive is to preserve compatibility with EKA1. It is needed there
so that it can perform the far greater amount of user-side processing,
which is necessary to cope with the issues associated with handling
asynchronous I/O in device drivers.

These are the major elements of the public interface to the TBusLo-
calDrive class:

class TBusLocalDrive : public RLocalDrive
{

public:
TBusLocalDrive();
TInt Connect(TInt aDriveNumber, TBool& aChangedFlag);
void Disconnect();
TInt Caps(TDes8& anInfo);
TInt Read(TInt64 aPos,TInt aLength,const TAny* aTrg,

TInt aMessageHandle,TInt aOffset);
TInt Write(TInt64 aPos,TInt aLength,const TAny* aSrc,

TInt aMessageHandle,TInt aOffset);
Format(TFormatInfo& anInfo);
Format(TInt64 aPos,TInt aLength);
TInt Enlarge(TInt aLength);
TInt ReduceSize(TInt aPos, TInt aLength);
TInt ForceRemount(TUint aFlags=0);
SetMountInfo(const TDesC8* aMountInfo, TInt aMessageHandle)
};

The method Connect() is used to open a channel to the specified local
drive, aDriveNumber. The second parameter, aChangedFlag, is used
to provide notification that a drive remount is required. Once the drive is
connected, this flag is set true on each media change. When connecting
to each local drive, the file server passes in a reference to the data
member iChanged belonging to the corresponding TDrive object, and
this is how it receives notification of a possible change of volume – see

MEDIA DRIVERS AND THE LOCAL MEDIA SUB-SYSTEM 581

Section 9.3.3.1. The method Disconnect() dissociates the object from
any drive.

Next I will list the standard local media operations. The Caps()
method returns information on the capabilities of a connected drive.
Three forms of both the read and write methods are provided (although
I’ve only listed one of each for brevity). The read version shown is the one
used for inter-thread communication. It fully specifies the target memory
location:

TInt Read(TInt64 aPos,TInt aLength,const TAny* aTrg, TInt aMessageHandle,
TInt aOffset);

This method reads aLength bytes from offset aPos on the drive. Param-
eter aTrg is a pointer to a target descriptor in memory and aOffset
specifies the offset within this to start storing the data. Parameter aMes-
sageHandle is a handle to the message object associated with the F32
client request and this allows the local media LDD to identify the target
thread. The corresponding inter-thread write method is also shown.

Two versions of the Format() method are provided. The first is used
when formatting the entire connected drive – that is, setting each memory
element of the drive to a default state and detecting any hardware faults
across the drive. The second method is used to format (or erase) just a
specified region within the drive.

The methods Enlarge() and ReduceSize() are used to control
the size of a variable sized disk – typically only used for internal RAM
drives.

The method ForceRemount() is used to close the media driver
currently associated with the drive and force the local media sub-system
to reopen the most appropriate driver. This is useful in situations where a
new media driver has recently been installed on the system. ForceRe-
mount() is then used to replace the existing driver with the new version.
Also, some media drivers may need to be supplied with security infor-
mation to open. This is achieved using the SetMountInfo() function.
ForceRemount() is then used to retry the opening the driver once the
appropriate mount information has been supplied.

A second media change notification scheme, in addition to that pro-
vided via the TBusLocalDrive::Connect() method, is available
from the base class RLocalDrive. This is the method:

RLocalDrive::NotifyChange(TRequestStatus* aStatus);

The file server also uses this second scheme. The active object CNoti-
fyMediaChange makes use of it when requesting notification of media
change events to pass on to F32 clients – see Section 9.4.3.4.

582 PERIPHERAL SUPPORT

13.3.3 Local media LDD

Figure 13.7 shows the main classes that comprise the local media LDD.
The diagram also includes the TBusLocalDrive class and the main
NAND media driver class to show the relationships between the local
media LDD and these other components.

I will now describe these classes.

13.3.3.1 The DLocalDrive class

The class DLocalDrive is the local drive logical channel abstraction.
An instance of this class is created each time a TBusLocalDrive object
is connected to a local drive, and destroyed each time it is disconnected.
If two channels are connected to the same drive, then two instances of
this class will exist. DLocalDrive is derived from the abstract base class
for a logical channel, DLogicalChannelBase. In this case, however,

NAND Media Driver

TBusLocalDrive

DLocalDrive

TLocDrv
iPartitionNumber : TInt

DMedia

TPartitionInfo

DMediaDriver TDfcQue TMessageQue

TLocDrvRequest

DPrimaryMediaBase

DNandMediaDriver

user

Local Media LDD

iDriver

iPartitionInfo

1

1

1

n iDrive

iMedia

n

1

1

1

iDfcQ iMsgQ

iQueue

iCurrentReq

kernel

Figure 13.7 Class diagram for the local media LDD

MEDIA DRIVERS AND THE LOCAL MEDIA SUB-SYSTEM 583

the fact that it derives from this rather than DLogicalChannel does not
imply that requests on the channel are always executed in the context
of the client thread. Media drivers can also be configured to perform
requests in a kernel thread – as we will see shortly.

The DLocalDrive class contains the member iDrive, a pointer to
an associated TLocDrv object.

13.3.3.2 The TLocDrv class

TLocDrv encapsulates the local drive itself and, unlike the DLo-
calDrive class, there is always just a single instance of this class
per local drive. When a driver or extension registers for a set of local
drives (normally during kernel boot), a TLocDrv instance is created for
each. Since it is not possible to de-register drives, these objects are never
destroyed. Each TLocDrv instance represents an individual partition on
a media device, so if a media device contains multiple partitions, then a
separate TLocDrv object is required for each one.

The TLocDrv class contains the member iMedia, a pointer to its
associated DMedia object.

13.3.3.3 The DMedia class

The DMedia class is the abstraction for a media device. It owns a single
media driver, iDriver, which it uses to perform any access to the media
hardware. It also owns a TPartitionInfo object, iPartitionInfo,
which holds information on each of the partitions contained on the
media. Here is the class definition:

class TPartitionEntry
{

public:
// Start address of partition, described as the relative
//offset in bytes, from the start of the media.
Int64 iPartitionBaseAddr;

// The length of the partition, in bytes.
Int64 iPartitionLen;

// Boot Indicator record, currently unused.
TUint16 iBootIndicator;

// Describes the type of partition.
TUint16 iPartitionType;
};

const TInt KMaxPartitionEntries=0x4;
class TPartitionInfo
{

public:
TPartitionInfo();

584 PERIPHERAL SUPPORT

public:
Int64 iMediaSizeInBytes; //Total size of media in bytes.
TInt iPartitionCount; //No of partitions on media.
TPartitionEntry iEntry[KMaxPartitionEntries];
};

The TLocDrv class contains a partition number, iPartitionNumber.
This indicates the element of the partition array in the associated DMedia
object, TPartitionInfo::iEntry[], which holds the data for that
partition. Local drive requests are specified in terms of an offset relative
to the start of the partition. By retrieving partition information from the
appropriate DMedia object, the request is converted into an absolute
address on the media device and then passed on to the media driver.

When a driver or extension registers for a set of local drives, it must
also specify the number of associated DMedia objects required. Hence,
drive registration is also the point at which the DMedia objects are
allocated and again, they are never destroyed. A peripheral bus controller
must specify at least one separate media object for each card slot that it
controls. Some peripheral bus controllers may need to register for more
than one media object per card slot if they are required to support dual
media cards. For example, a single SD card, containing both a user and
a protected area, requires separate media drivers for both areas, and so
needs at least two DMedia objects available. As far as Symbian OS is
concerned, this is effectively a dual function, or dual media card.

Where removable media are concerned, the relationship between
TLocDrv and DMedia objects can change as the user of the phone
removes one memory card and inserts another. The SD card configuration
that I’ve just described requires two DMedia objects, with each having
a single associated TLocDrv object. If this card were removed and
replaced by a MultiMediaCard containing two partitions, then this would
require only one DMedia object, with two associated TLocDrv objects.

Figure 13.8 shows various TLocDrv and DMedia combinations that
could result from different cards being inserted into a single card slot.

13.3.3.4 The DPrimaryMediaBase class

In the previous section I described how each media driver or extension
(for the remainder of this section I shall refer to these merely as drivers)
that registers for a set of local drives also has to register for a set of
DMedia objects at the same time. This media set must contain just
one primary media object. This object is responsible for controlling
the overall state of the media (for example, whether power is applied,
whether the partition information has been determined and so on). The
DPrimaryMediaBase class, which is derived from DMedia, provides
this functionality. The driver that performs drive registration is responsible
for creating the primary media object itself, which it then passes over to

MEDIA DRIVERS AND THE LOCAL MEDIA SUB-SYSTEM 585

1 1 2

1

2

1

2 3

1 1 2 1 2 1 2 3

Single function
card containing one

partition

Single function
card containing two

partitions

Dual function (dual
media) card, each
function containing

one partition

Dual function card,
1st function

containing one
partition, 2nd

function containing
two partitions

1st card
function

2nd card
function

1
2
3

Partition 1
Partition 2
Partition 3

KEY

DMedia
objects

required:

TLocDrv
objects

required:

Figure 13.8 TLocDrv and DMedia combinations

the local media sub-system for ownership. If further media objects are
specified in the set, then the local media sub-system itself creates DMedia
instances for these on behalf of the driver.

The DPrimaryMediaBase class contains the member iDfcQ, a
pointer to a DFC queue. As we have seen earlier in the book, a DFC
queue is associated with a kernel thread. If the driver that creates the
DPrimaryMediaBase object assigns a DFC queue to this member, then
this configures the media set so that its requests are implemented in the
context of the kernel thread associated with that DFC queue. The driver
may use a standard kernel queue or create its own. If iDfcQ is left null,
then this configures the media set so that its requests are executed in the
context of the client thread.

Each local drive request is encapsulated as a TLocDrvRequest – a
class derived from TThreadMessage, the kernel message class. A
request ID is defined for every request type. TLocDrvRequest contains
information pertaining to the request, including the ID and any associated
parameters such as the drive position, length and source/destination
location.

586 PERIPHERAL SUPPORT

Requests for an entire set of DMedia objects are all delivered to the
primary media object. This takes place in the context of the calling client
thread (normally a file server drive thread). The DPrimaryMediaBase
class owns a kernel message queue, iMsgQ. If the media is configured to
use a kernel thread, then each request is sent to the queue and the client
thread then blocks waiting for the message to complete. Meanwhile,
in the context of the kernel thread, the request is retrieved from the
queue and dispatched to the appropriate media driver for processing
(which normally takes place within driver interrupt service routines and
subsequent DFCs). If the media is configured to use the client thread,
then requests are not queued, but instead dispatched straight to the media
driver to be processed in the context of the client thread.

I discussed the differences between implementing driver requests in
the context of the client thread or a kernel thread in Chapter 12, Drivers
and Extensions.

13.3.3.5 Local drive power management

However, before a connected local drive is ready to process its first
request, it must first be mounted. For certain media this can be a relatively
long and complex task that is often handled asynchronously, while the
client thread is blocked. It consists of the following phases:

1. Apply power and reset the media device, then wait for it to stabilize

2. Attempt to open each media driver loaded (installed). Each one that
opens successfully is assigned to one of the media objects in the
media set

3. Acquire the partition information for each media object for which
a driver has opened successfully, and from this determine the rela-
tionship between DMedia and associated TLocDrv objects. This
typically involves reading data from the media device itself.

For media configured to use the client thread for execution (typically
these are fixed media devices), drive mounting commences as soon as
any local drive is connected to the media device. For media configured
to use a kernel thread, drive mounting is deferred until the first request on
the drive takes place – this generally being a request from the file server
to read the drive capabilities.

The point at which drive dismounting occurs – that is, when all media
drivers are closed for the media set and when power is removed – again
depends on the type of media. For removable media devices, this is
performed on each of the following occasions:

1. When a media removal event occurs, that is, the media door has
been opened or the device has been removed

MEDIA DRIVERS AND THE LOCAL MEDIA SUB-SYSTEM 587

2. When the phone is being turned off or switched into standby mode

3. When a power-off request from a peripheral bus controller is
received – it might do this after a period of bus inactivity to save
power.

Cases 2 and 3 are collectively known as normal power down events.
In case 1, subsequent drive re-mounting does not occur until the first

access to the drive after the door has been closed again. In case 2, it
only occurs after the phone has been brought out of standby – on the first
subsequent access to the drive. In case 3, it occurs on the next access to
the drive. For removable media devices, closing and re-opening the media
drivers is necessary in each of these power-down situations because the
user could exchange the media device while power is removed. This is
particularly likely, of course, in the case of a media removal event. An
exchange could involve the introduction of a completely different type of
media device into the phone. If so, then on a subsequent re-mounting of
the drive, a different media driver will be opened (assuming that the new
device is supported).

Irrespective of whether they are configured to use the client thread
or a kernel thread for execution, it is likely that the drives for fixed
media devices will remain mounted as long as there are TBusLo-
calDrive objects connected. In this situation, it is left to the media
driver to implement its own power management policy, as it deems
appropriate for the media – for example, power saving during periods of
inactivity.

Before power is removed from a removable media device in response
to a normal power down event, the local media LDD first notifies each of
the affected media drivers of the impending power down. This is not the
case on a media removal event.

13.3.3.6 Media change handling

The local media LDD is also responsible for providing user-side notifica-
tion of media change events. When the peripheral bus controller notifies
the local media LDD of either a media removal event or the presence of
a card, following a door close event, then the local media LDD passes
on this notification. Each event can potentially trigger both of the user
notification schemes described in Section 13.3.2.

In the EKA1 version of the local media sub-system, the local media
sub-system must also signal normal power down events to the user-side,
as far as the TBusLocalDrive class, so that any subsequent drive-
mounting may be performed asynchronously. This is no longer necessary
with EKA2 since drive mounting can be handled asynchronously kernel-
side.

588 PERIPHERAL SUPPORT

13.3.4 Media drivers
A media driver is a special form of a physical device driver. The class
DMediaDriver is the abstract base class from which all media drivers
must be derived. Here are the major elements of the public interface to
this class:

class DMediaDriver : public DBase
{

public:
DMediaDriver(TInt aMediaId);
virtual ∼DMediaDriver();
virtual void Close();
virtual TInt Request(TLocDrvRequest& aRequest)=0;
virtual TInt PartitionInfo(TPartitionInfo &anInfo)=0;
virtual void NotifyPowerDown()=0;
void Complete(TLocDrvRequest& aRequest, TInt aResult);
void PartitionInfoComplete(TInt anError);
};

The method Request() is the main request handling method, which
is called by the associated primary media object to deal with a request
received for that drive. A reference to the corresponding request object is
passed as a parameter.

Not all requests require access to the media hardware. Even when
such access is required, requests can be processed very quickly for fast
media memory such as internal RAM. However, any request that involves
accessing the media hardware has the potential to be a long-running
operation. Even just to read a few bytes, we may need to bring the
device out of power saving mode, spin up a rotating disk and so on. To
cope with this, the driver may complete requests either synchronously or
asynchronously. The return value to the Request() method indicates
the mode adopted, as follows:

Return value Meaning

KErrCompletion Request has been completed synchronously
and the outcome was successful.

KErrNone Request has been initiated successfully but is
still in progress and will be completed
asynchronously.

KMediaDriverDeferRequest Request is not yet initiated since another is in
progress – defer the request until later.

Other system-wide error code Request has failed (during the synchronous
phase of processing).

PERIPHERAL BUS CONTROLLERS 589

When a request is to be performed asynchronously, then its completion
is signaled back to the LDD using the method Complete().

The local media LDD calls the method PartitionInfo() during
drive mounting to get partition information for the media device. Again,
this operation may be performed either synchronously or asynchronously
as indicated by the method’s return value. If performed asynchronously
then the method PartitionInfoComplete() is used to signal back
completion to the LDD.

In response to a normal power down event, the local media LDD
calls the method NotifyPowerDown() to allow the driver to terminate
any outstanding requests and power down the device. However, for
removable media devices, the peripheral bus controller takes care of
powering down the bus.

13.4 Peripheral bus controllers

Symbian OS supports a number of peripheral bus standards for removable
memory and I/O cards:

• MultiMediaCard

• SD card

• PC card

• Memory stick.

Symbian OS implements a software controller for each, and these con-
trollers provide a set of generic kernel-side services that is available
to device drivers and media drivers alike. There are many similarities
between each of these peripheral bus systems: to share functionality
common to each and to unify the interface to these components as far as
possible, we have encapsulated these common characteristics into a set
of abstract base classes for peripheral bus controllers which I will briefly
describe in this section.

The features common to removable peripheral cards and their associ-
ated bus interface hardware include:

• Detection and handling of card insertion and removal events

• Support for the hot removal of cards – that is, removing a card when
the bus is in operation

• Control of the bus power supply in relation to insertion and removal
events and bus activity

• Adjustment of hardware interface characteristics according to the
capabilities reported by the cards

590 PERIPHERAL SUPPORT

• Rejection of cards that aren’t compatible with the hardware inter-
face – for example, low voltage cards, cards which consume too
much current when active and so on

• Support for dual and multi-function cards.

Figure 13.9 shows part of the class diagram for a peripheral bus con-
troller – the MultiMediaCard controller. It shows each of the peripheral
bus controller base classes, and the classes derived from these for the
particular MultiMediaCard controller case. It also shows some of the
local media sub-system classes that I’ve already described, to show their
relationships with the peripheral bus controller.

DPrimaryMediaBase DMediaDriver

DMMCMediaDriverFlash

DPBusPrimaryMedia

iDfcQ : TDfcQue
iState : TInt
iPowerHandler : DPBusPowerHandler

DPBusSocket

DMMCSocket

DPBusPsuBase

DMMCPsu

DMediaChangeBase

DMMCMediaChange

iVcc

iMediaChange

TPBusCallBack

iPrimaryMedia

iSocket

iBusCallBack

iCallBackQ

local media sub-system

peripheral bus controller

Figure 13.9 Class diagram for a peripheral bus controller (using the MultiMediaCard controller as an
example)

I discussed the DPrimaryMediaBase class in Section 13.3.3. Part of
the local media sub-system, this is the object responsible for controlling

PERIPHERAL BUS CONTROLLERS 591

the overall state of a media device or set of related media devices.
For fixed media, this class is instantiated directly. However, for media
involving a peripheral bus controller, a derived version is provided,
DPBusPrimaryMedia. This class abstracts the interface between the
local media sub-system and a peripheral bus controller – passing on
requests from the sub-system to apply power to removable media
devices and providing notification back of media change and power
down events. The media driver base class, DMediaDriver, contains
a pointer to its associated primary media object, iPrimaryMedia. For
peripheral bus related media drivers (such as the MultiMediaCard media
driver, DMMCMediaDriverFlash shown), this pointer is used to gain
access to other peripheral bus objects via the DPBusPrimaryMedia
object.

Associated with each DPBusPrimaryMedia object, there is a periph-
eral bus socket object, iSocket. This is a major element of every
peripheral bus controller that essentially encapsulates a bus controller
thread. Often, this also corresponds to a physical card slot for an
individual removable media card – but not always. For example, if a
platform contains two physical slots, each with separate hardware con-
trol, such that cards in both slots can be enabled and can actively
be transferring data simultaneously, then each slot needs to be allo-
cated a separate socket object. However, if the two slots are connected
with a common set of control signals such that only one slot can be
actively transferring data at any given time (as is the case with a Mul-
tiMediaCard stack), then the pair should be allocated a single socket
object.
DPBusSocket is the abstract base class for a socket, with each type

of controller providing a derived version – in this case a DMMCSocket
class. The DPBusSocket class owns a DFC queue, iDfcQ and at system
boot time each socket allocates itself a separate kernel thread to process
DFCs added to this queue. I mentioned in Section 13.3.1 that peripheral
bus controllers register for their associated removable media local drives,
rather than leaving this to the relevant media drivers. Registering also
involves setting a DFC queue for the primary media object, which is
then used for handling all requests for these local drives. A peripheral
bus controller always assigns this to the DFC queue of the relevant
DPBusSocket object and so the socket’s kernel thread is used for
handling these local drive requests.

The DPBusSocket derived object oversees the power supply and
media change functionality associated with the socket – owning an asso-
ciated PSU object, iVcc and media change object, iMediaChange.
DPBusPsuBase is the abstract base class for the main bus power

supply for the socket. Again, each type of controller provides a derived

592 PERIPHERAL SUPPORT

version – DMMCPsu in this case. The power supply can be set to one of
three desired states:

PSU state Definition

EPsuOff PSU is turned off.

EPsuOnCurLimit PSU is turned on in a current limited mode: some supplies
can be turned on in a mode that supplies a limited amount of
current to the card. If a card draws excessive current then this
causes PSU output voltage droop, which can be detected.
Normally the PSU is only placed in this mode for a brief
period, before being turned fully on. For PSUs that don’t
support current limit mode, this state is treated in the same
way as EPsuOnFull.

EPsuOnFull PSU is turned fully on.

While the supply is in either of its ON states, it can be configured to
monitor the PSU output voltage level every second. The method used to
perform voltage checking varies between platforms. If the voltage level
goes out of range, then the PSU is immediately turned off. This PSU object
also implements a bus inactivity timer (using the same 1 second tick). The
controller resets the timer on each transfer over the bus. The PSU object
can be configured so that if the timer is allowed to expire, this causes the
associated socket to be powered down. The programmers creating a new
phone platform set the duration of the inactivity period.

Similarly, each type of controller provides a derived version of the
class DMediaChangeBase, which handles the insertion and removal of
media on the socket. The derived class interfaces with the media change
hardware – providing notification of media change events.
DPBusSocket also owns a power handler object, iPowerHandler.

It registers this with the kernel-side power manager to receive notification
of phone transitions into the standby or off state, and transitions out of
standby, back into the active state.

The socket object combines status information from its power supply,
media change and power handler objects into an overall power state,
iState. The following six different socket states are defined:

Power state Definition

EPBusCardAbsent Either no card is present or the media door is open.

EPBusOff The media door is closed and a card is present, but it is
not powered up.

PERIPHERAL BUS CONTROLLERS 593

Power state Definition

EPBusPoweringUp A request has been received from the local media
sub-system or an I/O driver to power up the card and
this is now in progress. This normally involves applying
power, waiting for the PSU to stabilize, applying a
hardware reset to the card and, finally, interrogating the
capabilites of the card.

EPBusPowerUpPending A request has been received to power up the card just
as the phone is being placed in standby mode. Power
up is deferred until the phone comes out of
standby.

EPBusOn The card has successfully been powered up and
initialized.

EPBusPsuFault In the process of powering up the card, it has been
discovered that the power supply range for the card is
not compatible with that of the host phone, or a
hardware problem with the card has resulted in it
drawing excessive current. The card is now powered off
and no more power up requests will be accepted on
this socket until a new card is inserted (that is, a media
change event occurs).

I’ve assumed one physical card slot per socket object to simplify these
descriptions.

Figure 13.10 shows the power state transition diagram. Referring still
to Figure 13.9, clients of a controller, such as media drivers, use the
TPBusCallBack class to implement peripheral bus event service rou-
tines. These objects must be configured with details of the bus event
concerned, and then queued on the appropriate socket object. The event
of interest can be either a peripheral bus interrupt or a change in the
status of the socket power state. Each TPBusCallBack object has an
associated callback function supplied by the client, and, once queued,
this is called on each occurrence of the event until the object is de-queued
again. In the case of power state changes, information is passed to the
callback indicating the new power state.

Each DPBusPrimaryMedia object owns a callback object, iBus-
CallBack, which it queues with the corresponding socket object for
notification of power state changes. Of primary interest are card inser-
tion/removal events, which it passes on to the local media LDD to
trigger user-side media change notification. Power-down events are also

594 PERIPHERAL SUPPORT

CardAbsent Off PoweringUp On

PowerUpPending PsuFault

From all 5 other states
Card removal event: Door
opened or card removed

Card insertion
event: Door
closed and

card present

Machine transition
to off or standby.

Battery low or
timed-out

powering up

Power off request
from client, bus
inactivity timeout

or machine
transition to off/

standby

Successfully
powered-up

Power-up
request

Machine left
standby state

Power-up
request while

machine
transitioning
into standby

Excessive card
current

consumption or
incompatible

Vcc

Figure 13.10 Socket power state transition diagram

signaled to the local media sub-system and lead to the relevant media
drivers being closed, as do card removal events – see Section 13.3.3.5.

13.5 MultiMediaCard support

13.5.1 MultiMediaCard overview

MultiMediaCards are miniature solid-state removable media cards about
the size of a postage stamp. There are two main types:

1. Read-only memory (ROM) cards

2. Read/write cards – which generally use Flash memory.

Both types support a common command interface. In the case of Flash
cards, this allows the host to write to any data block on the device without
requiring a prior erase to be issued. This means that there is no need for
the phone to implement a flash translation layer.

The standard MultiMediaCard provides a 7-pin serial bus for com-
munication with the host computer. Cards may support two different
communication protocols. The first is MultiMediaCard mode, and sup-
port for this is mandatory. The second, based on the Serial Peripheral
Interface (SPI) standard, is optional and not supported on Symbian OS.
MultiMediaCard mode involves six of the card signals: three as com-
munication signals and three which supply power to the card. The
communication signals are:

MULTIMEDIACARD SUPPORT 595

Signal Description

CLK One bit of data is transferred on the CMD and DAT lines
with each cycle of this clock.

CMD Bidirectional command channel – used to send commands
to the card and to receive back responses from it.

DAT Bidirectional data channel – for data transfer between host
and card.

This arrangement allows commands and responses to be exchanged
over the CMD line at the same time that data is transferred over
the DAT line. The maximum data transfer rate for standard cards is
20 Mbits/sec. However, high-speed 13-pin MultiMediaCards are avail-
able that can employ eight data signals, and here the maximum transfer
rate is 416 Mbits/sec.

The MultiMediaCard architecture allows more than one card to be
attached to a MultiMediaCard bus, with each card being connected to
the same signals, and no card having an individual connection. A Mul-
tiMediaCard controller on the host machine – the bus master – controls
this group of cards, known as a card stack. Communication over the
bus begins with the controller issuing a command over the CMD line.
There are two types of these: broadcast commands are intended for all
cards, while, fairly obviously, addressed commands are intended for the
addressed card only. Of course, many commands produce a response
from the card. In the case of data transfer commands, such as the reading
or writing of data blocks, data transfer commences over the DAT line
after the command is issued. For normal multiple block transfers, this
data flow is only terminated when the controller issues a stop command.
Single block transfers end without the need for a stop command.

A minimal card stack that consists of only one card has a point-to-point
connection linking that card and the controller, but you should be aware
that this doesn’t alter the communication protocol required.

13.5.2 Software MultiMediaCard controller

In the two previous sections, I introduced the software MultiMediaCard
controller in Symbian OS, which provides a generic kernel-side API to
media drivers. Figure 13.5 showed its position in relation to the local
media sub-system. Here I will describe it in more detail.

Symbian OS also supports SD/SDIO cards, and we derive the software
controller for these from the same MultiMediaCard classes. The Multi-
MediaCard specification also includes an I/O card class. For both of these

596 PERIPHERAL SUPPORT

reasons, we designed the MultiMediaCard controller to support I/O cards
too. The clients for these I/O services are device drivers.

The MultiMediaCard controller is implemented as a peripheral bus
controller, which means that we derive it from the peripheral bus con-
troller base classes described in Section 13.4. Like the DMA framework,
the MultiMediaCard controller is divided into a platform-independent
layer (PIL) and a platform-specific layer (PSL). In this case, the two are
built as separate kernel extensions, as shown in Figure 13.11. In this
case too, the PSL normally interfaces with the controller hardware via
functions exported from the variant or ASSP DLL.

The basic architecture of the MultiMediaCard controller, and its rela-
tionship with a media driver is shown in Figure 13.12.

Figure 13.12 omits the peripheral bus controller base classes, which I
showed in Figure 13.9.

On most phones, the MultiMediaCard controller manages only a
single card stack – although it can be configured to control as many as

MultiMediaCard media driver
(MEDMMC.PDD)

Generic peripheral bus layer

Generic MultiMediaCard layer

Platform specific
MultiMediaCard layer

ASSP/Variant

MultiMediaCard hardware controller

kernel
hardware

MultiMediaCard
controller
(EPBUSMMC.DLL)

MultiMediaCard
variant
(EPBUSMV.DLL)

PIL

PSL

Figure 13.11 The components of the MultiMediaCard controller

MULTIMEDIACARD SUPPORT 597

DMMCSocket

DMMCStack

TMMCardArray

TMMCard

DPlatMMCStack

DMmcMediaDriverFlash

DMMCSession

TMMCStackConfig

iSocket

iStackP

iCardP

iSession

iConfig

iCards

iCardArray

iStack

1

4

1

1

1

1

MultiMediaCard controller MultiMediaCard media driver

Figure 13.12 Class diagrams for the MultiMediaCard controller and the MultiMediaCard media driver

four stacks. Each stack is implemented as a peripheral bus socket, which
means that it has an associated kernel thread. We create an instance
of the class DMmcSocket (derived from the peripheral bus socket base
class DPBusSocket) for each stack. We make a distinction between
this socket object – which oversees the bus power supply and media
change functionality – and the object that controls access to the card
stack, DMMCStack.

The DMMCStack class is responsible for issuing commands over the
bus, receiving responses back from the cards, transferring card data, and
the control of the bus clock speed. All of this involves the management
of the MultiMediaCard hardware interface. The MultiMediaCard speci-
fication defines a set of predefined command sequences (called macro
commands) for complex bus operations, such as identifying the cards
present in the stack, reading more than one block from a card and
so on. The DMMCStack class has been designed to implement these
macro commands. It is an abstract class, which defines the main interface
between the PIL and PSL. Each phone platform provides a derived stack
object – shown as DPlatMMCStack on the diagram – which normally
deals with such issues as hardware interface control, DMA transfer and
the servicing of card interrupts.

598 PERIPHERAL SUPPORT

The class TMMCard is the abstraction of a MultiMediaCard within the
stack. The Symbian OS software controller supports up to four cards per
stack, and allocates a card object for each. Clients can gain access to these
cards via the corresponding stack object, which also provides information
on number of cards supported on this particular phone platform (that is,
the number of card slots allocated to the stack). The stack owns a card
array object, TMMCardArray, which manages the cards. The TMMCard
class is one of the main elements of the MultiMediaCard API provided to
drivers. Here are some of the public parts of this class:

class TMMCard
{

public:
TMMCard();
inline TBool IsPresent() const;
TBool IsReady() const;
inline TMMCMediaTypeEnum MediaType() const;
inline TUint DeviceSize() const;
virtual TUint MaxTranSpeedInKilohertz() const;
};

MultiMediaCards can be inserted or removed at any time and the method
IsPresent() indicates whether there is currently a card present in
the slot concerned. IsReady() indicates whether the card is powered,
initialized and ready to accept a data transfer command.

The method MediaType() returns one of the following values to
indicate the type of card present:

EMultiMediaROM Read-only MultiMediaCard

EMultiMediaFlash Writeable MultiMediaCard

EMultiMediaIO I/O MultiMediaCard

DeviceSize() returns the total capacity of the card in bytes. How-
ever, this doesn’t take account of how this memory has been partitioned.
(Partition information for the card is normally stored in a partition table
in the card’s first data block – which has to be read using a block read
command by the media driver.)
MaxTranSpeedInKilohertz() returns the maximum supported

clock rate for the card.
The DMMCSession class provides the other main part of the client

interface to the MultiMediaCard controller. A DMMCSession represents
a unit of work for the stack, and is used to issue commands – either to
the entire stack using a broadcast command, or to an individual card in
the stack. Each client creates its own instance of this class, and associates

MULTIMEDIACARD SUPPORT 599

it with the stack object, iStackP, concerned. The client must also
associate it with a card object, iCardP, if the session is to be used to
send addressed commands. To issue a request, the client configures the
session object with the relevant information for the request and submits
it to the stack. The DMMCSession class contains methods for initiating
macro commands, as well as lower level methods allowing a client to
control the stack in a more explicit manner. Here are some of the public
parts of this class:

class DMMCSession : public DBase
{

public:
virtual ∼DMMCSession();
DMMCSession(const TMMCCallBack& aCallBack);
void SetupCIMReadBlock(TMMCArgument aDevAddr,

TUint32 aLength, TUint8* aMemoryP);
void SetupCIMWriteBlock(TMMCArgument aDevAddr,

TUint32 aLength, TUint8* aMemoryP);
void SetupCIMReadMBlock(TMMCArgument aDevAddr,

TUint32 aLength, TUint8* aMemoryP, TUint32 aBlkLen);
void SetupCIMWriteMBlock(TMMCArgument aDevAddr,

TUint32 aLength, TUint8* aMemoryP, TUint32 aBlkLen);
TInt Engage();
inline TUint8* ResponseP();
};

When creating a DMMCSession object, the client supplies a callback
function as part of the class constructor. Once a client has engaged a
session on the stack, the controller will inform it of the completion of the
request by calling this callback function.

Next, you can see four methods used to configure the session for data
transfer macro commands. The first pair of methods involves single block
transfer. Looking at the first of these in detail:

void SetupCIMReadBlock(TMMCArgument aDevAddr, TUint32 aLength,
TUint8* aMemoryP);

This configures the session for a single block read from the card. When
submitted, the stack starts by issuing a command to define the block
length as aLength bytes for the subsequent block read command. Then
it issues a read single block command – reading from offset aDevAddr
on the card into system memory beginning at address aMemoryP. No
stop command is required in this case.

The second pair of methods involves multi-block transfer. This time, I
will look at the write version in more detail:

void SetupCIMWriteMBlock(TMMCArgument aDevAddr, TUint32 aLength,
TUint8* aMemoryP, TUint32 aBlkLen);

600 PERIPHERAL SUPPORT

When submitted, the stack issues a command to define the block length as
aBlkLen bytes for the subsequent block write command. It then issues a
write multiple block command to continually transfer blocks from the host
to the card, starting at address aMemoryP in system memory, and offset
aDevAddr on the card. Once aLength bytes have been transferred, the
stack issues a stop command to terminate the transfer. Engage() is used
to enque the session for execution on the DMMCStack object once it has
been configured.
ResponseP() returns a pointer to a buffer containing the last com-

mand response received by the session.
The controller is designed to accept more than one client request on

a stack at any given time. This could happen on multi-card stacks, or on
single card stacks containing multi-function cards where multiple drivers
have session engaged simultaneously. The controller attempts to manage
the sessions as efficiently as it can, by internally scheduling them onto
the bus. When the current session becomes blocked waiting on an event,
the controller will attempt to reschedule another session in its place.

13.5.3 Bus configuration and error recovery

Referring still to Figure 13.12, the class TMmcStackConfig is used to
hold bus configuration settings for a stack. These settings are such things
as the bus clock rate, whether to try re-issuing commands on error,
how long to wait for a response from the card and so on. The stack
owns an instance of this class (not shown on the diagram) containing
the default settings that are normally applied. Each session also owns an
instance of this class, the member iConfig, which normally contains
a copy of the defaults. However, if it chooses, the client may over-ride
the configuration settings for any bus operation it submits by altering the
contents of iConfig. These changes only remain in effect for the period
that the session remains current.

The controller is normally configured to automatically retry failed
operations when any of the following errors are detected:

• Timeout waiting for a command response from a card

• A CRC error is detected in a response

• A timeout waiting for data transfer to commence during a data read
or write command

• A CRC error detected in a data block during data transfer.

For certain other errors, such as if the card state is found to be inconsistent
with the command being issued, the controller will attempt to recover by
re-initializing the entire stack before retrying the failed operation.

MULTIMEDIACARD SUPPORT 601

13.5.4 Card power handling
When the controller detects a door-open event, it tries to remove power
from the card as soon as possible. It does not remove power immediately
if a bus operation is in progress, because it wouldn’t be a good idea to
remove power from a card in the middle of writing a block, as this could
corrupt the block. In this case, power-down is deferred until the end of
the MultiMediaCard session. Attempts to engage a new session while the
door is open will fail immediately though.

So, to avoid the situation in which a card is physically unplugged
while a command is still completing, driver requests have to be kept
short enough to ensure that they can always be completed in the time
between the door open event and the time the card is physically removed.
This means that long multi-block write commands have to be avoided,
despite the improved rate of data transfer they provide over shorter block
transfers. It is very important that the phone provides a door mechanism
and circuitry that gives early warning of potential card removal.

The controller is normally configured to implement a bus inactivity
power-down scheme to save power. If the inactivity period elapses, then
the controller automatically removes power from the cards. The length of
this inactivity timeout period is set by the particular mobile phone.

As I said in Section 13.3.3.5, the local media sub-system does not ini-
tialize removable media devices as soon as they are inserted, but instead
waits until the first request on the drive. Nevertheless, this request gener-
ally arrives almost immediately after card insertion, because applications
receive notification of the disk insertion event from the file server and
then interrogate the new card.

For MultiMediaCards, initialization involves applying bus power and
then performing the card identification process. This entails issuing a
series of broadcast and addressed commands over the bus, and is handled
asynchronously by the controller. (All requests on the stack that involve
bus activity are inherently long running operations that have to be handled
asynchronously.) Initialization proceeds as follows.

First, the cards in the stack are reset, and then their operating voltage
range is ascertained to ensure this is compatible with that of the host
phone. The host reads the 128-bit unique ID that identifies each card. It
then allocates each card a shorter Relative Card Address (RCA), which is
used thereafter to address that card. Finally, the host reads back data from
the card concerning its operating characteristics, to check that these are
compatible with the host. Now the card is available for data transfer. This
entire process is carried out in the first phase of drive mounting – before
any media drivers are opened.

I/O drivers don’t use the local media sub-system, and so they need
to ensure that the bus is powered and the stack is initialized when they
open. However, once an I/O driver has opened successfully, it doesn’t
need to bother about the card subsequently becoming powered down

602 PERIPHERAL SUPPORT

again. If the controller receives a data transfer request for a card that has
been powered down due to a normal power down event it automatically
applies power and initializes the stack first.

13.6 USB device support

13.6.1 USB overview

Universal Serial Bus (USB) is a bus standard for connecting peripheral
and memory devices to a host computer. It supports hot insertion and
removal of devices from the bus – devices may be attached or removed
at any time. The bus consists of four signals: two carrying differential
data and two carrying power to the USB device. The USB specification
revision 2.0 defines three data rates:

Data rate Data transfer rate

USB High Speed Up to 480 Mbits/sec

USB Full Speed 12 Mbits/sec

Limited capability low speed 1.5 Mbits/sec

The USB system consists of a single host controller connected to a
number of USB devices. The host includes an embedded root hub that
provides one or more attachment points. The host is the bus master
and initiates all data transfers over the bus. Each USB device passively
responds to requests addressed to it by the host.

The host is often a desktop computer, but a supplement to the USB
specification introduces a dual-role USB device. As well as being a
normal USB device, this kind of device is also able to take on the role
of a limited USB host, without the burden of having to support full USB
host functionality. This is the On-The-Go (OTG) supplement aimed at
portable devices.

Many USB devices implement just a single function – USB keyboards
and data storage devices are examples of these – but multi-function
devices are also possible. These are called composite devices, an example
being a USB headset that combines a USB headphone and microphone.
Likewise, although the functionality of most devices remains static, some
devices can alter the USB function or functions they implement. A
mobile phone is an example of this – it may use various different USB
functions to exchange data with a host computer. Related USB devices
that provide similar functionality are grouped into USB device classes, and
standard protocols are defined to communicate with them. This means

USB DEVICE SUPPORT 603

that a generic device class driver on the host machine can control any
compliant device. Many classes are further subdivided into subclasses.
The USB Implementers’ Forum assigns unique codes to each class and
subclass, and USB devices report these codes for each function they
support. Examples of USB classes include the USB Mass Storage class
for devices such as MultiMediaCard readers, and the Communications
Device class for modem devices.

A USB device is made up of a collection of independent endpoints.
An endpoint is the terminus of a communication flow between host and
device that supports data flow in one direction. Each endpoint has its
own particular transfer characteristics that dictate how it can be accessed.
Four transfer types are defined:

Transfer type Description

Bulk Used for transferring large volumes of data that has no
periodic or transfer rate requirements (for example, a
printer device).

Control Used to transfer specific requests to a USB device to
configure it or to control aspects of its operation.

Isochronous Used where a constant delivery rate is required (for
example, an audio device). Given guaranteed access to
USB bandwidth.

Interrupt Used to poll devices that send or receive data
infrequently, to determine if they are ready for the next
data transfer.

Every USB device contains at least one input and one output control
endpoint – both with endpoint number zero (ep0). The host uses this
pair to initialize and control the device. Full speed devices can have a
maximum of 15 input and 15 output endpoints, in addition to ep0. Each
USB function on a device has an associated set of endpoints, and this set
is known as an interface.

Before a device can be used, it must first be configured. This is the
responsibility of the host, and is normally done when the device is first
connected. In a process known as bus enumeration, the host requests
information on the capabilities and requirements of the device. The data
returned specifies the power requirements of the device. It also describes
each interface, in terms of its class type, the endpoints it contains and the
characteristics of each endpoint. This is the device configuration. Certain
devices offer alternative configurations. This information is contained in
a set of device descriptors – once more, these are not to be confused

604 PERIPHERAL SUPPORT

with Symbian OS descriptors! The host checks whether it can support
the power and bandwidth requirements, and that it has a compatible
class driver. It may also have to select the configuration of choice. The
host is said to have configured the device by selecting and accepting a
configuration.

An interface within a configuration may also have alternative settings
that redefine the number of associated endpoints or the characteristics of
these endpoints. In this case the host is also responsible for selecting the
appropriate alternate setting.

A Symbian OS phone is unlikely to be configured as a standard USB
host because such devices have to be able to supply a high current to
power devices attached to the bus. Until now, most Symbian OS phones
have been configured as USB devices and connected to a USB host
computer. Classes supported by Symbian OS include the Abstract Control
Model (ACM) modem interface – this is a subclass of the Communications
Device Class (CDC) and provides serial communications over USB. It
is used for backup, restore and data synchronization with a desktop
computer. Another class Symbian OS supports is the Mass Storage class,
which allows direct access to certain drives on the phone from the host
computer.

We expect that Symbian OS OTG devices will be produced in the near
future. These will be able to be used as host computers, interfacing with
USB devices such as printers, video cameras and mass storage devices.

13.6.2 USB software architecture

The standard Symbian OS USB software architecture provides support for
USB device (or client) functionality. Our implementation is designed to
work with a hardware USB Device Controller (UDC). UDCs provide a set
of endpoints of varying transfer type (bulk, control and so on), of varying
direction (IN, OUT or bidirectional) and varying packet size. UDCs
normally allow these endpoints to be grouped together into various
different USB interfaces and configurations. This means that a single
Symbian OS phone can be configured for different USB device functions
so long as it contains the appropriate (device) class driver. This also means
that as long as the UDC provides enough endpoints, the phone can be
configured as a multi-function device.

Figure 13.13 shows an overview of the Symbian OS USB software
architecture.

As an example, Figure 13.13 shows the setup for a phone configured
as a combined Abstract Control Model (ACM) and mass-storage USB
device. (However, when the host configures a device containing multiple
functions, it enables each of these and requires a class driver for each.
In practice, it can be difficult to obtain the corresponding composite
host-side driver setup for this type of combined functionality.)

USB DEVICE SUPPORT 605

USB Manager

ACM
Class Controller

Mass Storage
Class Controller

ACM CSY Mass Storage
Controller

USB Client
Controller

(USBCC.DLL)

RDevUsbcClient RDevUsbcClient

USB Client LDD
(Mass Storage)

UDC

USB Client LDD
(ACM)

USB Host / Root hub Hardware Interface

ACM
Host Class Driver

Mass Storage
Host Class Driver

USB
Cable

user
kernel

Symbian OS Machine Host Machine

kernel
hardware

Figure 13.13 An overview of the Symbian OS USB architecture

The USB manager ensures the orderly startup and shutdown of all
the USB classes on the Symbian phone, as well as allowing its clients
to determine the status of these classes and to be informed of changes
in the overall USB state. To this end, the USB Manager implements a
class controller for each supported class on the device. A class con-
troller provides the interface between the USB manager and the class
implementation – but does not implement any class functionality itself.

USB class implementations normally exist in a separate thread from
the USB manager. To gain access to the USB hardware (UDC), the USB
class implementation must open a channel on the USB client device
driver. The class RDevUsbcClient provides the user-side interface to
this driver. Each channel supports only a single main USB interface
(although it may support multiple alternate interfaces). This means that
class implementations that use two or more main interfaces must open
multiple channels.

606 PERIPHERAL SUPPORT

Once a channel has been opened, the class implementation is able to
read the USB capabilities of the phone to determine the total number of
endpoints, their type, direction, maximum packet size, availability and
so on. If the phone provides the required USB resources, and they are not
already in use, the class implementation then sets up each USB interface
by setting a class type and claiming its endpoints. All the channels
automatically have access to ep0, and of course each of them can make a
request on it. The other endpoints may only be used by a single channel,
and can’t be shared. Each channel may claim up to five endpoints as well
as ep0.

The ACM class is implemented as a comms server (C32) plug-in,
or CSY. Clients that wish to use this CSY do so via the C32 API. The
ACM comprises two interfaces. The first is a communications interface
consisting of an interrupt endpoint and a control endpoint (ep0) for
transferring management information between host and device. The
second is a data interface consisting of a pair of bulk endpoints (one
IN, one OUT) – this acts like a legacy serial interface. This means that
this class opens two channels on the USB client driver – one for each
interface.

The mass storage controller provides the mass storage class imple-
mentation, which is built as a file system component (MSFS.FSY). It is
implemented using the Bulk-Only Transport protocol (a protocol specific
to USB) which provides a transport for the communication of standard
SCSI Primary Commands (SPC) between host and device. This requires a
single USB interface consisting of a pair of bulk endpoints (one IN, and
one OUT) over which the majority of the communication takes places,
and a control endpoint (ep0) to issue class-specific requests and clear
stall conditions.

Each USB client LDD manages client requests over each endpoint and
passes these on to the USB client controller. It also creates and manages
the data buffers involved in transferring data to and from the UDC.

The USB client controller is a kernel extension that manages requests
from each of the channels and controls the hardware UDC. It is divided
into a platform-independent layer (PIL) and a platform-specific layer (PSL).

This architecture allows the current USB function (or functions) of
the phone to be changed without the need to physically remove the
USB cable or restart the phone. The USB manager allows classes to be
started or stopped, and doing so will result in new USB interfaces being
setup or existing ones released. The USB driver API also supports the
simulated removal and insertion of the cable (so long as the hardware
interface does too). However, the host assumes that once a device
has been enumerated, the functions described will be available until
disconnection. The host is also unable to discover new classes that are
started after enumeration. This means that the host sees such changes

USB DEVICE SUPPORT 607

in USB function as the removal of one device and the attachment of a
different one, which causes it to re-enumerate. This terminates any active
USB communication.

The software architecture I have described supports only Full Speed
USB 2.0 device functionality – not USB Host or OTG. Neither does it
support USB High Speed.

The kernel-side components and the UDC handle the USB device
protocol layer, whereas the various class implementers handle the USB
device side of the class layers. The next section concentrates on the
device protocol layer implementation.

13.6.3 USB client controller and LDD

Figure 13.14 shows part of the class diagram for the USB client controller
and LDD.

1

1

DUsbClientController DLddUsbcChannel

TUsbcAlternateSettingList

iAlternateSettingList

TUsbcEndpoint

iEndpoint

iEndpoint

TUsbcRequestCallback

iRequestCallbackInfo

TUsbcConfiguration

TUsbcInterfaceSet

TUsbcInterface

TUsbcLogicalEndpoint

TUsbcPhysicalEndpoint

iPEndpoint

iEndpoints

DPlatUsbcc

PIL
PSL

iConfigs

iRealEndpoints

iInterfaceSets

iInterfaces

iController1 n

1

n

n

1

n

1

n

n

1

n

USB client controller USB client LDD

Figure 13.14 Class diagram for the USB client controller and LDD

608 PERIPHERAL SUPPORT

13.6.3.1 The USB controller

DUsbClientController is a singleton that embodies the USB device
controller; it is an abstract class that defines the interface between the PIL
and the PSL. Each platform provides a derived controller object, shown as
DPlatUsbcc on the diagram, which handles USB functionality specific
to the platform UDC – such as the management of data transfer over an
endpoint. Use of DMA is recommended for USB transfers, and the PSL
handles all aspects of DMA data transfer.

The main role of the controller is the handling of packets on ep0,
and the relaying of LDD read and write transfer requests from the other
endpoints. The PIL part of the controller processes and responds to all
standard USB device requests, (as described in chapter 9 of the Universal
Serial Bus Specification Revision 2.01) – if they are not already handled
by the UDC hardware itself.

The controller also creates and manages the USB descriptor pool (or
database). Descriptors contain information about the properties of specific
parts of the USB device in a well-defined format, and they are propagated
to the host – normally during enumeration. The USB client API allows
class implementers to specify and alter many of the elements of each
different type of descriptor as well as to add class-specific descriptors.
However to preserve the USB device’s integrity, the controller creates
other parts of the descriptors itself and clients of the controller cannot
alter these.

The class TUsbcPhysicalEndpoint is the abstraction for a physical
endpoint present on the device. At system boot time, the controller creates
an instance of this class for each endpoint that the UDC supports – and
these are never destroyed. The controller class owns these objects and
holds them in the array iRealEndpoints. An endpoint capabilities
class is associated with the TUsbcPhysicalEndpoint class (this is
not shown on the diagram). This class stores information on the set
of endpoint types, directions and maximum packet sizes supported by
the endpoint. Physical endpoints are used at the interface between PIL
and PSL.

The TUsbcConfiguration object encapsulates a USB configura-
tion. The Symbian OS USB client API only supports a single configuration
per device and so the controller owns just one instance of this class,
iConfigs, which it creates at system boot time.

As I mentioned earlier, Symbian OS supports multiple interfaces (or
USB functions) within this single configuration. It also supports alternate
USB interfaces – so an interface within the configuration may have alter-
native settings, each potentially having differing numbers of endpoints or
differing endpoint characteristics.

1 Universal Serial Bus Specification Revision 2.0, www.usb.org

USB DEVICE SUPPORT 609

To accommodate multiple interfaces, the configuration object man-
ages an array of TUsbcInterfaceSet objects, iInterfaceSets.
Each set object corresponds to an individual main interface within the
configuration. It is called an interface set because, for interfaces with
alternative settings, this object represents the set of alternative interfaces
supported. A configuration consisting of a single main interface has just a
single interface set object. Each set object is created when the associated
LDD client requests a first interface on the channel (which might be
the first of a number of alternative settings) and destroyed when the last
setting is released. Remember that there can only be one main interface
(and therefore one interface set) per channel.

The interface set manages an array of TUsbcInterface objects:
iInterfaces. Each interface object encapsulates one of the alternate
interface settings. For interfaces without alternative settings, only a single
instance of this class is created. For interfaces that do have alternative
settings, the associated set object keeps track of the current alternative
setting. A TUsbcInterface object is created each time an LDD client
is successful in requesting an interface and destroyed when that setting is
released again.

Associated with each TUsbcInterface object is a group of endpoint
objects that make up (or belong to) that interface setting. However, these
are logical endpoint objects – TUsbcLogicalEndpoint. An interface
may claim up to a maximum of five endpoints in addition to ep0. Each
is locally numbered between one and five and the LDD client uses this
number to identify an endpoint when it issues requests. This number need
not correspond to the actual endpoint number of the UDC. (LDD clients
can discover the physical endpoint address of a logical endpoint by
requesting the endpoint descriptor for the endpoint). When an interface
is being created, the controller is supplied with the details of each of
the endpoints required by the client. It scans through the list of physical
endpoints, searching for ones that are available and that have matching
capabilities. Obviously, interface setting can only succeed if the search
is successful for all endpoints specified within the interface. If success-
ful, a TUsbcLogicalEndpoint instance is created for each – and this
has the same lifetime as the associated interface object. TUsbcLogi-
calEndpoint holds information on endpoint transfer type, direction
and maximum packet size together with a pointer to its corresponding
physical endpoint object, iPEndpoint.

13.6.3.2 The USB client LDD

The class DLddUsbcChannel is the USB client LDD channel object – an
instance being created for each main interface that is set on the UDC. It
is derived from logical channel base class DLogicalChannel – which
means that channel requests are executed in the context of a kernel

610 PERIPHERAL SUPPORT

thread. A DFC queue is associated with the controller object, and this
determines which kernel thread is used to process these requests. It
is set on a per-platform basis, with the default being DFC thread 0.
The channel owns an instance of the TUsbcAlternateSettingList
class for each alternative setting that exists for the interface, iAl-
ternateSettingList. In turn, each alternative setting object owns
an instance of the TUsbcEndpoint class for each endpoint that it
contains, apart from ep0. Instead, the channel owns the TUsbcEnd-
point instance for ep0 and also maintains a pointer to each of the
endpoint objects for the current alternate interface via DLddUsbcChan-
nel::iEndpoint. An important function of the TUsbcEndpoint class
is to manage the buffers used for data transfer. However, the channel
object owns these buffers since they are shared with other endpoints in
the interface.

Up to three hardware memory chunks, each containing physically
contiguous RAM pages, are allocated to every channel object, and these
chunks are each divided into separate buffers for use during data transfers.
All IN endpoints (that is, ones which transfer data back to the host) share
one chunk, OUT endpoints share the second, and the third is used
for ep0. These chunks are created when an interface is first set on the
channel. The size of chunk for ep0 is fixed, containing four 1024-byte
buffers. However, fairly obviously, the size of the IN and OUT chunks
depends on the number of IN and OUT endpoints that are included in
the interface. The number of buffers created for each of these endpoints
is fixed, but the size of the buffers is configurable by the LDD client,
using bandwidth priority arguments specified when setting an interface. A
single buffer is created for each IN endpoint and four buffers are created
for each OUT endpoint. The default buffer size for Bulk IN is 4 KB, and
for Bulk OUT it is 4 KB too. We have selectable OUT endpoint buffer
sizes for performance reasons – large buffer sizes are recommended for
high bandwidth data transfers. Since different alternate interfaces may
specify different groups of endpoints and different buffer sizes, the chunks
often have to be reallocated each time the LDD client sets a different
alternative interface. (The chunk size finally used is the maximum of each
alternate setting’s requirements.)

The TUsbcRequestCallback class encapsulates an LDD transfer
request. It holds data specifying the request, together with a DFC that
the controller uses to call back the LDD when transfer completes. The
TUsbcEndpoint class owns a request object, iRequestCallback-
Info, which it uses to issue requests to the controller. A channel
can have asynchronous requests outstanding on all of its endpoints
at once, and this includes ep0. Since ep0 is shared with other chan-
nels, the client controller has to manage multiple requests on the same
endpoint.

USB DEVICE SUPPORT 611

13.6.4 The mass storage file system

This is quite different from any other file system. It contains null imple-
mentations of the file system API described in Section 9.4.1, and, when
it is mounted on a drive, that drive is inaccessible from the Symbian
OS device. Instead, the desktop host computer is allowed exclusive
block level access to the drive. The mass storage file system implements
the mass storage controller function that I introduced in Section 13.6.2,
which involves the handling of SCSI commands received from the host
via a USB client device driver channel. The file server is not involved
in the processing of the commands. Instead they are processed entirely
by the mass storage controller. Being a file system component, it has
access to the media device concerned via the local drive interface class,
TBusLocalDrive. You should note that if the drive has a file server
extension mounted on it (for example a NAND drive with the flash
translation layer implemented in a file server extension), then all media
accesses are routed through the extension. This allows Symbian OS to
support a mass storage connection to a NAND flash drive, as well as to a
normal FAT drive. Only FAT-formatted drives may be connected as mass
storage drives. Drives C: or Z: cannot be connected, because these must
always be accessible to the rest of the OS.

The mass storage file system is not normally loaded automatically
during file server startup. Instead, a USB mass storage application
(a component provided by the phone manufacturer) loads it later, and
also mounts the file system on a particular drive. However, before it does
this, the application has to dismount the FAT file system from that drive.
This can only happen if there are no file or directory resources open on
the drive. This may mean that the application has to request that the user
shuts down certain applications that have these resources open.

Once the mass storage connection is terminated, the same application
is responsible for dismounting the mass storage file system and re-
mounting the FAT file system again.

Figure 13.15 shows the two configurations of a NAND drive configured
for mass storage connection. The first configuration shows it mounted and
accessible from a Symbian OS device. The second shows it disconnected
from the Symbian OS device, with a host computer accessing the drive.

Granting direct access to a drive on the Symbian OS phone from a host
machine poses a security threat. To counter this, all drives available for
mass storage connection are subject to the same restrictions as removable
drives. For instance, installed binaries on the mass storage drive could
be altered while the desktop computer is remotely accessing the drive.
So we need tamper evidence to detect if the contents of these binary
files have been altered since they were known to be safe, at install time.
Section 8.5.2.3 covers this in a little more detail.

612 PERIPHERAL SUPPORT

1. Stop MS: 6. Start MS:

2. Dismount MS on F:

3. Mount FAT on F:
4. Dismount FAT on F:

5. Mount MS on F:

USB Mass Storage
Application

USB ManagerFile Server

FAT File System

F:

NAND FTL
Extension

TBusLocalDrive

Local Media
Sub-System

USB Mass Storage
Application

USB ManagerFile Server
F:

Mass Storage File System

USB Client
i/f

NAND FTL
Extension

TBusLocalDrive

Local Media
Sub-System

RDevUsbClient

Host

B) Drive connected as mass storage deviceA) Drive accessible from Symbian OS

user
kernel

Figure 13.15 Two configurations of a NAND drive used for mass storage connection

13.7 Summary

In this chapter, I began by describing two more of the services available to
device drivers and peripheral bus controllers: DMA and shared chunks.
I went on to describe media drivers and the local media sub-system.
Then I examined peripheral bus controllers – looking specifically at the
MultiMediaCard controller as an example. Finally, I introduced the kernel-
side components of the USB software architecture and the USB mass
storage file system. In the next chapter, I will describe debugging in the
Symbian OS environment.

14
Kernel-Side Debug

by Morgan Henry

A computer lets you make more mistakes faster than any invention in
human history-with the possible exceptions of handguns and tequila.

Mitch Ratcliffe

This chapter describes how the Symbian kernel architecture supports a
range of debuggers and other useful development tools. It describes
the types of tools available for development of kernel and appli-
cation level software, and how the kernel implements and interacts
with them.

The reader should be familiar with EKA2’s device driver model, mem-
ory model and scheduler.

14.1 Overview

The emulator provides the primary development environment for Symbian
OS (see Figure 14.1). For most application and middleware development,
the behavior of the emulator is sufficiently close to the behavior of
Symbian OS on retail handsets to allow us to develop the majority of our
software inside this environment.

As I described in Chapter 1, Introducing EKA2, we have made several
improvements to the design of the emulator in EKA2. It now shares a
significant amount of code with the kernel, nanokernel and scheduler.
As a result, the emulator is a much more faithful representation of the
behavior of the kernel on a target phone. This has made the EKA2 emulator
suitable for the development of some types of kernel-side software, even
including the development of device drivers that are not sensitive to the
underlying hardware.

614 KERNEL-SIDE DEBUG

Host OS

host PC

Symbian OS
Emulator

IDE

Debugger UI

Debugger Backend

W
in

32
D

eb
ug

 A
P

I

Figure 14.1 Emulator debug architecture

However, even with these improvements, there are occasions when
application and kernel developers will need to move out of the emulated
environment, and into a hardware environment. This is necessary for:

• Development of hardware-specific device drivers

• Diagnosis of defects that stubbornly appear only on a target mobile
phone

• Software that is timing sensitive

• Software with dependencies on exotic peripherals only found on
mobile phones.

Where the emulator can no longer assist you with your debugging tasks,
EKA2 provides features to support debug on target hardware.

EKA2 is architected to support remote debuggers. The design aims
were to provide direct kernel support for as much of the embedded
tools market as possible, whilst remaining vendor independent. The new
interface builds on experience with EKA1 phones, hopefully easing the
integration task faced by those providing new tools.

The APIs described in this chapter provide operating system support
for a number of debug tools:

• Emulator debugger for hardware agnostic application and middleware
development

• Run-mode, target resident debuggers primarily focused on debugging
applications, middleware, real-time and hardware-sensitive software.

ARCHITECTURE 615

• Hardware assisted stop-mode debuggers, primarily focused on debug-
ging the kernel, device drivers and other kernel-mode software

• Post-mortem debuggers

• Trace output

• Profilers.

But first, let’s look at how EKA2’s architecture supports debugging.

14.2 Architecture

Debuggers need much more information, and much more control over
the kernel than any other piece of software. This section describes how
the Symbian OS kernel and each of the tools that I just listed interact with
each other.

14.2.1 Emulator debuggers

In the emulator world, both the debugger IDE and Symbian OS are
citizens of the host PC operating system. As I described in Chapter 1,
Introducing EKA2, each Symbian OS thread maps onto a native Win32
thread – this allows the IDE to treat Symbian OS just like any other
Win32 application. To observe and control Symbian OS threads, the
debugger attaches to them by using the native Win32 debug APIs. While
attached, the debugger will be notified of any events that affect the
thread, such as breakpoints or termination. Both Symbian OS kernel and
application threads can be debugged in this way. While it is attached, the
emulator debugger has complete control over the execution of Symbian
OS threads.

This method of debugging is extremely powerful, since existing state-
of-the-art Windows development tools can be used to debug Symbian
OS. This makes it an attractive development environment for much
hardware-agnostic software.

14.2.2 Run-mode debuggers

The type of target debugger most familiar to application and middle-
ware developers is the remote ‘‘run-mode’’ debugger (Figure 14.2). The
debugger UI runs on a host PC, and controls threads running on a target
operating system through a proxy running remotely on the target mobile

616 KERNEL-SIDE DEBUG

Symbian OSHost OS

host PC

Communication
Driver

IDE

Debugger UI

Debugger Backend

OS Awareness

target phone

Application
Software

Debug Agent

Communication
Driver

Commodity Connectivity

e.g. Bluetooth, Ethernet, IR,
Serial

Figure 14.2 Run-mode debug architecture

phone. Debuggers with this ‘‘remote debug’’ capability are common in
the embedded technology industry.

In the Symbian environment, the host PC runs a debugger, which
connects to the target phone running Symbian OS. The connection is
over any common communications channel supported by Symbian OS,
such as serial, Bluetooth, IR, USB or Ethernet.

The host debugger talks to a remote debug agent, running on Symbian
OS, which performs actions on its behalf. It is the debug agent that directly
observes and manipulates the application threads being debugged by
the host. The debug agent will also report any information it believes is
relevant for the debugging session back to the host. To reduce the number
of information and event messages sent over the communications link,
the host debugger will typically elect to observe and control only a few
threads. The debug agent will report only those events and data that affect
these attached threads.

The debugger remains mostly transparent to the rest of the system.
This has the benefit that protocol stacks, timing-dependent software, and
any software interacting with the real world environment will continue
to function as normal during a debug session. This makes this type of
debugger attractive to third-party application and middleware developers.
However, these debuggers are not generally suitable for kernel or device
driver development. In this architecture, the debug agent and the com-
munication channel are directly, and indirectly, clients of the Symbian

ARCHITECTURE 617

OS kernel. Any attempt by the debugger to suspend parts of the kernel
would result in a hung system, making the agent and communication
channel inoperable.

The remainder of this section examines the components of the run-
mode debug architecture in more detail. Figure 14.3 shows how the
debugger communicates with its remote debug agent, and how the agent
interacts with Symbian OS.

Transport
(PDD)

Transport
(LDD)

kernel

System Servers
System Servers

target Applications
Applications

User Side Agent

Kernel Debug Agent LDD

Communication
Server

user

ApplicationsDebugger UI

Remote Debug
Wire Protocol

System Servers

host

Communication
Driver

Remote Debug Wire
Protocol

Debugger

Debugger UI

Debugger Backend

OS Awareness

Kernel Debug API

D
eb

ug
ge

r
P

ro
to

co
l M

es
sa

ge
s

Debugger Protocol Messages

Debug Transport

Figure 14.3 Host debugger and debug agent on target platform

14.2.2.1 Remote debug wire protocol

The backbone of this debugger environment is the remote debug wire
protocol. This carries debug messages between the host debugger and the
target, over the physical connection. The flow of these high-level protocol
messages is shown in black on the diagram. The debugger communicates
with the target to acquire information about threads and processes running
on the target. It typically asks the target to perform thread- or process-
relative memory reads and writes, control the execution flow of threads,
and set/remove breakpoints. The target will also notify the debugger of
interesting events occurring on the mobile phone.

14.2.2.2 Debug agent

An essential component of this communication is the debug agent running
on the target. This component translates the debugger’s messages in the
wire protocol into actions and requests for the Symbian OS kernel. (These
are shown with cross-hatching.) The agent is a privileged client of the

618 KERNEL-SIDE DEBUG

operating system, and encapsulates a significant amount of the ‘‘OS
awareness’’ on behalf of the host debugger.

The debug agent comes in two parts. The kernel-side agent is tightly
bound into the kernel via the kernel debugger API to give it the level
of control and information it requires. The API (covered in Section 14.3)
allows the agent to capture system events, suspend and resume threads,
get and set thread context, shadow ROM, read and write to non-current
processes, and discover information about code segments, libraries, and
other kernel objects. The user-side agent implements the wire protocol
and is responsible for setting up the communication channel. It can do
this by talking to the comms server or by opening a channel to the
communications driver directly. It is also a client of the file server for the
upload and download of files into the file system. On phones that enforce
platform security, it will also need to negotiate with the software install
components to install uploaded executables. The debug agent may also
use other APIs and servers.

The two parts communicate over the standard (RBusLogicalChan-
nel) device driver interface – see Chapter 12, Device Drivers and Exten-
sions, for more on this. Symbian does not define a common API here,
because the functionality provided by the agent is largely dependent on
the tool or wire protocol in use. (EKA1 does provide a debugger interface
(RDebug), however, this proved not to be widely adopted, and is only
really suitable for the GDB monitor, ‘‘GDBSTUB’’.)

There are a number of debugger wire protocols available. At the time
of writing, the following implementations exist for Symbian OS:

• GDBSTUB implements the open GNU remote debug wire protocol
on EKA1

• MetroTrk implements the Metrowerks proprietary protocol on EKA1

• MetroTrk implements the Metrowerks proprietary protocol on EKA2.

14.2.2.3 OS awareness

On the host side, the debugger’s OS awareness module interprets any
operating system specific information for the rest of the debugger. This
module is the host-side partner of the debug agent for Symbian OS – it
encapsulates any methods and implementations that the debugger needs
to communicate effectively with the target platform and that are not part
of the core debugger. This could include items such as:

• Establishing a connection to the target

• Discovering which processor core is being debugged

• Discovering which version of the OS is available

ARCHITECTURE 619

• Defining which OS specific objects should be displayed as part of the
OS object visualization.

The OS awareness module is an intrinsic part of the debugger-OS inte-
gration package and is usually supplied with the IDE.

14.2.2.4 Responsibilities

In this architecture the agent has the following responsibilities:

• Implementation of high-level wire protocol. It must provide an imple-
mentation of the protocol that matches the host debugger in use. For
example, GDB uses the GNU remote debug wire protocol

• Configuring the debug connection. The agent must open and configure
the communication channel to enable the connection to the host.
For example, it should configure the serial port, or open a TCP/IP
connection. For convenience, it may also provide a UI

• Uploading files and executables onto the target. Executables are built
on the host PC and must be uploaded to the mobile phone for
execution. Supplementary data files also need to be transferred. On a
secure build of Symbian OS, the debug agent must use software install
components to install the executable. The debugger may choose to
use commercial PC connectivity software

• Implementation of CPU instruction stepping, and instruction decode.
This is a fundamental capability of any debugger. The agent can
implement instruction stepping of a suspended thread in a couple
of ways: firstly, through software simulation of the instruction at the
program counter, or secondly, by placing a temporary breakpoint at
the next program-counter target address and resuming the thread. The
agent must identify potential branches, which requires an instruction
decode

• Capturing user-thread panics, and exceptions. Knowing that an appli-
cation has died is essential for a developer. The debug agent registers
with the kernel to receive notification when a thread panics, causes
an exception, or otherwise terminates. When notified, the debugger
can open the thread for diagnosis and relay the information to the
developer

• Implementation of JIT debug triggers. ‘‘Just In Time’’ debugging
catches a thread just before it executes a panic or exception rou-
tine. Capturing a thread early, before it is terminated, allows the
developer to more closely inspect what went wrong, before the kernel
removes the thread. In some cases, the developer can modify context,
program counter, and variables to recover the thread

620 KERNEL-SIDE DEBUG

• Implementation of software breakpoint handler. Software breakpoints
are implemented as undefined instructions. The agent must register
to capture undefined exception events, and then handle any that
are actually breakpoints. If the breakpoint is intended to be thread-
specific, the handler must check the ID of a triggered thread against
the breakpoint’s intended target – if it does not match, then the thread
should be resumed. If the breakpoint is placed in shared code, then
there are further complications – the agent must implement an algo-
rithm for efficiently handling multiple false triggers from untargeted
threads. The agent must also be able to resume a thread that was
incorrectly triggered without missing further valid triggers – that is, it
must be able to execute the instruction under the breakpoint for the
current thread without removing the breakpoint

• Breakpoint housekeeping. Add and remove breakpoints as libraries
and processes are loaded and unloaded. For the developer’s conve-
nience, the debugger often makes it possible to set breakpoints in
code that is not yet loaded. The debug agent defers the application of
the breakpoint until the OS loads the target code. The agent can do
this by registering to be notified of library and process load events.
The agent is also responsible for shadowing ROM code to allow
breakpoint instructions to be written

• Communicating addresses of code and process data to host. For
executable to source-code association to work effectively, the host
must relocate the executable’s symbolic debug information to match
the memory address of the corresponding code and data on the target.
The debug agent must discover where the kernel has loaded each
executable section and relay this to the debugger.

14.2.3 Hardware-assisted debuggers

Many debuggers in the embedded world provide support for ASICs
equipped with JTAG ICE hardware.

The Joint Test Action Group defined and established the IEEE 1149.1
standard for boundary-scan hardware test and diagnostics. This standard
is commonly referred to as JTAG. The interface has since been adopted
as a popular access port for CPU control to support software debugging
activities using the embedded In-Circuit Emulator (ICE) common on ARM
hardware.

The ICE allows the target processor to be halted and subsequently
controlled by the host at the instruction level. This provides features such
as instruction level step, hardware breakpoint support, remote memory
reads and writes, and CPU register manipulation. The JTAG port can also
provide an additional real-time data channel for a debugger protocol
(Figure 14.4).

ARCHITECTURE 621

Symbian OSHost OS

host PC

JTAG Driver

IDE

Debugger UI

Debugger Backend

OS Awareness

target development
board

Application
Software

Stop-Mode Debug API

CPU

Kernel

JTAG Emulator

Figure 14.4 Stop-mode debug architecture

The host side runs a debugger with the ability to drive a connection
to a JTAG emulator, such as ARM’s RealView ICE, Lauterbach’s ICD,
and so on.

A hardware-assisted debugger will work adequately with Symbian OS
with almost no additional support, just as it would with many other
OSes. The debugger can immediately provide raw CPU/instruction level
debugging and an unvarnished view of the current memory map.

This low-level view of the target can be improved when the debug-
ger implements ‘‘OS aware’’ features. The host provides the necessary
Symbian OS intelligence to interpret the simple memory and register
read/write semantics of JTAG as high-level operating-system events, mes-
sages and objects. To assist the host in this task, the stop-mode debug
API on the target provides metadata describing the layout of key kernel
objects. Using this metadata, the host debugger can navigate the kernel’s
data structures to determine the current state of the kernel and all running
applications.

The host then interprets this information and presents it to the devel-
oper in a meaningful manner to provide the following high-level debug
functionality:

• Thread-relative memory read and writes

• Thread-relative breakpoints

• Multi-process and memory model awareness

• Kernel object display.

622 KERNEL-SIDE DEBUG

Using this approach, some tools vendors can support integrated stop-
mode kernel and stop-mode application debugging.

The ability to halt the processor makes a hardware-assisted debugger
an essential tool for debugging kernels, device drivers, and any other
kernel-mode software that requires a significant amount of hardware ‘‘bit-
twiddling’’. However, while the debugger holds the CPU, it has limited
usefulness for debugging real-time software and live communication
stacks. Once the CPU has been halted, the real-time protocols that
interact with the outside world will invariably fall over.

Figure 14.5 shows the interactions between the host debugger, the
stop-mode debug API, and the kernel in more detail.

While the host debugger has control of the target CPU, the target is
not running any kernel or application code; the CPU is frozen. Because
of this, and in contrast to run-mode debuggers, there is little opportunity
for a target-side debug agent to run, and no high-level wire protocol.
The interface between the host debugger and target has only ‘‘simple’’
or ‘‘flat’’ register and memory read/write semantics (shown in black).
Compared to the run-mode architecture, the host side debugger must
encapsulate a far greater amount of knowledge about how to interact
with Symbian OS. The host must understand:

• Scheduling and kernel locking strategy

• Per-process memory mapping

• How the kernel lays out its data structures.

JTAG Emulator

System Servers
System Servers

Applications
Applications

Applications

System Servers

kernel

target

Stop-Mode Debug API

user

host

Communication
Driver

JTAG Emulator Interface

Debugger

Debugger UI

Debugger Backend

OS Awareness

Kernel Debug API

JTAG Interface

Read / Write

Figure 14.5 Stop-mode debugger architecture

ARCHITECTURE 623

Most modern stop-mode development tools have a generic OS abstraction
and can support this host-side requirement.

The stop-mode debug API is responsible for ensuring all the informa-
tion the debugger requires is available and valid. It presents metadata
encapsulating the layout of the kernel’s objects (such as processes, threads
and memory chunks). The kernel continually updates the content while
the target is running (shown with cross-hatching). This ensures that the
metadata is consistent and valid whenever the data is required.

Hardware-assisted debuggers make effective post-mortem analysis
tools. Even after a full system crash, much of the kernel data is intact, and
can be inspected through the stop-mode debug API.

Section 14.5 shows in detail how the Symbian OS debugger architec-
ture supports hardware-assisted debuggers.

14.2.4 Post-mortem analysis tools

Under Symbian OS, we use post-mortem tools to analyze the cause of
crashes and hangs after software has failed. The analysis can apply to
specific executables, or to whole-system crashes. The tool is dormant
on the target, waiting for a trigger from the operating system indi-
cating abnormal termination. In response to this trigger, the tool will
gather information from the kernel and system servers about the crash
to present to the debugger. Some tools (for example, D_EXC and the
crash logger) save a human-readable context dump to a file that can
be analyzed off the phone. Others (for example, the crash debugger)
are interactive, and allow the developer to interrogate the host over a
communications link.

The debug API provides triggers and hooks for various system events,
on which to hang the post-mortem analysis tools. Code can be installed
and run on events such as: hardware exceptions, thread death, kernel
death and trace output.

For more details, see the documentation for TEventCode in the
Symbian Developer Library’s C++ component reference section.

Usage information for the previously mentioned crash debugger post-
mortem tool can be found in the Symbian Developer Library Device
Driver Guide for EKA2 versions of Symbian OS.

Figure 14.6 shows the details of the post-mortem tool on the target.
You can see that this architecture is similar to the run-mode architec-
ture, with the host PC side omitted. In fact, the set of kernel interfaces
used by both tool-types are largely the same. In the post-mortem case,
the kernel-side agent uses the kernel debug API to register with kernel
events associated with thread termination. The user-side agent is respon-
sible for outputting the information over a communications channel or
to disk.

624 KERNEL-SIDE DEBUG

Peripheral
(PDD)

Peripheral
(LDD)

kernel

target

User Side Agent EXE

Kernel Agent LDD

I/O Server

user

Applications

System Servers

to Disk, or Communication
Channel

Kernel Debug API

I/O
 C

ha
nn

el

host

Figure 14.6 Target post-mortem tools architecture

A good example of this architecture is the D_EXC tool. This implements
a minimal kernel debug agent (MINKDA) and a user-side agent (D_EXC).
Source code for these tools is available at these locations:

\base\e32utils\d_exc\d_exc.cpp
\base\e32utils\d_exc\minkda.cpp

14.2.4.1 Analyzing post-mortem dump

To save ROM, the Symbian OS build tools strip symbolic debug infor-
mation from all executables before they reach the mobile phone. This
means that the post-mortem tools on the target have very little contextual
information to annotate the crash dump. This can be a particular problem
when attempting to read stack traces. To solve this, Symbian provides
tools for the host that match up addresses found in the post-mortem dump
and the symbolic debug information on the host.
MAKSYM is a command-line tool that cross-references the log file

generated when building a ROM image with the verbose linker output
that contains the executable symbols. The output is a text file that lists
the address of every global and exported function in the ROM. This file
can be used to interpret addresses found in post-mortem dumps. MAKSYM
symbolic output is essential for diagnosing problems when using the
crash logger or crash debugger. Similarly, two other tools – PRINTSYM

THE KERNEL DEBUG INTERFACE 625

and PRINTSTK – use the MAKSYM symbolic output to interpret D_EXC
output. More information on using these tools can be found in the
Symbian Developer Library.

14.3 The kernel debug interface

Debug tools will use many of the general purpose APIs provided by the
kernel. In addition, we provide the kernel debug interface to specifically
support the remaining requirements of all these tools. In this section, I
will describe the features of the kernel debug interface, namely:

• Kernel event notification

• Thread context API

• Code and data section information

• Shadowing ROM pages.

Other features typically used by debug tools are:

• Kernel resource tracking (kernel object API)

• Thread-relative memory read and write.

Kernel objects and the kernel object containers are covered in Section 5.1,
and I describe thread-relative memory access for the moving and multiple
memory models in Chapter 7, Memory Models.

The kernel debug functionality is optional, since you will not always
want to allow intrusive debug tools onto production mobile phones.
The DEBUGGER_SUPPORT__ macro enables the kernel features
required specifically for a debugger implementation. You’ll find this
defined (or not) in the variant MMH file. (The project definition files
for the variant are typically named \base\<variant>\variant.mmh.
See \base\lubbock\variant.mmh for an example.) You can check at
run-time if your build of the kernel includes these features by calling.

TBool DKernelEventHandler::DebugSupportEnabled();

By default, software and ROM images supplied on the Symbian OS DevK-
its are built with debug support enabled. However, phone manufacturers
may choose to switch it off.

14.3.1 Kernel event notification
The kernel exposes an API to allow a debug agent to track kernel activity,
and if necessary respond to it. We chose the events exposed through

626 KERNEL-SIDE DEBUG

this API to allow the most important features of a debug agent to be
implemented. Of course, other kernel-side software can use them too.

The following events can be captured:

• User-side software exceptions, occurring when the user thread calls
User::Panic or RThread::RaiseException(). Typically on
ARM processors, the latter will be caused by an integer divide by zero
exception. Debuggers will report the exception or panic details to the
developer for diagnosis. Post-mortem tools can also trigger on these
events to save context for later analysis

• Hardware exceptions: for example, code aborts, data aborts, invalid
instruction, memory access violation and floating-point co-processor
divide by zero. These are obviously very important in aiding the
developer with her diagnosis. It is also often possible for the developer
to use the debugger to alter thread context and variables to re-
try the instruction. Importantly, software breakpoints are commonly
implemented as undefined instructions – the debug agent uses the
hardware exception event to implement the breakpoint handler

• Thread scheduled for the first time. The run-mode debug agent uses
this event to apply any uncommitted thread-specific breakpoints
that apply. Deferring the breakpoint commit is especially useful if the
breakpoint is in shared code where false triggers may cause noticeable
performance degradation

• Kernel object updates. When a process, thread or library is created or
destroyed, or a process’s attributes are updated, an event is generated.
(Process attribute changes can be caused by a name change, or
a chunk being added or removed from the process.) Debuggers,
more than most other software, care about what code is running on
the mobile phone. The debug agent often uses these notifications for
housekeeping tasks: process and library creation events are indications
that new code has been loaded to the phone, which the debug tool
may like to annotate or commit breakpoints to

• Thread object updates. These happen when a thread terminates, or
thread attributes are updated (always a thread name change). These
events are usually reported to the developer for information

• Chunk object updates. These happen when a chunk is created or
destroyed, or memory is committed or de-committed from a chunk,
or a chunk’s size is adjusted: for example, creating a thread or
a heap, or calling RChunk::Create(). A stop-mode debugger
closely monitors the memory mappings created by the kernel. To
avoid crashing the target while it is halted, it must be certain that
addresses it is attempting to access are actually mapped in. Other
debug tools may also present this information to the developer

THE KERNEL DEBUG INTERFACE 627

• Code objects. These events happen when a user-side library (DLL) is
loaded, closed or unloaded, or code segments are loaded or unloaded:
for example, using RLibrary::Load(), RProcess::Create()
or RLibrary::Close(). As I mentioned earlier, library events are
indications that new code has been loaded or unloaded to the phone.
The debug tool may like to take this opportunity to annotate or commit
breakpoints in the new code

• Device drivers are loaded or unloaded, using APIs such as
User::LoadLogicalDevice()

• User-side trace output – this indicates that RDebug::Print() has
been called. Debuggers and tracing tools may want to capture calls
to the trace port to allow the string to be redirected to an alternative
output channel. (See Section 14.6 for more on this.)

14.3.1.1 Kernel events reference documentation

A detailed description of each event can be found in the Symbian
Developer Library’s C++ component reference section, and in the source
for TKernelEvent in kernel\kernel.h. A summary is provided here:

TKernelEvent Meaning

EEventSwExc The current user-side thread has taken a software
exception, (User::RaiseException()). The
exception type is provided as the first argument to
the handler. NKern::UnlockSystem() has
been called by the kernel. The current thread can
be discovered from Kern::CurrentThread().
(See Chapter 6, Interrupts and Exceptions, for
more on exceptions.)

EEventHwExc The current thread has taken a hardware
exception. A pointer to the structure on the stack
containing the thread context is the passed as the
first argument. This structure is CPU specific. For
the ARM processor the structure is
TArmExcInfo. This pointer has the same value
as returned by DThread::Context(). (Again,
see Chapter 6, Interrupts and Exceptions, for more
on exceptions.)

EEventAddProcess Event delivered when a process is created (that is,
during a call to RProcess::Create or
Kern::ProcessCreate).

628 KERNEL-SIDE DEBUG

TKernelEvent Meaning

Argument 1 points to the process being created.
Argument 2 points to the creator thread (which
may not be the current thread). In some cases, the
creator thread cannot be reliably determined and
this will be set to NULL. The process being created
is partly constructed (and has no threads and no
chunks). The event is triggered just after creation.

EEventUpdateProcess Event delivered after a process attribute change.
Currently this applies only to process renaming
and a change to the address space through chunk
addition/removal, though we may extend it in the
future. Argument 1 points to the process being
modified.
The process lock may be held. The event is
triggered just after the name change, just after a
chunk is added, or just before a chunk removal.

EEventRemoveProcess Event delivered when a process terminates. The
first argument points to the process (DProcess)
being terminated. The current thread is the kernel
server thread. The process is partly destructed, so
its resources should be accessed only after
checking they still exist.

EEventLoadedProcess Event delivered immediately after a process is
created (that is, during a call to RPro-
cess::Create or Kern::ProcessCreate).
Argument 1 points to the process. The process
being created is fully constructed.

EEventUnloadingProcess Event delivered when a process is being released,
but before its code segment, stack chunk and so
on are unmapped.
Argument 1 points to the process. The process
being released is fully constructed.

EEventAddThread Event delivered when a user or kernel thread is
created (that is, during a call to RPro-
cess::Create, RThread::Create or
Kern::ThreadCreate). The thread being
created is fully constructed but has not executed
any code yet.

THE KERNEL DEBUG INTERFACE 629

TKernelEvent Meaning

Argument 1 points to the thread being created.
Argument 2 points to the creator thread (which
may not be the current thread).

EEventStartThread Event delivered when a user or kernel thread is
scheduled for the first time. The thread has not
executed any code yet. The current thread is the
thread being scheduled.
Argument 1 points to the thread being scheduled.

EEventUpdateThread Event delivered after a thread attribute change.
Currently this applies only to thread renaming but
we may extend it in the future.
Argument 1 points to the thread being modified.

EEventKillThread Event delivered when a user or kernel thread
terminates. The current thread and argument 1 is
the thread being terminated. This is in the
ECSExitInProgress state, and so cannot be
suspended. The thread’s address space can be
inspected.

EEventRemoveThread Event delivered when a user or kernel thread is
about to be closed. The current thread is the
kernel thread.
Argument 1 points to the thread being terminated.
The thread is partly destructed so its resources
should be accessed only after checking if they still
exist.

EEventNewChunk Event delivered when a chunk is created.
Argument 1 points to the chunk being created.

EEventUpdateChunk Event delivered when physical memory is
committed to or released from a chunk.
Argument 1 points to the chunk being modified.

EEventDeleteChunk Event delivered when a chunk is deleted. Pointer
to the chunk is provided as an argument.

EEventAddLibrary Event delivered when a user-side DLL is explicitly
loaded.

630 KERNEL-SIDE DEBUG

TKernelEvent Meaning

Argument 1 points to the DLibrary instance
being loaded.
Argument 2 points to the creator thread.
DLibrary::iMapCount is equal to 1 if the DLL
is loaded for the first time into the creator thread’s
address space. If the DLL is being loaded for the
first time, any global constructors haven’t been
called yet. The DLL and all its dependencies have
been mapped. The system-wide mutex
DCodeSeg::CodeSegLock is held.

EEventRemoveLibrary Event delivered when a previously explicitly
loaded user-side DLL is closed or unloaded (that
is, a call to RLibrary::Close).
Argument 1 points to the DLibrary instance
being unloaded. DLibrary::iMapCount is
equal to 0 if the DLL is about to be unloaded. If
the DLL is about to be unloaded, its global
destructors have been called but it is still mapped
(and so are its dependencies).
The system-wide mutex DCodeSeg::CodeSeg-
Lock is held when this event is triggered.

EEventAddCodeSeg Event delivered when a code segment is mapped
into a process.
Argument 1 points to the code segment, and
argument 2 points to the owning process. The
system-wide mutex DCodeSeg::CodeSegLock
is held.

EEventRemoveCodeSeg Event delivered when a code segment is
unmapped from a process.
Argument 1 points to the code segment.
Argument 2 points to the owning process. The
system-wide mutex DCodeSeg::CodeSegLock
is held.

EEventLoadLdd Event delivered when an LDD is loaded.
Argument 1 points to the LDD’s code segment
(which is an instance of DCodeSeg).
The current thread will always be the loader
thread. The event is triggered before the LDD
factory function is called.

THE KERNEL DEBUG INTERFACE 631

TKernelEvent Meaning

EEventUnloadLdd A LDD is being unloaded. The current thread is
always the loader thread. The LDD’s code
segment (DCodeSeg instance) is passed as
argument 1.

EEventLoadPdd A PDD has been loaded. The current thread is
always the loader thread. The first argument is the
PDD’s code segment (DCodeSeg instance). The
PDD factory function has not been called yet.

EEventUnloadPdd Event delivered when a PDD is unloaded. The
current thread is always the loader thread. The
first argument points to the PDD’s code segment
(DCodeSeg instance).

EEventUserTrace Event delivered when RDebug::Print has been
called in user-side code. The current thread is the
user-side caller.
Argument 1 points to the user-side buffer
containing the Unicode string for printing. The
characters cannot be accessed directly, because
they are in user-space, so they string must copied
using kumemget(). The event is delivered in a
thread-critical section, so the call to kumemget()
must be protected with XTRAP.
Argument 2 holds the length of the string in
characters. The size of the buffer is twice the
length. On exit from the event handler use
DKernelEventHandler::ETraceHandled to
prevent further processing of the trace request by
the kernel.

14.3.1.2 Kernel event dispatch

To issue an event, the kernel calls DKernelEventHand-
ler::Dispatch() at the appropriate place in the code. Some wrap-
per macros are provided for this function, to conditionally compile the
event dispatch, including it only when debugger support is enabled (that
is, when __DEBUGGER_SUPPORT__ is defined, and DKernelEven-
tHandler::DebugSupportEnabled() is true).

632 KERNEL-SIDE DEBUG

// Dispatch kernel event aEvent
#define __DEBUG_EVENT(aEvent, a1)
#define __DEBUG_EVENT2(aEvent, a1, a2)

// Dispatch kernel event aEvent if condition aCond is true
#define __COND_DEBUG_EVENT(aCond, aEvent, a1)

The previous table shows the guarantees that are made for each event
about the current state of the kernel and the object passed in.

14.3.1.3 Kernel event capture

When implementing a debug agent, you will need to provide event
handlers for the events you wish to capture. In this section, I will discuss
how this is done.

To capture events, you simply create an instance of DKernelEven-
tHandler and add this to the kernel’s event handler queue. During
construction, you provide a pointer to your event handler function, and
some private data. The next time any event is issued, each event handler
in the queue will be called in order.

// Derive an event handler class

class DMyEventHandler : public DKernelEventHandler
{

public:
DMyEventHandler();

private:
static TUint EventHandler(TKernelEvent aEvent,

TAny* a1, TAny* a2, TAny* aThis);
};

DMyEventHandler::DMyEventHandler()
: DKernelEventHandler(EventHandler, this)
{}

The kernel will maintain an access count on the handler so, when
the time comes, it can correctly ascertain when it is safe to destruct
the object. The kernel won’t destroy the object if there are any threads
currently executing the handler. When cleaning up, you should use the
Close() method to remove the object rather than deleting it.

You can now implement the event handler function. The first parameter
of the hander indicates the type of the event. The event type determines
the semantics of the next two (void *) parameters. The function is always
called in the thread-critical section.

THE KERNEL DEBUG INTERFACE 633

The following simple code snippet shows a handler that counts the
total number of processes started by the kernel since the handler was
installed:

TUint gAllProcessesCount = 0;

TUint DMyEventHandler::EventHandler(TKernelEvent aEvent,
TAny* a1, TAny* a2, TAny* aThis)

{

switch (aType)
{

case EEventAddProcess:
// increment the process counter
gAllProcessesCount++;
default:
break;
}

return DKernelEventHandler::ERunNext;
}

Inside the hander you can use the following functionality:

• Reading/writing of thread memory

• Getting/setting of the thread’s context information. If the context is
changed, the remaining handlers will not have access to the original
context

• Signaling threads, mutexes and other synchronization objects

• Waiting on mutexes and other synchronization objects

• Suspending the thread.

Your handler’s return value, a bit-field, determines what happens next:

• If bit ERunNext is not set, the kernel will not run any more handlers
for this event

• If the event is a user trace, setting bit ETraceHandled will stop any
further processing of the trace command by the kernel. This is useful
if you want to intercept the trace for processing yourself, and prevent
the kernel outputting it to the usual debug channel

• If EExcHandled is set, the kernel will not perform the usual cleanup
code for the thread that generated the exception. (The kernel won’t
generate a ‘‘KERN-EXEC 3’’ and won’t make an attempt to destroy the
thread object.)

It is worth noting that we may choose to extend the set of events that the
kernel generates in the future. The handler should take care to respond
to any unknown TKernelEvent values by returning ERunNext.

634 KERNEL-SIDE DEBUG

Example code for testing the capturing of hardware exceptions and
panic events can be found here:

\base\e32utils\d_exc\d_exc.mmp

14.3.1.4 Context switch event

To complete the set of notifications available to a debug agent, the kernel
provides a context switch event. This event is triggered on every change
to the currently scheduled thread. This notification is particularly useful
for the implementation of software profilers – for example, to record the
length of time spent in each thread.

In this API, we wanted to allow a device driver or extension to provide
a callback function that would be called by the scheduler after every
context switch. During the implementation, we were conscious that this
was impacting a critical part of the scheduler and we were not prepared
to compromise its performance.

The cost for a typical implementation of the callback mechanism on
an ARM processor would be three instructions:

1. Load the function pointer for the callback

2. Compare it to NULL

3. Execute the callback if non-NULL.

This three-instruction cost is paid at every call to the scheduler, even if
the callback function is not provided.

To work around this performance impact, we devised an alternative
mechanism for installing the callback function: the kernel provides two
implementations of the scheduler code segment affected by the callback.
The kernel also provides functions to replace the fast version (with no
callback) with the slower version that supports the callback hook.

The kernel publishes the following functions:

NKern::SchedulerHooks(TLinAddr &start, TLinAddr &end)

This returns the address in the scheduler where the callback trampoline
should be placed. (This is located towards the end of the scheduler, after
it has selected the new thread to run.)

NKern::InsertSchedulerHooks()

This is the function for patching-in the callback trampoline. It constructs
a branch-and-link instruction to the callback trampoline and inserts it at

THE KERNEL DEBUG INTERFACE 635

the address returned by NKern::SchedulerHooks. It performs a write
to an instruction in the scheduler code, which is usually in ROM – so you
must shadow the ROM first.

In the general case in which no software is using the event, this
implementation has zero speed overhead. Because of this, the API is
a little more awkward to use, but this is clearly a compromise worth
making for an API that has only a few specialized clients, and affects such
a performance critical area of the nanokernel.

Tools that wish to use the context switch event are responsible for shad-
owing the appropriate area of scheduler code, and calling the function to
patch the scheduler. Let’s look at some example code.

First we install the scheduler hooks by shadowing the appropriate area
of ROM, and then we call the NKern::InsertSchedulerHooks()
function to patch the scheduler:

TInt InsertSchedulerHooks()
{
// Get range of memory used by hooks
TLinAddr start,end;
NKern::SchedulerHooks(start,end);

// Create shadow pages for hooks
TUint32 pageSize=Kern::RoundToPageSize(1);
for(TLinAddr a=start; a<end; a+=pageSize)

{
NKern::ThreadEnterCS();
TInt r=Epoc::AllocShadowPage(a);
NKern::ThreadLeaveCS();
if(r!=KErrNone && r!=KErrAlreadyExists)
{
RemoveSchedulerHooks();
return r;
}

}
// Put hooks in
NKern::InsertSchedulerHooks();

// Make I and D caches consistent for hook region
Cache::IMB_Range(start,end-start);
return KErrNone;
}

Now the hooks are installed, we can ask to be called back on every
context switch:

// Ask for callback
NKern::SetRescheduleCallback(MyRescheduleCallback);

636 KERNEL-SIDE DEBUG

The callback function that you provide must have the following
prototype:

void MyRescheduleCallback(NThread* aNThread);

You can temporarily disable context switch callbacks by passing a
NULL function pointer to NKern::SetRescheduleCallback(). To
completely remove the rescheduling hooks, we do the following:

void RemoveSchedulerHooks()
{
// Prevent rescheduling whilst we
// disable the callback
NKern::Lock();

// Disable Callback
NKern::SetRescheduleCallback(NULL);

// Invalidate CurrentThread
CurrentThread() = NULL;

// Callback now disabled...
NKern::Unlock();

// Get range of memory used by hooks
TLinAddr start,end;
NKern::SchedulerHooks(start,end);

// Free shadow pages which cover hooks
TUint32 pageSize=Kern::RoundToPageSize(1);
NKern::ThreadEnterCS();
for(TLinAddr a=start; a<end; a+=pageSize)

Epoc::FreeShadowPage(a);
NKern::ThreadLeaveCS();
}

Your callback function will be called with the kernel preemption lock
held, during a reschedule. (For more information on rescheduling see
Section 3.6.) As I’ve said, this area of code is performance sensitive, and
your callback function should therefore use as few processor cycles as
possible.

The callback function you provide should be of the type TResched-
uleCallback (see INCLUDE\NKERN\NKERN.H). The kernel passes
a pointer to the newly scheduled NThread as a parameter to your
function. In some cases you will need to find the Symbian OS thread
that corresponds to this nanokernel thread. You can construct it as
follows:

DThread* pT = _LOFF(aNThread, DThread, iNThread);

THE KERNEL DEBUG INTERFACE 637

Before doing this, you should first check that the thread really is a
Symbian OS thread, and not a thread belonging to the personality layer,
as shown in Section 3.3.3.1.

Example code for testing the scheduling hooks and event capture can
be found here:

\base\e32\kernel\kdebug.cpp
\base\e32test\debug\d_schedhook.cpp
\base\e32test\debug\d_eventtracker.cpp

14.3.2 Thread context API
The kernel exposes an API that allows debug agents to get and set user-
side thread context. The API allows the thread context to be retrieved and
altered for any non-current, user-side thread. This allows the debugger
to display register state for any thread in the system, access any thread’s
stack to display a stack trace and modify program flow.

The nanokernel does not systematically save all registers in the super-
visor stack on entry into privileged mode, and the exact subset that is
saved depends on why the switch to privileged mode occurred. So, in
general, only a subset of the register set is available, and the volatile
registers may be corrupted.

Function Description

e32\include\kernel\kernel.h
DThread::Context(TDes8 &)

Retrieve the user thread context to the
descriptor provided. This is a virtual
method, implemented by the memory
model, (DArmPlatThread::Context()
in e32\KERNEL\ARM\CKERNEL.CPP).

INCLUDE\NKERN\NKERN.H
NKern::ThreadGetUserContext

Get (subset of) user context of specified
thread. See nkern\arm\ncthrd.cpp for
more information.

INCLUDE\NKERN\NKERN.H
NKern::ThreadSetUserContext

Set (subset of) user context of specified
thread. See nkern\arm\ncthrd.cpp for
more information.

The current thread context can also be read from user-side code by using
the method RThread::Context().

Example test code that exercises thread context can be found in:

base\e32test\debug\d_context.h
base\e32test\debug\d_context.cpp
base\e32test\debug\t_context.cpp

638 KERNEL-SIDE DEBUG

14.3.2.1 Context type

We’ve seen that, on entry to privileged mode, the nanokernel does
not systematically save all registers in the supervisor stack. To improve
performance, it only pushes registers when it needs to.

To retrieve and modify the user context for any non-current threads,
we need to discover exactly where on its stack the thread’s context has
been pushed. To do this, we must work out what caused the thread
to be switched from user mode. The set of possibilities is enumerated
in the type NThread::TUserContextType (include\nkern\arm\
nk_plat.h)

// Value indicating what event caused thread to enter
// privileged mode.

enum TUserContextType
{
EContextNone=0, // Thread has no user context
EContextException=1, // Hardware exception
EContextUndefined,
EContextUserInterrupt, // Preempted by interrupt
// Killed while preempted by int taken in user mode
EContextUserInterruptDied,
// Preempted by int taken in executive call handler
EContextSvsrInterrupt1,
// Killed preempted by int taken in exec call hdler
EContextSvsrInterrupt1Died,
// Preempted by int taken in executive call handler
EContextSvsrInterrupt2,
// Killed preempted by int taken in exec call handler
EContextSvsrInterrupt2Died,
EContextWFAR, // Blocked on User::WaitForAnyRequest()
// Killed while blocked on User::WaitForAnyRequest()
EContextWFARDied,
EContextExec, // Slow executive call
// Kernel-side context (for kernel threads)
EContextKernel,
};

The kernel does not keep a record of this type, since it is not usually
required. The value is calculated only on demand, by calling:

IMPORT_C TUserContextType NThread::UserContextType();

Apart from the previous context functions, the stop-mode debug API is
the primary client for this API (see Section 14.5.2).

14.3.3 Code and data section information

When an executable is loaded from disk, the loader dynamically allocates
code and data chunks for it, as I discussed in Chapter 10, The Loader.

THE KERNEL DEBUG INTERFACE 639

The linear address of these chunks is unlikely to match the link address
in the executable’s symbolic debug information, so the debugger has to
determine the address allocated by the loader, which allows it to relocate
the symbolic debug information to match the run address.

The kernel exposes APIs to get the base addresses of code, data and
BSS sections for any library or process:

\generic\base\e32\include\e32cmn.h

class TModuleMemoryInfo;

\generic\base\e32\include\e32std.h

TInt RProcess::GetMemoryInfo(TModuleMemoryInfo& aInfo);
TInt RLibrary::GetRamSizes(TInt& aCodeSize, TInt& aConstDataSize)
TInt RProcess::GetRamSizes(TInt& aCodeSize, TInt& aConstDataSize,

TInt& anInitialisedDataSize, TInt& anUninitialisedDataSize)

generic\base\e32\include\kernel\kern_priv.h

TInt DCodeSeg::GetMemoryInfo(TModuleMemoryInfo& aInfo, DProcess*
aProcess);

TModuleMemoryInfo returns

• The base address of the code section (.text)

• The size of the code section

• The base address of the constant data section (.rdata)

• The size of the constant data section

• The base address of the initialized data section (.data)

• The base address of the uninitialized data section (.bss)

• The size of the initialized data section.

The D EXC logger shows these APIs in use:

\base\e32utils\d_exc\minkda.cpp

14.3.4 ROM shadow API

The kernel publishes APIs that allow debug agents to shadow pages of
ROM in RAM. This allows the debugger to set and clear breakpoints in
the ROM address range.

640 KERNEL-SIDE DEBUG

Function defined in
memmodel\epoc\platform.h

Description

Epoc::AllocShadowPage Allocates a shadow page for the given
address. Returns KErrAlreadyExists if the
ROM page has already been shadowed.

Epoc::FreeShadowPage Frees a shadow page for the given address.

Epoc::FreezeShadowPage Freezes a shadow page for the given address,
that is, the page is made read-only.

The thread must be in its critical section when these calls are made. The
thread can enter its critical section with NKern::ThreadEnterCS(),
and exit with NKern::ThreadLeaveCS().

The implementations of these functions can be found in memmodel\
epoc\mmubase\mmubase.cpp. They are memory model-dependent.

Example code demonstrating the ROM shadow API can be found here:

\generic\base\e32test\mmu\d_shadow.h
\generic\base\e32test\mmu\d_shadow.cpp
\generic\base\e32test\mmu\t_shadow.cpp

14.4 Target debugger agents

The kernel debug interface provides the foundation for building and
integrating tools into the Symbian OS platform. In this and subsequent
sections of this chapter, I will describe how the different types of tools are
implemented on top of this API.

14.4.1 Debug agent

A debug agent for a run-mode debugger must translate the debug protocol
requests received from its host debugger into actions for the kernel and
other Symbian OS servers.

The responsibilities for the debug agent were outlined in Section 14.3.2.
However, the division of responsibilities between the agent and host is
flexible: for example, it is possible to implement CPU instruction step on
the host or the target, but it is almost always the case that the host performs
the relocation of symbolic debug information for source association.

TARGET DEBUGGER AGENTS 641

Hardware channel to Host

EUSER.DLL, File Server,
Window ServerUser-side Debug Agent

Kernel Debug API

Debug Agent LDD

Remote Debug
Wire Protocol

Transport LDD

Transport PDD

EUSER.DLL, File Server,
Window ServerComms Server EUSER.DLL, File Server,

Window Server, Software Install

user

kernel

D
eb

ug
ge

r
M

es
sa

ge
s

software

hardware

Figure 14.7 User-side and kernel-side debug agent for a run-mode debugger

Figure 14.7 shows the architecture of the debug agent. You can see
from the diagram that the debug agent has dependencies on other
components in the system, such as the user library, file server and
software install. Because of this, it is not possible to place breakpoints
in any of those components. These components are essential to the
correct operation of the debug agent – suspending any threads serving
the debug agent will make the agent inoperable. For example, if the
debugger has configured the serial port as the debug channel, you
cannot place a breakpoint in the communication server’s serial protocol
module.

In EKA1, it was not possible to place breakpoints anywhere in the user
library because the kernel was linked to this library too. This is no longer
a problem in EKA2, since kernel-side software now has its own utility
library.

Similarly, if the user-side agent depends on functionality in any other
server, then it will not be able to debug that server.

The debugger implementation should seek to minimize these restric-
tions. This usually involves providing a duplicate implementation for the
private use of the debug agent.

14.4.2 JIT debugging

Symbian OS supports JIT debugging directly for the emulator only.
However, the debug agent can implement JIT on target hardware, by
placing JIT debug traps (implemented as breakpoints) on the common
termination points for user-side threads. The address of these functions
in EUSER.DLL can be discovered by using the RLibrary::Lookup()

642 KERNEL-SIDE DEBUG

method on the ordinal for each. When a JIT breakpoint is triggered, the
‘‘reason’’ information can be discovered from the thread’s context.

Function Ordinal (gcc build)

RThread::Panic() 812 The category is in r1, the
panic number is in r2.

RProcess::Panic() 813 The category is in r0, the
panic number is in r1.

RThread::RaiseException() 868 R0 holds the exception
number.

User::RaiseException() 1910 R1 holds the exception
number.

14.4.3 Breakpoints

The handling of hardware exceptions is critical for the functioning of a run-
mode debugger on ARM platforms. Software breakpoints are implemented
by replacing code at the break location with an ‘‘undefined instruction’’,
or the ‘‘BKPT’’ opcode on ARM v5 processors. When the thread executes
the undefined instruction, the CPU will generate an exception.

You can write software breakpoints to RAM-loaded code by modifying
the code chunk’s permissions. You can write them to code in ROM
by first shadowing the target page of ROM in RAM (as I discussed in
Section 14.3.4). When writing breakpoints into a code area, you should
make certain that the cache is coherent with the modified code in RAM.
This will ensure that the breakpoint instruction is committed to main RAM
before the code is executed. The cache operations required to maintain
coherence are dependent on the mobile phone’s memory architecture, but
a call to the instruction memory barrier function (Cache::IMB_Range)
specifying the modified address range will perform the necessary oper-
ations. (I discussed caches and memory architectures in more detail in
Chapter 2, Hardware for Symbian OS.)

Once a breakpoint is set, the kernel debug agent can capture its
breakpoint exceptions by installing an event handler for EHwEvent.

When the exception handler is run, the debug agent can determine
what to do next. If the exception was not due to a breakpoint set by
the debugger, then the agent can pass the exception onto the next
handler (and ultimately the kernel). If the exception was a breakpoint
intended for the current thread, then the agent can suspend the thread

STOP-MODE DEBUG API 643

with DThread::Suspend(), then replace the instruction removed by
the breakpoint and notify the host debugger via the user-side agent.

14.5 Stop-mode debug API

The vast majority of hardware platforms supported by Symbian OS are
ICE-enabled. Kernel developers and those porting the operating system
to new hardware often have access to development boards exposing the
JTAG interface, and allowing the use of CPU-level debuggers.

The main problem with OS support in a stop-mode debugger is that
there is little or no opportunity for the operating system to run code on
behalf of the debugger to enable it to perform the tasks it needs. There is
no debug agent, and no high-level wire protocol between host and target;
communication is through remote memory reads and writes initiated
over JTAG. While the CPU is halted, the debugger must do all the data
discovery and object manipulation for itself by rummaging around inside
the kernel – the ‘‘OS awareness’’ is pushed onto the host.

However, Symbian OS publishes an API to make this a little easier.
It is a table-driven interface onto the data and kernel objects: a virtual
‘‘map’’ of the kernel. We implement the map as a memory structure
that can be easily navigated with memory reads initiated over the JTAG
interface.

Thread and process awareness is common in the run-mode debuggers
used for application development, but far less common in JTAG stop-
mode debuggers. Using the API provided, it is possible to integrate the
following features into a stop-mode debugger:

• Thread and process awareness

• Thread-specific breakpoints

• Memory management awareness

• Code segment management.

The EKA2 stop-mode debug API is similar in principle to the API provided
in EKA1. However, EKA2 has one significant design change. We made
this change with the intention of improving performance and reducing
interference in timing characteristics of the target when a debugger is
attached.

The EKA1 solution copied key information from the kernel into a
‘‘debug log’’ for convenient access by the debugger. EKA2 does not copy
information – instead, the debugger must locate the information in-place.
This design improves the performance of Symbian OS while the debugger

644 KERNEL-SIDE DEBUG

Kernel Stop-mode Debugger Extension

Host
Debugger

DebuggerInfo

JTAG

Kernel

Kernel Object
Layout Table

Kernel Object Containers

Thread Context Table

Code Segment List

Scheduler

Kernel Stop-mode Debugger Monitor

Thread User Context Type
Thread User Context Type

K
er

n
el

 D
eb

u
g

 In
te

rf
ac

e

Event
Handler

Change
Flags

Scheduler
Hook

targethost

Figure 14.8 Stop-mode debugger interface

is attached, at the cost of a slightly more complex client interface (see
Figure 14.8).

The stop-mode debugger API is built on top of the kernel’s core debug
APIs. It is implemented as a kernel extension (KDEBUG.DLL), which is
enabled simply by including it in a ROM. For most variants, you can
do this simply by defining the STOP_MODE_DEBUGGINGmacro. Alterna-
tively, you can add the following line to <variant>rom\kernel.iby:

extension[VARID]=
\Epoc32\Release\<assp>\urel\KDEBUG.DLL \System\Bin\kdebug.dll

The DDebuggerInfo interface implemented by the KDEBUG exten-
sion is the debugger’s gateway into the kernel. The host initially locates
the gateway from a pointer stored at a constant address in the superpage:

DDebuggerInfo* TSuperPage::iDebuggerInfo

(The superpage is used for communication between the bootstrap and the
kernel, and is described in Section 16.2.2.1.)

The gateway contains:

• The object layout table, which provides a virtual ‘‘map’’ of the kernel’s
data types, to allow them to be navigated. The table also isolates the
debugger from minor changes in layout of kernel objects

STOP-MODE DEBUG API 645

• Pointers to the kernel’s object containers for threads, processes,
libraries, memory chunks, semaphores, and so on

• Access to the scheduler for information about the current thread, and
current address space

• Access to the kernel’s locks that indicate the validity and state of
various kernel objects

• A mechanism for retrieving the context of any non-current thread.

The KDEBUG extension installs an event handler, which it uses to update
‘‘change flags’’. These flags can be read by the host debugger to determine
if any new kernel objects have been removed (for example, thread death)
or created (for example, library loaded).

The extension has a minimal impact on performance when installed.
Furthermore, there is no overhead on the phone software since the
interface can be entirely removed on phones that don’t expose JTAG
hardware, without re-compiling the kernel.

The implementation can be found here:

e32\include\kernel\kdebug.h
e32\kernel\kdebug.cpp

14.5.1 Kernel object layout table
The kernel object layout table provides the host debugger with a virtual
map of the kernel’s data structures. The table is an array of offsets of
member data from the start of the owning object.

Given a pointer to a kernel object, the address of any object of a
known type, and any of its members can be found by looking up the
offset in the table and adding it to the object pointer.

Using this method, and starting from the DDebuggerInfo object,
the host debugger can walk the kernel’s data structures by issuing the
appropriate memory reads over JTAG.

The table layout (host interface) is defined in this header file:

e32\include\kernel\debug.h

Here is a small section of this file so that you can see what it looks like:

e32\include\kernel\debug.henum TOffsetTableEntry
{
// thread info
EThread_Name,
EThread_Id,

646 KERNEL-SIDE DEBUG

EThread_OwningProcess,
EThread_NThread,
EThread_SupervisorStack,

// scheduler info
EScheduler_KernCSLocked,
EScheduler_LockWaiting,
EScheduler_CurrentThread,
EScheduler_AddressSpace,

// and so on ...
}

The constants published in this file correspond to indices in the object
table defined by the stop-mode debug API.

const TInt Debugger::ObjectOffsetTable[]=
{
// thread info
_FOFF(DThread, iName),
_FOFF(DThread, iId),
_FOFF(DThread, iOwningProcess),
_FOFF(DThread, iNThread),
_FOFF(DThread, iSupervisorStack),

// scheduler info
_FOFF(TScheduler, iKernCSLocked),
_FOFF(TScheduler, iLock.iWaiting),
_FOFF(TScheduler, iCurrentThread),
_FOFF(TScheduler, iAddressSpace),

// and so on ...
}

Symbian builds and delivered this table with every release of the kernel.
Indirection through the table provides a level of binary compatibility for
the host debugger – the indices will not change between releases of the
OS, even if the actual layout of kernel objects does change.

14.5.2 Thread context

Acquiring the thread context of any non-current thread presents a chal-
lenge for a stop-mode debugger. It is worth examining the solution in a
little more detail.

The context for the current thread is always available directly from
the processor. The context for any non-current thread is stored in its
supervisor stack. However, as I mentioned in Section 14.3.2, it is not
always straightforward to determine where the registers are placed in the
stack frame – or, indeed, which register subset has been saved, and in
which order the registers were pushed. This will depend on the reason

STOP-MODE DEBUG API 647

the switch to privileged mode occurred: the thread’s user context type. (I
list the TUserContext types in Section 14.3.2.1.)

In a multi-session debugger, where non-current threads may be visible,
the host debugger needs to be able to identify the context of any thread
at any time – it must always be able to determine the user context type
for a thread.

The kernel does not routinely store this information, so the stop-mode
debug API installs a scheduler callback to update the thread’s context
type on every reschedule. The result is stored in the NThread object:

inline TInt NThread::SetUserContextType()

The context type value can be used as an index into the user context
tables. This will yield a structure that describes the layout of the thread’s
stack, as shown in Figure 14.8.

static const TArmContextElement* const*
NThread::UserContextTables();

const TArmContextElement* const ThreadUserContextTables[] =
{
ContextTableUndefined, // EContextNone
ContextTableException,
ContextTableUndefined,
ContextTableUserInterrupt,
ContextTableUserInterruptDied,
ContextTableSvsrInterrupt1,
ContextTableSvsrInterrupt1Died,
ContextTableSvsrInterrupt2,
ContextTableSvsrInterrupt2Died,
ContextTableWFAR,
ContextTableWFARDied,
ContextTableExec,
ContextTableKernel,
0 // Null terminated
};

This structure holds 18 pointers to tables (one for each thread context
type). Each item is an array of TArmContextElement objects, one per
ARM CPU register, in the order defined in TArmRegisters:

// Structure storing where a given
// register is saved on the supervisor stack.
class TArmContextElement
{

public:
enum TType

{
// register is not available

648 KERNEL-SIDE DEBUG

EUndefined,
// iValue is offset from stack pointer
EOffsetFromSp,
// iValue is offset from stack top
EOffsetFromStackTop,
// value = SP + offset
ESpPlusOffset,

};
public:
TUint8 iType;
TUint8 iValue;
};

enum TArmRegisters
{
EArmR0 = 0,
EArmR1 = 1,
EArmR2 = 2,
EArmR3 = 3,
EArmR4 = 4,
EArmR5 = 5,
EArmR6 = 6,
EArmR7 = 7,
EArmR8 = 8,
EArmR9 = 9,
EArmR10 = 10,
EArmR11 = 11,
EArmR12 = 12,
EArmSp = 13,
EArmLr = 14,
EArmPc = 15,
EArmFlags = 16,
EArmDacr = 17,
};

The TArmContextElement::iType determines how the register
location should be calculated. Figure 14.9 shows an example of a thread
context table and its associated thread context state.

The algorithm for obtaining a thread context is intended to be run on
the host by a stop-mode debugger. Here it is:

reg_value GetSavedThreadRegister(<thread>,<reg-id>)
{
type = READ(thread, EThread_UserContextType)
IF (KernelLock != 0)

RETURN “Kernel Locked”
IF (thread == CurrentThread)

RETURN “Register not saved – current thread”

// Select the appropriate context table
ContextTable = READ(DDebuggerInfo::iThreadContextTable)
ContextTable = READ(ContextTable[Type])

// Get stack pointer and stack top
SP = READ(<thread>,EThread_SavedSP)
StackTop = READ(<thread>, EThread_SupervisorStack)

+ READ(<thread>,EThread_SupervisorStackSize)

STOP-MODE DEBUG API 649

// Get the iType and iValue fields for this
// register from the thread context table
iType = READ(&ContextTable[<reg-id>].iType)
iValue = READ(&ContextTable[<reg-id>].iValue)

// Now handle the cases and calculate the
IF (iType == OFFSET_FROM_SP)

RETURN READ(SP[iValue]);
ELSE

IF(iType == OFFSET_FROM_STACK_TOP)
RETURN READ(StackTop[-iValue]);

ELSE
IF(iType == SP_PLUS_OFFSET)

RETURN SP[iValue];
ELSE

// Other case currently not used by OS
RETURN “Register Not Valid”

}

// Read field <offset-tag> from <object>
val READ(<object>, <offset-tag>)
{
offset = OffsetTable[<offset-tag>]
pointer = <object>
RETURN READ(pointer[offset])
}

kernel thread context table

context table for threads
blocked in
Exec::WaitForRequest

context table for threads in
EXEC call

context table for threads
causing exception in
mode_usr

context table for threads pre-
empted due to interrupt in
mode_usr

context table for threads pre-
empted due to interrupt in
mode_svc

EUndefined

EOffsetFromSp

ESpPlusOffset

...

...

EOffsetFromStackTop

EOffsetFromStackTop

...

iType
R0 offset (N/A)

R1 offset

R2 offset

...

...

R14 offset
R15 offset

...

iValue
R0

R1

R2

R14

R15

where, EUndefined = 0, EOffsetFromSp = 1,
EOffsetFromStackTop = 2, ESpPlusOffset = 3

(Example thread context table)

Thread Context Table

Thread context by thread's
User Context Type

Figure 14.9 Thread context table and state

650 KERNEL-SIDE DEBUG

Note that in some states, the Symbian OS kernel exploits the conven-
tions in the ARM-Thumb procedure call standard and thus not all registers
in the thread’s context will be saved. Typically, the argument registers
(that is, R0–R3) are not saved because the caller throws those registers
away – so reading the thread context for these registers will return garbage
values. This is harmless for user code, and it should be harmless for the
debugger too. The debugger, if it has the capability, may choose not to
show these registers at all.

14.5.3 Memory of non-current threads
Reading and writing to the current process’s memory is straightfor-
ward – the process’s data will be mapped into its run address, and the
host can follow all pointers relative to the current process directly.

However, if the host wants to read and write to an address in a process
that is not currently scheduled, it must take into account that the memory
may not be available in the current address space, or may appear at a
different logical address. The debugger must move to an address space in
which the memory is available, and translate the process-relative pointer
from its run address into an equivalent pointer in the new address space.

The implementation is memory-model specific. It is an equivalent
operation to the DThread::RawRead() and DThread::RawWrite()
methods that the kernel uses when transferring data between processes.

To perform this operation, the debugger must understand how the
kernel’s memory model works. I will give a short description of the method
for each memory model, and you can find more detail in the stop-mode
debugger integration guide. I describe the kernel’s memory maps for the
moving and multiple memory models in Chapter 7, Memory Models.

14.5.3.1 Accessing memory of non-current threads under the multiple
memory model

The multiple memory model maintains a memory mapping for each
process, and swaps between these address spaces at a reschedule. When
the processor is halted, the debugger will have access to the memory of
the current process and the kernel address space, but this will not contain
mappings for any other process’s memory.

To access memory belonging to a non-current process, the host debug-
ger has two options:

• Create a new temporary memory mapping exposing the memory from
the non-current process, then translate the process-relative pointer to
the new mapping

• Temporarily move to an address-space that already contains a map-
ping for the target memory.

STOP-MODE DEBUG API 651

The former is the method used by the DThread::RawRead() and
DThread::RawWrite() methods. For the host debugger, it is likely to
be more practical to simply re-use the address space for the target process
that is provided by the kernel.

The host can change the address space by modifying the appropriate
MMU registers. (For ARMv6 processors the debugger programs the ASID
and TTBR with the values provided in the target DProcess object.) Once
in the appropriate address space, the process-relative pointer can be used
to access the memory.

14.5.3.2 Accessing memory of non-current threads under the moving
memory model

The moving memory model maps the current process’s memory into the
run section. All non-current processes are mapped into the kernel’s home
section, and are only visible to the kernel. When the processor is halted,
the debugger can grant itself access to the kernel’s memory by modifying
the MMU access control register, DACR.

To use a process-relative pointer to access memory belonging to a
non-current process, the host debugger must obviously take into account
where in the home section the kernel has mapped the process’s memory
chunks. It is most efficient to use the same calculation that is implemented
by the kernel’s DThread::RawRead() and DThread::RawWrite()
methods, which I will now briefly describe.

To perform the pointer translation, the debugger iterates through the
process’s list of chunks (DMemModelProcess::iChunks) until it finds
the chunk with an address range that covers the target address. The home
address can now be calculated as:

home_address = chunk.iChunk.iHomeBase +
target_address – chunk.iDataSectionBase

14.5.3.3 Accessing memory of non-current threads under the direct memory model

The direct memory model maintains only a single memory mapping
that is valid for current and non-current processes. It is sufficient for the
debugger to ensure that it has read/write access permissions before using
a process-relative pointer.

14.5.4 Kernel state
The host debugger may halt the target processor at any time. This means
that the debugger might find kernel data structures in an indeterminate
state – for example if the kernel was interrupted in the middle of updating
them. Before walking the kernel data structures, the debugger must ensure
that the kernel is self-consistent.

652 KERNEL-SIDE DEBUG

The debugger can determine this by examining the kernel and system
locks that are exposed through the debug API. The kernel and system
locks show when it is safe to access kernel objects, see Section 3.6. If
any of the locks are non-zero, the debugger cannot assume that either
the thread list or the MMU mappings are in a consistent state. This means
that it is unsafe to walk the kernel’s data structures. Most debuggers relay
this information to their user via the IDE’s UI, by graying out the OS
visualizations. The debugger could also repeatedly step the processor,
until the locks are cleared.

14.6 Kernel trace channel

The kernel provides tracing support as the lowest common denominator
debugging tool. The trace port is available for all software, from the
bootstrap and device drivers, right up to C++ applications. Software can
output trace strings through the trace port to assist with development and
diagnosis.

By default, most hardware platforms will configure a serial port as a
debug channel to allow the ASCII strings to be picked up by a host PC
with a standard terminal program.

The trace support is extended on some base ports to allow the debug
strings to be redirected to another port. Usually this would be another
serial port, but it can also be a dedicated hardware debug channel. For
example, the kernel implements debug trace over the JTAG data channel
for ARM CPUs.

Being able to redirect the kernel trace is invaluable during system
integration, where conflicts may arise between high-level software and
the trace port.

Figure 14.10 shows the program flow from the two clients (in light
gray) to the output to hardware (in dark gray).

14.6.1 Redirect user trace
Any application-trace strings that are passed into the kernel through
the RDebug::Print() functions can be captured and redirected by
a device driver. The capture facility is part of the kernel event notifier
described in Section 14.3.1. The driver can handle the trace string and ter-
minate the trace, or it can pass it back to the kernel for processing as usual.

This method can be used to capture trace strings for redirection to an
alternative output channel, or for analysis. For example:

• Capture the trace strings and package them for sending over a wire
protocol to a host debugger. The host debugger can then display the
string in a console or output window

• Redirection to a file, on target, for later download and analysis

KERNEL TRACE CHANNEL 653

EUSER.DLL Kernel

RDebug::Print()
RDebug::Printf()
RDebug::RawPrint()

DebugOutputCharA::UserDebugPrint(...)

Kern::Printf

ARM::Debug
OutJTAG

Early
Debug
Output

DKernelEventHandler::
ETraceHandled == 0

__EARLY_DEBUG

A::DebugPrint

Application Device Driver

kerneluser

Variant

Asic::DebugOutput()Trace Capture
Device Driver

Custom Print

Trace event hook installed

Figure 14.10 Kernel trace

• Redirection to RAM, for performance

• Redirection to dedicated trace hardware

• Redirection to an analysis tool.

Symbian provides example code that demonstrates the use of this API to
capture user-side trace and display it in a console window on the mobile
phone:

\base\e32test\debug\t_traceredirect.cpp
\base\e32test\debug\d_traceredirect.cpp
\base\e32test\debug\d_traceredirect.h

654 KERNEL-SIDE DEBUG

14.6.2 Debug output

The channel used to output the trace is determined by the DebugOut-
putChar() function:

void DebugOutputChar(TUint aChar)
// Transmit one character to the trace port
// (for debugging only)

The default implementation for ARM platforms is defined in \base\
e32\kernel\arm\cutils.cpp. If the __EARLY_DEBUG macro is
defined, then this function can be replaced by linking-in a custom
implementation. Custom ‘‘early debug’’ implementations are provided
as a convenience to developers porting Symbian OS to new hardware,
for use during the early stages of porting, when other communications
channels are unreliable or not available. If the debug port, TheSu-
perPage().iDebugPort, is set to Arm::EDebugPortJTAG then the
kernel outputs the string to the JTAG co-processor data channel (CP14).
If the variant DLL is available (that is, Arm::TheAsic is defined), then
the string is handed to the variant for output.

The kernel doesn’t make any attempt to arbitrate access to the des-
tination port. You will find that if the kernel trace and some other
communications protocol, such as PPP, are being directed to the same
port, then the two serial streams will be interleaved. In such cases, the
communications protocol is likely to fail.

Kernel-side software can use the trace channel by calling

Kern::Printf();

User-side software uses a slow exec call, Exec::DebugPrint,
which is available through the following function wrappers provided
in EUSER.DLL:

RDebug::Print();
RDebug::Printf();
RDebug::RawPrint();

The trace will appear on the port specified in

TheSuperPage().iDebugPort

This value can be set in a number of ways:

• Call Hal::Set(EDebugPort, <port>)

KERNEL TRACE CHANNEL 655

• The DEBUGPORT <port> ESHELL command

• The DEBUGPORT <port> ROMBUILD keyword.

The kernel defines the following values for port:

Constant Port
number

Header file Meaning

Arm::EDebugPortJTAG 42 kernel\arm\arm.h Send trace
strings to ARM
co-processor 14.

TRomHeader::
KDefaultDebugPort

−1 e32rom.h Send trace
strings to the
default port.

KNullDebugPort −2 e32const.h Don’t output
trace strings.

other variant header Send the trace to
the variant.

The semantics of other port values are defined by the ASIC. Some
ASICs implement these as port numbers (for example, 0, 1, 2, 3, and so
on) and others use hardware port addresses.

For example, on the Lubbock platform, when the port is set to 3, the
trace appears on the serial port labeled ‘‘BTUART’’. Any other value
means the trace appears on the port labeled ‘‘FFUART’’.

On the ‘‘H2’’ reference platform, when port is set to 2, trace output
goes to COM3, and when it is set to 0, the trace goes to COM0.

14.6.3 Caveats
There are some problems with this style of tracing which are worth
noting. Tracing alters timing. For most user-side software, this will not
be a problem. However, with time-critical software such as kernel code,
peripheral code and communication stacks, the addition of trace output
may cause it to fail. Also, if the defect you are diagnosing is timing-
dependent, such as a race condition, then adding trace output can make
the problem move somewhere else, making it harder to track down.

Timing problems are compounded if a slow output channel, such as a
serial UART is used. You can mitigate the problem by outputting less trace
information, or by switching to a faster trace channel. The throughput of
the JTAG data channel is typically greater than a serial UART. For some
tasks, you may need to use an even faster channel, such as dedicated

656 KERNEL-SIDE DEBUG

trace hardware or logging to RAM. You can implement the latter by using
the user trace capture API provided by the kernel, see Section 14.3.1 for
more details.

Another side effect of compiling trace strings into your code is that
its ‘‘shape’’ changes – functions and data move address and also move
relative to each other. As a consequence the code may change too (for
example, the size of relative branches). Again, this can occasionally affect
the reproducibility of your defect.

The kernel also has some tracing blind spots – if you are tracing during
power down, you will find that you tend to lose whatever was in the FIFO
when the ASIC was moved to a low-power mode. This makes the quality
of the trace unpredictable.

14.6.4 Kernel trace in practice
To aid development, we have liberally placed debug trace strings through-
out the kernel code, so the activities of the system can be observed.

The kernel trace strings are wrapped in a macro (__KTRACE_OPT)
that is expanded only in debug builds. The strings are categorized into
30 functional areas (e32\include\nkern\nk_trace.h), so you can
choose to get trace output from only the areas you are interested in. F32
follows a similar model.

Macro Bit number Trace strings relating to

KHARDWARE 0 Hardware abstraction layer

KSERVER 2 DServer

KMMU 3 Memory model

KSEMAPHORE 4 Semaphores

KSCHED 5 Scheduler

KPROC 6 DProcess

KDUBUGGER 8 Kernel-side debug agents

KTHREAD 9 DThread

KDLL 10 DLLs

KIPC 11 IPC v1 and v2

KPBUS1 12 Peripheral bus controller

KERNEL TRACE CHANNEL 657

Macro Bit number Trace strings relating to

KPBUS2 13 Peripheral bus controller

KPBUSDRV 14 Peripheral bus driver

KPOWER 15 Power management

KTIMING 16 DTimer

KEVENT 17 Kernel events

KOBJECT 18 DObject

KDFC 19 DFCs

KEXTENSION 20 Kernel extensions

KSCHED2 21 Scheduler

KLOCDRV 22 TLocalDrive

KTHREAD2 24 DThread

KDEVICE 25 Logical and physical device drivers

KMEMTRACE 26 Memory allocations

KDMA 27 DMA framework

KMMU2 28 Memory model

KNKERN 29 Nanokernel

Tracing can be enabled using any of these methods:

• ROMBUILD kerneltrace keyword

• User::DebugMask()

• ESHELL trace command.

We changed the syntax of the trace command between v9.0 and v9.1 of
Symbian OS to allow more trace bits to be allocated. More information is
available from the Symbian Developer Library in the Base Porting Guide
for EKA2 versions of Symbian OS and the C++ component reference
section.

658 KERNEL-SIDE DEBUG

14.7 Summary

Symbian’s primary development environment for applications and mid-
dleware is the EKA2 emulator. Symbian also supports development tools
for target hardware, for the development of kernel-side and hardware
dependent software.

The core building block of the debug architecture is the kernel debug
interface. This interface is designed to support many of the development
tools that are common to the embedded technology tools industry – that
is, remote software on-target debuggers, hardware assisted on-target
debuggers, post-mortem analysis tools, system trace and profilers.

The kernel debug architecture delivers the high level of information
and execution control required to build powerful debugging and analysis
tools.

Stop-mode kernel debugging and stop-mode application debugging
is supported on mobile phones with JTAG ICE hardware. The stop-
mode debug interface provides a method for the hardware assisted
debugger to fully explore the operating system and extract information
about kernel objects even while the target CPU is halted. The debugger
implements Symbian OS awareness and kernel object visualizations using
this interface. This improves the model of the operating system available
to developer through the debugger.

The architecture supports software run-mode debuggers that are suit-
able for application and middleware development on mobile phones.
These debuggers running on the PC talk to a proxy debug agent on the
target, which is a privileged client of the kernel. This style of debug-
ger allows system services to continue running during a debug session.
However, they are not generally suitable for development of kernel-side
software. EKA2 provides the necessary primitives required to implement
the debug agent. The functionality provided includes the kernel event
notification API to notify the debug agent of significant events, an inter-
face to control thread execution and retrieve context, information about
executable code and data sections for the relocation of symbolic debug
information, and functionality to support setting breakpoints in ROM.

The architecture supports both interactive and non-interactive post-
mortem analysis tools for the examination of kernel and application
state at the point of thread or system death. In addition, the kernel
provides primitive kernel tracing for defect diagnosis during development
of kernel-side software.

In the next chapter, I will look at how Symbian OS manages a phone’s
power resources.

15
Power Management

by Carlos Freitas

All power corrupts, but we need the electricity.

Anon

Mobile phones are battery-powered devices. In the majority of cases, the
battery is the only available source of energy – the exception being the
times when the mobile phone is being recharged. Even with today’s most
advanced developments, rechargeable batteries are still characterized by:

• The limited amount of power they can supply at any given time

• The limited period for which they can supply electrical energy before
exhaustion – the depletion of the active materials inside a cell must
be replenished by recharging

• The hysteresis of the depletion–recharge cycle, which shortens the
life-span of a battery.

So it is fair to say that the supply of power on a mobile device is quite
constrained.

The problem is compounded by the need to keep the size and weight
of battery components as small as possible. At the same time, new features
are being added that use more power, or users are operating phones in
power-consuming states (such as gaming or audio/video playback) for
longer periods of time.

Because of this, mobile phone hardware has gained new energy-saving
features, which require software monitoring and control. It is the primary
goal of the operating system’s power management architecture to define
and implement strategies to use energy efficiently, to extend the useful
life-time of the batteries, to increase the period of time for which the
device can be used between recharges and at the same time, to allow the
use of services required by the user of the device at any given time and
at an acceptable level.

660 POWER MANAGEMENT

From the point of view of the phone’s hardware components, there are a
number of factors that the power management policy and implementation
need to address, such as:

• Each hardware component’s requirement on power resources at a
given time

• The component’s state with respect to power consumption and avail-
ability

• The component’s transition time to a ‘‘more available’’ state (for exe-
cuting both externally initiated tasks and background tasks), including
the restoration of the status prior to the transition to the ‘‘less avail-
able’’ state

• The component’s current workload and how this maps to the range of
possible states

• The component’s response time to an input that requires processing
(such as the input from an interface port) whilst in each state and its
ability to keep up with a sudden inflow of data.

Power management also deals with the operational state of the mobile
phone as perceived by its user. That perception is primarily based on
the availability of the user interface. The device is seen to be operational
when the user can interact with the UI. On the other hand, the device
is perceived to be unavailable when the UI seems to be unavailable, for
example when the display is off or is displaying a screen saving image.
The user expects the transition from unavailable to available to be fast
and invariable.

The user also has the perception of an ‘‘off’’ state from which it takes
a considerably longer time to return back to an ‘‘on’’ state.

The user perception of the operational state of the device may differ
from the actual state of the hardware or the interpretation the operating
system has of that state. For example, the user may perceive the device to
be ‘‘off’’ when the screen is off, but background tasks or data transactions
may well be going on. In this case, the device may be able to readily return
to a perceived operational state with no loss of data and state. Equally,
the phone can present itself to its user as fully operational, because the UI
is active and available, while in fact significant portions of the hardware
may be powered off, or only a fraction of the total processing bandwidth
may be available for utilization.

In summary, the power management implementation is responsible
for, on behalf of the operating system:

• Controlling the state and the power requirements of the hardware
components

POWER STATES 661

• Extending the useful life of the battery component and the period the
device can be used in between recharges

• Managing the user’s perception of the phone operational state.

From this, it is clear that power management must be implemented at all
levels of the operating system. Let me give a couple of examples:

1. There may be a UI-specific policy that decides to switch the display
backlight or the display itself off after a period of user inactivity

2. A client of the services provided by an input port may decide to allow
the controlling device driver to move the input port hardware to a
low power state after a period of inactivity (no transactions through
that port).

Symbian OS favors a distributed approach to power management, with
components at different layers of the OS responsible both for managing
their requirements on system power, and the impact of their actions on
the availability of the phone. They achieve this in co-operation with other
interdependent components, which can be at any level of the OS.

This chapter is mostly concerned with the implementation of power
management at the kernel level of Symbian OS, and its interface to
user-side components, but I will refer to other parts of the framework
whenever necessary.

15.1 Power states

The kernel-level implementation of power management is responsible for
managing the power state of hardware components such as the CPU and
peripherals. The factors that are used to identify the state the component
is in include:

• Its ability to retain data while in that state

• Its requirement on the level of system power resources, such as
voltage, clock, current, and so on

• The response time to internal or external events while in that state

• Its transition time to the next ‘‘more available’’ state

• Its internal processing load at the time of transition to that state, and
what parts of the component are involved.

The kernel-side framework sees a hardware component’s power state as
one of:

662 POWER MANAGEMENT

1. Off – moving a hardware component to this state is a result of
removing the power supply to the component. Data and state are
lost, the component’s power consumption becomes negligible and
it has no requirement on any power resource. The component will
have no ability to respond to external events, and will have the
longest transition time to any other state

2. Standby – in this power state, the hardware component may not
have the ability to preserve data and state, but the power framework
software can restore them when it transitions the component to
a ‘‘more available’’ state, so long as it saved the previous state’s
status elsewhere before the transition to standby. The requirements
on power resources can be significantly lowered, for one of two
reasons – either no status preservation is required, or the component
has a fully static operation and no internal processing takes place. The
component may preserve some ability to detect and service external
events, but the response time is generally long and will impact the
component’s performance

3. Retention – in this state the requirements on power resources are
reduced to only those necessary to preserve the component’s data,
internal state and the ability to detect external or generate internal
events. The component is not performing any active tasks, it is not
involved in any data transactions and no internal processing is taking
place. The response times to external or internal events, as well as
the transition time to a state where the events can be processed, may
be long enough to impact the system’s performance

4. Idle – this is usually a transitory state, or a mode. The hardware
component has finished processing a task and no request for further
service has been placed on it. No connected component is acting
on any inputs, nor are new internal events being generated. The
component has the capability to respond to new events and process
them. Its state and data are preserved. Its power consumption may be
reduced, but that does not lead to lowering the requirements it has on
system power resources. Depending on a number of circumstances
which I will explain later in this chapter, the power management
framework may move the component to a lower power state or keep
it in this state until a request for processing data or events is placed
upon it (by the OS or by a connected component)

5. Active – a hardware component in this state is processing tasks,
data or events generated internally and received from its inputs. Its
requirement on power resources is as high as necessary to guarantee
that this processing takes place at the level of availability required. It
may have pending tasks or requests for processing.

POWER FRAMEWORK 663

Not all hardware components support all these power states, and some
components are capable of intermediate states, usually different variations
of the retention state.

Transitions between power states may be triggered by user actions,
requests from the clients of the services provided by these components,
the need to save power, changes to the state of power resources used by
the component, and so on. These states apply to the CPU and peripherals
independently, so it is possible that, at a given time, different hardware
components of a phone will be in different power states.

For example, it is possible that the CPU might enter the idle state if
it has no scheduled tasks and there are no anticipated events requiring
its attention, while a peripheral has an outstanding request for servicing
incoming data. The OS power management must be able to make a
decision to either move the CPU to a lower power mode or to leave it in
its present state. The decision depends on, for example, the response time
to transition the CPU back to the active state and service any requests
issued by the peripheral, and is also based on the permissible degradation
of service provided by the peripheral for the request it is servicing.

Transitioning the CPU to and from some of these states has an impact
on the rest of the system. For instance, transitioning the CPU to the off
or standby state will result in open applications being terminated with
loss of state and data (unless it is saved elsewhere). On returning from
standby to the active state, the same applications must be restored to their
previous context.

Given their wider impact, in Symbian OS we consider off, standby and
active to be system-wide states, and the transitions between those states,
system-wide transitions.

Peripheral transitions to low power states that are not the result of a
system-wide transition may need to be agreed with their clients at other
levels of the OS, given the possible degradation of the quality of service
they provide to those clients.

15.2 Power framework

The kernel power framework is responsible for:

• Managing the transitions of processor core and peripherals between
power states

• Making use of the energy-saving features of the hardware, detecting
and responding to events which may trigger power state transitions

• Managing the hardware components’ requirements on system power
resources.

664 POWER MANAGEMENT

STAND-BY

ACTIVE

IDLE

OFF

RETENTION

Figure 15.1 Typical CPU state transition diagram

The implementation of the framework straddles several software com-
ponents, including the kernel, device and media drivers, extensions and
peripheral controllers, the base port, the hardware adaptation layer (HAL).

The framework is made up of a built-in basic framework and mandatory
and optional portions that must be implemented as part of the port of
Symbian OS to a new hardware platform (Figure 15.1).

15.2.1 Basic framework
The basic power management framework is primarily concerned with
system-wide power transitions – in other words, transitioning the proces-
sor core and peripherals as a group between the off, standby and active
power states.

15.2.1.1 Power manager

The power manager is at the core of the framework and provides the API
between the user and kernel levels of the framework. It co-ordinates the
transition of the CPU, peripherals and hardware platform between the
various system-wide power states, provides the interface to other parts of
the kernel, and coordinates the interactions of the other components of
the framework.

15.2.1.2 Power controller

The framework uses the variant-specific power controller to control
the power behavior of CPU and other parts of the hardware platform.

POWER FRAMEWORK 665

The power controller may also provide a way of controlling the power
resources of the platform.

15.2.1.3 Power handlers

The framework uses power handlers to control the power behavior of
peripherals. This means that power handlers are associated with periph-
eral drivers. The implementation of power handlers may be customized
at the driver level and/or at the variant level.

15.2.1.4 Wakeup events

The basic power management framework provides support for wakeup
events. These are hardware events specific to each low power state,
which, if they occur during a system-wide power transition, may result
in the transition being cancelled or even reverted. If they occur during
standby, they may trigger a return to the active state. Wakeup events
for the standby or off states usually relate to user interactions or timed
sources. The framework provides support for tracking these events (at
peripheral driver or platform-specific levels) and notifying the user-side
software component responsible for initiating the system-wide power
transition of their occurrence.

15.2.1.5 CPU idle

The basic framework provides support for transitioning the CPU in and
out of idle mode. The transition to this mode is triggered when there are
no threads ready to run, and the kernel schedules the null (also known as
the idle) thread as a result. In specific circumstances, some CPUs can be
moved to a more power-saving retention state, and that would be handled
by the platform-specific implementation of the idle mode handling.

15.2.1.6 Power HAL

There is a power-related group of functions that can be executed kernel-
side in response to a call to the HAL class’s Get(...) or Set(...)
APIs (or for certain functions, through calling UserHal or UserSvr
class APIs). This group is identified by the enumerated value EHal-
GroupPower. The framework should also provide an object to handle
this group of functions. This group of functions allow user-side compo-
nents to gain access to the kernel power framework to obtain certain
information or set the power behavior of selected hardware components.

15.2.2 Basic power model overview
The basic power framework only gives external visibility to the system-
wide power states, which I will now enumerate:

666 POWER MANAGEMENT

enum TPowerState
{
EPwActive,
EPwStandby,
EPwOff,
EPwLimit,
};

The model relies on a user-side component to initiate the transitions to
standby and off states. There should only be one such component in
the system and it must have power management capabilities (for more
on capabilities, see Chapter 8, Platform Security). This component is
currently the shutdown server but that may change in the future to be the
domain manager – see Chapter 16, Boot Processes, for more on this.

The kernel power framework was developed with the interface
exported by the domain manager in mind (Figure 15.2), so I will
assume throughout this chapter that the domain manager is the user-side

Power Manager

Power Controller

Variant or ASSP

user
kernel

Peripheral Drivers

Power Handlers

Wakeup events
notification complete

Standby/Shutdown
Enable/Disable wakeup events

Notification requests

AddEvent()
SetHomeTime()
HalFunction()

Wakeup Events

Base Port

Variant IdleWakeup EventsCPU Standby
CPU Power Off

CPU Idle
Absolute Timer expiration

Kernel Power On/Off
notifications

Add/remove handler

AddEvent()

Timer expiration
Power HAL
Power status
User activity
Idle Kernel

Figure 15.2 Basic framework block diagram

POWER FRAMEWORK 667

component responsible for initiating system-wide transitions. In the
majority of cases, the behavior of the kernel framework will be the same
if the shutdown server is used instead – I will describe any exceptions
where relevant.

Transitions to standby or off are not instantaneous – from the moment
the user requests the shutting down of the phone, until the framework
is requested to perform the transition at kernel level there is typically
a lengthy preparation phase in which UI state and application data are
saved, and applications are shut down. We therefore want wakeup events
that are detected kernel-side to be communicated to the initiator of the
transition during the preparation phase. This component may on receiving
a wakeup event, cancel or reverse the preparations for the system-wide
transition – restoring the previous state of UI and applications.

Wakeup events are hardware-specific, and the kernel-level part of the
framework maps a set of events to each target low power state. The
shutdown server or domain manager must be able to set a target low
power state for a system-wide transition and enable the wakeup events for
that state. It must also be able to request notification of their occurrence,
and in time, request the kernel framework to transition to that state.

When deciding to stop or reverse the preparations to a system-wide
transition to a low power state, the initiator of the system-wide transition
must be able to request the disabling of wakeup events for the previous
target low power state, and set the target state to active. It must also be
able to cancel the request for notification of wakeup events.

Once the kernel-side power framework has initiated a transition, the
user-side initiator cannot stop that transition – although a wakeup event
may still prevent it taking place.

The power manager manages the kernel-side transitions.
All of the user-side requests that I’ve mentioned are routed to the

power manager. This receives a request to power off or go to standby
state, and dispatches notifications to other components that manage the
transition of CPU and peripherals to those states.

Peripheral drivers for peripherals that need to be powered down
as a result of a system-wide transition to standby or off must own a
power handler. When these peripheral drivers are started, they need to
register with the power manager for notifications of system-wide power
transitions – the power manager keeps a list of registered power handlers.
When the peripheral driver object is destroyed, it should de-register its
power handler with the power manager.

The power manager notifies every registered peripheral driver of an
imminent power down through its power handler. Upon receiving these
notifications, peripheral drivers should change the power state of the
peripheral they control so as not to compromise the eventual system-wide
power transition that is taking place.

668 POWER MANAGEMENT

As peripheral power down may take some time, each power handler
owns a fast semaphore, which the power manager waits on, after request-
ing it to power down the peripheral. This semaphore is signaled upon
completion of the peripheral power down.

After all peripherals have powered down, the power manager should
request the CPU to power down. To do this, it calls down to the power
controller.

If the target state of the system-wide power transition is off, instruction
execution terminates soon after the call to the power controller is issued.
If the target state is standby, the CPU is eventually brought back to
the active state when a wakeup event occurs. Instruction execution is
resumed inside the power controller call, and then control is returned to
the power manager, which then powers up all peripheral drivers owning
a registered power handler, and waits for them to power up, in a sequence
that is the reverse of the power down that I explained previously.

Wakeup events may also occur during the user-side transition, and
if they are enabled, should be propagated up to the component that
initiated that transition.

Wakeup events are monitored at the variant-specific level, so every
request to enable or disable them should be propagated down to the
power controller.

Each system-wide low power state (standby and off) may have a
different set of wakeup events. So, if the domain manager requests the
enabling of wakeup events when the target state is already a low power
state the power manager will disable the set corresponding to the previous
low power state, before enabling the set corresponding to the new low
power state. If the domain manager requests the disabling of wakeup
events, the power manager assumes that it decided to stop or reverse the
transition, so it is sets the target state to active.

The power controller may monitor wakeup events directly, or delegate
this to a peripheral driver. In the latter case, the peripheral driver must
notify the power controller of the occurrence of a wakeup event, and the
power controller then propagates the notification to the power manager,
which completes any pending user-side request for notification.

If the target low power state of a system-wide transition is standby,
and a wakeup event happens after the kernel framework is requested to
transition, but before the CPU is moved to that state, then the implemen-
tation should not complete the transition. If no event occurs, it will return
when a detected wakeup event finally occurs.

Another important function of the kernel power framework is to detect
the moment when the CPU idles. This can be used to move the CPU
and platform to a power-saving state. Such decisions must be taken at
variant-specific level, and therefore must involve the power controller.

The kernel notifies the power manager every time the null thread is
scheduled to run. A power manager implementation calls down to the

POWER FRAMEWORK 669

power controller’s platform-specific implementation, which may decide
to move the CPU to a low power retention state, possibly in cooperation
with other components such as peripheral drivers.

There is an alternative mechanism to allow user-side components to
communicate with the kernel-side framework – the HAL. This component
provides APIs that any user-side component with power management
capabilities may call to obtain information on power supplies and control
the power behavior of certain peripherals (display, pointing devices,
external case or flip, and so on).

Finally, the framework may include a battery-monitoring component,
which is implemented at variant level. I will discuss this in greater detail
later in the chapter.

15.2.2.1 Initialization

Early on during kernel boot (see Chapter 16, Boot Processes), when the
microkernel is initialized, the global power manager object is created. As
a power manager must own a pointer to a power controller, a dummy
power controller is also created. The power manager will later replace
this pointer with a pointer to a real power controller.

The power controller is typically implemented in a kernel extension;
when this extension is started the power controller is created and registers
with the power manager. Registering results in the power manager
replacing the dummy pointer with a pointer to the real power controller.
It also sets up a global pointer in the kernel, K::PowerModel, to point
to the power manager, in this way providing the kernel with the means
to access the power framework.

The base porter may not want to have a power-controller-specific
kernel extension, but instead have the Variant object, part of the
variant DLL, create and own one.

The power controller extension entry point will usually create a
platform-specific handling object for the EHalGroupPower group of
functions and register it with the power manager.

Typically, it will also create a battery monitor component at this stage,
if one is to be implemented.

Finally, as the kernel starts each peripheral driver, it will register its
power handler with the power manager.

15.2.2.2 API description

Let’s now look at each component and its public exported interface in
detail.

The user-side interface
The basic power management framework can be accessed from user-side
via the Power class. This class provides static methods for enabling

670 POWER MANAGEMENT

and disabling wakeup events, requesting or canceling notification of
occurrence of wakeup events and moving the kernel-side components to
one of the low power states, standby or off.

class Power
{

public:
IMPORT_C static TInt EnableWakeupEvents(TPowerState);
IMPORT_C static void DisableWakeupEvents();
IMPORT_C static void RequestWakeupEventNotification(TRequestStatus&);
IMPORT_C static void CancelWakeupEventNotification();
IMPORT_C static TInt PowerDown();
};

All of these functions are exported by EUSER, and gain access to the
kernel-side power framework in the usual way, via executive calls. Here
is a description of the public API:

• EnableWakeupEvents(). This function is used to set the target low
power state for a system-wide transition and to enable wakeup events
for that state. If the target state is neither EPwStandby nor EPwOff,
it returns KErrArgument

• DisableWakeupEvents(). This function is used to disable wakeup
events for the current target low power state for the system-wide
transition in progress. If the current target power state is neither
EPwstandby nor EPwoff, the call returns immediately

• RequestWakeupEventNotification(). This is the only asyn-
chronous function; it is used to request notification of any wakeup
events that happen during the preparation to transition the system to
a low power state, or after the system has entered standby. Only one
pending request is allowed at a time – if another request is already
pending, the function returns KErrInUse

• CancelWakeupEventNotification(). This call is used to cancel
a pending wakeup event notification request. If, at the time this
function is called, the notification request is still pending, then it
returns KErrCancel

• PowerDown(). This function requests the kernel framework to move
the CPU and peripherals to a low power state. If the target low power
state is standby, this function returns when a wakeup event occurs. If
the target low power state is off, this call never returns.

The power manager
The power manager has no public exported APIs.

POWER FRAMEWORK 671

The kernel-level power management framework offers an abstract
class (DPowerModel) as a template for the implementation of a power
manager:

class DPowerModel : public DBase
{

public:
virtual void AbsoluteTimerExpired() = 0;
virtual void RegisterUserActivity(const TRawEvent& anEvent) = 0;
virtual void CpuIdle() = 0;
virtual void SystemTimeChanged(TInt anOldTime, TInt aNewTime) = 0;
virtual TSupplyStatus MachinePowerStatus() = 0;
virtual TInt PowerHalFunction(TInt aFunction, TAny* a1, TAny* a2) = 0;
};

This class defines the interface between the power framework and the
rest of the kernel. It mandates a number of functions that should be
implemented by a power manager. The kernel uses the global pointer I
mentioned earlier, K::PowerModel, to call these functions. Here is a
description of the DPowerModel API:

• CpuIdle(). The kernel calls this function every time the null thread
is scheduled to run

• RegisterUserActivity(). The kernel calls this function every
time an event is added to the event queue. Peripheral drivers that
monitor user interaction (such as pressing a key, tapping the touch
screen, opening or closing the phone) may add events kernel-side.
A user-side component may also add events using the userSvr API
AddEvent(), which is exported from EUSER.DLL. The function
takes a reference to the raw event as a parameter, so a power manager
implementation may choose to respond differently to different events

• PowerHalFunction(). The kernel’s HAL function that handles
EHalGroupPower calls this function, passing an identifier to the
function to be executed. The power manager implementation should
call a platform-specific handling function

• AbsoluteTimerExpired(). The kernel calls this function every
time an absolute timer completes. (An absolute timer is one that
expires at a specific date and time.) A power manager implementation
should call a power controller’s platform-specific implementation,
which may regard it as a wakeup event for an impending system-wide
transition

• SystemTimeChanged(). The kernel calls this function every time
the software RTC (and eventually the hardware RTC, if one exists) is
updated in response to a call to user::SetHomeTime()

672 POWER MANAGEMENT

• MachinePowerStatus(). The kernel calls this function whenever
the framework’s exported API Kern::MachinePowerStatus() is
called. MachinePowerStatus() should query the battery monitor-
ing component if one is implemented kernel-side.

The current implementation of the power manager in Symbian OS
also offers:

• A kernel-side implementation of the corresponding user-side Power
class APIs

• Management of and interface to power handlers

• Management of and interface to the power controller.

Here’s the make up of the current Symbian OS power manager:

class DPowerManager : public DPowerModel
{

public:
void CpuIdle();
void RegisterUserActivity(const TRawEvent& anEvent);
TInt PowerHalFunction(TInt aFunction, TAny* a1, TAny* a2);
void AbsoluteTimerExpired();
void SystemTimeChanged(TInt anOldTime, TInt aNewTime);
TSupplyStatus MachinePowerStatus();

public:
static DPowerManager* New();
TInt EnableWakeupEvents(TPowerState);
void DisableWakeupEvents();
void RequestWakeupEventNotification(TRequestStatus*);
void CancelWakeupEventNotification();
TInt PowerDown();
void AppendHandler(DPowerHandler*);
void RemoveHandler(DPowerHandler*);
void WakeupEvent();
...
};

Kernel-side implementation of user-side API
The following methods are called in response to corresponding Power
class calls:

• DPowerManager::EnableWakeupEvents() enables tracking of
wakeup events for a valid target low power state (standby or off)

• DPowerManager::DisableWakeupEvents() disables tracking
of wakeup events for the target low power state

• DPowerManager::RequestWakeupEventNotification()
enables the delivery of wakeup event notifications to the client that
requested it, whenever one occurs

POWER FRAMEWORK 673

• DPowerManager::CancelWakeupEventNotification()
stops the power manager from delivering wakeup event notifications
to the client that requested them

• DPowerManager::PowerDown() initiates the kernel-side transi-
tion of CPU and peripherals to the target low power state. If the target
state is standby, when a wakeup event arrives, it delivers a notification
to the client if a request is pending.

These functions need access to the platform-specific powercontroller,
which is protected against concurrent access and re-entrance with a
mutex. Therefore, the corresponding Power class functions execute
inside a critical section to prevent the calling thread that holds the mutex
from being suspended or killed.

Management and interface to power handlers
The DPowerManager::AppendHandler API adds the power handler
to the list of controlled objects, and the DPowerManager::Remove-
Handler API removes it.

Management and interface to power controller
DPowerManager::WakeupEvent() checks if the power state is valid
and completes any pending client’s request for wakeup event notification.

The power handler
The DPowerHandler class is intended for derivation. The software
component that owns the power handler must implement the pure virtual
functions and may include other APIs (for example, to allow the handler
to request power related resources):

class DPowerHandler : public DBase
{

public:
// to be implemented by kernel-side power framework
IMPORT_C ∼DPowerHandler();
IMPORT_C DPowerHandler(const TDesC& aName);
IMPORT_C void Add();
IMPORT_C void Remove();
IMPORT_C void PowerUpDone();
IMPORT_C void PowerDownDone();
IMPORT_C void SetCurrentConsumption(TInt aCurrent);
IMPORT_C void DeltaCurrentConsumption(TInt aCurrent);

public: // to be implemented at component-specific level
virtual void PowerDown(TPowerState) = 0;
virtual void PowerUp() = 0;
...
};

674 POWER MANAGEMENT

The APIs (exported from EKERN.EXE) with a default implementation are:

• A constructor to allow the creation of power handler objects owned
by peripheral drivers. The constructor simply sets the name for this
power handler from the argument passed in. (The name is only used
for debug purposes.) Typically the peripheral driver-specific derived
constructor will set up other relevant parameters

• Add(). Called by the component that owns the power handler to add
it to the list of power handlers that receive notifications of power state
changes. Calls DPowerManager::AppendHandler()

• Remove(). Called by the component that owns the power handler to
remove it from the list of power handlers that receive notifications of
power state changes. Calls DPowerManager::RemoveHandler().
Like the Add(), this function acquires a mutex that is also held by
the implementation of PowerUp() and PowerDown(). Hence, the
device driver writer must guarantee these calls are issued from inside
a critical section to prevent the calling thread from being suspended
or killed when owning a mutex

• PowerDownDone(). This is called by the component that owns the
power handler, after it has performed all the required internal actions
to guarantee that the system-wide power transition that is taking place
can be accomplished

• PowerUpDone(). This is called by the component that owns the
power handler, after it has performed all the required internal actions
to guarantee that the system-wide transition that is taking place can
be accomplished

• SetCurrentConsumption() and DeltaCurrentConsump-
tion(). These APIs have been deprecated and should not be used

• A destructor to allow destruction from peripheral driver code.

Ownership of power handlers
Next I will discuss the ownership of power handlers. The following
kernel-side software components may own power handlers:

• Kernel extensions that control simple peripherals (for example display,
digitizer and keyboard) and which can be accessed from user-side
through the HAL or through unique kernel interfaces, and peripherals
which provide services to other peripherals (for example, an internal
inter-component bus) usually enforce a policy of having a single client
at a time and therefore may own, or in the majority of cases derive
from, DPowerHandler

POWER FRAMEWORK 675

• Device drivers may control more than one unit of the same type
of peripheral and so they allow multiple simultaneous clients or
channels (one per unit). In this case the channel usually owns the
power handler. If you are implementing an LDD/PDD split, then the
logical (or physical) channel object will create and own a pointer to
the power handler

• Some device drivers may enforce a single channel policy. In this case,
the logical device may own the power handler

• Peripheral bus controllers are used to extend access to the system bus
(or any bus internal to the device) to external peripherals. They may
be able to support multiple physical interfaces, in which case each
interface implementation should own a power handler. Examples of
these are the PCMCIA and MMC/SD/SDIO bus controllers

• In other instances, controllers only support one physical interface but
multiple logical instances. In this case the controller itself will own
the power handler – this is the case of the USB controller.

The power controller
The power controller object must derive from the DPowerController
class. This class provides APIs for initiating CPU-specific preparations for
going to low power states, enabling/disabling tracking of wakeup events
at platform-specific level and allowing peripheral drivers to notify the
occurrence of wakeup events that they track:

class DPowerController : public DBase
{

public: // Framework
IMPORT_C DPowerController();
IMPORT_C void Register();
IMPORT_C void WakeupEvent();
...

public: // Platform-specific power component
virtual void Cpuidle() = 0;
virtual void EnableWakeupEvents() = 0;
virtual void DisableWakeupEvents() = 0;
virtual void AbsoluteTimerExpired() = 0;
virtual void PowerDown(TTimeK aWakeupTime) = 0;
...
};

The APIs (exported from EKERN.EXE) with default implementation are:

• A constructor to allow a platform-specific component (such as the
variant DLL or the power controller kernel extension) to create a
power controller. The default implementation sets the power con-
troller power state to active. The platform-specific constructor will
usually register the power controller with the power manager

676 POWER MANAGEMENT

• Register(). This API registers a power controller with the power
manager. The implementation of Register() replaces the power
controller object pointer with a pointer to this one

• WakeupEvent(). Calls the power manager to notify it of a wakeup
event.

The power HAL handler
This is the prototype of a platform-specific handling object for the power
HAL group of functions:

class DPowerHal : public DBase
{

public:
IMPORT_C DPowerHal();
IMPORT_C void Register();

public:
virtual TInt PowerHalFunction(TInt aFunction, TAny* a1, TAny* a2) = 0;
};

The APIs (exported from EKERN.EXE) with default implementation are:

• An exported constructor to allow a platform-specific component to
create a handling object

• Register(). This registers the power handling function with the
power manager.

15.2.3 Walkthrough of user-initiated shutdown
Now that I have explained the role of each component of the framework
and their APIs, let’s look at how they are used on a user-initiated transition
to standby or off.

The shutting down of the phone is typically triggered by the user
pressing a power button. In other cases, defined by a UI policy, it may be
triggered by a user inactivity timer. These events are detected at kernel
level and propagated to the user-side component that manages the system
shutdown, currently the shutdown server.

The shutdown server starts the transition by notifying active applica-
tions that a transition is imminent, allowing them to save status and shut
down.

It is only after all this is done that the shutdown server requests the
kernel framework to transition the CPU, peripherals and the hardware
platform to the target state.

The reverse applies to the transition from standby to active, with the
CPU and peripherals transitioning first, and then a notification generated
at the kernel framework level being propagated upwards to the shutdown
server which is responsible for transitioning the rest of the system.

POWER FRAMEWORK 677

I will describe the processes of shutting down and restarting and the
user-level components involved in more detail in the next chapter, Boot
Processes.

Let us now look at the sequence of events in the kernel level framework
during a transition to standby or off.

The way in which the user-side shutdown initiator hooks into the
kernel framework varies, with the shutdown server calling User-
Hal::SwitchOff() (see Section 15.2.3.6) which then calls the Power
class APIs, and the domain manager calling those APIs directly. In either
case, the calls are always made in the sequence I will now describe.

The sequence starts with a call to Power::EnableWakeup-
Events(), passing the target low power state as an argument (EPw-
standby or EPwoff). This goes through an executive call to the kernel
in a critical section, and ends up in the power manager. The power man-
ager sets the target state, and then calls the derived DPowerController
object’s platform-specific implementation of EnableWakeupEvents().
As I have said before, this will either enable wakeup events directly in
hardware, or call to relevant drivers.

The next function to be called in the sequence is Power::Request-
WakeupEventNotification(). This goes through an executive call,
inside a critical section, to the power manager. The power manager
simply saves the pointers to the TRequestStatus object and the
requester client thread.

If the power manager receives a notification that a wakeup event has
occurred at any point during the transition to a low power state, or after
the transition to standby, it uses the pointers to the request status object
and the client thread to complete the request (with KErrNone).

The final function in the sequence is Power::PowerDown() which
initiates the kernel-side shutdown. Again this goes through an executive
call, inside a critical section, to the power manager. The power manager
performs the following sequence:

1. Notifies every registered power handler of power down, by calling
the driver-specific implementation of DPowerHandler::Power-
Down() and passing the target power state. The driver-specific
implementation may shut down the peripheral removing its power
source (if the target state is off) or move it to a low power state,
relinquishing its use on power resources, and possibly leaving some
of its subsystems operational for detection of wakeup events (if the
target state is standby)

2. Waits for all the power handlers to complete powering down.
Completion is signaled by the peripheral driver calling DPower-
Handler::PowerDownDone()

3. Acquires the tick queue mutex to stop tick timers being updated

678 POWER MANAGEMENT

4. Calls DPowerController::PowerDown(), passing the time for
the next absolute timer expiration (in system ticks)

5. The platform-specific power controller function prepares the CPU
for, and transitions it to, the low power state. If the target state is
off, instruction execution terminates. If the target state is standby,
execution is halted until a wakeup event occurs or an absolute timer
expires, when execution resumes, the power controller restores the
state of the CPU and core peripherals and control returns back to the
power manager

6. Back in the power manager, it is safe to set the power state to active.
The power manager wakes up the second queue (a different queue,
used for second-based timers and driven by the tick queue), which
will resynchronize the system time with the hardware RTC. If waking
up on an absolute timer, this will queue a DFC to call back any timers
which have expired and restart second queue. The power manager
releases the timer mutex

7. At this point the power manager notifies all registered power handlers
of the transition to the active state by calling the driver-specific imple-
mentation of DPowerHandler::PowerUp(). This may restore the
peripheral state and power it up

8. As before, the power manager waits for all power handlers to finish
powering up, which is signaled by the peripheral driver calling
DPowerHandler::PowerUpDone()

9. Finally, the power manager simply completes the request for notifi-
cation of wakeup events if one is pending.

15.2.3.1 Remapping standby state to off state

As I mentioned before, the shutdown server is currently the user-side
component responsible for initiating a shutdown. It does that by call-
ing UserHal::SwitchOff() which requests the kernel framework to
transition to standby. It is likely that the device creator will want the
shutdown sequence to end in the power supply to the CPU and periph-
erals being removed to prolong the life of the device’s battery – unless
the device includes a backup battery which could be used to power the
self-refreshing SDRAM in standby state. In this case, the base porter may
remap the standby state to off.

15.2.4 Customizing the basic framework

The framework includes several abstract classes that are intended as
prototypes for platform-specific (or driver-specific) components. Those

POWER FRAMEWORK 679

porting Symbian OS to new hardware would implement these framework
components as part of the base port, or in the case of power handlers, as
peripheral drivers.

This customization of the framework implements mandatory functions
that deal with:

1. Peripheral transitions when a system-wide transition occurs, to or
from the standby state, or to the off state

2. CPU transitions when a system-wide transition occurs, to or from the
standby state, or to the off state

3. CPU transitions to and from the idle mode

4. Tracking of standby wakeup events

5. Handling of power-related HAL functions.

15.2.4.1 Peripheral power down and power up

A DPowerHandler class derived object requires the following functions
to be implemented:

• PowerDown(). This requests peripheral power down. The power
manager calls this function during a transition to the standby or off
state

• PowerUp(). This notifies the peripheral of a system power up. The
power manager calls the power handler’s PowerUp()when returning
from standby back to the active state.

After receiving a request to power down, a peripheral driver should
execute the necessary actions to power down the peripheral and ancillary
hardware (unless it is required for detection of wakeup events and the
target state is standby). This may include requesting the removal of
the power supply, and also releasing the requirements on other power
resources such as clocks and power supplies.

After this is done, the driver should signal to the power manager
that the peripheral has powered down by calling the power handler’s
PowerDownDone() method.

After it receives notification of system power up, a peripheral driver
may decide to power up the peripheral and ancillary hardware. The
decision depends on the internal operational state of the peripheral driver
before the transition to standby. The peripheral driver should also signal
to the power manager that the call has completed by calling the power
handler’s PowerUpDone() method.

680 POWER MANAGEMENT

PowerDown() and PowerUp() are called in the context of the
user-side component that requested the system-wide transition. Power-
DownDone() and PowerUpDone() can be called from that same thread,
or from the peripheral driver’s thread (before or after the corresponding
PowerDown() or PowerUp() functions return).

Note that PowerUp() and PowerDown() are only used on transitions
to and from the standby or active states or transitions to off state. The
peripheral hardware is typically powered up on opening a peripheral
driver and down on closing it, and its power state changes when the
driver uses or releases it – and all of this should be fully managed by the
driver software.

15.2.4.2 CPU power down and power up

A DPowerController class derived object requires an implementation
of PowerDown() which deals with the CPU transition between the
standby, active and off states. The power manager calls the power
controller’s PowerDown() function to move the CPU to a low power
state. PowerDown() runs in the context of the shutdown server (or
domain manager). If one or more wakeup events occur during execution
of the call, but before the power state is entered, the PowerDown() call
should return immediately.
PowerDown() takes an argument (aWakeupTime), which is a system

time value; if it is not null and the target state is standby, it specifies
the time when the system should wakeup. This is the time when the
next absolute timer will expire. Typically the implementation starts by
checking that this time is in the future, and then programs the RTC
(real time clock) module to generate an event at the specified time,
which will cause a return to the active state. For this to happen, the call
should enable RTC event detection during standby. The implementation
of PowerDown() must make sure that setting the RTC to wakeup in the
future will not cause it to wrap around, as the maintenance of the system
time depends on the knowledge of when this happens. In this case, the
RTC should wakeup the CPU just before it is about to wrap.

If aWakeupTime is null, the system will only wake up from standby
when a wakeup event occurs. When this happens, the CPU wakes up
and the PowerDown() function resumes and restores the status that
was saved before entering standby. At that point, there is no need to call
WakeupEvent() – upon returning from this function the power manager
will notify any client which requested notification of wakeup events.

If the target state is off, then PowerDown() will never return. Usually
the power controller turns off the CPU power supply.

Preparation to go to standby state
In the standby state, the CPU’s and core peripherals’ clocks and even their
power supplies, may be suppressed. This means that their internal state

POWER FRAMEWORK 681

is not preserved. In this case, PowerDown() should save this internal
state, so that it can be restored when the system wakes up. This is done
as follows:

• CPU state. Saves all registers (on ARM – the current mode, banked
registers for each mode, and stack pointer for both the current mode
and user mode)

• MMU state. On ARM saves the control register, translation table base
address, domain access control (if supported)

• Flushes the data cache and drains the write buffer

• Core peripherals. Saves the state of interrupt controller, I/O pin
function controller, external (memory) bus state controller, clock
controller, and so on.

When this data is saved to SDRAM, PowerDown() should place the
device in self-refresh mode. If the SDRAM device allows partial bank
refresh, and support has been implemented to query bank usage, Pow-
erDown() can set the used banks to self-refresh, and power down unused
banks of memory. Obviously this uses less power.

Usually PowerDown() would leave peripheral subsystems that are
involved in the detection of wakeup events powered and capable of
detection.
PowerDown() should also disable tick timer events and save the

current count of this and any other system timers; it should enable any
relevant wakeup events, and disable any others.

On entering the standby state, instruction execution halts. Power-
Down() can do this simply by stopping the CPU clock, if this has used a
fully static architecture. A wakeup event will restart the CPU clock, and
execution resumes.

On returning from standby state, when PowerDown() resumes exe-
cution, it should restore the CPU and core peripherals’ state that it saved
prior to going to standby.

15.2.4.3 CPU idle

A DPowerController class derived object requires an implementation
of CpuIdle(), which deals with CPU transition to idle state.

The idle state is a transitional state, often the gateway to a power-saving
retention mode. In Section 15.2.2.1, I will look at how the CPU can be
moved to these retention states.

Variant-specific idle
As I mentioned previously, the scheduling of the null thread is what
signals the CPU idle condition.

682 POWER MANAGEMENT

The null thread is the first thread to start on a device at boot time,
and it runs before the power manager has been registered with the
kernel. Therefore, an alternative to the power manager’s own CpuIdle()
function must be provided, as a pure virtual method of the Asic class:

class Asic
{

public:
...
// power management
virtual void Idle()=0;
...
};

This function is typically a dummy implementation, provided by the
Asic class derived Variant class. Once the power manager has been
registered, the kernel will call its CpuIdle() function instead.

15.2.4.4 Enabling access to power controller from other kernel-side components

It is common that other kernel-side components such as the variant,
or peripheral drivers, need access to the power controller. This has no
built-in accessible interfaces, other than to the power manager. When
porting Symbian OS, the base porter may therefore wish to implement
a derived power controller exported method to return a pointer to itself
and an interface class, in this way:

class TXXXPowerControllerInterface
{

public:
...
// to allow Drivers access to power controller
IMPORT_C static PowerController* PowerController();
inline static void RegisterPowerController(

DXXXPowerController* aPowerController)
{iPowerController=aPowerController;}

public:
...
static DXXXPowerController* iPowerController;
};

EXPORT_C DXXXPowerController*
TXXXPowerControllerInterface::PowerController()

{
return &iPowerController;
}

The power controller derived object’s constructor should register the
power controller with the interface, which is best done at construc-
tion time:

POWER FRAMEWORK 683

DXXXPowerController::DXXXPowerController()
{
Register(); //register power ctrllr with power manager

// register power controller with interface
TXXXPowerController::RegisterPowerController(this);
}

15.2.4.5 Handling of wakeup events

When the CPU and peripherals move to the standby state, their respon-
siveness and availability are greatly reduced. This is accepted by the user
accepts who has chosen to switch the phone off and the framework uses
that acceptance to save power.

However, at the OS level, we need to enable a minimum capability
to respond to user interactions, so that the framework can transition the
phone back to a more available state when the user switches the phone
back on. Also, some internal events, such as expiry of absolute timers,
must be able to bring the phone back to a more available state.

A DPowerController-derived object should implement the follow-
ing pure virtual functions to handle wakeup events:

• EnableWakeupEvents()

• DisableWakeupEvents()

• AbsoluteTimerExpired().

EnableWakeupEvents()
Typically, the domain manager (or shutdown server) will start a transition
to standby by requesting the kernel power framework to start monitoring
wakeup events and notify it of their occurrence.

As a result, the power manager calls the power controller’s Enable-
WakeupEvents() to enable detection at platform-specific level.

Monitoring wakeup events
The power controller may monitor some wakeup events directly. If that is
the case, the implementation of EnableWakeupEvents()programs the
hardware components involved in their detection, and hooks a handling
function to service the event. This is commonly achieved with the use of
an interrupt – the ISR should schedule a DFC to notify the power manager
of the event.

More commonly, peripheral drivers monitor wakeup events. In this
case, the implementation of EnableWakeupEvents() should store
whether the event is enabled, like so:

class DXXXPowerController : public DPowerController

684 POWER MANAGEMENT

{
public: // from DPowerController
...
void EnableWakeupEvents();
void AbsoluteTimerExpired();
void DisableWakeupEvents();
...

public:
DXXXPowerController();
...

private:
TInt iWakeupEventMask;
...
};

void DXXXPowerController::EnableWakeupEvents()
{
...

// Set iWakeUpMask to a bit mask with one bit set for
// each relevant wakeup event for the standby state
if(iTargetState==EPwstandby)

iWakeupEventMask=myMask;
}

There are two possible schemes:

1. Upon the occurrence of the event, the driver checks with the power
controller to see if the event is enabled, and if it is, notifies the
power manager by calling the power controller’s WakeupEvent()
method. (It checks by calling an API such as the next example
IsWakeupEventEnable(...), and passing a bit mask containing
the wakeup event that it is interested in.)

public:
inline TBool IsWakeupEventEnabled(Tint aWakeupEvent)
{
(iWakeupEventMask & aWakeupEvent) ?

return ETrue : return EFalse;
}

2. The driver notifies the power controller whenever a wakeup event
it monitors occurs, using an API such as the next example Noti-
fyWakeupEvent(), and passing a bit mask containing the wakeup
event that it monitors; the API checks to see if the wakeup event
is enabled, and if it is, notifies the power manager by calling the
WakeupEvent() method.

public:
inline void NotifyWakeupEvent (Tint aWakeupEvent)

POWER FRAMEWORK 685

{
if(iWakeupEventMask & aWakeupEvent) WakeupEvent();
}

Obviously, for either of these schemes to work, the peripheral driver must
have access to the power controller as I described previously.

DisableWakeupEvents()
DisableWakeupEvents() either disables the detection of wakeup
events directly in hardware, if the power controller monitors them, or it
signals to the peripheral driver that monitors them to stop notifying the
power controller of their occurrence.

AbsoluteTimerExpired()
Absolute timer expiration is typically a monitored wakeup event; the ser-
vicing of AbsoluteTimerExpired() should simply notify the power
manager of a wakeup event:

void DXXXPowerController::AbsoluteTimerExpired()
{
if (iTargetState == EPwstandby) WakeupEvent();
}

15.2.4.6 Handling of power HAL group of functions

A DPowerHal-derived object requires an implementation of Power-
HalFunction(), which provides the platform-specific handling of a
group of HAL functions.

The HAL component provides user-side access to certain platform-
specific functions. It uses the following public exported APIs:

class HAL : public HALData
{

public:
IMPORT_C static TInt Get(TAttribute aAttribute, TInt& aValue);
IMPORT_C static TInt Set(TAttribute aAttribute, TInt aValue);
...
IMPORT_C static TInt Get(TInt aDeviceNumber,

TAttribute aAttribute, TInt& aValue);
IMPORT_C static TInt Set(TInt aDeviceNumber,

TAttribute aAttribute, TInt aValue);
};

These can be called with an attribute specifying what function is to be
executed at platform-specific level.

The set of HAL attributes that may need to be handled by the Power-
HalFunction() function are:

686 POWER MANAGEMENT

• EPowerBatteryStatus – used with HAL::Get(...) only, see
Section 15.3.1.3

• EPowerGood – used with HAL::Get(...) only, see Sect-
ion 15.3.1.3

• EPowerBackupStatus – used with HAL::Get(...) only, see
Section 15.3.1.3

• EPowerExternal – used with HAL::Get(...) only, see Section
15.3.1.3

• EPowerBackup – used with HAL::Get(...) only, see Section
15.3.1.3

• EAccessoryPower – used with HAL::Get(...) only, see Section
15.3.1.3

• EPenDisplayOn – used with HAL::Set(...) to enable switching
the display on when tapping the touch panel, or HAL::Get(...) to
query if tapping the touch panel will switch the display on

• ECaseSwitchDisplayOn – used with HAL::Set(...) to enable
switching the display on when opening the phone lid, or HAL::
Get(...) to query if opening the phone lid will switch the display on

• ECaseSwitchDisplayOff – used with HAL::Set(...) to enable
switching the display off when closing the phone lid, or HAL::
Get(...) to query if closing the phone lid will switch the display off.

The DPowerHal derived object’s PowerHalFunction(...) will be
called in response to HAL calls with any of the previous attributes and
is passed one of the following parameters (in place of the aFunction
argument) to indicate what function to perform at this level:

• EPowerHalSupplyInfo – called in response to HAL::Get(...)
with EPowerBatteryStatus, EPowerGood, EPowerBackup-
Status or EPowerExternal. Returns a device-specific information
structure that is usually kept by the battery-monitoring component (if
one exists at this level – see Section 15.3.1.3)

• EPowerHalBackupPresent – called in response to
HAL::Get(...)with EPowerBackup, used to query for the pres-
ence of a backup battery (see Section 15.3.1.3)

• EPowerHalAcessoryPowerPresent – called in response to
HAL::Get(...) with EAccessoryPower, used to query for the
presence of accessory power (see Section 15.3.1.3)

• EPowerHalSetPointerSwitchesOn – called in response to
HAL::Set(...) with EPenDisplayOn, may be used to enable

POWER FRAMEWORK 687

switching the display back when tapping the touch sensitive panel.
On periods of user inactivity, the window server may request the
switching off of the display and backlight to conserve power. This is
part of a system-wide power policy, which is not the object of this
chapter

• EPowerHalPointerSwitchesOn – called in response to
HAL::Get(...) with EPenDisplayOn, used to query if tapping
the screen will switch the display back on

• EPowerHalSetCaseOpenSwitchesOn – called in response to
HAL::Set(...) with ECaseSwitchDisplayOn, may be used
to enable switching the display back on when opening any external
encasement (lid on a clam shell device, the sliding panel, and so on)

• EPowerHalCaseOpenSwitchesOn – called in response to HAL::
Get(...)with ECaseSwitchDisplayOn, used to query if opening
the case will switch the display back on

• EPowerHalSetCaseCloseSwitchesOff – called in response to
HAL::Set(...)with ECaseSwitchDisplayoff, may be used to
enable the switching off of the display when closing the case. Again,
this may be part of a system-wide power policy taken care by a
component not covered by this chapter

• EPowerHalCaseCloseSwitchesOff – called in response to
HAL::Get(...) with ECaseSwitchDisplayoff, used to query
if closing the case will switch the display off.

As I mentioned previously, PowerHalFunction may be invoked in
response to a user-side component call to a UserSvr class exported API,
HalFunction(...) – an export from EUSER.DLL:

class UserSvr
{

public: ...
IMPORT_C static TInt HalFunction(TInt aGroup,

TInt aFunction, TAny* a1, TAny* a2);
IMPORT_C static TInt HalFunction(TInt aGroup,

TInt aFunction, TAny* a1,
TAny* a2, TInt aDeviceNumber);

...
};

There are a number of other argument values that PowerHalFunction
function may be invoked with if using UserSvr::HalFunction(...),
such as:

• EPowerHalOnoffInfo – used to read a TOnoffInfoV1 structure.
This structure is used to record the display switch on/switch off
behavior

688 POWER MANAGEMENT

• EPowerHalSwitchoff – this may be used to request a system-wide
transition to standby and is provided for binary compatibility with
previous versions of the OS. When this is serviced, an ESwitchoff
TRawEvent will be added to the event queue, from where the
window server will pick it up and call UserHal::Switchoff(),
which will request a transition to standby (see Section 15.2.2). This
behavior is customizable at the UI level, and the UI integrator
may change it to merely switch UI peripherals such as the dis-
play, keypad and touch screen off, leaving the rest of the phone
operational

• EPowerHalTestBootSequence – this may be used to indicate if
the machine is being booted in device-specific test mode.

The following argument values have been deprecated and do not require
handling:

• EPowerHalSetAutoSwitchoffBehavior

• EPowerHalAutoSwitchoffBehavior

• EPowerHalSetAutoSwitchoffTime

• EPowerHalAutoSwitchoffTime

• EPowerHalResetAutoSwitchoffTimer

• EPowerHalSetBatteryType

• EPowerHalBatteryType

• EPowerHalSetBatteryCapacity

• EPowerHalBatteryCapacity

• EPowerHalAutoSwitchoffType.

15.3 Typical power management

15.3.1 Extending the basic framework

We can identify a number of areas where extending the existing basic
framework will result in power savings or increased ability to control and
monitor power consumption. These extensions can mostly be done at
the base port level. The extensions I will propose next utilize the existing
framework functionality.

TYPICAL POWER MANAGEMENT 689

15.3.1.1 Resource management

Recent mobile phone designs define a number of power resources, such
as clock frequencies, voltages and switchable power rails. Software can
control these resources independently for each hardware component
(CPU and peripherals).

Power resources vary in complexity, from simple binary resources that
can be switched on or off almost instantaneously to resources that can be
set at different voltage levels or that take a while to change state. There
are even resources that may only be changed in conjunction with other
resources.

And, of course, some resources are shared between hardware compo-
nents, and controlling them should be based on tracking their usage.

The base port controls power resources. The base porter needs to
provide interfaces for the use of:

1. Peripheral drivers, to be able to change the resources used by the
peripherals they control

2. The software component responsible for setting the operating point
of the CPU when processing a task (see Section 15.5.1)

3. The derived DPowerController CpuIdle() function. This rou-
tine maps resource state to retention state, and may need to change
the state of other resources to achieve the CPU retention state desired
(see Section 15.3.1.2).

Controllable power resources may be spread across several functional
areas of the ASIC and external components. However, in most cases,
it is possible to concentrate the control of power resources on a single
software component, the resource manager (Figure 15.3), which offers
a conceptual representation and interfaces for all resources. The base
porter may also decide to include resource management as part of the
power controller kernel extension.

Let’s now look at a suggested template for the resource manager. This
will be based on an XXXResourceManager class:

class XXXResourceManager
{

public:
enum TResource // a list of controllable resources

(e.g clocks, voltages, power lines)
{
SynchBinResourceUsedByZOnly,

690 POWER MANAGEMENT

AsynchBinResourceUsedByZOnly,
// ... other non-shared binary resources, synchronous

or asynchronous
BinResourceSharedByZAndY,
// ... other shared binary resources, synchronous

or asynchronous
SynchMlResourceUsedByXOnly,
AsynchMlResourceUsedByXOnly,
// ... other non-shared multilevel resources, synchronous

or asynchronous
MlResourceSharedByXAndW,
// ... other shared multilevel resources, synchronous

or asynchronous
};

void InitResources(); // initialises power Resources
not initialised by Bootstrap

// interface for non-shared resources

inline void Modify(TResource aResource, TBool aOnoff);
// for non-shared binary resources
inline void ModifyToLevel(TResource aResource, Tint

aLevel); // for non-shared multilevel resources
// the following functions may be used by

Drivers/Extensions or the idle routine to
determine what resources are On or off
or their levels

inline TBool GetResourceState(TResource aResource);
// for non-shared binary resources

inline TUint GetResourceLevel(TResource aResource);
// for non-shared multilevel resources

public:
// interface for shared resources

SharedBinaryResourceX iSharedBResource;
inline SharedBinaryResourceX* SharedBResourceX()

{return & iSharedBResource;}
// ... other shared Binary resources,

synchronous or asynchronous
SharedMultilevelResourceY iSharedMlResource;
inline SharedMultilevelResourceY* SharedMlResourceY()

{return & iSharedMlResource;}
// ... other shared Multilevel resources
};

If the resource manager needs to be available to the Variant component,
or used early in the boot sequence, I recommend that the entry point of
the kernel extension be written as follows:

static XXXResourceManager TheResourceManager;
static DXXXPowerHal* XXXPowerHal;

GLDEF_C TInt KernelModuleEntry(TInt aReason)
{
if(aReason==KModuleEntryReasonVariantInit0)

TYPICAL POWER MANAGEMENT 691

Power Manager

Power Controller

Variant or
ASSP

user
kernel

Peripheral Drivers

Power Handlers

Wakeup events
notification complete

Standby/Shutdown
Enable/Disable wakeup events

Notification requests

AddEvent()
SetHomeTime()
HalFunction()

Wakeup Events

Base Port

Variant IdleWakeup EventsCPU Standby
CPU Power Off

CPU Idle
Absolute Timer expiration

Kernel Power On/Off
notifications

Add/remove handler

AddEvent()

Timer expiration
Power HAL
Power status
User activity
Idle

Resource
Manager

Request/release
power resources

Request/
release
power
resources

Kernel

Figure 15.3 Framework block diagram with resource manager

{
// Start the Resource Manager earlier so that

Variant and other extension could make use of
Power Resources

__KTRACE_OPT(KPOWER, Kern::Printf("Starting
Resource controller"));

new(&TheResourceManager) XXXResourceManager;
TheResourceManager.InitResources();
return KErrNone;

}
else if(aReason==KModuleEntryReasonExtensionInit0)
{
// Returning KErrNone here ensures we are called

later with aReason==KModuleEntryReasonExtensionInit1.
return KErrNone;

}
else if(aReason==KModuleEntryReasonExtensionInit1)
{

692 POWER MANAGEMENT

__KTRACE_OPT(KPOWER, Kern::Printf("Starting power
controller"));

XXXPowerHal = new DXXXPowerHal();
if (!XXXPowerHal)
return KErrNoMemory;

DXXXPowerController* c = new DXXXPowerController();
if(!c)
return KErrNoMemory;

return KErrNone;
}

return KErrArgument;
}

This allows the kernel startup sequence to create the resource manager
at Variant component creation time. The entry point is invoked again
when other kernel extensions are initialized and creates the power
controller.

Alternatively, the Variant component could create, and own the
resource manager.

To give the variant and device drivers access to the resource manager,
the power controller could export a method that returns a pointer to the
resource manager object. This scheme is similar to the one used to give
access to the power controller object as I explained in Section 15.2.3.5:

class TXXXPowerControllerInterface
{

public:
...
// to allow Variant/Drivers/other Extensions access to Resource Manager
IMPORT_C static XXXResourceManager* ResourceManager();
...
};

EXPORT_C XXXResourceManager*
TXXXPowerControllerInterface::ResourceManager()

{
return &TheResourceManager;
}

Resources may be shared by several hardware components; the existing
framework already has a template to model the interface required by a
binary-shared resource:

class MPowerInput
{

public:
virtual void Use() = 0;
virtual void Release() = 0;
};

TYPICAL POWER MANAGEMENT 693

A shared binary resource deriving from this class needs to implement the
pure virtual functions:

• Use(). Signals that the power resource is in use. A driver calls
this function when it needs the resource to be turned on. A typical
implementation associates a counter, initially zero, with the object.
Use() increments the counter and, if the counter’s value changes
from 0 to 1, turns the resource on

• Release(). Signals that the power resource is not in use. A driver
calls this function when it no longer needs the source to be on.
Release() would decrement the counter I mentioned previously.
If the counter’s value changes from 1 to 0, Release() turns the
resource off.

The implementation may add other functions to get the current usage
count or resource state. Usage count is especially important as some
resources have a maximum acceptable load. When the cumulative load
(usage count) on a resource equals its maximum, any attempt to increase
its usage count should fail.

Multi-level resources may also be shared. The control model I men-
tioned previously is not appropriate for such resources – users will want
to increase or decrease the level of the resource, rather than switch it
on or off. The implementation needs to keep track of the current level
of the resource and the requirement of each of the resource users. If a
user asks to increase the level, then this is done (up to the maximum
acceptable level). But if the user requests a lowering of the present
level, then the level is reduced to the maximum requirement from all
users. If the requestor does not have the highest level, then there will be
no change.

The considerations made previously regarding the maximum cumu-
lative load still apply; however in the case of multi-level resources, the
maximum acceptable load may be different for different levels.

A generic shared multi-level API template could look like this:

class SharedMultilevelResource // Multilevel Shared Input
{

public:
virtual void IncreaseToLevel(TUint aLevel, TInt aRequester) = 0;
virtual void ReduceToLevel(TUint aLevel, TInt aRequester) = 0;
virtual TUint GetResourceLevel() = 0;

};

The aRequester parameter on the APIs identifies the user that is
requesting a level change.

Finally, there are power resources that cannot be instantaneously var-
ied, requiring, for example, a stabilization period after being changed.

694 POWER MANAGEMENT

These need to be addressed differently. The software component that
requested the resource change needs to wait for the resource to be sta-
ble before proceeding. Busy-waiting inside kernel-side components is
strongly discouraged in EKA2, especially as the stabilization times may
be long. A better alternative is to put the thread to sleep for a period of
time, after which the thread can poll the resource again. The base porter
can use Kern::PollingWait() for this purpose.

You should note that most device drivers use the same kernel thread
and so when this thread sleeps, waiting for a resource to stabilize, other
device drivers will be also be held up. If the resource stabilization time
is long enough to impact the performance of other drivers on the same
thread, the device driver which controls the resource may need to create
its own kernel thread and change the resource from there. This thread
can sleep without affecting the performance of other drivers, and then
can call back to the main driver thread when the resource change finally
takes place.

Given the multi-threaded nature of EKA2, we advise the base porter to
write code that accesses resources with the kernel locked to guarantee
their consistency. This is mandatory for shared resources, when accesses
can be performed from different threads. If an interrupt service routine
can read or change resources, interrupts should also be disabled around
any access points.

15.3.1.2 Moving the CPU to retention from idle

Certain CPUs support a number of low power states distinguished by
their ability to retain status, their different power requirements and their
wakeup time.

Moving to one of these low power retention states is a non-system-
wide power transition that can be wholly managed by the base port part
of the kernel framework. In fact, transitions in and out of these low power
retention states should be transparent to the rest of the system. If it is likely
that a transition to a retention state may have an impact on other parts of
the system at a given time then the base port code should not move the
CPU to that state at that time, even if the opportunity presents itself.

Let’s consider the actions needed to move the CPU to a low power
retention state. I’ve said that the transition will happen in the power
controller’s platform-specific CpuIdle() function.

To guarantee the maximum uninterrupted idle time, some events need
to be disabled during that period. The best example of such an event
is the system tick – the periodic timed interrupt that is the basis for all
timing in EKA2, and is provided by a hardware timer. This is commonly
known as idle tick suppression.

TYPICAL POWER MANAGEMENT 695

The idle time can be predicted as the time until the next timer in the
system is due to expire. The CpuIdle() implementation can examine the
nanokernel timer queue (NTimerQ) which provides this information. The
power framework already has an API to return the number of system ticks
before the next NTimer expiration, the function IdleTime(), which is
a member of the NTimerQ class. The CpuIdle() implementation can
now suppress the system tick for that period, and program the hardware
timer to skip the required number of ticks.

When the hardware timer finally wakes the CPU, CpuIdle() can
simply adjust the system tick count and reset the hardware timer to pro-
duce the regular ticks again. To adjust the system tick count, CpuIdle()
may use the function Advance(), which is a member of the NTimerQ
class, passing it the number of suppressed ticks.

The CPU may wake up as a result of an event rather than the expiration
of the hardware timer. In this case, the implementation of CpuIdle()
needs to read the hardware timer, work out the number of integral
system ticks suppressed and adjust the system tick count. It must also
reprogram the hardware timer to generate the next (and subsequent)
system ticks.

Sometimes waking up from a retention state can take longer than sev-
eral system ticks. In that case, CpuIdle() should program the hardware
timer to wake the CPU up at a time given by the next NTimer expiration
minus the number of ticks it takes to wake up from that state.

This waking up from a retention state happens inside the null
thread – this means that the post amble needed to restore the status
should be kept as short as possible. Both preamble and post-amble rou-
tines should be executed with interrupts disabled, to stop them from being
preempted.

It often happens that while the CPU is in the retention state, it is not
able to perform the periodic refreshing that SDRAM needs. In this case,
the SDRAM must be placed in self-refresh mode before going into the
retention state, with the CPU reassuming control of refreshing it after
waking up.

The choice of low power retention state is connected with the current
status of the phone’s power resources. The idle transition routine must
have the ability to inspect the state of relevant resources, by interrogating
the resource manager. This interface also allows the state of resources to
be modified as needed.

The CPU is moved to a low power retention state by a wait-for-
interrupt type instruction, which will suspend instruction execution until
an enabled hardware event occurs.

Naturally, events other than the hardware timer interrupt may have
the ability to wake the CPU up from the retention state; these are

696 POWER MANAGEMENT

wakeup events for that state. Wakeup events for the retention state
include not only hardware events that result from user interaction
(screen tapping, key press, and so on) and timed alarms as for the
standby state, but also the events that result from other peripherals’
operation (such as receiving a unit of data from an input periph-
eral, a media change resulting from inserting or removing a removable
media device) device timeouts, and more. These events should be left
enabled or explicitly enabled prior to moving the CPU to retention
state.

If a wakeup event other than the timer’s expiration brings the CPU
back from idle state, the CpuIdle() implementation must determine
how many ticks were effectively skipped, and adjust the system tick
count accordingly, before resetting the hardware timer to produce reg-
ular ticks. CpuIdle() can do this simply by examining the hardware
timer’s current count. However the adjustment needs to take in consid-
eration that the effective elapsed time may not be an integral number of
system ticks.

Finally, the base porter may decide, on longer periods of CPU idle, to
transition the CPU to a state that is not capable of state retention, such
as the standby state I described previously. To transition to this state, the
CpuIdle() routine needs to save the status of the CPU and possibly
that of some peripherals, as I described previously. Although this results
in greater power savings, extreme care must be taken, as the transition
into and out of such a state may severely impact the performance and
real-time guarantees of the system.

15.3.1.3 Battery monitoring and management

The majority of Symbian OS mobile phones that were in the market as this
book was written were based on a two-chip solution, with one processor
dedicated to the telephony application and associated signaling stacks,
and the other for Symbian OS. In this case, the telephony processor
usually performs battery monitoring and management. Symbian OS gets
the battery information through the communication channel between the
two devices.

However, in the future we may see single-chip and even single-core
solutions becoming more common. For single-core solutions, Symbian OS
will provide battery monitoring and management. The base port will do
the actual monitoring of battery levels. The framework must offer an inter-
face to read the levels from the battery hardware-controlling component.
It also needs to register and propagate any battery related events.

The management of the information provided by the battery monitoring
involves notifying applications and other user-side components of level

TYPICAL POWER MANAGEMENT 697

changes or critical conditions. For example, when the battery level drops
below a certain level, the system-wide power policy might be that the
window server must ask the screen driver to switch the display driver
to a different mode, lowering the resolution and refresh rate to conserve
power. The OS power policy must include provisions to keep the user
of the phone informed of the battery level and warn him/her when
the level drops below the safety threshold or when a charger has been
connected.

The policy may even force a transition to a low power state, if the
battery level drops below a critical threshold.

A user-side battery manager component should communicate with the
battery monitoring part of the framework (a kernel-side component).

Certain device drivers may also have an interest in battery levels or
notification of battery events.

The kernel framework has a template for a battery monitor as provided
by DBatteryMonitor class:

class DBatteryMonitor
{

public:
IMPORT_C DBatteryMonitor();
IMPORT_C void Register();

public:
virtual TSupplyStatus MachinePowerStatus() = 0;
virtual void systemTimeChanged(TInt anOldTime, TInt aNewTime) = 0;
};

This class includes an exported constructor to allow the platform-specific
power kernel extension to create the monitor, and a Register()
function, which the entry point of this extension should invoke after the
monitor object is created, to register the battery monitor with the power
manager. These two public APIs are exported by EKERN.EXE.

The battery monitor object may derive from this class, and be owned
by the power controller kernel extension.

In version 9.1 and below, Symbian OS allows the mapping of charge
levels to four possible values: ‘‘zero’’, ‘‘very low’’, ‘‘low’’ and ‘‘good’’ as
given in the TSupplyStatus enumeration:

enum TSupplyStatus
{
EZero,
EVeryLow,
ELow,
EGood
};

698 POWER MANAGEMENT

This is likely to change to a system that uses a percentage of charge level,
as this would give finer graduations.

There is one pure virtual function that must be implemented by the
battery monitor, and that forms its mandatory interface to the kernel (the
other function, SystemTimeChanged() has been deprecated):

• MachinePowerStatus(). This function should read and return the
state of the battery with respect to charge level (as one of the TSup-
plyStatus enumerated values). If external power is connected,
the function should return EGood. Device drivers call this function
before starting operations whose successful conclusion depends on
the battery charge level – for example, operations that lead to sub-
stantial increases in power consumption, or take a long time to
complete. They access the function through another framework API,
Kern::MachinePowerStatus().

There is no built-in feature to notify device drivers of asynchronous battery
events, such as a drop in charge beyond a critical level. The device creator
could implement this at base port level: the battery monitor could provide
an exported method to allow drivers to register an interest in being notified
of battery events. The battery monitor would maintain a list of pointers to
driver objects. Obviously, when a driver was closed, it should deregister
with the battery monitor:

class DXXXBatteryMonitor : public DBatteryMonitor
{

public:
...
inline void RegisterForBatteryNotifications(

DPowerHandler* aPowerHandler)
{
NKern::Lock();
aPowerHandler->iNextBt=iHead;
iHead=aPowerHandler;
NKern::Unlock();
}

inline void DeRegisterForBatteryNotifications(
DPowerHandler* aPowerHandler)

{
NKern::Lock();
DPowerHandler** prev = &iHead;
while (*prev != aPowerHandler)
prev = &(*prev)->iNextBt;
*prev = aPowerHandler->iNextBt;
NKern::Unlock();
}

public:
...
DPowerHandler* iHead;
};

TYPICAL POWER MANAGEMENT 699

Peripheral drivers could register with the battery monitor using a power
controller exported API (implemented by the base port) which returns a
pointer to the battery monitor:

class TXXXPowerControllerInterface
{

public:
...
// to allow Variant/Drivers/other Extensions access

to battery monitor
IMPORT_C static DXXXBatteryMonitor* BatteryMonitor();
inline static void RegisterBatteryMonitor(

DXXXBatteryMonitor* aBatteryMonitor)
{iBatteryMonitor=aBatteryMonitor;}

public:
...
static DXXXBatteryMonitor* iBatteryMonitor;

};

EXPORT_C DXXXBatteryMonitor*
TXXXPowerControllerInterface::BatteryMonitor()

{
return &iBatteryMonitor;

}

// battery monitor constructor
DXXXBatteryMonitor::DXXXBatteryMonitor()
{
Register(); // register battery monitor with power manager
TXXXPowerController::RegisterBatteryMonitor(this);

// register battery monitor with the interface
}

The driver’s power handler-derived object could have a method that
the battery monitor would call when an event occurs that the driver
is interested in. This method could either execute the driver-specific
handling of the event in the context of the battery monitor, or schedule a
DFC to execute in the driver’s thread. For example:

class DXXXPowerHandler : public DPowerHandler
{

public:
...
inline void NotifyBattEvent(TInt aEvent)

{
NKern::Lock();
iBattEvent=aEvent;
iBattEventDfc.Enque();
NKern::Unlock();
}

public:
...
DPowerHandler* iNextBt;

700 POWER MANAGEMENT

TInt NotificationMask;
};

Here aEvent is a bit mask indicating what battery event has occurred.
When an event occurs, the battery monitor could simply notify all

drivers that are interested in that event by calling the previous API for
their power handlers. This should be done from a thread context (for
example a DFC):

// to be called after reading the event off the hardware
battery component

DXXXBatteryMonitor::NotifyBattEvent(TInt aEvent)
{
DPowerHandler* ph = iHead;
while (ph)

{
if(ph->NotificationMask&aEvent)

ph->NotifyBattEvent(aEvent);
ph = ph->iNextBt;
}

}

The scheme I have just described could be improved to have a priority
associated with each driver, which will be reflected in the order the
monitor notifies drivers.

The battery monitor should be responsible for maintaining a power
supply information structure as summarized by the framework’s existing
TSupplyInfoV1:

class TSupplyInfoV1
{

public:
SInt64 iMainBatteryInsertionTime;
TSupplyStatus iMainBatteryStatus;
SInt64 iMainBatteryInUseMicroSeconds;
TInt iCurrentConsumptionMilliAmps;
TInt iMainBatteryConsumedMilliAmpSeconds;
TInt iMainBatteryMilliVolts;
TInt iMainBatteryMaxMilliVolts;
TSupplyStatus iBackupBatteryStatus;
TInt iBackupBatteryMilliVolts;
TInt iBackupBatteryMaxMilliVolts;
TBool iExternalPowerPresent;
SInt64 iExternalPowerInUseMicroSeconds;
TUint iFlags;
};

This information is base-port specific and the monitoring component may
decide to use these fields as it sees fit.

TYPICAL POWER MANAGEMENT 701

The power framework and the HAL provide the user-side software
battery-management component with an embryonic interface to the
battery monitor.

The following set of HAL attributes can be used:

• EPowerBatteryStatus – this is used to query the value of iMain-
BatteryStatus from the previous structure. This is the charge level
of the battery (normalized to one of the TSupplyStatus enumerated
values)

• EPowerGood – this returns ETrue either if external power is con-
nected or if the current battery charge level is above ‘‘low’’

• EPowerBackupStatus – this is used to query the value of iBack-
upBatteryStatus which is the charge level of a backup battery, if
present

• EPowerExternal – this is used to query the value of iExter-
nalPowerPresent which is ETrue if external power, such as the
charger, is connected

• EPowerBackup – this can be used to query for the presence of a
backup battery

• EAccessoryPower – this can be used to query for presence of
accessory power, such as for example, drawing power from a USB
cable.

The implementation of PowerHAL::PowerHalFunction(...)
should therefore call the battery monitor when it is passed one of the
previous arguments.

It may be that this interface is not enough for the needs of a battery
manager component. If that is the case, we suggest the use of a device
driver for the purpose of communicating with the battery monitor. The
battery monitor would then have a set of exported functions, which
would be called by an LDD loaded by the battery manager, which offers
a channel for interfacing to the battery manager (Figure 15.4).

15.3.1.4 Monitoring environmental inputs

Certain environmental factors such as temperature may have an impact
on the power state of CPU and peripherals, and so need to be monitored.
For example if the CPU temperature rises above a certain level, the power
framework may need to reduce its clock speed to prevent damage. As
a further example, certain mobile SDRAM devices have a temperature
compensated self-refresh rate, for which software that monitors the case
temperature needs to input the current temperature range.

702 POWER MANAGEMENT

Power Manager

Power Controller

Variant or
ASSP

user
kernel

Peripheral Drivers

Power Handlers

Wakeup events
notification complete

Standby/Shutdown
Enable/Disable wakeup events

Notification requests

AddEvent()
SetHomeTime()
HalFunction()

Registration

Base Port

Variant IdleWakeup EventsCPU Standby
CPU Power Off

CPU Idle
Absolute Timer expiration

Kernel Power
On/Off
notifications

Add/remove
handler

AddEvent()

Timer expiration
Power HAL
Power status
User activity
Idle

Resource
Manager

Request/release
power resources

Request/
release
power
resources

Battery
Monitor

Power
HAL

PowerHalFuntion()

Battery and
charger

related info

Notification of
battery events

Wakeup Events

Kernel

Figure 15.4 Framework block diagram with battery monitor

The base port may need to provide software routines to monitor the
environmental inputs using hardware sensors and communicate the state
of these to other parts of the kernel power framework.

Peripheral low power retention state support
Peripheral devices, even those which are integrated as part of the main
ASIC, may be capable of operation at low power, and may be transitioned
to that mode of operation under software control. These low power states
map to the retention state that I described in Section 15.1.

Device driver software usually powers up the peripheral device it
controls at channel creation time. If a peripheral is controlled by a kernel
extension, it is usually powered up at kernel boot time. However, this
does not mean that the peripheral device will be used immediately or

TYPICAL POWER MANAGEMENT 703

that power resources used by that peripheral need to be turned on at the
level corresponding to peripheral device activity.

We recommend that if a peripheral device is idling, it should be moved
to a low power state, if supported. The peripheral driver-specific part of
the power framework should do this.

The definition of peripheral idle may vary from peripheral to peripheral
but may be generally defined as not servicing any requests from its clients
and not performing any internal tasks not directly related to service of a
client request.

Any power-saving measures undertaken by the peripheral driver must
be transparent to the users of the peripheral. If the time it takes a peripheral
to return to a more available state and service a request has no impact
on the performance of peripheral driver or their clients, then it is safe
to move the peripheral to a low power state when it reaches an idle
condition (Figure 15.5).

ACTIVE

OFF

RETENTION

PowerHandler::PowerDown

PowerHandler::PowerUp

PowerHandler::PowerDown &&
(Usage Count on self)==0

(Inactivity detected)
&& (Usage count on

self)==0

(New Request) || (Internal
Event) || (Usage Count on

self) ++

Figure 15.5 Typical peripheral state transition diagram

The SDIO bus controller implementation is a good example of periph-
eral inactivity monitoring:

704 POWER MANAGEMENT

1. When the bus power supply is turned on, a periodic inactivity timer
with a period of one second is started

2. On timer expiration, the ensuing callback function checks if a device
using the bus has locked the controller. If this is not the case, and the
required number of seconds (iNotLockedTimeout) has expired
since turning the power supply on, the bus is powered down. The
inactivity timer is stopped

3. If the bus controller is locked (it is in use by a device on the bus) but
a longer timeout period (given by iInactivityTimeout) expires,
then the device that has locked the bus is notified every second
from then on and may decide to deregister itself, which unlocks the
controller,,, thus allowing it to power down on the next second tick,
and move to a device-specific sleep mode.

15.3.1.5 Notifying peripheral drivers of imminent CPU transition to retention state

The base porter may want peripheral drivers to be notified that the CPU
has entered the idle state. Depending on their current functional state,
peripheral drivers may decide to either transition the peripheral to a
retention state or stop the CPU transition to that state. In other cases,
certain peripherals will have to be placed in a different mode of operation
to track any events which will bring the CPU back from the retention state.

The kernel’s null thread issues notifications that the CPU is idling. The
base port should implement the notification mechanism. This mechanism
should do nothing that results in scheduling another thread; it cannot
block. At best it may initiate a power resource change, but may not wait
for its completion.

Base porters could give their peripheral drivers a callback function,
which would execute synchronously and would be called from the
CpuIdle() routine. Next I will give an example of how this could be
implemented. The platform-specific power controller object could have
a method to allow driver-specific power handlers to register with the
power controller for CpuIdle() callbacks. The power controller could
then keep a list of pointers to registered drivers. When the power handler
is destroyed, it should deregister with the power controller:

class DXXXPowerController : public DPowerController
{
...

public:
inline void RegisterWithCpuidle(DPowerHandler* aPowerHandler)

{
NKern::Lock();
aPowerHandler->iNextCi=iHead;
iHead=aPowerHandler;

TYPICAL POWER MANAGEMENT 705

NKern::Unlock();
}

inline void DeRegisterWithCpuidle(DPowerHandler* aPowerHandler)
{
NKern::Lock();
DPowerHandler** prev = &iHead;
while (*prev != aPowerHandler)prev = &(*prev)->iNextCi;
*prev = aPowerHandler->iNextCi;
NKern::Unlock();
} public:

...
DPowerHandler* iHead;
};

The driver’s power handler should keep pointers to the static synchronous,
non-blocking, non-waiting callbacks that can be called from the power
controller. There are two callbacks: one that is called when entering the
CPU idle state, and the other that is called when leaving this routine, for
example:

typedef void (*TCpuIdleInCallBack)(TAny* aPtr);
typedef void (*TCpuIdleOutCallBack)(TAny* aPtr);

inline static void EnterIdle(TAny* aPtr);
inline static void LeaveIdle(TAny* aPtr);

class DXXXPowerHandler : public DPowerHandler
{

public:
...

public:
...
TCpuIdleInCallBack iEnterIdleCallback;
TCpuIdleOutCallBack iLeaveIdleCallback;
};

At construction time, iEnterIdleCallback is set to point to Enter-
Idle() and iLeaveIdleCallback to LeaveIdle().

When entering the CpuIdle() function, the power controller calls the
registered drivers, using the power handler callback pointer mentioned
previously. The callback functions execute in the null thread context.

...
DPowerHandler* ph = iHandlers;
while (ph)

{
ph->iEnterIdle(ph);
ph = ph->iNext;
}

...

706 POWER MANAGEMENT

When the CPU wakes up, and just before leaving the CpuIdle()
function, the power controller calls the registered drivers:

...
DPowerHandler* ph = iHandlers;
while (ph)

{
ph->iLeaveIdle(ph);
ph = ph->iNext;
}

...

15.3.1.6 Power management for peripherals that provide services to other
peripherals

Some peripherals provide services that are used by other peripherals
in the same system – these peripherals may require a separate driver to
control them. Examples are intelligent internal buses such as I2C and
SPI, DMA controllers, embedded PCI controllers and so on. The power
state of these peripherals at any given time must be related to the power
states of the peripherals they provide services to. It is important that their
control model takes this into consideration.

If a peripheral provides services to another peripheral, it must not
power down until the client peripheral has powered down – and of
course it must power up before the dependent peripheral has any need
for its services.

One way in which the base porter can guarantee this is to have the
requests from its client drivers powering the slave peripheral up, and
only powering down when the client driver powers down. If the slave
peripheral driver’s power handler’s PowerDown() is called, it should
wait until the all its client drivers power down before powering down
the hardware it controls. Requests from the client peripheral’s drivers will
have to yield and wait for the slave peripheral to power up.

Peripherals that provide services to other peripherals may be capable
of moving into a retention state. The principles of control discussed
for general peripherals still apply: peripherals will be allowed to go
to retention state if no request is being serviced or background task
performed and if the latency of the retention state does not impact the
performance of the client drivers.

Peripherals may provide services to more than one other peripheral,
such as is usually the case with DMA controllers or inter-component
buses (Figure 15.6). These peripherals can be seen as shared power
resources, especially if they allow multiple simultaneous clients. They
should implement a usage counting mechanism that will allow their
drivers to know if the peripheral is in use, and decide when to power up
or down, and if it is safe to go to retention state.

TYPICAL POWER MANAGEMENT 707

Use()
Release()

MPowerInput

Use()
Release()
GetCount()

DSharedBus
iCount : TUint

iBusPtr : DSharedBus*

DPeripheralDriver1
iBusPtr : DSharedBus*

DPeripheralDriver2

Figure 15.6 Example shared peripheral

In the previous example, the shared peripheral driver object derives
from MPowerInput exposing a Use()/Release() interface to the
client drivers.

If the shared peripheral’s retention state latency does not have an
impact on the performance of the client drivers, then the client drivers
may call Use() whenever they issue a request for service to the shared
driver, and Release() when the request is complete. If the impact of
the latency cannot be dismissed, the client drivers will need to keep the
shared peripheral in operation for longer periods, possibly for the entire
duration of their own operational cycle.

15.3.2 Writing a power-aware device driver

Now let’s look at how to implement power management for a ‘‘real life’’
device driver. I will use a simplified serial comms driver and will apply
some of the concepts I have just described.

I make the following assumptions:

1. The peripheral hardware supports all five power states: off, standby,
retention, idle and active. This is not a common situation: in
most cases there is no distinction between standby and off states
and in some others, there is no support for retention state. I also
assume that I can move the peripheral to a particular power state
by setting requirements on certain power resources (clock, volt-
age and power supply), and by a hardware register programming
sequence

2. The peripheral hardware uses a clock input that can only be on
(when the peripheral is in active, idle or retention states) or off (when
the peripheral is moved to standby or off states). This clock input is
shared with another peripheral. The peripheral hardware operates at
different voltages depending on the power state: 100% of maximum
voltage for the active state, 50% of maximum voltage for the retention

708 POWER MANAGEMENT

state, and 20% of maximum voltage for the standby state. And, finally,
the power supply to the peripheral can be cut off or restored

3. The peripheral retention state is of negligible latency, that is, it can
come back from retention to the active state quickly enough to service
a request

4. In my example, the LDD software moves the peripheral to a different
power state, for simplicity, while in a ‘‘real-life’’ device driver the
LDD should call the PDD to perform the transition

5. The driver thread can change the power resources used by this
peripheral instantaneously, which means that it can wait, with no
impact on either its own performance, or that of its clients or the
system.

The peripheral driver software routines implement a state machine:

1. When a channel is opened the peripheral is moved to the idle state

2. If the peripheral is in the idle state when a request is made, it moves
to the active state

3. After the request is completed, the peripheral moves back to idle

4. When in the idle state, the peripheral waits for a period of time (the
inactivity timeout) and if no request is made, it moves to the retention
state

5. If the peripheral is in the retention state when a request is made, it
moves to the active state

6. When the null (or idle) thread runs, it calls a driver function which
checks if the peripheral is idling, in which case the driver callback
initiates the peripheral’s move to retention state and cancels the
inactivity timer. It also delays any device timeouts until the CPU
wakes up

7. If the peripheral is in one of the active, idle or retention states, the
power manager may request a power down to either the standby or
the off state

8. The peripheral can only leave standby if the power manager requests
a power up, in which case the driver software moves it to idle and
starts the inactivity timer

9. When the channel is closed, the driver software shuts down the
peripheral (moving it to the off state).

TYPICAL POWER MANAGEMENT 709

Off

Retention

Active

Standby

Idle Channel Opening

Entering CpuIdle()

Entering CpuIdle() or
incoming request

PowerDown()
to Off

Incoming
Request Request

Complete

Incoming or
deferred Request

PowerDown() to
Standby

PowerUp()

PowerDown() to
Off

Entering CpuIdle() Inactivity timeout
or entering
CpuIdle()

PowerDown()
to Off or
Channel closure

PowerDown() to
Standby

PowerDown()
to Standby

Figure 15.7 Example serial comms driver state machine

The state diagram shown in Figure 15.7 applies.

15.3.2.1 Thread and synchronization issues

The driver power management functions execute in different contexts:

1. The power manager’s PowerUp() and PowerDown() are called
from the thread of the user-side component responsible for the
system transition

2. Requests from a client (including closing the channel) are issued from
the client’s thread but their servicing and their completion execute in
the driver’s thread. Channel opening executes in the client’s context

3. The inactivity timer’s expiration generates an interrupt

4. The callbacks that are called when entering or leaving CpuIdle()
execute in the null thread.

Thus, we must take some care to guarantee that execution is performed
in the right sequence:

• We must protect both the peripheral’s and the power resource’s state
changes against the preemption of the executing thread

710 POWER MANAGEMENT

• The power manager’s PowerUp() and PowerDown()must schedule
DFCs to execute in the driver’s thread

• The inactivity timer interrupt must schedule a DFC to execute in the
driver’s thread

• Transitions to the off state, or to and from the standby state, involve
the calling of other power handlers and take some time: it might
happen that a request comes in, or the null thread gets to run, after
our driver’s power handler moves to its low power state, and before
the CPU reaches that state. This might also happen after the CPU
wakes up but before our driver’s power handler moves the peripheral
back to the active state. Service requests and the CpuIdle() entry
callback must check the current power state

• We must cancel the inactivity timer and the ensuing DFC on every
state change, apart from when moving from the idle state to the
retention state (since this is caused by its own expiration)

• The CpuIdle() entry and exit callbacks run with interrupts disabled
(as I mentioned in Section 15.2.2.1). They cannot be preempted, and
always run in sequence, even if the CPU never reaches the retention
state

• The CPU idle (null) thread may run while a request is being serviced
(for example, if the driver blocks waiting on a hardware event), or at
any time during the power down or power up sequence. The driver’s
CpuIdle() entry callback needs to check if the peripheral state
is idle

• When the client closes the channel to the driver, the kernel sends
a request as a kernel-side message to the driver that needs to be
completed before the driver object is destructed. The completion
of a kernel-side message may block, so the power-down or power-
up DFCs, or the null thread, may run between the driver shutting
down and the driver object (and the associated power handler) being
destructed. We must check for this and skip any operations that result
in attempting to operate on a peripheral that has already powered
off.

15.3.2.2 Class definitions

// COMM.H
#include <xxxpower.h> // platform specific power definitions

including power controller, Resource
Manager

#include <kpower.h> // framework power definition including
power handlers

TYPICAL POWER MANAGEMENT 711

/// ... other include files
typedef void (*TCpuidleInCallBack)(TAny* aPtr);
typedef void (*TCpuidleOutCallBack)(TAny* aPtr);

class DSerialDriverPowerHandler : public DPowerHandler
{
enum TPowerState

{
EActive,
EIdle,
ERetention,
EEtandby,
EOff
};

public: // from DPowerHandler
void PowerUp();
void PowerDown(TPowerState);

public:
DSerialDriverPowerHandler(DChannelSerialDriver* aChannel);

public:
void RegisterCpuIdleCallback(TBool aRegister);

public:
DChannelSerialDriver* iChannel;
XXXResourceManager* iResourceManager;
DXXXPowerController* iPowerController;
DPowerHandler* iNextCi;
TCpuIdleInCallBack iEnteridleCallback;
TCpuIdleOutCallBack iLeaveidleCallback;
TPowerState iPowerState;
TBool iStandby;
};

class DChannelSerialDriver : public DLogicalChannel
{

public:
enum TState {EOpen,Eactive,EClosed};

public:
DChannelSerialDriver();
∼DChannelSerialDriver();
// ... other Serial Driver public methods

protected:
virtual TInt DoCreate(TInt aUnit, const TDesC8* anInfo,

const TVersion& aVer);
virtual void HandleMsg(TMessageBase* aMsg); // entry point

for all requests
void Complete(TInt aMask, TInt aReason); // exit point

for all requests
void Shutdown(TBool astandby); // if ETrue, going to standby
void MoveToActive();
void MoveToRetention();
void DoPowerUp();

// ... other Serial Driver protected methods
private:
static void PowerUpDfc(TAny* aPtr);
static void PowerDownDfc(TAny* aPtr);
static void TimerCallBack(TAny* aPtr);
static void TimerDfcFn(TAny* aPtr);

712 POWER MANAGEMENT

void InactivityDfc(TAny* aPtr);

// ... other Serial Driver private methods
public:
DCommPowerHandler* iPowerHandler;
TDfc iPowerUpDfc;
TDfc iPowerDownDfc;
TState iStatus; // interaction between standby and driver’s Close
TBool iMsgHeld; // ETrue means a message has been held up waiting

the end
of from standby transition

NTimer iTimer; // inactivity timer
TDfc iTimerDfc; // inactivity timer DFC
TBool iCancelled; // ETrue if device timeouts were cancelled

when Enteridle() was called
// ... other Serial Driver public data members
};

The device driver class (DChannelSerialDriver) has a pointer to the
power handler (DSerialDriverPowerHandler). It owns an NTimer
that is used to track inactivity. It offers methods to power the peripheral
hardware up and down, and move it to the retention and the active
states.

The power handler has pointers to the power controller and resource
manager. It has pointers to the two callbacks that will be called on
entering and leaving the power controller’s CpuIdle() function.

15.3.2.3 Driver object construction

DChannelSerialDriver::DChannelSerialDriver()
//
// Constructor
//

:
iPowerUpDfc(DChannelSerialDriver::PowerUpDfc,this,3),
iPowerDownDfc(DChannelSerialDriver::PowerDownDfc,this,3),
iTimerDfc(DChannelSerialDriver::TimerDfcFn,this,3),
iTimer(DChannelSerialDriver::TimerCallBack,this)
...
{
...
iStatus=EOpen;
}

When the driver DLL is loaded the kernel calls its entry point, which then
creates the driver object.

The device driver object’s constructor sets up the DFCs that will be
issued when the power manager asks to power the peripheral up or down,
and the DFC that is called when the inactivity timer expires. It also sets
up the callback that the timer interrupt will call.

TYPICAL POWER MANAGEMENT 713

15.3.2.4 Channel opening

TInt DChannelSerialDriver::DoCreate(TInt aUnit, const
TDesC8* /*anInfo*/, const TVersion &aVer)

//
// Create the channel from the passed info.
//
{
...
// set up the correct DFC queue
SetDfcQ(((DComm*)iPdd)->DfcQ(aUnit)); // Sets the DFC

queue (iDfcQ) to be used by this logical channel
iPowerUpDfc.SetDfcQ(iDfcQ);
iPowerDownDfc.SetDfcQ(iDfcQ);
iTimerDfc.SetDfcQ(iDfcQ);
...
iMsgQ.Receive();
// create the power handler
iPowerHandler=new DSerialDriverPowerHandler(this);
if (!iPowerHandler)

return KErrNoMemory;
iPowerHandler->Add(); // add to power manager’s list

of power handlers
iPowerHandler->RegisterCpuIdleCallback(ETrue);

// register with CpuIdle
DoPowerUp();

return KErrNone;
}

When the client creates a channel to access this driver the DoCreate()
function above is called. This:

1. Sets the DFC queue to be used by the driver. The power up,
power down and inactivity timer DFCs all execute in the context
of that DFC queue, in this way avoiding any preemption prob-
lems

2. Activates the message delivery queue for this driver’s requests

3. Creates the driver’s power handler object and registers it with the
power manager. Note that the device driver framework calls DoCre-
ate() inside a critical section, making it possible to call the power
handler Add() function from within it.

DSerialDriverPowerHandler::DSerialDriverPowerHandler(
DChannelSerialDriver* aChannel)

: DPowerHandler(KLddName),
iChannel(aChannel),
iPowerState(EIdle),
iEnterIdleCallback(EnterIdle)
iLeaveIdleCallback(LeaveIdle)

714 POWER MANAGEMENT

{
iResourceManager=

TXXXPowerControllerInterface::ResourceManager();
// get pointer to Resource Manager

}

The power handler constructor sets up the pointer to the device driver
object, and also sets up the pointers to the two callback functions. It
obtains a pointer to the resource manager to allow it to access the power
resources controlled by it

4. The DoCreate() function calls a method provided by the power
handler to register with the power controller. This allows the calling
of the callback from CpuIdle()

void DSerialDriverPowerHandler::RegisterCpuIdleCallback(
TBool aRegister)

{
if(aRegister) // register
{
iPowerController=

TXXXPowerControllerInterface::PowerController();
iPowerController->RegisterWithCpuIdle(this);

}
else // deregister
{
iPowerController->DeRegisterWithCpuIdle(this);
iPowerController=NULL;

}
}

5. Finally the DoCreate() function calls DoPowerUp() to power up
the peripheral hardware, setting the driver’s power state to idle. It
starts the inactivity-monitoring timer:

void DChannelSerialDriver::DoPowerUp()
{
iTimer.Cancel();
iTimerDfc.Cancel();

NKern::Lock();
iPowerHandler->iPowerState=DSerialDriverPowerHandler::EIdle;
iResourceManager->ModifyToLevel(XXXResourceManager::VoltageSerial,

100);
// request 100% voltage level

iResourceManager->SharedClock()->Use(); // assert
request on shared clock

iResourceManager->Modify(XXXResourceManager::PowerSupplySerial,
ETrue);

// turn power supply on (if off)
// ...write to peripheral registers to set peripheral in

active state
NKern::Unlock();

TYPICAL POWER MANAGEMENT 715

Complete(EAll, KErrAbort);

iTimer.OneShot(KTimeout, ETrue); // restart inactivity timeout
}

15.3.2.5 Incoming requests

Client requests are delivered as kernel-side messages, which will be
executed in the driver’s thread context (iDfcQ). So, when the function
HandleMsg() is executed, it marks the start of the execution of a client’s
request by this driver:

void DChannelSerialDriver::HandleMsg(TMessageBase* aMsg)
{
TInt state=iPowerHandler->iPowerState;

if(state==(TInt)DSerialDriverPowerHandler::Eoff) return;

if(state==(TInt)DSerialDriverPowerHandler::Estandby)
{
// postpone message handling to transition from standby
iMsgHeld=ETrue;
return;
}

TThreadMessage& m=*(TThreadMessage*)aMsg;
TInt id=m.iValue;
if (id==(TInt)ECloseMsg)

{
Shutdown(EFalse); // off
iStatus = EClosed;
m.Complete(KErrNone, EFalse);
return;
}

else
{
if(iPowerHandler->iPowerState!=

DSerialDriverPowerHandler::EActive)
// if already active, skip

MoveToActive(); // a request has been made, move
to active

if (id==KMaxTInt)
{
// DoCancel
DoCancel(m.Int0());
m.Complete(KErrNone,ETrue);
return;
}

if (id<0)
{
// DoRequest
TRequestStatus* pS=(TRequestStatus*)m.Ptr0();
TInt r=DoRequest(∼id,pS,m.Ptr1(),m.Ptr2());
if (r!=KErrNone)

716 POWER MANAGEMENT

Kern::RequestComplete(iClient,pS,r);
m.Complete(KErrNone,ETrue);
}

else
{
// DoControl
TInt r=DoControl(id,m.Ptr0(),m.Ptr1());
m.Complete(r,ETrue);
}

}
}

As I explained earlier, a request may arrive while the driver is being
powered down or powered up. The function checks to see if the peripheral
is powering down: if it is then the request will not be serviced. If the
peripheral is being transitioned to standby, or just returning from it,
the function defers the servicing of the request until the peripheral has
powered on.

If the client is not requesting the closure of the driver, the peripheral
hardware must be moved to the active state in anticipation of performing
request-related actions. We do this by calling the MoveToActive()
function:

void DChannelSerialDriver::MoveToActive()
{
iTimer.Cancel();
iTimerDfc.Cancel();

NKern::Lock();
iPowerHandler->iPowerState=DSerialDriverPowerHandler::EActive;
iResourceManager->ModifyToLevel(XXXResourceManager::VoltageSerial,

100);
// request 100% voltage level

iResourceManager->SharedClock()->Use();
// assert request on shared clock

// ...write to peripheral registers to set peripheral in active state
NKern::Unlock();

}

This function requests power resources that are compatible with the active
state, sets the driver’s power state to active and writes to the peripheral
register to move it to active state.

15.3.2.6 Inactivity detection

When a request is completed, the driver calls the Complete() function.
This function is also called when shutting down. It checks the power state,

TYPICAL POWER MANAGEMENT 717

and if this is active, sets it to idle and restarts the inactivity-monitoring
timer.

void DChannelSerialDriver::Complete(TInt aMask, TInt aReason)
{
if (aMask & ERx)
Kern::RequestComplete(iClient, iRxStatus, aReason);

if (aMask & ETx)
Kern::RequestComplete(iClient, iTxStatus, aReason);

if (aMask & ESigChg)
Kern::RequestComplete(iClient, iSigNotifyStatus, aReason);

TInt state=iPowerHandler->iPowerState;
if(state==(TInt)DSerialDriverPowerHandler::EActive)
{
iPowerHandler->iPowerState=DSerialDriverPowerHandler::EIdle;
iTimer.OneShot(KTimeout, ETrue);
}

}

The timer callback is called in the context of the system tick interrupt.
The callback simply schedules a DFC to execute in the driver’s thread
context:

void DChannelSerialDriver::TimerCallBack(TAny* aPtr)
{
// called from ISR when timer completes
DChannelSerialDriver *pC=(DChannelSerialDriver*)aPtr;
pC->iTimerDfc.Add();

}

void DChannelSerialDriver::TimerDfcFn(TAny* aPtr)
{
DChannelSerialDriver *pC=(DChannelSerialDriver*)aPtr;
pC->InactivityDfc();

}

A state change might occur between the timer being started and the
DFC executing, so this function needs to check if the power state is
still idle. If it is, then the peripheral hardware is moved to the retention
state:

void DChannelSerialDriver::InactivityDfc(TAny* aPtr)
{
DChannelSerialDriver *pC=(DChannelSerialDriver*)aPtr;
if(pc->iPowerHandler->iPowerState==

DSerialDriverPowerHandler::Eidle)
pC->MoveToRetention();

}

718 POWER MANAGEMENT

We move to retention state like this:

void DChannelSerialDriver::MoveToRetention()
{
// may be called from Null thread: must not block or

schedule another thread
NKern::Lock();
iPowerHandler->iPowerState=

DSerialDriverPowerHandler::ERetention;
iResourceManager->ModifyToLevel(XXXResourceManager::VoltageSerial, 50);

// request 50% voltage level
iResourceManager->SharedClock()->Use();

// assert request on shared clock
// ...write to peripheral registers to set peripheral

in retention state
NKern::Unlock();
}

15.3.2.7 Entering and leaving CPU idle

Because we registered for CpuIdle() callbacks, when the power
controller’s CpuIdle() is entered, the power controller calls the driver
using the iEnterIdleCallback pointer. I discussed this in
Section 15.2.2.1.

inline static void EnterIdle(TAny* aPtr)
{
// called with interrupts disabled
DSerialDriverPowerHandler* d = (DSerialDriverPowerHandler*)aPtr;
if (d->iChannel->iStatus != EClosed) // not closing
{
if(d->iPowerState==DSerialDriverPowerHandler::EIdle)
{
d->iChannel->iTimer.Cancel();
d->iChannel->iTimerDfc.Cancel();

// ...Cancel device timeouts
d->iChannel->iCancelled=ETrue;
d->iChannel->MoveToRetention();
// this must be synchronous, non-blocking, non waiting

}
}

else
// race condition: driver was already closed (ECloseMsg)

but the PowerHandler has not deregistered yet
{}

}

This function checks to see if the peripheral is in the idle state, and moves
it to the retention state. It stops the inactivity-monitoring timer.

TYPICAL POWER MANAGEMENT 719

The null thread may run between the request to close the channel
being serviced and the driver object being destroyed – at that time the
power handler has not yet deregistered itself with the power controller.
We need to check for that condition.

Just before leaving the CpuIdle() function, the power controller calls
the driver using the iLeaveIdleCallback pointer:

inline static void LeaveIdle(TAny* aPtr)
{
// called with interrupts disabled
DSerialDriverPowerHandler* d =

(DSerialDriverPowerHandler*)aPtr;
if (d->iChannel->iStatus != EClosed) // not closing
{
if(d->iChannel->iCancelled)
{
// ...Restarts device timeouts

}
}

else
// race condition: driver was already closed (ECloseMsg)

but the PowerHandler has not deregistered yet
{}

}

If device timeouts were cancelled, the driver restarts them.

15.3.2.8 Power manager initiated power down and power up

The power manager calls the power handler’s PowerDown() and
PowerUp() functions in the power manager’s client context. Their
implementation may require lengthy operations or may even block. So
it is best if they both schedule DFCs to execute in the driver’s con-
text, in this way also guaranteeing that they will not preempt each
other.

void DSerialDriverPowerHandler::PowerUp()
{
iChannel->iPowerUpDfc.Enque();

}

void DSerialDriverPowerHandler::PowerDown(TPowerState aState)
{
(aState==EPwStandby)? iStandby=ETrue:iStandby=EFalse;
iChannel->iPowerDownDfc.Enque();

}

The power-down DFC moves the peripheral hardware to either the
standby or the off state, depending on the target power state, and then

720 POWER MANAGEMENT

acknowledges the transition:

void DChannelSerialDriver::PowerDownDfc(TAny* aPtr)
{
DChannelSerialDriver* d=(DChannelSerialDriver*)aPtr;
if (d->iStatus != EClosed)

d->Shutdown(iStandby);
else

// race condition: driver was already closed (ECloseMsg)
but the PowerHandler has not deregistered yet

{}
d->iPowerHandler->PowerDownDone();

}

When shutting down, we abort all pending requests, cancel timers and
DFCs, and stop the peripheral hardware function. The requirements on
power resources are reduced to a level compatible to the standby state. If
going to the off state, we turn off the power supply.

TInt DChannelSerialDriver::Shutdown(TBool astandby)
{
...
Complete(EAll, KErrAbort); // complete any pending requests

iTimer.Cancel();
iTimerDfc.Cancel();
iPowerUpDfc.Cancel();
iPowerDownDfc.Cancel();

NKern::Lock();
if(astandby)
iPowerHandler->iPowerState=

DSerialDriverPowerHandler::EStandby;
else
iPowerHandler->iPowerState=

DSerialDriverPowerHandler::EOff;

iResourceManager->ModifyToLevel(
XXXResourceManager::VoltageSerial, 20);

// request 20% voltage level
iResourceManager->SharedClock()->Release();

// relinquish requirement on shared clock
if(aStandby)
{
// ...write to peripheral registers to set peripheral in

standby state
NKern::Unlock();
return;

}
iResourceManager->Modify(

XXXResourceManager::PowerSupplySerial, EFalse);
// turn power supply off

NKern::Unlock();
}

TYPICAL POWER MANAGEMENT 721

The power-up DFC moves the peripheral hardware to the idle state by
calling the DoPowerUp() function that I described previously.

A power manager-initiated move to standby is not instantaneous; a
request may arrive after the peripheral has moved to standby or before it
has powered back up. The HandleMsg() function will defer the request
to be serviced until the power handler is powered back up.

void DChannelSerialDriver::PowerUpDfc(TAny* aPtr)
{
DChannelSerialDriver* d=(DChannelSerialDriver*)aPtr;
if (d->iStatus != EClosed) // if not closing by client’s request

d->DoPowerUp();
else

// race condition: driver was already closed
(ECloseMsg) but the PowerHandler has not

deregistered yet
{}

d->iPowerHandler->PowerUpDone();
if (d->iMsgHeld)
{

__PM_ASSERT(d->iStatus != EClosed);
d->iMsgHeld = EFalse;
d->HandleMsg(d->iMsgQ.iMessage);

}
}

Again, we check the window of opportunity between closing the channel
and deregistering the power handler for any power manager initiated
transitions, and if any, skip those transitions.

15.3.2.9 Channel closure and destruction

The closing of the channel results in the sending of an ECloseMsg
message to the driver. This is serviced by the HandleMsg() and results
in the shutting down of the driver and the powering off of the peripheral.

We also delete the driver object:

DChannelSerialDriver::∼DChannelSerialDriver()
//
// Destructor
//

{
if (iPowerHandler)
{
iPowerHandler->RegisterCpuIdleCallback(EFalse);

// deregister with CPU idle
iPowerHandler->Remove(); // deregister with power manager
delete iPowerHandler;

}
...

}

722 POWER MANAGEMENT

The destructor deregisters the power handler with both the power manager
and the power controller and calls the power handler’s destructor.

15.3.3 Emergency shutdown (power loss)
Emergency shutdown is a situation that results from sudden loss of power
supply, such as when the mobile phone battery is removed.

There are two possible approaches for handling an emergency shut-
down situation:

1. If there is a short-term alternative power source, such as that provided
by a SuperCap (high capacitance capacitor), which is capable of
supplying power for a few milliseconds, and there is a mechanism
for notifying drivers and user-side software components, then the
emergency situation can be handled before power failure

2. If there is no alternative power source, and hence no time left to
handle the emergency situation before power failure, then the power
failure event should be dealt with after the device is rebooted. We
must provide a mechanism to mark a shutdown as an ‘‘orderly’’ or
‘‘emergency’’.

If we have a short-term alternative power source, then the notification of
an emergency shutdown should be distributed to a chosen subset of the
peripheral drivers:

• Drivers for peripherals that draw a significant amount of power should
shut down first and as speedily as possible after the notification. These
might include the display and backlight, hard disk drives, and so on

• Drivers for peripherals that may be affected by a sudden loss of power,
such as media drivers for external storage media that are susceptible
of media corruption in the event of power loss, can then finish their
current operation. For example, they can complete their current sector
write, and shut down gracefully.

If there is no short-term alternative power source, peripherals will just
power down on power loss without any finalization. Upon rebooting,
the system checks each of the critical peripherals for possible corruption,
and attempts to fix it. The file server scans every internal persistent
media drives that are marked as ‘‘not finalized’’, and fixes up any errors.
Removable media may also be corrupted by sudden power loss, so they
will be scanned on notification of insertion.

In a system where there is a backup power source capable of guar-
anteeing the preservation of the contents of volatile system memory, it is
possible to complete any aborted writes to persistent memory, as the data
will still be in SDRAM when rebooting.

MANAGING IDLE TIME 723

The kernel framework does not currently have a built-in mechanism
for the distribution of emergency shutdown notifications. However, if
battery monitoring is implemented at the framework level, you can
implement such a mechanism, along the lines of the one I described
in Section 15.3.1.3. The sudden power loss event should be serviced as
speedily as possible, which is done best if it is capable of interrupting
instruction execution – this means that the battery monitor component
should hook a hardware interrupt (on ARM, an FIQ) to the event.

The driver code that services the notification should also handle it as
speedily as possible – for example, it should complete the minimum of
work to guarantee that the media will be restored when rebooting, and
then power down. No time should be wasted completing requests or
waiting for freed resources to reach their final state.

15.4 Managing idle time

15.4.1 CPU idle time

The typical utilization profile of a hardware component, CPU or periph-
eral, is usually characterized by brief periods of intense activity with
high requirements on processing bandwidth, followed by longer periods
of idleness (Figure 15.8). This matches the usage model of most mobile
phones: the device is left constantly on, even when it is in someone’s
pocket or left downstairs for the night.

Bursts of CPU activity may be triggered by user interaction, or interrupts
from a peripheral or a timer working in the background. This activity is

time

% max CPU used

Figure 15.8 Typical CPU usage

724 POWER MANAGEMENT

linked to higher power consumption whilst the periods of idleness are
linked with the entering of a power-saving mode, provided by most
modern CPUs. These can be entered automatically, or under software
control, to save power during periods of low activity.

I have previously provided a definition for these power-saving
modes – or retention states – and I have examined the support that exists,
or needs to be implemented in the framework, to move the CPU to them.
I will now discuss the utilization of idle time.

15.4.1.1 Choosing a CPU retention state

As we have seen, the kernel notifies the power framework of when
the CPU enters a period of inactivity by calling the power manager’s
CpuIdle() function. This function must decide whether to reduce the
availability of the CPU by moving it to a low power retention state and
reduce power consumption, or keep it in a more available state, with
less or no power savings. There are also usually several gradations of
retention that we can select.

The first factor in the determination of the retention state is the
estimated uninterrupted length of idle time. We have already described
how this idle time can be obtained from the kernel. Moving in (and out)
of a retention state requires preparation, and usually, the more complex
the preparations, the more the power savings that will result. A more
power-efficient retention state usually requires a longer wakeup time too.
Therefore, the longer the estimated idle time, the more power-efficient
the selected retention state can be.

Another factor is the power resource utilization at the time when the
decision is made; due to the interdependency between resources, it may
only be possible to move the CPU to a low power retention state if certain
resources are already off or being used only at a low level. The higher
the power savings on a retention state, the lower should be the overall
resource utilization profile. Also, on moving the CPU to retention state,
more peripherals can be turned off or have their power requirement levels
lowered, resulting in even greater power savings.

When choosing the CPU retention state, we need to take into consid-
eration the state of certain peripherals – mainly the ones used for data
input or the detection of unlatched external events.

Often the user will enable certain peripheral functions and leave
them inactive but in an operational state for long periods of time: this
often happens when infrared or Bluetooth are enabled, or when an I/O
function card is connected to an externally accessible peripheral bus. If
these peripherals are servicing a request when the null thread is entered,
then they must be left operational, and this in itself could prevent the
moving of the CPU to a more power-efficient retention state.

These peripherals have the ability to interrupt the CPU idle mode and
request CPU processing time. Investigating the power resource state may

MANAGING IDLE TIME 725

give a view of what peripherals are in the active state and which have
already powered down, thus helping us to choose the retention state.

Waking up from a retention state usually takes a fairly long time. We
must choose a CPU retention state whose wakeup time will permit the
correct operation of all peripherals that were left operational, and lead to
the servicing of their requests for CPU attention on time – that is, with no
data loss, correct and with the timely servicing of events.

The analysis of past CPU workload may be relevant for the choice of
retention state, as it can give an indication of the future requirements.
For example, if an episode requiring high CPU bandwidth is suddenly
followed by a period of inactivity then it is probable that the task yielded,
waiting for some hardware event to occur. Once the hardware event
happens, the task can be expected to resume as soon as possible. In this
case a retention state with a lower latency should be chosen.

The current battery charge level may also be important in the choice
of a retention state. If the level is low, this does not necessarily lead to the
choice of a less power hungry retention state. In fact, as the charge level
approaches a critical threshold when applications and drivers should be
notified, the decision to move the CPU to retention must be carefully
weighed against the need to wake up on time to service the sending of
the notifications.

15.4.1.2 SDRAM power management

When in a retention state, the CPU is usually unable to refresh
SDRAM – and without cell refreshing, in which the cell charge level is
periodically restored, the contents of memory will be lost. We can place
SDRAM devices in a self-refresh mode, where their internal controller
takes over the duty of refreshing the memory cell charge without the
external CPU intervention. All we need is to maintain a power supply to
the device and to supply a clock source to it – then we send a command
to the SDRAM controller. Once this is done, the CPU can be moved to
retention mode.

If we are using mobile SDRAM, we can reduce power consumption
during the periods when the CPU is sleeping, by enabling self-refresh
only for the memory banks that are actually in use.

To do this, we need to ensure that pages containing valid data are
arranged to occupy as few memory banks as possible. This means that
periodic re-organization of the memory pages, or defragmentation, needs
to take place. Mobile SDRAM defragmentation typically happens during
periods when the CPU has no other tasks to perform – that is, in the null
thread. When the CPU is defragmenting memory, it cannot be moved to
a retention state.

The power savings that result from a partial refresh of the memory
device need to be carefully weighed against the increased overall power

726 POWER MANAGEMENT

consumption stemming from the reduction of CPU idle time. You might
achieve a balance by using only part of the idle time available for memory
defragmentation, and using the rest as a power-saving retention state time.

15.4.1.3 Interaction between CPU retention and peripheral operation

If, when the CPU enters an idle period, the software investigates the
state of peripherals and acts on them, it may further reduce power
consumption:

• If the peripheral driver is not servicing any request, or if it is waiting
on a signal from its client, it may be possible to move the peripheral
to a retention mode. Its client will not request its services again until
the CPU wakes up. Moving as many peripherals as possible to the
retention state usually leads to freeing power resources

• Peripherals that are responsible for detecting wakeup events may
power down to a high latency state and only leave the systems
responsible for detecting those events powered up and operational.
Given the wider time constraints associated with user input, the
latency has no impact on the ability to service the input

• Even if the peripheral cannot be transitioned to a low power state,
we may be able to take other actions that result in increasing the idle
time, such as skipping periodic device timeouts or increasing their
period

• We can turn off the LCD backlight, and lower the LCD refresh rate

• We can notify external devices on a peripheral bus such as MMC or
USB, so that they may enter a low power mode.

Obviously, some of these actions need to be reversed when the CPU
leaves the retention state.

15.4.1.4 Event reduction

Certain applications use periodic timers to poll the state of particular
software resources. These timers will wake up the CPU from its retention
mode, only for the application to realize that no change to the resource
has been made. The effect of this is to shorten the period that the CPU
can be in a retention state, making the choice of more complex and
power-efficient states impossible. At the worst, if these timer ticks are
too frequent, they may prevent transitions to the power-saving retention
states altogether.

Because of this, an effort has to be made to reduce the use of such
timers and move to an event-driven architecture whenever possible.

ADVANCED POWER MANAGEMENT 727

Some peripheral drivers use interrupt driven I/O for data exchanges
with the peripherals they control; this also has a negative impact on CPU
idle time, as events are generated at a high rate, to signal transfers of
small units of data. A better alternative is to use DMA, which enables
transfers of larger amounts of data with a much lower signaling rate. This
is especially relevant as some CPUs may go into a retention state while
the DMA controllers are operational.

Display drivers for refreshed displays whose frame buffers are placed
in system memory can be optimized for event reduction. During periods
of CPU idle, no new display content is being generated, and no updates
to the frame buffers occur. It is also unlikely that the user is interacting
with the mobile phone. Therefore we recommend two different policies
for LCD refresh rates: one that refreshes the LCD at the ‘‘normal’’ rate
when the CPU is active, and another, for when the CPU is idling, that
lowers the refresh rate and relies on the persistence of the display for
longer periods of time in between refreshes. Obviously, lowering the LCD
refresh rate increases the intervals between the CPU having to wake up
and service DMA requests to refresh the display.

With the introduction of ‘‘Smart LCD’’ panels with their own controller
and memory, the control model can be simplified; these displays can be
placed in a mode in which they refresh from their internal frame buffer.
This buffer keeps the last frame sent to the controller. The display can
therefore be disconnected from the CPU bus during periods while this is
in retention mode.

15.4.2 Peripheral idle time

Peripheral devices may spend considerable time idling. Even when a
peripheral driver is controlled by a device driver that has an open
channel, it might happen that no requests for service will be issued for
considerable periods of time.

Earlier, I mentioned that if a peripheral is idling then it could be moved
to a low power retention state. Peripheral drivers cannot estimate when
their clients will issue requests for their services. Thus, the decision to
move the peripheral to a retention state depends on that peripheral’s
ability to wakeup when a request is issued, and to service it on time
without compromising the performance of the client.

15.5 Advanced power management

A number of improvements to the kernel power framework are being
considered in line with the current developments.

728 POWER MANAGEMENT

15.5.1 CPU workload prediction and voltage and frequency scaling

Power consumption of an electronic component, such as a transistor or a
gate, is directly proportional to the operating frequency and to the square
of the operating voltage:

P = K × f × V2

Hardware manufacturers have been taking advantage of this with improve-
ments in the utilization of the physics of the silicon which allow electronic
components to work at lower voltages and higher frequencies, with-
out increasing the overall power consumption, as the previous formula
clearly shows.

This static model has its limitations: as the transistor’s operating thresh-
old voltage is lowered, so the leakage current increases, resulting in
the increase of static power and increased dissipation (which causes
additional problems in removing the additional heat).

More recently, another approach based on dynamically varying the
factors that contribute to power consumption has been favored:

• Hardware manufacturers design devices (CPU, peripherals) for which
voltage and frequency can be dynamically adjusted without disruption
of operation

• The operating system uses this feature to always require the lowest
power consumption from the CPU without reducing the perceived
performance of the system.

Another look at the physics of the silicon tells us that when reducing the
supply voltage of a switching gate, the propagation delay across that gate
increases. In other words, a reduction in operating voltage of a hardware
component such as the CPU must be accompanied by a reduction of
operating frequency.

The reverse of this principle may be used in favor of lowering the
power consumption; if the frequency is reduced, the operating voltage
can be reduced accordingly. Let us see how this could be beneficial.

Analyzing the operational cycle of the CPU reveals a ‘‘bursty’’ profile
(Figure 15.9): tasks or episodes are executed at nominal clock frequency
followed by ‘‘gaps’’ corresponding to periods of idle time.

If the clock frequency of the CPU was adjusted to allow each episode
to complete before the next one, no degradation of system performance
would occur (Figure 15.10).

It must be noted that if the total energy per task (the area inside
each of the boxes) remained the same, no overall gain in power savings
would occur. In fact the power performance would be poorer, as with

ADVANCED POWER MANAGEMENT 729

V,
f

V,
f

Power

time

All episodes are executed at the same frequency (f) and voltage (V)

V,
f

Figure 15.9 Typical CPU episode profile (assuming low power idle time)

V,
f1

V,
f2

Power

time

V,
f3

Each episode is executed at a different frequency (f1<f3<f2<f) but at the same voltage

Figure 15.10 Episode profile with frequency adjusted per episode

the reduction of idle time no power savings could be made from moving
the CPU to a retention state.

However, if we lower the clock frequency per task, we can lower the
voltage supply to the CPU accordingly, resulting in a significant reduction
in power consumption (Figure 15.11).

If, at the moment the CPU enters an idle period, it is possible to
predict when the next episode is going to require CPU attention, then
it is possible to continuously adjust the frequency (and voltage) and still
allow each episode to complete before the next one is due to start.

Algorithms which perform an analysis of idle time and predict CPU
workload in real time have recently been developed. These algorithms
require the kernel, which is responsible for scheduling the tasks and
tracking the idle condition, to be instrumented to collect the relevant
information.

730 POWER MANAGEMENT

V1,
f1

V2,
f2

Power

time

V3,
f3

Each episode is executed at a different frequency (f1<f3<f2<f) and different voltage (V1<V3<V2<V)

Figure 15.11 Task profile with frequency and voltage adjusted per episode

Usually the software component that contains the algorithms that
perform the prediction and ultimately decide upon an operating point
is a higher level component. It may be able to receive input from
certain critical applications, which ‘‘hint’’ at a required performance level,
and may support different switchable policies corresponding to different
modes of device operation – such as ‘‘gaming’’, ‘‘media playback’’, ‘‘call-
only mode’’ and so on.

The system has requirements on the kernel framework:

• APIs to allow collecting the workload information from the kernel

• An interface to the resource manager to allow the modification of the
operating parameters (voltage, clock frequency)

• May have an interface to certain critical device drivers to allow those
to request a performance level. Device drivers may have a knowledge
of the probability of unpredictable future events that require CPU
attention (data input, interrupts), and this information is not available
to the workload prediction component.

A possible optimization to the ‘‘just-in-time’’ strategy I have just described
might involve searching for periods in the CPU operational cycle when
performance is independent of clock frequency. Examples of these include
activities related to periods of intensive memory or I/O port access, when
the CPU has to wait for these to return the data, or polling of an I/O port.
These tend to be fairly common for wireless peripherals and disk I/O.

Identifying such periods will make it possible to lower the CPU clock
frequency (and voltage) to match that of the peripheral it is accessing,
resulting in energy saving without impacting the performance of the task.

ADVANCED POWER MANAGEMENT 731

Finally, it is possible that for certain CPU loads the strategy of lowering
the clock frequency and operating voltage to a level that still allows dead-
lines to be met may result in less power savings than would be possible
by running the episodes at a higher frequency and then saving power
by transitioning the CPU to a low power mode when it is idling – even
during the short periods in between tasks. It must be noted that neither
transitioning the CPU to and from a low power mode nor changing the
speed and operating voltage is cost free; energy is spent on both preparing
the transition and in the transition itself and there are latencies associated
with both. The software component responsible for setting the operational
point for the CPU operation needs to be able to make the decision about
what strategy results in greater economies of power but still meets the
service requirements.

15.5.2 Peripheral low power states and quality of service

As I mentioned earlier in this chapter, some peripherals may be retention
state capable. The retention states that they can be transitioned to are
characterized not only by lower power consumption, but in some cases
also by a higher latency, that is, a diminished ability to respond to external
events within the time constraints required for the correct operation of
the peripheral.

The peripheral driver should make the decision to move the peripheral
to a low power state and choose a state based upon:

1. Which point of the operational cycle the driver is in: is the peripheral
idling; are there any pending requests for service?

2. Is the peripheral able to detect incoming data or external events
whilst in that state?

3. Is the response time of the peripheral to incoming data or events
whilst in that state within the service constraints associated with a
pending request for service?

4. For events that repeat, for example a stream of data, the transition
time to the active state is important: even if the initial event is
detected and transition to active started, will the peripheral be able
to detect/service the next event?

It may be possible that a peripheral reaches an idle condition even when
the peripheral driver has a pending request for services. It may be still
possible to transition the peripheral to a low power state if that state’s
latency does not have an impact on the peripheral’s ability to service
the request. As an example of this, consider keyboard or touch screen
drivers, where the associated peripheral still has the ability to detect a
key press or touch sensitive panel tap and generate an interrupt, even

732 POWER MANAGEMENT

when the peripheral is in a low power state. Given that the clients
of these peripherals have very tolerant constraints for servicing those
events and their repeat rate is usually of the order of tens of milliseconds
(after debouncing filters have been applied), it is quite natural that
these peripherals be moved to a low power state every time they finish
processing an event (even though their operation implies they need to be
ready for the next incoming event).

However it may also be that the client of the services provided by the
peripheral can, in certain stages of its operational cycle, be more tolerant
to the peripheral lowering its response time to input data or events, even
though in other stages it has a much more stringent requirement on
the peripheral. In other words, the quality of service required from the
peripheral may not always be constant.

This situation is particularly common with peripherals used for tracking
and servicing input data streams. As an example consider an IR peripheral:
the constraints on response time during the discovery phase of the
operation, when devices search for the presence of another device with
which to initiate a transaction, are considerably lower than when the
devices are already engaged in a transaction. The protocol even makes
allowance for loss of data during that phase.

Another common situation relates to peripherals that even in their
operational state may be able to work with different levels of power
resources such as clocks or voltages on power lines. Their responsiveness
to their client’s requests varies according to their requirement on those
power resources.

Therefore it is possible to envisage a system where clients of services
provided by peripherals negotiate the quality of service provided by these
peripherals with their drivers. To achieve this, special APIs need to be put
in place. We will call them peripheral quality of service (QoS) APIs.

Peripheral QoS APIs allow peripheral drivers to know, at any time, the
quality of service required by their clients. There are two ways in which
peripheral quality of service specifications may be implemented:

1. The peripheral enters an idle period but has a pending request for
service. The peripheral driver notifies its client. Then it’s up to the
client to allow or disallow the relaxing of the quality of service. When
given permission to relax quality of service, the driver will adjust this
according to its own needs

2. The client specifies the quality of service required for each request
of service from the peripheral when placing the request. This may be
expressed as, for example, a percentage of the maximum degradation
allowed for the request, or as a range of discrete values, and it takes
into consideration the requirements of the client, not the driver.

ADVANCED POWER MANAGEMENT 733

Peripheral QoS APIs allow the device driver to ensure the lowest require-
ment on platform power resources at all times and initiate the peripheral
transition to a low power state whenever the quality of service required
by its clients permits it. This can happen even with a pending request, not
only when the peripheral is idling. This results in further lowering power
consumption of the entire system.

Depending on which of the methodologies for setting the quality of
service provided by peripherals is implemented, the strategy for transi-
tioning peripherals to a low power state and the impact on system power
and performance is different:

1. In the case where the peripheral driver notifies the client of an
idle condition and receives permission to relax quality of service,
it will transition the peripheral to a low power state, releasing the
requirements on power resources (turn voltages or clocks off or lower
their values). If the peripheral is in that state and the CPU enters
its idle mode, the routine responsible for investigating the state of
power resources sees the resources used by that peripheral as unused
and assumes the CPU can safely be transitioned to a retention state
without affecting the performance of the peripheral’s driver or its
client. Therefore the client of the services offered by the peripheral
needs to make the decision to allow the relaxing of the quality of
those services based not only on peripheral wakeup time but also
upon CPU wakeup time, possibly from the retention state with the
longer wakeup time

2. In the case where the client sets the quality of service required for
each request, the peripheral driver will know if it can transition the
peripheral to a low power state when the peripheral reaches an idle
period whilst servicing the request. The choice of a peripheral low
power state is determined by the requirement on service quality. This
strategy allows a finer granularity of control, and supports multiple
peripheral low power states. The drawback is that when the CPU
reaches the idle mode the framework will need to investigate the
quality of service required for the request the peripheral is servicing
with each relevant peripheral driver before deciding on the CPU
retention state to move to.

It is possible that for some peripherals one of these methods is preferable
to the other; for others a combination of these two methods may be prefer-
able, with the client setting the QoS for each request, allowing the driver
to map to the lowest possible requirement on power resources, and then
notify its client of periods of inactivity and receive from them confirmation
that it is valid to transition the peripheral to a low power state.

734 POWER MANAGEMENT

15.5.3 Matching of energy sources and loads
The operational curve of a battery – relating the power it supplies to the
current that is demanded of it – is only linear for a small region of that
curve. Other factors such as temperature and age also affect its ability to
release energy. Therefore the energy it releases for a given level of charge
is not constant.

The duty cycle of a phone – the cycle of run/idle – creates a variable
peak-to-average energy consumption which speeds up the discharge of
the battery and reduces its useful life (Figure 15.12).

Discharge: hours

Run/idle duty cycle0.01 0.02 0.03 0.04

1000

2000

Figure 15.12 Battery discharge versus duty cycle graph

Mobile phone manufacturers may decide to incorporate multiple
energy sources in their designs, to be used in conjunction with the
main battery or as an alternative power source. Those energy sources
may include SuperCaps, rechargeable buffer batteries, and so on.

These energy sources may be switched in and out of the energy supply
to supplement or replace the main battery, matching corresponding load
changes or providing backup for the main power supply. This should be
done under software control.

Software will monitor the load and use a framework to switch the
sources in or out.

15.5.4 SDRAM partial refresh
Mobile phone designs may include mobile SDRAM components capable
of partial array self-refresh. This feature allows for the power consumed
during self-refresh to be directly proportional to the amount of memory
refreshed. The memory device is organized as a number of power banks
and software can set the number of banks that can be self-refreshed,
starting from one end (Figure 15.13).

ADVANCED POWER MANAGEMENT 735

Bank 0 Bank 1 Bank 2 Bank 3

Figure 15.13 Banks of SDRAM on a mobile phone

SDRAM can be placed in self-refresh mode during the periods when the
CPU is not accessing it, for example, CPU standby and retention states.

To make use of the features provided by this type of memory and
reduce system power consumption, the framework must be able to:

1. Identify the geometry of the memory device – the number of power
partitions and how they map to physical addresses

2. Track the utilization of pages on each power partition

3. Guarantee an optimal utilization of physical RAM, with the page
frames in use arranged to reside on as few power banks as possible,
and all at one end of the power partition list

4. Provide the functionality to enable partial self-refresh when
necessary.

The geometry of the device is determined by the bootstrap and passed
to the kernel via the super page. During the early phases of nanokernel
initialization, the RAM allocator object that deals with the mapping of
memory used by the OS to physical RAM is created and can map the
number of power banks and the number of pages per power bank, thus
creating a power partition address map.

Whenever physical memory is allocated or freed, the RAM allocator
marks the pages as used or free. When memory is allocated, the algorithm
that maps it to physical RAM should attempt to find the required number
of pages at the lower end of the power partition address map. This may
not always be guaranteed. Also, when physical RAM is freed, gaps will
be left in the RAM address map which may or may not be fully re-used
when an allocation of a number of contiguous pages less than or equal
to the number of pages freed takes place.

Therefore the OS may need to implement a more aggressive strategy
for rearranging physical RAM, such as ensuring that used pages are all
at contiguous physical addresses at the low end of the power partition

736 POWER MANAGEMENT

address. This defragmentation of physical RAM may be a time-consuming
operation, and this must be taken in consideration when deciding when it
needs to run. One option is to launch the operation when the CPU has no
other threads in the ready list, that is, when the null thread is scheduled to
run. In Section 15.3, I mentioned the risk of the defragmentation routine
encroaching itself into CPU low power retention time – therefore there
has to be some mechanism in place to allow the coordination of the
triggering of the defragmentation task, its duration and the CpuIdle()
routine.

A possible defragmentation algorithm investigates if the number of
used pages at the higher address end of the power partition map is less
than the number of free pages at the lower address end, and, if it is, starts
copying those pages. The algorithm must also be able to determine if it is
be able to copy all the pages within the allocated time. If it is interrupted
before it completes the copy, it should abandon copying and relinquish
control of the CPU to any other thread that needs to run as a result of the
interruption. When it finally resumes, it needs to be able to determine
which pages were copied and which were abandoned, as well as whether
it should retry copying the pages that were abandoned, or if those have
been invalidated as a result of the interruption.

Finally, the routines which prepare the CPU and platform to enter the
standby or retention states must be able to obtain a list of what power
banks are used and their locations, mark only these to be refreshed, and
power down all others.

15.6 Summary

In this chapter, I have described the power management framework
of Symbian OS in some detail. Next I shall look at how Symbian OS
boots up.

16
Boot Processes

by Andrew Thoelke and Carlos Freitas
with Jon Coppeard

There is only one satisfying way to boot a computer.

J.H. Goldfuss

A description of how Symbian OS operates, manages hardware resources
and provides services for application software is incomplete without
an explanation of how it takes the hardware from an uninitialized,
powered-off state to one in which the system is fully ready for action.

In this chapter I will walk through the boot process for mobile phones
that run the operating system from execute-in-place (XIP) Flash memory,
such as NOR Flash, and then describe the differences needed to support
non-XIP media, such as NAND Flash.

The opposite process, shutdown, also deserves some attention. I will
go on to explain how Symbian OS responds to a request to switch off,
describing the design of the current Shutdown Server and the forthcoming
Domain Manager architectures.

16.1 Operating system startup

The process of bootstrapping an operating system is a carefully man-
aged operation. The different stages of initialization must be correctly
sequenced to avoid services being initialized before the services they
depend on are ready.

Figure 16.1 illustrates the main stages of OS initialization for an XIP
Flash memory device. However, before I explain why the memory
technology makes a difference to the boot process, we should start at the
very beginning, or perhaps even a little earlier.

To successfully initialize the hardware and OS, it is important to know
what state the hardware will be in immediately after it has been switched

738 BOOT PROCESSES

1. Bootstrap

2. Kernel, Variant and Extensions

3. File server and File systems

4. System startup

5. GUI and beyond...

RESET

Figure 16.1 Main stages of boot for XIP Flash phone

on or reset. For the most part, the OS has to assume that hardware is in an
‘‘unknown’’ state because the boot process may arise from several causes.

For example, after a mobile phone is switched on, the CPU, MMU
and memory controller are in the most primitive state: clocks are set to
low frequencies, the MMU is disabled, only memory essential for reset
is visible and RAM will contain garbage. On the other hand, following
a software reset these components are typically already initialized. The
initialization carried out during the boot process must be robust enough
to handle any reason for reset.

Switching on the phone triggers the CPU and MMU to reset. This
disables the MMU and causes the CPU to jump to a well-known location
to execute the reset code. On ARM CPUs, this is address 0x00000000,
which is usually referred to as the reset vector. Obviously there must be
some code at physical address zero for this to work and hence some
hardware – usually this will be some masked ROM or XIP Flash.

Mobile phones typically use some form of Flash memory to store
the OS image and built-in software. Although this is significantly more

OPERATING SYSTEM STARTUP 739

expensive (and slower) than masked ROM, there are two substantial
advantages:

• Mobile phones are complex products and often require an update
during their lifetime. Flash memory enables the OS to be over-written
or upgraded (‘‘reflashed’’)

• Masked ROM takes time to manufacture. This introduces a delay of
several weeks between the software being ready and the production
of the phone. ‘‘Several weeks’’ is a lot of phone sales.

Some types of non-volatile memory, such as NOR Flash, can be treated
by the memory controller as directly accessed, read-only memory. This
allows program code to execute directly from Flash memory, which
makes initial system startup much simpler. It is interesting to compare
this to desktop systems where the operating system resides on hard disk
and must be loaded into RAM before it is possible to start executing any
of the code. There are some Flash technologies, such as NAND Flash,
that cannot support execute-in-place and thus require a boot process that
more closely resembles that of a desktop OS. In Section 16.2.1 I will look
at how Symbian OS supports booting from NAND Flash, and discuss why
you might choose to boot from NAND, given this inefficiency.

But now, let’s return to the boot process.

16.1.1 High level process
As the OS starts up, the boot process runs through, broadly speaking, five
stages. I say ‘‘broadly’’ because the later stages can be broken into more
discrete steps. However, this book is primarily about the operation of the
kernel and file server, so as the later boot stages are related to general OS
services and user interface initialization I will not cover them in depth.

Figure 16.1 illustrates these main stages. The beginning of each stage
is marked by the execution path entering a specific new process within
the operating system, and each stage ends when the services provided by
that process are ready for use by the OS.

Before examining each stage in more detail, I will provide an overview
of each stage and what it achieves before it hands over to the next process
in the chain.

1. Switching the phone on triggers a hardware reset. The first software
that is executed after this is known as the bootstrap. On entry to
the bootstrap, the execution environment is very primitive, and the
bootstrap is tasked with providing a basic execution environment for
the kernel process

2. On entry to the kernel, the CPU is now running at full speed and an
execution stack allows typical C++ code to be run. However, there

740 BOOT PROCESSES

is still only a primitive memory environment and only one execution
path. Static data is now initialized and interrupts are masked. Once
kernel and base support package (BSP) initialization is complete,
there is full management of CPU, memory, power and peripherals
and the second OS process is started

3. At this stage in the boot there is a fully functional micro-kernel that
supports multiple multi-threaded, protected user-mode processes.
However, the OS has not yet provided the means to instantiate new
processes, to extract file-based data from the Flash or to persist data
in read/write Flash memory. The process of establishing all of these
services falls to EFILE.EXE and its supporting process, ESTART.EXE

4. All of the kernel, user library and file server services are now fully
initialized ready for the rest of the OS to begin its boot process – a job
that is given to the system starter process. The system starter manages
the initialization of the rest of the OS system services in an ordered
manner, and can also provide monitoring and restart for those which
terminate unexpectedly. The precise order in which the persistence,
communications, multimedia, security and other services are started
is controlled by a script and is phone-specific

5. Once enough of the system services are running, the primary GUI
service, the window server, can be started. This now allows initial-
ization of the other UI services and the applications that make up the
aspect of the OS that is most evident to the user.

This is a standard sequence for booting the phone. According to this
process, the OS services for displaying images or animations, or playing
audio become available quite late in the boot. This does not reconcile
with the typical experience of using a Symbian OS phone – in practice
phones often use lower level graphics services to display images during
boot without demanding that the full screen-sharing capabilities of the
window server are available.

It is worth looking in more detail at some of the work done in the earlier
stages of boot to understand how the OS brings the services online in a
carefully orchestrated manner. Many of the interesting events or activities
can be seen in Figure 16.2, which provides a graphical ‘‘history’’ of
booting EKA2 on development hardware.

The horizontal lanes each show a particular related area of the OS or
hardware that requires initialization during startup – for example, activ-
ities that are to do with initializing memory and memory services are in
the central lane.

The four main vertical divisions show when execution passes from one
executable to another during boot. The first two each represent one of the
stages referred to earlier, while the last two together make up stage three
of the startup. The total elapsed time for these stages of boot is less than
one second.

OPERATING SYSTEM STARTUP 741

R E S E T

3.
0

C
re

at
e

ke
rn

el
 m

em
or

y
al

lo
ca

to
r

4.
9

C
re

at
e

R
A

M
 a

llo
ca

to
rs

,
in

iti
al

is
e

pa
ge

 d
at

a,
re

co
ve

r
R

A
M

 d
riv

e
25

.0
K

er
ne

l h
ea

p
be

co
m

es
 d

yn
am

ic

0.
3

C
re

at
e

in
iti

al
 e

xe
cu

tio
n

st
ac

k

26
.8

C
re

at
e

R
A

M
 d

riv
e

ch
un

k60
.5

P
ow

er
 m

an
ag

em
en

t

N
O

R
 fl

as
h

m
ed

ia
 d

riv
er

 6
5.

1
M

M
C

 b
us

 c
on

tr
ol

le
r

67
.0

11
3

R
O

M
 fi

le
 s

ys
te

m
11

4
F

ile
 s

er
ve

r
11

7
Lo

ad
er

0.
7

C
re

at
e

V
ar

ia
nt

0.
5

C
on

st
ru

ct
ke

rn
el

 s
ta

tic
s1.

0
In

iti
al

is
e

ca
ch

e
an

d
M

M
U

 o
bj

ec
ts

2.
0

In
iti

al
is

e
in

te
rr

up
t a

nd
co

pr
oc

es
so

r
m

an
ag

em
en

t

2.
9

In
iti

al
is

e
N

T
im

er
Q

4.
5

Lo
ca

le
 d

at
a

in
iti

al
is

ed
 to

 d
ef

au
lt

va
lu

es

4.
6

C
re

at
e

In
iti

al
pr

oc
es

s
an

d
th

re
ad

 o
bj

ec
ts

23
.5

In
iti

al
is

e
co

pr
oc

es
so

r
th

re
ad

 c
on

te
xt

,

25
.3

C
re

at
e

su
pe

rv
is

or
 th

re
ad

0.
02

C
le

ar
 in

te
rr

up
t s

ou
rc

es

0.
1

M
em

or
y

co
nf

ig
ur

at
io

n,
 in

iti
al

is
e

m
em

or
y

m
ap

 a
nd

 M
M

U

0.
4

In
iti

al
is

e
ke

rn
el

 m
em

or
y

0.
5

25
.9

C
re

at
e

ev
en

t a
nd

 D
F

C
 q

ue
ue

s

27
.9

B
in

d
in

te
rr

up
ts

 a
nd

 s
ta

rt
 ti

m
er

29
.6

S
ta

rt
 e

xt
en

si
on

s

32
.7

 D
M

A
 c

on
tr

ol
le

r

76
.0

 R
un

 S
up

er
vi

so
r

D
F

C
Q

94
21

6

R
es

to
re

 H
A

L
92

0
S

et
 lo

ca
le

 9
35

C
re

at
e

S
ys

te
m

 S
ta

rt
er

 9
38

0.
01

M
as

k
in

te
rr

up
ts

, i
n

su
pe

rv
is

or
 m

od
e

2.
9

In
te

rr
up

ts
 e

na
bl

ed

2.
7

C
re

at
e

ex
ce

pt
io

n
st

ac
ks

T
hr

ea
ds

 &
S

ch
ed

ul
in

g

M
M

U
 &

M
em

or
y

In
te

rr
up

ts

&
P

er
ip

he
ra

ls

F
ile

sy
st

em
s

O
S

B
oo

ts
tr

ap
E

K
er

n.
ex

e
E

F
ile

.e
xe

E
S

ta
rt

.e
xe

0

T
im

e
si

nc
e

R
E

S
E

T
 in

 m
ill

is
ec

on
ds

23
0

M
ou

nt
 C

: L
F

F
S

M
ou

nt
 D

: F
A

T
 5

10

B
o

o
t

T
im

el
in

e

Fi
gu

re
16

.2
K

ey
ev

en
ts

du
ri

ng
th

e
fir

st
fe

w
st

ag
es

of
bo

ot
in

g
Sy

m
bi

an
O

S

742 BOOT PROCESSES

16.1.2 The bootstrap

On entry to the bootstrap, bootrom.bin, very little is certain about the
processor or hardware state. The CPU and memory will be set to run at
safe, slow speeds, the MMU is disabled and the only CPU general register
that is known to be good is the PC in supervisor mode (R15_SVC) – and
that will be zero at the very start of the bootstrap.

Immediately, the bootstrap modifies the CPU mode to run in SVR
mode with all interrupts masked. Any interrupt or exception at this stage
would cause a fault, because the CPU registers for these states have
not yet been initialized. The bootstrap then initializes hardware, starting
with the CPU and MMU, and clears interrupts. The bootstrap creates
an execution stack and points the supervisor stack pointer, R13_SVC, to
this memory.

16.1.2.1 The superpage

From here, the bootstrap starts populating a structure called the superpage.
This is a structure that is shared between the bootstrap and the kernel
and is used for passing information determined by the bootstrap to the
kernel. This is information such as addresses of key ROM locations
(such as the root directory), location and size of memory banks, and
various other values that are calculated by the bootstrap. The superpage
is always allocated at a known virtual address, specific to each memory
model – which is how the bootstrap and kernel know where to put it and
find it. All other bootstrap data is lost after completion.

The bootstrap determines the available memory, both RAM and ROM.
It does this using a combination of explicit information in a table provided
by the BSP, and dynamic probing to determine memory address, size and
width. At the end of this, the superpage will contain a record of all the
blocks of memory in the system. With this information, the bootstrap
creates and initializes the RAM page allocator. Next it allocates, clears
and maps the primary page directory and first page table, then maps
the ROM and other memory model-related data structures. It also maps
hardware I/O in the page tables. At this stage, the MMU is switched to
use virtual addressing.

Now the bootstrap is ready to prepare the kernel for execution. It
allocates the initial thread stack and initializes it according to the size
requested in the ROM. Similarly, it allocates and initializes the kernel
static data.

After some final BSP-specific initialization, the bootstrap is ready to
execute the kernel. The supervisor stack pointer is changed to point to
the initial thread stack (the bootstrap stack is no longer used) and the
CPU branches to the entry point of the primary executable in the ROM,
usually EKERN.EXE.

OPERATING SYSTEM STARTUP 743

16.1.3 The kernel
On entry to the kernel, the CPU is now running at full speed, the
execution stack allows typical C++ code to be run, the memory hardware
sub-system is tuned and the MMU provides virtual addressing. However,
the memory environment is still primitive – the static data is initialized
but there is no free pool allocator and there is only one execution path.
Interrupts are still disabled.

The kernel starts by initializing all the CPU execution modes, although
they will all share a common stack for now. This enables exceptions to be
detected and diagnostics produced rather than generating errors that are
difficult to debug. Next the kernel runs C++ constructors for static kernel
objects, and we are ready to enter the C++ entry point for EKERN.EXE:
KernelMain().

The kernel performs its initialization by running a number of initial-
ization routines, init-0 to init-3. At each stage, core kernel initialization
is performed and equivalent initialization routines are run in the BSP to
allow the initialization of phone-specific hardware.

16.1.3.1 Init-0

From KernelMain() the initial thread first invokes P::Create-
Variant(), which does phase zero of the initialization. That is, it
initializes and constructs the static data objects for all BSP extensions,
and then does the same for the variant. The variant must be initialized
after the extensions, as the initialization of the variant may depend on
one or more extensions having been through this phase already. Finally,
the variant’s exported Initialise() function is called to do early
initialization and provide the kernel with a pointer to the singleton Asic
object.

16.1.3.2 Init-1

Now that the BSP static objects are initialized and ready, the second action
the initial thread takes is to call K::InitialiseMicrokernel(). This
prepares various kernel and BSP objects in sequence:

• The Mmu and Cache management objects

• Coprocessor management

• Interrupt dispatchers

• Some ISRs

• Exception mode stacks for IRQ, FIQ, ABT and UND modes.

At this point, some three milliseconds into the boot, the kernel can
unmask interrupts safely, although there are no interrupts enabled yet.
The nanokernel timer period is now set from the variant information.

744 BOOT PROCESSES

The kernel creates an initial free store allocator over the memory
reserved by the bootstrap, but this heap is not yet able to grow dynami-
cally or support multiple threads. However, the kernel can now support
dynamic object creation:

• The kernel initializes locale data to default values

• The kernel creates a DProcess object to represent the EKERN process

• The kernel creates a DThread object to represent the currently
running initial thread, which will become the ‘‘null’’ (or idle) thread.

The kernel now unlocks the scheduler and is ready to start scheduling
threads. The kernel creates the supervisor DFC queue but does not
yet create the thread to service the DFCs, This allows TDfc objects
to be created, bound and even added to this DFC queue during early
initialization – once the kernel creates the thread, it will process the
queue and execute these DFCs.

16.1.3.3 Init-2

We now have a viable heap allocator and scheduler. The next step is
to complete initialization of the memory manager. This creates all the
virtual address region allocators and the RAM allocator mutex used to
protect the manager. It also recovers any contents of the RAM drive that
survived a warm reset.

The final coprocessor initialization creates the default thread context
for saved coprocessor state.

Now the rest of the kernel resource management machinery can be
brought into existence:

1. The object containers are created with their mutexes, and the initial
process and thread are added to these

2. A chunk representing the already existing kernel heap is created and
set up, and the heap’s mutex is created. A second chunk to contain
supervisor mode stacks is created. The kernel heap is now ‘‘mutated’’
into a dynamic heap – the kernel now has full memory allocation
capabilities

3. The debugger interface is initialized

4. Publish and subscribe is initialized

5. The power model is initialized

6. The code management system is initialized.

The final act of the initial thread during boot is to create and resume the
kernel supervisor thread – startup now continues in the context of that
thread.

OPERATING SYSTEM STARTUP 745

Eventually the null thread will run again, and will then enter a loop
in KernelMain(), repeatedly running a low priority garbage collection
process, and after that requesting the Asic object to take the processor
into some form of idle state.

16.1.3.4 Init-3

The supervisor thread now initializes several more kernel services:

• The kernel side of the HAL system

• The event queue

• The default DFC queues

• The RAM drive chunk

• The tick- and second-timer system.

The supervisor then invokes the variant’s init-3, which will at last enable
the kernel timer services – and, now that the kernel is fully functional,
initialize various other interrupt handlers and sources.

Finally, the supervisor now runs the export entry point for each
extension in turn, in this way initializing the phone’s BSP piece by
piece. There are many more extensions than are shown in the timeline
in Figure 16.2. I have only included a few of the key ones that provide
services used elsewhere in this chapter.

The last such extension is always ExStart – this is dedicated to
constructing the second process ‘‘by hand’’, and so initializing EFILE.EXE
and resuming this as the first user-mode process.

16.1.4 The file server
At this stage in the boot, we have a fully functional micro-kernel that sup-
ports multiple multi-threaded, protected user-mode processes. However,
the OS has not yet provided the means to instantiate new processes, to
extract file-based data from the Flash or to persist data in read/write Flash
memory. The establishment of all of these services falls to EFILE.EXE, the
designated secondary executable, and its supporting process ESTART.EXE.

EFILE starts by creating the infrastructure for the file server:

• The secondary thread for processing disconnect requests

• The object container classes for shared resources

• The TDrive objects providing the logical media interface to the file
systems.

The file server mounts the first file system (the XIP ROM file system on
drive ‘‘Z:’’) manually, and this allows the file server service to be created.

746 BOOT PROCESSES

The file server now creates the loader thread, which provides the
executable loader service for the rest of the OS, and waits for it to signal
that it is ready. The loader initializes itself by creating the server objects
and initializing its filename cache.

The file server now completes initialization of the local drive collection
and prepares its notification service before creating a final slave thread to
continue startup. Finally it begins to service file server requests.

The OS can now service load requests against executable files found
in the XIP ROM (as this is the only file system that is mounted!). The slave
thread picks up the trail and now makes requests to the loader to install
the local media sub-system drivers and physical media drivers, preparing
the file server for mounting the full set of file systems. The last action of
the slave thread is to create the second user process: ESTART.EXE.

ESTART does phone-specific initialization, which is why it is separated
from the generic EFILE.EXE. ESTART initializes the local file systems one
by one, installing and mounting the required file systems over each
medium – for example LFFS on a NOR Flash memory. ESTART can also
be configured to use error detection and repair tools (such as scandisk)
on file systems that were not shutdown in an orderly way – or to format
disks when the phone is booted for the first time.

Once the read/write file systems are available, ESTART locates the
persistent HAL settings on the internal drive and restores them to the
HAL. This is also where the current language and locale settings are
identified and restored from disk.

When we reach this point, all of the kernel, user library and file server
services are now fully initialized and ready for the rest of the OS to begin
its startup process. ESTART has done its job, and it now creates the next
process in the chain, the system starter.

16.1.5 The system starter

The system starter provides a framework for the mobile phone to start
and maintain all of the services necessary for normal operation. This
framework is driven by a configuration file that the phone manufacturer
constructs. The system starter also allows for multiple startup scenar-
ios (some of which are described in Section 16.2.2) by supporting the
selection of different configuration files.

Just as with the kernel and file server, the order in which the system
services are initialized is important. This is to respect dependencies
between services and to ensure that vital services are started first. In
particular, on a mobile phone one would like the telephone functionality
to be ready as soon as possible.

During normal system boot, we would expect that this component
would first start the various low level communications, audio and graphics
services. One vital server to initialize before the user interface can appear

ALTERNATIVE STARTUP SCENARIOS 747

is the window server (discussed in Chapter 11, The Window Server),
which provides shared access to the UI hardware on the phone, such as
the display, keypad and touch screen.

Once the window server is running then the rest of the application and
UI framework can initialize, and finally the telephone application is run.

16.2 Alternative startup scenarios

16.2.1 Booting from NAND Flash memory

In Section 16.1, I briefly described NAND Flash memory, and particularly
noted its inability to be used for XIP software. In Chapter 9, The File Server,
I discussed this type of Flash and its use for both user data storage and for
storing built-in software. That alone is not enough to enable the system
to boot from such memory, because the ROFS (read-only file system)
relies on the kernel, file server and loader to copy the executable code
into memory and prepare it for execution. So how do we get these
fundamental services running to support loading the main OS from a
ROFS image?

Figure 16.3 shows the modified startup stages for booting from NAND
Flash. There are now two extra stages before the bootstrap is run:

1a. NAND Flash provides a very basic XIP service to allow a system
to boot – the first 512-byte sector of the memory can be shadowed
into some internal RAM and executed from there. This first sector
must contain enough code to carry out the first step in loading the
entire OS. The miniboot does this, by providing the essential CPU
and memory setup, before loading the rest of the first Flash block
(typically 16 KB) into RAM and continuing execution from there

1b. The program in this larger block is the coreloader. This understands
the partitioning of the NAND Flash and the bad block algorithm,
which I discussed in Chapter 9, The File Server. This allows it to
locate and load the core image into RAM. The core image is an
XIP image, which must at least contain all of the code required to
initialize the kernel and file server and install the ROFS file system.
The core image may be compressed, as this saves space in the Flash.
Once the core image is loaded, the core loader executes the entry
point in the XIP image (the bootstrap) and boot continues as for the
XIP sequence for a while.

The XIP boot sequence is then modified once more – during file system
initialization. The file system configuration for NAND Flash typically will
combine both the XIP ROM file system and the ROFS file system under a
single drive identifier, as I described in Chapter 9, The File Server. This

748 BOOT PROCESSES

1a. Miniboot

1b. Coreloader

1c. Bootstrap

2. Kernel, Variant and Extensions

3. File server and File systems

RESET

4. System startup

5. GUI and beyond...

Figure 16.3 Main stages of boot for a NAND Flash phone

allows built-in software that expects to be ‘‘in ROM’’ to be in the usual
place – drive ‘‘Z:’’.

Given all this extra effort and delay during startup it is worth asking,
what is the value of using NAND Flash for non-volatile storage in
mobile phones? The answer is the same issue that prompted the question:
performance. NAND Flash provides similar performance to NOR Flash
for reading, but can write data three or four times faster. This will become
very important for mobile phones that have multi-megapixel cameras or
allow download of music tracks from a PC – NOR Flash is too slow for
these use cases.

16.2.2 Other reasons for startup

The boot process usually starts because the user switched on the mobile
phone, in which case the standard startup process is likely to be followed.

ALTERNATIVE STARTUP SCENARIOS 749

However, there are circumstances in which we follow alternative boot
sequences, for example:

• A phone that is powered off displays its charging status when plugged
into an electrical supply

• In the factory, when it is first switched on, the phone runs a series of
diagnostic ‘‘self tests’’ to verify that the hardware and software are all
functioning correctly

• While the phone’s firmware (in other words, the Flash memory on
which Symbian OS resides) is being updated, Symbian OS cannot
safely be running. Depending on how the update software is imple-
mented, this startup sequence may diverge inside the bootstrap before
the kernel runs.

In the majority of Symbian phones, it is not the Symbian kernel that is
initially aware of the reason for boot. The bootstrap provides a little infor-
mation to the kernel through the superpage in the form of iBootReason,
but this usually indicates only the difference between a cold boot (hard-
ware power on) and a warm boot (software reset and reboot). Most often,
the baseband software determines the reason for booting and provides
this information to Symbian OS early on – for example in ESTART. The
system starter uses this information to select the configuration file that
corresponds to this startup scenario.

16.2.3 Booting in the emulator
The introduction of process emulation makes it possible for the emulator
to ‘‘boot’’ in a way that is much closer to the real thing. The most
significant differences are:

1. The object that replaces the bootstrap

2. Running different ‘‘types’’ of emulator.

16.2.3.1 Bootstrap

EPOC.EXE is the standard bootstrap program. It is a Win32 executable
and its sole reason for existence is to call BootEpoc() in EUSER from
its Win32 entry point. BootEpoc() takes a single Boolean parameter,
ultimately used to determine if the emulator should automatically run a
program after boot is completed.
BootEpoc() loads the kernel DLL dynamically and looks up the

Symbian OS entry point, _E32Startup, by name. If it is successful,
this entry point is then invoked, passing in BootEpoc()’s parameter.
The kernel’s _E32Startup() function first runs the kernel’s static data
constructors, then saves the parameter for later and calls the kernel’s

750 BOOT PROCESSES

BootEpoc() function. This function does emulator specific initialization
before calling the common kernel startup code in KernelMain().

16.2.3.2 Variant and extensions

With no ROM, the kernel cannot immediately find the variant and
extensions to load.

The variant is always called ECUST.DLL and P::CreateVariant()
dynamically loads it – the DLL entrypoint is located as for other emulator
DLLs, and called as normal for the variant. A::CreateVariant() then
invokes the first ordinal in the variant, passing in the previously saved
parameter that was originally passed to BootEpoc() by EPOC.EXE.
Variant initialization then proceeds as usual.

The list of extensions to load is retrieved from the variant as the
‘‘extensions’’ property. These are dynamically loaded, in order, and their
Symbian OS DLL entry points are called as normal for extensions. The
last of these should be EXSTART, which creates a process based on the
EFILE.EXE image – the file server.

16.2.3.3 E32START

File server initialization proceeds as normal, the last action being to create
a new process from the E32STRT.EXE image. This is the emulator equiva-
lent of the ESTART.EXE that I describe in Chapter 16. It carries out the same
initialization tasks, but provides some additional features for the emulator.

E32STRT determines which UI to run based on its configuration
properties: it can run the graphical window server, the text shell or run
without any UI at all.

E32STRT then checks to see how the emulator was bootstrapped. If it
was started by EPOC.EXE, it exits leaving the UI to run and the emulator
boot has completed. If not, it retrieves the program and command line to
auto-execute from the ‘‘AutoRun’’ and ‘‘CommandLine’’ properties, cre-
ates that process, waits for it to exit and after that terminates the emulator.
This latter course of action gives the same behavior that you see in the
EKA1 emulator when you run an EXE from the Windows command line.

16.3 Operating system shutdown

Now that I have covered startup, I will move on to describe its opposite:
shutdown. From the user’s point of view, startup and shutdown are
symmetrical activities. From the software perspective, there is little in
common:

• Startup is a baton-passing exercise, which takes the mobile phone
from a primordial state to one where all services are running, in a

OPERATING SYSTEM SHUTDOWN 751

carefully sequenced procession. This sequence is a consequence of
the system design and our main interest lies in how it is achieved

• Conversely, shutdown is an activity which must be orchestrated,
bringing the running system to a state in which it is safe to ‘‘pull the
plug’’ and remove power. I will discuss some design details here to
help explain the way in which shutdown is managed.

Shutdown – which involves shutting down the phone, closing all open
applications and saving data that has changed in the current session – is
normally initiated by a user action, such as pressing a power button or a
power-off key. Shutdown also occurs in response to other user or network
based activities:

• Restoring data from a backup can invalidate much of the OS state:
it is easier to restart the entire system than to synchronize all system
services with the new configuration data

• Firmware over the air (FOTA) update. In-place update of the Symbian
OS firmware requires that Symbian OS is not executing at the time.
Once the update is downloaded to the phone, the phone will need to
restart in ‘‘update’’ mode.

In all of these scenarios, the shutdown can be managed in an orderly way
to ensure that persistent data is saved correctly.

Sometimes, however, the cause of shutdown is less controlled. For
example, some software faults in critical system services are unrecover-
able and result in an immediate software reset. Or, a loss of power results
in a very rapid shutdown of the system, even though a little residual
power is available to complete critical disk activities. In such cases the
startup process must make its best effort to recover the state of the data
on the mobile phone, and repair any problems that it discovers. Some of
this work is done in ESTART as it mounts the file systems – if the system
did not shutdown cleanly, it can check for errors in the file system and
may even reformat the file system if it cannot be repaired.

System shutdown may result in critical hardware components such as
the CPU and most peripherals having their power removed (transition
to the off state) – or it may leave these components in a standby state,
from which it is possible to return to an operational (active) state without
rebooting.

There are currently two architectures available that can be used to
manage shutdown of the entire OS. The shutdown server is used in
phones today, whereas the domain manager is a new component that
will eventually replace the shutdown server in this role. I will look at the
design of both these architectures.

752 BOOT PROCESSES

16.3.1 The shutdown server
The shutdown server is the current architecture that is used to manage
controlled shutdown in Symbian OS.

Shutdown is typically initiated by a dedicated kernel-level component
such as a device driver or kernel extension, or by the variant detecting a
power button press, a power hotkey tap, the closing of the phone’s cover,
or some other mechanism.

A user-side component may also initiate a shutdown sequence, by
calling the UserSvr class exported API HalFunction(TInt aGroup,
TInt aFunction, TAny* a1, TAny* a2) with EHalGroupPower as
the identifier for the HAL group of functions and EPowerHalSwitchOff
as the identifier for the function to execute. This could be used, for
example, when the detection of the power key press is not done by a
software component executing on the main application processor: instead
the user-side component that is used as a communication channel to the
baseband software will call the HalFunction API. The servicing of the
UserSvr call is done by the platform-specific part of the kernel power
framework, as I explained in Chapter 15, Power Management.

As a result of detecting the hardware event corresponding to the phys-
ical action, or servicing the UserSvr call as I have just described,
a TRawEvent having one of the following types is added to the
event queue:

• ESwitchOff – added by the servicing of the UserSvr call

• EKeyOff – added by the driver that detects the key presses

• ECaseClose – added by the platform-specific component that mon-
itors the state of the phone’s lid.

The window server receives the event, and translates it into a TEvent-
Code type:

• EEventSwitchOff in place of ESwitchOff

• EEventKeySwitchOff in place of EKeyOff

• EEventCaseClosed in place of ECaseClose.

The window server will then either send the event to a registered compo-
nent that requested it or, if no component is registered to receive off events,
request the kernel to power down by calling UserHal::SwitchOff().

All current Symbian OS mobile phone have a UI component – the
Look And Feel, or LAF, shutdown manager – that would previously have
registered with the window server to receive such events. Implementing
this policy in the UI allows the shutdown behavior of the phone to be
customized according to the UI model it employs.

OPERATING SYSTEM SHUTDOWN 753

The shutdown manager object should derive from CLafShutdown-
ManagerBase and implement a policy on when to shutdown the
mobile phone.

class CLafShutdownManagerBase : public CBase
{

protected:
inline CLafShutdownManagerBase(MShutdownEventObserver& aObserver);

protected:
MShutdownEventObserver& iObserver;
};

The policy can involve listening for events such as the ones I have just
listed, monitoring user inactivity using inactivity timers, and more.

A typical implementation has the LAF shutdown manager opening a
session with the window server at creation time and queuing a request for
the notification of ‘‘off’’ events. When it does receive such an ‘‘off’’ event,
the LAF shutdown manager decides if it should result in a power down
or just the sending of state and data save notifications to applications.

The shutdown server is at the center of the shutdown architecture. It
derives from MShutdownEventObserver, as follows:

class MShutdownEventObserver
{

public:
virtual void HandleShutdownEventL(MSaveObserver::TSaveType aAction,

TBool aPowerOff)=0;
virtual CArrayFix<TThreadId>* ClientArrayLC()=0;
virtual TBool IsClientHung(TThreadId aId) const=0;
virtual void GetShutdownState(TBool& aPowerOff,

TBool& aAllSessionsHavePendingRequest)
const=0;
};

The implementation of the mandatory API by a shutdown server enables
the LAF shutdown manager to:

• Request the sending of save notifications to registered components,
possibly followed by a shutdown

• Return a list of registered clients

• Enquire if a registered client is still processing the save notification

• Obtain the shutdown status after a shutdown request has been issued.

When the UI creates the shutdown server, the shutdown manager is
also created and its iObserver member is set to reference the shut-
down server.

754 BOOT PROCESSES

Software components that need to be notified of an imminent shutdown
create sessions with the shutdown server to receive save notifications. An
example of such a component is a UI-specific save observer, which acts
as a gateway for save/shutdown notifications on behalf of UI applications.
Upon receiving a save notification, a save observer propagates the request
to all running applications which will then save their data/status, close
dialogs, exit, and so on.

The notification mechanism is based on an asynchronous request,
which is placed on the shutdown server when a client creates a session
with it. Clients of the shutdown server typically own a CSaveNoti-
fier object that provides them with an interface to the shutdown
server:

class CSaveNotifier : public CActive
{

public:
IMPORT_C static CSaveNotifier* NewL(MSaveObserver& aObserver);
IMPORT_C ∼CSaveNotifier();
IMPORT_C void DelayRequeue();
IMPORT_C void Queue();
IMPORT_C void HandleError(TInt aError);
...
};

The API allows for:

• Creating a session with the shutdown server that will queue an
asynchronous request for shutdown notification

• Closing the session and canceling a pending request

• Delaying or stopping a shutdown sequence after the client received
the notification, and resuming the sequence

• Notifying the shutdown server of an error in its internal save/shutdown
sequence.

Clients of the shutdown server must also implement an MSaveObserver
interface:

class MSaveObserver
{

public:
enum TSaveType

{
ESaveNone,
ESaveData,
ESaveAll,
ESaveQuick,
EReleaseRAM,

OPERATING SYSTEM SHUTDOWN 755

EReleaseDisk,
};

public:
virtual void SaveL(TSaveType aSaveType)=0;
};

Thus, when notified of an ‘‘off’’ event, the LAF shutdown manager calls
the shutdown server’s HandleShutdownEventL() API, specifying if a
power down is required and specifying what save action is required from
its clients (as a TSaveType). The LAF shutdown manager may also do
this as a result of detecting a period of user inactivity.

The shutdown server manages the shutdown sequence. The servicing
of HandleShutdownEventL() saves the locale and HAL settings that
may have changed during the current session and, if a saving action of
any type is required, notifies all registered clients that have pending save
notification requests, by completing those requests. If a registered client
does not yet have a pending request, then it will be notified immediately
after it issues the request for notification.

After receiving a save notification, clients of the shutdown server call
the SaveL()method (from MSaveObserver) which will perform client-
specific status saving actions corresponding to the TSaveType argument
passed.

Clients must then re-queue a request with the shutdown server. If
a power down is required, the shutdown server will ask the kernel to
shutdown only after all its clients have re-queued requests with it.

The shutdown server requests kernel shutdown by invoking the User-
Hal::SwitchOff() API (an export from EUSER.DLL):

EXPORT_C TInt UserHal::SwitchOff()
{
TInt r = Power::EnableWakeupEvents(EPwStandby);
if(r!=KErrNone)
return r;
TRequestStatus s;
Power::RequestWakeupEventNotification(s);
Power::PowerDown();
User::WaitForRequest(s);
return s.Int();
}

This entire sequence is illustrated in Figure 16.4.
I have already discussed the Power class APIs invoked by this function

in Chapter 15, Power Management. Be sure to note that:

• The target power state selected by UserHal::SwitchOff() is
standby, as was the case with the EKA1 power management. However,
as the implementation of Power::PowerDown() will call down
to platform-specific code, phone manufacturers can interpret this

756 BOOT PROCESSES

App 1

LAF
Shutdown
Manager

Save
Observer

Window
Server

Shutdown
Server

Kernel
Power

Manager
Device driver

kernel

UI specific

App 2

UserHal::SwitchOff

Kern::AddEvent(EKeyOff)

MShutdownEventObserver::
HandleShutdownEventL

Complete
request

CWsWindowBase::QueueEvent -
EEventKeySwitchOff

CSaveNotifier::
Queue

CEikAppUi::
HandleCommandL

App 3

user

Figure 16.4 Flow of activity after a power off event

request by powering down the hardware (CPU, peripherals) instead
of transitioning them to a standby state

• The new shutdown architecture using the domain manager (discussed
in the following section) leaves the choice of target power state to the
LAF domain controller

• Wakeup events are enabled but, if they occur they have no impact on
the transition once initiated.

16.3.2 The domain manager
As I mentioned earlier, in the future an architecture based upon domain
management will be used as a replacement to the current scheme based
around the shutdown server.

16.3.2.1 Overview

This alternative scheme is based on the concept of power domains,
which may be populated with applications, and which are organized as
dependency trees that represent the domain hierarchy (see Figure 16.5).
Each node on the dependency tree represents a domain and is identified
by a domain ID – an identifier number. Applications at the top of the tree,
residing in parent domains, will usually provide services to those in child
domains, or will manage the resources that they need to use. In this way

OPERATING SYSTEM SHUTDOWN 757

App8 App9

App3 App4 App5

App1

App10

App6 App7

App2

App11 App12
Domain 3 Domain 4

Domain 1

Domain 5

Domain 2

Domain 0 (root domain)

Application

(system)

Root

Domain 2 Domain 1

Domain 3 Domain 4 Domain 5

Domain

Figure 16.5 Application dependencies and the domain hierarchy

the applications on one node of the domain tree have a dependency on
the node above, and so on. This dependency is taken into consideration
when a domain is activated, put into standby or shutdown.

Domains can be in one of three possible power states: active, standby
or off. Domains can be independently requested to transition between
these different power states.

If a transition is applied to the root domain (the top of the tree) then
the transition is a system transition. A system transition is one that is
also applied to the kernel via the Power API, once the root domain has
completed its transition. The system can transition from the active to the
standby or off states – this is, of course, shutdown. The transition to active
state is only allowed from the standby state and cannot be initiated by a
call to the domain manager. This transition starts when the kernel wakes
up from its standby state and reports the wakeup event to the domain
manager, which then recovers from standby state by transitioning the
domain tree back to active.

The transition of a domain to standby or off always starts with the
transition of all the domain’s child domains, followed by the transition
of the target domain itself. A domain transition to the active state always
starts with the transition of that domain, followed by the transition of its
entire list of child domains.

Domain trees are static and are specified at system build time in the
domain policy DLL. At system startup time, when the domain tree is
loaded from this DLL, domains in the tree have no member applications.
Applications will join the relevant domain as they startup.

We permit a maximum of 256 domains.
Applications are allowed to join domains, or disconnect from them,

at any time. Once an application has joined a domain, it will remain a
member of that domain until it explicitly relinquishes membership.

Membership of a domain gives an application the ability to request
notification of the domain’s power state changes. The application can

758 BOOT PROCESSES

decide on what action it should take on receiving this notification. Usu-
ally, on receiving a notification for a transition to a low power state, an
application will save data related to its current state.

Domain state change notification is implemented using the publish and
subscribe mechanism that I discussed in Chapter 4, Inter-thread Commu-
nication. State changes are published as property value changes. A state
property identifier – a UID – has been reserved for this purpose, as have
256 sub-keys for the maximum possible number of domains. Applications
that want to receive domain state notification simply subscribe to the state
property.

Applications can join more than one domain and be notified of power
state changes affecting all the different domains that they belong to. Appli-
cations may act upon the notification differently for each of the different
domains they belong to, or for each type of state change they are notified
about. For example, an application may save its data and state to persistent
storage on domain shutdown, or save it to RAM on domain standby.

16.3.2.2 Design and APIs

The domain managed architecture is shown in Figure 16.6. The domain
manager is a user-side system server, which manages application mem-
bership to domains as well as system-wide and domain-specific power
state transitions. It owns the domain tree.

Domain Member
Client API

Domain Manager
Client API

user

kernel

Domain Manager Domain Policy
DLL

Domain
Controller

Domain
Management

Policy

Kernel
switchOff/

Standby

Wakeup
Events

Domain
Hierarchy

client
server

Domain
Membership and

state change
notification

request

System and Domain
state transition requests

Applications (domain members)

Figure 16.6 Domain management architecture

OPERATING SYSTEM SHUTDOWN 759

The domain manager gets the description of the domain tree from the
domain policy DLL at system boot time when the domain manager is
created; the domain policy DLL contains a ‘‘recipe’’ – or specification – to
allow it to build the domain tree. Once loaded, the domain tree can never
be modified.

The domain management policy is also responsible for triggering
system-wide and domain-specific power state transitions. A component
in the UI will provide a domain controller to implement these aspects
of the policy, in a similar way to that in which the LAF shutdown server
provides UI specific policy in the shutdown server architecture.

A domain controller has to connect to the domain manager, using
the domain manager client API. The domain controller is required to
have the PowerMgmt capability to request transitions, protecting the
phone from malicious software. Once a connection is created, the con-
troller can request a system or domain transition. After the transition has
completed – which is signaled asynchronously – the controller should
disconnect. Only one connection is allowed at any given time.

The domain manager client API is provided by the RDmDomainMan-
ager class:

class RDmDomainManager
{

public:
IMPORT_C static TInt WaitForInitialization();

public:
IMPORT_C TInt Connect();
IMPORT_C void Close();
IMPORT_C void RequestSystemTransition(TPowerState,

TRequestStatus& aStatus);
IMPORT_C void RequestDomainTransition(TDmDomainId, TPowerState,

TRequestStatus& aStatus);
IMPORT_C void CancelTransition();
IMPORT_C void SystemShutdown();
};

This class offers methods to allow a domain controller to:

• Synchronize with the domain manager initialization before creating a
session with it

• Create a controlling session with the domain manager

• Request system-wide transitions – to ‘‘standby’’ or ‘‘off’’

• Request domain-specific transitions

• Cancel a system-wide or domain specific transition

• Disconnect from the domain manager.

760 BOOT PROCESSES

Applications use the domain member client to interface to the domain
manager. This client is a user-side DLL that encapsulates the domain
membership and the state transition protocols. No platform security
capabilities are required to use this interface to the domain man-
ager.

The domain member client API is provided by the RDmDomain class:

class RDmDomain
{

public:
IMPORT_C TInt Connect(TDmDomainId aId);
IMPORT_C void RequestTransitionNotification(TRequestStatus&

aStatus);
IMPORT_C void CancelTransitionNotification();
IMPORT_C TPowerState GetPowerState();
IMPORT_C void AcknowledgeLastState();
IMPORT_C void Close();
};

It offers methods to allow applications to:

• Request membership of a domain

• Request notification of domain state changes

• Cancel a request for notification of domain state changes

• Enquire the current state of a domain

• Acknowledge a state change notification

• Disconnect from a domain.

16.3.2.3 Shutdown sequence

When the domain controller requests a system-wide transition by calling
the domain manager client exported API RequestSystemTransi-
tion() specifying standby or off as the power state, or by calling
SystemShutdown() (which is a convenient wrapper for a PowerOff
transition request), the domain manager will perform the following
sequence of actions:

1. Enable wakeup events for the target state (by calling Power::En-
ableWakeupEvents(...) and passing the target power state)

2. Request notification of the occurrence of any wakeup events by
calling Power::RequestWakeupEventNotification()

3. Notify all applications in the domain tree of the imminent transi-
tion, and wait for them to complete their transition. Notifications are

OPERATING SYSTEM SHUTDOWN 761

issued taking into consideration the dependency between these com-
ponents: applications that depend on resources offered by others are
notified before those they depend on, and are shutdown first. In this
way, resources are not released prematurely and are always avail-
able for applications that need them during the shutdown sequence.
This orderly issuing of notifications also guarantees the speediest
shutdown

4. If no wakeup event has been notified, the domain manager cre-
ates a session with the file server and calls the RFs class’s API
FinaliseDrives(). This iterates over every local or internal drive
(that has a file system already mounted and has a media mounted
that is not write protected) calling a file system-specific mount con-
trol block method (FinaliseMountL()). This may simply mark
the drive as having been successfully finalized and not needing to
be scanned the next time the phone is rebooted. This signals the
completion of the user-side preparations to shutdown: at this point
all user-side components that needed to save data or state must
have already done so. The method can therefore mark the mount as
read-only to prevent any spurious writes

5. At this point, if no wakeup event has been notified, the domain
manager asks the kernel framework to power down the CPU and
peripherals: Power::PowerDown().

You might have noticed that steps 4 and 5 are just special cases of the
domain transitions – and that one could view the file server and kernel
as being nodes above the root domain in the hierarchy. Although it is
possible to implement the file server shutdown as a domain transition, it
is simpler at present to implement this transition as a special case. This is
true in particular due to the need to support both shutdown architectures
at present.

It may happen that halfway through the system shutdown, the domain
controller decides to interrupt the transition (for example, if part of the
system cannot be transitioned at this time). It may do so by calling the
domain manager client exported API CancelTransition(), which
results in the following sequence of actions being performed:

1. Wakeup events for the current transition are disabled and the power
framework’s target state is reset to active by calling Power::Dis-
ableWakeupEvents()

2. Wakeup event notification is canceled by calling Power::Cancel-
WakeupEventNotification()

3. The shutdown notification is canceled for registered applications.

762 BOOT PROCESSES

16.3.2.4 Migration from the current architecture

The domain manager and its domain member client interface can replace
the shutdown server and the save notification mechanism by implement-
ing save observers as nodes in the domain tree (that is, as power domains)
and using the LAF shutdown manager in the role of domain controller.

Domain management offers some advantages over the current shut-
down server architecture:

1. Shutdown is ‘‘orderly’’: it takes into consideration the dependencies
between components

2. Shutdown of the file server is controlled

3. Wakeup events are monitored during shutdown (see Section 16.4).

16.4 Operating system sleep and wakeup events

Within the current shutdown framework, some events may not lead to
fully shutting down the phone via the UserHal::SwitchOff() API.
Instead, moving it to a silent running mode, characterized by switching
off the user interface, may be a more appropriate action, leaving the
phone able to respond to incoming calls and quickly return to a running
state. A clamshell phone may switch to silent running mode while the lid
is closed and awake again when it is opened.

Such an operational mode may also be used at the beginning of a
full shutdown operation, to provide feedback to the user that the mobile
phone is switching off.

In this case, the UI observer of the EEventCaseClosed can simply
disable appropriate hardware through the HAL or other device drivers:

HAL::Set(HAL::EDisplayState, 0);
HAL::Set(HAL::EKeyboardState, 0);
HAL::Set(HAL::EPenState, 0);

Recovering from such a state usually happens because of a wake up
event, generated by events such as the user pressing the on key, the
phone being opened or an alarm going off.

I have already introduced the concept of wakeup events in Chapter 15,
Power Management. In that chapter, I defined wakeup events as hardware
events that, occurring while the platform is in low power state, may be
capable of initiating a transition to an operational state. The kernel can
also track them while the OS is preparing the platform transition to a
low power state. If they are reported during that stage, they will lead to
the canceling or even the reversing of the transition. Wakeup events can
therefore play an important role during system shutdown.

OPERATING SYSTEM SLEEP AND WAKEUP EVENTS 763

Suppose the system has transitioned to a low power state such as the
standby state, which does not require a full system reboot and leaves
some systems operational (namely those involved in the detection of
wakeup events). If a wakeup event then occurs, it is initially handled by
the kernel power framework, which will restore the hardware platform to
the state prior to the transition.

The current shutdown framework, based upon the shutdown server and
LAF shutdown manager, relies on the kernel power framework sending an
ESwitchOn event (or an ECaseOpen event if waking up was triggered
by opening the phone lid) when waking up from the low power state.
This may be done by the BSP part of the kernel framework.

The window server captures the events, translates them into EEvent-
SwitchOn or EEventCaseOpened and sends them to a component that
registered for ‘‘on’’ events (typically the LAF shutdown manager). The LAF
shutdown manager will then perform whatever actions are required to
restore the UI and applications to a state corresponding to the phone
operational mode. Typically:

HAL::Set(HAL::EDisplayState, 1);
HAL::Set(HAL::EKeyboardState, 1);
HAL::Set(HAL::EPenState, 1);

In a shutdown architecture based upon the domain manager, the domain
controller requests a system transition to standby by calling the domain
manager client asynchronous API RequestSystemTransition() and
passing a TRequestStatus. The domain manager asks the kernel
framework for notification of wakeup events before the transition to
standby.

After waking up the platform, the kernel power framework completes
the domain manager notification, which will then complete the domain
controller’s request, thus notifying it of a system wakeup.

On a domain-manager-controlled shutdown, the domain manager also
monitors wakeup events during the OS shutdown sequence. At any point
in that sequence before the kernel is requested to transition, a wakeup
event may occur. For example, the user of the phone may change her
mind and press the power button again. Or an alarm from a user-side
software component may go off.

The kernel power framework completes the domain manager wakeup
notification request, thus notifying it of the occurrence of the wakeup
event. Upon receiving the notification, the domain manager performs the
following actions:

1. Disables wakeup events and resets the kernel power framework target
state to active by calling Power::DisableWakeupEvents()

764 BOOT PROCESSES

2. Cancels the shutdown notification for applications that have not yet
shutdown

3. Sends notifications to applications to transition back to the active
state.

16.5 Summary

In this chapter I have demonstrated what happens during the first and the
last few seconds of execution of Symbian OS – how the operating system
bootstraps itself into existence and how it safely shuts itself down again.

In the next chapter, I will consider performance, and discuss how you
can get the most out of EKA2.

17
Real Time

by Dennis May

If I could explain it to the average person, I wouldn’t have been worth
the Nobel Prize.

Richard Feynman

In this chapter, I will discuss real time systems, the support that operating
systems must provide to enable them and how we designed EKA2 to
support them.

17.1 What is real time?

The term ‘‘real time’’ is often misunderstood. The canonical definition
of a ‘‘real time system’’ is the following, taken from the Usenet group
comp.realtime1 and credited to Donald Gillies:

A real-time system is one in which the correctness of the computations
not only depends upon the logical correctness of the computation but also
upon the time at which the result is produced. If the timing constraints of
the system are not met, system failure is said to have occurred.

Essentially, a real time system has a set of tasks which it must perform,
and at least one of those tasks has a deadline by which it must complete
otherwise the system will fail to operate correctly. A system may perform
both real time and non-real time tasks; the former are the ones with strict
deadlines.

Some examples are useful at this point:

1. An engine management system has several tasks that need to be done
on each revolution of the engine, such as operating the fuel injectors

1 See FAQ posting on comp.realtime

766 REAL TIME

and triggering the ignition spark. If these tasks do not occur at the
correct times, the engine will either perform badly or not function
at all. To get an idea of how much accuracy is required, a typical
engine has a maximum working angular velocity of 6000 rpm, or
100 revolutions per second. For optimum performance, the timing
needs to be adjusted to within 1% of a revolution, so this equates to
a timing margin of less than 100 µs

2. Most communication protocols include timeouts to guard against the
possibility of data being lost in transit through an unreliable network
or transmission medium. If a computer system running one of these
protocols does not respond in time, the peer will assume the data
has been lost and will retransmit it unnecessarily or possibly even
terminate the connection. Typical values of the timeouts range from
a few milliseconds to several minutes depending on the protocol
concerned.

A common misapprehension about the term real time is that it implies that
the system must operate very quickly. This is not necessarily the case – a
deadline may be known about well in advance but still be critical. A
well-known example here is the problem of ensuring that servers were
year 2000 compliant before that date. Another example is the second one
I just gave, in which the deadline may be of the order of seconds or even
minutes, which is for ever for a computer!

17.1.1 Hard and soft real time

In Section 17.1 I give a black and white definition of real time. In reality
a lot of systems have varying degrees of tolerance to missed deadlines.
This leads to the following definitions:

A hard real time system or task is one in which a missed deadline
causes complete system failure, as described in Section 17.1.

A soft real time system or task is one in which a missed deadline causes
a reduction in system performance. Typically, the greater the margin by
which the deadline is missed, the greater is the reduction in performance,
and for some value of the margin the system has failed.

Examples of soft real time systems include:

1. A user interface responding to input from the user. The objective here
is to provide apparently instant response. Research indicates that the
user will perceive a response within 100 ms as instantaneous, and
so the ‘‘deadline’’ is 100 ms from the user’s input. However if the
response takes 200 ms, no one is likely to mind. If it takes a second,
the system could appear sluggish and if it takes more than a minute
with no response at all, the user will probably think the device is
broken

REAL TIME OPERATING SYSTEMS 767

2. In most cases the communication protocol example in Section 17.1 is
actually a soft real time task. If the deadline is missed, the peer entity
will retransmit, which will waste bandwidth and reduce throughput
but will not cause catastrophic failure.

17.2 Real time operating systems
We have given definitions of real time systems and tasks. An operating
system cannot be real time in the sense that I have just discussed. Instead
the term ‘‘real time operating system’’ (usually abbreviated to RTOS) refers
to an operating system that is capable of running real time applications. In
this section I will discuss some of the properties that an RTOS should have.

17.2.1 Tasks and scheduling
A real time system will generally consist of several logically separate but
interacting tasks each with their own deadline. It may also contain non-
real time (or soft real time) tasks. The most important task for any RTOS is
to schedule the tasks for execution on the processor in such a way that the
deadlines of the real time tasks are always met. In analyzing whether this
is possible, the following simplified model of task execution is often used.
Consider that the system has a set of n tasks, denoted τ1, . . . , τn. Each
task is assumed to run periodically. Task τi is triggered every Ti seconds,
runs for a maximum time Ci and is expected to finish within time Di of
being triggered. In reality tasks will have a variable execution time, but to
ensure that deadlines can be met the worst case execution time (WCET) is
assumed. Similarly, aperiodic tasks can be incorporated by treating them
as periodic with period equal to the minimum possible time between
invocations of the task. We define the response time (Ri) of a task τi to be
the time from the task being triggered to the task completing. Figure 17.1
illustrates these task-timing parameters.

τ iTask

τ iTask triggered τ iTask triggered

τ iTask deadline

Di

Ri

Ci

Ti

τ iTask

Figure 17.1 Task timing parameters

768 REAL TIME

17.2.1.1 Cyclic scheduling

The simplest means of ensuring that tasks all run when necessary is cyclic
scheduling. It does not require interrupts and is the only method available
on systems without interrupts. This method is often used in simple
deeply embedded systems such as engine management, and would look
something like this:

void main()
{
wait_for_next_tick();
do_task1();
do_task2();
do_task3();
}

This shows three tasks, all with the same period. To handle tasks with
periods which are multiples of the same lowest period, the scheduler
loop or task functions can be modified so that they only execute the task
every m ticks for some value of m. Alternatively, for more flexibility, a
major/minor cycle scheme may be employed where the system period
is the least common multiple of the periods of all tasks and within each
period each task executes several times. In both schemes, problems will
be encountered fitting tasks into the schedule. Consider the following
two tasks:

• Task 1 runs for 1 ms every 2 ms, deadline 2 ms

• Task 2 runs for 1.5 ms every 4 ms, deadline 4 ms.

It is not possible to execute task 2 continuously for 1.5 ms since then
task 1 would miss its deadline. Instead, task 2 must be divided into two
pieces, each of which has an execution time <1 ms. These pieces can
then be fitted into the ‘‘gaps’’ between invocations of task 1. So you end
up with:

void main()
{
wait_for_next_tick();
++tick_count;
do_task1();
if (tick_count & 1)

do_task2_second_half();
else

do_task2_first_half();
}

Figure 17.2 illustrates task execution under this scheduling scheme.

REAL TIME OPERATING SYSTEMS 769

0ms 1ms 2ms 3ms 4ms

Task 1 Task 1

time

Task 1

Task 2
1st
half

Task 2
2nd
half

Figure 17.2

The partitioning of task 2 must be done by hand and the code must be
modified to preserve any necessary state in global data, so that it can be
communicated from the first to the second half.

Cyclic scheduling has some advantages – it can be implemented on
very small systems without interrupts, there is no preemption to worry
about, and it is guaranteed to meet all deadlines provided the schedule
has been correctly calculated. However it also has major disadvantages:

• It has problems dealing with periods that are not multiples of the
smallest period in the system. Tasks with periods that are not simple
multiples of one another will give rise to very complicated schedules.
To work round this limitation, tasks often end up being run more
frequently than required, which wastes processor time

• Adding a new task to the system is difficult. The new task will probably
need to be manually partitioned into several pieces with lots of state
communicated between the pieces using global data

• Maintenance is difficult. An increase in the execution time of any of
the task pieces may require a complete rethink of the cyclic schedule,
even if that increase does not actually overload the processor

• Sporadic events are handled badly. They must be polled for, and time
must be budgeted for them in every cycle even though in most cases
that time is not required. This leads to poor processor utilization.

17.2.1.2 Preemptive scheduling

Cyclic scheduling is a completely co-operative scheduling method – there
is no preemption. Once a task begins execution, it must complete before

770 REAL TIME

any other task can gain control of the processor – and this is the root of
the major problems with cyclic scheduling. To overcome these problems,
preemptive scheduling is used. A preemptive system has the following
characteristics:

• Interrupts are used to signal external events. An interrupt will have
some way, direct or indirect, of triggering a task

• The tasks in the system are ordered in some way; for real time
systems, they are generally ordered by how urgent they are. This
ordering may be constant or it may change with time depending on
circumstances

• When a task is triggered, its urgency is compared with that of the
currently executing task. If the new task is more urgent, the current
task is suspended and the new task begins execution immediately. If
the new task is less urgent, it is simply placed on a list of pending
tasks – the ready list

• When a task completes execution or waits for an external event to
occur, it is suspended and control is passed to the most urgent task on
the ready list.

Note that when control is passed from one task to another, the operating
system automatically saves the state of the old task so that it can resume it
later. Thus the operating system effectively does the partitioning of tasks
into smaller pieces for you and so tasks can simply be written as a single
unit. Adding a new task is simple; all that you have to do is to assign
it a priority and check that the system can still be scheduled correctly
with the new task included (in the sense that each task completes within
its deadline). Similarly, an increase in the execution time of any task
doesn’t require any extra work rearranging the schedule, just a check
that the system can still be scheduled correctly. Task periods don’t have
to be integer multiples of each other – each task simply runs when it
needs to. Similarly, sporadic tasks are not a problem – they only use
processor time when they actually run. Preemptive scheduling also deals
with non-real time tasks; these are simply placed at the bottom of the
ordering and so they run whenever no time critical tasks need the
processor.

Preemptive scheduling solves the major problems of cyclic scheduling.
However it brings some problems of its own:

• Resource sharing. Since tasks are started and stopped automatically
by the OS it is possible that they will contend for use of a shared
resource

• It is more difficult to check that a set of tasks can be scheduled
correctly.

REAL TIME OPERATING SYSTEMS 771

17.2.1.3 Static priority based scheduling

This is the most common form of preemptive scheduling, at least among
real time operating systems. Each task is assigned a fixed priority when
it is created, and these priorities determine which tasks preempt which
other tasks. The actual priority values used are derived using a very
simple rule from the deadlines of the various tasks. The tasks are placed
in increasing deadline order – that is, the task with the shortest deadline
has the highest priority and so on. This is known as deadline monotonic
scheduling.

This result was proved in the well-known paper by Liu and Layland2

for the case where Di = Ti and the more general result for Di < Ti
was proved by Leung and Whitehead.3 For the case where Di = Ti the
resulting priority assignment is called rate monotonic scheduling. For this
case the Liu and Layland paper also derives a simple sufficient condition
for a task set to be scheduled correctly by the rate monotonic algorithm;
this is possible provided that

u ≤ n(21/n − 1)

where u is the total CPU utilization given by

u = C1/T1 + C2/T2 + · · · + Cn/Tn

That is, u is the proportion of the CPU time used. For large n, the limit is

u = ln 2 = 0.6931 . . .

So a task set satisfying the assumptions can be scheduled correctly using a
rate monotonic fixed priority assignment provided that the CPU utilization
does not exceed 69%. The condition is sufficient but not necessary and
is usually pessimistic. In reality, task periods tend to be multiples of each
other and this increases maximum possible utilization. If every task period
is a multiple of the next shorter period, 100% utilization is theoretically
possible.

Static priority based scheduling is by far the most common scheduling
method used in real time systems. Even though it is not theoretically
optimal, it is good enough for a large number of real world systems. It is
also very simple to implement, which makes it suitable even for small,
memory-limited systems. It can be implemented with fast, constant time
algorithms, improving utilization and predictability when OS overheads

2 Liu, C.L. and J.W. Layland, ‘‘Scheduling algorithms for multi-programming in a hard
real-time environment’’, Journal of the Association of Computer Machinery (ACM) 20(1),
Jan. 1973, pp. 46–61.

3 Leung, J.Y.T. and J. Whitehead, ‘‘On the complexity of fixed-priority scheduling of peri-
odic, real-time tasks’’, Performance Evaluation (Netherlands) 2(4), Dec. 1982, pp. 237–250.

772 REAL TIME

are taken into account. Finally, its behavior under overload is predictable.
As the system becomes more overloaded, the lowest priority tasks are
delayed first. This makes it suitable for systems containing both real time
and non-real time tasks.

17.2.1.4 Deadline driven scheduling

In the static priority scheme that I have just described, the scheduler
never actually examines the deadlines of any tasks. It simply uses a
fixed ordering specifying which tasks are generally more urgent than
which others. However this is suboptimal, as illustrated by the following
example:

• Task 1 runs for 50 ms every 100 ms, deadline 100 ms

• Task 2 runs for 60 ms every 140 ms, deadline 140 ms.

This cannot be scheduled by any static priority scheme. To see this,
consider what happens when both tasks are triggered at the same time.
If task 1 has higher priority, the response time for task 2 is 160 ms, since
task 1 runs twice before task 2 completes. If task 2 has higher priority,
the response time for task 1 is 110 ms. This task set is illustrated in
Figure 17.3.

This task set can be scheduled by a dynamic priority scheme. In fact
the Liu and Layland paper also proves that earliest deadline first (EDF)
scheduling is optimal. In this algorithm, whenever a scheduling decision
is required the task with the deadline closest to expiry is selected. Note

0ms 50ms 100ms 150ms 200ms

Task 1 Task 1

time

250ms 300ms

Task 1

Task 2

Task 1 Task 2

Task 1

Task 2

Task 1 Task 2 Task 1

Task 1 High Priority

Task 2 High Priority

Earliest Deadline First

Both tasks triggered at t=0
Task 2
response time = 160ms,
deadline missed

Task 1
response time = 110ms,
deadline missed

Task 2
response time = 110ms,
OK

Task 1
response time = 60ms,
OK

Task 2
response time = 80ms,
OK

Figure 17.3 Suboptimality of static priority scheduling

REAL TIME OPERATING SYSTEMS 773

that for a given set of tasks eligible for execution this policy will not
always choose the same task to run – the decision made depends on how
close each task’s deadline is, which depends on the past history of the
system – how the system got to the present state. The EDF algorithm is
optimal in the sense that, provided the total CPU utilization of the tasks
does not exceed 100%, then the task set can be scheduled by EDF.

There are two main problems with EDF scheduling. The first is that it is
relatively complex to implement, and so introduces higher OS overheads
than simple priority scheduling. The other problem is that it is unstable
under overload. It is unpredictable which task will miss its deadline if
the system is overloaded. This makes pure EDF scheduling unsuitable for
systems containing both real time and non-real time tasks.

17.2.2 Predictability

The results on scheduling algorithms that I referred to previously make
certain assumptions about how the system operates. Chief among these
are the assumptions that task switching takes zero time and that a higher
priority task is never prevented from running by a lower priority task. If
the latter situation does occur, it is termed priority inversion. There is also
the implicit assumption that the execution time of each task is known, or
at least that it is bounded.

17.2.2.1 OS services

The time taken for task switching can be accounted for by assuming that
a task switch takes place at the beginning and end of each task, so adding
twice4 the context switch time to each task’s execution time gives an
estimate (actually pessimistic) for the effect of context switching time.

To obtain predictable task execution times, the execution time of any
operating system services used by that task must be predictable. The time
taken by the operating system to switch tasks must also be predictable.
Thus we arrive at our first requirement for an RTOS – task switching and
OS services must have predictable, or at least well bounded, execution
times. Obviously to maximize the proportion of processor time spent
doing useful work these overheads should be as small as possible.
However in a choice between an algorithm with a constant execution
time and one with an execution time which is usually small but may

4 To see why two context switch times are added, consider tasks A and B. Suppose A is
part way through running when B becomes ready and preempts A. There is a context switch
from A to B and then another from B to A when B completes. So the total delay to task A is
the execution time of task B plus twice the context switch time – in other words, as if task
B had twice the context switch time added to its execution time. On the other hand, when
the end of one task and the beginning of another coincide then there is only one context
switch to be added. This is why the estimate obtained is pessimistic.

774 REAL TIME

occasionally be very large, the former should be chosen even though it
may be slower on average.

17.2.2.2 Interrupts

Consider now the effect of hardware interrupts on the system. These
may be considered as tasks with a very high priority – higher than any
software-defined tasks. The tasks with the very shortest deadlines will
be implemented as interrupt service routines. However, not all interrupts
are equally urgent. An interrupt from a keyboard controller can probably
wait 100 ms or so without any problem, whereas a receive interrupt
from a 16550 UART must be serviced within 700 µs or data may be
lost. In particular, some interrupts may have longer deadlines than some
software defined tasks. According to the deadline monotonic scheduling
rule, these interrupts should have lower priority than the tasks. However,
the hardware will automatically preempt any task whenever an interrupt
is signaled. There are three possible ways around this problem:

• Use a periodic task to poll for the long deadline interrupt at an
appropriate priority. This has the disadvantage that the task uses
processor time and consumes energy even when the interrupt is
inactive

• Modify the interrupt masks of all peripherals in the system on every
task switch so that certain tasks can mask certain interrupts. This
approach is probably the best in principle but is complicated to
implement unless the hardware is specifically designed to support
it. Some processors support prioritized interrupts – typically 7 or 15
levels. It would be simple to allow the processor interrupt mask level
to be modified by the scheduler on a task switch and then to assign
the interrupts with long deadlines a low hardware priority. However
other hardware does not have such a prioritization scheme and so
would require many peripheral registers to be modified on each task
switch, which would severely impact the efficiency of task switching

• Make the service routine for the long deadline interrupt as short as
possible to minimize its impact on the rest of the system. In fact all it
needs to do is to clear the peripheral’s interrupt condition and then
trigger a software task to do the real processing at an appropriate
priority.

EKA2 employs the third option to solve this problem.

17.2.3 Mutual exclusion
In any preemptive system, there must be a means for a task to gain
exclusive access to system resources for a time. Without such a mecha-
nism, two or more tasks accessing the same resource will interact in an

REAL TIME OPERATING SYSTEMS 775

unpredictable manner. For example, consider two tasks both increment-
ing the same variable. On the ARM processor this involves executing the
following sequence of instructions:

LDR R1, [R0] ; load register R1 with variable
ADD R1, R1, #1 ; add 1 to register R1
STR R1, [R0] ; update variable with new value.

If two tasks both execute this sequence and the first task executes the
first instruction of the sequence before the second task gains control, the
sequence of instructions executed is:

(task 1) load variable into R1

(task 2) load variable into R1

(task 2) add 1 to R1

(task 2) store R1 into variable

(task 1) add 1 to R1

(task 1) store R1 into variable.

It can be seen that the effect of this sequence is to increment the variable
only once instead of twice.

The measures commonly employed to prevent such contention take
various forms, listed next. They all amount to ways to specify a group
of code fragments and to ensure that at any time at most one thread of
execution is present in the group. This property is called mutual exclusion.
Ways of achieving mutual exclusion include:

• Use a single atomic instruction. This is the most efficient where
possible but is limited in that only certain operations are possible. On
ARM architecture 4 and 5 processors, the only atomic instruction is
to swap the contents of memory with a register

• Disabling hardware interrupts. On a single processor system this
ensures that no other task can gain control of the processor. On a
multiple processor system spin locks must be used in conjunction
with disabling local interrupts to prevent a task running on another
processor from entering an excluded code section. Virtually every OS
disables interrupts in some places since, other than atomic instruc-
tions, it is the only way of protecting resources accessed by both
interrupts and software tasks. In particular, managing the interaction
of interrupts with software tasks generally requires disabling interrupts

• Disabling preemption. Similar to disabling interrupts, but only pro-
tects against other software tasks, not against hardware interrupts.

776 REAL TIME

Both disabling interrupts and disabling preemption are fairly drastic
measures since they delay all other tasks, not just those that might
contend for a particular resource

• Use an OS-provided synchronization object, such as a semaphore or
mutex. These have no effect on scheduling of tasks unless the tasks
contend for the protected resource.

Any method of mutual exclusion is a source of priority inversion since a
high priority task may be held up waiting for a resource, which is currently
locked by a lower priority task. The schedulability analysis referred to in
Section 17.2.1 can be extended to account for mutual exclusion provided
that the time for which priority inversion occurs is bounded. Thus we
must ensure that:

• The time for which interrupts are disabled is bounded. In fact, to
produce an OS of the greatest utility, this time must be minimized,
since the maximum time for which interrupts are disabled gives a
lower bound on the guaranteed response time for an external event

• The time for which preemption is disabled is minimized. This time,
along with the time taken by all ISRs in the system, determines the
fastest possible response time by a software task

• Mutual exclusion locks are held for a bounded time

• The OS provides a mutual exclusion primitive that minimizes priority
inversion.

The last point here requires some explanation. Consider a standard
counting semaphore used to protect a resource and consider two tasks
τ1 and τ2 which both require access to the resource. Suppose τ1 has a
higher priority than τ2 and that τ2 holds the semaphore. Task τ1 is then
triggered, attempts to acquire the semaphore, and is blocked, leaving τ2

running. So far all is well, but now consider what happens if a third task τ3

with priority intermediate between that of τ1 and τ2 begins running. Now
τ2 cannot run and so it cannot exit the locked section and release the
semaphore at least until τ3 finishes, and τ1 cannot resume until τ2 releases
the semaphore. So effectively the higher priority task τ1 cannot run until
the lower priority task τ3 finishes, even though there is no contention for
resources between them. You can see that τ1 could be delayed for a very
long time through this mechanism. On a system with non-real time tasks
as well as real time tasks, it could be delayed indefinitely. This scenario is
the classic unbounded priority inversion scenario that caused problems
with the 1997 Mars Pathfinder mission.

There are two main ways to avoid this problem. Both involve the
operating system providing a special object, superficially similar to a

REAL TIME OPERATING SYSTEMS 777

semaphore, but designed specifically for mutual exclusion applications.
Such an object is usually called a mutex.

The Mars Pathfinder lander touched down on Mars on the 4th of
July 1997, and initially performed well. But a few days after landing, it
started experiencing total system resets, each of which lost some of the
gathered data. Pathfinder contained a shared memory area used to pass
information between different components of the system. A high priority
bus management task ran frequently to move data in and out of the shared
area. Access to the shared area was protected by mutexes, and these did
not employ priority inheritance.

A low priority task ran infrequently to gather meteorological data, and
used the shared area to publish that data. This task would acquire a
mutex, write to the shared area and then release the mutex. If it were
preempted by the bus management task, the latter could be blocked
waiting for the meteorological data task to complete.

There was also a communications task, which ran with priority between
those of the tasks already mentioned. This was a relatively long running
task. Occasionally it would preempt the meteorological data task just
at the time when it held the mutex and the bus management task was
blocked on the mutex. In that case the bus management task could not run
until the communications task completed. When the bus management
task was delayed too long a watchdog timer triggered a system reset.

The problem was fixed by changing the mutex so that it employed
priority inheritance, which I will describe next.

17.2.3.1 Priority inheritance

Under the priority inheritance scheme, whenever a task τ2 holds a mutex
M and another task τ1 of higher priority is blocked on M then the priority
of τ2 is raised to that of τ1. When the task eventually releases M, its
priority is returned to normal.

If the counting semaphore in the classic unbounded priority inversion
scenario is replaced by a priority inheritance mutex, you can see that the
problem no longer occurs. Instead, when task τ1 attempts to acquire the
mutex, it is blocked and τ2 resumes, but now running with the priority
of τ1. Now when task τ3 is triggered, it does not preempt τ2, and τ2

continues running until it reaches the end of the protected code fragment
and releases the mutex. It then returns to its normal priority and task τ1

immediately resumes and claims the mutex. So, in this case, the delay to
any task wanting to claim the mutex is limited to the maximum time for
which the mutex is held by any lower priority task.

17.2.3.2 Priority ceiling protocol

Under the priority ceiling protocol, each mutex has a ceiling priority,
which is the maximum priority of any task that can acquire the mutex.

778 REAL TIME

The algorithm is very simple. A task acquires a mutex by saving its current
priority and then raising its priority to the mutex ceiling priority. It releases
the mutex by restoring its priority to the value saved while acquiring the
mutex. Note that we don’t need to test whether the mutex is held when
acquiring it – it can’t be held since, if it were, the holding task would
have raised its priority to at least as high as the current task and so the
current task would not be running.

This scheme is very simple and efficient and also provides the most
predictable blocking times. A high priority task can be delayed by at
most one low priority task holding a mutex, and that delay comes all in
one block before the task actually starts running. The maximum blocking
time for a task τi is just the maximum time that any mutex with a ceiling
priority higher than that of τi is held by any task with priority lower than
that of τi . Once task τi starts running it never waits for a mutex.

The priority ceiling protocol is very good for deeply embedded, closed,
hard real time systems. To use it, the following conditions must be
satisfied:

• Static priority based scheduling must be used, with no time slicing for
tasks at the same priority

• The set of tasks which may use a particular mutex must be known at
system build time

• Tasks must not block waiting for an event while holding a mutex. This
would invalidate the rule that a task never needs to wait for a mutex.

You can see that none of these conditions can be guaranteed to hold for
an operating system capable of loading and executing arbitrary code at
run time.

17.3 EKA2 and real time
Now that I have explored some of the problems faced by real time
operating systems and looked at some of the solutions they employ, I will
look at how we have attempted to solve these problems in EKA2. EKA2
was designed with several requirements that are relevant to our problem:

• It must be an open operating system; that is it must be capable of
loading and executing arbitrary code at run time. This is really a
corollary of the next point but is so significant that it warrants an
explicit statement

• It was to be a replacement for EKA1. Hence it should have the same
functionality and should be compatible with existing application level
code written for EKA1

• It was to have sufficient real time capabilities to run the frame-level
and multiframe-level activities of a GSM signaling stack. This includes

EKA2 AND REAL TIME 779

layers 2 and 3, and part of layer 1, depending on how the hardware
is arranged.

The first point eliminates many of the schemes discussed in Section 17.2:
it eliminates cyclic scheduling and pure EDF scheduling, for reasons that
I’ve mentioned previously. So, the scheduling algorithm that we selected
was static priority based scheduling, with time slicing between threads
at the same priority. We chose this because it is the simplest algorithm,
which gives acceptable performance for both real time and non-real time
applications, and because the APIs inherited from EKA1 assumed it! We
set the number of priority levels at 64, because EKA1 allowed up to 26
different priorities to be explicitly set by applications, and signaling stacks
require as many as 30 priorities.

17.3.1 The nanokernel
Once the scheduling algorithm is decided, the other requirements for
a real time OS are minimizing priority inversion times and ensuring
predictability of execution times for OS services. Minimizing priority
inversion times entails minimizing the time for which interrupts and pre-
emption are disabled. This is the role of the nanokernel. The nanokernel
provides the most basic services of an operating system: threads, schedul-
ing, mutual exclusion and synchronization of threads, and managing the
interaction of interrupts with threads. The nanokernel is small (around
7% of the total code volume of the kernel) but it encapsulates most of
the places where interrupts or preemption are disabled. This allows us to
maintain tight control over these sections.

I have discussed the nanokernel in more detail in previous chapters
of this book, so I will not repeat myself here. Instead I will just describe
some of the design decisions that we made for the sake of real time
performance.

17.3.1.1 The ready list

To ensure that we have predictable execution times for OS services,
we need to be able to perform operations on the thread ready list in
predictable times. The operations we need are:

• Adding a thread to the ready list

• Removing a thread from the ready list

• Finding the highest priority ready thread.

We achieve this by using 64 separate linked lists, one for each priority
level. We also have a 64-bit mask, in which bit n is set if and only if the
list for priority n is non-empty. This scheme eliminates the need to scan

780 REAL TIME

the list for the correct insertion point when adding a thread. To find the
highest priority ready thread, we do a binary search on the bit mask and
the result is used to index the array of 64 lists.

This same structure, referred to as a priority list in the EKA2 documen-
tation, is used in other parts of the kernel whenever a priority ordered list
is required.

See Section 3.6 for more on this subject.

17.3.1.2 Nanokernel timers

We encountered a similar problem with timers; we wanted to allow timers
to be started from interrupt service routines for efficiency reasons. We
couldn’t use a simple delta list, because adding a timer to such a list would
involve a linear time search through the list to find the insertion point.
Instead we chose to use a two-level system. If the timer is due to expire
in the next 32 ticks, we place it directly on one of the 32 final queues;
the system tick interrupt then inspects one of these on each tick (in a
round-robin fashion) and completes any timers on it. But if the timer is due
to expire after 32 ticks, then we first add it to a pending queue. A thread
then sorts the timers on the pending queue into an ordered queue. When
a timer at the head of the ordered queue gets within 32 ticks of its expiry
time, the same thread will transfer it to the relevant final queue. In this
way, the starting and stopping of timers become constant time operations.

17.3.1.3 Fast mutexes

One of the main purposes of the nanokernel is to localize all the non-
preemptible sections of code in the system. For this to be practical, the
nanokernel has to provide a very fast mutual exclusion primitive that
still allows preemption of the critical section by unrelated threads. To be
useful for real time applications, this mechanism also needs to provide a
means of limiting priority inversion times. Because EKA2 must support an
open system, the priority ceiling protocol cannot be used, and so some
form of priority inheritance is needed.

We designed fast mutexes to provide the solution to this problem. A
fast mutex consists of two fields – a pointer to the nanokernel thread,
which currently holds the mutex (or null if the mutex is free), and a flag
(the waiting flag), which indicates that some action has been deferred
because the mutex was locked. To lock a fast mutex, a thread first inspects
the holding thread pointer. If this is null, the thread simply claims the
mutex by writing its own address into the holding thread pointer and
then proceeds. This makes fast mutexes very fast in the case where there
is no contention. If the mutex is held by another thread, the nanokernel
sets the waiting flag and then performs an immediate context switch
directly to the holding thread (which must be of lower priority than the
blocked thread). The blocked thread remains on the ready list – this is

EKA2 AND REAL TIME 781

not the case when blocking on other wait objects. So, this is how we
get priority inheritance – because the blocked thread is still on the ready
list, a reschedule will only be triggered if a thread with a higher priority
than the blocked thread is made ready. Otherwise the holding thread will
continue running until it releases the mutex. At that point it checks the
waiting flag and, if it is set, triggers a reschedule. This will then switch to
the blocked thread.

There are two restrictions on the use of fast mutexes that we impose to
guarantee predictable real time behavior:

1. Fast mutexes cannot be nested

2. A thread may not block on another wait object while holding a fast
mutex.

We impose these restrictions so that the scheduler can always find the
next thread to run in a bounded time, even when the preferred thread
(that is, the highest priority ready thread) is currently blocked on a fast
mutex. We have placed assertions in the debug build of the kernel to flag
violations of these rules to those porting Symbian OS and writing device
drivers.

17.3.1.4 Context switching

Under the moving memory model (used on ARM architecture 4 and
5 processors), a context switch between threads belonging to different
user-side processes can be a time consuming procedure. It may involve,
in the worst case:

• Moving all the chunks attached to the current data section process to
the home section

• Protecting all chunks attached to the last user process to run

• Moving all chunks attached to the new process from the home section
to the data section

• Flushing the processor data cache.

On processors with large data caches and slow memory interfaces, this
could take more than 500 µs – this is a measured value from one such
system. If all this work were done directly by the scheduler, with preemp-
tion disabled, this would add 500 µs or more to the worst case thread
latency. We didn’t consider this to be acceptable performance – not all
context switches require the full list of actions listed. Switches to kernel
threads and threads in certain user processes can occur much faster
and so should have lower guaranteed latency. To achieve this goal, we
perform the modification of page directory entries and the flushing of the

782 REAL TIME

data cache with preemption enabled. Essentially, the kernel restores the
registers for the new thread, so that the system is using the new thread’s
supervisor stack, then re-enables preemption before restoring the correct
MMU configuration. The new thread then establishes its own MMU con-
figuration. Clearly we need some protection to prevent multiple threads
modifying the page tables simultaneously, and so we ensure that code
holds the system lock fast mutex while performing these operations.

17.3.2 The Symbian OS kernel

17.3.2.1 Bounded and unbounded services

The services provided by the Symbian OS kernel are partitioned into
two classes – bounded and unbounded. The bounded services obviously
have bounded execution times, and are therefore suitable for real time
applications. The unbounded services have no guaranteed upper limit on
their execution times. The list of unbounded services includes:

• Object creation and destruction, including thread and process cre-
ation, IPC session creation and destruction

• Opening handles on existing objects

• Finding objects by name or by ID

• Symbian OS timer services (RTimer::After() and RTim-
er::At()).

In most cases, the unbounded services involve the allocation or freeing
of memory on the kernel heap or in the global free page pool. This is
because the algorithms used to manage the free page pool and the kernel
heap do not have bounded execution times.

The bounded services include:

• Mutexes (DMutex and RMutex classes)

• Semaphores (DSemaphore and RSemaphore classes)

• Asynchronous request processing

• Device driver access

• Message queues (RMsgQueue and DMsgQueue classes)

• Client/server IPC message send and receive

• Thread control (suspend, resume, change priority, kill)

• Finding objects from a user handle.

EKA2 AND REAL TIME 783

We achieve mutual exclusion in bounded services by using fast mutexes,
usually the system lock. To ensure maximum predictability for these
services, the time for which the system lock is held continuously must
be bounded and the bound minimized. We employ various measures to
minimize this time, generally involving breaking down operations into
sections between which the system lock is released.

For example, under the moving memory model, which I discussed in
Section 17.3.1.4, the MMU related part of context switching could take a
long time. Rather than holding the system lock for the whole duration, we
make periodic checks to see if there is any contention for the system lock.
We make this check every 512 bytes or every 1 KB (depending on type of
cache) during the cache flush, and after moving or changing permissions
of each chunk. If a higher priority thread is waiting on the system lock,
we abort the context switch, release the system lock and allow the higher
priority thread to run.

Similarly, during an inter-process data copy, we must hold the system
lock to prevent the remote process’ chunks from being moved while
they are being accessed. Again, we make a check for contention after
every 512 bytes are copied. If no contention is detected, the copy can
continue immediately, but if contention is detected, we must release the
system lock and reacquire it. In this case, we have to recheck the remote
address, because the chunk involved may have been moved (or even
deleted) while the system lock was released. This algorithm is illustrated
in flowchart form in Figure 17.4.

17.3.2.2 Symbian OS mutexes

We designed Symbian OS mutexes for cases where mutual exclusion is
needed but the restrictions on the use of fast mutexes cannot be observed.
This situation arises in two main ways – either from a requirement for
nested mutexes, or from a requirement for mutual exclusion in user-side
code. We don’t allow user-side code to hold fast mutexes since it cannot
be trusted to conform to the restrictions on their use.

Symbian OS mutexes differ from fast mutexes in the following ways:

• They can only be used by Symbian OS threads (DThread) rather
than by raw nanokernel threads. This has significance for personality
layers, which I will describe later in this chapter

• They can be nested. A thread may hold a single mutex several times,
provided that thread releases it the same number of times. A thread
may hold a mutex while already holding a different mutex

• Threads can block while holding a Symbian OS mutex.

784 REAL TIME

Start

Acquire system lock

Look up remote address and find
current location

length > 512?

copy length = length copy length = 512

Copy between local and remote
addresses

local_address += copy_length
remote_address += copy_length

length -= copy_length

length = 0?

system lock contention?

Release system lock Release system lock

Finish

no

yes

yes

no

no

yes

Figure 17.4 Moving model IPC copy

EKA2 AND REAL TIME 785

In Chapter 3, Processes and Threads, I covered the operation of Symbian
OS mutexes in some detail. Here I will just speak from a real time
perspective and say that we designed these mutexes to ensure that:

1. So far as is possible, the highest priority thread that requests a mutex
holds it

2. The length of time for which point 1 is not true is minimized.

We use priority inheritance to meet this goal. In this case, priority
inheritance does not come for free but has to be explicitly managed by
the kernel. We use priority lists (which I described in Section 17.3.1.1)
to hold the list of threads waiting to acquire a mutex and the list of
mutexes held by any thread. We prioritize the latter according to the
highest priority thread waiting on them, and use this to work out the
required scheduling priority of the holding thread to comply with the
rules of priority inheritance.

17.3.3 Latencies and performance
In this section I will define some key performance measurements that we
use to verify the real time capabilities of EKA2. I will go on to give actual
measured values for certain hardware platforms.

Figure 17.5 illustrates these measurements. The scenario depicted in
this figure is as follows: at time t0, a hardware interrupt occurs. It happens
that interrupts are disabled at time t0 and so thread X0 continues executing
for a while. When X0 re-enables interrupts, the processor’s response to the
interrupt begins. The interrupt preamble and dispatcher run and, at time
t1, the first instruction of the service routine for the particular interrupt is
executed. The elapsed time between t0 and t1 is known as the interrupt
latency, denoted lisr in the diagram.

X0 X0ISR S X1 S X2 Y X2

t0 t8

t4

t1

t2 t3 t5 t6 t7

lk

lu

lisr

time

Figure 17.5 Latencies

786 REAL TIME

The interrupt service routine finishes at time t2, having woken up a
high priority kernel thread X1 (by way of an IDFC or DFC, not shown).
However, the interrupted thread X0 has disabled preemption, so at time
t2 thread X0 resumes execution until it re-enables preemption at time t3.
The scheduler S runs at this point, and thread X1 starts running at time t4.
The elapsed time between t0 and t4 is known as the kernel thread latency,
denoted lk in the diagram.

Thread X1 finishes execution at time t5, having woken up a high
priority user-side thread X2. The scheduler S runs again and schedules
X2. X2 immediately tries to acquire the system lock fast mutex and is
blocked by thread Y. Thread Y runs long enough to release the system
lock and then thread X2 runs again, with the system lock held, at time t8.
The elapsed time between t0 and t8 is known as the user thread latency,
denoted lu in the diagram.

Worst-case interrupt latency is equal to the maximum time interrupts
are disabled plus the execution time of the preamble and dispatcher.
Interrupts can be disabled either by the kernel or by the base port and
device drivers. When measuring the performance of the kernel only the
former is of interest.

Worst-case kernel thread latency includes the maximum time for which
preemption is disabled and the time taken to switch from an arbitrary
thread to a kernel thread.

Worst-case user thread latency includes, in addition, the maximum
time for which the system lock is held. The reason for including this is
that most user threads will require the system lock to be held at some
point before they can run and do useful work. This is a consequence of
the following observations:

• On the moving memory model, the system lock must be held before
context switching to the user thread

• If a Symbian OS asynchronous request (TRequestStatus) must
be completed to make the thread run, that involves acquiring the
system lock

• Most executive calls need to acquire the system lock; for example
communication with a device driver will require this.

We measure the parameters lisr, lk and lu in the following way. We set
up a hardware timer to produce a periodic interrupt. (This can simply be
the timer used to produce the nanokernel tick, but it could be a separate
timer.) It must be possible to read the timer count and deduce the elapsed
time since the last tick. If possible, the measurement timer is set up as a
high priority interrupt (FIQ on ARM), so that other peripheral interrupts do
not influence the measurement. We also create two threads – one kernel
thread running a DFC queue and one user thread. The priorities of these

EKA2 AND REAL TIME 787

two threads are set at 63 and 62 respectively so that they preempt all the
other threads in the system. Under the moving memory model, we usually
ensure that the user thread belongs to a fixed process. Each periodic tick
interrupt triggers a DFC on the kernel thread, and that thread then wakes
up the user thread by signaling its request semaphore. We record the
elapsed time from the last tick at the beginning of the ISR, the DFC, and
just after the user thread wakes up. We also record maximum values for
each of these times. We run stress test programs in the background to
ensure that sections of kernel code that disable interrupts and preemption
and that hold the system lock are exercised.

Measured performance parameters for some specific hardware plat-
forms are given in the following table:

Parameter Assabet Series 5mx

Worst case interrupt latency 9 µs 25 µs

Typical interrupt latency 3 µs

Worst case kernel thread latency 34 µs 120 µs

Typical kernel thread latency 13 µs

Worst case user thread latency 63 µs 250 µs

Typical user thread latency 26 µs

Thread switch time 2 µs 12 µs

The Assabet platform uses a 206 MHz SA1110 processor with code
and data both stored in 32-bit wide SDRAM clocked at 103 MHz.

The Series 5mx platform uses a 36.864 MHz ARM710T processor with
code and data both stored in 32-bit wide EDO DRAM.

In general, worst-case latencies are dominated by memory access
speed rather than by processor clock frequency. This is because on
typical hardware used for Symbian OS, a memory access requires several
processor clock cycles – for example the random access time of SDRAM
(60 ns) equates to 12 processor clock cycles on Assabet. A large difference
between typical and worst case execution times can also be expected on
this hardware. The best case execution time occurs when all code and
data involved are present in the processor caches, so no slow external
memory accesses are needed. Obviously, the worst-case execution time
occurs when none of the code or data is present in the caches, so a large
number of slow memory accesses are required – we ensure this is the
case in our tests by running the stress test programs previously mentioned.

788 REAL TIME

17.4 Real time application – GSM

This section gives a brief explanation of the GSM cellular system and an
outline of how it might be implemented, with particular emphasis on the
real time aspects.

17.4.1 Introduction to GSM
Data is transmitted over the radio channel at a bit rate of 270.833 kHz
(=13 MHz/48, period 3.69 µs). The spectrum used for GSM is divided
into channels spaced 200 kHz apart. These channels are time-division
multiplexed into eight timeslots, numbered 0 to 7. Each timeslot lasts
for 156.25 bit periods (577 µs) and eight consecutive timeslots (one of
each number) make up one frame (4.615 ms). In the original GSM system
(prior to GPRS and high speed circuit switched data services) each mobile
receives only one timeslot per frame. If the mobile is transmitting, the
transmission occurs three timeslots after the receive. Of the 156.25 bit
periods in a burst, 148 actual data bits are transmitted (except for random-
access bursts, which transmit only 88 bits). The other 8.25 bit times are
used to allow the mobile to ramp its power up and down in such a way
to avoid excessive spurious emissions.

The 4.615 ms TDMA frames are numbered modulo 2715648
(= 26 ∗ 51 ∗ 2048). The frame number is used to divide a single physical
radio channel into a number of logical channels, which use frames on
a periodic basis. The frame number is also used as a parameter by the
frequency hopping and encryption algorithms. The logical channels are:

Channel name Description

Frequency correction
channel (FCCH)

Base-station to mobile only. Consists of a pure sine
wave burst with a frequency 67.7 kHz above the carrier
frequency, equivalent to all data bits = 1. Used to allow
the mobile to find the synchronization channel and to
correct its internal frequency reference sufficiently to be
able to receive it.
Transmitted in timeslot 0 of frames numbered 0, 10, 20,
30, 40 modulo 51.

Synchronization channel
(SCH)

Base-station to mobile only. Used to enable the mobile
to establish precise time and frequency
synchronization, including the frame number. The
current frame number between 0 and 2715647 is
transmitted in the SCH burst.
Transmitted in timeslot 0 of frames numbered 1, 11, 21,
31, 41 modulo 51.

REAL TIME APPLICATION – GSM 789

Channel name Description

Broadcast control
channel (BCCH)

Base-station to mobile only. Carries information about
the cell configuration (number of frequencies, number
of paging slots, etc.) of a particular base station.
Transmitted in timeslot 0 of four consecutive frames
starting with a frame numbered 2, 12, 22, 32, 42
modulo 51.

Paging channel (PCH) Base-station to mobile only. Used to send paging
messages to mobiles; a paging message is a request for
the mobile to access the network (for example, for an
incoming call).

Access grant channel
(AGCH)

Base-station to mobile only. Used to assign the mobile
a dedicated channel in response to a mobile accessing
the base station. Once a dedicated channel has been
set up, a dialogue can occur between the mobile and
base station.

Cell broadcast channel
(CBCH)

Base-station to mobile only. Used to transmit
miscellaneous information, usually of a
network-specific nature, such as dialing codes to which
cheaper call rates apply.

Random access channel
(RACH)

Mobile to base station only. Used by the mobile to
request access to the network, for example, to originate
a call or in response to a paging message.

Stand-alone dedicated
control channel
(SDCCH)

Both directions. This is a low-rate (just under 800 bps)
channel that is used for the initial phase of call setup
(authentication, ciphering, call setup message, etc.),
SMS transmission and for network accesses that are not
user-initiated (for example, location updating).

Traffic channel (TCH) Both directions. This is a high-rate (13 kbps) channel
that is used for the duration of a call to transfer encoded
speech or user data.

Slow associated control
channel (SACCH)

Both directions. This is a low-rate (∼400 bps) channel
that is used mainly for the transmission of surrounding
cell information while the mobile is using a TCH or
SDCCH. It is also used to allow the mobile to send or
receive SMS while a call is in progress. In the latter
case, every other SACCH message is SMS-related and

790 REAL TIME

Channel name Description

every other one surrounding cell-related. This channel
is always associated with a TCH or SDCCH, and its
bursts are time-division multiplexed with those of the
TCH or SDCCH (different frame numbers).

Fast associated control
channel (FACCH)

Both directions. This is a high-rate (9200 bps) channel
used to send signaling messages while a call is in
progress. This is mainly used to send handover
messages. This channel is always associated with a
TCH and its bursts replace some of the TCH bursts.

There are four different types of burst used:

Burst type Used on Description

Frequency FCCH This consists of a pure sine wave with a frequency
67.7 kHz (one quarter the bit rate) above the carrier
frequency. This is equivalent to a burst where all data
bits are 1.

Sync SCH This consists of 148 transmitted bits, and can be
decoded on its own. The first and last 3 bits are 0
(called tail bits). The middle 64 bits are the midamble,
which I describe next. The remaining 78 bits are
encoded data bits, derived from 25 bits of user data.

Random
Access

RACH This consists of 88 transmitted bits and can be decoded
on its own. The first 52 bits are the preamble, which
serves the same function as the midamble for the other
bursts. The remaining 36 bits are encoded data bits,
derived from 8 bits of user data.

Normal All others This consists of 148 transmitted bits. The first and last
three bits are tail bits (0). The middle 26 bits are the
midamble. The two bits on either side of the midamble
are called stealing flags – they differentiate between
signaling and traffic channels. The remaining 114 bits
are encoded data bits.

The midamble (preamble for RACH) is used to enable the receiver to
get the precise timing of the burst, and to compensate for the effects of

REAL TIME APPLICATION – GSM 791

multipath distortion. By correlating the received midamble bits with the
known value of the midamble, the receiver can get the timing of the burst
and also estimate the multipath distortion on the radio channel. It can
then compensate for the multipath distortion and make an estimate of
the received data bits. This process is performed by the equalizer in the
receive chain.

The stealing flags are always set to 1 except on traffic channels, where
they are used to differentiate between TCH and FACCH bursts (0 = TCH,
1 = FACCH).

In general (apart from FCCH, SCH and RACH), more than one burst
is required to make a meaningful data block. The data to be transmitted
is first passed through a forward error correction encoder (either one or
two stages) then the bits are interleaved (reordered) and divided between
a number of bursts (4, 8 or 19). The encoding used is:

Channel Encoding

SCH Start with 25 bits of user data. Append 10-bit CRC check code. Pass
through half-rate convolutional encoder. This gives (25 + 10 + 4) ∗ 2 =
78 bits. The extra 4 bits are needed to flush out the convolutional
encoder.

RACH Start with 8 bits of user data. Append 6-bit CRC check code. Pass through
half-rate convolutional encoder. This gives (8 + 6 + 4) ∗ 2 = 36 bits.

BCCH,
PCH,
AGCH,
CBCH,
SDCCH

Start with 23 bytes = 184 bits of user data. Pass through a FIRE block
encoder that appends 40 parity check bits. Then pass through a half-rate
convolutional encoder. This gives a total of (184 + 40 + 4) ∗ 2 = 456
bits. These bits are divided between the transmitted bursts in four
consecutive frames.

TCH
speech

Start with 260 bits of compressed speech data. Split these into 50 class
Ia, 132 class Ib and 78 class II bits. Calculate and append a 3-bit CRC
check code to the class Ia bits. Pass the class Ia and class Ib bits through
a half-rate convolutional encoder. Append the class II bits, unencoded.
This gives a total of (50 + 3 + 132 + 4) ∗ 2+78 = 456 bits. Divide these
into eight sets of 57 bits and spread them over eight half-bursts, in
combination with the previous and successive speech blocks.

TCH
data

For 9600 bits per second data, start with 240 bits of user data. Pass
through a half-rate convolutional encoder to give (240 + 4) ∗ 2 = 488
bits. Puncture the code by omitting 32 specified bits to give 456 bits of
encoded data. Divide these into 19 sets of 24 bits and spread them over
19 consecutive traffic bursts, in combination with other data blocks.

792 REAL TIME

Channel Encoding

FACCH Channel encoding as for BCCH, but divide resulting 456 bits into eight
sets of 57 and spread over eight half-bursts as for full-rate speech TCH.

SACCH Channel encoding as for BCCH, but the four bursts are transmitted with
a 26-frame gap between them instead of in consecutive frames, thus
giving a throughput of 23 bytes per 104 frames.

On the receive side, the process is reversed, with bits from various
equalized bursts being stored until there are enough bursts to make
a decodable block. The bits are then de-interleaved (reordered into
an order which the error correction decoder can make sense of) and
passed through a Viterbi convolutional decoder. If necessary, the output
of the Viterbi decoder is then passed through a FIRE decoder or a
CRC check.

Encryption is performed on SDCCH, TCH, FACCH and SACCH. A
special algorithm is used (A5.1 or A5.2) which takes the frame number
and the encryption key as parameters and produces two 114-bit blocks of
encryption data, one for receive and one for transmit. The receive block is
exclusive-ORed with the output of the equalizer prior to de-interleaving.
The transmit block is exclusive-ORed with the output of the interleaver
prior to addition of the midamble and stealing flags. The key used for
encryption is generated by the SIM as part of the authentication process.
Whenever a mobile tries to connect to the network, the base station will
perform a challenge/response authentication procedure. The base station
sends a random number to the mobile and this is passed to the SIM where
it is used as input to the A3 algorithm in conjunction with a secret key
(Ki) which never leaves the SIM, but which is also known to the network.
The A3 algorithm produces two outputs – SRES and Kc. The SRES is sent
back to the base station in response to the authentication request, and the
Kc is used as the encryption key for subsequent traffic.

17.4.2 Idle mode

When a mobile phone is not actively being used it spends most of its time
in idle mode. In this mode the phone performs receive operations only.
The following operations are performed by a phone in idle mode:

1. Periodically receive the BCCH for the cell on which the mobile phone
is camped. This tells the mobile when it should listen for paging
requests and which frequencies it should monitor for neighbor cells

2. Periodically receive the paging channel as indicated by the BCCH
message. Paging messages are transmitted in four consecutive frames

REAL TIME APPLICATION – GSM 793

and any particular mobile must listen every 102*N frames, where N is
between 2 and 9 inclusive, so approximately every 1 to 4.5 seconds

3. Monitor the signal strength of neighbor cells as indicated in the
BCCH message. If a neighbor cell is received consistently better than
the current cell for a period of time the mobile will move to the
neighbor cell

4. Send location update messages to the network both periodically
(around every 30 minutes) and following a change of cell where the
old and new cells are in different location areas. Base stations are
grouped into location areas and an incoming call to a mobile will
result in paging messages being transmitted by all base stations in
the last reported location area. Of course to send a message to the
network the mobile must briefly leave idle mode.

17.4.3 Traffic mode

When a call is in progress, the mobile phone is in traffic mode. The phone
receives a burst in 25 out of every 26 frames and transmits in around 60%
of frames. The GSM traffic channel operates on a period of 26 frames,
used as follows:

Frame
mod 26

Description

0 to 11 Encoded speech bursts or FACCH bursts

12 SACCH burst or idle slot

13 to 24 Encoded speech bursts or FACCH bursts

25 Idle slot or SACCH burst

A single 20 ms speech frame is spread between eight consecutive
frames, overlapped with the preceding and following speech frame. Four
SACCH bursts are required to make up a meaningful data block, so
one block is received and transmitted every 104 frames. This is too
slow for seamless handover between cells so when necessary some bursts
normally used for speech are ‘‘stolen’’ for signaling messages. The SACCH
bursts are staggered between timeslots – the first of a group of four occurs
when frame number modulo 104 equals 13*TN, where TN is the timeslot
number between 0 and 7. This was done so that base stations (which
must obviously process all timeslots) only need to perform one SACCH
encode and decode every 13 frames rather than eight all at once.

794 REAL TIME

While a call is in progress the mobile phone performs the following
operations:

1. Receive traffic bursts, pass them through the GSM speech decoder
and out to the speaker

2. Accept audio from the microphone and pass it through the GSM
speech encoder. If someone is actually speaking, transmit the
encoded speech in traffic bursts. During periods of silence no trans-
mission occurs to save battery power

3. Receive SACCH bursts and decode them. They contain instructions
as to precise transmission timing (to compensate for the propagation
times of the signals between the mobile phone and base station), the
transmit power that the phone should use and the neighboring cells
that the phone should monitor

4. Monitor the indicated neighboring cells. The signal level from each
one should be measured and additionally FCCH and SCH bursts are
received from each one to get the precise frequency and timing in
case a handover is required. All this activity occurs in the ‘‘idle’’ slot.
The 26 frame period of the traffic channel is deliberately chosen to
be coprime to the 51 frame period of the control channels so that
the FCCH and SCH bursts of the neighbor cell will eventually occur
during the idle slot

5. Transmit the measured signal levels on the neighboring cells back to
the base station in the SACCH bursts

6. Receive and act on handover commands transmitted on the FACCH.

17.4.4 GSM hardware
A typical GSM mobile implementation consists of the following functional
blocks:

• RF stages

• Baseband converters

• Timing controller

• Encryption unit

• DSP

• Microcontroller

• SIM interface

• Miscellaneous (LCD, keyboard, earpiece, microphone, battery charg-
ing circuitry).

REAL TIME APPLICATION – GSM 795

The original GSM frequency band has 124 channels, spaced 200 kHz
apart. The mobile receive frequency is 935+0.2n MHz, the mobile trans-
mit frequency is 890+0.2n MHz where n is the channel number between
1 and 124. On the receive side, the signal is amplified and downcon-
verted using a frequency synthesizer for channel selection. A quadrature
mixer is used, producing two baseband signal outputs I and Q (in-phase
and quadrature components – the result of mixing the received signal
with two different carriers 90◦ out-of-phase). On the transmit side, the I
and Q signals from the modulator are mixed up using another quadrature
mixer to produce the final RF frequency for feeding to the PA (power
amplifier). The PA output level is adjustable by a separate DAC output.

The baseband receive ADC samples both the I and Q receive channels.
It may also contain some of the channel filtering (in which case it
oversamples the I and Q signals and filters them digitally). The output
of the baseband receive ADC is one I and one Q sample, of ∼10 bits
each, every GSM bit period (3.69 µs). Each receive burst will produce
around 160 sample pairs (must receive more samples than there are bits
to account for timing errors).

The transmit modulator converts the bits to be transmitted into varying
I and Q voltages according to the specification in the GSM standard
(GMSK modulation). Essentially, a 1 bit causes the phase of the carrier
to advance by 90◦ and a 0 bit causes the phase to be retarded by 90◦;
however some low-pass filtering is applied so that the phase changes
smoothly, with the previous 3 bits making a significant contribution to
the carrier phase at any time. This is done to reduce the bandwidth of
the transmitted signal. The modulation is done digitally and the output
converted to I and Q signals by the baseband transmit DAC.

At least three other baseband converters are required. A DAC is
required to control the output power level while transmitting. A FIFO
store is required to feed this DAC so that the power can be ramped up
and down at the beginning and end of the transmit burst (one output
sample per half bit-period). An ADC and DAC are required for the
microphone and earpiece. These both work at a sampling rate of 8 kHz
and resolution of 13 bits.

A versatile timing controller is required, which can be programmed
to a resolution of one-quarter bit period. This is used to switch various
parts of the hardware on and off at the correct time, and to initiate
receive and transmit operations at the correct time. The timing controller
is synchronized with the received signal from the base station after FCCH
and SCH receive.

The DSP usually performs the following functions:

• Reading received data from the baseband receive ADC

• Frequency burst detection

• Sync and normal burst equalization

796 REAL TIME

• Channel encoding

• Channel decoding

• Speech encoding

• Speech decoding

• Assembly of bursts for transmission

• Buffering of audio samples

• Generation of sidetone and miscellaneous GSM-specified tones.

The DSP may also perform a certain amount of the low-level con-
trol and scheduling functions. The split of these between the DSP and
microcontroller varies between implementations. It is implementation
dependent whether the timing controller is configured by the DSP or the
microcontroller.

The microcontroller performs the following tasks:

• Some of the layer 1 control functions (implementation-dependent split
with DSP)

• Layers 2 and 3 of the GSM protocol stack

• Control of screen and keyboard, battery monitoring, and possibly
charging

• User interface functions

• Control of the SIM interface

• Extra processing for data traffic channels.

The SIM interface connects the SIM (subscriber identity module – smart
card) to the microcontroller. It is essentially a UART, but operates in a
half-duplex mode. The SIM has only one data line and it is used for
both reading and writing to the SIM. There is a specified protocol for this
interface, which is usually implemented in hardware.

17.4.5 A GSM stack on EKA2

As an illustration of a real time application running on EKA2, I will
consider the implementation of a GSM protocol stack. Obviously, only
an outline will be given and not all scenarios will be considered – a
real stack requires many man-years of development! I will assume that
all processing is done on the main ARM processor and there is no
DSP – while, in principle, this could be achieved on high end ARM
devices such as ARM1136, in practice no-one would actually do so,

REAL TIME APPLICATION – GSM 797

because it would be inefficient in terms of power consumption, cost and
the number of cycles available for application processing.

I will assume the following hardware configuration:

• Timing controller has free running counter at four times the GSM bit
rate which wraps to zero at 5000 quarter bits, that is, one GSM frame
period

• There are several match registers that can trigger an event. This event
can be an interrupt to the processor, switching on or off some piece
of hardware such as the frequency synthesizer, the receive chain or
the transmit chain, the start of a receive or the start of a transmission

• Once a receive starts, the processor is interrupted whenever 16 sample
pairs are available and these must be read before the next interrupt
occurs

• Before a transmission starts the data to be transmitted must be loaded
into a TX buffer and the power ramp up and ramp down masks must
be loaded into a power control buffer

• Frequency synthesizer needs 500 µs to lock before beginning RX
or TX

• Equalizing a received burst, channel encoding or decoding and speech
encoding or decoding takes 250 µs maximum

• Scanning for a FCCH burst takes 10 µs maximum per 16 sample pairs.

A processor interrupt is triggered once every frame in the same place so
that a frame count can be maintained.

17.4.5.1 Frequency burst receive

The main activities related to FCCH burst reception are shown in
Figure 17.6.

receivelock

P F F F Q

HW

FI

L1

time

Figure 17.6 Frequency burst search

798 REAL TIME

In Figure 17.6, the HW line shows what the hardware is doing, the FI
line indicates the time of the once-per-frame interrupt and the ‘‘L1 Task’’
line shows which software tasks are in progress.

The tasks involved are:

(i) Programming the hardware with the frequency to receive and the
time at which to start the receive. This is shown as task P. This task
is triggered by the main layer 1 state machine when a frequency
burst search is required

(ii) Reading blocks of 16 sample pairs from HW buffer to main memory
buffer. This task is not shown since it is too frequent. It is triggered
by the baseband receive ADC interrupt

(iii) Processing the received samples to search for a frequency burst.
This is shown as task F, although it occurs more frequently than is
shown. It is triggered by task (ii)

(iv) On either finding a frequency burst or timing out, shut down the
hardware and start the next operation if any. This is shown as task
Q. It may be necessary to search for up to 11.25 frame times – the
worst case occurs when you start the receive just after the beginning
of the FCCH burst and the next burst starts in 11 frames. This task
is triggered by the per-frame interrupt following either the detection
of a frequency burst or a timeout.

Task (ii) has the shortest deadline (16 bit periods or 59 µs), so I will
implement this as an ISR. In fact with a hard deadline as short as this,
it would be best to use the ARM processor’s FIQ interrupt. The other
tasks must run in a thread context. It would be inefficient to schedule a
thread at this frequency – it would use around 10% of the processor time
context switching. It is also unnecessary. Instead, task (iii) will be triggered
every 10 receive interrupts. The deadline for task (iii) depends on how
much buffering is used. If there is enough buffering for 480 sample pairs
(around 2 K) the deadline would be 320*3.69 µs = 1180 µs, since the
task is triggered when there are 160 sample pairs available and must
complete before the buffer fills.

Tasks (i) and (iv) are triggered by the per-frame interrupt and need to
complete quickly enough to set up hardware for the following frame. A
convenient time for the per-frame interrupt is two timeslots into the frame,
since it then does not clash with either the receive or transmit windows
and allows six timeslots for any setup to complete before the next frame.
This is 3.460 ms. However, 500 µs is required for the synthesizer to lock
before the next receive and so the deadline for tasks P and Q is 2.9 ms.
So task P and Q should have lower priority than task F. In fact in this case
the same thread could be used for all three tasks since these tasks never
execute simultaneously anyway.

REAL TIME APPLICATION – GSM 799

rxlock

P Q P

HW

FI

L1

SP EQ CD

time

Figure 17.7 Sync burst receive

17.4.5.2 Sync burst receive

The activities involved in receiving an SCH burst are shown in Figure 17.7.
The tasks involved are:

(i) Programming the hardware with the frequency to receive and the
time at which to start the receive. This is shown as task P. This task
is triggered by the main layer 1 state machine when an SCH burst
receive is required

(ii) Reading blocks of 16 sample pairs from HW buffer to main memory
buffer. This task is not shown since it is too frequent. After 11
blocks have been received, task (iii) is triggered. 176 sample pairs
are used instead of the usual 160 since there is generally more
uncertainty about the precise timing of a sync burst, since the only
timing information may have come from the previous FCCH receive.
Non-FCCH bursts contain a known sequence of bits (the midamble)
which can be used to estimate the burst timing accurately

(iii) Pass the 176 received sample pairs through the sync burst equalizer
(EQ). This calculates the precise timing of the burst and demodu-
lates it

(iv) Pass the demodulated burst through the channel decoder (CD). This
corrects any errors in the received burst. This task is triggered by the
end of the EQ task

(v) Reprogram the hardware to stop the receive occurring again. This is
shown as task Q. It is triggered by the per-frame interrupt following
the receive period.

As before, task (ii) has the shortest deadline, at 59 µs, and I implement
it directly in the FIQ. The EQ and CD tasks together have to meet

800 REAL TIME

a deadline of ten timeslots −176 bit periods, or 5.1 ms, in order for
the decoded data to be available at the following frame interrupt. As
before task (i) has a deadline of 2.9 ms. Task (v) must complete before the
receive would start again, so the deadline is six timeslots minus 500 µs,
or 2.9 ms.

17.4.5.3 Control channel receive

Figure 17.8 shows the reception of a control channel block. This could
be a BCCH, PCH, AGCH, SDCCH or SACCH accompanying SDCCH.

The tasks marked RX also include waiting for the frequency synthesizer
to lock. The tasks involved are:

(i) Programming the hardware with the frequency to receive and the
time at which to start the receive. This is shown as task P. The
main layer 1 state machine triggers it when an SCH burst receive is
required

(ii) Reading blocks of 16 sample pairs from HW buffer to main memory
buffer. After 10 blocks have been received, task (iii) is triggered.
160 sample pairs give sufficient leeway to cope with small errors in
the burst timing. There is no need to reprogram the hardware after
a burst receive since the next receive will automatically be initiated
when the timer wraps round

(iii) Pass the 160 received sample pairs through the normal burst
equalizer (EQ). This calculates the precise timing of the burst and
demodulates it

(iv) Pass the four demodulated bursts through the de-interleaver and
channel decoder (CD). This corrects any errors in the received data.
This task is triggered by the end of the fourth EQ task

RXRX

P Q P

HW

FI

L1

SP EQ CD

RXRX

EQ EQ EQ

time

Figure 17.8 Control channel receive

REAL TIME APPLICATION – GSM 801

(v) Reprogram the hardware after the final burst receive so that another
receive does not occur. This is shown as task Q. It is triggered by
the frame interrupt following the final burst receive.

Task deadlines are the same as for the sync burst receive, apart from the
EQ task on its own. The deadline for this is that it should finish before the
next receive starts, which is a time lapse of seven timeslots, or 3.9 ms.

17.4.5.4 Control channel transmit

Figure 17.9 shows the transmission of a control channel block. This could
be either an SDCCH or SACCH accompanying SDCCH.

Tasks marked TX include waiting for the frequency synthesizer to lock.
The tasks involved are:

(i) Passing the data block to be transmitted through the channel encoder
and interleaver and adding the midambles, stealing flags and tail
bits to produce four 148-bit bursts for transmission. This is shown
as task CE in the figure. The main layer 1 state machine triggers it
when an SDCCH or accompanying SACCH transmission is required

(ii) Programming the hardware with the frequency to transmit and time
at which to start transmission. This is shown as task P and is triggered
by the end of the CE task or by an interrupt at the end of the previous
transmit burst if there is one

(iii) Transferring each burst to the transmit data buffer. This is shown as
task T on the diagram. Task T is triggered by the end of task P or by
the end of a transmit burst

(iv) Reprogram the hardware after the final burst transmission so that
another transmission does not occur. This is shown as task Q. It is
triggered by the end of the final transmit burst.

TXTX

P Q P

HW

FI

L1

SP T

TXTX

T T

CE T

time

Figure 17.9 Control channel transmit

802 REAL TIME

The deadline for task CE, P and the first task T is 500 µs before transmission
is due to start, so approximately 1 frame period, since transmission starts
three timeslots into the next frame. If a previous transmit operation is in
progress the deadline for CE is unchanged, but the deadline for P and T is
reduced to six timeslots or 3.4 ms. The subsequent task T invocations are
triggered by the end of the transmission and must complete before the
start of the next transmission. Hence the deadline there is seven timeslots
(3.9 ms).

17.4.5.5 Control channel simultaneous receive and transmit

Figure 17.10 shows the simultaneous transmission and reception of a
control channel block. This only occurs with an SDCCH in one direction
and an SACCH accompanying SDCCH in the other.

The tasks involved are:

(i) Pass the transmit data block through the channel encoder and
interleaver (CE). Add midambles, stealing flags and tail bits to
produce bursts for transmission. This task is triggered by the main
layer 1 state machine when a simultaneous SDCCH receive and
transmit is required

(ii) Programming the hardware with the frequency to receive/transmit
and the time at which to start the receive and transmission. This is
shown as task P. It is triggered by the end of the CE task or the end
of the previous transmit burst if there is one

(iii) Reading blocks of 16 sample pairs from HW buffer to main memory
buffer. This task is triggered by an interrupt from the receive ADC
when 16 sample pairs are available. After 10 blocks have been
received, task (ii) is triggered

rx

P Q P

HW

FI

L1

SP T T T

CE T

tx tx tx txrx rx rx

EQ EQ EQ EQ CD

time

Figure 17.10 Control channel TX + RX

REAL TIME APPLICATION – GSM 803

(iv) Pass the 160 received sample pairs through the normal burst
equalizer (EQ). This calculates the precise timing of the burst and
demodulates it. This task is triggered by the receive ISR when 160
sample pairs have been received

(v) Pass four demodulated bursts through the de-interleaver and chan-
nel decoder (CD). This corrects any errors in the received data. This
task is triggered by the end of the last EQ task

(vi) Transfer each traffic burst to the transmit data buffer. This is shown
as task T on the diagram. This task is triggered either by the end of
the P task or by the end of the previous transmit burst

(vii) Reprogram the hardware after the final burst transmission so that
another receive/transmit does not occur. This is shown as the task
Q. It is triggered by the end of the final transmit burst.

Task deadlines are as for the separate receive and transmit operations
already described.

17.4.5.6 Traffic channel

Figure 17.11 shows the operation of a full rate traffic channel (TCH). The
line marked FN shows the frame number modulo 26. Frames 21 to 1 are
shown since they illustrate both the normal reception and transmission of
traffic bursts and activity in the idle slot.

rx

si ei

HW

FI

L1

SP T T T

tx tx tx txrx rx rx

EQ EQ EQ EQ

fcch rx txrx txrx

SE C T T TEQ EQSE C T

V CD SD CD SD

FN 21 22 23 24 25 0 1

time

Figure 17.11 Traffic channel

The tasks involved are:

(i) Reading blocks of 16 sample pairs from HW buffer to main memory
buffer. This task is triggered by an interrupt from the receive ADC
when 16 sample pairs are available. After 10 blocks have been
received, task (ii) is triggered. In most cases there is no need to

804 REAL TIME

reprogram the hardware after a burst receive since the next receive
will automatically be initiated when the timer wraps round. The
exception is the case shown where a different activity may be
performed in the idle slot

(ii) Pass the 160 received sample pairs through the normal burst
equalizer (EQ). This calculates the precise timing of the burst and
demodulates it. This task is triggered by the receive ISR when 160
sample pairs have been received

(iii) Pass eight half-bursts from the previous 8 frames through the de-
interleaver and channel decoder (CD). This corrects any errors in
the received data. This task is triggered by the end of the EQ task
in frames 3, 7, 11, 16, 20, 24 modulo 26

(iv) Pass the decoded data through the speech decoder (SD) and
output the resulting audio to the speaker. This task is triggered by
an interrupt from the audio DAC. Note that owing to slight errors
in the locally generated audio sampling frequency relative to the
base station’s frame timing (generated from a precise frequency
source) the task needs to handle buffer underflows and overflows.
Underflow would normally be handled by repeating the previous
sample and overflow by discarding a sample

(v) Read audio data from the microphone and, when 20 ms worth
of samples are available, pass them through the speech encoder
(SE) to produce a traffic data block. This task is triggered by the
per-frame interrupt in frames 3, 7, 12, 16, 20, 25 modulo 26. The
audio data itself will be read in by an interrupt from the audio
ADC. As with task (iv), buffer underflow and overflow must be
handled

(vi) Pass the traffic data blocks containing encoded speech through the
channel encoder and interleaver (CE). Add midambles, stealing
flags and tail bits to produce traffic bursts for transmission. This
task is triggered by the end of the SE task

(vii) Transfer each traffic burst to the transmit data buffer. This is shown
as task T on the diagram. This task is triggered either by the end of
the CE task or by the end of the previous transmit burst

(viii) Decode an SACCH data block after every 4 SACCH bursts. This
task is not shown on the diagram. It is triggered by the end of the
EQ task for frames 13*TN+78 modulo 104

(ix) Encode an SACCH data block prior to the beginning of each
group of four SACCH bursts. Triggered by a layer 2 SACCH block
becoming available in frames between 13*TN-12 and 13*TN-1
modulo 104

REAL TIME APPLICATION – GSM 805

(x) Reprogram the hardware to perform the required activity in the
idle slot (task marked si on the diagram). This could either be
a neighbor cell power measurement, which requires a 160 bit
receive, a neighbor cell FCCH burst search, which requires a
1408-bit receive, or a neighbor cell SCH burst receive, which
a requires a 176-bit receive starting at an arbitrary offset within
a frame. This task is triggered either by the frame interrupt for
the frame before the idle slot or by an extra interrupt at timer
wraparound if the idle slot activity commences more than two
timeslots into the idle frame

(xi) Reprogram the hardware for normal TCH activity following the
idle slot (task marked ei on the diagram). Triggered either by the
start of an idle slot power measurement or SCH receive, or by the
frame interrupt during an idle slot FCCH receive

(xii) Process the samples received during the idle slot. This consists of
either a simple power measurement, a frequency burst search or
an SCH equalization and channel decode. This task is triggered by
the end of the idle slot activity

As ever the deadline for task (i) is 59 µs, and this task runs directly in
the ISR. Task (ii) should complete before the next burst receive, so the
deadline is seven timeslots, or 3.9 ms. Tasks (v), (vi) and the first (vii) of
each four form a group and their deadline is nine timeslots (5.1 ms) since
the transmitted data must be available before the next transmit slot. Tasks
(iii) and (iv) form a pair and their deadline is governed by the maximum
allowed round trip delay time for GSM of 100 ms. After taking account
of the fact that it takes eight frames to receive a speech block and eight
frames to transmit one, we find that a deadline of four frame periods
(18 ms) is permissible for tasks (iii) and (iv).

Tasks (viii) and (ix) only occur once every 104 frames. Their deadlines,
in combination with the layer 2 and layer 3 processing of SACCH
messages, are determined by the fact that a received SACCH message
should have been processed in time for the next idle slot, and that
an SACCH message for transmission must be assembled in the time
between the previous idle slot and the first SACCH transmit frame. Thus a
deadline of 12 frames (55 ms) is acceptable for each direction of SACCH
processing.

The worst case for task (x) is an SCH receive starting immediately after
the TX burst finishes (RX starts timeslot 5), which is two timeslots after the
frame interrupt. Thus the deadline for task (x) is 1.1 ms. The worst case
for task (xi) is an SCH receive starting just before timeslot 5 in the idle
slot. The task must have completed by the start of timeslot 7 to set up for
the next normal receive. Hence again the deadline is two timeslots, or
1.1 ms.

806 REAL TIME

The result of task (xii) will not be needed before the next SACCH
transmission, so this shares the deadline of 55 ms with other SACCH
processing.

17.4.5.7 Layer 1 threads

From my earlier discussion, you can see that the real time deadlines
involved in GSM layer 1 fall into five clusters. I list these in the following
table:

Deadline Context Tasks

59 µs FIQ Reading 16 sample pairs from baseband receive
ADC into main memory.

1 ms L1 Thread Main layer 1 state machine, idle slot setup and
teardown during traffic mode, control channel
encode.

3–5 ms SP Thread Receive equalization, control channel decode, traffic
channel encode, speech encode.

18 ms V Thread Speech decode, traffic channel decode.

55 ms SA Thread Idle slot data processing, SACCH channel encode
and decode.

Each of the tasks that I’ve mentioned in the preceding sections (apart
from the baseband receive ISR) would be implemented as a DFC running
on one of the four threads in the table. The priorities of these threads
would be set in the order L1, SP, V, SA (highest to lowest).

17.4.5.8 Layers 2 and 3

Messages received on BCCH and PCH during idle mode are passed
to layer 3 of the GSM protocol stack. Signaling messages received or
transmitted on either SDCCH, SACCH or FACCH go through a small
layer 2 as well, which discriminates between messages meant for the
different parts of layer 3.

Layer 3 of GSM is split into three main pieces:

• RR (Radio Resources). This is responsible for allocation and man-
agement of radio frequencies and timeslots. Allocation of a channel
(SDCCH or TCH) to a mobile, change of channel or handover between
base stations are handled by RR, as is the reporting of measurements

PERSONALITY LAYERS 807

on neighboring cells, which is used to determine when to hand over
a call

• MM (Mobility Management). This is responsible for keeping the
network informed of each mobile’s approximate position via location
update messages

• CC (Call Control). This is responsible for setting up and closing down
voice calls and data calls and for sending and receiving SMS messages.

Deadlines for processing messages in these layers range from four
frames (18 ms) to seconds. Typically MM runs in a single thread and
CC runs in two threads – one for calls and one for SMS. SMS can be
sent and received while a call is in progress; every other SACCH mes-
sage is used for SMS in this case. RR typically uses several threads (up
to 10).

If you were writing a GSM stack for EKA2 from scratch, I would
recommend putting layer 3 in a user-side process. This is because there
would be no problem achieving latencies of 18 ms there, and running
user side makes debugging easier.

17.5 Personality layers

17.5.1 Introduction
Every Symbian OS product will need to incorporate some type of mobile
telephony stack, and usually also a Bluetooth stack too. These two items
have the following features in common:

• They are large complex pieces of software in which the phone
manufacturer has made a considerable investment

• They have significant real time requirements

• They generally run over some type of RTOS, either a proprietary one
or a standard commercial RTOS such as Nucleus Plus, VRTX or OSE.

In the rest of this chapter, I will refer to any such software block as a
legacy real time application (LRTA).

One way in which you could incorporate an LRTA into a mobile
phone is by running it on its own CPU, separate from the one that
runs Symbian OS. There are some advantages to this solution – the
LRTA need not be modified and it is completely isolated from the
Symbian OS software, reducing the integration burden. However, there
are also disadvantages – mainly the cost of the extra processor and
the accompanying memory. So, let us assume that the separate pro-
cessor solution is too expensive, and that the LRTA must run on the

808 REAL TIME

same CPU as Symbian OS. There are essentially three ways of achiev-
ing this:

1. Modify the source code (and possibly design) of the LRTA to run
directly over Symbian OS – either as a purely kernel-mode device
driver, or as a combination of kernel and user mode components

2. Implement a system in which both Symbian OS and the LRTA RTOS
run concurrently. You could do this either by placing hooks into the
Symbian OS kernel at strategic places (interrupt and possibly other
exception vectors) to allow the RTOS to run, or by implementing
some kind of ‘‘hypervisor’’ that performs context switches between
the two operating systems. This would require modifications to both
operating systems to make calls to the hypervisor to indicate thread
switches, priority changes and so on

3. Implement a personality layer over the EKA2 kernel, which provides
the same API as the RTOS, or at least as much of it as is required by
the LRTA. The RTOS itself can then be dispensed with and the LRTA
can run using EKA2 as the underlying real time kernel.

I alluded to the first of these options in Section 17.4.5. Nevertheless,
this option is unlikely to be viable because of the time it would take
to modify the LRTA, the risk involved in doing so and the problem of
creating a second distinct version of the LRTA that then increases the
phone manufacturer’s maintenance burden.

The second option suffers from the following problems:

• Performance is degraded because of the hooks that are called on
every interrupt and every executive call, even if they are not related
to the LRTA. The hypervisor system will degrade performance even
more due to the presence of more hooks and a whole extra layer of
processing on interrupts

• The hooks add additional complication and risk of defects to particu-
larly sensitive areas of code

• Inserting hooks into the Symbian OS kernel to allow the RTOS
to run whenever it wants to destroys the real time performance
of EKA2 since a low priority thread in the LRTA will take prece-
dence over a high priority thread in Symbian OS. The hypervisor
system would not necessarily suffer from this problem but would
be considerably more complicated and incur a larger performance
penalty

• The hooks become extremely complicated and hard to manage if more
than one RTOS needs to run, for example if both a GSM signaling stack
and a Bluetooth stack are required and each uses a different RTOS.

PERSONALITY LAYERS 809

For these reasons, Symbian prefers option 3 as a solution to this problem.
In the rest of this section I will describe how such a personality layer may
be implemented.

17.5.2 The RTOS environment
Even the most minimal RTOS provides the following features:

• Threads, usually scheduled by static priority-based scheduling with a
fixed number of priorities. Round robin scheduling of equal priority
threads may be available but is usually not used in real time applica-
tions. Dynamic creation and destruction of threads may or may not
be possible

• At least one mechanism for thread synchronization and communica-
tion. Typical examples would be semaphores, message queues and
event flags. There is wide variation between systems as to which prim-
itives are provided and what features they support. Again, dynamic
creation and destruction of such synchronization and communica-
tion objects may or may not be supported. Mutual exclusion is often
achieved by simply disabling interrupts, or occasionally by disabling
rescheduling

• A way for hardware interrupts to cause a thread to be scheduled.
This is usually achieved by allowing ISRs to make system calls which
perform operations such as signaling a semaphore, posting a message
to a queue or setting event flags, which would cause a thread waiting
on the semaphore, message queue or event flag to run. Some systems
don’t allow ISRs to perform these operations directly, but require
them to queue some kind of deferred function call. This is a function
that runs at a lower priority than hardware interrupts (that is, with
interrupts enabled) but at a higher priority than any thread – for
example a Nucleus Plus HISR (High-level Interrupt Service Routine).
The deferred function call then performs the operation that causes
thread rescheduling.

Most RTOSes also provide a timer management function, allowing several
software timers to be driven from a single hardware timer. On expiry, a
software timer may call a supplied timer handler, post a message to a
queue or set an event flag.

RTOSes may provide other features, such as memory management. This
is usually in the form of fixed size block management, since that allows
real time allocation and freeing. Some RTOSes may also support full
variable size block management. However most RTOSes do not support
the use of a hardware MMU. Even if the RTOS does supports it (OSE does),
then the real time applications generally do not make use of such support,
since they are written to be portable to hardware without an MMU.

810 REAL TIME

17.5.3 Mapping RTOS to EKA2

I will now assume that the real time application expects a flat address
space with no protection, as would be the case on hardware with no
MMU. To get this behavior under EKA2, the application must run in
supervisor mode in the kernel address space. The obvious way to do
this is to make the real time application plus personality layer a kernel
extension; this will also ensure that it is started automatically, early on in
the boot process.

In general, a real time application will have its own memory man-
agement strategy and will not wish to use the standard Symbian OS
memory management system. To this end, at boot time the personality
layer will allocate a certain fixed amount of RAM for use by the real time
application. For a telephony stack this will be around 128 KB–256 KB.
The personality layer can do this either by including the memory in the
kernel extension’s. bss section or by making a one-time allocation on
the kernel heap at boot time. Depending on the LRTA’s requirements,
the personality layer may manage this area of RAM (if the RTOS being
emulated provides memory management primitives) or the LRTA may
manage it.

The personality layer will use a nanokernel thread for each RTOS
thread. It will need a priority-mapping scheme to map RTOS priorities, of
which there are typically 64 to 256 distinct values, to the 64 nanokernel
priorities. As long as the real time application does not have more than
35 threads running simultaneously (which is usually the case) it should be
possible to produce a mapping scheme that allows each thread to have a
distinct priority. If you do need to exceed this limit, you will have to fold
some priorities together.

The nanokernel does not support most of the synchronization and
communication primitives provided by standard RTOSes. You will have
to implement any such primitives required by the LRTA in the personality
layer. This basically means that the personality layer has to define new
types of object on which threads may wait. This in turn means that new
N-states (discussed in Chapter 3, Processes and Threads) must be defined
to signify that a thread is waiting on an object of a new type; generally
each new type of wait-object will require an accompanying new N-state.
To make a thread actually block on a new type of wait object, you would
use the following nanokernel function:

void NKern::NanoBlock(TUint32 aTimeout, TUint aState, TAny* aWaitObj);

You should call this function with preemption disabled since it removes
the current thread from the scheduler ready list. The parameters are as
follows:

PERSONALITY LAYERS 811

• aTimeout is the maximum time for which the thread should block, in
nanokernel timer ticks; a zero value means wait for ever. If the thread
is still blocked when the timeout expires the state handler (which I
discuss next) will be called

• aState is the new N-state corresponding to the wait object. This
value will be written into the NThreadBase::iNState field

• aWaitObj is a pointer to the new wait object. This value will be
written into the NThreadBase::iWaitObj field.

You can use the TPriListLink base class of NThreadBase to attach
the thread to a list of threads waiting on the object; note that you must
do this after calling the NanoBlock() function. Since preemption is
disabled at this point, a reschedule will not occur immediately but will
be deferred to the next point at which preemption is re-enabled.

Every thread that wants to use a new type of wait object must have
a nanokernel state handler installed to handle operations on that thread
when it is waiting on the new type of object. A nanokernel state handler
is a function with the following signature:

void StateHandler(NThread* aThread, TInt aOp, TInt aParam);

The parameters are as follows:

• aThread is a pointer to the thread involved

• aOp indicates which operation is being performed on the thread (a
value from enum NThreadBase::NThreadOperation)

• aParam is a parameter that depends on aOp.

The state handler is always called with preemption disabled. The possible
values of aOp are described in the following table:

aOp Description

ESuspend Called if the thread is suspended while not in a critical
section and not holding a fast mutex. Called in whichever
context NThreadBase::Suspend() was called from.
Requested suspension count is passed as aParam.

EResume Called if the thread is resumed while actually suspended
and the last suspension has been removed. Called in
whichever context NThreadBase::Resume() was
called. No parameter.

812 REAL TIME

aOp Description

EForceResume Called if the thread has all suspensions cancelled while
actually suspended. Called in whichever context
NThreadBase::ForceResume()was called. No
parameter.

ERelease Called if the thread is released from its wait. This call
should make the thread ready if necessary. Called in
whichever context NThreadBase::Release() was
called. aParam is the value passed into
NThreadBase::Release() to be used as a return code.
If aParam is nonnegative this indicates normal termination
of the wait condition. If it is negative it indicates early or
abnormal termination of the wait; in this case the wait
object should be rolled back as if the wait had never
occurred. For example a semaphore’s count needs to be
incremented if aParam is negative since in that case the
waiting thread never acquired the semaphore.

EChangePriority Called if the thread’s priority is changed. Called in
whichever context NThreadBase::SetPriority() is
called. This function should set the iPriority field of
the thread, after doing any necessary priority queue
manipulations. The new priority is passed as aParam.

ELeaveCS Called in the context of the thread concerned if the thread
executes NKern::ThreadLeaveCS() with an unknown
iCsFunction, that is negative but not equal to
ECsExitPending. The value of iCsFunction is passed
as aParam.

ETimeout Called if the thread’s wait timeout expires and no timeout
handler is defined for that thread. Called in the context of
the nanokernel timer thread (DfcThread1). No parameter.
This should cancel the wait and arrange for an appropriate
error code to be returned. The handler for this condition
will usually do the same thing as the handler for
ERelease with a parameter of KErrTimedOut.

When a thread’s wait condition is resolved, you should call the
following nanokernel method:

void NThreadBase::Release(TInt aReturnCode);

PERSONALITY LAYERS 813

The parameter is usually KErrNone if the wait condition is resolved
normally (for example the semaphore on which it is waiting is signaled).
A negative parameter value is used for an abnormal termination – in this
case the wait object may need to be rolled back. You should call the
Release method with preemption disabled. It performs the following
actions:

• Calls the state handler with ERelease and the return code. If the
return code is negative this should remove the thread from any wait
queues and roll back the state of the wait object. In any case it should
call NThreadBase::CheckSuspendThenReady() to make the
thread ready again if necessary

• Sets the NThreadBase::iWaitObj field to NULL and cancels the
wait timer if it is still running

• Stores the supplied return code in NThreadBase::iReturnCode.

The final piece of the puzzle for simple personality layers is the mecha-
nism by which ISRs cause threads to be scheduled. Most RTOSes allow
ISRs to directly perform operations such as semaphore signal, queue
post and set event flag – usually using the same API as would be used
in a thread context. The EKA2 nanokernel does not allow this – ISRs
may only queue an IDFC or DFC. The way to get round this limita-
tion is to incorporate an IDFC into each personality layer wait object.
The personality layer API involved then needs to check whether it is
being invoked from an ISR or a thread, and in the first case it will
queue the IDFC. The API also might need to save some other infor-
mation for use by the IDFC; for example it may need to maintain a
list of messages queued from ISRs, a count of semaphore signals from
ISRs or a bit mask of event flags set by ISRs. Checking for invoca-
tion from an ISR can be done using the NKern::CurrentContext()
API.

class NKern
{
enum TContext

{
EThread=0, // execution in thread context
EIDFC=1, // execution in IDFC context
EInterrupt=2, // execution in ISR context
EEscaped=KMaxTInt // emulator only
};

// Return a value indicating the current execution
// context. One of the NKern::TContext enumeration
// values is returned.

IMPORT_C static TInt CurrentContext();
};

814 REAL TIME

Hardware interrupts serviced by the LRTA need to conform to the same
pattern as those serviced by Symbian OS extensions or device drivers.
This means that the standard preamble must run before the actual service
routine, and the nanokernel interrupt postamble must run after the service
routine to enable reschedules to occur if necessary. You can do this by
calling the standard Interrupt::Bind() provided by the base port
during LRTA initialization (possibly via a personality layer call if it must
be called from C code).

I will illustrate these points with an example. Consider the implemen-
tation of a simple counting semaphore, with the following properties:

1. Semaphores are created at system startup, with an initial count of zero

2. Any personality layer thread may wait on any semaphore. The wait
operation causes the count to be decremented; if it becomes negative
the thread blocks

3. Any personality layer thread may signal any semaphore. The signal
operation causes the count to be incremented; if it was originally
negative the highest priority waiting thread is released

4. Semaphores may be signaled directly by ISRs.

Since we have a new wait object, we need a new N-state and a state
handler to deal with threads in the new state. We make the following
declaration for personality layer threads:

class PThread : public NThread
{

public:
enum PThreadState

{
EWaitSemaphore = NThreadBase::ENumNStates,
};

public:
static void StateHandler(NThread* aThread, TInt aOp, TInt aParam);
void HandleSuspend();
void HandleResume();
void HandleRelease(TInt aReturnCode);
void HandlePriorityChange(TInt aNewPriority);
void HandleTimeout();
};

The semaphore object itself must have a count and a list of waiting
threads. This list must be priority ordered since threads are woken up in
priority order. Also, threads that are suspended while waiting must be

PERSONALITY LAYERS 815

kept on a separate list since they are no longer eligible for execution
when the semaphore is signaled. We make the following definition for
our semaphore class:

class PSemaphore
{

public:
static void CreateAll();
PSemaphore();
void WaitCancel(PThread* aThread);
void SuspendWaitingThread(PThread* aThread);
void ResumeWaitingThread(PThread* aThread);
void ChangeWaitingThreadPriority(PThread* aThread,

TInt aNewPriority);
void Signal();
void ISRSignal();
static void IDfcFn(TAny*);

public:
TInt iCount; // semaphore count
TInt iISRCount; // number of pending ISR signals
TDfc iIDfc; // IDFC to signal semaphore from ISR
SDblQue iSuspendedQ; // suspended waiting threads
// list of waiting threads
TPriList<PThread, KNumPriorities> iWaitQ;
static TInt NumSemaphores;
static PSemaphore* SemaphoreTable;
};

I will first examine semaphore creation:

void PSemaphore::CreateAll()
{
NumSemaphores = semaphore_count;
SemaphoreTable = new PSemaphore[semaphore_count];
__NK_ASSERT_ALWAYS(SemaphoreTable != NULL);
}

PSemaphore::PSemaphore()
: iCount(0),

iISRCount(0),
iIDfc(iDfcFn, this)

{
}

The PSemaphore::CreateAll() method is called when the per-
sonality layer initializes. It allocates and initializes an array of sema-
phore_count (this is a configuration parameter) semaphore objects on
the kernel heap. Since personality layer initialization takes place in an
extension entry point, it occurs in the context of the supervisor thread (see
Chapter 16, Boot Processes) and so it can make use of the kernel heap.

816 REAL TIME

The second method, the semaphore’s constructor, initializes the count
and ISR count to zero, the wait queues to empty and sets up the callback
function for the IDFC.

Now let’s consider a thread waiting on a semaphore:

extern "C" int semaphore_wait(int sem_id, int time_ticks)
{
if (time_ticks < WAIT_FOREVER)

return BAD_TIME_INTERVAL;
if (TUint(sem_id) >= TUint(PSemaphore::NumSemaphores))

return BAD_SEM_ID;
PSemaphore* s = PSemaphore::SemaphoreTable + sem_id;
PThread* t = (PThread*)NKern::CurrentThread();
TInt r = OK;
NKern::Lock();
if (time_ticks == NO_WAIT)

{
if (s->iCount <= 0)
r = TIMED_OUT;

else
--s->iCount;

NKern::Unlock();
return r;
}

if (--s->iCount < 0)
{
TInt waitp;
waitp = (time_ticks == WAIT_FOREVER) ? 0 : time_ticks;
NKern::NanoBlock(waitp, PThread::EWaitSemaphore, s);
s->iWaitQ.Add(t);
NKern::PreemptionPoint();
if (t->iReturnValue == KErrTimedOut)
r = TIMED_OUT;

}
NKern::Unlock();
return r;
}

We have declared the public API provided by the personality layer
with C linkage since most LRTA code is written in C. The function first
validates the semaphore ID and timeout parameters, and then looks up
the semaphore control block from the ID (just a simple array index in
this case). If a non-blocking call is required (NO_WAIT) the semaphore
count is checked; if positive the count is decremented and OK returned,
otherwise the count is left alone and TIMED_OUT returned. If blocking
is permitted the count is decremented. If it becomes negative the current
thread is blocked for a maximum of time ticks nanokernel ticks (for ever
if WAIT_FOREVER). The blocked thread is placed in the new N-state
PThread::EWaitSemaphore. When the thread eventually wakes up
the wake up reason (iReturnValue) is checked. If this is KErrTimed-
Out, the wait was timed out so TIMED_OUT is returned to the caller,
otherwise the wait ended normally with the semaphore being signaled,
so OK is returned.

PERSONALITY LAYERS 817

The code to signal a semaphore is complicated by the fact that the API
must work whether it was called from a thread or an ISR:

extern "C" int semaphore_signal(int sem_id)
{
if (TUint(sem_id) >= TUint(PSemaphore::NumSemaphores))

return BAD_SEM_ID;
PSemaphore* s = PSemaphore::SemaphoreTable + sem_id;
TInt c = NKern::CurrentContext();
if (c == NKern::EInterrupt)

{
s->ISRSignal();
return OK;
}

NKern::Lock();
s->Signal();
NKern::Unlock();
return OK;
}

void PSemaphore::Signal()
{
if (++iCount <= 0)

{
// must wake up next thread
PThread* t = iWaitQ.First();
iWaitQ.Remove(t);
t->Release(KErrNone);
}

}

void PSemaphore::ISRSignal()
{
if (NKern::LockedInc(iISRCount)==0)

iIDfc.Add();
}

void PSemaphore::IDfcFn(TAny* aPtr)
{
PSemaphore* s = (PSemaphore*)aPtr;
TInt count;
count = (TInt)NKern::SafeSwap(0, (TAny*&)s->iISRCount);
while (count--)

s->Signal();
}

Again we declare the public API with C linkage. The function begins by
validating the semaphore ID argument and looking up the PSemaphore
object from the ID. Then it checks the current execution context. If it
was called from within an ISR, it calls ISRSignal(), otherwise it calls
Signal() with preemption disabled.
Signal() increments the semaphore’s count; if the count was origi-

nally negative, it takes the first thread off the wait queue (which is priority
ordered, so it gets the highest priority waiting thread) and releases it.

818 REAL TIME

Note that the wait queue cannot be empty since a semaphore count of–N
implies that there are N threads on the wait queue.

If the semaphore is signaled from an ISR, we can’t wake up the first
waiting thread immediately, since neither the semaphore wait queue
nor the thread ready list is guaranteed to be consistent during ISRs.
Instead, we atomically increment the iISRCount field. If iISRCount
was initially zero the semaphore’s IDFC is queued. The IDFC atomically
reads iISRCount and zeros it again, then signals the semaphore the
required number of times.

Finally, let’s examine the state handler used for personality layer
threads, and its associated methods.

void PThread::StateHandler(NThread* aThread, TInt aOp, TInt aParam)
{
PThread* t = (PThread*)aThread;
switch (aOp)

{
case NThreadBase::ESuspend:
t->HandleSuspend();
break;

case NThreadBase::EResume:
case NThreadBase::EForceResume:
t->HandleResume();
break;

case NThreadBase::ERelease:
t->HandleRelease(aParam);
break;

case NThreadBase::EChangePriority:
t->HandlePriorityChange(aParam);
break;

case NThreadBase::ETimeout:
t->HandleTimeout();
break;

case NThreadBase::ELeaveCS:
default:
__NK_ASSERT_ALWAYS(0);

}
}

void PThread::HandleSuspend()
{
switch(iNState)

{
case EWaitSemaphore:
((PSemaphore*)iWaitObj)->SuspendWaitingThread(this);
break;

default:
__NK_ASSERT_ALWAYS(0);

}
}

void PThread::HandleResume()
{
switch(iNState)

PERSONALITY LAYERS 819

{
case EWaitSemaphore:
((PSemaphore*)iWaitObj)->ResumeWaitingThread(this);
break;

default:
__NK_ASSERT_ALWAYS(0);

}
}

void PThread::HandleRelease(TInt aReturnCode)
{
switch(iNState)

{
case EWaitSemaphore:
if (aReturnCode<0)

((PSemaphore*)iWaitObj)->WaitCancel(this);
else

CheckSuspendThenReady();
break;

default:
__NK_ASSERT_ALWAYS(0);

}
}

void PThread::HandlePriorityChange(TInt aNewPriority)
{
switch(iNState)

{
case EWaitSemaphore:
((PSemaphore*)iWaitObj)->ChangeWaitingThreadPriority(this,

aNewPriority);
break;

default:
__NK_ASSERT_ALWAYS(0);

}
}

void PThread::HandleTimeout()
{
switch(iNState)

{
case EWaitSemaphore:
((PSemaphore*)iWaitObj)->WaitCancel(this);
break;

default:
__NK_ASSERT_ALWAYS(0);

}
}

void PSemaphore::WaitCancel(PThread* aThread)
{
if (aThread->iSuspendCount == 0)

{
iWaitQ.Remove(aThread);
++iCount;
}

else
aThread->Deque();

820 REAL TIME

aThread->CheckSuspendThenReady();
}

void PSemaphore::SuspendWaitingThread(PThread* aThread)
{
// do nothing if already suspended
if (aThread->iSuspendCount == 0)

{
iWaitQ.Remove(aThread);
++iCount;
iSuspendedQ.Add(aThread);
}

}

void PSemaphore::ResumeWaitingThread(PThread* aThread)
{
aThread->Deque();
if (--iCount<0)

iWaitQ.Add(aThread);
else

{
aThread->iWaitObj=NULL;
aThread->Ready();
}

}

void PSemaphore::ChangeWaitingThreadPriority(PThread* aThread,
TInt aNewPriority)

{
if (aThread->iSuspendCount == 0)

iWaitQ.ChangePriority(aThread, aNewPriority);
else

aThread->iPriority = (TUint8)aNewPriority;
}

The state handler calls different PThreadmethods according to which
operation is being performed on the thread. Each of these PThread
methods then performs the appropriate operation on the object on which
the thread is waiting, depending on the N-state.

If a thread is suspended while waiting on a semaphore, the code
first checks the thread’s suspend count. The suspend count is zero if
the thread is not suspended and–N if it has been suspended N times.
If the thread was already suspended, no action is required. Otherwise
we move the thread from the semaphore’s wait queue to its suspended
queue. We then increment the semaphore count to preserve the invariant
that (if negative) it equals minus the number of threads on the wait
queue.

If a thread is resumed while waiting on a semaphore, we remove
it from the semaphore’s suspended queue, where it was placed when
it was first suspended. Then we decrement the semaphore’s count,
balancing the increment when the thread was suspended. If the count
becomes negative, we add the thread to the semaphore’s wait queue
and it remains in the PThread::EWaitSemaphore state. If the count

PERSONALITY LAYERS 821

is non-negative, we make the thread ready. Note that the state handler
is only called when a thread is resumed if all suspensions have been
cancelled, so there is no need for us to check the thread’s suspend
count.

If a thread is released while waiting on a semaphore, we check
the reason code for the release. If this reason is KErrNone, this is
a normal release event – in other words the semaphore has been sig-
naled and the thread’s wait condition has been resolved normally. In
this case we call CheckSuspendThenReady() on the thread, which
makes it ready, provided that it is not also explicitly suspended. If
the reason code is not KErrNone, the wait has been cancelled – for
example because the thread was terminated. In this case, we detach
the thread from the semaphore – either from the wait queue or sus-
pended queue depending on whether the thread is also suspended. If
we detached it from the wait queue, we increment the count, bal-
ancing the decrement when the thread waited on the semaphore.
Finally, we call CheckSuspendThenReady() on the thread. The
effect is to reverse the actions taken when the thread waited on the
semaphore.

If a timeout occurs on a thread waiting on a semaphore, we take
the same action as a release with reason code KErrTimedOut, so the
semaphore wait is cancelled. If a thread’s priority is changed while it
is waiting on a semaphore, the thread’s position on the semaphore wait
queue needs to be adjusted. If the thread is also suspended, its position
on the suspended queue needn’t be changed, but we do need to modify
the thread’s iPriority field.

17.5.4 Symbian–LRTA communication
If the functionality of the LRTA is to be available to Symbian OS applica-
tions, we need a mechanism by which Symbian OS code and the LRTA
may communicate with each other. In practice this means:

1. It must be possible for a Symbian OS thread to cause an RTOS thread
to be scheduled and vice-versa

2. It must be possible for data to be transferred between Symbian OS
and RTOS threads in both directions.

It is usually possible for a Symbian OS thread to make standard personality
layer calls (the same calls that RTOS threads would make) to cause an
RTOS thread to be scheduled. This is because the nanokernel underlies
both types of thread and most ‘‘signal’’ type operations (that is, those that
make threads ready rather than blocking them) can be implemented using
operations which make no reference to the calling thread, and which are
therefore not sensitive to the type of thread they are called from. The

822 REAL TIME

semaphore-signal operation in the previous example code falls into this
category – a Symbian OS thread could use this to signal a personality
layer semaphore.

In the other direction, it is not possible for a personality layer thread to
signal a personality layer wait object and have a Symbian OS thread wait
on that object. The most straightforward way for RTOS threads to trigger
the scheduling of a Symbian OS thread is to enque a DFC on a queue
operated by a Symbian OS thread. Another possibility is for the Symbian
OS thread to wait on a fast semaphore, which could then be signaled
by the RTOS thread; however the DFC method has a better fit with the
way device drivers are generally written. A device driver is needed to
mediate communication between Symbian OS user mode processes and
the LRTA, since the latter runs kernel side.

Data transfer between the two environments must either occur kernel-
side or via shared chunks. It is not possible for any RTOS thread to
access user-side memory via the IPC copy APIs, since these access
parts of the Symbian OS DThread structure representing the calling
thread (for example to perform exception trapping). If you want to use
shared chunks, they must be created by a Symbian OS thread, not by
a personality layer thread. This is because creating Symbian OS objects
such as chunks requires waiting on DMutex objects, which only Symbian
OS threads may do. The chunks would either be created at personality
layer initialization or by the device driver used to interface Symbian
OS with the LRTA. Shared chunks can be useful as a way to reduce
copying overhead if bulk data transfer is necessary between the two
domains.

Some possibilities for the data transfer mechanism are:

• A fairly common architecture for real time applications involves a
fixed block size memory manager and message queues for inter-
thread communication. The memory manager supports allocation
and freeing of memory in constant time. The sending thread allocates
a memory block, places data in it and posts it to the receiving
thread’s message queue. The receiving thread then processes the data
and frees the memory block, or possibly passes the block to yet
another thread. It would be a simple proposition to produce such a
system in which the memory manager could be used by any thread.
In that case, a Symbian OS thread could pass messages to RTOS
threads in the same way as other RTOS threads do. Passing data
back would involve a special type of message queue implemented in
the personality layer. When the personality layer wanted to send a
message to a Symbian OS thread, it would enque a DFC. That DFC
would then process the message data and free the memory block as
usual. This scheme combines the data transfer and scheduling aspects
of communication

SUMMARY 823

• You could use any standard buffering arrangement, for example
circular buffers, between the LRTA and the device driver. You could
prevent contention between threads by the use of nanokernel fast
mutexes, on which any thread can wait, or by the simpler means of
disabling preemption or interrupts.

17.6 Summary

In this chapter I have explored real time systems and the challenges
they present to an operating system. I have looked at several solutions
to these challenges and examined their pluses and minuses. Then I
presented the solutions that we chose for EKA2, looked at the mea-
surements typically made on real time OSes and gave the results for
EKA2. After that, I discussed the hardware and software issues that need
to be considered when building real time applications for EKA2. In
the second half of the chapter, I gave a quick overview of the GSM
system, while considering how it might be implemented under EKA2.
Finally, I showed how personality layers enable existing real time soft-
ware to be ported to EKA2 with minimum effort, and I gave an example
of how you might implement such a personality layer. In the next
chapter, I will look at how you can ensure the best performance when
using EKA2.

18
Ensuring Performance

by Jasmine Strong with Dennis May

The best way to accelerate a PC is at 9.8 m s−2.

Jane Sales after Marcus Dolengo

In a real-time environment, ensuring acceptable performance is not as
simple as one might expect. A real-time system has been defined as one in
which the validity of the results depends not only on the logical correct-
ness of the results, but also on the timeliness of their delivery. EKA2 pro-
vides a number of constructs and techniques for ensuring that code exe-
cutes not only at a sufficient rate but also within an acceptable time frame.

We can, therefore, aim to improve code performance in two areas: in
its flat-out speed, and in its ability to respond to real-world events that
require software intervention. The provision of real-time behavior within
the EKA2 operating system requires not only that code runs quickly, but
also that drivers and, to a lesser extent, application software be careful to
act as a good neighbor. Sometimes the fastest algorithm can compromise
the real-time behavior of the rest of the system, and so best throughput
must be sacrificed in order to provide better real-time performance. For
example, inter-process communication in EKA2 is not quite as fast as it
was under EKA1 because the kernel now pauses every 512 bytes to check
if there is contention for the system lock. This allows anything that might
be waiting on the system lock with higher priority than the current thread
to run in good time, rather than having to be suspended for the duration
of the whole operation, which could be many milliseconds. On the user-
side, this problem is already solved for you. As long as an application
cannot set its priority too high, the design of EKA2 prevents it from
adversely affecting the real-time behavior of other software in the system.

The analysis of code performance on an interrupt-heavy system is a
complex topic and quite controversial in parts. This analysis is compli-
cated further because the typical architectures that run EKA2 have more
advanced and complex memory systems than earlier platforms. Care must

826 ENSURING PERFORMANCE

be taken in the board support package, device drivers, kernel extensions,
and in the use of file systems to ensure that these complex issues are
sensitively handled. It is all too easy to compromise system performance
with a single bit error in the configuration of a memory controller, or
to allow an unforeseen interaction in a device driver to substantially
increase latency.

To deliver a product with high performance requires that you under-
stand the factors that contribute to system performance – both software
factors such as context switch time and contention for exclusive locks
and hardware factors such as memory access times, I/O throughput and
cache architecture – and that you design the software around these. The
real-time behavior of the OS is more fully described in Chapter 17, Real
Time. In this chapter I concentrate on performance and I do not duplicate
the material found there.

Before you start to modify any of the code in your system you must
first profile and measure the existing performance. Only by careful testing
and analysis can you truly understand how and where the performance
is being consumed. Guessing at what to optimize will not solve your
problems.

18.1 Writing efficient code

Writing highly efficient code for ARM processors is not as straightforward
as it might at first seem. With the advent of the Thumb instruction set (see
Chapter 2, Hardware for Symbian OS, for details), the performance gap
between the most space-efficient code and the most time-efficient code
has widened considerably. To write rapid code you need not write large
portions of the application in assembly language. You can get 90% of the
benefit in 10% of the time with care in the design phase. Of course you
can use all the usual optimization strategies such as using binary searches
rather than linear searches, using ASCII instead of Unicode if possible and
using the most efficient available algorithm. But ARM processors have
some quirks that make their performance levels vary in a way that is differ-
ent from some other processors. Here are some techniques that can help.

18.1.1 Avoid tight loops

Tight loops (by ‘‘tight loop’’ I mean one that has only a very brief operation
inside it) are very inefficient in ARM9 and earlier CPUs because these
processors do not have branch prediction hardware. The lack of this
hardware entails that the branch at the end of the loop incurs a time
penalty while the pipeline is flushed and reloaded from the start of the
loop. If the operation inside the loop requires only a few cycles, the
branch penalty cycles can take more time than the actual operation.

WRITING EFFICIENT CODE 827

XScale, ARM11 and all future cores have branch prediction hardware
and do not suffer from the above looping problem. Their hardware predicts
branch instructions that will be taken based on past history of the code and
heuristic rules. If a branch is correctly predicted the CPU will continue
execution without a penalty, unpredicted branches will incur a pipeline
flush penalty. ARM11 goes one step further with branch folding. Predicted
branch instructions are removed from the pipeline and the branch target
instruction is executed immediately thus saving one more cycle.

Sometimes, of course, you can’t avoid writing code that does this
sort of thing, and in these cases you may decide to ‘‘unroll the loop’’
by performing more than a single operation in each iteration. You must
weigh the increased code size produced by unrolling the loop against
the improved execution time it gives. For example, take this memory
checksum function:

TInt trivial_checksum(TInt8* aBlock, TInt aLen)
{
TInt i=0;
TInt8* j;

for (j=aBlock; j<aBlock+aLen; j++)
i+=*j;

return i;
}

Compare this to an unrolled version:

TInt trivial_checksum_unrolled(TInt8* aBlock, TInt aLen)
{
TInt i=0;
TInt8* j;
TInt8* endptr;

endptr=aBlock+aLen;

for (j=aBlock; j<endptr;) // we unroll this to degree 5
{
if (j<endptr) i+=*j++;
else
break;

if (j<endptr) i+=*j++;
else
break;

if (j<endptr) i+=*j++;
else
break;

if (j<endptr) i+=*j++;
else
break;

828 ENSURING PERFORMANCE

if (j<endptr) i+=*j++;
else
break;

}
return i;
}

While the unrolled version is clearly much larger and more difficult to
read, because it branches much less frequently it will execute much more
rapidly than the non-unrolled version. If you use this technique to unroll
loops, be sure to check the assembled output from the compiler to ensure
that it does what you want.

The easiest way to ensure that you’re using a fast, unrolled operation
is to use one provided by Symbian OS. The library-provided memory
and string operations are very thoroughly unrolled, so will execute
quickly without bloating your application. For example, the provided
implementation of Mem::Copy() is very fast indeed.

18.1.2 Optimize the general case

Code often has a ‘‘general case’’ that executes very often and a ‘‘special
case’’ that only executes much more infrequently. If you can determine
which case happens most often and make this general case faster, even at
the expense of a little performance in the special case, you can improve
the overall performance of your program markedly.

18.1.3 Don’t repeatedly make small requests

If you have a list of items to get when you go shopping, do you get in your
car, drive to the supermarket, take a trolley around, buy the first thing on
the list, come home, look at the second thing, get in the car, drive to the
supermarket, take a trolley around, buy it, come home, look at the third
thing on the list, and so on? That would be crazy, and would waste a lot
of time, effort and fuel.

Nevertheless, many people release code that does things exactly like
this! It’s even worse in code, because it defeats many of the performance-
improving features of processors: the cache, which depends upon spatial
and temporal locality to do its job, and burst transfer modes, which
depend upon the high probability of handling more than one datum at
a time.

If your program needs to open a file or any other kind of server
connection, be aware that there are significant overheads in setting up
a connection. If you repeatedly open a connection, perform a small
operation and then close it again, you will waste huge amounts of
processor time, memory bandwidth and battery power.

WRITING EFFICIENT CODE 829

Similar provisos apply to image handling methods: while most of the
image handling APIs provide methods for querying the values of single
pixels, it is very inefficient indeed to perform single pixel operations on a
large number of pixels. There is a significant overhead in every method
invocation and an even bigger overhead in every IPC. It is important to
make every one count.

File input and output is the same. These classes provide block methods
for a reason: making a fileserver request takes a significant amount of time
over and above the time required to actually fulfill the request. Use the
block read and write methods if you need to read or write more than one
character. In some cases, this can be literally thousands of times faster.

Memory allocation can also be slow, so you may wish to avoid repeat-
edly invoking memory allocation functions. I describe some approaches to
improving the performance of memory allocation later in Section 18.2.9.

18.1.4 Performance differences between ARM platforms
Different ARM processors, even at the same clock frequencies, have differ-
ent performance characteristics. With ARMv6 processors now becoming
available, these differences have become very significant. If you’re an
application developer, you will want your code to work well on all ARM-
compatible processors to maximize your audience. To achieve this, it’s
important to understand some of the differences between ARM platforms.
Symbian OS has historically supported three-and-a-half ARM architec-
tures. I’ll ignore the ARMv3 and ARMv4 architectures because they are
no longer supported by Symbian OS, and turn instead to the two that are
actively supported today.

• ARMv5: Most mobile application processors in production at the
time of writing are ARMv5 processors. Typical ARMv5 processor
cores include the ARM926EJ at the heart of the Texas Instruments
OMAP1610 and 1710 chips and many manufacturer-specific ASICs.
ARMv5 retained substantial compatibility with ARMv4, needing only
fairly minor changes to operating systems and almost no changes to
application code. Most ARMv5 processors run at frequencies between
100 and 200 MHz, though XScale is currently available at speeds up
to 700 MHz. ARMv5 processors usually reach speeds of 180MIPS,
while some high performance variants occasionally exceed 250MIPS.
XScale can reach speeds of 500MIPS, though it is usually restrained
to a more sedate pace by mobile memory systems.

• ARMv6: This new architecture promises to improve performance
with a number of new features, including dynamic branch pre-
diction similar to that introduced in XScale, a new and very much
improved physically-tagged cache architecture, support for symmetric
multiprocessing, branch folding and other substantial improvements.

830 ENSURING PERFORMANCE

ARMv6 is much more than an incremental improvement over ARMv5.
ARM1136JF-S, as used in the Texas Instruments OMAP2420, Freescale
MXC and other mobile ASICs, was the first ARMv6 processor to
become available. Because of ARMv6’s Prefetch Unit and branch
folding capabilities, ARMv6 processors may execute more than one
instruction per clock cycle. ARMv6 processors are very fast and rou-
tinely exceed 400MIPS. Some ARM1136JF-S based ASICs are expected
to reach clock frequencies of nearly 700 MHz. These processors will
return figures of around 750MIPS. As they also have a vector floating
point unit and SIMD instruction set, the performance available from
these processors is considerably in excess of that available on the
more common and cheaper ARMv5 solutions.

18.1.4.1 Applying optimizations

Many factors will influence the selection of optimizations that you choose
to perform. If your device is short of memory, you might decide to forego
time performance in order to use Thumb code, which is typically about
70% of the size of ARM code. Conversely, if your device is short of
processing power, you might decide that the 20% faster execution of
ARM code is a better compromise for your application. Depending
on what your code does, ARM might be much faster than Thumb,
particularly if you need multiword arithmetic or other things that are
improved by instructions that are only available in ARM state. Your
choice of optimizations will also depend on which processor you expect
your code to run on. For example, there’s little need to unroll loops if
your code will only run on processors with branch prediction such as
ARM1136JF-S and XScale.

In general, you have to target your code at the slowest processor it will
run on. If you are aiming for the installed base of EKA2-based Symbian
OS devices, these will all be ARMv5 or higher, which means that they
have Harvard architecture caches,1 at least 5-stage pipelines and they
support the Thumb instruction set. If your performance is limited by
the amount of code that can fit in the instruction cache, you may find
that your performance is actually improved by compiling to a Thumb
target. However, this is rare, especially on ARMv5 platforms where every
process switch potentially eliminates useful content from the data cache.
Performance on these devices is generally limited by the high rate of data
cache misses due to these flushes.

The memory systems on mobile phone platforms are usually quite
slow, and so, to alleviate the performance problems this creates, ARM
processors have caches. The cache is a special area of memory that is
used to keep a local copy of words that are also used in main memory.

1 The Harvard architecture separates the instruction stream from the data stream, which
potentially allows any instruction to access memory without penalty.

WRITING EFFICIENT CODE 831

Cache memory is very expensive, so most processors do not include very
much of it. In ARM systems, the processor cache is always incorporated
into the processor chip.

• ARMv5: All ARMv5 application processors to date have a Harvard
memory architecture. Most ARMv5 processors have at least 16 KB of
instruction cache, with ARM926 often implemented with asymmetri-
cal instruction and data caches. 16 KB of instruction and 8 KB of data
is a common split. XScale usually has 32 KB each of instruction and
data cache.

• ARMv6: ARMv6 defined a new cache architecture. While all ARM
architectures place the memory management unit outside the proces-
sor core, architectures before ARMv6 also dictated that the caches
may use only virtual addresses. This meant that when Symbian OS
switched processes and those processes occupied the same virtual
addresses, then we needed to clean and flush the caches (partially,
at least). This is time consuming and generally to be avoided. The
avoidance of cache flushing was the primary motivation behind the
design of Symbian OS features such as the ‘‘moving’’ memory model
and fixed processes. ARMv6 alleviates this problem by incorporating a
cache with knowledge of the physical addresses that underlie the vir-
tually addressed contents of the cache (that is, it’s a virtually indexed,
physically tagged cache). This means that it doesn’t have to be flushed
nearly so often, which makes process switching much faster and more
power efficient. At the time of writing, the only ARMv6 processors
available are the ARM1136JF-S and the ARM1176JZ-S. ARM1136
cores often have 32 KB each of instruction and data cache, though
they may have much more.

18.1.4.2 The influence of caches

Caches are the main source of unexpected interactions that affect program
execution speed. For example, a benchmark that repeatedly performs a
simple operation may show a two microsecond context switch, but this
is only possible because the cache is filled early in the test and remains
filled throughout. On a real system where the threads being switched
do actual work, the contents of the cache are displaced, which makes
context switching much slower. Also, because caches contain scattered
pieces of information from throughout main memory and have to be
able to find that information very quickly, they use something called ‘‘tag
RAM’’. Tag RAM is even more expensive than the rest of the cache, so to
reduce the amount needed, spatial locality is exploited by organizing the
cache into ‘‘lines’’, typically of eight 32-bit words each. Each line has a
single tag, and will be filled in from main memory in a single operation:
an eight-word burst. It is much faster to do this than to fetch eight single

832 ENSURING PERFORMANCE

words from memory: it may even be more than eight times faster, because
many memory systems require a delay between requests.

When a processor with a cache is running code and data that fits
entirely within the cache, it is said to be ‘‘running from cache’’. Running
from cache has a number of benefits: primarily, it is considerably faster
than running from DRAM or, even slower, flash memory. It also generates
fewer memory bus cycles, which in turn saves power. If the DRAM is not
used for some time, some DRAM controllers will even close pages and
place them in retention mode, reducing power consumption even further.

When the code and data in the current active set does not quite fit
inside the cache, lines will have to be evicted from the cache to make
room for each successive new datum or instruction that the program
flow encounters. It is not uncommon for items of data to be repeatedly
evicted and reloaded. This unwelcome state of affairs is known as
‘‘thrashing’’. The choice of algorithm used to select lines to evict from
the cache determines the processor’s behavior when thrashing. Many of
the processors described in this chapter support two algorithms, round
robin (RR) and random replacement. RR replacement evicts lines in turn,
whereas random replacement selects them at random. When an RR cache
is thrashing, the performance of the processor drops off extremely quickly:
it falls off a ‘‘performance cliff’’. On the other hand, when a randomly
replaced cache starts to thrash, its performance degrades more gracefully.
For this reason, random replacement is to be preferred to round robin.
On processors where the replacement algorithm is a run-time option, this
is configured using a CP15 configuration register setting in the base port;
it is very important to ensure that this is configured appropriately.

18.1.5 Alignment

Since ARM processors generally only handle word-aligned memory oper-
ations, accessing non-single-byte quantities that are not aligned to a word
boundary is not as fast as accessing ones that are. The Mem::Copy()
method is very heavily optimized, using a special ‘‘twister’’ algorithm to
copy unaligned data using aligned memory access cycles. This makes
it about three times faster than a conventional implementation of mem-
cpy() for both unaligned copies and for copies in which the source
is not aligned with the destination. Similarly, particularly on ARM926EJ
platforms, the memory interface does not generate burst accesses for
cache missing STM or LDM instructions that are not aligned to a 16 byte
boundary. The Mem:: methods include code to alleviate these problems,
and their performance is very close to the theoretical maximum.

In some situations you may choose to modify your code to place
important members of structures in aligned locations. Packing structs can
help to save memory but may significantly reduce the available memory
bandwidth on these processors. ARM926EJ is a very popular core at the

WRITING EFFICIENT CODE 833

time of writing and can be found in many mobile phones. ARM926EJ
cache lines are eight words long, so to be aligned, an address must be
divisible by 32.

18.1.6 Pragmatism, not idealism

Unfortunately, there is only a finite amount of work that any processor
can do in one second, and that amount depends on the nature of the
work. While the processors available to mobile phone applications now
would have been astonishingly powerful as recently as ten years ago, they
aren’t that powerful compared to workstation processors. Mobile phone
manufacturers have to choose processors based on their benchmark
scores. That is, they use figures published by manufacturers, measured
using programs designed to advertise how fast their processors are. The
problem with this is that the performance of a processor is entirely
dependent on what it’s being asked to process. The application binary
environment, compiler and even the instruction set may have been
tweaked to improve benchmark performance! That’s all very well as long
as your application does the same sort of thing as the benchmark, and
only the same sort of thing – rather than a mixture of different operations.
To make a safer estimate, it’s important to have a set of representative,
mixed operation benchmarks, timing how long it takes to perform actual
user operations, using real applications. The user interface can be as
important as the application engine itself in these tests.

It’s not a simple operation to take a set of benchmark results, perform
an examination of a very different problem, and say with certainty that
problem x can be solved with processor y in time t. It is, therefore,
very important to define the scope of your application with this in
mind. The manufacturer’s benchmarks, such as Dhrystone, running on
the ‘‘bare metal’’ of the machine, may demonstrate performance far in
excess of that actually available in a real-time, multithreaded, interrupt-
rich environment. Treat these benchmarks as you do all other forms of
advertising!

18.1.7 Memory throughput

ARM systems have fairly fast memory systems. They consist of a large
DRAM, accessed by the processor through a cache, prefetch buffer and
a write buffer. The cache usually consists of around 16 KB of very fast
memory, which is usually run at the same speed as the processor core
itself. This is necessary in the ARM architecture because almost every
cycle will issue an instruction.

All ARMv5 and later processors have a write buffer, which is a simple
FIFO queue that accepts data to be written to memory. It serves to
decouple the processor pipeline from the core’s data port so that if the

834 ENSURING PERFORMANCE

cache misses on the data to be written, the processor pipeline does not
stall. The size of the FIFO is usually eight words, and the words are
usually not required to be ordered in any way.

ARM systems today use a wide variety of different interconnects and
memory types, but most current systems use synchronous DRAM, similar
to SDRAM or DDR RAM, attached to essentially transparent interconnects.
These clock at around half the processor core speed, though with the
trend towards increased core speeds this is likely to change in the near
future. Power consumption and processor package pin count constrain
mobile memory systems more than component cost, which means that
most mobile platforms use 16-bit wide memory interfaces. This essentially
limits the maximum sustained bandwidth of their memory interfaces to
one word every four core cycles. This variable remains remarkably
consistent across new and old processors.

However, in practice this limit can never be achieved. SDRAM is
line-oriented, that is, it is designed in such a way that a ‘‘row address’’ is
applied, taking between two and seven cycles depending on the type of
RAM, then a ‘‘column address’’ is applied, returning data usually between
two and three cycles later. Subsequent words from the same row can
then be fetched in subsequent cycles without delay. This ‘‘burst mode’’ is
very useful in cached architectures like ARM, where whole lines of eight
words are generally fetched at any time, and can make memory access
several times faster.

The exact management of RAM parameters is beyond the scope of this
book, but is critical to the performance of the system as a whole. It is very
important to ensure that systems have their RAM configured correctly.

18.2 Maintaining real-time performance

18.2.1 Techniques and limitations
This section explores some techniques for writing code with real-time
performance requirements and also for writing code that does not com-
promise the real-time requirements of other code. It also explains some
of the limitations of EKA2 for real-time systems.

18.2.1.1 Task partitioning

The first thing you should consider when writing any real-time software
is how to partition the desired functionality into separate tasks, according
to the deadlines involved. Some of these tasks may run as interrupt
service routines, others will run in threads with varying priority levels.
You should only do the minimum amount of work needed to meet a
deadline at any given priority level. Work that is less urgent should be
postponed to lower priority tasks, where it will not hold up more urgent

MAINTAINING REAL-TIME PERFORMANCE 835

activities. This is especially important for tasks which run as ISRs, since
these run in preference to threads. Interrupts should always be kept as
short as possible.

The following table gives a rough guide to the thread priority ranges
that would be used for tasks with certain deadlines:

Priority Deadline range Comments

0 – Null (idle) thread.

1–15 – Normal application priorities.

16 – Kernel cleanup activities.

16–24 – System servers (file server, window server and so on).

25–26 >100 ms Media drivers.

27 >20 ms General device drivers. The ‘‘default’’ DFC thread
(DfcThread()) runs at this priority.

28–31 2–20 ms ‘‘Real-time’’ priority Symbian OS user processes.

28–47 2–20 ms High priority kernel-side threads and personality
layer threads. Priorities above 31 are not directly
accessible user-side and must be set using a device
driver.

48 2–20 ms Nanokernel timer thread.

49–63 100 µs–10 ms Personality layer threads.

IDFC 100 µs–1 ms Personality layer routines to enable ISRs to wakeup
threads.

ISR 10 µs–1 ms

Threads that run in normal Symbian OS user processes, with priorities
of EPriorityForeground or lower, have absolute priorities between
1 and 15. Various Symbian OS servers with high legacy code content,
which were not written with real-time performance in mind, inhabit
priorities 16–24 and so it is not possible to give any meaningful real-time
guarantees for code running at these priorities. At the high end of the
spectrum, the deadlines possible at each priority depend on the speed of
the hardware and how the base port is written. On very fast hardware
it should be possible to service deadlines of 100 µs with a priority 63

836 ENSURING PERFORMANCE

kernel thread, provided the base port does not have long ISRs. On slower
hardware, tasks with deadlines of 1 ms will need to be ISRs.

18.2.1.2 Avoid priority inversion

When choosing a mutual exclusion method for use in software that must
meet real-time deadlines, you should take care to minimize the time for
which priority inversion exists. The following methods are available:

1. Lock-free algorithms
Lock-free algorithms for updating data structures make use of atomic
memory access instructions such as SWP on ARMv5, LDREX/STREX on
ARMv6 and locked instructions on IA32.

The ARM SWP instruction atomically interchanges the contents of a
register with the contents of a memory location. The instruction is atomic
with respect to other code running on the same processor (simply by
virtue of being a single instruction, so not interruptible between the read
and write) and also with respect to accesses by other bus masters. No
other bus master in the system can access the memory location referred
to in between the read and write part of the SWP.

The ARM LDREX and STREX instructions make use of an exclusive
access monitor, which on systems with only a single processor is just a
single bit hardware flag. The flag is usually clear, or, in ARM’s termi-
nology, in the Open Access state. Executing an LDREX instruction loads
the contents of a memory location into a register and sets the flag (puts
it into the Exclusive Access state). Executing a STREX instruction checks
the state of the flag. If it is in the Exclusive Access state, the contents of
the register is written into a memory location and a value of 0 is written
into the result register. If the flag is in the Open Access state, no memory
write occurs and the result register is set to 1. In either case, the flag is
reset to the Open Access state by a STREX instruction. The usage of these
instructions is illustrated here:

Use of LDREX and STREX

; Atomically increment the memory location at [R1]
; Return the original memory contents in R0

1 LockedInc:
2 LDREX R0, [R1]
3 ADD R2, R0, #1
4 STREX R3, R2, [R1]
5 CMP R3, #0
6 BNE LockedInc

Line 2 reads the original value of the memory counter and places the
monitor into the Exclusive Access state. Line 3 increments the value.

MAINTAINING REAL-TIME PERFORMANCE 837

Line 4 writes the new value to memory, provided the monitor is still in
the Exclusive Access state. Lines 5 and 6 retry the entire operation if the
store at line 4 found the monitor in the Open Access state.

To ensure the correct functioning of such routines, the operating
system must perform an STREX as part of the interrupt preamble. This
will cause the monitor to be reset to the Open Access state if any
interrupt occurs between the load and store, which in turn will cause the
load-increment-store to be retried.

For more details on the operation of the LDREX and STREX instructions,
refer to the ARM Architecture Reference Manual.2

The IA32 architecture supports many instructions that both read and
write a memory location. Since interrupts cannot occur within a single
instruction these instructions are automatically atomic with respect to
code executing on the same processor. If atomicity with respect to other
bus masters is required – for example on a system with more than one
CPU sharing memory – you can apply the LOCK prefix to the instruction.
This causes the CPU to output a lock signal which prevents any other bus
master getting in between the read and write parts of the instruction.

Lock-free algorithms are recommended where possible for both kernel-
and user-side use, since they are usually very fast, but can only be used
for certain tasks. The tasks for which they can be used depend on the set
of atomic instructions available on the processor in question.

As an example of a lock-free algorithm, consider adding elements to
the end of a singly linked list. The following example shows some code
to do this.

Lock-free singly linked list add

; Add the element pointed to by R0 to a singly linked
; list pointed to by R1. The first word of
; each element is the link pointer, which points
; to the next element in the list or is zero if this
; is the last element.
; The list itself consists of two pointers – the first
; points to the last element on the list (zero if the
; list is empty), and the second points to the first
; element in the list (again zero if the list is
; empty).

1 MOV R2, #0
2 STR R2, [R0]
3 SWP R2, R0, [R1]
4 STR R0, [R2]
5 CMP R2, #0
6 STREQ R0, [R1, #4]

Lines 1 and 2 set the link pointer of the element being added to zero,
since it is the last element. Line 3 atomically gets the address of the

2 ARM Architecture Reference Manual, by Dave Seal. Addison-Wesley Professional.

838 ENSURING PERFORMANCE

current last element and sets the element being added as the last element.
Line 4 sets the link pointer of the previous last element to the one just
added. Lines 5 and 6 set the element just added as the first element if the
list was initially empty. It can be seen that this algorithm works even if
the function is called simultaneously in multiple threads.

2. Disabling interrupts
This method is only available kernel side, and it must be used if any of
the contending tasks runs in an ISR, unless a lock-free algorithm can be
used. The duration for which interrupts are disabled should not exceed
the maximum time for which the kernel disables interrupts. A good rule
of thumb is that it should not exceed 10 µs.

3. Disabling preemption
This method is only available kernel side and it must be used if any of
the contending tasks runs in an IDFC, unless a lock-free algorithm can be
used. The duration for which preemption is disabled should not exceed
the maximum time for which it is disabled by the kernel. A good rule of
thumb is that it should not exceed 30 µs.

4. Fast mutexes
Use of a fast mutex is the recommended method for mutual exclusion
between kernel-side threads. Both Symbian OS threads and nanothreads
can use it. If the system lock is used, it should not be held for longer than
the kernel holds it. A reasonable rule of thumb for this is that it should
not be held for more than 100 µs.

5. Symbian OS mutexes
Symbian OS mutexes are available to both kernel- and user-side code.
They are slower than methods 2–4, and so we only recommend them
for critical sections that are entered relatively infrequently (periods in
the millisecond range) and for critical sections that contain other nested
critical sections protected by fast mutexes – because fast mutexes cannot
nest. Obviously these mutexes are only available to Symbian OS threads.

6. Threads
Our final method is the use of a single thread to run multiple tasks,
one at a time. This can be the simplest method and should work well
provided that the tasks have similar deadlines and execution times. The
nanokernel’s DFC queues make this method particularly simple to use,
and the different DFC priorities within the same queue can be used to
cope with whatever differences there are in task deadlines. This method
is the slowest since it involves two context switches, instead of a mutex
wait and signal.

For user-side code, only methods 1, 5 and 6 are available. The
RFastLock primitive available to user code is faster than RMutex but it

MAINTAINING REAL-TIME PERFORMANCE 839

does not implement any form of priority inheritance so will generally be
unsuitable for applications requiring real-time guarantees.

18.2.1.3 Algorithm selection

For an application with real-time constraints, the algorithm that you
would choose for a particular function is often different from the one that
you would choose in the absence of those constraints. This is because
you need an algorithm with predictable execution time. This may not
be the fastest algorithm in the average case, and it may be less memory
efficient than other algorithms.

For example, when you are managing a list of N elements, you should
use constant time or logarithmic time algorithms rather than algorithms
that are linear or higher order, unless the value of N is well bounded. So,
you would generally use doubly linked lists rather than singly linked lists
if you need to insert and/or remove items from the middle of the list. If the
list must be ordered according to some key, then you can use a priority
list structure (as in Section 17.3.1.1) if the number of possible key values
is small, or you can use a tree-based structure.

To sort a list of N elements, where N is known, you should prefer heap
sort to quick sort, even though quick sort has lower average execution
time. This is because quick sort has a pathological worst-case execution
time proportional to N2.

Lists come in intrusive and non-intrusive varieties. Intrusive lists require
that the objects on the list include reserved space used for management
of the list, so that the object must ‘‘know’’ what lists it will potentially
be added to. Non-intrusive lists do not make such demands; instead any
memory required for management of the list is allocated dynamically
when the object is added to the list and freed when the object is removed
from the list. For real-time applications you should clearly prefer intrusive
lists, since non-intrusive lists require memory allocation and freeing when
adding and removing elements, which spoils, or at least makes it more
difficult to achieve, real-time behavior.

18.2.1.4 Hardware issues

The design of the hardware places fundamental limits on how well real-
time applications will run on that hardware. I have already mentioned
that memory bandwidth has a large effect on achievable interrupt and
thread latencies.

There can also be other more subtle problems, one example being the
effect of DMA on memory bandwidth. Generally DMA controllers have
higher bus arbitration priority than the CPU, so the CPU is stalled while
DMA accesses occur. This problem is most apparent with high-resolution,
high-color displays which use main memory for the frame buffer.

840 ENSURING PERFORMANCE

Certain peripheral designs can also seriously damage real-time perfor-
mance. Peripherals that generate very frequent interrupts to the processor,
generally as a result of inadequate internal buffering or lack of DMA capa-
bility, can be a particular problem. The archetypal example of this is a
USB controller with no buffering or DMA. Running flat out at 12 Mbit/sec
this will generate an interrupt every 40 µs (one per 64-byte USB packet).
Such a high interrupt rate will use a large proportion of the processor
bandwidth. Even trying to shorten the ISRs by deferring work to a thread
will cause problems, unless the processor is very fast, because the two
thread switches (to and from the thread handling USB) every 40 µs will
use an unacceptable percentage of processor time and will result in
degradation of the USB data transfer rate. Ideally a peripheral delivering
data at this rate would either buffer the data internally or (more likely)
use DMA to transfer data to or from memory without needing processor
intervention. In either case the rate of interrupts would be greatly reduced.

18.2.1.5 Software limitations

The most obvious limitation on real-time software under Symbian OS is
that, with the exception of the bounded kernel services, most Symbian
APIs do not have bounded execution times. Non-kernel APIs such as
file system access and other system servers generally do not provide any
real-time guarantees. One (but not the only) reason for this is that most of
them rely on unbounded kernel services, most notably memory allocation
and freeing.

When you are writing real-time software to run under EKA2, the first
thing to bear in mind is that the standard dynamic memory allocation
primitives do not provide any real-time guarantees. There are two main
reasons for this:

Firstly, the default algorithm used to manage an application’s heap
memory (the RHeap class) is address-ordered first fit, using a simple
linked list of free cells. It may need to search many free cells to find one
that is capable of satisfying an allocation request, or to find the correct
place in which to insert a cell that is being freed.

Secondly, if there is no free cell large enough to satisfy a request,
the algorithm requests more memory from the global free page pool.
Even though a request for a single page can be completed in a known
time, the pool is protected by a mutex which could be held for a long
period if another thread is also performing memory allocation or freeing.
This means that accesses to the global pool cannot be performed in a
known time.

There are two main techniques for avoiding this problem. The first is to
avoid dynamic memory management altogether in time-critical sections
of code. Instead you should allocate all memory blocks at initialization
time and free them when the application or operation terminates.

MAINTAINING REAL-TIME PERFORMANCE 841

The second technique is to replace the standard RHeap allocator with
a custom allocator designed to offer predictable execution times – for
example an allocator based on a small number of fixed block sizes.
The allocator will need to be seeded with a fixed amount of memory
from the global pool when the real-time application initializes. Why didn’t
Symbian provide such an allocator? The address-ordered first-fit algorithm
used by the standard Symbian OS RHeap class is a good general-
purpose algorithm that provides low memory overhead and acceptable
performance for most applications without making any assumptions
about the size and pattern of allocations made by the application.
Custom allocators can take advantage of their knowledge of the particular
application involved, especially of the sizes of allocations made, and
can give real-time guarantees without compromising on space efficiency.
Alternatively, they may trade space efficiency for bounded execution time.
The custom allocator approach has the advantage that any standard library
functions used in the same thread or process also use the predictable
algorithms. Of course this doesn’t help with allocations occurring in
the kernel or in server processes; these must simply be avoided in time
critical code.

Another fundamental limitation of Symbian OS for real-time software
is that it is an open OS. Subject to the restrictions of platform security,
any code, even that which is written long after the mobile phone was
designed and built, may be loaded onto the phone and executed. There
is no way for programs to declare real-time deadlines to the OS, and no
way for the OS to make use of such information. The user could run many
applications, all requiring real-time guarantees, and there is no way for
the OS to indicate that it cannot provide the required guarantees to all the
applications. In the strictest sense, real-time guarantees can only be given
to code supplied with the mobile phone by the manufacturer, and even
then only if aftermarket applications are restricted to the lower levels of
the thread priority spectrum.

As well as ensuring that your code runs quickly enough to deliver
acceptable results without consuming too much power, it’s also essential
to ensure that it doesn’t damage system response times. There are several
places where latency can be measured, and at all of these it can prove a
problem. These locations are in interrupt service routines (ISRs), delayed
function calls (DFCs and IDFCs) and user threads, in order of increasing
response time (illustrated in Figure 18.1). The vast bulk of code in the
system runs in one of these three environments, so it’s very important
not to slow down any of them unduly. The basic problem is how to
enforce and maintain scheduling priority over short timescales? This
is the ‘‘priority inversion’’ problem and hinges on one question: how
long can an urgent process, triggered by some event that is not directly
associated with program execution, be delayed because the system is
busy with a less urgent task?

842 ENSURING PERFORMANCE

Interrupt
dispatcher

ISR

DFC

User process

flow of information

increasing
latency

Figure 18.1 Order of events

Various locks, mutexes and processes in the system contribute to these
delays. The ‘‘worst-case latency’’ is determined by several variables:

• The length of time for which preemption is disabled

• The length of time for which interrupts are disabled

• The length of time for which each mutex in the system is held

• The length of time it takes to change to the higher-priority process.

For a detailed explanation of latencies please refer to Chapter 17, Real
Time.

18.2.2 Reducing ISR latency
The interrupt service routine is the second piece of code to run after
a hardware interrupt has been asserted. The first is the interrupt vector
handler, which has one job – to call the appropriate ISR as quickly as
possible. During the ISR, you can do a little work, or you can queue a
DFC to perform a larger job later when the kernel is less busy, or you can
do both. ISRs must execute quickly because, in systems not supporting
nested interrupts, no interrupt can occur during their execution; the longer
they run, the higher the system’s overall latency. If you need to do a lot of
work in response to an interrupt, you should use a DFC if at all possible.
Since ISRs are the first code that executes in response to a hardware
event, ISR latency is critical to the system’s real-time performance. It must
be kept as low as possible. To ensure that interrupt latency is kept low,
you must not mask interrupts for more than a very few instructions if you
can possibly avoid doing so. Code that was acceptable in a non-real-time
EKA1 environment often masked interrupts for long periods of time while

MAINTAINING REAL-TIME PERFORMANCE 843

servicing peripherals. This is no longer acceptable; you must find a better
method.

Some systems support ‘‘nested interrupts’’. Nested interrupts allow
interrupts to occur during the execution of an ISR, by switching out of
IRQ mode while the ISR runs. This can help to reduce latency at the
ISR level. However, since non-ISR code cannot execute until the last ISR
completes, using nested interrupts will not help to improve DFC or user
thread latency. I discuss nested interrupts in more detail in Chapter 6,
Interrupts and Exceptions.

If your system needs interrupt latency to be even lower than the IRQ
mechanism can provide, you may be able to use an FIQ (Fast Interrupt
reQuest) instead, to provide extremely rapid service for a very few events.
FIQs take advantage of a processor-supported very fast context switch
mechanism to provide very low assertion-to-ISR latency. EKA2 disables
both FIQ and IRQ interrupts in some places, however, so the shortest pos-
sible worst-case latency dictated by the hardware can never be realized.
You can only use FIQs if your hardware supports them. FIQ interrupts
take priority over IRQ interrupts, and can execute their service routines
during ISR execution. FIQs should only be used in cases of dire necessity
and their service routines must complete as quickly as possible, as they
cannot be interrupted by anything else. The FIQ dispatcher is part of the
ASSP, and should always be written in assembly language. Because FIQs
are supported by a large number of banked registers, FIQ service routines
have a lower overhead than IRQ service routines. They do not need to
use the stack as much as an IRQ service routine, which means they may
execute more quickly and pollute the data cache less. The FIQ banked
registers are useful as work registers, but they can’t be used for FIQ-to-FIQ
persistence unless FIQs never queue IDFCs or DFCs directly, only doing it
via an IRQ. The FIQ postamble uses the banked registers as work registers.

I discuss interrupts in general, nested interrupts and FIQs more fully in
Chapter 6, Interrupts and Exceptions.

18.2.3 Reducing DFC latency
DFCs are the basic tool for doing anything in response to an interrupt.
In a real-time environment, there is no time for the interrupt preamble to
prepare the system to offer a full and flexible execution environment for
the interrupt service routine to run in. Because at the time of an interrupt
the kernel could be in almost any state, it’s not possible to access kernel
data structures freely during an ISR. Instead, EKA2 offers DFCs and IDFCs.
These provide a method for your interrupt handler to get work done after
the system exits interrupt mode. In addition to allowing interrupt handlers
to actually get work done, DFCs also encourage you to keep interrupt
routines short, which is a very good thing indeed to do.

Since so much work has to be done in DFCs, their latency is as
important as interrupt latency. While the similarity in names between

844 ENSURING PERFORMANCE

IDFCs and DFCs might lead you to expect that they are different varieties
of the same thing, they are actually completely different. They are usually
treated as quite separate entities, because they behave in very different
ways. Because IDFCs are invoked with the kernel lock equal to 1, there
are some restrictions on which kernel functions they may interact with.
IDFCs are queued by ISRs and will run immediately after the kernel
finishes interrupt dispatch. If you need to do some work to finish servicing
an interrupt, then an IDFC is an obvious place to do it. However, you
should be warned that time spent in an IDFC will increase DFC and user
thread latency. For this reason, you should use IDFCs sparingly and with
care. in fact, we only recommend the use of IDFCs for the implementation
of personality layers and when an ISR needs to make a thread other than
a DFC thread ready. IDFCs run in the order in which they were queued,
so there can be a delay if other IDFCs are pending. Of course, ISRs take
priority over IDFCs and will run before them.

So, if we don’t recommend IDFCs, how about DFCs? Although they
do run later, a high-priority DFC will run almost as soon as the last IDFC
finishes. The only difference between a priority 63 DFC and an IDFC is the
time taken for the scheduler to run and switch to the DFC thread, which
should be of the order of two microseconds. No MMU manipulation or
cache reload penalty is involved, since DFCs run in a kernel thread.

18.2.4 DMA and its impact on latency

DMA has both advantages and disadvantages over programmed I/O. A
DMA controller is an essential part of most phone platforms, as nearly all
of them include DMA-driven display controllers. These display controllers
perform a regular burst of memory accesses every few microseconds in
order to feed a line buffer in the LCD panel driver. Because the display
hardware’s need for pixel data is constrained by the physics of the LCD
panel, the DMA that fills it must have a very high priority if the display
is not to be disrupted by other system activity. Because the display DMA
will have higher priority than the microprocessor core, it is likely that on
occasion the processor will be effectively stalled while the display DMA
completes.

While there is nothing that can be done to alleviate this particular
problem, it’s important to bear it in mind when designing systems that use
DMA while relying upon the low latency of the rest of the system. If your
DMA controller supports multiple priority levels, you should select the
lowest priority level that allows your driver to work appropriately. If your
DMA needs to be of a very high priority, or your DMA controller does
not support multiple priority levels, make sure the transfers are short or,
at least, that the latency they will introduce is acceptable to your system.

On the other hand, DMA controllers can transfer data very quickly
without polluting the CPU cache. By leaving the CPU cache populated,

MAINTAINING REAL-TIME PERFORMANCE 845

latency to the ISRs and exception vectors can be significantly improved
compared with a software copy – improvements of the order of hundreds
of cycles are not uncommon.

18.2.5 Priority inversion

Another source of DFC and user thread latency is priority inversion
caused by disabling preemption. Anything that disables interrupts or
holds certain locks (for example, the preemption lock) too long will
prevent the scheduler from running when it ought to, causing a priority
inversion (that is, a thread that should have been suspended will continue
to run while the higher priority thread that should run in its place will
remain suspended). IDFCs and DFCs will not run until the scheduler is
able to run. From the point of view of any thread that needs the processor,
this appears as if the scheduler was slow in returning control. If you can
possibly avoid it, do not claim any system locks. If you must claim them,
use them as briefly as possible to reduce priority inversion time. The
preemption lock (also known as the kernel lock) and the system lock are
particularly important in this respect, as they stop important scheduler
processes from proceeding. Other kernel locks are sometimes held for
long periods in other places, but they should still be used judiciously.

Unless you are implementing a personality layer, there are no points
where the board support package will be entered with the kernel locked.
The personality layer N-state extension hooks are the only place where
the kernel calls out to the BSP while it is locked. If you are implementing
such functions, be sure they run quickly.

As I explained earlier, IDFCs also run with the kernel locked.

18.2.6 DFCs and DFC threads

As I explained in Chapter 6, Interrupts and Exceptions, DFCs have one
of eight priorities (between 0 and 7) and belong to a DFC thread. Higher
priority threads obviously run their DFCs before lower priority threads,
and within one thread, the kernel runs higher priority DFCs before lower
priority ones. This means that you need to choose your DFC thread
and priority carefully to ensure that your DFC does not prevent more
important DFCs from running when they need to. Since many services
will use DFCs, there is the potential for wide-ranging performance impact.
If you have created your own DFC thread, it may be acceptable for your
DFCs to block, run indefinitely or otherwise not terminate for some time.
But be aware that while a DFC is running, no other DFCs in the same
thread will receive a share of the processor. It is completely unacceptable
to place blocking or slow DFCs in system DFC threads as this will severely
damage performance. If you have multiple drivers provided as a unit, for
example in a base port, it may be desirable to create a DFC thread and

846 ENSURING PERFORMANCE

share it between all the drivers. Be aware that if any of your DFCs block,
there could be interactions between otherwise separate drivers that may
not be predictable and will probably not be desirable.

18.2.7 Reducing user thread latency

Neither DFCs nor user threads can be scheduled while the preemption
(kernel) lock is held. The system lock prevents user-side memory from
being remapped, so must be claimed before memory copies between
user-side processes, or between kernel-side and user-side memory take
place; otherwise an interrupt or a reschedule could occur during the
copy and cause problems by removing memory that was allocated and
available at the start of the copy. For this reason, it’s essential to avoid
large memory copy operations. In fact, IPC copies are paused every
512 bytes to allow the system lock to be checked for contention. If
contention is detected, the system lock is released and relocked, allowing
the contending thread to claim the system lock and run in the intervening
period. If you need to copy large areas of user-side memory around from
kernel-side routines, it is important to bear the duration of the system
lock in mind. It might even be worth thinking about redesigning your
architecture to use a shared chunk instead of copying.

18.2.8 Mutual exclusion techniques

When code runs in an environment in which it may be interrupted, some
sections of that code may need to be ‘‘protected’’ from being executed
out of order, from being re-entered, or from their data structures being
modified ‘‘behind their backs’’. The most common way of doing this is
with a mutex. Obviously, since mutexes revolve around preventing code
from running until it is convenient for it to do so, this can have some
impact on latency, and so care is needed to avoid adverse consequences.

Disabling interrupts: Since multitasking in the system is based on inter-
rupts, a very lightweight way to achieve exclusion from re-entry for a
very short sequence of code is to disable interrupts before it, and re-
enable them afterwards. This is almost never an appropriate thing to do
for long pieces of code, and may break in multiprocessor environments
(for example, environments like OMAP where the DSP may be running
concurrently to the ARM processor) or in cases where a call during
that code causes a reschedule. Obviously, since no interrupts can be
serviced while interrupts are disabled, this strategy has the potential to
significantly increase worst-case interrupt latency. You should only ever
disable interrupts for a very few instructions, and you should consider
30 µs with interrupts disabled the absolute maximum. For example, the
kernel queue handling functions disable interrupts only for the innermost

MAINTAINING REAL-TIME PERFORMANCE 847

critical portion of their execution. Some kernel functions require inter-
rupts to be enabled on entry, so this strategy is not suitable for driver
operations that may interact with them.

Writing your code so that it doesn’t need to be locked (a lockless
implementation) is another possibility: Lockless implementation isn’t
really a mutual exclusion method, but I’ve included it here because it
falls into the same general category of techniques for ensuring consistency
in concurrent code.

Disabling preemption: If your code does not need protecting from the
effects of interrupt service routines themselves, it may not be necessary to
disable all interrupts. Merely holding the kernel lock is enough to prevent
rescheduling from taking place. This is enough to prevent another thread
from interfering with your protected code, and has the advantage that it
does not increase interrupt service latency at all. However, DFCs will not
run until the kernel lock is released, and, as we noted earlier, holding
the kernel lock constitutes a potential priority inversion, so you must not
hold it for long: 30 µs should be considered a maximum.

Using a fast mutex: The nanokernel provides a very fast special case of
mutex. The interface to fast mutexes is the class NFastMutex, this class
is exposed via NKern:: methods. Fast mutexes have a few limitations on
their use. For example, waiting on a fast mutex constitutes blocking, so
you cannot do this in an IDFC or ISR. You also must release fast mutexes
before your thread attempts to terminate or block. Fast mutexes can’t be
nested, either. These limitations are more fully explored in Chapter 3,
Threads, Processes and Libraries. The nanokernel will ensure that threads
are not suspended while they hold a fast mutex. It will treat threads that
hold a fast mutex as if they are in a critical section and will not suspend
them while they hold the mutex.

Using a conventional mutex: The Symbian OS layer provides various
sophisticated synchronization objects, including a fully featured mutex,
a condition variable object and a counting semaphore. Symbian OS
semaphores support multiple waiting threads (unlike nanokernel fast
semaphores) and release waiting threads in priority order. As I discussed
in Chapter 3, Threads, Processes and Libraries, Symbian OS mutexes are
fully nestable and they support priority inheritance. Symbian OS mutexes
are covered in Chapter 3, Threads, Processes and Libraries.

The kernel and memory model use Symbian OS mutexes extensively to
protect long-running critical code sections. However, these wait objects
are comparatively heavyweight and the overhead of using them may not
be worth the convenience. What’s more, since they are implemented by
the Symbian OS layer, they can’t be used in code that runs at nanokernel
level. If you need to block or wait while holding a mutex, or you may
have more than one waiting thread, you must use a Symbian OS mutex. If

848 ENSURING PERFORMANCE

you will hold the mutex for longer than 20 ms, you should consider using
a Symbian OS mutex in any case, as the overall overhead will be small
when the frequency with which the mutex code will run is considered.

Using a DFC queue thread: Because the DFCs in a DFC queue thread will
be called in priority order, they can provide a useful measure of mutual
exclusion. The DFCs in a single queue will never execute concurrently.
This means that the queuing mechanism guarantees that any one DFC
can never interrupt another in the same thread. This can provide all the
protection you need to manage some forms of buffer.

18.2.9 Memory allocation
Nanokernel threads, IDFCs and interrupt service routines cannot use
the standard Symbian OS memory allocation APIs, since they obviously
contain internal state, and this may be inconsistent when the relevant
mutex is not held. ISRs and IDFCs cannot block, as described in Chapter 6,
and therefore they cannot wait on a mutex. Since this means that they
cannot claim the mutex, they can’t guarantee allocator consistency and
therefore cannot claim memory. As we’ve seen, the nanokernel does
not contain any code relating to memory allocation and depends on the
Symbian OS layer to allocate memory for it.

The RHeap allocator conducts a linear search through the array
describing the cells in the arena it allocates from, looking for free
cells; when it finds a free cell it then has to check if the cell is large
enough to contain the request. This process is memory-efficient but not
particularly fast and may not complete in a reasonable length of time.
Also, if interrupts could allocate memory, the allocator would have to
be re-entrant. The design of a re-entrant allocator is extremely difficult
and would significantly complicate the memory system’s overall design.
Therefore these methods are not available to any real-time process.

If you’re trying to write code to run quickly, you may choose to
avoid allocating memory during sections that must run quickly. There are
several approaches to this problem.

Avoid allocating memory at all: Running entirely from stack is fairly
efficient, and is an option available everywhere in the system. Even
interrupt routines have stack, but stack space under Symbian OS is very
limited, and of course stack-based (‘‘automatic’’) variables are local, so
they may not be useful as structures to be passed around by reference.
Different contexts have different stacks. Be aware that the stack limit
under Windows (that is, the emulator) is not the same as it is in a real
device. Windows has a larger stack limit than the real devices do, so
code may fail to run on real devices even if it works on the emulator.

Allocate statically: If you allocate a single block of heap memory when
your program starts, you can sub-allocate parts of it by defining a data

MAINTAINING REAL-TIME PERFORMANCE 849

structure containing all the necessary objects. This approach is extremely
efficient and has almost no overhead, as no allocation process happens
at run time. Many video applications use this approach, and it works
well, but it is very inflexible. While it can easily become unmanageable,
it has the advantage that it makes it easy to integrate C++ with assembly
language routines, since all the offsets from the start of the allocated block
are known at compile time and can be included statically in the source.

Write your own allocator: This is an approach similar to static allocation,
but more flexible. You allocate a large block of memory at startup time
and then use a simple allocator routine to distribute it. There are many
high-performance memory allocation routines discussed in the literature;
some work by using a hash table, thereby reducing the general case time
needed for an allocation, and others use fixed-length cells, simplifying
the search. Some high-performance network protocol implementations
use both fixed-length cells and hash tables. These methods are extremely
effective in reducing time taken to allocate memory. In Symbian OS
you may even choose to replace RHeap’s allocator for your application,
so that all allocations will benefit from your faster algorithm. This is
discussed in Section 3.3.1.3.

18.2.10 Performance in the emulator
The EKA2 emulator provides a few ways to help application developers
simulate the performance of a real mobile phone. Only one of these, the
emulation LFFS media driver, is of production quality, but the others are
there to try if you think that they might help.

18.2.10.1 Media performance

We provide a way to change the general performance of the file system.
You can inject small, not-too-noticeable delays into the file system code,
by setting the ‘‘DiskRead’’ and ‘‘DiskWrite’’ values in the emulator
initialization file, epoc.ini. These values specify the read and write
speed to emulate in units of microseconds/KB, and we act on them by
injecting delays into file system calls using the millisecond timer. This is
still at the experimental stage, and so is rather approximate.

You can change the performance of the LFFS media driver in a more
robust way. The [emulation] LFFS media driver, which uses a memory
mapped file for the flash image, can be parameterized by settings in
epoc.ini to have performance similar to most NOR flash hardware.
Coupled with the LFFS file system, this gives quite realistic performance
for this file system on a PC.

18.2.10.2 CPU performance

The HalData::ECpuSpeed HAL item is read/write on the emulator,
which means that by writing a low value to it, you can slow down the

850 ENSURING PERFORMANCE

speed of the emulated CPU. We act on this item by making the emulator
timer system consume some fraction of the CPU time when the emulator
is busy.

18.3 Summary

In this chapter I have discussed techniques that will help you to improve
the performance of your software. However, all the tweaks and tricks in
the world are no substitute for a good, efficient design. In a deeply object-
oriented environment it is easy to lose sight of what is really happening
to your processor and memory. I hope that this chapter will have made
the underlying processes a little more familiar to you.

Techniques such as unrolling and flattening recursive routines into
iterative ones can improve the performance of an algorithm, but if that
algorithm is inherently suboptimal, it’s better to avoid it. A little care
during the design phase of your project can save a lot of scraping for
cycles later on.

Symbian OS mobile phones are getting faster and faster every year, and
there is no end to this scaling in sight. The software stacks that run on them
are getting larger and more powerful, and users are expecting more and
more from their phones. EKA2 was designed to provide capabilities for the
next generation of devices, smaller, faster and cheaper than ever. In the
rich, real-time environment it provides, performance is more important
than ever. Every cycle consumes a few nanojoules, and every nanojoule
has to come out of a battery that is more compact than the one fitted
to the last model. Cycles are an endangered species; treat them like the
precious commodity they are.

Appendix 1
Glossary

The following glossary explains the meanings of some of the less common
and Symbian OS-specific acronyms used within this book.

ABI Application Binary Interface
ACM Abstract Control Model
AGCH Access Grant CHannel
AP Application Processor
ASIC Application-Specific Integrated Circuit
ASID Application Space IDentifier
ASSP Application-Specific Standard Part

BBM Bad Block Manager
BCCH Broadcast Control CHannel
BP Baseband Processor
BPP Bits Per Pixel
BSP Board Support Package
BPK Base Porting Kit

CBCH Cell Broadcast CHannel
CDC Connected Device Configuration
CISC Complex Instruction Set Computer
CLZ Count Leading Zeros
CPL Current Privilege Level
CPSR Current Program Status Register
CS Code Segment

DACR Domain Access Control Register
DDK Device Driver Kit
DFC Deferred Function Call
DMA Direct Memory Access
DSA Direct Screen Access
DSP Digital Signal Processor

852 GLOSSARY

ECC Error Correction Code
EDF Earliest Deadline First
EIP Extended Instruction Pointer
ELF Extended Linker Format
EKA1 EPOC Kernel Architecture 1
EKA2 EPOC Kernel Architecture 2
ESP Extended Stack Pointer

FAT File Allocation Table
FACCH Fast Associated Control CHannel
FDB File Data Block
FIFO First In, First Out
FCCH Frequency Correction CHannel
FIQ Fast Interrupt reQuest
FOTA Firmware Over-The-Air
FTL Flash Translation Layer

GC Graphics Context
GDT Global Descriptor Table

HAL Hardware Abstraction Layer

IAT Import Address Table
ICE In-Circuit Emulator
IDB Indirect Data Block
IDE Integrated Development Environment (if related to

debugging)
Integrated Drive Electronics (if related to disk drives)

IDFC Immediate Deferred Function Call
IDT Interrupt Descriptor Table
IMB Instruction Memory Barrier
IPC Inter-Process Communication
ISR Interrupt Service Routine
ITC Inter-Thread Communication

LDD Logical Device Driver
LFFS Log Flash File System
LRTA Legacy Real-Time Application
LRU Least Recently Used

MDF Multimedia Device Framework
MMC Multi Media Card
MMF Multi Media Framework
MMU Memory Management Unit

OOM Out-Of-Memory

GLOSSARY 853

OPL Open Programming Language, the
OSB Off-Screen Bitmap
OTG On-The-Go

PASR Partial Array Self Refresh
PCH Paging CHannel
PCM Pulse Code Modulation
PDD Physical Device Driver
PIC Programmable Interrupt Controller
PIL Platform-Independent Layer
PIM Personal Information Management
PM Power Management
PSL Platform-Specific Layer

QoS Quality of Service

RACH Random Access CHannel
RCA Relative Card Address
ROFS Read Only File System
RPL Requestor Privilege Level
RTC Real-Time Clock
RTOS Real-Time Operating System

SACCH Slow Associated Control CHannel
SCH Synchronization CHannel
SDCCH Stand-alone Dedicated Control CHannel
SDK Software Development Kit
SID Secure IDentifier
SOC System-On-Chip
SPC SCSI Primary Commands
SWI SoftWare Interrupt

TCB Trusted Computing Base
TCE Trusted Computing Environment
TCH Traffic Channel
TCSR Temperature Compensated Self Refresh
TLB Translation Look-aside Buffer
TR Task Register
TSS Task State Segment
TTBR Translation Table Base Register
TWIP TWentIeth of a Point

UART Universal Asynchronous Receiver/Transmitter
UDC USB Device Controller
UID Unique IDentifier

854 GLOSSARY

VFP Vector Floating Point
VIC Vectored Interrupt Controller
VID Vendor IDentifier
VT Video Telephony

XIP eXecute In Place

Appendix 2
The E32ImageHeader

This section describes the image header for Symbian OS executable
files, as defined in the file F32IMAGE.H. There are three formats for the
E32ImageHeader:

• Basic format – header contains no compression, security or version
number information

• J-format – header may contain compression information. In addition
to the basic format fields, if the compression type (at offset 1C) is
nonzero, the header includes an extra field holding the uncompressed
size of the file

• V-format – the executable contains versioning and security informa-
tion. In addition to the basic and J-format fields, the header includes
extra security and versioning related fields.

Basic format fields:

Offset
(hex)

Description of field

00 UID 1

04 UID 2

08 UID 3

0C Checksum of UIDs.

10 Signature (‘‘EPOC’’ = 0x434F5045).

14 CRC-32 of entire header for V-format, CPU identifier for original and
J-formats.

856 THE E32IMAGEHEADER

18 Version number of this executable – a 16-bit major and a 16-bit
minor version number. This is used in link resolution (V-format only).
In original format, this contained a checksum of the code, but this
was never used.

1C Type of compression used (UID or 0 for none).

20 Version of PETRAN/ELFTRAN which generated this file.

24 Time at which file was generated, in standard EPOC encoding
(microseconds since 00:00:00 01-01-00AD).

2C Flags field – see later in this appendix for more details.

30 Code size (includes constant data, IAT and export directory).

34 Initialized data size.

38 Heap minimum size (only used for EXEs).

3C Heap maximum size (only used for EXEs).

40 Stack size (only used for EXEs).

44 BSS (zero-filled data) size.

48 Offset in code of entry point.

4C Code base address (where code is linked for).

50 Data base address (where data is linked for).

54 Number of DLLs referenced.

58 Offset into the file of the export address table.

5C Number of entries in export address table.

60 Size of text section (offset of IAT within code section).

64 Offset in file to code section.

68 Offset in file to data section.

6C Offset in file to import section.

70 Offset in file to code relocations.

THE E32IMAGEHEADER 857

74 Offset in file to data relocations.

78 Priority of this process (only used for EXEs).

7A CPU (0x1000 = X86, 0x2000 = ARM).

For J-formatted headers, if the ‘‘Type of compression’’ field is nonzero,
then the following field will be present. For V-formatted headers, it is
always present:

7C Uncompressed size of the file.

For V-formatted headers, the following fields will be present:

80 Security information (capabilities, secure ID, vendor ID).

90 Offset from start of code section to exception descriptor (for C++
exception unwinding) + 1. Bit 0 is set if this is valid, bit 0 is clear if
there is no exception descriptor.

94 Spare.

98 Size of bitmap description holes in the export table.

9A Format of bitmap describing holes in the export table (described later
in this appendix).

9B Bitmap describing any holes in the export table. This is a variable
length field.

The flags field at offset 2C in the header is a bitmapped field, defined as
follows:

Bits Size in
bits

Description

0 1 Executable type:
0 – EXE
1 – DLL

858 THE E32IMAGEHEADER

1 1 Whether to call entry point (not used in EKA2):
0 – call entry point
1 – don’t call entry point

2 1 Whether this is a fixed address EXE:
0 – not fixed address
1 – fixed address

4–3 2 ABI:
0 – GCC98r2
1 – EABI

7–5 3 Entry point type:
0 – EKA1
1 – EKA2

23–8 16 Reserved

27–24 4 Header format:
0 – Basic
1 – J-format
2 – V-format

31–28 4 Import format:
0 – Standard PE format
1 – ELF format
2 – PE format without redundant copy of import ordinals.
Standard PE format is only used with original and J-format
headers. V-format headers are either ELF or PE without
redundant import ordinals.

For V-formatted headers, the field describing the format of the export
table bitmap may have one of the following values:

Value Description

00H No holes, all exports are present.

01H A full bitmap is present, that is, there is one bit for each export
directory slot – a 1 indicates export present, a 0 indicates export
absent.

02H A sparse bitmap is present (granularity 8). This consists of two
sections. The first section contains one bit for each group of eight

THE E32IMAGEHEADER 859

consecutive export directory slots. A 0 bit indicates that all these slots
contain valid exports and no further description of them is necessary.
A 1 bit indicates that at least one of the eight exports is absent, and
there is a bit mask byte in the second section describing which of the
eight is present. The bytes in the second section occur in the same
order as the bits in the first section.

FFH XIP file.

Appendix 3
The TRomImageHeader

This section describes the image header for Symbian OS executable files
in ROM. This is defined in the file E32ROM.H:

Offset
(hex)

Description of field

00 UID 1

04 UID 2

08 UID 3

0C Checksum of UIDs.

10 Entry point of this executable (absolute address).

14 This executable’s code address.

18 This executable’s data address.

1C Code size (includes constant data).

20 Text size (code size – size of constant data).

24 Data size.

28 BSS (zero-filled data) size.

2C Heap minimum size (only needed for EXEs).

30 Heap maximum size (only needed for EXEs).

34 Stack size (only needed for EXEs).

862 THE TROMIMAGEHEADER

38 Address of DLL reference table. (This is a list of the DLLs referenced
by this executable which have static data.)

3C Number of functions exported by this executable.

40 Export directory address.

44 Security information (capabilities, secure ID, vendor ID).

54 Version number of the tools used to generate this image file.

58 Flags field (see below).

5C Priority of this process (only needed for EXEs).

60 Data and BSS linear base address – where this image file expects its
data to be when it runs.

64 Next extension. Address of ROM entry header of subsequent
extension files. This field is only used if there is more than one
extension. The first extension is found using the TRomHeader.

68 A number denoting the hardware variant – used to determine if this
executable can run on any particular system.

6C The total data size (including space reserved for DLLs – for fixed
address EXEs in moving memory model).

70 Version number of this executable – a 16-bit major and a 16-bit
minor version number. This is used in link resolution.

74 Address of exception descriptor for this image (used in C++ exception
unwinding). Zero if no exception descriptor present.

The flags field contains the following flags:

Bit
number

Description

31 KRomImageFlagPrimary – set if the file is a primary, that is, a
kernel image.

30 KRomImageFlagVariant – set if the file is a variant DLL image.

29 KRomImageFlagExtension – set if the file is a kernel extension.

THE TROMIMAGEHEADER 863

28 KRomImageFlagDevice – set if the file is a device driver.

27 KRomImageFlagSecondary – set if the file is a secondary, that is,
the file server.

26 KRomImageFlagData – set if the file has .data/.bss and is not an
extension or variant.

25 KRomImageFlagDataInit – set if the file or any of its
dependencies have .data or .bss. Linkages to EXEs are not counted in
this assessment.

24 KRomImageFlagDataPresent – set if the file or any of its
dependencies have .data or .bss. Linkages to EXEs are counted.

23 KRomImageFlagExeInTree – set if this file links directly or
indirectly to an EXE. If this is the case the EXE is listed first in this file’s
DLL reference table.

5, 6, 7 3-bit field indicating the entry point type – values the same as in
E32ImageHeader.

3, 4 2-bit field indicating the ABI – values the same as in
E32ImageHeader.

2 Set if this image is a fixed address EXE.

0 Set if this image is a DLL, clear if it is an EXE.

Appendix 4
Bibliography

ARM System-on-Chip Architecture (2nd Edition), by Steve Furber.
Addison-Wesley Professional.
ISBN: 0201675196

Symbian OS Explained: Effective C++ Programming for Smartphones, by
Jo Stichbury.
Symbian Press.
ISBN: 0470021306

ARM Architecture Reference Manual, by Dave Seal.
Addison-Wesley Professional.
ISBN: 0201737191

Symbian OS C++ for Mobile Phones, Volume 1: Professional Develop-
ment on Constrained Devices, by Richard Harrison.
Symbian Press.
ISBN: 0470856114

Universal Serial Bus Specification Revision 2.0
www.usb.org

Liu, C.L. and J.W. Layland, ‘‘Scheduling algorithms for multi-programm-
ing in a hard real-time environment,’’ Journal of the Association of
Computer Machinery (ACM), 20(1), Jan. 1973, pp. 46–61.

Leung, J.Y.T. and J. Whitehead, ‘‘On the complexity of fixed-priority
scheduling of periodic, real-time tasks’’, Performance Evaluation (Nether-
lands) 2(4), Dec. 1982, pp. 237–250.

866 BIBLIOGRAPHY

For up-to-date information on EKA2 and phones developed on it, please
consult the Symbian website www.symbian.com

Information on current and forthcoming books can be found on the
Symbian Press webpage www.symbian.com/books

Index

A: drive 396, 574
A class 193
ABI see Application Binary

Interface
ABLD tool 175
AbortNow 472
aborts
see also exceptions
concepts 208–9, 210–19,

236–49, 262
AbsoluteTimerExpired 671,

683–5
abstract allocator class, concepts

302–4
Abstract Control Model (ACM)

604–12
accelerators, multimedia 19–20,

42
accepted message-state

client-server ITC 141–3
kernel-side messages 149–50

‘accepting’ messages, client-server
ITC 132–43

access counts, kernel objects
163–73

access issues
data-caging concepts 327–30,

345–6
files 128–9, 327–30, 336–86,

409–10
ACM see Abstract Control Model
Activate 450–6
active mode 662, 676, 716

active objects 2–3, 120–6,
231, 273, 430, 490–4,
502–48, 568–74, 763–4,
787–8

see also asynchronous
operations; event-driven
programs

TRequestStatus 231, 273,
430, 493–4, 502–48,
570–4, 763–4, 787–8

Add 246, 341, 674
AddEvent 493–4, 671,

756–62
AddFileSystem 341
AddHalEntry 496–8
address spaces

homonyms 275–8, 288–91
moving memory model

275–87, 421–2, 651
multiple memory model

287–96, 426, 650–1
processes 93, 102–15,

252–62, 275–91
synonyms 276–8, 288–91
virtual/physical addresses

254–62, 275–91, 297–8,
740–2

Adjust 270–1
AdjustDoubleEnded 270–1
Again 198–201
AGCH, GSM protocol 789–807
agents, debuggers 616–37,

640–3
alarms

audio 40
system alarms 204–5, 745

alerts, audio 40
algorithms

allocation strategies 306, 829,
848–9

defragmentation 736
lock-free algorithms 836–9,

847
moving memory model 283–7
multiple memory model 294–5
performance issues 826–50
scheduling 767–823
selection issues 839
workload analysis 729–30

alignment issues, efficient code
832–3

AllFiles 328–30
Alloc 302–5
Allocate 270–3
AllocateSupervisorStack

272–3
AllocateUserStack 272–3
allocation strategies
see also free-store allocators
algorithms 306, 829, 848–9
chunks 14–15, 95–7, 160,

166, 173–7, 184–7, 192,
264–73, 278–87, 292–4,
298–309, 562–74, 638–9

comparisons’ tables 309–10
efficient code 829, 848–9
failures 311–14

868 INDEX

allocation strategies (continued)
free-store allocators 251–2,

299–306, 309–10, 742–5,
848–9

heaps 298, 299–306, 848–9
memory 293–4, 298–309,

559–62, 638–9, 829,
848–9

performance issues 829, 848–9
allocator APIs, concepts 251–2,

300–1
AllocLen 302–5
AllocShadowPage 640
AllocSize 302–5
ALWAYS BUILD AS ARM 24–5
ANI files 442–3
Animate 444–56
animation DLLs

client communications 448–50
client-side code 453–6
concepts 429–36, 442–56
creation 442–3
handwriting example 442–56
pointer events 450–2
sending events 452–6
sprite anims 443–56
types 443–4

anonymous chunks
see also chunks
concepts 308–9

AP see application processor
APIs see Application Programming

Interfaces
AppendHandler 673–4
appendices 851–66
Application Binary Interface (ABI)

413–27
application processor (AP)
see also System-on-Chip
concepts 17–43, 826–31

Application Programming
Interfaces (APIs) 1–2,
118–44, 150–60, 188–9,
231–6, 243–6, 262–73,
298–310, 320–6, 335–46,
365–7, 614–59, 669–76,
684, 732–3, 758–62

Application Space Identifiers
(ASIDs) 28, 288–9, 292–5

Application-specific Integrated
Circuits (ASICs) 8, 10,
11–13, 19–29, 194–5,
483–4, 488

see also System-on-Chip
concepts 19–29, 620–3

Application-specific
Semi-conductor Parts (ASSPs)

see also System-on-Chip
concepts 20–9

Application-Specific Standard
Product (ASSP), concepts 4,
9–10, 12–13, 14, 187–95,
220–36, 246–9, 479–87,
552–62, 577–9, 596–601

applications
see also executables;

processes; software
basic concepts 3–4, 210, 318,

476–7, 825–50
domain manager 751, 756–62
LRTA 808–23, 835–50
multi-tasking aspects 3–4,

13–15
platform security 318
priorities 4–7, 13–15, 210,

810–23, 825–6, 834–50
shutdown 431–74, 535–43,

737, 750–62
windows 457–62

architectures
see also ARM...; EKA2...;

X86...
F32 system architecture 333,

335–86, 424, 579, 656–8
kernel architecture 4, 6–13,

23, 187–95, 251–3, 783–8
shutdown options 751–62
software layering 11–13, 43,

47–9, 187–95, 252–314
Symbian OS kernel architecture

4, 6–13, 187–95, 251–3,
262–73, 783–8

ARM9 826–7
ARM11 827–8
ARM926 831–3
Arm 192–3, 654–6
ARM architecture 20–8, 210–15,

220–49, 255–62, 271,

275–87, 300–4, 421–2, 426,
620–3, 634–7, 642, 652–3,
738–9, 775–9, 797–807,
826–50

debuggers 620–3, 634–7, 642,
652–3

exceptions 210–15, 220–36,
237–49

memory model 255–62,
274–87, 300–4, 421–2,
426

MMU features 255–62,
274–87

performance issues 826–50
RealView compiler 387, 621–3
registers 212–15, 220–36,

237–49, 256–62, 775–9
ARM CPU software layer, concepts

12, 15–16, 19–29, 31–3,
41–2, 47–9, 66–71, 100–12,
161, 173, 179–80, 187–95,
210–15, 220–38, 252–3

ARM Ltd 20, 23–5
ARM v3 274
ARM v5
see also caches
concepts 24, 27–8, 274–8,

287, 294, 642, 826,
829–31, 833–4, 836–9

ARM v5TE 24, 27, 826
ARM v6
see also caches
concepts 28, 271, 274, 287,

288–95, 319–20, 829–31,
836–9

never-execute bit 319–20
ARM v7 426
ARM VFP (vector floating point)

241, 246–9
ArmMmu 193–4
ArmVectorSwi 176

arrays 11, 30, 95–7, 154,
168–73, 816–21

classes 11
object indexes 168–73

ASCII code 166, 389–90,
398–400, 579, 826

Asic 194–5, 483–4, 488, 496,
654–6, 682, 689, 743–5

INDEX 869

see also variant extensions
AsicInitialise 483–4
ASICs see Application-specific

Integrated Circuits
ASIDs see Application Space

Identifiers
Assabet platform 10, 787–8
assembler code 12–13, 192–3,

219–24, 826–7, 849
assp.h 194–5
ASSP see Application-Specific

Standard Product
ASSPs see Application-specific

Semi-conductor Parts
AsyncClose 166
asynchronous message queues
see also inter-thread

communications
concepts 145–60, 531–43
sending methods 137–50
visibility issues 146

asynchronous operations
145–60, 344, 350–8, 362–4,
490–4, 501–2, 527–43,
544–8, 568–74, 787–8

see also active objects
AsyncNotifyChanges 91
atomic instructions, concepts

776–9, 836–9
attached state, state machine

134–9
attributes, processes 96
audio 17–21, 39–40, 92, 307
see also multimedia
AP 19–21
BP 19, 39–40
data types 39–40
latency 39–40
multimedia 39–40
voice calls 19, 39–40

Available 302–5
awaiting-message state, state

machine 130–43

Babbage, Charles 161
backup behind, drawing 469–70
backup content windows, drawing

467–8

backups, shutdown 751
backwards compatibility,

client-server ITC 139
Bad Block Manager (BBM)

379–85
base area, client windows 465–6
base classes 12–13, 124–6,

161–2, 442–3
see also TDes...

Base Port Kit (BPK) 43, 483
base porters 689, 704
base support package, concepts

11–13, 43
baseband processor (BP)
see also telephony stack
audio 19, 39–40
concepts 9, 17–20, 39–40,

795–7
function 795–6

baseline instruction set, ARM v5TE
24

batteries 17–18, 30, 40, 41–2,
334–5, 376, 586–7,
659–736, 795–7, 828

see also power...
chargers 795–7

BBM see Bad Block Manager
BCCH, GSM protocol 789–807
BeginRedraw 469
bibliography 865–6
binary searches, efficiency benefits

826
Bind 232–6, 814–21
bit fields, handles 167–8
BitBlt 455–6
BitBltMasked 455–6
bitmaps 432, 444–56, 464–71
blank windows, drawing 467
blocks

BBM 379–85
FDBs 369–75, 829
memory 262–73, 298–310,

368–75, 379–85, 747–50,
779, 822–3, 829

threads 49–62, 70, 76, 80,
98–112, 351–8, 544,
780–8, 822–3

Bluetooth connectivity (BT) 9,
39–40, 42, 616, 807–8

Board Support Package (BSP),
concepts 43, 740–2, 826,
845

boolean flags 148, 198–201, 352
boot processes
see also EFILE...;

EKERN...; ESTART...
alternative startup scenarios

383–5, 747–50
concepts 10–13, 22–6, 30–2,

41–3, 71, 90–2, 237–49,
310, 335–9, 376, 383–4,
429–30, 476–80, 578–9,
737–64

core loader 30, 383–5,
737–42, 747–50

CPU 738–42
emulator 97, 749–50
exceptions 740–5
extensions 10, 479–80,

738–64, 810
file server 338–9, 383–5, 579,

737–64
GUI 738–42, 747–50
high-level processes 739–42
initialization 739–65
kernel 13–15, 90–2, 338–9,

476–80, 579, 737–64
miniboot program 383–5,

747–50
MMU 738–42
NAND flash memory 30, 32,

383–5, 737–64
null thread 13–15, 90–1,

744–5, 835–50
operating system 737–47
stages overview 737–45,

747–50
supervisory thread 10, 91–3,

479–80, 737–64
Symbian OS 737–47
timeline overview 740–5
window server 429–30, 746–7

870 INDEX

BootEpoc 97, 749–50
bootrom.bin 742
bootstrapping

concepts 737–42, 747–50
definition 737
superpage 742

bounding rectangles, concepts
468–9

BP see baseband processor
BPK see Base Port Kit
breakpoints, debuggers 243, 615,

620, 641–52
Broadcast 86–8
Brutus 10
BSP see Board Support Package
.bss sections, DLLs 113, 421–3,

639, 810
BT see Bluetooth
buffers 25–6, 30–2, 38, 105–12,

160, 225–31, 257–62,
275–87, 320, 340, 344–5,
409, 478–9, 552–74,
610–12, 797–807, 823,
833–4, 839–40

see also caches
file server 340
flash components 32
inter-thread communications

160, 298, 307–10, 562–74,
823

LCDs 38, 550–62
memory 257–62, 275–87,

553–74, 797–807, 833–4,
839–40

MMU 257–62, 275–87,
565–6

shared I/O buffers 160, 298,
307–10, 562–74

TLBs 25–6, 257–62,
275–94

types 833–4
bugs 1–2, 5–6
see also debuggers

burst types, GSM protocol
790–807

bus 20–43, 336–9, 380, 477–9,
500–48, 574–612, 618,
674–5, 703–4, 777–9

see also USB

masters 20–43
slaves 21–9

byte array, properties entity 154

C++ 221, 223, 240, 298–310,
411–13, 427, 482–4, 623,
652–3, 739–40, 743, 849

C32 comms server 118, 606–12
C 1, 298–310, 339–40
C: drive (NAND flash memory)

31, 338, 385, 392, 574–89,
611

Cache 561–2, 642
caches
see also buffers; physical

memory
concepts 25–9, 251–3, 262,

275–87, 288–91, 374–5,
377–81, 396, 560, 642,
830–4

CPU 27–8, 262, 275–8
definition 830–1
efficiency issues 26–8, 253,

262, 830–4
expense 831
FAT file system 377–81
flush requirements 27–9, 41,

278–87, 290, 377–81,
782–3

Harvard cache 277–8, 426,
830–1

hit ratio 26–7
influences 831–2
kernel 28, 251–2
LFFS 374–5
loader 396, 398–400
LRU scheme 377–81
metadata 377–81
NAND flash memory 377–81
removable media 377–81
types 27–9, 277–8
virtual indexes/tags 275–8
‘write-back with dirty bit’ type

377
Cache::SyncMemory...

561–2
CActive 121–6, 536–43
CActive::RunError 536–43

CalcDefaultThreadPriority
108–9

call control stack 18–20, 807
callbacks 590–4, 634–8, 704–5,

709–10, 714, 717, 816–21
calling threads, device drivers

484–7
camera images, RAM requirements

29–30
Campbell, Joseph 315
Cancel 122–6, 197–201,

554–62
CancelSessionOp 353–4,

357–8
CancelTransition 761–2
CancelWakeupEventNotifi-

cation 670, 672–3, 761–2
CAnim 443–56
CAnimDll 443–56
CAnimGc 444–56
capability-model concepts

DLLs 321–4, 487
platform security 317, 320–6,

473–4, 487, 492, 498,
515–17, 522–4, 580–1

rules 320–4
Caps 580–1
capture, events 185, 245–6,

429–30, 493–4, 632–7
CaptureEventHook 185,

429–30, 493–4
CAR 248–9
CAsyncNotifier 380–1
categorization decisions, executive

(exec) calls 183–7
CBase 163, 444–56
CBCH, GSM protocol 789–807
CBitmapContext 444–56
CC, GSM layer 807
CCacheNotifyDirChange

399–400
CCoeControl 468
CDC see Communications Device

Class
CDirCB 347–64, 366–7, 404–6
CDirCB::ReadL 404–6
CDirectScreenAccess 471–2
CDirScan 344
CDisconnectThread 352–8

INDEX 871

CDiskSpaceInfo 363–4
CDMA protocol 9
CDriveThread 352–8
CEikAppUI::HandleCommandL

756
central repository, shared files

330, 345–6
cexec.cia 176–7
CExtChangeInfo 363–4
CF see Compact Flash
CFatDirCB 359–62
CFatFileCB 359–62, 366–7
CFatFileSystem 359–62
CFatMountCB 359–62, 366–7,

379–80
CFatMountCB::DeleteL

379–80
CFbsBitGc 455–6, 471–2
CFbsScreenDevice 432,

471–2
CFileCB 347–64, 366–7
CFileMan 343–4
CFileManObserver 344
CFileShare 347–64, 366–7
CFileSystem 359–62, 365–7
CFormatCB 347–64, 366–7
CFsBitGc 445–56
CFsBitMapDevice 445–56
CFsDispatchObject 347–64
CFsInternalRequest 352–8
CFsMessageRequest 352–62
CFsObjectIx 347–64
CFsRequest 352–8, 361–2
CGraphicsContext 444–56
CHandwriting 453–6
CHandwritingAnim 444–56
CHandwritingAnimDll

443–56
CHandwritingAnimDll

::CreateInstanceL
443–56

CHandwritingAnim
::HandlePointerMove
450–6

CHandwriting
::CreateSpriteL 454–6

CHandwriting
::FillInSpriteMember
454–6

change notification
see also notification schemes
file server 341, 362–4,

379–80, 581, 587
shutdown 754–62
supervisory thread 91–2,

634–7
ChangeWaitingThread-

Priority 820–1
Channel 542–3
ChannelCreate 510–17
ChannelRequest 525–6
channels 675, 709, 713–15,

721–2
see also logical device drivers
definition 478

character events, key events
438–40

CharacterFinished 452–6
charge levels 697–8, 725
CheckDisk 341
CheckSuperPageSignature

190, 263–73
CheckSuspendThenReady

813–21
children, windows tree 458–66
ChunkAddress 568–74
ChunkBase 175–7
ChunkClose 564–74
ChunkCommitContiguous

565–6
ChunkCommitPhysical 565–6
ChunkCreate 563–74
chunks
see also DChunk; RChunk
adjust functions 270–1, 626–7
anonymous chunks 308–9
concepts 14–15, 95–7, 160,

166, 173–7, 184–7, 192,
264–73, 278–87, 292–4,
298–310, 320, 401,
562–74, 610–12, 626–37,
740–5, 782–3

critique 293–4, 307–9,
562–74

device drivers 308–9, 562–74
disconnected chunks 264–70,

272–3, 293–4, 307–10
DMA 307, 562, 568–74

global/local contrasts 264–5,
282–7, 292–4, 307, 308–9,
320, 401, 562

inter-thread communications
160, 173–7, 184–7,
264–73, 292–4, 298–310,
562–74, 744–5, 822–3

memory 14–15, 95–7, 160,
166, 173–7, 184–7, 192,
264–73, 278–87, 292–4,
298–310, 320, 401,
562–74, 610–12, 626–37,
740–5, 782–3

MMU 264–70, 278–9, 565–6
peripherals 562–74
types 264–70, 282–3, 301,

307–9, 562–74
CISC-based CPUs 215–19
CKeyTranslator 436–40
CLafShutdownManagerBase

753–62
clam-shell devices 431–74,

762–3
classes
see also C...; M...; R...;

T...

base classes 12–13
device drivers 499–502,

582–9
DMA 553–62
EUSER library 4–6, 11
iterator classes 506–8
local media LDD 582–7
local media sub-systems

574–89
media drivers 574–89
MMC 594–600
power management 665–736
USB 603–12
windows 456–62

cleanup 70, 75–7, 82–93, 109,
311–13, 835–50

Clear 233–6
ClearPoints 453–6
ClearSprite 453–6

872 INDEX

client API
domain manager 756–62
file server 339–64
window server 429–74

client controller, USB 607–12
client requests 402–27, 430–74,

715–16
client windows

concepts 457–61, 464–6
screen modes 464–5

client-handle property, windows
462–6

client-registered events, window
server 434–5, 752–62

client-server, platform security
324–6, 473–4

client-server ITC
see also inter-thread

communications
backwards compatibility 139
concepts 117–44, 177,

319–26, 335–46, 387,
430–5

cookies 122–9
design issues 119–20, 139–43
historical background 117–19
IPCv2 118, 124, 128–9,

143–4, 319–20
kernel-side architecture

119–20, 124–6, 128–43,
324–6, 473–4

message pools 134–46
‘message-centric’ architecture

118–44
minimal states 139–43
user-side architecture 118–29,

476–548
CLK signal 595–6
clock 35–6, 190, 442, 707,

728–31, 787–8, 829–32
see also timers
frequencies 728–31
inputs 707

Close 76, 122–6, 131–43,
156–7, 165–73, 342–3, 487,
503–8, 517, 528–9, 534–5,
554–62, 588–9, 630

CloseChunk 570–4

closing state, state machine
134–9

clusters
FAT file system 375–81
lost clusters 376–81

CMD signal 595–6
CMountCB 359–62, 365–7
CNotifyInfo 363–4
CNotifyMediaChange 380–1,

581
CObject 164–5, 178
CObjectIx 165
code 1, 5–6, 12–13, 24, 114–15,

252–3, 257–62, 626–7,
638–9, 643–52, 825–50

see also compiled...; software;
source...

alignment issues 832–3
C++ 221, 223, 240, 298–310,

411–13, 427, 482–4, 623,
652–3, 739–40, 743, 849

caches 26–8, 253, 262, 830–2
compressed code 24–5, 28,

31, 382, 387–93, 409,
638–9

efficiency issues 5, 826–50
format 257–62, 387–93,

638–9
general/special cases 828
performance issues 5, 825–50
processes 94–7, 114–15,

252–3, 257–62, 626–7,
638–9, 643–52

real-time performance 834–50
relocated/relocatable code

257–62, 270–1, 390–3,
400–1, 407–10, 626–7

small-request penalties 828–9
testing 826–50
tight loops 826–8
‘unrolling the loop’ techniques

827–8
code section, E32 image file format

388–93, 398–410, 638–9
‘code segment handle’ 419–20
code segments (CS) 215–19,

270–1, 282–7, 400–10,
412–27, 626–7

see also DCodeSeg

attributes 413–27
DLLs 114–15, 271, 400–10,

412–17, 423–7, 626–7
flags 414–16
lists 413–27
restrictions 416–17

code-relocation section, E32 image
file format 390–3, 400–1,
407–10

CodeSegLock 113–15, 413,
416, 418–19, 630

Command 444–56
command buffer, window server

473–4
command storing, redrawing

470–1
CommandBufL 473–4
CommandL 473–4
CommandReplyL 444–56
CommDD 326
Commit 270–1
committing, physical addresses

254–65, 307–8
comms 5–6, 13–15, 92, 118,

779–88, 797–807
comms server 118
Communications Device Class

(CDC) 604–12
Compact Flash (CF) 334
compiled code 24, 31, 387–427,

830, 849
see also code; executables
THUMB 24, 31, 650, 826, 830

Complete 532–43, 716–17
completed queue, nanokernel

timers 195–201, 780–8
components 4, 9–10, 12–13,

17–18, 20–2, 30–3, 40,
41–2, 187–95, 334–5, 376,
586–7, 659–736, 795–7, 828

see also hardware; mobile
phones

composite devices, USB 602–12
composite file system, concepts

384–5
Compress 302–5
compressed files 24–5, 28, 31,

337–9, 382, 387–93, 409,
638–9

INDEX 873

concrete classes 6, 81, 104–12,
149–50, 189–90, 192, 194,
303

see also NFast...; TDfc
conditional variables, threads

85–8
Cone 468–71
Config 503–8, 519–48
Configure 539–43
Connect 342–3, 403–6, 580–9
connectivity features 9, 39–40,

42, 615–59, 807–9
see also Bluetooth...;

Ethernet...; infrared...;
serial...; USB...

debuggers 615–59
constant-data section, E32 image

file format 388–93, 400–1,
638–9

Construct 454–6
ConstructL 445–56
constructors, DLLs 113, 411–12,

427, 445–56
container classes 162, 164–73
Context 627, 637–8
context, executive (exec) calls

177–8, 787–8
context switch times, concepts

7–8, 14–15, 57–8, 102–12,
274–9, 283–6, 293–6, 312,
340–6, 634–8, 774–5,
782–8

CONTEXTID 295–6
contiguous RAM 298–310, 553,

560–2, 565–6, 569–74,
610–12

control blocks 98–112,
198–201, 780–8, 800–7

nanokernel timers 198–201,
780–8, 800–7

scheduling 98–112, 780–8,
800–7

cookies, client-server ITC 122–9
Coppeard, Jon 737–64
coprocessor fault handler 240–1,

246–9
coprocessor instructions 24,

240–9, 741, 743–5
Copy 509–17, 828, 832–3

CopyInterSeg 179
core loader, boot processes 30,

383–5, 737–42, 747–50
corrupt disks 334, 380–1
counts 5–7, 49, 54, 72–5,

78–88, 164–73, 184–7,
196–201, 208, 557–62

see also semaphores
CPL see current privilege level
CPolicyServer 125–6,

325–6, 429–74
cpp files 153, 174, 492–4,

637–40, 654–6
CProxyDrive::DeleteNotify

379–80
CPSR, exceptions 211–15,

221–4
CPU 3–9, 12–36, 41–2, 66–71,

161, 173–215, 251–62, 296,
488, 619–23, 663–5, 668,
678, 680–2, 694–6, 704–36,
738–42, 771–3, 826–31,
839–40, 844–50

boot processes 738–42
caches 27–8, 262
CISC-based CPUs 215–19
emulator performance 849–50
LRTA 808–23
MMU 254–62, 296, 740–2
new CPU family 296
requirements 23, 826–31
RISC-based CPUs 23–4, 215
static priority-based scheduling

771–4
SVR mode 742

CPU software layers 12–29,
31–3, 41–2, 47–9, 66–71,
161, 173, 179–80, 187,
192–5, 210–15, 251, 252–3,
488, 826–31

see also ARM...; Win32...;
X86...

concepts 12–13, 192–5,
210–15, 251

exceptions 210–15
memory model 12–13, 193–4,

252–3
nanokernel 12–13, 192–5

Symbian OS kernel 12–13,
192–5

CPU-specific registers, scheduling
100–12

CpuIdle 671, 681–2, 689,
695–6, 704–5, 709–10,
718–19

crashes 2, 10, 100–12, 179, 307,
311–14, 493–4, 623–4

see also debuggers
post-mortem analysis tools

623–5
CRawDiskCB 347–64
CRawEventReceiver 430
Create... 190, 263–73, 299,

443–56, 498–548, 626–9
CreateAll 815–21
CreateCAnimDllL 443–56
CreateChunk 570–4
CreateInstanceL 443–56
CreateLogicalDevice

498–548
CreatePhysicalDevice

499–548
CreateSpriteL 454–6
CreateVariant 190, 263–73,

743–5, 750
CRequestThread 352–8
CRequestThread::Receive

355–8
critical processes/threads 55–8,

78, 89–90, 102–12, 160, 312,
631–7

critical sections, threads 55–8,
78, 102–12, 160, 312, 631–7

critical state, nanokernel timers
197–201, 780–8

crt0.obj 65
CS see code segments
CS values 218–19
CSaveNotifier 754–62
CServer2 120–9, 131–43,

347–64, 429–74
CServer2::Start 131–43
CServer 144
CServerFs 347–64
CServerLoader

::NewSessionL 403–6
CSession2 120–9, 319–20

874 INDEX

CSession 144, 319–20,
347–64

CSessionFs 347–64
CSessionFs::CreateL

347–64
CSessionFs::Disconnect

348–64
CSessionFs::ServiceL

347–64, 404–6
CSessionLoader::ServiceL

403–6
CShareableSession 144
CSpriteAnim 444–56
CStdChangeInfo 363–4
CSY 606–12
CTimer 442, 448–56
CTimer::Lock 448–56
Ctrl+Esc keys 440
current privilege level (CPL)

216–19
CurrentContext 814–21
CurrentThreadHasCap-

ability 487, 498, 522–48
customization 678–88
cutils.cpp 654–6
CWindowAnim 443–56
CWindowBase 460–2
CWindowServer 429–74
CWsClient 473–4
CWsClientWindow 458–62
CWsGroupWindow 458–62
CWsRootWindow 458–62
CWsScreenDevice 464–6
CWsTopClientWindow 458–62
CWsWindow 461–2
CWsWindowBase 461–2
CWsWindowGroup 461–2
CWsWindowRedraw 461–2
cyclic scheduling

concepts 767–74, 779–80
disadvantages 769–70,

779–80

D: drive (MMC) 338, 392,
574–89

DAC 320, 796–7
DACR see domain access control

register

DArmPlatChunk 194
DArmPlatProcess 194
DArmPlatThread 66–71, 194
DAT signal 595–6
data cache (DCache), concepts

26–9
.data section 389–93, 400–1,

421–3
data structures, kernel 45, 55–6
data-caging concepts, platform

security 317, 327–30,
345–6

data-relocation section, E32 image
file format 391–3, 400–1,
407–10

DBase 163–4, 425–6, 500–48,
570–4, 588–9, 599–600

DBatteryMonitor 697–8
DBMS 330
DCache see data cache
DChannelSerialDriver...

711–18, 720–1
DChunk 177, 190, 192, 264–73,

562–74
see also shared chunks
concepts 264–70, 562–74
key members 268–70

DCodeSeg 95–7, 114–15, 192,
263–73, 400–17, 419–27

see also code segments
concepts 270–1, 400–17,

419–20
DCodeSeg::CodeSegLock

113–15, 413, 416, 630
DCodeSeg::GlobalList

413–27
DCodeSeg::Loaded 422
DComm16550 539–43
DCondVar 85–8
DCondVar::Wait 87–8
DDebuggerInfo 644–52
DDevice1PddFactory 500–48
DDK see Device Driver Kit
DDmaChannel 559–62
DDmaRequest 553–62
DDR RAM 834
DDriver1 500–48
DDriver1Channel 500–48

DDriver1Device 500–48
DDriver1Factory 500–48
de Bono, Edward 251
deadline monotonic scheduling,

concepts 771–2
deadline-driven scheduling,

concepts 772–4
deadlines, real-time issues

765–823, 834–50
deadlocks, mutexes 80–1
death, permanent processes/threads

55, 56, 59, 74, 88–90, 623–5
debug.h 645
DebugFunction 302–5
debuggers
see also emulator
agents 616–37, 640–3
APIs 614–59
architecture 613–25
ARM architecture 620–3,

634–7, 642, 652–3
blind spots 656
breakpoints 243, 615, 620,

641–52
code and data section 638–9
concepts 5–6, 10, 15–16, 69,

96, 100–12, 184–7, 243,
303–5, 338, 493–4,
613–58, 744–5

connectivity features 615–59
context switch events 634–7
design goals 5–6, 15–16,

613–14
EKA1/EKA2 contrasts 614–15,

641, 643–4
emulator debuggers 615
exceptions 243, 619–20,

623–5, 626–37
extensions 10, 493–4, 644–56
hardware-assisted debuggers

620–3
host PC 616–25, 640–52
JIT triggers 619–20, 641–3
JTAG debuggers 36, 620–3,

643–58
kernel debug interface 625–40,

651–2
kernel event notification

625–37

INDEX 875

kernel state 651–2
LLDs 630–1, 641–3
logger utilities 623–4, 643–52
multi-threaded software 15
non-current thread memory

650–1
OS awareness 615–25,

643–52
output 184, 623–5, 652–6
panics 619–20, 626–37
PDDs 631, 641–3
platform security 618–20
post-mortem analysis tools

623–5
prints 184, 623–5, 652–6
protocol messages 617–25
redirect user trace 652–8
reference documentation

627–31
remote debuggers 614–15,

617–25
responsibilities 619–20, 640–1
ROM shadow API 639–42
run-mode debuggers 615–20,

623–4
source-level debuggers 15–16,

620, 624
stop-mode debuggers 620–3,

643–52
target agents 640–3
target phone 616–25, 640–52
thread context 637–8, 646–52
timers 36, 655–8
trace channel 652–8
trace macros 656–8
types 15, 614–25
DEBUGGER SUPPORT 625,

631–4
DEBUG HALT 36
DebugNotifySessions 367
DebugOutputChar 653, 654–6
DebugSupportEnabled 631–4
Dec 165–73
DECLARE EXTENSION LDD

499, 505–8
DECLARE EXTENSION PDD

499, 505–8
DECLARE FLAGS FUNC 526

DECLARE STANDARD ASSP
489–90

DECLARE STANDARD EXTEN-
SION 489–90, 491–4,
497–500, 505–8

DECLARE STANDARD LDD
498–9, 505–8

DECLARE STANDARD PDD
498–9, 505–8

decoding, GSM protocol
791–807

Decommit 270–1
Deep Sleep power mode 41,

762–4
deferred function calls (DFCs) 6,

13–15, 54–9, 89–99,
147–50, 160, 165–6,
198–201, 223–36, 269–73,
491–4, 522–74, 585–6,
610–12, 699–700, 710–20,
745, 787–8, 806–10, 835–50

concepts 6, 13–15, 54–9,
89–99, 147–50, 160,
165–6, 198–201, 223–36,
269–73, 491–4, 522–43,
555–62, 573–4, 585–6,
610–12, 745, 787–8,
806–10, 835–50

device drivers 491–4, 502,
522–43, 573–4, 585–6

interrupts 6, 13–15, 54–5, 59,
89, 91–2, 223–4, 227–31,
233–6, 491–4, 502, 522–8,
787–8, 806–10, 835–50

latency reductions 843–4
purposes 91–2, 147–50
queue 92, 529–43, 585–6,

745, 787–8, 822–3,
845–50

supervisory thread 91–2, 99,
160

threads 13–15, 54–5, 59, 89,
91–2, 99, 160, 165–6,
227–31, 233–6, 491–4,
522–8, 529–43, 585–6,
787–8, 806–10, 835–50

define operation, properties
155–60

defragmentation algorithms 736
delete 299–306, 535–43

delivered message-state
client-server ITC 141–3
kernel-side messages 149–50

delivery and message pool
management, sessions
134–46

DeltaCurrentConsumption
674

demand paging 262, 311
DEpocProcess 190, 192
descriptor classes 11, 456
design issues

client-server ITC 119–20,
139–43

goals 4–6, 13–16, 57, 117–20,
252–3, 271, 280–7, 290–4,
315–31, 350–8, 613–14,
779–807, 850

kernel architecture 4–15,
252–3, 783–8

limitations 14–15, 834–5,
840–2

mobile phones 17–43,
315–31, 833–50

modular designs 3–5, 14
moving memory model 280–7,

294, 309–10
multiple memory model

291–4, 309–10
performance 833–50
robust designs 2–3, 5–6,

117–18, 260–2, 274,
281–3, 319–20

solutions 13–15, 57, 117–20,
252–3, 271, 280–7, 290–4,
315–31, 350–8, 613–14,
779–807, 850

Symbian OS 4–16, 57,
117–20, 252–3, 271,
280–7, 290–4, 315–31,
350–8, 613–14, 779–807

destructors 113, 122, 163–73,
427, 481–4

client-server ITC 122
DLLs 113, 427, 481–4

development tools see tools
device 481

876 INDEX

Device Driver Kit (DDK) 43,
544–8

device drivers 3–6, 10–13, 43,
69–70, 92, 191–2, 220–36,
285–7, 308–9, 320–6,
333–86, 475–548, 574–89,
613–58, 675, 698–722, 730,
733, 755–62, 822–6, 835–50

see also EDEV.LIB;
extensions; local media
sub-systems; logical...;
physical...

asynchronous operations
490–4, 501–2, 527–43,
544–8, 568–74

basic concepts 3–6, 10–13,
43, 69–70, 92, 191–2,
308–9, 326, 333–86,
475–548, 825–6

calling threads 484–7
classes overview 499–502,

582–9
concepts 3–6, 10–13, 43,

69–70, 92, 191–2, 308–9,
326, 333–86, 475–548,
574–89, 613–58, 755–62,
822–3, 825–6

creation 498–548, 630–1
DDK 43, 544–8
definition 476–7
DFCs 491–4, 502, 522–43,

573–4, 585–6
EKA1/EKA2 contrasts 518–19,

543–8, 618
emulator 613–58, 849–50
entry points 481–4, 488–90,

498–9, 504–8
execution model 501–2
finding devices 506–8,

514–17
HAL 475, 494–8
interactions 517–48
loading 498–548, 630–1
LRTA/Symbian OS

communication 822–3
media drivers 574–89
message queues 531–43
model choice 548
naming conventions 505–6

opening 508–48
overview 477–9
peripherals 3, 4, 5–6, 10, 308,

549–612
platform security 320–6,

484–7, 515–17, 522–4
request gateway function

523–6, 542–3
roles 476–7
shared chunks 308–9, 562–74,

822–3
shutdown 755–62
static data initialization 480–1,

490–4, 740
synchronous operations

501–2, 527–8, 536–43,
544–8

threads 13–15, 69–70, 76, 92,
147–50, 285–7, 475–548

unloading 508
user process memory 484–7,

502–8
user-side access 484–7,

502–8, 517–48
verified devices 506–8

‘device not available’ exceptions,
X86 architecture 240–3

device platform
see also hardware
concepts 17–43

DeviceFree 508
DeviceSize 598–600
D EXC 623–5, 634, 639
DFC threads, concepts 13–15,

92, 529–43, 845–50
DfcQInit 530
DfcQue0 92, 529–30
DfcQue1 92, 529–30
DFCs see deferred function calls
DfcThread0 529–43
DfcThread1 529–43
DfcThread... 529–43, 835–6
Dhrystone 833
dictaphones, audio 40
digital ink, sprite anims 443–56
digital signal processor (DSP) 9,

18–19, 20–9, 39–40, 246–7,
795–7

see also coprocessor..

concepts 795–7
functions 796–7

digitizer 13, 92, 430–74, 495–8
Direct Memory Access (DMA) 10,

20–9, 32–5, 36–7, 39, 296,
298–310, 479–80, 488,
549–62, 568–74, 608, 727,
839–40, 844–50

chunks 307, 562, 568–74
classes overview 553–62
concepts 36–7, 39, 307,

549–62, 568–74, 727,
839–40

interrupts 36–7, 549–50,
839–40, 844–50

latency impacts 844–5
memory allocations 559–62
performance issues 839–40,

844–50
power savings 37, 549–50
scatter-graph DMA engines 37,

550–62
software framework 552–62

direct memory model
concepts 8, 12, 106, 191–2,

253, 296, 651
MMU 296

direct screen access (DSA), window
server 471–2

directories 11, 25–6, 254–62,
275–87, 288–94, 327–30,
339–46, 349–64, 366–7,
369–75, 396–400, 740–2

see also paths
operations 341–3, 349–64,

366–7
page directories 25–6,

254–62, 275–87, 288–94,
742

RDir 341–3, 349–64
structure 369–75

dirty bits, cache modifications 29
Disable 233–6
DisableWakeupEvents 670,

672, 683–5, 761–4
Disconnect 123–6, 459–60,

581
disconnect-pending state, state

machine 134–9

INDEX 877

disconnected chunks, concepts
264–70, 272–3, 293–4,
307–10

disconnected sessions, file server
356–8

disk services, Symbian OS 3
Dispatch 631–4
dispatcher

interrupts 219–24, 231–6
nanokernel 173–7, 179–81,

183, 185, 193, 195, 219–24
roles 222–3

DispatchObjectCloseOp
353–4, 358

displays 17–18, 19–20, 30–1,
37–9

see also liquid crystal displays;
screens

Dive-Reclus, Corinne 315–31
diverted threads 60–2
DKernelEventHandler

245–6, 631–4
DKernelEventHandler

::DebugSupportEnabled
631–4

DKernelEventHandler
::Dispatch 631–4

DKernelEventHandler
::EExcHandled 246

DKernelEventHandler
::ERunNext 246, 633–4

DKernelEventHandler
::ETraceHandled 631,
653

DLddUsbcChannel 607–12
see also USB...

DLibrary 70, 95, 112–15, 167,
271, 411–14, 417–27, 630

concepts 112–15, 167, 271,
411–14, 417–19

key members 114
object names 167
states 418–19

DLL$DATA 310
DLLs see dynamically loaded

libraries
DLocalDrive 582–7
DLogicalChannel 500–48,

609–10

concepts 500–48, 609–10
definition 528–9

DLogicalChannelBase 236,
500–48

concepts 500–48
definition 521–2

DLogicalChannelBase
::Request 526–8

DLogicalChannel::Close
535–43

DLogicalDevice 95, 498–548
DMA.DLL 552–62
DMA see Direct Memory Access
DMedia 582–7
DMediaChangeBase 590–4
DMediaDriver 582–7, 588–9,

590–4
see also media drivers

DMemModelChunk 192
DMemModelCodeSeg 424–7
DMemModelProcess 192
DMemModelThread 192
DMMCMediaChange 590–4
DMMCMediaDriverFlash

590–4, 597–600
DMMCPsu 590–4
DMMCSession 597–600
DMMCSocket 590–4, 597–600
DMMCStack 597–600
DMsgQueue, concepts 145–6,

783–4
DMutex 80–8, 96, 171–3,

783–4
concepts 80–8, 96, 171–3,

783–4
key members 84–5
object containers 171–3

DMyController 491–4
DMyDevice 570–4
DMyEventHandler 632–7
DNandMediaDriver 582–7
DObject 66–71, 79, 84, 86,

94–5, 113–15, 132–46,
162–73, 185, 312–13,
418–19, 421–2, 510–17,
534–5

see also kernel objects

concepts 138–9, 162–73, 185,
312–13, 418–19, 421–2,
510–17, 534–5

key members 164–5
DObject::Close 165–73
DObjectCon 169–73, 189–90
see also object containers
concepts 169–73
DMutex 171–3
key members 172–3

DObject::Dec 165–73
DObject::DoAppendName

167–73
DObjectIx 162, 167–73
see also object indexes
concepts 162, 167–73
key members 168–9

DObjectIx::HandleMutex
170–1

DObjectIx::iCount 169–73
DObjectIx::iNextInstance

167–73
DObject::Lock 167–73
DObject::Open 165–73
DObject::RequestUser-

Handle 138–9
DoCancel 518–48
DoConnect 122–6
DoControl 502–48
DoCreate 65–6, 508–17,

518–48, 713–14
documentation 1–2
DoEnque 235–6
DoIt 460–2, 490–4
Dolengo, Marcus 825
domain access control register

(DACR) 100, 275–8, 283–7
domain manager 666–8, 677,

751, 756–62
concepts 751, 756–62
overview 756–8

domains 100, 275–87, 376
DoPowerUp 714, 721
DoRequest 502–48
DoSvControl 544–8
double-buffered DMA engines,

concepts 37
double-ended chunks, concepts

264–70, 301

878 INDEX

DPBusPrimaryMedia 590–4
DPBusPsuBase 590–4
DPBusSocket 590–4
DPhysicalChannel 518
DPhysicalDevice 95,

499–548
DPlatMMCStack 597–600
DPowerController 675, 677,

680–1, 683–4, 704
DPowerController::CpuIdle

689
DPowerController

::PowerDown 678
DPowerHal 676, 685–6
DPowerHandler... 673–4,

677–80, 700, 705
DPowerManager... 672–4
DPowerModel 189–90, 671–2
DPrimaryMediaBase 582–7,

590–4
DProcess
see also processes
concepts 93–7, 112–15, 167,

189–90, 192, 263–73,
292–4, 404–6, 414,
418–22, 744–5

key members 95–6
object names 167

DProcess::iCodeSeg 112–13
drag events, window server

431–4, 438–74
DRAM 20–9, 30, 788, 832–4
DrawBitmap 467–8
drawing

area 466
backup behind 469–70
backup content windows

467–8
blank windows 467
command storing 470–1
flicker-free redrawing 470
mode 464–6
redraw windows 468–71
windows 466–71

DrawLine 450–6
DrawNow 468–9
DrawPoint 450–6
DriveList 340–1
driver objects 712

DriverApiClass 477–9
drives

concepts 31, 333–5, 337–9,
340–67, 396–7, 574–9

letters 31, 333–5, 337–9,
340–6, 359, 396–7,
574–9

local drives 338, 576–89
mounted drives 335–9, 341,

347–67, 574–9, 586–7,
611–12

DSA see direct screen access
DSemaphore 78–80
DSerialDriverPowerHandler

711–14
DSerialDriverPowerHandler

::PowerDown 719–20
DSerialDriverPowerHandler

::PowerUp 719
DServer 121–9, 131–43
DServer::Accept 132–43
DServer::Cancel 131–43
DServer::Close 131–43
DServer::Deliver 131–43
DServer::Receive 131–43
DSession 121–43
DSession::Add 130–43
DSession::Close 135–9
DSession::CloseFrom-

Disconnect 135–9
DSession::Detach 130–43
DSession::New 134–9
DSession::Send 135–9
DSimpleSerialChannel

529–48
DSimpleSerialLDD 499–517
DSimpleSerialPDD 514–17
DSP see digital signal processor
DThread 7–8, 62–93, 108–9,

141–3, 150, 189–90, 192,
240, 264–73, 312–13, 422,
526–48, 627, 744–5, 785

concepts 66–71, 79–80,
83–5, 108–9, 150, 192,
264–73, 312–13, 422,
526–8, 744–5, 785

embedded nanothread 66
key members 68–70, 108–9,

272–3, 312–13

thread types 71–2
DThread::CalcDefault-

ThreadPriority 108–9
DThread::Context 627,

637–8
DThread::Create 63–93
DThread::DoCreate 65–6
DThread::ECreated 422
DThread::EpocThread-

Function 65–6
DThread::EReady 422
DThread::iIpcCount 137–9,

142–3
DThread::iUnknownState-

Handler 75
DThread::RawRead 650
DThread::RawWrite 650
DThread::RequestComplete

240, 286–7
DThread::Suspend 643
dumb LCD displays 38–9
duplex links 538, 549–50
Duplicate 132–43
DUsbClientController

607–12
see also USB...

DWin32Platform 190
DWin32Process 192
DWsScreenDevice 464–6
DXXXBatteryMonitor 698,

700
DXXXPowerController

682–3, 704
DXXXPowerController

::AbsoluteTimerExpired
685

DXXXPowerHandler 699, 705
dynamic memory 7, 20–9,

305–6, 840–2
dynamic priority-based scheduling,

concepts 772–4
dynamic RHeap
see also RHeap
concepts 305–6, 840–2

dynamically loaded libraries (DLLs)
animation DLLs 429–36,

442–56
capability-model concepts

321–4, 487

INDEX 879

code segments 114–15,
270–1, 400–10, 412–17,
423–7, 626–7

concepts 7–13, 66, 72, 95–7,
112–15, 129, 174–7, 183,
266–73, 284–7, 294, 297,
320–6, 333–9, 389–427,
429–36, 442–56, 476–548,
552–62, 626–31, 740–2

dependencies 397
device drivers 476–548
EXE files 97, 113–15
loader 112–15, 271, 321–4,

387–427, 476–7, 490,
504–8, 626–31, 638–9

name strings 389–90
object states 113–15, 627
plug-in DLLs 336–9, 364–5,

429, 442–56, 499, 504–8
polymorphic DLLs 335–9, 362,

365–7, 499, 504–8
processes 95–7, 112–15, 129,

284–7, 294, 297–8, 320–6
reference-counted objects

113–14, 415–16, 418–19
RLibrary 112–15, 271,

323–4, 393–427, 627,
641–3

search rules 397–8, 402–6,
410–12, 419–22

shared-library DLLs 480–7
shim DLL files 394
statically-linked DLLs 321–4,

409–10
uses 112–13, 321, 417–19,

429–36, 442–56, 627
version numbers 394–6,

410–12
XIP ROM 392–3, 400–1,

406–27, 477, 504–8

E32 image file format
see also executables
concepts 387–93, 398–427,

638–9
sections 387–93, 398–410,

421–2, 638–9
e32cmn.h 302

e32const.h 177
E32Dll 97, 412, 481–4, 493–4
E32Image 401–6, 419–27
E32Image::Construct 403–6
E32Image::DoLoadCodeSeg

423–7
E32Image::FinaliseDlls

405–6
E32ImageHeader 401–6,

855–9
E32Image::LoadCodeSeg

423–7
E32Image::LoadDlls 405–6
E32Image::LoadProcess

403–6
E32Loader 400–6, 410,

411–12, 419–22
E32Loader::CodeSegCreate

423–7
E32Loader::CodeSegInfo

420
E32Loader::CodeSegLoaded

405–6, 410, 426–7
E32Loader::CodeSegNext

404–6, 419–22
E32Loader::CodeSegOpen

420–2
E32Loader::LibraryAttach

411–12
E32Loader::Library-

Attached 411–12
E32Loader::LibraryCreate

411–12, 426–7
E32Loader::ProcessCreate

404–10, 420–2
E32Loader::ProcessLoaded

405–6, 422
E32Main 65–6
e32property.h 150–60
E32Startup 65–6, 97,

749–50
e32std.h 89
E32STRT 750
E: drive 338, 576
EABI 414
EAccessoryPower 686, 701
EActive 431–74
EAllThreadsCritical 89–90

earliest deadline first scheduling
(EDF), concepts 772–4,
779–80

EARLY DEBUG 654–6
EArm... 648–52
earpieces 795–7
EAttached 113–15, 418–19,

427
EAttaching 113–15, 418–19
EAX 221–4
EButton1Down 431–74
EButton1Up 431–74
ECaseClose 431–74
ECaseOpen 431–74, 763–4
ECaseSwitchDisplayOff

686–7
ECaseSwitchDisplayOn

686–7
ECC see Error Correction Code
EChangePriority 812–21
EChangesFreeMemory 313–14
EChangesOutOfMemory

313–14
ECloseMsg 535–7, 543, 721
EColor... 464–8
ECOMM.LDD 478–9
ECOMP.FSY 385
EControlConfig 536–43
ECreated 113–15, 418–19
ECUST.DLL 490, 750
ECX 221–4
.edata section 388–93, 639
EDebugPortJTAG 654–6
EDetaching 113–15
EDetachPending 113–15, 427
EDEV.LIB 481–4
see also device drivers

EDF see earliest deadline first...
EDisplayHalScreenInfo

497–8
EDisplayHalSetState 487,

498
Edll EUserCode 266–70
EDllData 266–70
EDrawModePEN 452–6
EDX 221–4
EEventAddCodeSeg 630
EEventAddLibrary 629–30
EEventAddProcess 627–8

880 INDEX

EEventAddThread 628–9
EEventCaseClosed 434–74,

752–62
EEventCaseOpened 434–74,

763–4
EEventDeleteChunk 629
EEventDragDrop 433–74
EEventErrorMessage 434–74
EEventFocusGained 433–74
EEventFocusGroupChanged

434–74
EEventFocusLost 433–74
EEventHwExc 246, 627
EEventKey 433–74
EEventKeyDown 433–74
EEventKeyRepeat 433–74
EEventKeySwitchOff

434–74, 752–62
EEventKeyUp 433–74
EEventKillThread 629
EEventLoadedProcess 628
EEventLoadLdd 630
EEventLoadPdd 631
EEventMarkInvalid 433–74
EEventMessageReady 433–74
EEventModifiersChanged

434–74
EEventNewChunk 629
EEventNull 433–74
EEventPassword 433–74
EEventPointer 433–74
EEventPointerBufferReady

433–74
EEventPointerEnter 433–74
EEventPointerExit 433–74
EEventRemoveCodeSeg 630
EEventRemoveLibrary 630
EEventRemoveProcess 628
EEventRemoveThread 629
EEventScreenDeviceChanged

434–74
EEventStartThread 629
EEventSwExc 627
EEventSwitchOff 434–74,

752–62
EEventSwitchOn 434–74,

763–4
EEventUnloadingProcess

628

EEventUnloadLdd 631
EEventUnloadPdd 631
EEventUpdateChunk 629
EEventUpdateProcess 628
EEventUpdateThread 629
EEventUserTrace 631
EEventWindowGroupList-

Changed 434–74
EEventWindowGroupsChanged

434–74
eexe.lib 65
EExecChannelRequest 525–6
EExecChunkBase 175–7
EEXT.LIB 481–4
see also kernel extensions

efficiency issues 2–3, 5, 26–8,
253, 282–3, 826–50

see also performance
caches 26–8, 253, 262, 830–4
code 5, 826–50

EFILE.EXE 335–9, 385, 740–2,
745–6, 750

EFixedMedia... 578–9
EFLAGS register 218–19, 221–4
EForceResume 812–21
EFSRV.DLL 335–46
EGood 698
EGray16 465–6
EHalGroup... 186–7, 494–8
EHalGroupDisplay 495–8
EHalGroupKernel 186–7,

495–8
EHalGroupMedia 494–8
EHalGroupPower 495–8, 665,

669, 671, 752–62
EHalGroupVariant 495–8
EHoldMutexPending 82, 85
EHwEvent 642
EHwOP... 449–56
EHwState.. 450–6
EInactive 431–74
EIP values 218–19
EIpcClient 177
EIS values 218–19
EKA1 2–3, 6–14, 61–2, 80, 92,

96–7, 110–12, 115, 129, 138,
160, 164–6, 178, 180–1, 183,
186–7, 201, 271, 274, 302,
350, 367, 379, 381, 390, 394,

406, 409–10, 518–19,
779–80

debuggers 614–15, 641,
643–4

device drivers 518–19, 543–8
local media sub-systems 577–9
performance issues 825, 842–3
shared I/O buffers 562

EKA2 (EPOC Kernel Architecture
2) 1–17, 160, 161–206,
251–73, 280–7, 318, 345–6,
389–90, 406, 409–12,
613–58, 694–5, 779–88,
797–807, 810–23, 825–6

see also Symbian OS
basic concepts 3–4, 253–62,

345–6, 394–5, 406,
409–12, 476–7, 779–88,
797–807, 825–6

debuggers 613–15, 641,
643–4

design goals 4–6, 13–16, 57,
117–20, 252–3, 271,
280–7, 290–4, 315–31,
350–8, 613–14, 779–807,
850

design limitations 14–15,
834–5, 840–2

design solutions 13–15, 57,
117–20, 252–3, 271,
280–7, 290–4, 315–31,
350–8, 613–14, 779–807,
850

device drivers 499–548
disabling pre-emption 109–12,

811–21, 836–9, 842–50
emulator 3, 5–6, 8, 14, 15–17,

47–9, 59–62, 109–12, 183,
190–2, 249, 252–3, 297–8,
309–10, 431, 613–58,
849–50

exceptions 239–49
executables’ version-numbers

394–6, 410–12
executive calls 161, 173–206,

419–20
GSM protocol stack 797–807
historical background 1–3

INDEX 881

interrupts 219–36, 779–88,
797–807, 825–6, 835–50

local media sub-systems 577–9
LRTA 808–23, 835–50
modular design 3–5, 14
multi-tasking aspects 3–4,

13–15
new CPU family 296
open but resource-constrained

environments 4, 253–62,
327, 779–88, 797–807

performance issues 5, 825–50
portability goals 5–6, 252–3,

480
pre-emptively multitasking OS

4, 7, 13–15, 46, 55–6,
61–2, 98–112, 779–88,
797–807, 811–21, 825–6,
835–50

priority-based multitasking
4–7, 13–15, 47, 53–8,
64–6, 69–70, 74–6,
78–88, 90–7, 98–112,
779–88, 797–807, 810–23,
825–6

real-time aspects 4–7, 318,
779–88, 797–807, 810–23,
825–6

services 161–206
single-user aspects 3
software interrupts 186,

219–36, 779–88, 797–807,
825–6

software layering 11–13, 43,
47–9, 187–95, 252–314

thread types 13–14
user-mode threads 161–206

EKERN.EXE 140–3, 183, 740–5
ekern.lib 492–4
EKernelCode 266–70
EKernelData 265–70
EKernelStack 266–70
EKeyDown 431–74
EKeyOff 752–62
EKeyUp 431–74
EKLL.LIB 481–4
ELeaveCS 812–21
ELF format files 387–93, 409
ELFFS.FSY 335–9

ELFTRAN 387–93
ELoaded 113–15, 418–19, 427
ELOCAL.FSY 335–9, 367, 385
ELOCD.LDD 336–9, 479, 494,

575–89
see also local media...; logical

device drivers
ELogicalChannel 513–17
ELogicalDevice 505–48
email clients 3
EMapAttrCacheMax 564
EMapAttrFullyBlocking 564
EMapAttrUserRw 561–2
EMarkData 415–16, 424–7
EMarkDataFlagsCheck

414–16
EMarkDataFlagsValid

414–16, 424–7
EMarkDataInit 415–16,

424–7
EMarkDataPresent 415–16,

424–7
EMarkDebug 415–16
EMarkLdr 414–16, 420–2
EMarkListDeps 414–16
EMarkLoaded 414–16, 422,

426–7
EMarkUnListDeps 414–16
embedded OSs, concepts 253–4
emergency shutdown 722–3
emulator 3–8, 14–17, 47–9,

59–62, 109–12, 183, 190–2,
249, 252–3, 297–8, 309–10,
338, 431, 490, 495–8,
613–58, 749–50, 849–50

see also debuggers; Epoc...
boot processes 97, 749–50
concepts 12–13, 15–16, 17,

47–9, 59–62, 96, 109–12,
183, 190–2, 249, 252–3,
297–8, 309–10, 338, 431,
490, 613–58, 749–50,
849–50

CPU performance 849–50
debug architecture 613–25
design solutions 14, 252–3,

297–8, 613–14, 849–50
device drivers 613–58,

849–50

entry points 97, 183
exceptions 249, 619–20,

626–37
executive (exec) calls 183
extensions 490, 750
F32 system architecture 338
file server 338, 849–50
interrupts 111–12, 183
JTAG 36, 620–3, 643–58
key requirements 15–16,

252–3
limitations 614–15
media performance 849
memory model 8, 12, 106,

190–2, 252–3, 297–8,
309–10, 613–58

performance issues 849–50
platforms 15–16, 190
pre-emption 111–12, 249
processes 96–7, 183
scheduling 109–12, 613–58
threads 59–62, 109–12, 183,

297–8, 615–59
Win32 12–13, 15–16, 59–62,

97, 109–12, 190–2, 297–8,
435, 615–59, 749–50

Windows 14, 15–16, 59–62,
96–7, 249, 297–8, 309–10,
431, 490, 495–8, 615–59,
749–50

emulator memory model, concepts
8, 12, 106, 190–2, 252–3,
297–8, 309–10, 613–58

Emulator::Lock 62
EMultiMediaFlash 598–600
EMultiMediaIO 598–600
EMultiMediaROM 598–600
Enable 541–3
EnableWakeupEvents 670,

672, 677, 683–4, 760–2
encoding, GSM protocol

791–807
encryption software 337, 788,

792–807
EndOfInterrupt 111–12
endpoints, USB 603–4
EndRedraw 469
energy sources 734
ENET.LDD 479

882 INDEX

Enlarge 580–1
ENone 431–74
ENotCritical 89–90
Enque 235–6
Entry 340–1
entry points

device drivers 481–4, 488–90,
498–9, 504–8

emulator 97, 183
extensions 481–4, 488–90,

498
ENumNState 815–21
environmental factors 701–4
EOffsetFromSp 649–52
EOffsetFromStackTop

649–52
EPBusCardAbsent 592–4
EPBUSMMC.DLL 575–89,

596–600
EPBUSMV.DLL 596–600
EPBusOff 592–4
EPBusOn 593–4
EPBusPoweringUp 593–4
EPBusPowerUpPending 593–4
EPBusPsuFault 593–4
EPenDisplayOn 686–7
EPhysicalDevice 505–48
EPOC32, historical background

2–3, 117
EPOC.EXE 749–50
EPOC.INI 338, 849–50
EPOC kernel 1–3, 12–13, 59,

190–2
see also EKA...

Epoc::AllocShadowPage 640
epocallowdlldata 493–4
Epoc::FreeShadowPage 640
Epoc::FreezeShadowPage

640
EPointerMove 431–74
EPointerSwitchOn 431–74
EPowerBackup 686, 701
EPowerBackupStatus 686,

701
EPowerBatteryStatus 686,

701
EPowerExternal 686, 701
EPowerGood 686, 701
EPowerHal... 686–8

EPowerHalSwitchOff 752–62
EPriorityForeground 835–6
EProcessCritical 89–90
EProcessPermanent 89–90
EPsuOff 592–4
EPsuOnCurLimit 592–4
EPsuOnFull 592–4
EPwOff 670, 677
EPwStandby 670, 677
EQ, GSM protocol 798–807
ERamDrive 266–70
EReady 54–5
ERedraw 431–74
ERelease 812–21
ERemovableMedia... 578–9
ERequestRead 538–43
ERequestReadCancel 542–3
ERequestWrite 541–3
ERequestWriteCancel 542–3
EResume 812–21
EROFS.FSY 385
Error Correction Code (ECC)

32–3
errorcode 245
errors 1–2, 22, 32–3, 52–4,

62–6, 77, 119, 154–8,
208–49, 257–62, 311–14,
374–5, 600, 613–58

see also exceptions
lasterror 257–62
LFFS recovery 374–5
MMC recovery 600
NAND flash memory 32–3
OOM errors 311–14

ERunNext 246, 633–4
ES register, X86 architecture

215–19
EScheduler... 646–52
ESDRV 479
ESharedIo 267–70
ESharedKernelMultiple

267–70, 563–4
ESharedKernelSingle

267–70, 563–4
ESharedKernelMirror

267–70
ESHELL.EXE 339, 657–8
ESOCK see socket server
ESOUND.LDD 479

ESP see explicitly designated stack
pointer register

ESpPlusOffset 649–52
ESpriteNoChildClip 454–6
ESpriteNoShadows 454–6
ESTART.EXE 338–9, 365–7,

382, 384–5, 579, 740–2,
745–6, 749, 751

see also startup
ESuspend 812–21
ESwitchOff 431–74, 752–62
ESwitchoffTRawEvent 688
ESwitchOn 431–74, 763–4
ESync... 447–8
ESystemCritical 90
ESystemPermanent 90
ETEL see telephony server
Ethernet 92
ETHERNET 479
Ethernet 616
EThread... 646–52
ETimeout 813–21
ETraceHandled 631, 653
EUART1.PDD 478–9
EUART2.PDD 478–9
EUndefined 649–52
EUpdateModifiers 431–74
EUSER 175, 183, 186–7,

313–14, 336–9, 749–50
EUSER.DLL 175, 183, 186–7,

336–9, 393–427, 580,
641–3, 653, 755–62

EUSER library 4–6, 11, 66,
140–3, 174–8, 183–7,
266–73, 336–9

concepts 6, 11, 140–3, 174–8,
183–7, 266–70

definition 6
design goals 5–6
functions 11
kernel 4–6, 11, 178, 183–7
privileged access 11
threads 11, 140–3, 174–8,

183–7
EUserCode 266–70
EUserData 266–70
EUserSelfModCode 266–70
EVAR.LIB 481–4
see also variant extensions

INDEX 883

event handlers 185, 241, 245–6,
429–74, 493–4, 626–37,
642–52, 752–62

concepts 241, 245–6, 429–74,
626–37, 642–52

window server 429–74,
752–62

event hooks 185, 429–30,
493–4, 634–7, 644–53,
808–9

event services, extensions 493–4
event-driven architecture 726–7
event-driven programs 2–3, 98,

111, 120–6, 726–7
see also active objects

EventDfcFn 492–4
events

capture 185, 245–6, 429–30,
493–4, 632–7

exceptions 6, 12–13, 23,
33–4, 91–2, 100–12,
173–206, 207–49, 623–5,
626–37, 743

kernel event notification
245–6, 625–37

sources 430, 626–31
types 430–5, 626–31
window server 429–74

EWaitMutex 81–2, 85–8
EWaitMutexSuspended 82,

85–8
EWaitSemaphore 79–80,

816–21
EWSRV.EXE 339
see also window server

exception handling, threads
50–5, 62–6, 69–70, 100–12,
173–206, 207–49, 619–20

exceptions
see also errors; interrupts
aborts 208–9, 210–19,

236–49, 262
APIs 243–9
ARM architecture 210–15,

220–36, 237–49
boot processes 740–5
categories 207–19, 236–49,

626–31
causes 207–19, 626–31

concepts 6, 12–13, 23, 33–4,
50–5, 62–6, 69–70, 91–2,
100–12, 173–206, 207–49,
413, 619–20, 623–5,
626–37, 743, 843–50

coprocessor fault handler
240–1, 246–9

debuggers 243, 619–20,
623–5, 626–37

definition 207–8
EKA2 handling 239–49,

779–88, 797–807
emulator 249, 619–20
faults 209, 210–19, 236–49
invalid pointers 241–2
kernel event handlers 241,

245–6, 429–74, 493–4,
626–37, 642–52

‘lazy’ context switching 242–3
‘magic’ handler 239–41
nanokernel 6, 188–9, 193–4,

219–49, 780–8
phases 219–24, 236–49
postamble phase 239–49
preamble phase 236–49
programmed exceptions

210–19
real hardware 210–19
registers 212–15, 219–24,

236–49
resets 208–9, 210–19
responses 219–24, 236–49
TExcTrap handlers 239–44
traps 173, 209–19, 236–49,

311–14
types 207–19, 626–31
user-side exception handlers

241
using 241–3
vector addresses 213–15,

217–36
X86 architecture 210, 215–36,

238–49
XTRAP 243–5, 273, 631

ExcIpcHandler 273
exclusive access monitors,

concepts 836–9

EXE files 96–7, 113–15, 156,
270–1, 297–8, 320–6, 333,
387–427

see also executables
Exec 170–87
exec.cpp 174
Exec::CaptureEventHook

185
Exec::ChannelCreate

510–17
Exec::ChannelRequest

525–6
Exec::ChunkBase 174–7, 185
Exec::DebugPrint 184,

654–6
Exec::FastCounter 184
Exec::HandleInfo 170–3
ExecHandler::ChunkBase

177
ExecHandler::CodeSeg-

Create 405–6, 423–7
ExecHandler::CodeSeg-

Loaded 405–6
ExecHandler::CodeSegNext

405–6
ExecHandler::DeviceFree

508
ExecHandler::Message-

Complete 135–9, 142–3
ExecHandler::Process-

Create 405–6, 420–2
ExecHandler::Process-

Loaded 406
ExecHandler::ServerCreate

131–43
ExecHandler::SetSession-

Ptr 135–9
Exec::Heap 184
Exec::MathRandom 184–5
Exec::MutexWait 185
Exec::ProcessSetPriority

185
execs.txt 175
Exec::SempaphoreSignalN

185
Exec::SetDebugMask

(TUint32) 184
Exec::ThreadId 185
Exec::TickCount 184

884 INDEX

executables
see also dynamically loaded

libraries; EXE...; processes;
software

concepts 12–13, 190, 320–30,
333, 387–427, 740–2,
825–50

E32 image file format 387–93,
638–9

ELF format files 387–93, 409
file headers 392–6, 398–401,

407–10
format 387–93, 638–9
loader 387–427
management issues 387–427
names 329, 389–90, 394–8,

421–2
PE files 96–7, 387, 390–3,

409–10
performance issues 5, 825–50
platform security 320–30
platform software layer 12–13,

190
program SIDs 328–30, 420–2
project files 320–6, 328–30,

442–3, 480, 492–4, 625
ROM image file format 392–3
searches 394–400, 402–6,

410–12, 419–22
sections 387–93, 398–410,

421–2, 638–9
secure hash 329–30
types 392–3
version numbers 394–6,

398–400, 410–12
XIP ROM 31–2, 115, 258–62,

265–71, 292–4, 309–10,
320, 364–5, 383, 392–3,
400–1, 406–27, 477, 488,
504–8, 737–64

execute in place ROM (XIP ROM)
31–2, 115, 258–62, 265–71,
292–4, 309–10, 320, 364–5,
383, 392–3, 400–1, 406–27,
477, 488, 504–8, 737–64

concepts 31–2, 392–3,
406–27, 477, 488, 504,
737–64

execute-calls tables, threads
50–5, 175–83

execution model, device drivers
501–2

execution times, tasks 774–5,
780–8, 825–50

executive (exec) calls 50–5, 161,
173–206, 245, 313, 400–6,
410, 411–12, 419–22,
485–7, 501–2, 787–8

categorization decisions 183–7
concepts 50–5, 161, 173–206,

245, 313, 419–20, 485–7,
501–2

context 177–8, 787–8
EKA1/EKA2 changes 178,

180–1, 183, 186–7
emulator 183
flow of execution 173–7
kumem functions 179–80, 245,

326, 485–7, 533–43
mechanism 173–83
slow/fast comparisons 177–8,

179–87
user-mode memory accesses

178–9, 484–7, 501–2
Exec::WaitForRequest

649–52
exits

processes 93–7
threads 49–58, 61–6, 68–70,

74–8, 83–5, 88–90, 93–7,
110–12, 312

ExitThread 61–2
expiry, timers 197–201, 810
explicitly designated stack pointer

register (ESP), X86 architecture
215–19

export-directory section, E32 image
file format 388–93, 400–1,
405–6, 409–10

EXPORT C 443, 480–1, 491–4,
498–9, 507–8, 525–6,
532–43, 682, 692

exported functions 365–7, 443
EXSTART extension 10, 420–2,

479–80, 494, 745, 750
extension 481, 488–90

extensions 4, 9–13, 72, 191–5,
231–6, 337–9, 475–548,
552–62, 577–9, 644–52,
654–6, 738–64, 810–23

see also
Application-Specific...;
device drivers; kernel...;
platform...; variant...

boot processes 10, 479–80,
738–64, 810

concepts 9–13, 191–5,
231–6, 337–9, 475–548,
552–62, 577–9, 644–52,
654–6, 810–23

debuggers 10, 493–4, 644–56
definition 477, 479
emulator 490, 750
entry points 481–4, 488–90,

498
event services 493–4
file names 344–5
file server 337–9
installation 488–90
kernel extensions 475–548,

810
logger utilities 493–4
optional utilities 493–4
roles 477, 479, 490–4
system services 494
types 4, 479–87
user process memory 484–7
uses 477, 479, 490–4, 810

F32 system architecture
see also file server; loader
concepts 333, 335–86, 396,

424, 579, 656–8
emulator 338
startup 338–9, 384–5, 579
text shells 339, 507–8

f32file.h 339–40
f32fsys.h 365–7
FACCH, GSM protocol 790–807
factory objects 365–7, 498–548
FadeBehind 467
failures 2, 303–5, 311–14
fast exec calls 175–7, 179–87
see also executive...

INDEX 885

fast executive table 181–3
Fast Interrupt reQuest (FIQ) 33–4,

181, 211–15, 224–5, 233–6,
237–8, 743–5, 787–8,
799–807, 843–50

fast mutexes
see also NFastMutex
concepts 56–8, 77–8, 81, 98,

100–12, 149–50, 165–73,
176–7, 188–9, 230, 235–6,
240–1, 312, 528, 781–8,
823, 838–50

definition 781–2, 847
performance issues 847–50
restrictions 782, 847

FAT12 375–81
FAT16 375–81
FAT32 375–81
FAT file system 31, 335–9,

359–62, 364–6, 375–81,
611–12, 741–2

caches 377–81
concepts 375–81, 611–12,

741–2
delete notification 379–80
removable media systems

375–81, 611–12
rugged FAT version 376–81
types 375–6

faults
see also exceptions
concepts 209, 210–19,

236–49, 261–2
FCCH, GSM protocol 789–807
FCSE PID 279–80
FDBs see File Data Blocks
Feather, Douglas 429–74
Feynman, Richard 765
FIFO order 34–5, 37, 98,

129–43, 196, 225–31, 233–6,
351–8, 552–62, 796–7

file access 128–9, 327–30,
336–86, 409–10

data-caging concepts 327–30,
345–6

operations 128–9, 341–3,
349–86, 409–10

platform security 327–30,
409–10, 611–12

RFile 128–9, 341–3, 349–64
shared files 330–1, 345–6

File Allocation Table see FAT...
File Data Blocks (FDBs) 369–75,

829
file headers, executables 392–6,

398–401, 407–10
file server
see also F32 system

architecture; loader; RF...
asynchronous/synchronous

operations 344, 350–8,
362–4

boot processes 338–9, 383–5,
579, 737–64

buffers 340
change notification 341,

362–4, 379–80, 581, 587
client API 339–64
concepts 3–11, 31–3,

118–44, 317–31, 333–86,
475, 574–89, 611–12,
737–64, 849–50

data-caging concepts 317,
327–30, 345–6

disconnected sessions 356–8
drive letters 31, 333–5, 337–9,

340–6, 359, 396–7
drives 31, 333–9, 340–6,

347–67, 396–7, 574–9
emulator 338, 849–50
extensions 337–9
file names 344–5
file-system interfaces 359–86
flash memory 30–3, 333–5,

337–9, 364–5, 367–86,
746–8

high-level services 343–4
initialization 339, 347–64,

579, 740–6
media drivers 574–89
memory module 8
multi-threaded design 350–8
notifiers 341, 362–4, 379–80
object requests 353–4
overview 333–9
platform security 317, 327–30,

611–12
plug-ins 336–46, 364–5

processes 340–6
removable media devices

334–5, 360–2, 364–5,
375–81, 574–89

request-dispatch details 361–2
request-processing issues

350–8
requests 350–62, 364–86
ROM drive/image (Z:) 337–9,

364, 384–5, 611–12
server-side classes 347–64
sessions 340–58
shutdown 751–62
sub-session objects 341–6
terminology 334–5
text shells 339, 507–8
threads 338–9, 347, 350–8,

361–2, 579
user-mode threads 11

file systems
API 365–7
composite file system 384–5
concepts 31, 335–86, 393–4,

611–12, 740–50, 826,
849–50

drives 335–9, 341, 347–67,
574–9

exported functions 365–7
FAT file system 31, 335–9,

359–62, 364–6, 375–81,
611–12, 741–2

file-server interfaces 359–86
file/directory structure 369–75
LFFS 31–2, 364–5, 367–75,

378, 746–8, 849–50
mass storage file system

611–12
media drivers 364–86,

574–89, 611–12, 849–50
ROFS 31, 365, 381–5, 576–9,

747–50
types 364–86, 611–12
USB 611–12

files 11, 339–46
deletions 343–4, 379–80
names 344–5, 375, 389–90,

396–8, 421–2
operations 128–9, 341–3,

349–86, 409–10

886 INDEX

files (continued)
parsing classes 340–1, 344–5,

352–4
RFile 128–9, 341–3, 349–64
shared files 330–1, 345–6
structure 369–75

FillInSpriteMember 454–6
final state, nanokernel timers

197–201, 780–8
FinaliseDrives 376, 761–2
Find 506–8
finding objects 169–71, 344,

506–8
FindPhysicalDevice 510–17
FinishedTransmitting

539–43
FIQ see Fast Interrupt reQuest
firmware over the air (FOMA) 751
firmware see flash memory
Firth, Robert 45–115
flash components 9, 20–2, 30–3,

258–62, 333–5, 337–9,
364–75

buffers 32
concepts 30–3, 258–62
RAM requirements 30
types 31–3

flash memory
see also NAND...; NOR...;

ROM...
concepts 333–5, 337–9,

364–86, 574–89, 594–602,
737–64

definition 333, 368
erasure 368
file server 30–3, 333–5,

337–9, 364–5, 367–86,
746–8

MMC 594–602
operations 368
RAM 334, 381–4
user-data storage 334, 367–75,

377–85, 392
Flash Translation Layer (FTL) 31,

337, 378–81, 611–12
flicker-free redrawing, windows

470
flickering screens 452, 470

floating point coprocessors
242–3

flush requirements, caches 27–9,
41, 278–87, 290, 377–81,
782–3

FM radios 40
FMSignal 188, 528
FMWait 188, 528
focus, window server 433–74
FocusChanged 444–56
FOFF 646–52

FOMA see firmware over the air
ForceRemount 580–1
ForceResume 812–21
Format 580–1
formats 257–62, 335–9, 341–3,

349–64, 387–93, 638–9
FPEXC register 242–3, 248–9
free 299–306
see also free-store allocators

free message-state
client-server ITC 141–3
kernel-side messages 149–50

free-store allocators 66, 184,
251–2, 299–306, 309–10,
742–5, 848–9

see also free; operator
new; RHeap

allocator APIs 251–2, 300–1,
309–10

concepts 251–2, 298–310,
742–5, 848–9

key services 300–4
Symbian OS 301–5, 742–5,

848–9
FreeLogicalDevice 508
FreePhysicalDevice 508
Freescale MXC 830
FreeShadowPage 640
FreeSupervisorStack 272–3
FreeUserStack 272–3
FreezeShadowPage 640
Freitas, Carlos 659–736, 737–64
frequency scaling, CPUs 728–31,

797–807
FsNotify 363–4
FsRegisterThread 192,

263–73
FSSignal 528

FsThreadManager 355
FSWait 528, 532–43
FSY files 335–9, 358, 367, 385,

575–89, 606
FT32 file server 118
FTL see Flash Translation Layer
Furber, Steve 21
FXT files 336–9, 385, 575–89

games, audio 40
garbage collector 313–14
GC see graphics context
GCC98r2 387, 394–5, 414
GDBSTUB 618
GDT see global descriptor table
general cases, efficient code 828
general purpose I/O lines (GPIO)

9
Get 154–60, 341, 665, 686–7
GetBufInfo 569–74
GetCaps 510–17
GetChunkHandle 569–74
GetConfig 520
GetDefModeMaxNumColors

455–6
GetDir 341
GetDriverList 517
GetLastGeneratedCharacter

456
GetRawEvents 435–6, 446–56
GetSavedThreadRegister

648–52
GetSpriteMember 445–56
GetStatus 480–1
GetWindowGroupNameFrom-

Identifier 464–6
Gillies, Donald 765
global chunks 264–5, 282–7,

292–4, 307, 308–9, 401, 562
concepts 264–5, 282–7,

292–4, 307, 308–9, 401,
562

definition 562
global data structures 55–8,

95–7, 112–15, 167–73,
292–4

critical sections 55–8
global descriptor table (GDT)

216–19

INDEX 887

glossary 851–4
GMSK modulation 796
GNU 618–20
Goldfuss, J.H. 737
GPIO see general purpose I/O

lines
graphics 444–56
graphics context (GC) 444–56,

471–2
group windows, concepts

457–66
GSM protocol 5–6, 8–9, 14, 19,

46, 779, 788–807
burst types 790–807
concepts 5–6, 8–9, 14, 779,

788–807
design goals 5–6, 8–9, 14,

779, 788–807
EKA2 implementation

797–807
encoding 791–807
hardware 795–7
idle mode 793
introduction 788–93
layer threads 806–7
logical channels 788–93
real time application 788–807
traffic mode 793–5, 804–7

GUI 38–9, 738–42, 747–50

HAL 665, 669, 671, 674, 676,
685–8, 701

HAL see hardware abstraction
layer

HalData::ECpuSpeed 849–50
HalFunction 497–8, 752–62
HAL::Get 665, 686–7
HAL::Set 665, 686–7
HandleCommandL 756
HandleMsg 528–9, 533–43,

547–8, 715, 721
HandlePointerMove 450–6
HandlePriorityChange

819–21
HandleRelease 819–21
HandleResume 819–21
handlers

HAL groups 186–7

pre-processing handler 176–7,
185, 526

processes 95–7, 100–15,
119–44, 176–7, 185, 526

threads 51–66, 68–72, 88–90,
100–12, 119–44, 176–7,
185, 526

handles
see also objects
bit fields 167–8
concepts 7–8, 95–7, 113–15,

118–44, 156–60, 161–206,
299, 330–1, 341–6, 393–4,
419–20, 513

definition 161–2, 167–8
finding objects 169–71
kernel objects 163–73, 299,

513, 625, 644–52
object indexes 162, 167–73
perform methods 162
pointers 163, 166–7
property handles 156–7
protection mechanisms 170–1
RHandleBase 150–60,

161–2, 167–73, 518–48,
566–7

HandleShutdownEventL
755–62

HandleSuspend 819–21
HandleTimeout 820–1
handwriting recognition 429,

442–56
hard real time
see also real time
concepts 766–7

hardware 4, 9–43, 187–95,
207–8, 251–3, 274–87,
333–9, 475–548, 660–3,
795–7, 826–50

see also ARM...; Memory
Management Unit; mobile
phones; X86...

accelerators 19–20, 42
AP 17–20, 826–31
ASSP 4, 9–10, 12–13, 14,

187–95, 220–36, 246–9,
479–87, 552–62, 577–9,
596–601

audio 17–21, 39–40

batteries 17–18, 30, 40, 41–2,
334–5, 376, 586–7,
659–736, 795–7, 828

BP 9, 17–20, 39–40
concepts 4, 9–43, 190–2,

194–5, 251–3, 274–87,
333–9, 475–548, 795–7,
839–40

debuggers 620–3
device drivers 3–6, 10–13, 43,

69–70, 92, 191–2, 220–36,
285–7, 308–9, 320–6,
333–86

DMA 10, 20–9, 32–5, 36–7,
39, 296, 298–310, 479–80,
488, 549–62, 568–74,
839–40, 844–50

exceptions 210–19
flash components 9, 20–2,

30–3
GSM hardware 795–7
historical background 1–3
internal drive hardware 333–4
interrupts 5–7, 12–13, 14–15,

23, 33–7, 207–8, 219–36,
296, 376–81, 491–4, 502,
767–79, 809–10, 825–6,
835–50

LCDs 10, 20–3, 30–1, 34,
37–9, 475, 479, 487,
496–8, 550–62, 727, 829

moving memory model 274–8,
421–2

multiple memory model
287–96

operating-system functions 3
overview 333–9
performance issues 826–50
power management 17–19,

23, 30, 41–2, 90–1, 376,
586–7, 589–94, 659–736,
744–5, 751–62

RAM 9, 13, 19, 20–33, 56,
64–6, 92, 115, 220–36,
251–4

silicon chips 17–43, 826–31
SoC 19–43
synonyms 276–8, 288–91

888 INDEX

hardware (continued)
timers 4, 6, 9, 13–15, 35–6,

41–2, 188–9, 195–205
two-chip solution 17–29
variant extensions 4, 9–10,

12–13, 187, 194–5,
231–6, 337–9, 479–87,
552–62, 577–9, 654–6,
738–64

variant-specific components 4,
9–10, 12–13, 187–95

hardware abstraction layer (HAL)
4, 13, 186–90, 195, 475,
494–8, 741–5

definition 495–6
device drivers 475, 494–8
functions 186–7, 195,

494–8
kernel services 186–7, 495–8,

745
LCD HAL 487, 496–8
registration 496–8

hardware mode, client windows
464–6

Hardware for Symbian OS 3
Harrison, Richard 340
Harvard cache 277–8, 426,

830–1
heaps 65–6, 184, 298–310, 319,

840–2
see also Rheap
concepts 298, 299–306, 319,

840–2
threads 66, 298–310, 319

Henry, Morgan 613–58
high-bandwidth activities, design

goals 5–6
high-level boot processes 739–42
high-level services, file server

343–4
hit ratio, caches 26–7
holding queue, nanokernel timers

195–201, 780–8
holding state, nanokernel timers

197–201, 780–8
holding threads, mutexes 80–8,

171–3
homonyms 275–8, 288–91
hypervisor system 808–9

I-node, LFFS 369–75
I/O buffers see shared I/O

buffers
IA-32 architecture see X86...
IA-32 FPU 241
IAT see import address table
ICache see instruction cache
ICE see In-Circuit Emulator
.idata section 388–93
IDBs see indirect blocks
IDE see Integrated Development

Environment
identity attribute, properties entity

154–60
IDfcFn 818–21
IDFCs see immediate deferred

function calls
idle mode 130–43, 197–201,

662, 665, 668, 681–2, 689,
694–6, 703–5, 710, 718,
723–9, 793–807

concepts 793–807
operations performed 793

idle thread see null thread
idle time 18–19, 35–6, 39, 41,

130–43, 195–205, 373–4,
662, 665, 668, 681–2, 689,
694–6, 703–5, 710, 718,
723–9, 793–807

IDT see interrupt descriptor
table

IDTR register 218–19
IEEE 620–3
#ifndef KERNEL MODE

519–22, 570–4
image software layer see platform

software layer
image-header section, E32 image

file format 388–93,
398–401

images
E32 image file format 387–93,

398–400
efficient code 829
RAM requirements 29–30

IMB see instruction memory
barrier

immediate deferred function calls
(IDFCs)

concepts 6, 84, 99–106,
110–12, 195–201, 223–4,
227–31, 233–8, 813–21,
835–50

interrupts 223–4, 227–31,
233–8, 813–21, 835–50

mutexes 84
RTOS personality layers

228–9, 231, 813–21,
835–50

scheduling 99–106, 110–12,
227–31, 233–8, 835–50

implementation, platform security
328–30

import address table (IAT), E32
image file format 388–93,
400–1, 409–10

import-data section, E32 image file
format 389–401, 404–10

IMPORT C 480–1, 491–4,
513–17, 518–48, 670, 682,
692, 697

In-Circuit Emulator (ICE) 620–3
inactivity monitoring 716–18
InactivityDfc 717
independent software layer
see also nanokernel; Symbian

OS...
concepts 12–13, 161, 187–95,

252–3
functions 12–13, 187–95
read-modify-write APIs 189–90

indirect blocks (IDBs), LFFS
369–75

Info 514–17
InfoCopy 486–7, 497–8
infrared connectivity 616
Initialise 743–5
InitialiseMicrokernel

743–5
initialization 669

boot processes 739–65
file server 339, 347–64, 579,

740–6
kernel 743–5

initialized-data section, E32 image
file format 389–93, 400–1

InitiateRead 541–3
InitiateWrite 541–3

INDEX 889

InitProperties 490
InitSvHeapChunk 191–2,

263–73
InitSvStackChunk 191–2,

263–73
InitSystemTime 190, 263–73
Install 505–17
installed binaries, platform security

329–30, 611
instruction cache (ICache),

concepts 26–9, 31
instruction memory barrier (IMB)

184, 426
Integrated Development

Environment (IDE) 614–59
Intel 20, 24, 827–30

8086 architecture 1–2
SA1100 10
XScale processors 20, 24,

827–31
Intel IA-32 see X86...
intellectual property (IP) 20–1
inter-processor communication

(IPC) 17–29, 40, 118–44,
150–60, 285–7, 295–6,
319–20, 324–6

client-server ITC 118–44, 177,
319–20, 324–6, 473–4

publish and subscribe system
150–60, 309–10, 330,
744–5, 758

v1 118–19, 319–20
v2 118, 124, 128–9, 143–4,

319–20
inter-thread communications (ITC)
see also client-server ITC
asynchronous message queues

145–6, 531–43
concepts 117–60, 173–206,

286–7, 298–310, 324–6,
335–9, 473–4, 744–5,
822–3

kernel-side messages 147–50,
160, 531–43, 544–8

message pools 134–46
publish and subscribe system

150–60, 309–10, 330,
744–5, 758

shared chunks 160, 173–7,
184–7, 264–73, 292–4,
298–310, 562–74, 822–3

shared I/O buffers 160, 298,
307–10, 562–74

internal drive hardware, concepts
333–4

internal RAM (IRAM) 20–9,
30–1, 375–81

concepts 30–1, 375–6
FAT file system 375–6

Interrupt 194–5, 231–6,
541–3, 814–21

interrupt descriptor table (IDT)
218–19, 220–36

interrupt gates, X86 exceptions
218–19

Interrupt ReQuest (IRQ) 33–4,
211–15, 222–4, 233–6,
237–8, 743–5, 843–50

interrupt service routines (ISRs)
165–6, 195, 197–201,
220–38, 308–9, 502, 743–5,
806–7, 809–10, 813–21,
835–50

Interrupt::Bind 232–6
Interrupt::Clear 233–6
Interrupt::Disable 233–6
Interrupt::Enable 541–3
InterruptHandler 492–4
interrupts
see also exceptions; latency
APIs 231–6
boot processes 740–5
code flow 220–36
concepts 5–7, 12–13, 14–15,

23, 33–7, 91–3, 99–112,
173–206, 207–49, 296,
376–81, 491–4, 502,
522–8, 740–5, 767–79,
784–8, 797–807, 809–10,
825–6, 835–50

definition 207–8
design goals 5–6, 14–15,

779–88, 797–807
DFCs 6, 13–15, 54–5, 59, 89,

91–2, 223–4, 227–31,
233–6, 491–4, 522–8,
787–8, 806–10, 835–50

disabling 233–6, 776–9,
818–21, 823, 836–9,
842–50

dispatcher 219–24, 231–6
DMA 36–7, 549–50, 839–40,

844–50
EKA2 handling 219–36,

779–88, 797–807, 825–6
emulator 111–12, 183
fast/slow exec calls 175–7,

179–87
FIQ 33–4, 181, 211–15,

224–5, 233–6, 237–8,
743–5, 787–8, 799–807,
843–50

hardware 5–7, 12–13, 14–15,
23, 33–7, 207–8, 219–36,
296, 376–81, 491–4, 502,
767–79, 809–10, 825–6

IDFCs 223–4, 227–31, 233–8,
813–21, 835–50

IRQ 33–4, 211–15, 222–4,
233–6, 237–8, 743–5,
843–50

ISRs 165–6, 195, 197–201,
220–38, 308–9, 502,
743–5, 806–7, 809–10,
813–21, 835–50

maskable interrupts 208, 214,
740

nanokernel 6, 188–9, 193–4,
219–36, 780–8

phases 219–24, 236–49
postamble phase 220, 223–5
pre-emption lock 226, 234–6,

491–4, 770–9, 825–6,
835–50

preamble phase 220–39
RTOS 767–79, 809–10,

825–6, 835–50
scheduling interactions

224–31, 233–6, 767–79,
809–10, 825–6, 835–50

SWIs 173–86, 206, 207–49,
809–10, 825–6

tasks 767–79, 835–50
types 33–5
using 231–6

890 INDEX

Interrupt::SetPriority
233–6

INTR line 219
invalid area, client windows 466
invalid pointers 241–2, 319, 326
Invalidate 466, 471
IP see intellectual property
IPC see inter-processor

communication
IRAM see internal RAM
IRQ see Interrupt ReQuest
IsAvailable 516–17
IsIDFC 235–6
IsQueued 235–6
IsRomAddress 191–2, 263–73
ISRs see interrupt service routines
ISRSignal 817–21
IsWakeupEventEnable 684
ITC see inter-thread

communications
iterator classes, concepts 506–8

Java 301, 313, 320
see also nonnative

programming systems
JIT 320, 619–20, 641–3
JPEG decoder 25
JTAG (Joint Test Action Group),

debuggers 36, 620–3,
643–58

KBufSize 503–8
KDEBUG.DLL 644–52
KDefaultDebugPort 655–6
KDeviceAllowAll 512–17
KDeviceAllowInfo 512–17
KDeviceAllowPhysical-

Device 511–17, 522–48
KDeviceAllowUnit 511–17
KDLL 480
KDrive... 360–2
KEerrCancel 670
Kern 91–2, 187, 189–90,

486–7, 496–8
KERN-EXEC3 262, 548
Kern::AddEvent 493–4,

756–62

Kern::AddHalEntry 187
Kern::AsyncNotifyChanges

91
Kern::ChunkAddress 568–74
Kern::ChunkClose 564–74
Kern::ChunkCommit-

Contiguous 565–6
Kern::ChunkCommitPhysical

565–6
Kern::ChunkCreate 563–74
Kern::ChunkPhysical-

Address 568–74
KERN$CODE 309–10
Kern::DfcQue0 92, 529–30
Kern::DfcQue1 92, 529–30
kernel
see also CPU...; EKA2;

memory...; nanokernel
boot processes 13–15, 90–2,

338–9, 476–80, 737–64
caches 28, 251–2
client-server ITC 117–44
concepts 1–16, 23, 28, 35–6,

43, 45–115, 150–60,
161–206, 210, 241,
251–314, 318–31, 401,
412–27, 475–548, 737–64,
783–8

data structures 45, 55–6
debug interface 625–40,

651–2
definition 3–4
design issues 4–15, 252–3,

783–8
DLLs 476–548, 552–62
EUSER library 4–6, 11, 178,

183–7
event handlers 241, 245–6,

429–74, 493–4, 626–37,
642–52, 752–62

failures 311–14
initialization routines 743–5
kernel services 136, 161–206,

229–31, 251–3, 313–14,
318–20, 479–87, 513,
743–5, 783–8

library-loading involvement
423–7, 504

LRTA 808–23, 835–50

memory management 251–3,
313–14

panics 6, 68, 89–90, 157–8,
241, 273, 347, 401, 450–6,
533–4, 548, 619–20,
626–37

platform security 318–31
pre-emption lock 4, 7, 13–15,

46, 55–6, 61–2, 98–112,
226, 234–6, 249, 311–12,
491–4, 770–88, 811–21,
825–6, 835–50

priority level 210
process creation 93–7,

113–15, 320–6
publish and subscribe system

150–60, 309–10, 330,
744–5, 758

scheduling 98–112, 780–8
section address 280–7
shutdown 752–62
system transition 757–62
threads 13–15, 45–93,

161–206, 412–27, 486–7,
501–2, 527–8, 585–6,
609–12, 615–59, 743–5,
783–8, 835–50

timers 4, 6, 9, 13–15, 35–6,
49–50, 90–2, 188–9,
195–205, 230, 479–80,
745, 783–4

trace channel 652–8
kernel extensions
see also EEXT.LIB;

extensions
concepts 475–548, 810, 826
definition 475, 479
entry points 481–4, 488–90,

498
system services 494

kernel.h 189, 489, 510–11,
528

kernel heap, concepts 7
kernel lock see pre-emption lock
kernel objects 66–71, 79, 84, 86,

94–5, 113–15, 132–43,
145–6, 162–73, 185, 479–80,
513, 625–37, 644–52

INDEX 891

see also DObject
access counts 163–73
concepts 162–73, 479–80,

513, 625–37, 644–52
debuggers 625–37,

644–52
handles 163–73, 299, 513,

625, 644–52
layout tables 644, 645–52
names 163–4, 166–73
ownership 164–73
reference-counted kernel objects

162–73, 415–16,
418–19

kernel server calls 178, 183
kernel services 136, 161–206,

229–31, 251–3, 313–14,
318–20, 479–87, 513,
743–5, 783–8

see also EKA2...
example user-accessible services

183–7
executive calls 161, 173–206,

419–20, 485–7
HAL functions 186–7, 195,

495–8, 745
kernel 187–95, 513, 783–8
objects and handles 161–73,

299, 479–80, 513, 783–4
software layers 187–95
timers 195–205, 479–80, 745,

783–4
user-mode threads 161,

173–206
kernel software layers 11–13, 43,

47–9, 187–95, 252–314
kernel threads
see also DFC...; null...;

supervisory...; timer...
concepts 13–15, 90–2,

486–7, 501–2, 527–8,
586, 609–12, 615–59,
743–64, 783–8, 835–50

kernel-mode free store, RHeap
305–6

kernel-mode software, memory
model 298–310,
625

kernel-side architecture 119–20,
124–6, 128–43, 160,
161–206, 298–310, 324–6,
400, 412–27, 476–548,
661–736, 825–6

kernel-side code management
412–27, 566–74, 613–58,
744–5

loader 412–27
shared chunks 566–74

kernel-side debug
see also debuggers
concepts 613–58

kernel-side messages
see also inter-thread

communications
concepts 147–50, 160,

531–43, 544–8
states 149–50

KernelInfo 190, 263–73
KernelMain 743–5, 750
KernelModuleEntry 482–3,

488–90, 494, 498–9
Kern::Free 523
Kern::HalFunction 186–7
Kern::MachinePowerStatus

672, 698
Kern::MakeHandleAndOpen

566–7
Kern::Message 533–43
Kern::OpenSharedChunk

567–74
Kern::PollingWait 539–43,

694
Kern::Printf 653
kern priv.h 190–1, 193,

262–3
Kern::ProcessCreate

420–2, 627–8
Kern::QueryVersion-

Supported 511–17, 523–4
Kern::RequestComplete

536–43
Kern::RoundToPageSize

560–2, 565–6, 571–2
Kern::SafeReAlloc 171–3
Kern::ThreadCreate 65,

628–9

Kern::ThreadDesRead 273,
326

Kern::ThreadDesWrite
189–90, 486–7, 537–43

Kern::ThreadKill 538–43
Kern::ThreadRawRead

189–90, 273, 486–7, 538–43
Kern::TimerDfcQ 92
‘KERN–EXEC 3’ panic code 241
KErrAbort 543
KErrAlreadyExists 640
KErrArgument 489, 670
KErrBadDescriptor 244–5
KErrCancel 543
KErrCompletion 588–9
KErrDied 77
KErrGeneral 165, 248, 482–4
KErrInUse 670
KErrNoMemory 154, 497,

512–17, 523–4
KErrNone 52–4, 165, 244, 248,

450–6, 483–4, 489–90,
497–9, 503–17, 530–43,
571–4, 588–9, 813–21

KErrNotFound 156, 573
KErrNotSupported 522–4,

538–43
KErrPermissionDenied 155,

487, 498, 522–4
KErrTimeOut 813–21
K::EventThread 185
KExecFlagClaim 526
KExecFlagPreProcess 526
KEXT 481–4
key events

character events 438–40
concepts 436–40, 752–62
queue-priority overflows

440–2
ups and downs 431–42
window server 431–4,

436–74, 752–62
keyboards 11, 13–15, 92,

318–31, 431–74, 495–8,
752–62, 795–7

Kill 56, 59
kill operations, mutexes 83–8
KMaxCoprocessors 246–9
KMaxHalGroups 495–8

892 INDEX

KMaxKernelName 509–13
KMaxLargePropertySize 154
KMaxTInt 542–3
KMaxUnits 511–17
KMediaDriverDeferRequest

588–9
KModuleEntryReason-

ExtensionInit1 482–4
KModuleEntryReason-

ExtensionInit 65–6,
482–4

KModuleEntryReason-
ProcessDetach 65–6,
483, 508

KModuleEntryReason-
ProcessInit 65–6

KModuleEntryReason-
ThreadInit 65–6

KModuleEntryReason-
VariantInit 482–4,
494

KMyDeviceBufSize 569–74
KNullDebugPort 655–6
KNullUid 328
KNullUnit 511–17
KPlatDeviceTxChan 572
K::PowerModel 669, 671
KThreadAttAddressSpace

105–12
KThreadAttImplicit-

SystemLock 104–12
KThreadFlagProcess-

Critical 89–90
KThreadFlagProcess-

Permanent 89–90,
93–4

KTRACE OPT 656–8
KUDesGet 485–6
KUDesInfo 485–6
KUDesPut 485–6
KUDesSetLength 485–6
KUidSystemCategoryValue

156
kumem functions, executive (exec)

calls 179–80, 245, 326,
485–7, 533–43

LAF see Look And Feel
lasterror 257–62

latency
see also interrupts
audio 39–40
concepts 5–6, 7–8, 13–15, 30,

34–5, 98–112, 784–8,
826–50

design goals 5–6, 13–15,
784–8

DMA impacts 844–5
key measure 785–8, 841–5
performance 785–8, 826–50
reduction techniques 842–5,

846
worst-case scenarios 786–8,

839
Lauterbach 621
layering concepts, software

11–13, 43
Layland, J.W. 771–2
layout tables, kernel objects 644,

645–52
‘lazy’ context switching, exceptions

242–3
LCD HAL 487, 496–8
LCDs see liquid crystal displays
LDD 481–4
LDDs see logical device drivers
LDREX/STREX 836–9
‘leakage’, memory 311
Least Recently Used (LRU), caches

377–81
Leave 311–13
leaving mechanism 6
legacy client-server framework,

IPCv1 118–19
legacy real time application (LRTA)

808–23, 835–50
Leung, J.Y.T. 771–2
LFFS see Log Flash File System
libraries 4–13, 66, 70, 72,

112–15, 164–7, 183–7,
266–73, 284–7, 294, 297,
336–9, 387–427, 626–31,
740–2

see also dynamically loaded...;
EUSER...

concepts 112–15, 167, 183–7,
266–73, 398, 410–12,
417–27, 626–31, 740–2

loader 112–15, 271, 321–4,
387–427, 476–7, 490,
504–8, 626–31, 638–9,
740–2

search rules 397–8, 410–12,
419–22

uses 112–13, 321, 417–19
LIBRARY 492
lifecycle, threads 54–5, 72–5
Linux 4
liquid crystal displays (LCDs) 10,

20–3, 30–1, 34, 37–9, 475,
479, 487, 496–8, 550–62,
727, 795–7, 829

see also screens
concepts 37–9, 479, 487,

496–8, 550–62, 795–7,
829

types 38
Liu, C.L. 771–2
Load 323–4, 393–427, 442–56
LoadDllL 455–6
loader
see also file server
ARM 421–2
cache 396, 398–400
classes 392–3, 401–6
client requests 402–27
concepts 93, 112–15, 321–4,

329–30, 335, 339, 382–3,
387–427, 476–7, 611,
626–31, 638–9, 737–42,
746–8

DLLs 112–15, 271, 321–4,
387–427, 476–7, 490,
504–8, 626–31, 638–9,
740–2

E32 image file format 387–427
kernel-side code management

412–27
libraries 112–15, 271, 321–4,

387–427, 476–7, 490,
504–8, 626–31, 638–9,
740–2

non-XIP executables 392–3,
400–1, 406–13, 424–5

platform security 321–4,
329–30, 396, 611

INDEX 893

processes 93, 112–15, 321–4,
329–30, 382–3, 393–427,
626–31, 638–9

requests 402–27
ROM file system 339, 392–3,

396–7, 402–6, 746–8
searches 394–400, 402–6,

410–12, 419–22
services 393–4
startup 339, 384–5, 476–7,

578–9, 737–42, 746–8
version numbers 394–6,

398–400, 410–12
LoadLibrary 297
LoadLogicalDevice

393–427, 503–8, 627
LoadPhysicalDevice 503–8
loads, energy sources 734
local drives, concepts 338,

576–89
local media LDD, concepts 574,

582–9, 611–12
local media sub-systems
see also logical device drivers;

peripherals; physical device
drivers

classes 574–89
concepts 336–9, 380–1, 384,

479, 494, 513, 529–30,
574–94, 601–2, 611–12

definition 574
EKA1/EKA2 contrasts 577–9,

587
ELOCD.LDD 336–9, 479, 494,

575–89
loading 513
overview 574–9
TBusLocalDrive 336–9,

380, 574–89, 611–12
user-side interface class

579–82, 588–9, 611–12
Lock 62, 77–8, 167–73,

448–56, 816–21
lock-free algorithms, performance

issues 836–9, 847
LockedDec 189
LockedInc 189, 527–8
LockedSetClear 527–8
LockSystem 535–43

Lofthouse, Tony 475–548
Log Flash File System (LFFS),

concepts 31–2, 364–5,
367–75, 378, 746–8, 849–50

logger utilities
debuggers 623–4, 643–52
extensions 493–4
post-mortem analysis tools

623–4
logical channels, GSM protocol

788–93
logical device drivers (LDDs)
see also device drivers; local

media sub-systems
advanced factory concepts

515–17
classes overview 499–502,

582–7
closure 534
concepts 4, 10, 95, 325–6,

336–9, 355, 359–62,
477–87, 498–548, 574–89,
606–12, 630–1, 641–3

creation 498–548, 630–1
debuggers 630–1, 641–3
definition 477–8
EKA1/EKA2 contrasts 544–8,

587
LDD factory 509–13, 515–17,

544–8, 630–1
loading 503–48, 630–1
local media LDD 574, 582–9,

611–12
logical-channel creation 522–3
naming conventions 505–6
opening 509–48
roles 477–8, 509–13
USB 606–12

logons, threads 70, 77–8,
88–90

‘long-running’ operations 351–8
Look And Feel (LAF) 752–64
lost clusters 376–81
low memory, concepts 311–14
low power states 668, 670,

694–6, 702–4, 724–7,
731–3

see also off mode; standby
mode

LRTA see legacy real time
application

LRU see Least Recently Used

M class 191–2, 262–73
see also model software layer

M-state, Symbian OS threads
72–5

Mac OS X 3
MachinePowerStatus 672,

698
‘magic’ handler, exceptions

239–41
MaintainBackup 467–8
MakeChunkHandle 570–4
MakeHandleAndOpen 566–7
MAKSYM 624–5
malicious code, robustness needs

5–6, 128–30, 254–5, 260–2,
274, 281–3, 326, 330

malloc 251–2, 299–306
MAllocator 302–4

concepts 302–4
key members 302–3

MAnimGeneralFunctions
435–6, 444–56

MAnimGeneralFunctions
::GetRawEvents 435–6,
446–56

MAnimSpriteFunctions
444–56

MAnimWindowFunctions
444–56

manufacturers
mobile phones 8–9, 20, 333,

384, 833
personal layer 8–9
silicon chips 20, 23–5, 826–31

Mars Pathfinder mission (1997)
777–9

maskable interrupts
see also interrupts
concepts 208, 214, 740

masked ROM, concepts 333–5,
738–40

Maugham, W. Somerset 1
MaxTranSpeedInKilohertz

598–600

894 INDEX

May, Dennis 207–49, 387–427,
765–823

MDirectScreenAccess 472
media, emergency shutdown

722–3
media drivers
see also local media

sub-systems; physical...;
removable...

classes 574–89
concepts 329–30, 334–43,

360–2, 364–86, 574–89,
611–12, 835–50

definition 574, 588
DMediaDriver 582–7,

588–9
file systems 364–86, 574–89,

611–12, 849–50
IDs 578–9
local media LDD 574, 582–9,

611–12
user-side interface class

579–82, 588–9, 611–12
media formats 335–9
MEDLFS 479
MEDMMC.PDD 479, 575–89,

596–600
MEDNAND.PDD 479, 575–89
mega-pixel camera images, RAM

requirements 29–30
Mem::Copy 828, 832–3
memcpy 178–9, 300, 832–3
memget 485–7
memory 3–4, 7–8, 11–13, 14,

21–9, 54, 251–314, 319,
333–5, 479–80, 738–42,
825–6, 829–50

see also flash...; RAM...;
ROM...

alignment issues 832–3
allocation strategies 293–4,

298–309, 311–14, 559–62,
638–9, 829, 848–9

blocks 262–73, 298–310,
368–75, 379–85, 747–50,
779, 822–3, 829

buffers 257–62, 275–87,
553–74, 797–807, 823,
833–4, 839–40

chunks 14–15, 95–7, 160,
166, 173–7, 184–7, 192,
264–73, 278–87, 292–4,
298–310, 320, 401,
562–74, 610–12, 626–37,
740–5, 782–3

DMA 10, 20–9, 32–5, 36–7,
39, 296, 298–310, 479–80,
488, 549–62, 568–74,
839–40, 844–50

dynamic memory 7, 20–9,
305–6, 840–2

efficient code 829–50
garbage collector 313–14
‘leakage’ 311
low memory 311–14
management 7–8, 12–14,

21–9, 38, 66–71, 93,
105–12, 178–9, 191–4,
210–15, 251–70, 275–96,
313–14, 479–80, 560,
565–6, 652, 738–45, 783,
810, 822–3

maps 21–6, 251, 254–62, 272,
275–87, 293–4, 644–52,
740–2

non-current thread memory
650–1

overwritten memory 319–20
pages 25–6, 28, 105–12,

254–62, 275–87, 288–94,
301–9, 313–14, 565–6,
740–2

performance issues 829,
833–4, 848–9

physical memory 21–6,
251–62, 275–87, 830–2

process memory context
259–62, 274–9, 283–6,
292–6, 319

shared memory 160, 173–7,
184–7, 264–73, 292–4,
298, 306–10, 562–74,
777–9

throughput 833–4
unused pages 313–14
virtual memory maps 25–6,

230, 251–62, 272, 275–87,
293–4, 311, 644–52, 742

Memory Management Units
(MMUs)

ARM architecture 255–62,
274–87

boot processes 738–42
buffers 257–62, 275–87
chunks 264–70, 278–9,

565–6
concepts 7–8, 12–14, 21–9,

38, 66–71, 93, 105–12,
178–9, 191–4, 210–15,
251–70, 275–96, 479–80,
560, 565–6, 652, 738–45,
783, 810

CPU 254–62, 296, 740–2
definition 254
direct memory model 296
disabling benefits 296
exceptions 210–15
key features 254–62
memory protection 260–1,

275–8, 281–3, 287–8,
293–4, 783

page tables 25–6, 28, 105–12,
254–62, 275–87, 288–91,
565–6

TLBs 25–6, 257–62, 275–94
TTBR 256–62, 275, 287–96
virtual/physical addresses

254–62, 275–91, 740–2
memory model

allocation strategies 293–4,
298–309, 311–14, 559–62,
638–9, 829, 848–9

APIs 262–73, 298–310
ARM architecture 255–62,

274–87, 300–4, 421–2,
426

caches 25–9, 251–3, 262,
275–87, 288–91

chunks 14–15, 95–7, 160,
166, 173–7, 184–7, 192,
264–73, 278–87, 292–4,
298–310, 562–74, 740–5

concepts 7–8, 11–16, 23–9,
54–8, 71, 78, 91–3,
99–112, 160, 161, 178–9,
187–95, 251–314, 318,
421–2, 424–7, 613–58

INDEX 895

context switch times 7–8,
14–15, 57–8, 102–12,
274–9, 283–6, 293–6, 312,
340–6, 634–8, 774–5,
782–8

CPU software layers 12–13,
193–4, 252–3

DChunk 177, 190, 192,
264–73

DCodeSeg 95–7, 114–15,
192, 263–73, 400–17,
424–7

definition 251–2
direct memory model 8, 12,

106, 191–2, 253, 296,
651

DProcess 93–7, 112–15,
167, 189–90, 192, 263–73,
292–4, 404–6, 414,
418–22, 744–5

DThread 272–3
emulator memory model 8, 12,

106, 190–2, 252–3, 297–8,
309–10, 613–58

free-store allocators 251–2,
299–306, 309–10, 742–5,
848–9

heaps 298, 299–306
interfaces 262–73, 298–310
layering concepts 11–13, 43,

187–95, 252–314
low memory 311–14
memory protection 260–1,

275–8, 281–3, 287–8,
293–4, 297–8, 782–3

model software layer 190–2,
252–3, 262–73

moving memory model 8, 12,
57–8, 101–12, 191–2, 253,
274–87, 294, 309–10,
421–2, 625, 651, 782–8

multiple memory model 8, 12,
106–12, 191–2, 253,
287–96, 309–10, 426, 625,
650–1

platform software layer 190,
252–3, 262–73

programmer APIs 298–310

shared memory 160, 173–7,
184–7, 264–73, 292–4,
298, 306–10, 562–74,
777–9

supervisory thread 91–2
types 8, 12, 106, 191–2, 251,

274–98, 421–2,
650–1

virtual/physical addresses
254–62, 275–91, 297–8,
740–2

Memory Stick 334, 589–94
memput 485–7
Message 533–43
message pools, client-server ITC

134–46
message queues 8, 34–5, 37,

87–8, 98, 118–60, 300–1,
531–43, 809–10

see also asynchronous...
‘message-centric’ architecture,

client-server ITC 118–44
message-pending state, state

machine 130–43
messages 8, 34–5, 37, 87–8, 98,

118–60, 300–1, 531–43,
617–25, 809–10

metadata
caches 377–81
LFFS 374–5

Metrowerks 618
MEventHandler 435–6,

444–56
MEventHandler::OfferRaw-

Event 435–6, 444–56
microcontrollers 795–7

concepts 795–7
functions 796–7

microphones 795–7
miniboot program 383–5,

747–50
minimal states, client-server ITC

139–43
minimal window, uses 339
MkDir 341
MM, GSM layer 807
MMC see MultiMediaCard
MMF see multimedia framework

MMP files 25, 320–6, 328–30,
442–3, 480–1, 492–4

see also project files
MmuBase 193–4
MMUs see Memory Management

Units
M::NewCodeSeg 263–73,

424–7
mobile phones 8–9, 17–43,

315–31, 333–5, 376, 381–2,
586–7, 659–736, 795–7,
828, 850

see also hardware
AP 17–29, 826–31
audio 17–21, 39–40
batteries 17–18, 30, 40, 41–2,

334–5, 376, 586–7,
659–736, 795–7, 828

BP 9, 17–20, 39–40
design issues 17–43, 315–31,

779–88, 797–807, 850
DMA 10, 20–9, 32–5, 36–7,

39, 296, 298–310, 479–80,
488, 549–62, 568–74,
839–40, 844–50

flash components 9, 20–2,
30–3, 258–62

idle mode 130–43, 197–201,
662, 665, 668, 681–2, 689,
694–6, 703–5, 710, 718,
723–9, 793–807

interrupts 5–7, 12–13, 14–15,
23, 33–7, 207–8, 219–36,
376–81, 491–4, 502,
767–79, 809–10, 825–6,
835–50

LCDs 10, 20–3, 30–1, 34,
37–9, 475, 479, 487,
496–8, 550–62, 727, 829

manufacturers 8–9, 20, 333–5,
384, 833

personal aspects 315–16
platform security 112, 154–60,

178–9, 315–31
power management 17–19,

23, 30, 41–2, 90–1, 376,
586–7, 589–94, 659–736,
744–5, 751–62

quality determinants 18

896 INDEX

mobile phones (continued)
RAM 29–31, 251–4
remote access 375–6
SoC 19–43
timers 4, 6, 9, 13–15, 35–6,

41–2, 195–205, 230,
783–4, 829–32

traffic mode 793–5, 804–7
two-chip solution 17–29

mobile SDRAM, concepts 30
model software layer
see also M class
concepts 12–13, 187, 190–5,

252–3, 262–73
functions 12–13, 190–2
memory model 190–2, 252–3,

262–73
modem see baseband processor
mode svc 50
modular design, Symbian OS

3–5, 14
monitoring

batteries 696–701
environmental factors 701–4

motion estimation units 246–7
see also coprocessor...

mounted drives, file systems
335–9, 341, 347–67, 574–9,
586–7, 611–12

MountFileSystem 341
mouse 431–74, 495–8
move events, pointer events

431–4, 438–74
MoveToActive 716
MoveToRetention 718
moving memory model

address spaces 275–87,
421–2, 651

algorithms 283–7
concepts 8, 12, 57–8, 101–12,

191–2, 253, 274–87, 294,
309–10, 421–2, 625, 651,
782–8

design issues 280–7, 294,
309–10, 782–8

hardware 274–8
optimizations 282–7
protection 275–8, 281–3,

782–3

scheduling 101–12
thread request complete 286–7
virtual/physical addresses

275–87
MP3 playback, audio 40
MPowerInput 693, 707
MSaveObserver 754–62
MSFS.FSY 606
MsgQFunc 529, 533–43
MShutdownEventObserver

753–62
multi-level resources 693
multi-tasking aspects, Symbian OS

3–4, 13–15
multi-threaded design, file server

350–8
multi-threaded pre-emptible kernel,

design solutions 13–15,
491–4, 613–14, 780–8

multilevel page directories,
concepts 254–62, 279–87,
288–94, 742

multimedia 5–6, 13–15, 17–20,
37–40, 334–5, 574–89

accelerators 19–20, 42
audio 39–40
design goals 5–6, 13–15
RAM requirements 29–30

multimedia framework (MMF),
concepts 40

MultiMediaCard (MMC) 9,
334–5, 337, 488, 574–602

bus configuration 600
classes 594–600
concepts 594–602
definition 594–5
error recovery 600
overview 594–5
power management 601–2
signals 594–602
software controller 595–600
types 594–5

multiple memory model
address spaces 287–96, 426,

650–1
algorithms 294–5
ASIDs 288–9, 292–5
complexities 290–1

concepts 8, 12, 106–12,
191–2, 253, 287–96,
309–10, 426, 625, 650–1

design issues 291–4, 309–10
hardware 287–96
memory protection 287–8,

293–4
process context switch 295
synonyms 288–91
thread request complete 295–6
virtual/physical addresses

287–96
multiple sessions, client-server ITC

117–44
multiple timers 36
see also timers

mutexes 5–7, 56–8, 72–88,
95–9, 100–12, 113–15,
149–50, 165–73, 176–7,
185–9, 201, 230, 235–6,
240–1, 312, 413–19, 528,
673–8, 744–5, 776–9,
781–8, 823, 838–50

see also mutual exclusion;
priority...

concepts 5–7, 56–8, 72–88,
95–9, 109, 113–15,
149–50, 170–3, 185–9,
201, 230, 235–6, 240–1,
413–19, 528, 744–5,
776–9, 781–8, 838–50

conditional variables 85–8
deadlocks 80–1
definition 7, 777, 846
design goals 5–7, 785
fast mutexes 56–8, 77–8, 81,

98, 100–12, 149–50,
165–73, 176–7, 188–9,
230, 235–6, 240–1, 312,
528, 781–8, 823, 838–50

IDFC 84
kill operations 83–8
performance issues 846–50
priorities 80–8, 776–9, 781–8
processes 95–7, 113–15,

170–1
resets 85–8
restrictions 782
resume operations 83–8

INDEX 897

RTOS 776–9, 838–50
suspend operations 83–8
threads 56–8, 72–88, 98,

100–12, 149–50, 165–73,
176–7, 185–6, 188–9, 230,
235–6, 240–1, 312, 413,
416, 418–19, 528, 781–8,
838–50

tick timers 201
mutual exclusion
see also mutexes
concepts 55–6, 775–88,

809–10, 836–9, 841–50
nanothreads 55–6, 780–8,

841–50
priority inversion 777–9,

780–8, 836–9, 841–50
RTOS 775–88, 809–10,

836–9, 841–50
unbounded priority inversion

scenario 777–9, 836–9,
841–50

mykext.cpp 492–4
mykext.dll 492–4
MyRescheduleCallback

636–7

N-state, nanothreads 72, 811–21
names 163–4, 166–73, 329,

344–5, 375, 389–90, 396–8,
421–2

DLL name string 389–90
executables 329, 389–90,

394–8, 421–2
files 344–5, 375, 389–90,

396–8, 421–2
IPCv2 319
kernel objects 163–4, 166–73,

421–2
LDD/PDD factory objects

505–6
objects 163–4, 166–73, 319,

421–2
parsing classes 340–1, 344–5,

352–4
NAND flash memory

boot processes 30, 32, 383–5,
737–64

caches 377–81
characteristics 377–81
composite file system 384–5
concepts 20–2, 30, 31–3, 334,

337–9, 364–5, 375–81,
574–89, 611–12, 737–64

errors 32–3
FAT translation layer 31, 337,

375–81
NOR contrasts 378
RAM-shadowing scheme

381–4, 747–50
ROFS 382–5, 576–9, 747–50

NANDFTL.FXT 336–9, 385
nandloader 384–5
NANDLOADER.EXE 384–5
NanoBlock 811–21
nanokernel
see also NKern
APIs 188–9
concepts 4–16, 46–93, 98,

108–12, 161, 173–206,
219–36, 252–3, 527–8,
638, 780–8, 810–23

concrete classes 189
CPU software layers 12–13,

192–5, 252–3
design solutions 14, 613–14,

780–8
dispatcher 173–7, 179–81,

183, 185, 193, 195, 219–24
dynamic memory 7, 840–2
exceptions 6, 188–9, 193–4,

219–49, 780–8
interrupts 6, 188–9, 193–4,

219–36, 780–8
limitations 7, 62
memory allocations 62
personality layers 4, 8–9, 55,

59, 71–2, 74–5, 181–3,
231, 807–23, 835–50

read-modify-write APIs 189–90
roles 4–16, 780–1
scheduling responsibilities 98,

108–12, 780–8
separation solution 14
threads 46–93, 173–206,

219–36, 527–8, 544, 638,
780–8, 810–23

nanokernel timers 6, 188,
195–203, 230, 780–8

see also NTimer; timers
cancellation 196–201, 230,

781–8
concepts 195–201, 780–8
control blocks 198–201,

780–8, 800–7
expiry 197–201
queues 195–201, 230, 780–8
start functions 198–201,

780–8
states 197–201, 780–8

nanothreads 46–93, 98,
173–206, 219–36, 527–8,
544, 638, 780–8, 810–23

see also threads
blocks 49–62, 70, 544
concepts 46–93, 98, 188–95,

219–36, 780–8, 810–23
creation 50–5, 60–2
critical sections 55–8
death 55, 56, 59, 623–5
emulator 59–62
exits 49–58, 61–2, 110–12
fast mutexes 56–8, 80–1, 98,

176–7, 188–9, 230, 528,
781–8, 823, 838–50

lifecycle 54–5
mutual exclusion 55–6,

780–8, 841–50
N-state 72, 811–21
personality layers 55, 59,

71–2, 181–3, 231, 810–23,
835–50

states 49–55, 60–2, 811–21
suspension 49–62
waiting 49–55, 57–8, 78–88,

98, 811–21
ncthrd.cpp 637–8
never-execute bit, ARM v6

319–20
new 299–306
NewChunk 174–7, 264
NewCodeSeg 263–73
NewL 445–56
NewProcess 263–73
NewSessionL 120–6
NextObject 507–8

898 INDEX

NFastMutex 6, 81, 104–12,
189, 528, 847

see also fast mutexes
NFastSemaphore 6, 149–50,

189, 528
NKern 6, 50–5, 65–6, 188,

252–3, 527–43, 546–8,
811–21

see also nanokernel
nkern.h 188
NKern::CurrentContext

814–21
NKern::Exit 54
NKern::FMSignal 188, 528
NKern::FMWait 188, 528
NKern::FSSignal 528
NKern::FSWait 528, 532–43
NKern::InsertScheduler-

Hooks 634–7
NKern::Lock 816–21
NKern::LockSystem 535–43
NKern::NanoBlock 811–21
NKern::RescheduleCall-

back 636–7
NKern::SchedulerHooks

634–7
NKern::SetRescheduleCall-

back 636–7
NKern::Sleep 6
NKern::ThreadCreate 50–5,

65–6
NKern::ThreadEnterCS

546–8
NKern::ThreadGetUser-

Context 637–8
NKern::ThreadLeaveCS

571–4, 640, 812–21
NKern::ThreadSetUser-

Context 637–8
NKern::UnLockSystem

535–43
nk priv.h 46
NMI line 219
non-client registered events,

window server 433–5,
753–4

non-current thread memory,
debuggers 650–1

non-maskable interrupts

see also interrupts
concepts 208

non-volatile registers, scheduling
100–12

nonnative programming systems
301

see also Java
NOR flash memory

concepts 30, 31–2, 334,
364–5, 367–75, 377–81,
737–64, 849–50

deletions 32
NAND contrasts 378
RAM requirements 30
reliability 32

normal chunks, concepts 264–70
NormalizeExecutableFile-

Name 190, 263–73
notification schemes 77–8, 91–2,

144, 341, 362–4, 379–80,
581, 587, 625–37, 754–62

see also change notification
notifiers, file server 341, 362–4,

379–80
NotifyChange 341, 363–4,

581
NotifyDiskSpace 341
NotifyPowerDown 588–9
NotifyWakeupEvent 684
NO WAIT 816–21
NThread

ARM version 47–9
concepts 46–93, 100–12,

149–50, 188–9, 231,
248–9

key members 49–50, 59–60
NThreadBase

concepts 46–54, 59–60,
811–21

key members 49–50
NThreadBase::Check-

SuspendThenReady
813–21

NThreadBase::Create 52–4
NThreadBase::ENumNState

815–21
NThreadBase::ForceResume

812–21

NThreadBaseOperation
811–21

NThreadBase::Release
812–21

NThreadBase::Resume
812–21

NThreadBase::SetPriority
812–21

NThreadBase::Suspend
812–21

NThread::Create 52–4, 60–2
NThread::EDead 61–2, 74
NThread::ESuspended 60–2
NThread::Idle 112
NThread::ModifyCar 248–9
NThread::ModifyFpExc

248–9
NThread::SetUserContext-

Type 647–52
NThread::StartThread

60–2
NThreadState, concepts 54–5
NThread::TUserContextType

638
NTickCount 202–5
NTimer 6, 188, 195–203, 695,

741
see also nanokernel timers
concepts 195–203
requirements 195–6

NTimerQ 695
Nucleus 9, 808–10
NULL 57–8, 69, 82, 85, 96, 99,

105, 131–43, 166, 171–3,
234–5, 247, 268, 294, 303,
359, 389, 459, 532–3, 634–7

null thread
concepts 13–15, 90–1, 112,

178, 196, 744–5, 835–50
purposes 90–1, 196, 744–5

obey file, ROM 338–9
object code see compiled code
object containers 162, 167–73
see also DObjectCon
concepts 171–3

object indexes
see also DObjectIx

INDEX 899

concepts 162, 167–73
finding objects 169–71
protection mechanisms

170–1
objects
see also handles
allocators 299–306
concepts 2–3, 7–8, 13–15,

113–14, 120–6, 161–73,
299–306, 312–13, 341–3,
353–4, 456–62, 479–80,
626–37

containers 162, 167–73
deletions 13–15, 165–73
finding objects 169–71, 344,

506–8
kernel objects 162–73,

479–80, 513, 625–37,
644–52

names 163–4, 166–73, 319,
421–2

reference-counted objects 7–8,
113–14, 162–73, 415–16,
418–19

short names 166–73
sub-session objects 341–6
transient objects 312–13
windows 456–62

oby files 478–9, 488
off mode 662, 664, 666–8, 670,

676–8, 710, 757–62
off-screen bitmaps (OSBs) 470
OfferRawEvent 435–6,

444–56
OMAP chips, Texas Instruments

20, 24, 829–31, 846–7
On-The-Go (OTG) 602–4
OneShot 198–201
OOM see Out of Memory
Open 165–73, 404–6, 487,

503–17, 545–8,
569–74

open but resource-constrained
environments, EKA2 4,
253–62, 327, 779–88,
797–807

Open Programming Language
(OPL) 1, 440

OpenSharedChunk 567–74
operating systems
see also Symbian OS
basic concepts 3–4, 253–4,

262, 476–7
boot processes 737–47
concepts 1–16, 45–115,

252–4, 262, 737–47,
762–4, 767–823

definition 3
embedded OSs 253–4
PCs 2, 262, 311, 315–17
RTOS 2–7, 9, 14–15, 19, 46,

50, 71–5, 181–3, 228–9,
231, 283–6, 318, 767–823,
825–6, 835–50

shutdown 535–43, 737,
750–62

operator delete 300–6
operator new 251–2, 300–6
see also free-store allocators

OPL see Open Programming
Language

optimizations
see also performance...
efficient code 826–50
moving memory model 282–7
selection factors 830–1

ordered queue, nanokernel timers
195–201, 780–8

ordered state, nanokernel timers
197–201, 780–8

ordinal-position property, windows
462–6

ordinal-priority property, windows
462–6

OSBs see off-screen bitmaps
OSE 808, 810
OTG see On-The-Go
Out of Memory (OOM) errors

311–14, 434
output, debuggers 184, 623–5,

652–6
overflows, stack 46, 320
overwritten memory, process

memory context 319–20
ownership

kernel objects 164–73
power handlers 674–5

P class 190, 262–73
see also platform software

layer
packet data, BP 19
page directories, concepts 25–6,

254–62, 275–87, 288–94,
742

page faults, concepts 209,
242–9, 261–2

page tables, MMU 25–6, 28,
105–12, 254–62, 275–87,
288–91, 565–6, 740–2

pages, memory 25–6, 28,
105–12, 254–62, 275–87,
288–94, 301–9, 313–14,
565–6, 740–2

PageSizeInBytes 191–2,
263–73

Panic 626–37, 642
panics 6, 68, 89–90, 157–8,

241, 273, 347, 401, 450–6,
533–4, 548, 619–20, 626–37

parents, windows tree 458–66
Parker, Jason 17–43
Parse 341
ParseMask 522–48
parsing classes 340–1, 344–5,

352–4
Partial Array Self Refresh (PASR)

30
partition tables, concepts 335,

384
PartitionInfo 588–9
PartitionInfoComplete 589
partitions
see also volumes
concepts 335, 360, 384, 834–6
tasks 834–6

PASR see Partial Array Self Refresh
passwords 433
paths 327–30, 340–6, 396–8,

410–12
see also directories
file names 344–5

PC Cards 530, 578–9, 589–94
PCH, GSM protocol 789–807
PCM see pulse code modulated

data

900 INDEX

PCs 2, 262, 311, 315–17, 327,
616–25, 739

see also emulator
PDAs 1–3
see also Psion

PDD 481–4
PddConfigure 539–43
PDDs see physical device drivers
PddStart 539–43
PE files see Portable Executable

files
pens, window server 431–74
perceptions, users 660
performance 1–2, 17, 18, 23,

26–8, 41–2, 253, 262,
282–3, 785–8, 825–50

see also efficiency...; power...
alignment issues 832–3
caches 26–8, 253, 262, 830–4
concepts 785–8, 825–50
CPU requirements 23, 262,

826–31
design issues 833–50
DMA problems 839–40,

844–50
efficient code 5, 826–50
EKA1/EKA2 comparisons 825,

842–3
emulator 849–50
fast mutexes 847–50
hardware considerations

826–50
improvement techniques

825–50
key measures 785–8
latency 785–8, 826–50
lock-free algorithms 836–9,

847
memory 829, 833–4, 848–9
mutexes 846–50
pragmatism 833
priority inversion 836–9,

841–50
real-time performance 834–50
RHeap 306, 840–2, 848–9
silicon chips 826–31
tasks 774–5, 780–8, 825–50
testing 826–50

peripheral software layers 11–13,
187–95, 252–3

peripherals 667–8, 673–6,
679–80, 699, 702–8, 722–7,
731–3

see also local media
sub-systems

AP 19–29, 826–31
bus controllers 589–94
concepts 3, 4, 5–7, 10, 12–13,

14–15, 19–29, 33–7, 308,
549–612, 740–2

device drivers 3, 4, 5–6, 10,
308, 549–612

DMA 36–7, 549–62, 568–74,
839–40, 844–50

FIFO buffers 552, 796–7
interrupts 5–7, 12–13, 14–15,

23, 33–7, 207–8, 219–36,
296, 376–81, 491–4, 502,
767–79, 809–10, 825–6,
835–50

local media sub-systems
574–89

media drivers 574–89
MMC support 594–602
PSL 552–62, 596–601
QoS APIs 732–3
shared chunks 562–74
USB support 602–12

permanent processes/threads, death
89–90, 623–5

permissions, platform security
155, 317–31, 409, 487, 498,
522–4

personal aspects, mobile phones
315–16

personal information management
(PIM) 8–9, 14

personality layers
concepts 4, 8–9, 55, 59, 71–2,

74–5, 181–3, 231, 807–23,
835–50

design goals 8–9, 807–23
nanothreads 55, 59, 71–2,

181–3, 231, 810–23,
835–50

RTOS 4, 9, 71–2, 74–5,
181–3, 228–9, 231,
807–23, 835–50

threads 55, 59, 71–2, 74–5,
181–3, 228–9, 231,
807–23, 835–50

PETRAN pre-processing tool 387
Philips Nexperia PNX4008 24
physical caches
see also caches
concepts 27–8, 251–3, 262,

275–87, 288–91
physical device drivers (PDDs)
see also device drivers; local

media sub-systems; media...
advanced factory concepts

515–17
automatic searches 514–17
classes overview 499–502
concepts 4, 10, 95, 325–6,

336–9, 477–9, 498–548,
552–62, 574–600, 631

creation 498–548, 631
debuggers 631, 641–3
definition 478, 513
EKA1/EKA2 contrasts 544–8
loading 503–48, 631
naming conventions 505–6
PDD factory 513–17, 544–8
roles 478–9, 513–17
user-specified PDD 514–17

physical memory 21–6, 251–62,
275–87, 830–2

see also caches; Memory
Management Unit; Random
Access Memory

concepts 21–6, 251, 254–62,
275–87, 740–2, 830–2

virtual/physical addresses
254–62, 275–91, 297–8,
307, 740–2

physical memory maps 21–6,
251, 254–62, 272, 275–87,
293–4

PIC see Programmable Interrupt
Controller

PIL see platform-independent layer
PIM see personal information

management

INDEX 901

pixels
efficient code 829
LCDs 29–30, 37–9, 829

planning
see also tasks
operating-system functions 3–4

platform.h 191, 564, 640
platform security 112, 154–60,

178–9, 315–31, 345–6, 396,
473–4, 484–7, 498, 515–17,
522–4, 611–12

applications 318
capability-model concepts 317,

320–6, 473–4, 487, 492,
498, 515–17, 522–4,
580–1

client-server 324–6, 473–4
concepts 315–31, 345–6, 396,

473–4, 487, 492, 498,
515–17, 522–4, 580–1,
611–12

constraints 316
data-caging concepts 317,

327–30, 345–6
debuggers 618–20
device drivers 320–6, 484–7,

515–17, 522–4
DLL loading 321–4
executables 320–30
file access 327–30, 409–10,

611–12
file server 317, 327–30,

611–12
goals 316–17
implementation 328–30
kernel 318–31
loader 321–4, 329–30, 396,

611
PC contrasts 315–17
permissions 155, 317–31, 409,

487, 498, 522–4
program SIDs 328–30, 420–2
removable media 329–30, 611
shared files 330–1, 345–6
static data 320, 321–4
TCB 317–30, 345–6
TCE 317, 318, 324–6, 329
unit-of-trust concepts 316–20

user-mode memory access
318–19, 484–7, 515–17

window server 473–4
platform software layer
see also P class
concepts 12–13, 187, 190–5,

252–3, 262–73
executable images 12–13, 190
functions 12–13, 190–5,

252–3
memory model 190, 252–3,

262–73
platform-independent layer (PIL)
see also extensions
concepts 4, 479–87, 500–48,

552–62, 596–601, 607–12
platform-specific layer (PSL)

675–8
see also extensions
concepts 4, 479–87, 500–48,

552–62, 579, 596–601,
607–12

plug-in DLLs 336–9, 364–5, 429,
442–56, 499, 504–8

see also dynamically loaded
libraries; polymorphic...

plug-ins, file server 336–46,
364–5

PM see power management
P::NewProcess 263–73
pointer events

animation DLLs 450–2
window server 431–4, 438–74

pointers
handles 163, 166–7
invalid pointers 241–2, 319,

326
LFFS 369–75

PollingWait 539–43, 694
polymorphic DLLs 335–9, 362,

365–7, 499, 504–8
see also dynamically loaded

libraries; plug-in...
POP instruction, X86 architecture

215–19, 238–41
portability goals, EKA2 5–6,

252–3, 480, 779
Portable Executable files (PE)

96–7, 387, 390–3, 409–10

ports, EKA1 2–3
POSIX-style condition variables

85–8, 339–40
post-mortem analysis tools,

concepts 623–5
postamble phase

exceptions 239–49
interrupts 220, 223–5

PostKeyEvent 453–6
PostRawEvent 453–6
Power 669–70, 673, 677,

755–62
power controller 664–5, 668–9,

673, 675–6, 682–4, 692
power handlers 665, 667–8,

673–7, 699–700, 705,
711–14, 719–20

power loss events 722–3
power management (PM) 17–19,

23, 30, 41–2, 90–1, 334–5,
376–81, 495–8, 586–7,
589–94, 601–2, 659–736,
744–5, 751–62

see also performance...
advanced management

727–36
batteries 17–18, 30, 40, 41–2,

334–5, 376, 586–7,
659–736, 795–7, 828

classes 665–736
CPU requirements 23
DMA 37, 549–50
domain manager 666–8, 677,

751, 756–62
framework 663–88
idle time 723–7
MMC 601–2
model overview 665–76
named power modes 41
null thread 13–15, 90–1,

744–5
PASR/TCSR uses 30
power states 757–62
shutdown 751–62
states 661–70, 675–8, 680–2,

689, 694–6, 702–10,
716–18, 723–9, 731–3,
757–62

timers 35–6, 90–1, 586–7

902 INDEX

power management (PM)
(continued)

typical management 688–723
power manager 664, 667–73,

677–8, 719–21
power removal, rugged FAT file

system 376–81
power sources 734
power states 757–62
power-aware device drivers

707–22
power-saving mode, BP 19
Power::CancelWakeupEvent-

Notification 761–2
Power::DisableWakeup-

Events 761–4
PowerDown 670, 672–3, 677–8,

680–1, 706, 709–10,
719–20

PowerDownDfc 720
PowerDownDone 674, 677,

679–80
Power::EnableWakeupEvents

677, 760–2
PowerHalFunction 671,

685–8, 701
PowerHal::PowerHal-

Function 701
powering up/down 679–81, 716,

719–21
PowerMgmt 473–4, 759–62
PowerModel 669, 671
Power::PowerDown 677,

755–62
Power::RequestWakeup-

EventNotification 677,
760–2

PowerUp 678–80, 709–10,
719

PowerUpDfc 721
PowerUpDone 674, 678–9, 680
PPP connections 225–31
pragmatism, performance issues

833
pre-emption lock 4, 7, 13–15,

46, 55–6, 61–2, 98–112,
226, 234–6, 249, 311–12,
491–4, 770–88, 811–21,
825–6, 835–50

concepts 770–9, 811–21,
825–6

disabling 776–9, 811–21, 823,
836–9, 842–50

interrupts 226, 234–6, 491–4,
770–9, 825–6, 835–50

problems 771
RTOS 770–9, 835–50

pre-emptively multitasking OS,
EKA2 4, 7, 13–15, 46, 55–6,
61–2, 98–112, 779–88,
797–807, 811–21, 825–6,
835–50

pre-processing handler 176–7,
185, 526

preamble phase
exceptions 236–49
interrupts 220–36

predictability requirements, RTOS
774–5, 780–8

PrepareForSwitchOff
435–74

PreprocessHandler 176–7
Print 516–17, 627, 631
printf 184
prints, debuggers 184, 623–5,

652–6
PRINTSTK 625
PRINTSYM 624–5
priorities 4–7, 13–15, 47, 53–8,

64–88, 90–112, 197–201,
529–30, 770–823, 825–50

applications 4–7, 13–15, 210,
810–23, 825–6, 834–50

concepts 4, 58, 69, 76, 78–88,
770–823, 825–6, 834–50

EKA2 4–7, 13–15, 47, 53–8,
64–6, 69–70, 74–6,
78–88, 90–7, 98–112,
197–201, 529–30, 779–88,
797–807, 810–23, 825–6,
834–50

inversion 777–9, 780–8,
836–9, 841–50

mutexes 80–8, 776–9
mutual exclusion 55–6,

775–88, 836–9, 841–50
pre-emption lock 770–9,

825–6, 835–50

RTOS 770–823, 825–6,
834–50

spectrum 835–6
static priority-based scheduling

771–4, 780–8
threads 47, 53–8, 64–6,

69–70, 74–6, 78–88,
90–7, 98–112, 197–201,
224, 529–30, 780–8,
810–23, 825–6, 834–50

priority ceiling protocol
see also mutexes
concepts 778–9

priority inheritance
see also mutexes
concepts 4, 58, 69, 76, 78–88,

778–9, 781–8
definition 778
threads 58, 69, 76, 78–88,

781–8
priority-based multitasking OS,

EKA2 4–7, 13–15, 47,
53–8, 64–6, 69–70, 74–6,
78–88, 90–7, 98–112,
197–201, 529–30, 779–88,
797–807, 810–23, 825–6

privacy 315–31
see also platform security

private directory 327–30
privilege levels, X86 CPU software

layer 215–19
process memory context, concepts

259–62, 274–9, 283–6,
292–6, 319

ProcessCreate 420–2, 627–8
processes
see also boot processes;

DProcess; threads
address spaces 93, 102–15,

252–62, 275–91
ASIDs 28, 288–9, 292–5
attributes 96
capability-model concepts

320–6
client-server ITC 117–44, 177
code 94–7, 114–15, 252–3,

257–62, 626–7, 638–9,
643–52

INDEX 903

concepts 7–8, 13–16, 28, 45,
65–6, 89–90, 92–115,
167–73, 252–3, 271–2,
275–92, 320–6, 330–1,
393–427, 430–5, 626–37,
744–5, 810–21

creation 93–7, 113–15,
320–6, 393–427, 626–31,
744–5

definition 45, 93, 271–2
DLLs 95–7, 112–15, 129,

284–7, 294, 297–8, 320–6
emulator 96–7, 183
EXE files 96–7, 113–15, 156,

270–1, 297–8, 320–6,
333

exits 93–7
file server 340–6
handlers 95–7, 100–15,

119–44, 176–7, 185,
526

interrupts 206, 207–49
limitations 252–3, 840–2
loader 93, 112–15, 321–4,

329–30, 382–3, 393–427,
626–31, 638–9

mutexes 95–7, 113–15,
170–1, 785

over-riding heap creation 66
priorities 93–7
search rules 396–8, 402–6,

419–22
shared object-handles 93–7,

330–1
thread connections 93–4,

167–73, 271–2
unit-of-trust concepts 316–20
window server 430–5

processing-message state, state
machine 134–9

program counter register 54, 208
program SIDs, platform security

328–30, 420–2
Programmable Interrupt Controller

(PIC) 33–5
programmed exceptions, concepts

210–19
programmer APIs, memory model

298–310

project files
see also MMP files
concepts 320–6, 328–30,

442–3, 480, 492–4,
625

properties
see also publish and subscribe

system
concepts 150–60
deletions 155–60
handles 156–7
inter-thread communications

150–60
key attributes 154–60
operations 155–60
real-time issues 160, 767–9
windows 462–6

protocol messages, debuggers
617–25

ProtServ capability 130
PSemaphore 815–21
Psion 1–3, 117

historical background 1–3,
117

Organisers 1–3, 117
Series 5 2, 117

PSL see platform-specific layer
PSR 237–8
PSU state 590–4
PThread 814–21
PThreadState 815–21
publish operation, properties

155–60
publish and subscribe system 8,

92, 150–60, 309–10, 330,
744–5, 758

see also inter-thread
communications; properties

concepts 150–60, 309–10,
330, 744–5, 758

key entities 152–3
operations 155–60
real-time issues 160
shared memory 309

pulse code modulated data (PCM)
39

‘pulse swallowing’, tick timers
201–2

PUSH instruction, X86 architecture
215–19, 238–41

PXT files 336–9

Q: drive 576
QoS see quality of service
quality, services 731–3
quality determinants, mobile

phones 18
quality of service (QoS) APIs

732–3
QueryVersionSupported

511–17, 523–4
Queue 558–62, 754–62
queues

cleanup queues 70, 75–7,
82–8, 109, 835–50

client-server ITC 117–44,
430–5

DFC queues 92, 529–43,
585–6, 745, 787–8, 822–3,
845–50

FIFO order 34–5, 37, 98,
129–43, 196, 225–31,
233–6, 351–8, 552–62,
796–7

message queues 8, 34–5, 37,
87–8, 98, 118–60, 300–1,
531–43, 809–10

nanokernel timers 195–201,
230, 780–8

scheduling 34–5, 37, 98–112,
129–43, 196, 225–31,
233–6, 780–8, 822–3,
845–50

window server 430–1, 440–74
QVGA display 30–1, 38

R: drive 576
RACH, GSM protocol 789–807
RaiseException 626–37,

642
RAllocator 66, 184, 303–5

concepts 303–5
key members 303–4

RAM see Random Access Memory

904 INDEX

RAM-shadowing scheme, NAND
flash memory 381–4,
747–50

Random Access Memory (RAM)
9, 13, 19–33, 56, 64–6, 92,
115, 220–36, 251–87,
298–310, 334–5, 351–2,
364–5, 392–3, 400–12, 477,
642, 735–6, 738–64, 831–4

boot processes 738–64
capacity 29–30, 253–4, 284,

834
concepts 29–33, 251–62,

298–310, 334–5, 351–2,
364–5, 392–3, 400–12,
477, 738–64, 831–4

contiguous RAM 298–310,
553, 560–2, 565–6,
569–74, 610–12

DDR RAM 834
DRAM 20–9, 30, 788, 832–4
flash memory 334, 381–4
low-power modes 41
non-XIP executables 392–3,

400–1, 406–13, 424–5
performance issues 831–4
requirements 29–30, 254
SDRAM 30, 681, 695, 701,

725–6, 734–6, 787–8, 834
tag RAM (caches) 831–2
virtual/physical addresses

254–62, 275–91, 297–8,
740–2

RAnim 445–56
RAnim::Construct 445–56
RAnimDll::Load 442–56
RArray 95–7, 517
Ratcliffe, Mitch 613
rate monotonic scheduling,

concepts 771–2
RawPrint 653
RawRead 273, 650
RawWrite 273, 650
RBackedupWindow 461,

467–71
RBlankWindow 461, 465–6
RBusLogicalChannel 477–9,

500–48, 579–89, 618

concepts 477–9, 510–48,
579–89, 618

definition 518–19, 544–6
EKA1/EKA2 contrasts 544–8,

618
request gateway function

523–6
RCA see Relative Card Address
RCall::Dial 324–6
RChangeNotifier 91–2, 313
RChunk 174–7, 308, 562–74,

626–7
see also chunks

RChunk::Base 174–7, 569–74
RChunk::Create 626–7
RCondVar 86–8
RCondVar::Wait 87–8
RCriticalSection 110–12,

312
.rdata section 388–93, 639
RDebug 516–17, 627
RDebug::Print 516–17, 627,

631, 652–6
RDebug::RawPrint 653–6
RDevUsbClient 605–12
RDir 341–3, 349–64, 404–6
RDir::Open 404–6
RDir::Read 404–6
RDmDomain 760–2
RDmDomainManager 759–62
RDriver1 520–48
Read 503–8, 519–48, 580–2
Read Only File System (ROFS) 31,

365, 381–5, 576–9, 747–50
concepts 31, 365, 381–5,

747–50
core OS image 381–2
image 382–3
NAND flash memory 382–3,

576–9, 747–50
read-modify-write APIs,

independent software layer
189–90

ReadCancel 519–48
ReadDesHeader 273
ReadUserData 320–6
ready list, scheduling 98–112,

230, 780–8

real time 2–7, 9, 14–15, 19, 46,
50, 71–5, 160, 181–3,
228–9, 231, 283–6, 318, 671,
680, 765–823, 825, 834–50

code-writing techniques
834–50

concepts 160, 671, 680,
765–823, 825, 834–50

definition 765–6, 825
examples 765–74
hard/soft distinctions 766–7
performance issues 834–50
properties 160, 765–823

real time clock (RTC) 671, 680
real-time operating systems (RTOS)

basic features 809–10
challenges 767–823
concepts 2–7, 9, 14–15, 19,

46, 50, 71–5, 181–3,
228–9, 231, 283–6, 318,
767–823, 835–50

definition 767
design solutions 14–15,

779–88, 797–807
dynamic priority-based

scheduling 772–4
EKA2 4–7, 318, 779–88,

797–807, 810–23, 825–6
GSM example application

788–807
IDFCs 228–9, 231, 813–21,

835–50
latencies and performance

785–8
mutual exclusion 775–88,

809–10, 836–9, 841–50
personality layers 4, 9, 71–2,

74–5, 181–3, 228–9, 231,
807–23, 835–50

predictability requirements
774–5, 780–8

priorities 779–823, 825–6,
834–50

priority ceiling protocol 778–9
priority inheritance 778–9,

781–8
properties required 160,

767–79
requirements 767–79, 809–10

INDEX 905

scheduling methods 767–823,
835–50

static priority-based scheduling
771–4, 780–8

realloc 300–6
RealView compiler, ARM

architecture 387, 621–3
Receive 532–43
ReceiveData 520
ReceiveDataCancel 520
reclaimed media space, LFFS

372–5
RectDrawnTo 452–6
recursion 106
redirect user trace, debuggers

652–8
Redraw 444–56
redraw events, window server 4,

431, 440–74
redraw windows, drawing

468–71
ReduceSize 580–1
reference-counted objects

concepts 7–8, 113–14,
162–73, 415–16, 418–19

DLLs 113–14, 415–16,
418–19

references, property handles
156–7

‘reflashed’ memory, concepts 739
refreshing 30, 681, 695, 725–7,

734–6
regions, windows 465–6
Register 676, 697
RegisterCpuIdleCallback

714
RegisterInterruptHandlers

492–4
registers 12–13, 35–6, 53–5,

100–12, 180–206, 212–15,
219–49, 256–62, 295, 775–9

ARM architecture 212–15,
220–36, 237–49, 256–62,
775–9

exceptions 212–15, 219–24,
236–49

program counter register 54,
208

scheduling 100–12, 775–9

X86 architecture 215–36,
238–49

RegisterUserActivity 671
relational databases, DBMS 330
Relative Card Address (RCA)

601–2
Release 693, 707, 812–21
relocated/relocatable code,

concepts 257–62, 270–1,
390–3, 400–1, 407–10,
626–7

remote access, mobile phones
375–6

remote debuggers
see also debuggers
concepts 614–15, 617–25

removable media
see also media drivers
bus controllers 589–94
caches 377–81
concepts 329–30, 334–5,

360–2, 364–5, 375–81,
392–3, 574–89, 611–12

device types 334, 360–2, 375
FAT file system 375–81,

611–12
file server 334–5, 360–2,

364–5, 375–81
notification schemes 380–1,

581
platform security 329–30, 611
power removal 376–81

Remove 674
RemoveHalEntry 496–8
RemoveHandler 673–4
RemoveSchedulerHooks

636–7
rendezvous notifications, threads

77–8, 144
Renesas SuperH 287
Request 519–48, 588–9
request gateway function, device

drivers 523–6, 542–3
RequestAllocator 353–4
RequestComplete 129, 240,

273, 286–7, 296
RequestEvent 430, 493–4
RequestOffEvents 474

requestor privilege level (RPL), X86
CPU software layer 216–19

requests
clients 715–16
file server 350–62, 364–86
loader 402–27

RequestSystemTransition
760–4

RequestUserHandle 132–43
RequestWakeupEvent-

Notification 670, 672,
677, 760–2

reschedule needed flag 227–31
RescheduleCallback 636–7
reschedules 99–112
see also scheduling

reserving, virtual addresses
254–62

Reset 302–5
reset vector, concepts 738–9
resets, concepts 85–8, 91–2,

208–9, 210–19, 738–42
resource directory 327–30
resource management 689–94
ResponseP 600
Restart 472
RestoreIrqs 543
Resume 812–21
resume operations, mutexes 83–8
ResumeWaitingThread 820–1
retention mode 662, 689, 694–6,

702–6, 718, 724–6
retrieve operation, properties

155–60
RFastLock 838–9
RFile 128–9, 341–6, 349–64
RFile::AdoptFromClient

346
RFile::AdoptFromCreator

346
RFile::AdoptFromServer

346
RFile::Create 349–64
RFile::Read 366–7
RFile::Replace 353–4
RFile::TransferToClient

345–6
RFile::TransferToProcess

345–6

906 INDEX

RFile::TransferToServer
(continued)

RFile::TransferToServer
345–6

RFormat 341–3, 349–64
RFs 340–64, 761–2
see also file server

RFs::AddFileSystem 366–7,
393–427

RFs::Close 356–8
RFs::Connect 340–64
RFs::ControlIo 367
RFs::DebugNotify 367
RFs::Drive 352–8
RFs::FinaliseDrives 376,

761–2
RFs::MkDir 365–6
RFs::MountFileSystem

366–7
RFs::NotifyChange 352–8
RFs::NotifyChangeCancel

363–4
RFs::Rename 353–4, 366–7
RFs::SetNotifyUser 381
RFs::SetSessionPath 352–8
RHandleBase 150–60, 161–2,

167–73, 518–48, 566–7
RHandleBase::Close 156–7,

167–73
RHandWritingAnim 455–6
RHeap 298–310, 840–2, 848–9
see also free-store allocators
concepts 298, 305–6, 840–2,

848–9
performance 306, 840–2,

848–9
usage models 305–6

RHeap::ReAlloc 302–5
RImageFinder 401–6
ring tones 40
rings see privilege levels
RISC-based CPUs 23–5, 215
RLdrReq 401–6
RLibrary 112–15, 271, 323–4,

393–427, 627, 641–3
RLibrary::Init 411–12
RLibrary::Load 323–4,

393–427, 627
RLibrary::Lookup 641–3

RLoader 393–427
see also loader

RLoader::Connect 403–6
RLoader::LoadLibrary

410–12
RLoader::LoadProcess

403–6
RLocalDrive 579–89
RMessage2 132–43, 319–20,

325–6, 347–64
RMessageK 70, 132–43, 177
RMessageKBase 139–43
RMessagePtr2 123–6, 137–9,

242, 273, 319, 353–8, 363
RMessagePtr2::Complete

137–9, 353–8
RMessagePtr2::Read 242
RMessagePtr2::ReadL

319–20
RMessagePtr2::Write 242
RMessageU2 133–43
RMsgQueue, concepts 146,

783–4
RMsgQueueBase 146
RMutex 84–8, 838–9
RMutex::Count 85
RMyDevice 573–4
RNotifier 381
robust designs 2–3, 5–6,

117–18, 260–2, 274, 281–3,
319–20

ROFS see Read Only File System
Rogers, Andrew 117–60
roll-forward metadata updates,

LFFS 374
ROM 4, 10, 21–33, 115, 252–3,

258–71, 284–7, 292–4,
309–10, 320, 333–5, 351–2,
364–5, 383, 392–3, 400–1,
406–27, 477, 488, 504–8,
594–602, 639–40, 642,
737–64

debuggers 639–42
execute in place ROM (XIP

ROM) 31–2, 115,
258–62, 265–71, 292–4,
309–10, 320, 364–5, 383,
392–3, 400–1, 406–27,
477, 488, 504–8, 737–64

MMC 594–602
shadow APIs 639–40

ROM drive/image (Z:)
see also flash...
access 337, 351–2
concepts 31, 333–9, 351–2,

384–5, 392–3, 396–7,
402–6, 488, 611–12,
639–40, 746–7

file server 337–9, 364, 384–5,
611–12

format 335, 392–3
loader 339, 392–3, 396–7,

402–6, 746–7
obey file 338–9
startup 338–9, 384–5, 579

ROMBUILD tool 392–3, 657–8
root windows, tree concepts

457–61
”rootnames”, ASCII 398–400
rotating media devices 334
round-robin scheduling 101–12,

231, 809–10
RoundToPageSize 560–2,

565–6, 571–2
RPhysicalDeviceArray 517
RPL see requestor privilege level
RProcess, concepts 94–7, 393,

396–8, 627–8, 642
RProcess::Create 393–427,

627–8
RProcess::Panic 642
RProperty 150–60
RProperty::Attach 156–7
RProperty::Cancel 158–60
RProperty::Define 155–60
RProperty::Delete 156–60
RProperty::Get 157–8
RProperty::KMaxProperty-

Size 154–60
RPropertyRef 151–60
RProperty::Set 157–8
RProperty::Subscribe

158–60
RR 807, 832
RRawDisk 341–3, 349–64
RSemaphore 79–80, 783–4
RServer2 121–43, 319–20

INDEX 907

RSessionBase 122–9, 144,
342–3, 393, 473–4

see also client-server...
RSessionBase::Create-

Session 122–6, 129
RSessionBase::Send 473–4
RSessionBase::SendReceive

140–3, 473–4
RSimpleSerialChannel

503–8, 519–48
RSubSessionBase 126–9,

144, 342–3
RTC count 202
RTC see real time clock
RThread 63–6, 108–9, 129,

144, 319–20, 626–37
RThread::Create 63–6,

628–9
RThread::Panic 642
RThread::RaiseException

626–37, 642
RThread::ReadL 319–20
RThread::RequestComplete

129
RThread::SetPriority

108–9
RTimer::After 783
RTimer::At 783
RTOS see real-time operating

systems
rugged FAT version 376–81
Run mode, power management

41–2
run-mode debuggers
see also debuggers
concepts 615–20, 623–4

RunError 536–43
RunL 120–6, 347–64
RunThread 65–6
RWindow 461–6
RWindowBase 443–56,

458–62, 465–72
RWindowGroup 458–66
RWindowTreeNode 461–2,

467–72
RWsSession 435–74
RWsSession::PrepareFor-

SwitchOff 435–74

RWsSprite 443–56
RX, GSM protocol 797–807

SACCH, GSM protocol 790–807
Safe... 528
Sales, Jane 1–16, 45–115,

117–60, 161–206, 825
SaveL 755–62
ScanDrive 341, 376, 380–1
scatter-graph DMA engines,

concepts 37, 550–62
SCH, GSM protocol 789–807
ScheduleKernelCleanup 508
SchedulerHooks 634–7
scheduling 46–7, 98–112,

224–31, 260, 283–6,
479–80, 613–58, 740–2,
767–823, 835–50

assumptions 774
concepts 98–112, 224–31,

260, 283–6, 479–80,
767–823, 835–50

control block 98–112, 780–8,
800–7

cyclic scheduling 767–74,
779–80

deadline monotonic scheduling
771–2

deadline-driven scheduling
772–4

dynamic priority-based
scheduling 772–4

EDF scheduling 772–4,
779–80

emulator 109–12, 613–58
FIFO order 34–5, 37, 98,

129–43, 196, 225–31,
233–6, 351–8, 552–62,
796–7

IDFCs 99–106, 110–12,
227–31, 233–8, 813–21,
835–50

interrupts interactions 224–31,
233–6, 767–79, 809–10,
825–6, 835–50

LRTA/Symbian OS
communication 822–3

moving memory model
101–12

multiple memory model
106–12

mutual exclusion 55–6,
775–88, 809–10, 836–9,
841–50

nanokernel 98, 108–12,
780–8

pre-emption lock 100–12, 226,
234–6, 249, 311–12,
491–4, 770–9, 811–21,
825–6, 835–50

priority ceiling protocol 778–9
priority inheritance 778–9,

781–8
queues 34–5, 37, 98–112,

129–43, 196, 225–31,
233–6, 780–8, 822–3,
845–50

rate monotonic scheduling
771–2

ready list 98–112, 230, 780–8
registers 100–12, 775–9
reschedule needed flag

227–31
round-robin scheduling

101–12, 231, 809–10
RTOS 767–823, 835–50
static priority-based scheduling

771–4, 780–8
Symbian OS threads 108–9,

822–3
tasks 767–823
types 767–79

Scobie, Peter 333–86, 387–427,
549–612

SCpInfo... 247–8
SCreateThread 60–2
screen modes, client windows

464–5
screens 3, 11, 17–18, 37–9,

429–74, 495–8
see also displays; liquid crystal

displays
common resolutions 38
direct screen access 471–2
flickers 452, 470
touch-screens 9, 42, 475
window server 3, 11, 429–74

908 INDEX

SCSI Primary Commands (SPC)
606–12

SD see Secure Digital card
SDblQue 531–43
SDCCH, GSM protocol 790–807
SDIO devices 530, 578–9,

595–600, 703–4
SDK 125–6
SDmaDesHdr 553–62
SDmaPseudoDes 555–62
SDObjectIxRec 168–73
SDRAM 30, 681, 695, 701,

725–6, 734–6, 787–8, 834
Seal, Dave 274
searches

device drivers 506–8, 514–17
executables 394–400, 402–6,

410–12, 419–22
processes 396–8, 402–6,

419–22
second timers
see also TSecondLink
concepts 204–5, 745

sectors, concepts 334–5, 375–81
Secure Digital card (SD) 334,

574–600
secure hash, executables 329–30
secure identifiers (SIDs), programs

156, 328–30, 420–2
security attribute, properties entity

154–60
segments

LFFS 371–5
X86 CPU software layer

215–19
SelectUart 539–43
self-clocking circuits 41
self-refreshing, SDRAM 681, 695,

725–6, 734–6
semaphore count 816–21
semaphores

concepts 5–7, 49, 54, 72–5,
78–88, 99, 149–50, 167,
185–6, 188–9, 230, 354–5,
528, 776–9, 809–10,
813–21, 847–8

definition 7, 847
operation types 78–9
RTOS 776–9, 813–21, 847

threads 49, 54, 72–5, 78–88,
149–50, 167, 185–6,
188–9, 230, 354–5, 528,
809–10, 813–21, 847–8

SemaphoreTable 815–21
semiconductor devices

ASSP 9–10
concepts 9, 17–29

Send 137–9, 473–4, 532–43
SendData 520
SendDataCancel 520
SendEatenDownEvent 453–6
SendEventToWindowGroup

474
SendReceive 140–3, 473–4,

532–43
serial communications devices

478, 503–48, 616
Serial Peripheral Interface (SPI)

594–602
Series 60 phones, screen sizes

38–9
server-side classes, file server

347–64
servers 3–11, 31–3, 117–44,

317–31, 333–86, 429–74,
737, 751–62, 835–50

see also file...; window...
client-server ITC 117–44,

335–46
comms server 118
concepts 3, 117–44, 319–26,

347–64, 429–74, 731,
751–62

domain manager 751, 756–62
shutdown server 737, 751–62
socket server 118
telephony server 118
types 3, 117–18, 429, 731,

751–62
service quality 731–3
ServiceL 123–6, 347–64
session-attached state, state

machine 130–43
sessions

client-server ITC 117–44
delivery and message pool

management 134–46

Set 154–60, 234–6, 665,
686–7, 762

SetBackgroundColor 460–2
SetBaudRateDivisor 540–3
SetColor 467
SetConfig 503–8, 520–48
SetCurrentConsumption

674
SetDfcQ 234–6, 491–4,

529–43
SetDrawData 456
SetFaded 467
SetFunction 236
SetHandle 566–7
SetHomeTime 671
SetLCR 540–3
SetPriority 812–21
SetReturnedHandle 510–17,

566–7, 572–4
SetShape 465–6
SetSize 465–6
SetSizeErr 465–6
SetStatus 480–1
SetSubst 341
SetSuperPageSignature

190, 263–73
SetupCacheFlushPtr 191–2,

263–73
SetUpCIM... 599–600
SetUserContextType 647–52
shadow APIs, ROM 639–40
shadow area, client windows

466
shadowing scheme, NAND

RAM-shadowing scheme
381–4, 747–50

Share 129, 139
ShareAuto 129, 139
shared chunks
see also DChunk
concepts 160, 173–7, 184–7,

264–73, 292–4, 298–310,
562–74, 822–3

creation 562–4, 570–4
definition 160, 562
destruction 564–5, 570–4
device drivers 308–9, 562–74,

822–3
examples 568–74

INDEX 909

inter-thread communications
160, 173–7, 184–7,
264–73, 292–4, 298–310,
562–74, 822–3

kernel-side code access
566–74

memory commitment 565–6
peripherals 562–74
user-side code access 566–74,

822–3
shared files, platform security

330–1, 345–6
shared I/O buffers

deprecation 307, 562
inter-thread communications

160, 298, 307–10,
562–74

shared memory 160, 173–7,
184–7, 264–73, 292–4,
298, 306–10, 562–74,
777–9

shared power resources 706–7
‘shared session’ concept,

client-server ITC 118–44
shared-library DLLs, device drivers

480–7
SharedMultilevelResource

693
ShareProtected 129, 139
shift key 436
shim DLL files 394
short names, objects 166–73
shutdown 431–74, 535–43,

676–8, 720, 722–3, 737,
750–62

architectures 751–62
backups 751
concepts 535–43, 722–3, 737,

750–62
definition 750–1
domain manager 751, 756–62
file server 751–62
FOMA 751
initiating parties 752
notification issues 754–62
power 751–62
scenarios 751
sequence 755–6, 760–2
server 737, 751–62

sleep and wakeup events
762–4

startup contrasts 750–1
Shutdown 535–43, 720
siblings, windows tree 458–66
SIDs see secure identifiers
Signal 86–8, 817–21
signal operations, threads 79,

86–8
signaling stacks 5–6, 8–9, 14,

46–54, 779, 788–807
see also CDMA...; GSM...
design goals 5–6, 8–9, 14,

779, 788–807
signals

MMC 594–602
USB 602–3

silent running mode 41, 762–4
silicon chips 17–43, 826–31
see also application processor;

baseband processor
manufacturers 20, 23–5,

826–31
performance issues 826–31
RAM 29–31
SoC 19–43
two-chip solution 17–29

silicon physics 728
SIM cards 17–18, 793, 795–7
SimulateRawEvent 474
single-core phones 14
single-user aspects, Symbian OS

3
SizeChangedL 445–56
sleep state 6, 41, 54–5, 762–4
slow exec calls 175–7, 179–87
see also executive...

slow executive table 181–3
SLOW EXEC4 525–6
smart LCD displays 38–9
SMS, GSM protocol 807
SNThreadCreateInfo 50–5

concepts 50–5
key members 51–2

SNThreadHandlers 51–2, 72
SoC see System-on-Chip
socket server (ESOCK) 118
soft real time

see also real time
concepts 766–7

software 1–16, 23–5, 33–4,
91–2, 100–12, 173–249,
298–310, 320–30, 333, 337

see also applications;
executables; operating
systems; source code

alignment issues 832–3
assembler code 12–13, 192–3,

219–24, 826–7, 849
C++ 221, 223, 240, 298–310,

411–13, 427, 482–4, 623,
652–3, 739–40, 743, 849

caches 26–8, 253, 262, 830–4
debuggers breakpoints 243,

615, 620, 641–52
DMA framework 552–62
efficiency issues 5, 826–50
emulator 3, 5–6, 8, 14, 15–16,

17, 849–50
encryption software 337, 788,

792–807
exceptions 6, 12–13, 23,

33–4, 91–2, 100–12,
173–206, 207–49, 626–37

general/special cases 828
layering concepts 11–13, 43,

187–95, 252–314
limitations 840–2
malicious code 5–6, 128–30,

254–5, 260–2, 274, 281–3,
326, 330

MMC controller 595–600
performance issues 1–2, 5, 17,

18, 23, 26–8, 41–2, 253,
262, 282–3, 785–8,
825–50

programmer APIs 298–310
real-time performance 834–50
small-request penalties 828–9
testing 826–50
third-party suppliers 8–9,

253–4, 274
tight loops 826–8
‘unrolling the loop’ techniques

827–8

910 INDEX

software exception instructions,
executive (exec) calls
173–206

software installer see loader
software interrupts (SWIs)

173–86, 206, 207–49,
809–10, 825–6

concepts 173–86, 206,
207–49, 809–10, 825–6

EKA2 186, 219–36, 779–88,
797–807, 825–6

uses 206
solid state removable media

devices 334
Sony Ericsson P900 316
sound driver, device drivers 479
sound see audio
SOURCE 321, 492
source code
see also code; software
ASCII preferences 166
assembler code 12–13, 192–3,

219–24, 826–7, 849
badly-written code 5, 826–34
C++ 221, 223, 240, 298–310,

411–13, 427, 482–4, 623,
652–3, 739–40, 743,
849

C 1, 298–310
efficiency issues 5, 826–50
general/special cases 828
malicious code 5–6, 128–30,

254–5, 260–2, 274, 281–3,
326, 330

performance issues 5, 825–50
small-request penalties 828–9
tight loops 826–8

source-level debuggers
see also debuggers
concepts 15–16, 620, 624

SOURCEPATH 321
SPC see SCSI Primary Commands
speakers 17–18, 40
see also audio

special cases, efficient code 828
SPI see Serial Peripheral Interface
SPlatDmaDesc 553–62
spreadsheets 3

sprite anims, concepts 443–56
sproperty.cpp 153
sproperty.h 151
SStdEpocThreadCreateInfo

64–5
stabilization periods 694
stack 5–6, 8–9, 14, 19, 46–93,

101–12, 178, 319
see also telephony stack
overflows 46, 320
threads 46–93, 101–12, 178,

319
stack pointers 101–12, 208–9,

215–19, 241–2
standby mode 662, 666–8, 670,

676–8, 680–1, 710,
757–64

Start 122–6, 539–43
start functions, nanokernel timers

198–201, 780–8
StartExtensions 190,

263–73
StartL 471–2
StartOfInterrupt 111–12
StartThread 54, 65–6

startup 338–9, 384–5, 429–30,
476–80, 578–9, 737–64

see also boot...; ESTART...
alternative startup scenarios

383–5, 747–50
definition 750–1
F32 system architecture 338–9,

384–5, 579
shutdown contrasts 750–1
stages overview 737–45,

747–50
timeline overview 740–5

state machines 708–9
client-server ITC 130–9
PPP connections 225–31

StateHandler 811–21
states

nanothreads 49–55, 60–2,
811–21

power states 661–70, 675–8,
680–2, 689, 694–6,
702–10, 716–18, 723–9,
731–3, 757–62

threads 49–55, 60–2, 64–6,
70–5, 85–90, 113–15,
130–43, 147–50, 418–19,
450–6, 531–43, 651–2,
811–21

static data 320, 321–4, 480–1,
490–4, 740

static priority-based scheduling,
concepts 771–4, 780–8

statically-linked DLLs 321–4,
409–10

STDLIB 339–46
SThreadCreateInfo 63–6

concepts 63–6
key members 64

Stichbury, Jo 118, 120
Stop 543
stop-mode debuggers
see also debuggers
concepts 620–3, 643–52

STORE 340–6
streamed data, BP 19
STREX 836–9
strings see descriptor classes
Strong, Jasmine 825–50
structs, alignment issues 832–3
sub-sessions 126–9, 144, 341–6

classes 341–3
client-server ITC 126–9,

345–6
file server 341–6

Subscribe 154–60
subscribe operation, properties

155–60
subscribe properties 8, 92,

150–60
see also publish...

substitute drives 341
Supercaps 722, 734
superpage, bootstrapping 742
supervisory thread

boot processes 10, 91–3,
479–80, 737–64

concepts 10, 13–15, 23, 45–6,
91–3, 166, 173–83,
211–15, 272–3, 292–4,
309–10, 409–10, 479–80,
485–7, 737–64

deletions 91–2, 166

INDEX 911

DFCs 91–2, 99, 160
executive (exec) calls

173–206, 485–7
purposes 91–3
SWIs 173–86, 206, 207–49,

809–10, 825–6
Suspend 56, 643, 812–21
SuspendWaitingThread

820–1
suspension

mutexes 83–8
threads 49–62, 73–5, 80–8,

171–3
SvHeap 309–10
SVR mode, CPU 742
SvStack 309–10
SwEvent 473–4
SWIs see software interrupts
switches

context switch times 7–8,
14–15, 57–8, 102–12,
274–9, 283–6, 293–6, 312,
340–6, 634–8, 774–5,
782–8

threads 46–9, 56–8, 99–112,
782–8

Switchoff 432, 677–8, 688,
752–62

SwitchThreads 111–12
Symbian OS
see also EKA2...; mobile

phones; operating systems;
threads

basic concepts 3–16, 189–90,
192–5, 333–9, 381–4,
387–93, 476–7,
821–3

boot processes 737–64
concepts 3–16, 45–115,

161–206, 333–9, 381–4,
387–93, 850

design goals 4–6, 13–16, 57,
117–20, 252–3, 271,
280–7, 290–4, 315–31,
350–8, 613–14, 779–807,
850

design limitations 14–15,
834–5, 840–2

design solutions 13–15, 57,
117–20, 252–3, 271,
280–7, 290–4, 315–31,
350–8, 613–14, 779–807,
850

emulator 3–8, 14–17, 47–9,
59–62, 109–12, 183,
190–2, 249, 252–3, 297–8,
309–10, 338, 431, 490,
495–8, 613–58, 749–50,
849–50

EPOC kernel 1–3
free-store allocators 301–5,

742–5, 848–9
kernel architecture 4, 6–13,

23, 187–95, 251–3, 783–8,
825–6

LRTA communication 821–3
modular design 3–5, 14
multi-tasking aspects 3–4,

13–15
open but resource-constrained

environments 4, 253–62,
327, 779–88, 797–807

overview 3–4, 333–9, 476–7,
850

platform security 112, 154–60,
178–9, 315–31, 484–7,
515–17, 522–4

porting options 381–2
power management 17–19,

23, 30, 41–2, 90–1, 334–5,
376–81, 495–8, 586–7,
589–94, 601–2, 661–736,
744–5, 751–62

priority-based multitasking
4–7, 13–15, 47, 53–8,
64–6, 69–70, 74–6,
78–88, 90–7, 98–112,
779–88, 797–807, 810–23,
825–6

RAM requirements 29, 254
real-time aspects 4–7, 318,

779–88, 797–807
shutdown 535–43, 737,

750–62
single-user aspects 3

threads 3, 6–8, 10, 11, 13–15,
62–93, 108–9, 147–50,
615–59, 822–3

tick timers 201–5, 745
timers 199–205, 783–4
USB 603–12
v5 442, 452
v6.0 118
v7.0 144, 438, 469
v8.0 470–1
v8.1 435
v9 117, 429, 657
v9.1 657

Symbian OS C++ for Mobile
Phones (Harrison) 340

Symbian OS Explained
(Stichbury) 118

synchronization objects
see also mutexes; semaphores
concepts 5–8, 46, 49, 56–8,

72–5, 78–88, 100–12,
709–10, 776–9, 780–8,
809–23

threads 46, 49, 56–8, 72–5,
78–88, 780–8, 809–23

synchronous messages, sending
methods 137–50

synchronous operations 344,
351–8, 501–2, 527–8,
536–43, 544–8

SyncMemory... 561–2
synonyms 276–8, 288–91
sys directory 327–30, 396–400
SYSSTART.EXE 339
system alarms, second timers

204–5, 745
system calls see programmed

exceptions
system clock 35–6, 190
system directory 396–400
system lock, concepts 7–8,

100–12, 130–9, 151–60,
176–7, 179–81, 184–7, 230,
535, 652, 783–8, 825–6

system memory management
251–3, 313–14, 810

system resets 85–8, 91–2,
208–9, 210–19, 738–42

system starter 740–8

912 INDEX

system startup 338–9, 384–5,
429–30, 476–80, 578–9,
737–64

system ticks 695–6
system transition, concepts

757–62
system-critical processes/threads

90
System-on-Chip (SoC) 19–43
see also application processor;

Application-specific...
system-permanent

processes/threads 90
system-wide power transitions

664–5, 667–8
SYSTEMINCLUDE 321, 492
SystemShutdown 760–2
SystemTimeChanged 671

T16550UartIfc::K16550IER
541–3

T16550UartIfc::K16550LCR
540–3

tag RAM
see also caches
concepts 831–2

TAllocFail 303–5
Tannenbaum, Andrew 549
TARGET 321, 492–4
target agents, debuggers 640–3
TARGETTYPE 321, 480–1,

492–4
TArmContextElement 647–52
TArmExcInfo 244–6, 627
TArmRegisters 647–52
task gates, X86 exceptions

218–19
task state segment (TSS) 217–19
Tasker, Martin 1–16
tasks
see also planning
deadlines 765–823, 834–50
execution times 774–5,

780–8, 825–50
interrupts 767–79, 835–50
multi-tasking aspects 3–4,

13–15
mutual exclusion 55–6,

775–88, 836–9, 841–50

operating-system functions
3–4, 765–823

partitioning considerations
834–6

performance issues 774–5,
780–8, 825–50

priority inheritance 778–9,
781–8

real time 765–823
scheduling 767–823
switch times 774–5, 782–8

TBusLocalDrive 336–9, 380,
574–89, 611–12

see also local media
sub-system

concepts 574–89, 611–12
definition 579–80
derivation 579–80

TCapability 487
TCB see Trusted Computing Base
TCE see Trusted Computing

Environment
TCH, GSM protocol 790–807
TChangeQue 363–4
TChannelCreateInfo 509–17
TChunkAttribute 267–70
TChunkCreateInfo 563–74
TChunkType 265–70
TClientInterface 491–4
TCodeSegCreateInfo 401–6,

423–7
TCommConfigV01 536–43
TCompiledSecurityPolicy

154–60
TControl 519–48
TCP/IP connections 619
TCpOperation 246–9
TCritical 89–90
TCSR see Temperature

Compensated Self Refresh
TDes base class 124–6
TDesC base class 124–6, 442–3,

509–17, 529–30
TDfc 189, 233–6, 744–5
TDfcQue 582–7
TDfc::SetDfcQ 236
TDirectoryCacheHeader

399–400
TDiskSpaceQue 363–4

TDisplayHalFunction 495,
496–8

TDisplayMode 464–6
TDmac 553–62
TDmaChannel 553–62
TDmaDbChannel 553–62
TDmaSbChannel 553–62
TDmaSgChannel 553–62
TDrive 359–62, 380–1,

399–400, 404–6, 574–89,
745–6

TDriveCacheHeader 399–400
TDrive::DirOpen 404–6
TDrive::MkDir 365–6
TDrive::Rename 366–7
telephony audio
see also audio
concepts 39–40

telephony server (ETEL) 118, 318,
324–6

telephony stack
see also baseband processor;

CDMA...; GSM...
concepts 19, 46, 788–807,

810–23
design goals 5–6, 8–9, 14,

779, 788–807
temperature 701
Temperature Compensated Self

Refresh (TCSR) 30
templated classes 146
TERCET.EXE 257–62
TerminateThread 61–2
testing 826–50
TEventCode 752–62
Texas Instruments 20, 24,

829–31
TExcTrap handlers 239–44
.text section 388–93, 639
text shells, F32 system architecture

339, 507–8
TFileCacheRecord 399–400
TFileName 344–5
TFindFile 344
TFindHandleBase 506–8
TFindLogicalDevice 506–8,

516–17
TFindPhysicalDevice

506–8, 517

INDEX 913

TFullName 507–8
THalFunc 497–8
THalFunctionGroup:: 186–7
THandAnimArgUnion 449–56
TheCompleteDataSection-

Process 286–92
TheCurrentDataSection-

Process 286–92
TheCurrentProcess 286–92
TheCurrentVMProcess

286–92
TheScheduler.iReschedule-

NeededFlag 99–103
third-party suppliers 8–9, 253–4,

274
Thoelke, Andrew 251, 737–64
THotKey 437–40
‘thrashing’ 312
Thread Local Storage (TLS) 310
thread-relative threads 167, 625
thread-safe message queues

87–8, 300–1
ThreadCreate 62–6
ThreadDesRead 189–90, 273,

486–7
ThreadDesWrite 189–90,

486–7, 537–43
ThreadEnterCS 546–8
ThreadGetDes... 486–7
ThreadGetUserContext

637–8
ThreadKill 538–43
ThreadLeaveCS 571–4, 640,

812–21
ThreadRawRead 189–90, 273,

486–7, 538–43
ThreadRawWrite 189–90,

486–7
threads 3, 6–15, 45–93, 98–112,

117–73, 260, 271–2, 286–7,
319, 430–7, 475–548,
615–59, 709–10, 780–8,
809–23

see also kernel threads;
nanothreads; processes

asynchronous message queues
145–6, 150–60, 531–43

blocks 49–62, 70, 76, 80,
98–112, 351–8, 544,
780–8, 822–3

cleanup queues 70, 75–7,
82–8, 109, 835–50

client-server ITC 117–44, 177,
324–6

concepts 6–8, 13–15, 45–93,
117–60, 260, 271–2, 319,
402–27, 501–2, 615–59,
809–23

conditional variables 85–8
creation 50–5, 60–6, 93–7,

626–31
critical sections 55–8, 78,

102–12, 160, 312, 631–7
death 55, 56, 59, 74, 88–90,

623–5
definition 45
device drivers 13–15, 69–70,

76, 92, 147–50, 285–7,
475–548

DFCs 13–15, 54–5, 59, 89,
91–2, 99, 160, 165–6,
227–31, 233–6, 491–4,
522–8, 529–43, 585–6,
787–8, 806–10, 835–50

diverted threads 60–2
emulator 59–62, 109–12, 183,

297–8, 615–59
EUSER library 11, 140–3,

174–8, 183–7
exception handling 50–5,

62–6, 69–70, 100–12,
173–206, 207–49

execute-calls tables 50–5,
175–83

exits 49–58, 61–6, 68–70,
74–8, 83–5, 88–90, 93–7,
110–12, 312

fast mutexes 56–8, 77–8,
80–1, 98, 100–12, 149–50,
165–73, 176–7, 188–9,
230, 235–6, 240–1, 312,
528, 781–8, 823, 838–50

file server 338–9, 347, 350–8,
361–2, 579

handlers 51–66, 68–72,
88–90, 100–12, 119–44,
176–7, 185, 526

heaps 66, 298–310, 319
inter-thread communications

117–60, 173–206, 286–7,
298–310, 324–6, 335–9,
473–4, 744–5, 822–3

lifecycle 54–5, 72–5
logons 70, 77–8, 88–90
M-state 72–5
multi-threaded pre-emptible

kernel 13–15, 491–4
mutexes 56–8, 72–88, 98,

100–12, 149–50, 165–73,
176–7, 185–6, 188–9, 230,
235–6, 240–1, 312, 413,
416, 418–19, 528, 781–8,
838–50

mutual exclusion 55–6,
780–8, 836–9, 841–50

N-state 72, 811–21
nanokernel 46–93, 173–206,

219–36, 527–8, 544, 638,
780–8, 810–23

nanokernel threads 46–93,
173–206, 230, 527–8, 544,
638, 780–8, 810–23,
835–50

operating-system functions 3,
6–8, 10, 13–15

over-riding heap creation 66
personality layers 55, 59,

71–2, 74–5, 181–3,
228–9, 231, 807–23,
835–50

priorities 47, 53–8, 64–6,
69–70, 74–6, 78–88,
90–7, 98–112, 197–201,
224, 529–30, 780–8,
810–23, 825–6, 834–50

priority inheritance 58, 69, 76,
78–88, 781–8

ready list 98–112, 230, 780–8
rendezvous notifications 77–8,

144, 581
request complete 129, 240,

273, 286–7, 295–6

914 INDEX

threads (continued)
semaphores 49, 54, 72–5,

78–88, 149–50, 167,
185–6, 188–9, 230, 354–5,
528, 809–10, 813–21,
847–8

stack 46–93, 101–12, 178,
319

states 49–55, 60–2, 64–6,
70–5, 85–90, 113–15,
130–43, 147–50, 418–19,
450–6, 531–43, 651–2,
811–21

supervisory thread 10, 13–15,
23, 45–6, 91–3, 166,
173–206, 211–15, 272–3,
292–4, 309, 479–80,
485–7, 737–64

suspension 49–62, 73–5,
80–8, 171–3

switches 46–9, 56–8, 99–112,
782–8

Symbian OS 3, 6–8, 10, 11,
13–15, 62–93, 108–9,
147–50, 615–59, 822–3

synchronization objects 46, 49,
56–8, 72–5, 78–88,
780–8, 809–23

system-critical threads 90
time-slicing needs 71–2, 98,

780–8
timeouts 49–55, 766, 816–21
timer threads 13–15, 49–55,

92, 99–102, 835
types 71–2, 89–93, 319
user-mode threads 7–8, 11, 46,

62–93, 108–9, 118–29,
160, 161–206, 260–2,
281–3, 402–27, 501–2

waiting 50–5, 57–8, 70, 73–5,
78–88, 98, 102–12,
130–43, 811–21

window server 430–74
ThreadSetUserContext

637–8
throughput, memory 833–4
THUMB instruction set, ARM v5TE

24–5, 28, 31, 650, 826, 830

Tick 188
tick count 196–201
tick timers, Symbian OS 201–5,

745
tight loops, code 826–8
time-slicing needs, threads 71–2,

98, 780–8
TIMED OUT 816–21
timeouts 49–55, 766, 816–21
timer management functions, RTOS

810
timer threads, concepts 13–15,

49–55, 92, 99–102, 835
timer tick 184, 188, 195–201
TimerCallBack 717
timers 4, 6, 9, 13–15, 35–6,

41–2, 49–55, 90–2, 98–112,
188–9, 195–205, 230, 442,
448, 474, 745, 780–8, 795–7,
810, 829–32

see also nanokernel...;
Symbian OS...

cancellation 196–201
concepts 13–15, 35–6, 41–2,

188–9, 195–205, 230, 442,
448, 745, 781–8, 795–7,
810, 829–32

debuggers 36, 655–8
expiry 197–201, 810
kernel services 195–205,

479–80, 745, 783–4
multiple timers 36
power management 35–6,

90–1, 586–7, 659–736
second timers 204–5, 745
states 197–201
tick timers 201–5, 745

TInfoFunction 513–17
TIpcArgs 124–6
TKernelEvent 627–31
TKernelHalFunction 495–8
TKeyData 437–40
TLBs see Translation Look-aside

Buffers
TLdrInfo 401–6
TLibraryFunction

LibraryLookup 185
TlinearSection 421–2
TLocalDrv 582–7

TLocalDrvRequest 582–7
TLogon::LogonLock 77–8
TLS see Thread Local Storage
TMachineConfig 189–90
TMessageBase 147–50,

528–48
concepts 147–50
key members 147–50

TMessageBase::EAccepted
149–50

TMessageBase::EDelivered
149–50

TMessageBase::EFree
149–50

TMessageQue 148–50,
500–48, 582–7

concepts 148–50, 531–43
key members 148–50

TMessageQue::MsgLock
149–50

TMMCCard 597–600
TMmcCardArray 597–600
TMMCStackConfig 597–600
TModuleMemoryInfo 639
TOffsetTableEntry 645–52
TOnoffInfoV1 688
tools

debuggers 613–58
emulator 3, 5–6, 8, 14, 15–17,

47–9, 59–62, 109–12, 183,
190–2, 249, 252–3, 297–8,
309–10, 431, 613–58,
749–50, 849–50

top-client windows, tree concepts
457–61

TOperation 347–64
TOperation::DoRequestL

348–64
TOperation::Initialise

348–64
TOperation::IsSync 356
touch-screens 9, 42, 475
see also pointers

TParse 344–5, 353–4
TParseBase 340, 344–5
TParsePtr 344–5
TParsePtrC 344–5
TPartitionEntry 583–7
TPartitionInfo 582–7

INDEX 915

TPathListRecord 399–400
TPBusCallBack 590–4
TPckgBuf 456, 516–17
TPlatDmac 553–62
TPlatMMCStack 597–600
TPlatSgChannel 553–62
TPowerHalFunction 495,

496–8
TPowerState 666
TPriListLink 46–50, 811–21
TProcessCreateInfo 401–6
TProperty 153–60

concepts 153–60
TPropertyInfo 151–60
TPropertySubsRequest

151–60
TPtrC8 537–43
trace channel, kernel 652–8
traffic mode, concepts 793–5,

804–7
transferring state, nanokernel timers

197–201, 780–8
transient objects 312–13
TranslateKey 437–40
Translation Look-aside Buffers

(TLBs), concepts 25–6,
257–62, 275–95

Translation Table Base Register
(TTBR) 256–62, 275,
287–96

see also page tables
TRAP, concepts 311–13
trap gates, X86 exceptions

218–19
traps
see also exceptions
concepts 173, 209–19,

236–49, 311–14
invalid pointers 241–2

TRawEvent 431–74, 752–62
TRawEvent::TType 431–74
TRegion 465–6
TRequest 519–48
TRequestStatus 231, 273,

430, 493–4, 502–48, 570–4,
677, 763–4, 787–8

see also active objects

TRescheduleCallback 636–7
TRgb 467
Trojan horse attacks 329
TRomHeader 488, 655–6
TRomImageHeader 392–3,

401–6, 413–27, 481–4,
861–3

trust levels, unit-of-trust concepts
316–20

Trusted Computing Base (TCB),
concepts 317–30, 345–6

Trusted Computing Environment
(TCE), concepts 317, 318,
324–6, 329

TSaveType 755–62
TScheduler::Reschedule

61–2, 110–12
TSecondLink 204–5
see also second timers

TSecondQ 91, 204
TSecurityPolicy 155–60
TSpriteMember 452–6
TSS see task state segment
TSuperPage 189–90
TSupplyInfoV1 700
TSupplyStatus 697–8
TTBR0 295–6
TTBR see Translation Table Base

Register
TThreadCleanup 75–6, 82–8
TThreadMessage 147–50,

531–43
TThreadMutexCleanup 76
TThreadMutexCleanupItem

76
TThreadPriority 108–9
TThreadState 73–5
TThreadType 71
TTickLink 200–5

concepts 200–5
fields 202–3

TTickQ
concepts 201–5
fields 203–4

TTickQ::iInTick 201
TTickQ::Mutex 201
TUint... 175–7, 184–7,

482–4, 502, 528, 558–74

TUsbc... 607–12
TUserContextType 638, 647
TVariantHalFunction 495–8
TVer 519–48
TVersion 510–48
TWalkWindow... 460–2
TWalkWindowTreeBase 460–2
two-chip solution, mobile phones

17–29
TWsEvent 441–2
TX, GSM protocol 797–807
TXXXPowerController-

Interface 682–3, 692,
699

type attribute, properties entity
154–60

u32exec.h 175
u32property.h 151
u32std.h 89
UARTs 9, 225–31, 233–6,

478–9, 655, 797
uc exe.cia 65–6
UDC see USB Device Controller
UID3 328
UID 321
UIDs see unique identifiers
UIQ phones, screen sizes 38–9
umem... 485–7
unattached state, state machine

130–43
unbounded priority inversion

scenario 777–9, 836–9,
841–50

undefined instructions, traps
209–10, 240–9

Unicode text 154, 166, 398–400,
826

unique identifiers (UIDs) 377–81,
389–90, 396–404, 410–12,
416–17, 420–2, 424–7

volumes 361
unit-of-trust concepts, platform

security 316–20
Unix 3
Unlock 62, 78
UnlockSystem 535–43
‘unrolling the loop’ techniques,

tight loops 827–8

916 INDEX

unsubscribe operation, properties
(continued)

unsubscribe operation, properties
155–60

unused pages, memory
management 313–14

UpdateSprite 451–6
ups and downs, key events

431–42
usage count 693, 706
USB Device Controller (UDC)

604–12
USB (Universal Serial Bus) 9, 10,

20–1, 42, 219–20, 307,
375–6, 478, 490–4, 513,
550–62, 602–12, 840

alternative interfaces 608–12
classes 603–12
client controller 607–10
composite devices 602–12
concepts 602–12, 840
configuration 603–7
endpoints 603–4
LDDs 607–12
mass storage file system

611–12
overview 602–4
performance issues 840
signals 602–3
software architecture 604–7

USBCC.DLL 605–12
Use 693, 707
User 132–43, 202–5, 273,

303–5, 503–48
user.h 175

user input, window server 3, 11
user interfaces (UIs) 660–1
user perceptions 660
user process memory, device

drivers 484–7, 502–8
user-data storage, flash memory

334, 367–75, 377–85,
392

user-initiated shutdown
676–8

user-mode free store, RHeap
305–6

user-mode memory access
device drivers 484–7

platform security 318–19,
484–7, 515–17

user-mode threads
concepts 7–8, 11, 46, 62–93,

108–9, 118–29, 160, 161,
173–206, 260–2, 281–7,
298–310, 320–6, 393–4,
402–27, 501–2, 562,
808–23

executive calls 161, 173–206,
419–20, 485–7, 501–2

failures 311–14
file server 11
kernel services 161, 173–206,

320–6
latency reduction 846
loader 402–27
LRTA 808–23
SWIs 173–86, 206

user-side access
device drivers 484–7, 502–8,

517–48
media devices 579–82, 588–9,

611–12
RTOS 822–3
shared chunks 566–74, 822–3
shared I/O buffers 562

user-side architecture 118–29,
160, 161–206, 241, 476–548,
752–62

user-side exception handlers 241
user-side interfaces 669–70
User::CaptureEventHook

429–30
USER$CODE 310
User::DebugMask 657–8
User::FreeLogicalDevice

508
User::FreePhysicalDevice

508
UserHal::SwitchOff 432,

677–8, 688, 752–62
UserHeap 65–6, 304–5
UserHeap::SetupThreadHeap

65–6
USERINCLUDE 321
User::Leave 303–5
User::LeaveIfError 454–6

User::LoadLogicalDevice
393–427, 503–8, 627

User::LoadPhysicalDevice
503–8

User::Panic 626–37
User::RaiseException 642
User::RequestEvent 430,

493–4
user::SetHomeTime 671
UserSvr 409–10, 432, 493–4,

671, 687, 752–62
UserSvr:CaptureEventHook

493–4
UserSvr::ExecuteInSuper-

visorMode 409–10
UserSvr::SetMemory-

Thresholds 313
UserSvr::WsSwitchOnScreen

432
User::SwitchAllocator 305
User::TickCount 202–5
User::WaitForRequest

132–43, 273, 503–8,
541–3

Validate 513–17
ValidateName 509–17
VAR 481–4
Variant 481, 488, 492–4, 625,

669, 682, 691–2
variant extensions
see also Asic; EVAR.LIB
concepts 12–13, 194–5,

231–6, 479–87, 552–62,
577–9, 654–6,
738–64

hardware 4, 9–10, 12–13,
187, 194–5, 231–6, 337–9,
479–87, 552–62, 654–6,
738–64

variant.mmh 492–4, 625
variant-specific idle 681–2
variant-specific power controller

664
VariantHal 496
VariantInitialise 490
variantmediadef.h 577–9
VariantTarget 492–4

INDEX 917

vector addresses, exceptions
213–15, 217–36

vectors.cia 176
version numbers, executables

394–6, 398–400,
410–12

VFAT file system 375–81
see also FAT...

VFP (vector floating point) 241,
246–9

see also coprocessor...
VIC 34–5
video capture/playback, audio

40
video recording, RAM

requirements 30
video telephony (VT), audio 40
virtual caches
see also caches
concepts 27–8, 253

virtual functions 435–6, 444–56,
460–2

virtual indexes/tags, caches
275–8

virtual memory maps 25–6, 230,
251–62, 272, 275–87,
293–4, 311, 644–52

virtual/physical addresses
homonyms 275–8,

288–91
memory model 254–62,

275–91, 297–8, 307,
740–2

MMU features 254–62,
275–91, 740–2

synonyms 276–8, 288–91
VirtualAlloc 297
VirtualProtect 298
viruses 329, 337
visibility issues, asynchronous

message queues 146
visible area, client windows

466
voice calls 19, 39–40
see also audio
IPC 40

voltage, CPUs 728–31
Volume 340–1

volumes
see also partitions
clusters 375
concepts 335, 340–1, 360–1,

375–81
unique identifiers 361

VRTX 808
VSCAN.PXT 336–9
VT see video telephony

Wait 87–8
WaitCancel 820–1
WAIT FOREVER 816–21
WaitForRequest 132–43,

273, 503–8, 541–3,
649–52

waiting
see also mutexes; semaphores
threads 49–55, 57–8, 70,

73–5, 78–88, 98, 102–12,
130–43, 811–21

wakeup events 665, 667–8, 670,
677, 683–5, 696, 757–64,
835–50

WakeUpEvent 673, 676,
684–5

WalkWindowTree 460–2
WCET see worst-case execution

time
wear-leveling scheme, LFFS

373–4
Whitehead, J. 771–2
wildcard searches, PDDs

514–17
Williams, Stefan 475–548
Win32, emulator 12–13, 15–16,

59–62, 97, 109–12, 190–2,
297–8, 435, 615–59,
749–50

window anims, concepts
443–56

window server (WSERV)
see also animation DLLs;

EWSRV.EXE
boot processes 429, 746–7
client API 429–74
client queues 430–1,

440–74

client-registered events 434–5,
752–62

command buffer 473–4
concepts 3, 4, 6, 11, 339,

429–75, 493–4, 752–62,
835–50

definition 429
direct screen access 471–2
drawing 466–72
event types 430–5
event-processing methods

435–40, 446–56
events from the kernel 431–74,

752–62
events to the clients 432–74
handwriting recognition 429,

442–56
kernel’s event handler 429–74,

752–62
key events 431–4, 436–74,

752–62
non-client registered events

433–5, 753–4
objects 456–62
overflowing queues 440–2
platform security 473–4
pointer events 431–4, 438–74
queues 430–1, 440–74
redraw events 4, 431, 440–74
responsibilities 429–30
windows 456–71

windows
applications 457–62
backup behind 469–70
backup content windows

467–8
blank windows 467
classes 456–62
client windows 457–61,

464–6
command storing 470–1
concepts 456–62
drawing 466–71
flicker-free redrawing 470
group windows 457–66
importance 457
objects 456–62

918 INDEX

properties 462–6
redraw windows 468–71
regions 465–6
tree 457–66
window server 456–71

Wins::InitProperties 490
Windows 2, 3, 4, 14, 15–16,

59–62, 96–7
emulator 14, 15–16, 59–62,

96–7, 249, 297–8, 309–10,
431, 490, 495–8, 615–59,
749–50

workloads, CPUs 728–31
worst-case execution time (WCET),

deadlines 767–74, 839
worst-case latency scenarios

786–8, 839
wrapper functions 508–17,

631–2, 654–6
WrDmaService 572–4
Write 519–48, 580–2
write buffers 569–74, 833–4
see also buffers

‘write-back with dirty bit’ cache
scheme 377

WriteBuffer 569–74
WriteCancel 519–48
WriteDeviceData 473–4
WriteUserData 320–6
WSERV see window server
WSINI.INI 464–5
www.symbian.com/books 866
www.symbian.com/partners 43

X86 CPU software layer
concepts 12, 15–16, 47–9,

179–81, 192–5, 210,
215–36, 238–49, 287,
836–9

‘device not available’ exceptions
240–3

exceptions 210, 215–36,
238–49

memory addressing 215–19
privilege levels 215–19
registers 215–36, 238–49
RPL 216–19
segment selectors 215–19

X86Mmu 193–4

XIP ROM see execute in place
ROM

XScale processors, Intel 20, 24,
827–31

XT DEFAULT 244–5
XTRAP, concepts 243–5, 273,

312–13, 631
XTRAPD 244
XXXResource Manager

689–94

Y: drive 396–7
YieldTo 104–12

Z: drive (ROM drive/image) 31,
333–5, 337–9, 384–5,
396–7, 574–89, 611–12,
745–6

zero-divides exception 626

