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Alles Gescheite ist schon gedacht worden; man muss nur versuchen, es noch
einmal zu denken.

Everything imaginative has been thought before; one must only attempt to

think it again.

Johann Wolfgang von Goethe
Maximen und Reflexionen (1829)



Preface

It is the profession of philosophers to question platitudes that others accept without thinking twice.
A dangerous profession, since philosophers are more easily discredited than platitudes, but a useful
one. For when a good philosopher challenges a platitude, it usually turns out that the platitude was
essentially right; but the philosopher has noticed trouble that one who did not think twice could not
have met. In the end the challenge is answered and the platitude survives, more often than not. But
the philosopher has done the adherents of the platitude a service: he has made them think twice.

David K. Lewis, Convention (Harvard University Press, 1969)

It is a platitude that decisions should be optimal; that is, that decision makers should
make the best choice possible, given the available knowledge. But we cannot rationally
choose an option, even if we do not know of anything better, unless we know that it is
good enough. Satisficing, or being “good enough,” is the fundamental desideratum of
rational decision makers – being optimal is a bonus.

Can a notion of being “good enough” be defined that is distinct from being best?
If so, is it possible to formulate the concepts of beinggood enough for the group andgood
enough for the individuals that do not lead to the problems that exist with the notions
of group optimality and individual optimality? This book explores these questions. It is
an invitation to consider a new approach to decision theory and mathematical games.
Its purpose is to supplement, rather than supplant, existing approaches. To establish
a seat at the table of decision-making ideas, however, it challenges a widely accepted
premise of conventional decision theory; namely, that a rational decision maker must
always seek to do, and only to do, what is best for itself.

Optimization is the mathematical instantiation of individual rationality, which is the
doctrine of exclusive self-interest. In group decision-making settings, however, it is
generally not possible to optimize simultaneously for all individuals. The prevailing
interpretation of individual rationality in group settings is for the participants to seek an
equilibrium solution, where no single participant can improve its level of satisfaction by
making a unilateral change. The obvious desirability of optimization and equilibration,
coupled with a convenient mathematical formalization via calculus, makes this view
of rational choice a favorite of many disciplines. It has served many decision-making
communities well for many years and will continue to do so. But there is some disquiet
on the horizon. There is a significant movement in engineering and computer science

xiii



xiv Preface

toward “intelligent decision-making,”which is an attempt to buildmachines thatmimic,
either biologically or cognitively, the processes of human decision making, with the
goal of synthesizing artificial entities that possess some of the decision-making power
of human beings. It is well documented, however, that humans are poor optimizers, not
only because they often cannot be, because of such things as computational andmemory
limitations, but because they may not care to be, because of their desire to accommodate
the interests of others as well as themselves, or simply because they are content with
adequate performance. If we are to synthesize autonomous decision-making agents that
mimic human behavior, they in all likelihood will be based on principles that are less
restrictive than exclusive self-interest.

Cooperation is a much more sophisticated concept than competition. Competition
is the natural result of individual rationality, but individual rationality is the Occam’s
razor of interpersonal interaction, and relies only upon the minimal assumption that an
individual will put its own interests above everything and everyone else. True coopera-
tion, on the other hand, requires decision makers to expand their spheres of interest and
give deference to others, even at their own expense. True cooperation is very difficult
to engender with individual rationality.

Relaxing the demand for strict optimality as an ideal opens the way for consideration
of a different principle to govern behavior. A crucial aspect of any decision problem is
the notion of balance, such that a decision maker is able to accommodate the various
relationships that exist between it and its environment, including other participants. An
artificial society that coordinates with human beings must be ecologically balanced to
the human component if humans are to be motivated to use and trust it. Furthermore,
effective non-autocratic societies must be socially balanced between the interests of
the group and the interests of the individuals who constitute the group. Unfortunately,
exclusive self-interest does not naturally foster these notions of balance, since each
participant is committed to tipping the scale in its own favor, regardless of the effect
on others. Even in non-competitive settings this can easily lead to selfish, exploitive,
and even avaricious behavior, when cooperative, unselfish, and even altruistic behavior
would be more appropriate. This type of behavior can be antisocial and counterpro-
ductive, especially if the other participants are not motivated by the same narrow ideal.
Conflict cannot be avoided in general, but conflict can just as easily lead to collaboration
as to competition.

One cannot have degrees or grades of optimality; either an option is optimal or it
is not. But common sense tells us that not all non-optimal options are equal. One of
the most influential proponents of other-than-optimal approaches to decision making
is Herbert Simon, who appropriated the term “satisficing” to describe an attitude of
taking action that satisfies the minimum requirements necessary to achieve a particular
goal. Since these standards are chosen arbitrarily, Simon’s approach has often been
criticized as ad hoc. There have been several attempts in the literature to rework his
original notion of satisficing into a form of constrained optimization, but such attempts
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are not true to Simon’s original intent. In Chapter 1 Simon’s notion of satisficing is
retooled by introducing a notion of “good enough” in terms of intrinsic, rather than
extrinsic, criteria, and couching this procedure in a new notion of rationality that is
termed intrinsic rationality.

For a decision maker truly to optimize, it must possess all of the relevant facts. In
other words, the localization of interest (individual rationality) seems to require the
globalization of preferences, and when a total ordering is not available, optimization is
frustrated. Intrinsic rationality, however, does not require a total ordering, since it does
not require the global rank-ordering of preferences. In Chapter 2 I argue that forming
conditional local preference orderings is a natural way to synthesize emergent total
orderings for the group as well as for the individual. In other words, the localization of
preferences can lead to the globalization of interest.

The desire to consider alternatives to traditional notions of decision-making has also
been manifest in the philosophical domain. In particular, Isaac Levi has challenged
traditional epistemology. Instead of focusing attention on justifying existing knowledge,
he concentrates on how to improve knowledge. He questions the traditional goal of
seeking the truth and nothing but the truth and argues that a more modest and achievable
goal is that of seeking new information while avoiding error. He offers, in clean-cut
mathematical language, a framework for making such evaluations. The result is Levi’s
epistemic utility theory.

Epistemology involves the classification of propositions on the basis of knowledge
and belief regarding their content, and praxeology involves the classification of options
on the basis of their effectiveness. Whereas epistemology deals with the issue of what to
believe, praxeology deals with the issue of how to act. The praxeic analog to the conven-
tional epistemic notion of seeking the truth and nothing but the truth is that of taking the
best and nothing but the action. The praxeic analog toLevi’smoremodest epistemic goal
of acquiring new information while avoiding error is that of conserving resources while
avoiding failure. Chapter 3 describes a transmigration of Levi’s original philosophical
ideas into the realm of practical engineering. To distinguish between the goals of decid-
ing what to believe and how to act, this reoriented theory is termed praxeic utility theory.

Praxeic utility theory provides a definition for satisficing decisions that is consis-
tent with intrinsic rationality. Chapter 4 discusses some of the properties of satisficing
decisions and introduces the notion of satisficing equilibria as a refinement of the
fundamental satisficing concept. It also establishes some fundamental consistency re-
lationships.

Chapter 5 addresses two kinds of uncertainty. The first is the usual notion of epistemic
uncertainty caused by the lack of knowledge and is usually characterized with proba-
bility theory. The second kind of uncertainty is termed praxeic uncertainty and deals
with the equivocation and sensitivity that a decision maker may experience as a result
of simply being thrust into a decision-making environment. Praxeic uncertainty deals
with the innate ability of the decision maker.
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One of the main benefits of satisficing à la praxeic utility theory is that it admits a
natural extension to a community of decision makers. Chapter 6 presents a theory of
multi-agent decision making that is very different from conventional von Neumann–
Morgenstern game theory, which focuses on maximizing individual expectations condi-
tioned on the actions of other players. This new theory, termed satisficing game theory,
permits the direct consideration of group interests as well as individual interests and
mitigates the attitude of competition that is so prevalent in conventional game theory.

Negotiation is one of the most difficult and sophisticated aspects of N -person von
Neumann–Morgenstern game theory. One of the reasons for this difficulty is that the
principle of individual rationality does not permit a decisionmaker to enter into compro-
mise agreements that would permit any form of self-sacrifice, no matter how slight for
the person, or how beneficial it may be for others. Chapter 7 shows how satisficing does
permit such behavior and possesses a mechanism to control the degree of self-sacrifice
that a decision maker would permit when attempting to achieve a compromise.

Multi-agent decision-making is inherently complex. Furthermore, praxeic utility the-
ory leads to more complexity than does standard von Neumann–Morgenstern game
theory, but it is not more complex than it needs to be to characterize all multi-agent
preferences. Chapter 8 demonstrates this increased complexity by recasting some well-
knowngames as satisficinggames anddiscussesmodeling assumptions that canmitigate
complexity.

Chapter 9 reviews some of the distinctions between satisficing and optimization, dis-
cusses the ramifications of choosing the rationality criterion, and extends an invitation
to examine some significant problems from the point of view espoused herein.

Having briefly describedwhat this book is about, it is important also to stresswhat it is
not about. It is not about a social contract (i.e., the commonly understood coordinating
regularities by which a society operates) to characterize human behavior. Lest I be
accused of heresy or, worse, naiveté by social scientists, I wish to confinemy application
to the synthesis of artificial decision-making societies. I employ the arguments of
philosophers and social scientists to buttress my claim that any “social contract” for
artificial systems should not be confined to the narrow precepts of individual rationality,
but I do not claim that the notion of rationality I advance is the explanation for human
social behavior. I do believe, however, that it is compatible with human behavior and
should be considered as a component of any man–machine “social contract” that may
eventually emerge as decision-making machines become more sophisticated and the
interdependence of humans and machines increases.

This book had its beginnings several years ago. While a graduate student I happened
to overhear a remark from a respected senior faculty member, who lamented, as nearly
as I can recall, that “virtually every PhD dissertation in electrical engineering is an
application of X dot equals zero [Ẋ = 0].” He was referring to an elementary theo-
rem from calculus that functions achieve their maxima and minima at points where
the derivative vanishes. Sophisticated versions of this basic idea are the mainstays of
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optimization-based methods. Before hearing that remark, it had never occurred to me
to question the standard practice of optimization. I had taken for granted that, with-
out at least some notion of optimality, decision-making would be nothing more than
an exercise in adhocism. I was nevertheless somewhat deflated to think that my own
dissertation, though garnished with some sophisticated mathematical accoutrements,
was really nothing more, at the end of the day, than yet another application of Ẋ = 0.
Although this realization did not change my research focus at the time, it did eventually
prompt me to evaluate the foundational assumptions of decision theory.

I am not a critic of optimization, but I am a critic of indiscriminately prescribing it
for all situations. Principles should not be adopted simply out of habit or convenience.
If one of the goals of philosophy is to increase contact with reality, then engineers, who
seek not only to appreciate reality but also to create it, should occasionally question the
philosophical underpinnings of their discipline. This book expresses the hope that the
cultures of philosophy and engineering can be better integrated. Good designs should
be based on good philosophy and good philosophy should lead to good designs.
The philosophy of “good enough” deserves a seat at the table alongside the philos-
ophy of “nothing but the best.” Neither is appropriate for all situations. Both have their
limitations and their natural applications. Satisficing, as a precisely defined mathemat-
ical concept, is another tool for the decision maker’s toolbox.

This book was engendered through many fruitful associations. Former students
Darryl Morrell and Mike Goodrich have inspired numerous animated and stimulat-
ing discussions as we hammered out many of the concepts that have found their way
into this book. Fellow engineers and collaborators Rick Frost, Todd Moon, and Randy
Beard have been unfailing sources of enlightenment and encouragement. Also, Dennis
Packard and Hal Miller of the philosophy and psychology departments, respectively,
at BYU, have helped me to appreciate the advantages of collaboration between engi-
neering, the humanities, and the social and behavorial sciences. In particular, I owe a
special debt of gratitude to Hal, who carefully critiqued the manuscript and made many
valuable suggestions.





1 Rationality

Rationality, according to some, is an excess of reasonableness. We should be rational enough to
confront the problems of life, but there is no need to go whole hog. Indeed, doing so is something of
a vice. Isaac Levi, The Covenant of Reason (Cambridge University Press, 1997)

The disciplines of science and engineering are complementary. Science comes from
the Latin root scientia, or knowledge, and engineering comes from the Latin root
ingenerare, which means to beget. While any one individual may fulfill multiple roles,
a scientist qua seeker of knowledge is concerned with the analysis of observed natural
phenomena, and an engineer qua creator of new entities is concerned with the synthesis
of artificial phenomena. Scientists seek to develop models that explain past behavior
and predict future behavior of the natural entities they observe. Engineers seek to de-
velop models that characterize desired behavior for the artificial entities they construct.
Science addresses the question of how things are; engineering addresses the question
of how things might be.
Although of ancient origin, science as an organized academic discipline has a history

spanning a few centuries. Engineering is also of ancient origin, but as an organized
academic discipline the span of its history is more appropriately measured by a few
decades. Science has refined its methods over the years to the point of great sophis-
tication. It is not surprising that engineering has, to a large extent, appropriated and
adapted for synthesis many of the principles and techniques originally developed to aid
scientific analysis.
One concept that has guided the development of scientific theories is the “principle

of least action,” advanced by Maupertuis1 as a means of systematizing Newtonian
mechanics. This principle expresses the intuitively pleasing notion that nature acts in a
way that gives the greatest effect with the least effort. It was championed by Euler, who
said: “Since the fabric of the world is the most perfect and was established by the wisest
Creator, nothing happens in this world in which some reason of maximum or minimum

1 Beeson (1992) cites Maupertuis (1740) as Maupertuis’ first steps toward the development of this principle.

1



2 1 Rationality

would not come to light” (quoted in Polya (1954)).2 This principle has been adopted
by engineers with a fruitful vengeance. In particular, Wiener (1949) inaugurated a new
era of estimation theory with his work on optimal filtering, and von Neumann and
Morgenstern (1944) introduced a new structure for optimal multi-agent interactivity
with their seminal work on game theory. Indeed, we might paraphrase Euler by saying:
“Nothing should be designed or built in this world in which some reason of maximum
or minimum would not come to light.” To obtain credibility, it is almost mandatory
that a design should display some instance of optimization, even if only approximately.
Otherwise, it is likely to be dismissed as ad hoc.
However, analysis and synthesis are inverses. One seeks to take things apart, the other

to put things together. One seeks to simplify, the other to complicate. As the demands
for complexity of artificial phenomena increase, it is perhaps inevitable that principles
and methods of synthesis will arise that are not attributable to an analysis heritage –
in particular, to the principle of least action. This book proposes such a method. It is
motivated by the desire to develop an approach to the synthesis of artificial multi-agent
decision-making systems that is able to accommodate, in a seamless way, the interests
of both individuals and groups.
Perhaps the most important (and most difficult) social attribute to imitate is that

of coordinated behavior, whereby the members of a group of autonomous distributed
machines coordinate their actions to accomplish tasks that pursue the goals of both
the group and each of its members. It is important to appreciate that such coordi-
nation usually cannot be done without conflict, but conflict need not degenerate to
competition, which can be destructive. Competition, however, is often a byproduct of
optimization, whereby each participant in a multi-agent endeavor seeks to achieve the
best outcome for itself, regardless of the consequences to other participants or to the
community.
Relaxing the demand for optimization as an ideal may open avenues for collaboration

and compromise when conflict arises by giving joint consideration to the interests of the
group and the individuals that compose the group, provided they are willing to accept
behavior that is “good enough.” This relaxation, however, must not lead to reliance upon
ad hoc rules of behavior, and it should not categorically exclude optimal behavior. To be
useful for synthesis, an operational definition of what it means to be good enough must
be provided, both conceptually and mathematically. The intent of this book is two-fold:
(a) to offer a criterion for the synthesis of artificial decision-making systems that is
designed, from its inception, to model both collective and individual interests; and
(b) to provide amathematical structure within which to develop and apply this criterion.
Together, criterion and structure may provide the basis for an alternative view of the
design and synthesis of artificial autonomous systems.

2 Euler’s argument actually begs the question by using superlatives (most perfect, wisest) to justify other superla-
tives (maximum, minimum).



3 1.1 Games machines play

1.1 Games machines play

Much research is being devoted to the design and implementation of artificial social
systems. The envisioned applications of this technology include automated air-traffic
control, automated highway control, automated shop floor management, computer net-
work control, and so forth. In an environment of rapidly increasing computer power
and greatly increased scientific knowledge of human cognition, it is inevitable that
serious consideration will be given to designing artificial systems that function analo-
gously to humans. Many researchers in this field concentrate on four major metaphors:
(a) brain-like models (neural networks), (b) natural language models (fuzzy logic),
(c) biological evolutionarymodels (genetic algorithms), and (d) cognitionmodels (rule-
based systems). The assumption is that by designing according to these metaphors, ma-
chines can be made at least to imitate, if not replicate, human behavior. Such systems
are often claimed to be intelligent.
The word “intelligent” has been appropriated by many different groups and may

mean anything from nonmetaphorical cognition (for example, strong AI) to advertising
hype (for example, intelligent lawn mowers). Some of the definitions in use are quite
complex, some are circular, and some are self-serving. But when all else fails, we may
appeal to etymology, which owns the deed to the word; everyone else can only claim
squatters rights. Intelligent comes from the Latin roots inter (between) + legĕre (to
choose). Thus, it seems that an indispensable characteristic of intelligence in man or
machine is an ability to choose between alternatives.
Classifying “intelligent” systems in terms of anthropomorphicmetaphors categorizes

mainly their syntactical, rather than their semantic, attributes. Such classifications deal
primarily with the way knowledge is represented, rather than with the way decisions
are made. Whether knowledge is represented by neural connection weights, fuzzy set-
membership functions, genes, production rules, or differential equations, is a choice
that must be made according to the context of the problem and the preferences of
the system designer. The way knowledge is represented, however, does not dictate the
rational basis for the way choices are made, and therefore has little to do with that
indispensable attribute of intelligence.
A possible question, when designing a machine, is the issue of just where the actual

choosing mechanism lies – with the designer, who must supply the machine with all
of rules it is to follow, or with the machine itself, so that it possesses a degree of
true autonomy (self-governance). This book does not address that question. Instead,
it focuses primarily on the issue of how decisions might be made, rather than who
ultimately bears the responsibility for making them. Its concern is with the issue of how
to design artificial systems whose decision-making mechanisms are understandable to
and viewed as reasonable by the people who interface with such systems. This concern
leads directly to a study of rationality.
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This book investigates rationality models that may be used by men or machines.
A rational decision is one that conforms either to a set of general principles that govern
preferences or to a set of rules that govern behavior. These principles or rules are then
applied in a logical way to the situation of concern, resulting in actions which generate
consequences that are deemed to be acceptable to the decision maker. No single notion
of what is acceptable is sufficient for all situations, however, so there must be multi-
ple concepts of rationality. This chapter first reviews some of the commonly accepted
notions of rationality and describes some of the issues that arise with their implementa-
tion. This review is followed by a presentation of an alternative notion of rationality and
arguments for its appropriateness and utility. This alternative is not presented, however,
as a panacea for all situations. Rather, it is presented as a new formalism that has a place
alongside other established notions of rationality. In particular, this approach to rational
decision-making is applicable to multi-agent decision problems where cooperation is
essential and competition may be destructive.

1.2 Conventional notions

The study of human decision making is the traditional bailiwick of philosophy, eco-
nomics, and political science, and much of the discussion of this topic concentrates on
defining what it means to have a degree of conviction sufficient to impel one to take
action. Central to this traditional perspective is the concept of preference ordering.

Definition 1.1
Let the symbols “�” and “∼=” denote binary ordering relationships meaning “is at least
as good as” and “is equivalent to,” respectively. A total ordering of a collection of
options U = {u1, . . . , un}, n ≥ 3, occurs if the following properties are satisfied:

Reflexivity: ∀ui ∈ U : ui � ui

Antisymmetry: ∀ui , u j ∈ U : ui � u j & u j � ui ⇒ ui ∼= u j

Transitivity: ∀ui , u j , uk ∈ U : ui � u j , u j � uk ⇒ ui � uk

Linearity: ∀ui , u j ∈ U : ui � u j or u j � ui

If the linearity property does not hold, the set U is said to be partially ordered. �

Reflexivity means that every option is at least as good as itself, antisymmetry means
that if ui is at least as good as u j and u j is at least as good as ui , then they are equivalent,
transitivity means that if ui is as least as good as u j and u j is at least as good as uk ,
then ui is at least as good as uk , and linearity means that for every ui and u j pair, either
ui is at least as good as u j or u j is at least as good as ui (or both).
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1.2.1 Substantive rationality

Once in possession of a preference ordering, a rational decision maker must employ
general principles that govern the way the orderings are to be used to formulate decision
rules. No single notion of what is acceptable is appropriate for all situations, but perhaps
the most well-known principle is the classical economics hypothesis of Bergson and
Samuelson, which asserts that individual interests are fundamental; that is, that social
welfare is a function of individual welfare (Bergson, 1938; Samuelson, 1948). This
hypothesis leads to the doctrine of rational choice, which is that “each of the individ-
ual decision makers behaves as if he or she were solving a constrained maximization
problem” (Hogarth and Reder, 1986b, p. 3). This paradigm is the basis of much of con-
ventional decision theory that is used in economics, the social and behavioral sciences,
and engineering. It is based upon two fundamental premises.
P-1 Total ordering: the decision maker is in possession of a total preference ordering

for all of its possible choices under all conditions (in multi-agent settings, this
includes knowledge of the total orderings of all other participants).

P-2 The principle of individual rationality: a decision maker should make the best
possible decision for itself, that is, it should optimize with respect to its own total
preference ordering (in multi-agent settings, this ordering may be influenced by
the choices available to the other participants).

Definition 1.2
Decision makers who make choices according to the principle of individual ratio-
nality according to their own total preference ordering are said to be substantively
rational. �

One of the most important accomplishments of classical decision theory is the es-
tablishment of conditions under which a total ordering of preferences can be quantified
in terms of a mathematical function. It is well known that, given the proper technical
properties (e.g., see Ferguson (1967)), there exists a real-valued function that agrees
with the total ordering of a set of options.

Definition 1.3
A utility φ on a set of options U is a real-valued function such that, for all ui , u j ∈ U ,
ui � u j if, and only if, φ(ui ) ≥ φ(u j ). �

Through utility theory, the qualitative ordering of preferences is made equivalent
to the quantitative ordering of the utility function. Since it may not be possible, due
to uncertainty, to ensure that any given option obtains, orderings are usually taken
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with respect to expected utility, that is, utility that has been averaged over all options
according to the probability distribution that characterizes them; that is,

π (u) = E[φ(u)] =
∫
U

φ(u)PC (du),

where E[·] denotes mathematical expectation and PC is a probability measure charac-
terizing the random behavior associated with the set U . Thus, an equivalent notion for
substantive rationality (and the one that is usually used in practice) is to equate it with
maximizing expected utility (Simon, 1986).
Not only is substantive rationality the acknowledged standard for calculus/

probability-based knowledge representation and decision making, it is also the de facto
standard for the alternative approaches based on anthropomorphic metaphors. When
designing neural networks, algorithms are designed to calculate the optimum weights,
fuzzy sets are defuzzified to a crisp set by choosing the element of the fuzzy set with the
highestdegree of setmembership, genetic algorithms are designed under the principle of
survival of the fittest, and rule-based systems are designed according to the principle
that a decision maker will operate in its own best interest according to what it knows.
There is a big difference in perspective between the activity of analyzing the way

rational decisionmakers make decisions and the activity of synthesizing actual artificial
decision makers. It is one thing to postulate an explanatory story that justifies how
decision makers might arrive at solution, even though the story is not an explicit part
of the generative decision-making model and may be misleading. It is quite another
thing to synthesize artificial decision makers that actually live such a story by enacting
the decision-making logic that is postulated. Maximizing expectations tells us what we
may expect when rational entities function, but it does not give us procedures for their
operation. It may be instructive, but it is not constructive.
Nevertheless, substantive rationality serves as a convenient and useful paradigm for

the synthesis of artificial decision makers. This paradigm loses some of its appeal,
however, when dealing with decision-making societies. The major problem is that
maximizing expectations is strictly an individual operation. Group rationality is not a
logical consequence of individual rationality, and individual rationality does not easily
accommodate group interests (Luce and Raiffa, 1957).
Exclusive self-interest fosters competition and exploitation, and engenders attitudes

of distrust and cynicism. An exclusively self-interested decision maker would likely
assume that the other decision makers also will act in selfish ways. Such a decision
makermight therefore impute self-interested behavior to others that would be damaging
to itself, andmight respond defensively.While thismay be appropriate in the presence of
serious conflict, many decision scenarios involve situations where coordinative activity,
even if it leads to increased vulnerability, may greatly enhance performance. Especially
when designing artificial decision-making communities, individual rationality may not
be an adequate principle with which to characterize desirable behavior in a group.
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The need to define adequate frameworks in which to synthesize rational decision-
making entities in both individual and social settings has led researchers to challenge the
traditional models based on individual rationality. One major criticism is the claim that
people do not usually conform to the strict doctrine of substantive rationality – they are
not utility maximizers (Mansbridge, 1990a; Sober and Wilson, 1998; Bazerman, 1983;
Bazerman and Neale, 1992; Rapoport and Orwant, 1962; Slote, 1989). It is not clear,
in the presence of uncertainty, that the best possible thing to do is always to choose
a decision that optimizes a single performance criterion. Although deliberately opting
for less than the best possible leaves one open to charges of capriciousness, indecision,
or foolhardiness, the incessant optimizer may be criticized as being restless, insatiable,
or intemperate.3 Just as moderation may tend to stabilize and temper cognitive behav-
ior, deliberately backing away from strict optimality may provide protection against
antisocial consequences. Moderation in the short run may turn out to be instrumentally
optimal in the long run.
Even in the light of these considerations, substantive rationality retains a strong

appeal, especially because it provides a systematic solution methodology, at least for
single decision makers. One of the practical benefits of optimization is that by choosing
beforehand to adopt the option that maximizes expected utility, the decision maker has
completed the actual decision making – all that is left is to solve or search for that
option (for this reason, much of what is commonly called decision theory may more
accurately be characterized as search theory). This fact can be exploited to implement
efficient search procedures, especially with concave and differentiable utility functions,
and is a computational benefit of such enormous value that one might be tempted to
adopt substantive rationality primarily because it offers a systematic and reliable means
of finding a solution.

1.2.2 Procedural rationality

If we were to abandon substantive rationality, what justifiable notion of reasonable-
ness could replace it? If we were to eschew optimization and its attendant computa-
tional mechanisms, how would solutions be systematically identified and computed?
These are significant questions, and there is no single good answer to them. There
is, however, a notion of rationality that has evolved more or less in parallel with
the notion of substantive rationality and that is relevant to psychology and computer
science.

Definition 1.4
Decision makers who make choices by following specific rules or procedures are said
to be procedurally rational (Simon, 1986). �

3 As Epicurus put it: “Nothing is enough for the man to whom enough is too little.”
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For an operational definition of procedural rationality, we turn to Simon:

The judgment that certain behavior is “rational” or “reasonable” can be reached only by viewing the
behavior in the context of a set of premises or “givens.” These givens include the situation in which
the behavior takes place, the goals it is aimed at realizing, and the computational means available for
determining how the goals can be attained. (Simon, 1986, p. 26)

Under this notion, a decision maker should concentrate attention on the quality of the
processes bywhich choices are made, rather than directly on the quality of the outcome.
Whereas, under substantive rationality, attention is focused on why decision makers
should do things, under procedural rationality attention is focused on how decision
makers should do things. Substantive rationality tells us where to go, but not how to get
there; procedural rationality tells us how to get there, but not where to go. Substantive
rationality is viewed in terms of the outcomes it produces; procedural rationality is
viewed in terms of the methods it employs.
Procedures are often heuristic. They may involve ad hoc notions of desirability, and

they may simply be rules of thumb for selective searching. They may incorporate the
same principles and information that could be used to form a substantively rational
decision, but rather than dictating a specific option, the criteria are used to guide the
decision maker by identifying patterns that are consistent with its context, goals, and
computational capabilities.4 A fascinating description of heuristics and their practical
application is found in Gigerenzer and Todd (1999). Heuristics are potentially very
powerful and can be applied to more complex and less well structured problems than
traditional utility maximization approaches. An example of a procedurally rational
decision-making approach is a so-called expert system, which is typically composed of
a number of rules that specify behavior in various local situations. Such systems are at
least initially defined by human experts or authorities.
The price for working with heuristics is that solutions cannot in any way be con-

strued as optimal – they are functional at best. In contrast to substantively rational
solutions, which enjoy an absolute guarantee of maximum success (assuming that the
model is adequate – we should not forget that “experts” defined these models as well),
procedurally rational solutions enjoy no such guarantee.
A major difference between substantive rationality and procedural rationality is the

capacity for self-criticism, that is, the capacity for the decision maker to evaluate its
own performance in terms of coherence and consistency. Self-criticism will be built
into substantive rationality if the criteria used to establish optimality can also be used

4 A well-known engineering example of the distinction between substantive rationality and procedural rationality
is found in estimation theory. The so-called Wiener filter (Wiener, 1949) is the substantively rational solution
that minimizes the mean-square estimation error of a time-invariant linear estimator. However, the performance
of theWiener filter is often approximated by a heuristic, called the LMS (least-mean-square) filter and developed
byWidrow (1971). Whereas the Wiener filter is computed independently of the actual observations, the Widrow
filter is generated by the observations. The Wiener filter requires that all stochastic processes be stationary and
modeled to the second order; the Widrow filter relaxes those constraints. Both solutions are extremely useful in
their appropriate settings, but they differ fundamentally.
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to define the search procedure.5 By contrast, procedural rationality does not appear to
possess a self-policing capacity. The quality of the solution depends on the abilities of
the expert who defined the heuristic, and there may be no independent way to ascribe a
performance metric to the solution from the point of view of the heuristic. Of course, it
is possible to apply performance criteria to the solution once it has been identified, but
such post factum criteria do not influence the choice, except possibly in conjunction
with a learningmechanism that couldmodify the heuristics for future application.While
it may be too strong to assert categorically that heuristics are incapable of self-criticism,
their ability to do so on a single trial is at least an open question.
Substantive rationality and procedural rationality represent two extremes. On the one

hand, substantive rationality requires the decision maker to possess a complete under-
standing of the environment, including knowledge of the total preference orderings of
itself and all other agents in the group. Any uncertainty regarding preferences must
be expressed in terms of expectations according to known probability distributions.
Furthermore, even given complete understanding, the decision maker must have at its
disposal sufficient computational power to identify an optimal solution. Substantive
rationality is highly structured, rigid, and demanding. On the other hand, procedural
rationality involves the use of heuristics whose origins are not always clear and defen-
sible, and it is difficult to predict with assurance how acceptable the outcome will be.
Procedural rationality is amorphous, plastic, and somewhat arbitrary.

1.2.3 Bounded rationality

Many researchers have wrestled with the problem of what to do when it is not possible
or expedient to obtain a substantively rational solution due to informational or compu-
tational limitations. Simon identified this predicament when he introduced the notion
of satisficing.6

Because real-world optimization, with or without computers, is impossible, the real economic actor
is in fact a satisficer, a person who accepts “good enough” alternatives, not because less is preferred
to more, but because there is no choice. (Simon, 1996, p. 28)

To determine whether an alternative is “good enough,” there must be some way to
evaluate its quality. Simon’s approach is to determine quality according to the criteria
used for substantive rationality, and to evaluate quality against a standard (the aspiration
level) that is chosen more or less arbitrarily. Essentially, one continues searching for an
optimal choice until an option is identified that meets the decision maker’s aspiration
level, at which point the search may terminate.

5 This will be the case if the optimality existence proof is constructive. A non-constructive example, however, is
found in information theory. Shannon capacity is an upper bound on the rate of reliable information transmission,
but the proof that an optimal code exists does not provide a coding scheme to achieve capacity.

6 This term is actually of ancient origin (circa 1600) and is a Scottish variant of satisfy.



10 1 Rationality

The term “satisficing,” as used by Simon, comprises a blend of the two extremes
of substantive and procedural rationality and is a species of what he termed bounded
rationality. This concept involves the exigencies of practical decision making and
takes into consideration the informational and computational constraints that exist in
real-world situations.
There are many excellent treatments of bounded rationality (see, e.g., Simon (1982a,

1982b, 1997) and Rubinstein (1998)). Appendix A provides a brief survey of the main-
stream of bounded rationality research. This research represents an important advance
in the theory of decision making; its importance is likely to increase as the scope of
decision-making grows. However, the research has a common theme, namely, that if a
decision maker could optimize, it surely should do so. Only the real-world constraints
on its capabilities prevent it from achieving the optimum. By necessity, it is forced to
compromise, but the notion of optimality remains intact. Bounded rationality is thus
an approximation to substantive rationality, and remains as faithful as possible to the
fundamental premises of that view.
I also employ the term “satisficing” to mean “good enough.” The difference between

the way Simon employs the term and the way I use it, however, is that satisficing à la
Simon is an approximation to being best (and is constrained from achieving this ideal
by practical limitations), whereas satisficing as I use it is treats being good enough as
the ideal (rather than an approximation).
This book is not about bounded rationality. Rather, I concentrate on evaluating the ap-

propriateness of substantive and procedural rationality paradigms as models for multi-
agent decision making, and provide an alternative notion of rationality. The concepts
of boundedness may be applied to this alternative notion in ways similar to how they
are currently applied to substantive rationality, but I do not develop those issues here.

1.3 Middle ground

Substantive rationality is the formalization of the common sense idea that one should
do the best thing possible and results in perhaps the strongest possible notion of what
should constitute a reasonable decision – the only admissible option is the one that is
superior to all alternatives. Procedural rationality is the formalization of the common
sense idea that, if something has worked in the past, it will likely work in the future and
results in perhaps the weakest possible notion of what should constitute a reasonable
decision – an option is admissible if it is the result of following a procedure that is
considered to be reliable. Bounded rationality is a blend of these two extreme views of
rational decision making that modifies the premises of substantive rationality because
of a lack of sufficient information to justify strict adherence to them.
Instead of merely blending the two extreme views of rational decision making, how-

ever, it may be useful to consider a concept of rationality that is not derived from either
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the doctrine of rational choice or heuristic procedures. Kreps seems to express a desire
along these lines when he observes that:

. . . the real accomplishment will come in finding an interesting middle ground between hyperrational
behaviour and too much dependence on ad hoc notions of similarity and strategic expectations. When
and if such a middle ground is found, then we may have useful theories for dealing with situations in
which the rules are somewhat ambiguous. (Kreps, 1990, p. 184)

Is there really a middle ground, or is the lacuna between strict optimality and pure
heuristics bridgeable only by forming an ad hoc hybrid of these extremes? If a non-
illusory middle ground does exist, it is evident that few have staked formal claims
to any of it. The literature involving substantive rationality (bounded or unbounded),
particularly in the disciplines of decision theory, game theory, optimal control theory,
and operations research, is overwhelmingly vast, reflecting many decades of serious
research and development. Likewise, procedural rationality, in the form of heuristics,
rule-based decision systems, and various ad hoc techniques, is well-represented in the
computer science, social science, and engineering literatures. Also, the literature on
bounded rationality as a modification or blend of these two extremes is growing at a
rapid pace.Work involving rationality paradigms that depart from these classical views,
however, is not in evidence.
One of the goals of this book is to search not only for middle ground but for new turf

upon which to build. In doing so, let us first examine a “road map” that may guide us
to fruitful terrain. The map consists of desirable attributes of the notion of rationality
we seek.
A-1 Adequacy: satisficing, or being “good enough,” is the fundamental desideratum of

rational decision makers. We cannot rationally choose an option, even when we
do not know of anything better, unless we know that it is good enough. Insisting
on the best and nothing but the best, however, can be an unachievable luxury.

A-2 Sociality: rationality must be defined for groups as well as for individuals in a
consistent and coherent way, such that both group and individual preferences are
accommodated. Group rationality should not be defined in terms of individual
rationality nor vice versa.

These attributes represent a general relaxing of substantive rationality. Liberation from
maximization may open the door to accommodating group as well as individual in-
terests, while still maintaining the integrity supplied by adherence to principles. The
attributes also bring rigor to procedural rationality, since they move away from purely
ad hoc methods and insist on the capacity for self-criticism.

1.3.1 Adequacy

Adequacy is a harder concept to deal with than optimality. Achieving the summit of a
mountain is a simple concept that does not depend upon the valley below. By contrast,
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getting high enough to see across the valley depends upon the valley as well as the
mountain. Optimality can be considered objective and is abstracted from context, but
adequacy is subjective, that is, it is context dependent. Abstractification is powerful.
It transforms a messy real-world situation into a clean mathematical expression that
permits the power of calculus and probability theory to be focused on finding a solution.
The advantages of abstractification are enormous and not lightly eschewed, and their
appeal has fundamentally changed the way decision-making is performed in many con-
texts. But Zadeh, the father of fuzzy logic, suggests that always insisting on optimality
is shooting beyond the mark, and that a softer notion of what is reasonable must be
considered.

Not too long ago we were content with designing systems which merely met given specifications . . .
Today, we tend, perhaps, to make a fetish of optimality. If a system is not the “best” in one sense or
another, we do not feel satisfied. Indeed, we are apt to place too much confidence in a system that is,
in effect, optimal by definition . . .
At present, no completely satisfactory rule for selecting decision functions is available, and it is

not very likely that one will be found in the foreseeable future. Perhaps all that we can reasonably
expect is a rule which, in a somewhat equivocal manner, would delimit a set of “good” designs for a
system. (Zadeh, 1958)

A clear operational definition for what it means to be satisficing, or good enough,
must be a central component of the notion of rationality that we are seeking. Zadeh
reminds us that no such notion is likely to be a panacea, and any definition we offer
is subject to criticism and must be used with discretion. Indeed, decision making is
inherently equivocal, as uncertainty can never be completely eliminated.
To make progress in our search for what it means to be good enough, we must

be willing to relax the demand for strict optimality. We should not, however, aban-
don the criteria that are used to define optimality, but only the demand to focus at-
tention exclusively on the optimal solution. We certainly should not contradict the
notion of optimality by preferring options that are poor according to the optimality
criteria over those that comply with the criteria. The goal is to give place to a softer
notion of rationality that accommodates, in a formal way, the notion of being good
enough.
To maintain the criteria of optimality but yet not insist on optimality may seem

paradoxical. If we know what is best, what possible reason could there be for not
choosing it? At least a partial answer is that optimization is an ideal that serves to guide
our search for an acceptable choice, but not necessarily to dictate what the final choice
is. For example, when I drive to work my criterion is to get there in a timely manner,
but I do not need to take the quickest route to satisfy the criterion. Strict optimality does
not let me consider any but the very best route.
It is not irrational, in the view of some philosophers, for people not to optimize.

Slote, for example, argues that it is reasonable not only to settle for something that
is less than the best, but that such a situation may actually be preferred by a rational
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decision maker. That is, one may willfully and rationally eschew taking the action that
maximizes utility.

Defenders of satisficing claim that it sometimes makes sense not to pursue one’s own greatest good
or desire-fulfillment, but I think it can also be shown that it sometimes makes sense deliberately to
reject what is better for oneself in favor of what is good and sufficient for one’s purposes. Those
who choose in this way demonstrate a modesty of desire, a kind of moderation, that seems intuitively
understandable, and it is important to gain a better understanding of such moderation if we wish to
become clear, or clearer, about common-sense, intuitive rationality. (Slote, 1989, pp. 1–2; emphasis
in original)

The gist of Slote’s argument is that common sense rationality differs from optimiz-
ing views of rationality in a way analogous to the difference between common sense
morality and utilitarian views of deontology. According to this latter view, what one is
morally permitted to do, one is morally required to do. Similarly, substantive rational-
ity requires one to optimize if one is able to do so. Slote argues that, just as utilitarian
deontology prohibits decision makers from acting supererogatorily, that is, of doing
more than is required or expected, optimizing views of rationality prohibit one from
achieving less than one is capable of achieving. But common sense morality permits
supererogation, and common sense rationality permits moderation.
Although Slote criticizes optimization as a model for behavior, he does not provide

an explicit criterion for characterizing acceptable other-than-optimal activity. While an
explicit criterion may not be necessary in the human context, when designing artificial
agents, the designer must provide them with some operational mechanism to govern
their decision-making if they are to function in a coherent way. Perhaps the weakest
notion of rationality that would permit such activity is an operational notion of being
“good enough.”
One way to establish what it means to be good enough is to specify minimum re-

quirements and accept any option that meets them. This is the approach taken by Simon.
He advocates the construction of “aspiration levels” and to halt searching when they are
met (Simon, 1955). Although aspiration levels at least superficially establish minimum
requirements, this approach relies primarily upon experience-derived expectations.
If the aspiration is too low, something better may needlessly be sacrificed, and if it
is too high, there may be no solution. It is difficult to establish an adequate practically
attainable aspiration level without first exploring the limits of what is possible, that is,
without first identifying optimal solutions – the very activity that satisficing is intended
to circumvent.7 Furthermore, such an approach is susceptible to the charge that defining
“good enough” in terms of minimum requirements begs the question, because the only
way seemingly to define minimum requirements is that they are good enough.

7 The decision maker may, however, be able to adjust his or her aspirations according to experience (see Cyert
and March (1992)), in which case it may be possible to adopt aspiration levels that are near-optimal. Even so,
however, there may be no way to determine how far one is away from the optimal solution without searching
directly for it.
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For single-agent low-dimensional problems, specifying the aspirations may be non-
controversial. But, withmulti-agent systems, interdependence between decisionmakers
can be complex, and aspiration levels can be conditional (what is satisfactory for me
may depend upon what is satisfactory for you).
Satisficing via aspiration levels involves making a tradeoff between the cost of con-

tinuing to search for a better solution than one currently has and the adequacy of the
solution already in hand. That is, for any option under consideration, the decisionmaker
makes a choice between accepting the option and stopping the search or rejecting the
option and continuing the search. Making decisions in this way is actually quite similar
to the way decisions are made under substantive rationality; it is only the stopping rule
that is different. Both approaches rank-order the options and stop when one is found
with acceptably high rank. With optimality, the ranking is relative to other options, and
searching stops when the highest-ranking option is found. With aspiration levels, the
ranking is done with respect to an externally supplied standard, and searching stops
when an option is found whose ranking exceeds this threshold.
What aspiration levels and optimization have in common is that the comparison oper-

ation is extrinsic, that is, the ranking of a given option is made with respect to attributes
that are not necessarily part of the option. In the case of optimization, comparisons
are made relative to other options. In the case of aspiration levels, comparisons are
made relative to an externally supplied standard. Under both paradigms, an option is
selected or rejected on the basis of how it compares to things external to itself. Also,
both rank-order comparisons and fixed-standard comparisons are global, in that each
option is categorized in the option space relative to all other options.
Total ordering, however, is not the only way to make comparisons, nor is it the most

fundamental way. A more primitive approach is to form dichotomies, that is, to define
two distinct (and perhaps conflicting) sets of attributes for each option and either to
select or reject the option on the basis of comparing these attributes. Such dichotomous
comparisons are intrinsic, since they do not necessarily reference anything not directly
relating to the option.
Whereas extrinsic decisions are of the form: either select Hamburger A or select

Hamburger B (presumably on the basis of appearance and cost), intrinsic decisions are
of the form: either select Hamburger A or reject Hamburger A, with a similar decision
required for Hamburger B. The difference is that, under the extrinsic model, one would
combine appearance and cost into a single utility that could be rank-ordered, but under
the intrinsic model, one forms the binary evaluation of appearance versus cost. If only
one of the hamburgers passes muster, the problem is resolved. If you conclude that
neither hamburger’s appearance is worthy of the cost, you are justified in rejecting
them both. If you think both are worthy but you must choose only one, then you either
may appeal to a more sophisticated (e.g., extrinsic) decision paradigm, or you may
include additional criteria and try again, or you may make a random choice between
the options. Suppose that Hamburger A costs more than Hamburger B, but is also much
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larger and has more trimmings. By the intrinsic criteria, if you view both as being worth
the price, then whatever your final choice, you at least get a good hamburger – you get
your money’s worth.
Dichotomies are the fundamental building blocks of everyday personal choices.

Attached to virtually every nontrivial option are attributes that are desirable and at-
tributes that are not desirable. To increase quality, one usually expects to pay more.
To win a larger reward, one expects to take a greater risk. People are naturally wont to
evaluate the upside versus the downside, the pros versus the cons, the pluses versus
the minuses, the benefits versus the costs. One simply evaluates tradeoffs option by
option – putting the gains and the losses on the balance to see which way it tips.
The result of evaluating dichotomies in this way is that the benefits must be at least as
great as the costs. In this sense, such evaluations provide a distinct notion of being good
enough.

Definition 1.5
An option is intrinsically rational if the expected gains achieved by choosing it equal
or exceed the expected losses, provided the gains and losses can be expressed in com-
mensurable units. �

Definition 1.6
An option is intrinsically satisficing if it is intrinsically rational. �

Byseparating the positive (gain) andnegative (loss) attributes of an option, I explicitly
raise the issue of commensurability. It should be noted, however, that traditional utility
theory also involves the issue of commensurability at least implicitly, since utility
functions typically involve both benefits and costs,which are often summedor otherwise
combined together to form a single utility function (for example, when forming a utility
function for automobiles, positive attributes might be performance and reliability and
negative attributes might be purchase and operating costs). Often such attributes can be
expressed in, say, monetary units, but this is not always the case. Nevertheless, decision
makers are usually able to formulate some rational notion of commensurability by
appropriating or inventing a system of units. The issue was put succinctly by Hardin:
“Comparing one good with another is, we usually say, impossible because goods are
incommensurable. Incommensurables cannot be compared. Theoretically, this may
be true; but in real life incommensurables are commensurable. Only a criterion of
judgment and a system of weighing are needed” (Hardin, 1968, emphasis in original).
Since my formulation of rationality requires explicit comparisons of attributes, the
choice of units becomes a central issue and will be discussed in detail in subsequent
chapters.
Intrinsic rationality is aweaker notion than substantive rationality, but it ismore struc-

tured than procedural rationality. Whereas substantive rationality may be characterized
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as an attitude of “nothing but the best will do” and procedural rationality may be char-
acterized as an attitude of “it has always worked before,” intrinsic rationality may be
characterized as an attitude of “getting what you pay for.” Substantive rationality as-
sures optimality but is rigid. Procedural rationality is efficient but amorphous. Intrinsic
rationality is ameliorative and flexible. There can be only one substantively rational
option (or an equivalence class of them) for a given optimality criterion, and there can
be only one procedurally rational option for a given procedure,8 but there can be several
intrinsically rational options for a given satisficing criterion.
The quality of a substantively rational option will be superior to all alternatives,

according to the criteria used to define it. The quality of a procedurally rational option
may be difficult to assess, since no explicit criteria are required to define it. The quality
of intrinsically rational options may be uneven, since options that provide little benefit
but also little cost may be deemed satisficing. Thus, intrinsic satisficing can be quite
different from satisficing à la Simon.
My justification for using the term “satisficing” is that it is consistent with the

issue that motivated Simon’s original usage of the term – to identify options that are
good enough by directly comparing attributes of the options to a standard. This usage
differs only in the standard used for comparison. Whereas Simon’s standard is extrin-
sic (attributes are compared to an externally supplied aspiration level), my standard
is intrinsic (the positive and negative attributes of each option are compared to each
other). If minimum requirements are readily available, however, it is certainly possible
to define satisficing in a way that conforms to Simon’s original idea.

Definition 1.7
An option is extrinsically satisficing if it meets minimum standards that are already
supplied. �

Combining intrinsic and extrinsic satisficing is one way to remove some of the
unevenness of intrinsic satisficing.

Definition 1.8
An option is securely satisficing if it is both intrinsically and extrinsically satisficing.

�

It will not be assumed that minimum standards can always be specified. But if
they are, it will be assumed that they employ a rationale that is compatible with that
used to define gains and losses. If minimum standards are not available, the decision
maker must still attempt to evaluate the unevenness of intrinsically satisficing solutions.

8 With heuristics such as satisficing à la Simon, however, there may be multiple options that satisfy an extrinsic
satisficing criterion, and the agent need not terminate its search after finding only one of them.
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This issue will be discussed in detail in Chapter 5. Throughout the remainder of this
book, the term satisficingwill refer solely to intrinsic satisficing unless stated otherwise.
It will be assumed that gains and losses can be defined, and that these attributes can be
expressed in units that permit comparisons.

1.3.2 Sociality

Competition, which is the instinct of selfishness, is another word for dissipation of energy, while
combination is the secret of efficient production. (Edward Bellamy, Looking Backward (1888))

Self-interested human behavior is often considered to be an appropriate metaphor
in the design of protocols for artificial decision-making systems. With such protocols,
it is often taken for granted that each member of a community of decision makers
will try

. . . to maximize its own good without concern for the global good. Such self-interest naturally prevails
in negotiations among independent businesses or individuals . . . Therefore, the protocols must be
designed using a noncooperative, strategic perspective: the main question is what social outcomes
follow given a protocol which guarantees that each agent’s desired local strategy is best for that
agent – and thus the agent will use it. (Sandholm, 1999, pp. 201, 202; emphasis in original)

When artificial decision makers are designed to function in a non-adversative envi-
ronment, it is not obvious that it is either natural or necessary to restrict attention to
noncooperative protocols. Decision makers who are exclusively focused on their own
self-interest will be driven to compete with any other decision maker whose interests
might possibly compromise their own. Certainly, conflict cannot be avoided in general,
but conflict can just as easily lead to collaboration as to competition. Rather than head-
to-head competition, Axelrod suggests that a superior approach is to look inward, rather
than outward, and evaluate one’s performance relative to one’s own capabilities, rather
than with respect to the performance of others.

Asking how well you are doing compared to how well the other player is doing is not a good standard
unless your goal is to destroy the other player. In most situations, such a goal is impossible to achieve,
or is likely to lead to such costly conflict as to be very dangerous to pursue. When you are not trying
to destroy the other player, comparing your score with the other’s score simply risks the development
of self-destructive envy. A better standard of comparison is how well you are doing relative to how
well someone else could be doing in your shoes. (Axelrod, 1984, p. 111)

This thesis is born out by the Axelrod Tournament (Axelrod, 1984), in which a
number of game theorists were invited to participate in an iterated Prisoner’s Dilemma9

9 The Prisoner’sDilemma, to be discussed in detail in Section 8.1.3, involves two playerswhomay either cooperate
or defect. If one player cooperates and the other defects, the one who defects receives the best payoff while the
one who cooperates receives the worst payoff. If both defect, they both receive the next-to-worst payoff, and if
both cooperate, they both receive the next-to-best payoff (which is assumed to be better than the next-to-worst
payoff).
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tournament. The winning strategy was Rapoport’s tit-for-tat rule: start by cooperating,
then play what the other player played the previous round. What is interesting about
this rule is that it always loses in head-to-head competition, yet wins the overall best
average score in round-robin play. It succeeds by eliciting cooperation from the other
players, rather than trying to defeat them.
Cooperation often involves altruism, or the notion that the benefit of others is one’s

ultimate goal. This notion is in contrast to egoism, which is the doctrine that the ultimate
goal of every individual is to benefit only himself or herself. The issue of egoism
versus altruism as an explanation for human behavior has captured the interest of many
researchers (Sober and Wilson, 1998; Mansbridge, 1990a; Kohn, 1992). As expressed
by Sober and Wilson:

Why does psychological egoism have such a grip on our self-conception? Does our everyday expe-
rience provide conclusive evidence that it is true? Has the science of psychology demonstrated that
egoism is correct? Has Philosophy? All of these questions must be answered in the negative . . . The
influence that psychological egoism exerts far outreaches the evidence that has been mustered on its
behalf . . . Psychological egoism is hard to disprove, but it also is hard to prove. Even if a purely selfish
explanation can be imagined for every act of helping, this doesn’t mean that egoism is correct. After
all, human behavior also is consistent with the contrary hypothesis – that some of our ultimate goals
are altruistic. Psychologists have been working on this problem for decades and philosophers for
centuries. The result, we believe, is an impasse – the problem of psychological egoism and altruism
remains unsolved. (Sober and Wilson, 1998, pp. 2, 3)

Peirce, also, is skeptical of egoism as a viable explanation for human behavior:

Take, for example, the doctrine that man only acts selfishly – that is, from the consideration that acting
in one way will afford him more pleasure than acting in another. This rests on no fact in the world,
but it has had a wide acceptance as being the only reasonable theory. (Peirce, 1877)

It is not my intent to detail the arguments regarding egoism versus altruism as expla-
nations for human behavior; such an endeavor is best left to psychologists and philoso-
phers. But, if the issue is indeed an open question, then it would be prudent to refrain
from relying exclusively on a rationality model based solely on self-interest when de-
signing artificial entities that are to work harmoniously, and perhaps altruistically, with
each other and with humans.
One of the possible justifications for adopting self-interest as a dominant paradigm

for artificial decision-making systems is that it is a simple and convenient prin-
ciple upon which to build a mathematically based theory. It allows the decision
problem to be abstracted from its context and expressed in unambiguous mathe-
matical language. With this language, utilities can be defined and calculus can be
employed to facilitate the search for the optimal choice. The quintessential manifesta-
tion of this approach to decision making is von Neumann–Morgenstern game theory
(von Neumann and Morgenstern, 1944). (See Appendix B for a brief summary of game
theory basics.)
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Under their view, game theory is built on one basic principle: individual self-
interest – each player must maximize its own expected utility under the constraint
that other players do likewise. For two-person zero-sum games (see Definition B.6 in
Appendix B), individual self-interest is perhaps the only reasonable, non-vacuous prin-
ciple – what one player wins, the other loses. Game theory insists, however, that this
same principle applies to the general case. Thus, even in situations where there is the
opportunity for group as well as individual interest, only individually rational actions
are viable: if a joint (that is, for the group) solution is not individually rational for some
decision maker, that self-interested decision maker would not be a party to such a joint
action. This is a rigid stance for a decision maker to take, but game theory brooks no
compromises that violate individual rationality.
Since many decision problems involve cooperative behavior, decision theorists are

tempted to define notions of group preference as well as individual preference. The no-
tion of group preference admits multiple interpretations. Shubik describes two, neither
ofwhich is entirely satisfactory to game theorists (in subsequent chapters I offer a third):
“Group preferences may be regarded either as derived from individual preferences by
some process of aggregation or as a direct attribute of the group itself” (Shubik, 1982,
p. 109). Of course, not all group scenarios will admit a harmonious notion of group
preference. It is hard to imagine a harmonious concept of group preference for zero-sum
games, for example. But, when there are joint outcomes that are desirable for the group
to obtain, the notion of group interest cannot be ignored.
One way to aggregate a group preference from individual preferences is to de-

fine a “social-welfare” function that provides a total ordering of the group’s options.
The fundamental issue is whether or not, given arbitrary preference orderings for each
individual in a group, there always exists awayof combining these individual preference
orderings to generate a consistent preference ordering for the group. In an landmark
result, Arrow (1951) showed that no social-welfare function exists that satisfies a set of
reasonable and desirable properties, each of which is consistent with the notion of self-
interested rationality and the retention of individual autonomy (this theorem, known as
Arrow’s impossibility theorem, is discussed in more detail in Section 7.3).
The Pareto principle provides a concept of social welfare as a direct attribute of the

group.

Definition 1.9
A joint (group) option is a Pareto equilibrium if no single decision maker, by changing
its decision, can increase its level of satisfaction without lowering the satisfaction level
of at least one other decision maker. �

As Raiffa has noted, however, the Pareto equilibrium can be equivocal.

It seems reasonable, does it not, that the group should choose a Pareto-optimal act? Otherwise there
would be alternative acts that at least some would prefer and no one would “disprefer”. Not too long
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ago this principle seemed to me unassailable, the one solid cornerstone in an otherwise swampy area.
I am not so sure now, and I find myself in that uncomfortable position in which the more I think the
more confused I become.

One can argue that the group by its very existence should have a common bond of interest. If the
members disagree on fundamentals (here, on probabilities and on utilities) they ought to thrash these
out independently, arrive at a compromise probability distribution and a compromise utility function,
and use these in the usual Bayesian manner. (Raiffa, 1968, p. 233, emphasis in original)

Adopting this latter view would require the group to behave as a superplayer, or, as
Raiffa puts it, the “organization incarnate,” who functions as a higher-level decision
maker. Shubik refers to the practice of ascribing preferences to a group as a subtle
“anthropomorphic trap” of making a shaky analogy between individual and group
psychology. He argues that, “It may be meaningful . . . to say that a group ‘chooses’
or ‘decides’ something. It is rather less likely to be meaningful to say that the group
‘wants’ or ‘prefers’ something” (Shubik, 1982, p. 124). Shubik criticizes the view of
the group as a superplayer capable of ascribing preferences according to some sort of
group-levelwelfare function as being too narrow in scope to “contendwith the pressures
of individual and factional self-interest.” Although Raiffa also rejects the notion of a
superplayer, he still feels “a bit uncomfortable . . . somehow the group entity is more
than the totality of its members” (Raiffa, 1968, p. 237).
Arrow expresses a similar discomfort: “All the writers from Bergson on agree on

avoiding the notion of a social good not defined in terms of the values of individuals.
But where Bergson seeks to locate social values in welfare judgments by individuals, I
prefer to locate them in the actions taken by society through its rules for making social
decisions” (Arrow, 1951, p. 106). Although Arrow does not tell us how such rules
should be defined or, once defined, how they should be implemented, his statement
nevertheless expresses the notion that societies may possess structure that is more
complicated than can be expressed via individual values.
Perhaps the source of this discomfort is that, while individual rationality may be

appropriate for environments of perfect competition, it loses much of its power in more
general sociological settings. As Arrow noted, the use of the individual rationality
paradigm is “ritualistic, not essential” (Arrow, 1986).What is essential, however, is that
any useful model of society accommodate the various relationships that exist between
the agents. But achieving this goal should not require artifices such as the aggregation
of individual interests or the creation of a superplayer.10 While such approaches may be
recommended by some as ways to account for group interests, they may also manifest
the limits of the substantive rationality paradigm.
Nevertheless, game theory, which relies exclusively upon self-interest, has been

a great success story for economics and has served to validate the assumption of

10 Margolis (1990) advocates a “dual-utilities” approach, comprising a social utility and a private utility, with the
decision maker allocating resources to achieve a balance between the two utilities. Margolis’ approach eschews
the substantive rationality premise, and is very much in the same spirit as the approach I develop in subsequent
chapters.
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substantive rationality in many applications. This success, however, does not imply
that self-interest is the only principle that will lead to credible models of economic
behavior, it does not imply the impossibility of accommodating both group and indi-
vidual interests in somemeaningfulway, and it does not imply that individual rationality
is an appropriate principle upon which to base a theory of artificial decision-making
entities.
Game theory provides a systematic way of analyzing behavior where the conse-

quences of one player’s actions depend on the actions taken by other players. Even
single-agent decision problems can be viewed profitably as games against nature, for
example. The most common solution concepts of game theory are dominance and Nash
equilibria.

Definition 1.10
A joint option is a dominant equilibrium if each individual option is best for the
corresponding player, no matter what options the other players choose. �

Definition 1.11
A joint option is a Nash equilibrium if, were any single decision maker to change its
decision, it would reduce its level of satisfaction. �

Adominant equilibrium corresponds to the ideal situation of all players being able si-
multaneously tomaximize their own satisfaction. This is a rare situation, even for games
where coordination is possible. Nash equilibrium is a much more useful concept, but
not all games possess pure (that is, non-random) Nash equilibria. Nash (1950) estab-
lished, however, that if random play is permitted where each player makes decisions
according to a probability rule (a mixed strategy), then at least one Nash equilibrium
can be found for a finite-player, finite-action game.
In contrast to Pareto equilibria, Nash equilibria is a strictly selfish concept, hence is

not amenable to cooperative play. But an individually rational player would have no
incentive to agree to a Pareto equilibrium if that solution did not assure at least as much
satisfaction as the player could be guaranteed of receiving were it to ignore completely
the interests of the other players.

Definition 1.12
Theminimumguaranteed benefit that a player can be assured of achieving is its security
level. �

Furthermore, a subgroup of players would have no incentive to agree to a joint
solution unless the total benefit to the subgroup were at least as great as the minimum
that could be guaranteed to the subgroup – its security level – if it acted as a unit
(assuming transferable utilities which may be be reapportioned via side payments).
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The core of an N -person game is the set of all solutions that are Pareto equilibria
and at the same time provide each individual and each possible subgroup with at least
their security levels (the concept of the core is discussed in more detail in Section 7.1).
Unfortunately, the core is empty for many interesting and nontrivial games.
An empty core exposes the ultimate ramifications of a decision methodology based

strictly on the maximization of individual expectations. There may be no way to meet
all of the requirements that are imposed by strict adherence to the dictates of individual
rationality. There are many ways to justify solutions that are not in the core, such
as accounting for bargaining power based on what a decision maker calculates that it
contributes to a coalition by joining it (e.g., the Shapley value), or by forming coalitions
on the basis of no player having a justified objection against any other member of the
coalition (e.g., the bargaining set).
I do not criticize the rationale for these refinements to the theory, nor do I criticize

the various extra-game-theoretical considerations that may govern the formation of
coalitions, such as friendship, habits, fairness, etc. I simply point out that to achieve a
reasonable solution it may be necessary to go beyond the strict notion of maximizing
individual expectations and employ ancillary assumptions that temper the attitudes and
abilities of the decision makers. There are many such ingenious and insightful solution
concepts but, as Shubik notes,

Each solution probes some particular aspect of rational individuals in mutual interaction. But all of
them have had to make serious compromises. Inevitably, it seems, sharp predictions or prescriptions
can only be had at the expense of severely specialized assumptions about the customs or institutions
of the society being modeled. The many intuitively desirable properties that a solution ought to have,
taken together, prove to be logically incompatible. (Shubik, 1982, p. 2)

This observation cuts to the heart of the situation: under von Neumann–Morgenstern
game theory, any considerations of customs and peculiarities of the collective that are
not explicitly modeled by the individual utility functions are extra-game-theoretic and
must be accommodated by some sort of add-on logic.Much of the ingenuity and insight
associated with game theory may lie in devising ways to force these considerations into
the framework of individual rationality. While this practice may be appropriate for the
analysis of human behavior, it is less appropriate for the synthesis of artificial decision-
making entities, since any such idiosyncratic attributes must be an explicit part of
the decision logic, not merely a post factum explanation for anomalous behavior.
I suggest, however, that the problem is more fundamental than simply accounting
for idiosyncrasies.
The critical issue, in my view, has to do with the structure of the utility functions.

Before articulating this point, let me first briefly summarize utility theory as it is em-
ployed in mathematical games. Utility theory was developed as a mathematical way to
encode individual preference orderings. It is built on a set of axioms that describe how
a “rational man” would express his preference between two alternatives in a consistent
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Table 1.1: Payoff array for a two-player game with
two strategies each

X2

X1 s21 s22

s11 (π1(s11, s21), π2(s11, s21)) (π1(s11, s22), π2(s11, s22))
s12 (π1(s12, s21), π2(s12, s21)) (π1(s12, s22), π2(s12, s22))

way.11 An expected utility function is a mathematical expression that is consistent with
the preferences and conforms to the axioms. Since, in a game-theoretic context, an
individual’s preferences are generally dependent upon the payoffs (expected utilities)
that obtain as a result of the individual’s strategies and of the strategies available to
others, an individual’s expected utility function must be a function not only of the
individual’s own strategies, but of the strategies of all other individuals. For example,
consider a game involving two players, denoted X1 and X2, such that each player has
a strategy set consisting of two elements, that is, X1’s set of strategies is S1 = {s11,s12}
and X2’s set of strategies is S2 = {s21, s22} (for this single-play game, strategies are syn-
onymous with options). X1’s expected utility function would be a function π1(s1 j , s2k),
j, k = 1, 2. Similarly, X2’s expected utility function is of the form π2(s1 j , s2k). Thus,
each individual computes its expected utility as a function of both its own strategies and
the strategies of the other players. These expected utilities may then be juxtaposed into
a payoff array, and solution concepts may be devised to define equilibrium strategies,
that is, strategies that are acceptable for all players. Table 1.1 illustrates the payoff array
for a two-player game with two strategies each.
The important thing to note about this structure is that it is not until the expected

utilities are juxtaposed into an array so that the expected utility values for all players
can be compared that the actual “game” aspects of the situation emerges. It is the
juxtaposition that reveals possibilities for conflict or coordination. These possibilities
are not explicitly reflected in the individual expected utility functions by themselves.
In other words, although the individual’s expected utility is a function of other players’
strategies, it is not a function of other players’ preferences. This structure is completely
consistent with exclusive self-interest, where all a player cares about is its personal
benefit as a function of its own and other players’ strategies, without any regard for
the benefit to the others. Under this paradigm, the only way the preferences of others
factor into an individual’s decision-making deliberations is to constrain behavior to
limit the amount of damage they can do to oneself. Pareto equilibria notwithstanding,
a true notion of group rationality is not a logical consequence of individual rationality.

11 This is not to say that the axioms cannot be generalized to deal with group preferences, but the theory has not
been developed that way.
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Table 1.2: Payoff matrix in ordinal form
for the Battle of the Sexes game

S

H D B

D (4, 3) (2, 2)
B (1, 1) (3, 4)

Key: 4 = best; 3 = next best; 2 = next worst;
1 = worst

Luce and Raiffa summarize the situation succinctly:

. . . general game theory seems to be in part a sociological theory which does not include any soci-
ological assumptions . . . it may be too much to ask that any sociology be derived from the single
assumption of individual rationality. (Luce and Raiffa, 1957, p. 196)

Often, the most articulate advocates of a theory are also its most insightful critics.
Yet, such criticism is not often voiced, even by advocates of game theory as a model
of human behavior. For example, consider the well-known Prisoner’s Dilemma game
(see Section 8.1.3). This game is of interest because possibilities for both cooperation
and conflict are present, yet under the paradigm of individual rationality, only the joint
conflict solution (the Nash equilibrium) is rational.
The Prisoner’s Dilemma gamemay be an appropriate model of behavior when (a) the

opportunity for exploitation exists, (b) cooperation, though possible, incurs great risk,
and (c) defection, even though it offers diminished rewards, protects the participant
from catastrophe. Many social situations, however, possess a strong cooperative flavor
with very little incentive for exploitation. One prototypical game that captures this
feature is the Battle of the Sexes game (Bacharach, 1976) to be discussed in detail in
Section 8.1.2. This is a game involving a man and a woman who plan to meet in town
for a social function. She (S) prefers to go to the ballet (B), while he (H ) prefers the
dog races (D). Each also prefers to be with the other, however, regardless of venue.
The classical way to formulate this game is via a payoff matrix, as given in Table 1.2 in
ordinal form, with the payoff pairs representing the benefits to H and S, respectively.
Rather than competing, these players wish to cooperate, but they must make their

decisions without benefit of communication. Both players lose if they make different
choices, but the choices are not all of equal value to the players. This game has two
Nash equilibria, (D, D) and (B, B).
One of the perplexing aspects of this game is that it does not pay to be altruistic

(deferring to the venue preferred by the other), since, if both participants did, theywould
each receive the worst outcome. Nor does it pay for both to be selfish (demanding the
venue preferred by oneself) – that guarantees the next worst outcome for each player.
The best and next-best outcomes obtain if one player is selfish and the other altruistic.
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It seems that a way to account for the preferences of others when specifying one’s
own preferences would be helpful, but there is no obvious way to do this within the
conventional structure.
Taylor (1987) addresses the issue of accounting for the interests of others by intro-

ducing a formal notion of altruism that involves transforming the game to a new game
according to a utility array whose entries account for the payoffs to others as well as to
oneself. Taylor suggests that the utility functions be expressed as a weighted average
of the payoffs to oneself and to others. By adjusting the weights, a player is able to take
into consideration the payoffs of others.
Taylor’s form of altruism does not distinguish between the state of actually relin-

quishing one’s own self-interest and the state of being willing to relinquish one’s own
self-interest under the appropriate circumstances. To relinquish unconditionally one’s
own self-interest is a condition of categorical altruism – a decision maker uncondi-
tionally modifies its preferences to accommodate the preferences of others. A purely
altruistic playerwould completely replace its preferenceswith the preferences of others.
A state of being willing to modify one’s preferences to accommodate others if the need
arises is a state of situational altruism. Here, a decision maker is willing to accommo-
date, at least to some degree, the preferences of others in lieu of its own preferences
if doing so would actually benefit the other, but otherwise retains its own preferences
intact and avoids needless sacrifice.
Categorical altruism may be too much to expect from a decision maker who has its

own goals to pursue. However, the same decision maker may be willing to engage,
at least to a limited degree, in a form of situational altruism. Whereas it is one thing
for an individual to modify its behavior if it is sure that doing so will benefit another
individual (situational), it is quite another thing for an individual to modify its behavior
regardless of its effect on the other (categorical). In the Battle of the Sexes, If H knew
that S had a very strong aversion to D (even though S would be willing to put up
with those extremely unpleasant surroundings simply to be with H and thus receive
her second-best payoff), H might then prefer B to D. But if S did not have a strong
aversion to D then H would stick to his preference for D over B (in Section 8.1.2
I introduce situational altruism into this game).
This example seems to illustrate Arrow’s claim that, when the assumption of perfect

competition fails, “the very concept of [individual] rationality becomes threatened,
because perceptions of others and, in particular, of their rationality become part of
one’s own rationality” (Arrow, 1986). Arrow has put his finger on a critical weakness
of individual rationality: it does not provide a way to incorporate another’s rationality
into one’s own rationality without seriously compromising one’s own rationality.
I do not assert that, under the theoretical framework of conventional game theory, it is
impossible to formulate theoretical models of social behavior that go beyond individual
interests and accommodate situationally altruistic tendencies while at the same time
preserving individual preferences. However, the extant literature does not provide such
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a theory. I assert that it will be difficult to develop such a theory that remains compatible
with the principle of individual rationality.
There are many ways to introduce categorical altruism into the design of artificial

decision makers. One approach is to modify the decision maker’s utility function to
become a function of the group’s payoff. In effect, the player is “brainwashed” into sub-
stituting group interests for its personal interests. Then,when acting according to its sup-
posed self-interest, it is actually accommodating the group (Wolpert and Tumer, 2001).
A somewhat similar, though less radical, approach is taken by Glass and Grosz (2000)
and Cooper et al. (1996), who attempt to instill a social consciousness into agents, re-
warding them for good social behavior by adjusting their utility functionswith “brownie
points” and “warm glow” utilities for doing the “right thing.”
It is certainly possible for human altruists to interpret their sacrifice as, ultimately,

a benefit to themselves for having made another’s good their own (motivated, pos-
sibly, by such “pure” altruistic attributes as duty and love, or perhaps by “impure”
altruistic attributes such as the sense of power that derives from having helped another
(Mansbridge, 1990b)), but it seems less appropriate to ascribe such anthropomorphic
interpretations (or motives) to artificial decision-making entities. While, granting that
it is possible for a decision maker to suppress its own preferences in deference to
others by redefining its own expected utility to be maximized, doing so is little more
than a device for co-opting individual rationality into a form that can be interpreted
as unselfish. Such a device only simulates attributes of cooperation, unselfishness, and
altruism while maintaining a regime that is competitive, exploitive, and avaricious.
Altruism, springing from whatever motive in man or machine, may often be accommo-
dated in multi-agent relationships, but it does not follow that it can be accommodated
within a regime that recognizes self-interest as the primary basis for rational decision
making.
Social choice theory is another multi-agent formalism that has been widely studied.

Like game theory, this theory has been developed largely on the foundation of individual
rationality. For example, Harsanyi defines a social welfare function as a positive linear
combination of individual utilities where each individual utility in this combination is
a mapping of group options to individual utility. Each player then proceeds according
to the substantively rational paradigm by maximizing its expected utility subject to any
constraints that are relevant (Harsanyi, 1977).
The socialwelfare functionmodifies the decisionmaker’s stance froma consideration

of purely selfish preferences to a consideration of what are termed moral (or social)
preferences, and givesweight to the interests of each participant. However, the sequence
of mappings from group options to individual utilities and then from individual utilities
to a group utility provides a very constrained linkage between one decision maker’s
preferences (for itself or for the group) and another decision maker’s utilities and
may not deal adequately with the rich diversity of interconnections that can exist in
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multi-agent groups. Furthermore, suchmappings constitute unconditional (categorical)
changes to the individual’s utilities.
One of the characteristics of perhaps all societies, except for those that are either

completely anarchic or completely dictatorial, is that group and individual preferences
are woven together in a complex fabric that is virtually impossible to decompose into
constituent pieces that function independently. Exclusive self-interest simply does not
capture the richness and complexity of functional societies. On the other hand, to
relinquish fundamental control over individual preferences and focus primarily on the
preferences of the group as a whole may not be feasible, since individuals can be
asked to make unreasonable sacrifices that place them in extremely disadvantageous
situations. This suggests that functional societies must achieve some sort of equilibrium
that is flexible enough to accommodate the preferences of both the individual and the
group. Such an approach would be consistent with Levi’s dictum that

. . . principles of coherent or consistent choice, belief, desire, etc. will have to be weak enough to
accommodate a wide spectrum of potential changes in point of view. We may not be able to avoid
some fixed principles, but they should be as weak as we can make them while still accommodating
the demand for a systematic account. (Levi, 1997, p. 24)

Achieving, or at least approximating, equilibria involving both group and individual
preferences is an essential condition for a system of autonomous artificial decision
makers if they are to be representative of humangroups.Obtaining such a state, however,
requires a generalized notion of utility that seamlessly combines group and individual
interests, even though it is individuals, and individuals only, who make the decisions.
Such a utility theorymust therefore be based on a notion of preference that allows group
preferences to influence individual preferences and thereby to influence individual
actions.
Accommodating group preferences must not leave the individual open to an unin-

tentional or unacceptable degree of self-sacrifice. Thus, there must be a clear means of
evaluation so that the individual can control the amount of compromise it is willing to
consider. In other words, the individual must possess a means for self-control.
Heuristics offer no such capability. Under procedural rationality, once an individual

adopts a rule that accommodates any form of compromise that exposes it to self-
sacrifice, it becomes difficult to control the extent of its commitment without knowing
beforehand the strategies of the other participants.
If one is willing to consider an option that is not strictly in its own best interest, one

must be able to add some friction to the slippery slope of compromise. One way to do
this is to adopt a satisficing stance, where satisficing is applied to the group as well
as to the individual. Whereas optimization is strictly an individual concept, satisficing
can be a social, as well as an individual, concept. For any group of decision makers,
if the group and each of its members is willing to compromise sufficiently, there will
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exist a joint option that is good enough for the group as a whole and good enough for
each member of the group according to their individual standards (this claim is made
explicit in Section 7.2). This does not mean, of course, that the decision makers are
obligated to accept this compromise option. It means only that it exists.
The remainder of this book explores the concept of intrinsic rationality, instantiated

at both the individual and group levels, as ameans of achieving an equilibrium of shared
preferences and acceptable compromises. Intrinsic satisficing requires the specification
of two general types of preferences – gains and losses. For a single-agent decision, it is
conceptually straightforward to place each of the relevant attributes into one of these
categories. When dealing with more than one decision maker, however, the interactions
between them are not so readily categorized. Relationships are interconnected and
conditional: one decision maker’s gains and losses may affect other decision maker’s
gains and losses. Furthermore, the interconnections that exist between players must
be at the level of preference interconnections, rather than action interconnections, as
they are usually expressed in conventional game theory. The method of characterizing
these preferencesmust be exhaustive, so that all possible relationships between decision
makers can be represented, but at the same time it must be parsimonious, so that it is
not more complex than it needs to be.
The central message of this book is that exclusive self-interest, coupled with strict

optimality, is indeed an “excess of reasonableness.” Self-interest is not the bedrock
of rationality. Decision making, especially in group settings, can be ameliorated by
relaxing the demands for optimization in its various forms (global maximization, con-
strained maximization, minimax, and even such “boundedly rational” approaches such
as Simon’s aspiration-level satisficing).



2 Locality

Order is not pressure which is imposed on society from without, but an equilibrium which is set up
from within.

José Ortega y Gasset

Mirabeau: An Essay on the Nature of Statesmanship (Historical Conservation Society, Manila, 1975)

2.1 Localization concepts

Intrinsic rationality, as contrasted with substantive rationality, relies upon comparisons
of attributes (gains versus losses) for each option rather then requiring the total ordering
of preferences over all possible options. We may view intrinsic rationality as a local
information concept, since only information pertaining to a particular option is involved
in ordering the gain with respect to the loss. By contrast, we may view substantive
rationality as a global information concept, since complete information regarding all
options is required to form the rank ordering so that optimization can be performed.
One of the most successful concepts of science and engineering is the idea of lo-

calization. To localize a phenomenon is to delimit the extent of its influence. Some
well-known examples of localization include: (i) model localization, such as lumped-
parameter models that convert the partial differential equations of Maxwell’s equa-
tions for modeling electromagnetic behavior into the ordinary differential equations
of Kirchoff’s laws; (ii) spatial localization, whereby a nonlinear dynamical system is
constrained to operate near an equilibrium by confining inputs and initial conditions
to be small enough to ensure that superposition approximately holds, thereby permit-
ting the phenomenon to be characterized by a linear differential equation; (c) temporal
localization, whereby a phenomenon is characterized over a small time interval, such as
occurs with the design of a receding-horizon controller. These localizations are abstrac-
tions of global models that characterize behavior over the full extent of the problem.
Their virtue is that they almost always require less information and computational
capability than do their global counterparts and, consequently, can be implemented
under conditions of limited information and computational resources. Their limitation
is that they cannot be construed to be the best characterizations of the phenomena they

29
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purport to model and, hence, any notions of optimality based upon such models are
difficult to justify.
Localization is also used in the assessment of interests. Substantive rationality is,

fundamentally, itself a form of localization, since it concentrates on the concept of indi-
vidual self-interest. Wemight call this interest localization. Just as the various concepts
of localization in science and engineering have proven their practical indispensability,
interest localization has become a dominant concept in models of multiple-agent deci-
sion making in economics, political science, and psychology. One of its virtues is its
simplicity. It is the Occam’s razor of interpersonal interaction, since it relies only upon
the minimal assumption that an individual will put its own interests above everything
and everyone else. It is understood, however, that this model is an abstraction of reality.
Its value is that it provides insight into the workings of a complex society and can be
used to explain past behavior or to predict future behavior.
Strict adherence to substantive rationality requires a total ordering of preferences

and the capability to search this total ordering exhaustively if necessary (although
hill-climbing techniques involving calculus and other efficient searching mechanisms
may be employed). This results in an interesting paradox: strict compliance with in-
terest localization (i.e., optimization) requires globalization of information (i.e., a total
ordering). It also requires globalization of resources to insure a successful search.
The assumption that a decision maker possesses a total preference ordering that

accounts for all possible combinations of choices for all agents under all conditions is a
very strong assumption, particularly when the number of possible outcomes is large.
Inmulti-agent decision scenarios, individualsmay not be able to comprehend, or to even
care about, a full understanding of their environment. They may be concerned mostly
about issues that are closest to them, either temporally, spatially, or functionally. Thus,
the preference orderings for an individual need not be of global extent, but may be
restricted to proper subsets of the community or to proper subsets of conditions that
may obtain. It may not be possible, and may not even be desirable, therefore, for each
participant in a decision problem to possess a global (i.e., total) ordering that expresses
its preferences for all possible combinations of choices for all agents in the community
under all conditions. Substantive rationality, however, requires that these orderings be
defined, and it is simply assumed that a rational decisionmaker either already possesses
sufficient information about its environment to define a total ordering of all of its options
or is able to learn these orderings as a result of experience.
One of the goals of this book is to demonstrate that, in terms of the scope of interest,

intrinsic rationality includes the notion of group rationality and, in this sense, is actually
more global than substantive rationality. It is, at the same time,more local in its ordering,
since it requires intra-option comparisons (i.e., comparing different attributes of a given
option) rather than inter-option comparisons (i.e., comparing attributes of one option
to the same attributes of other options). Thus, the two forms of rationality offer a rather
interesting parallel between localization and globalization of interest. Under the former,
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substantive rationality is the proper attitude and leads to the global (between option)
orderings of the possibilities available to the decision maker. Under the latter, intrinsic
rationality seems to be the appropriate attitude, and this notion of rationality leads to
local (within option) orderings of the possibilities.
Bygivingup the insistence that individuals in a groupmust obtain their best outcomes,

intrinsic rationality opens up a rational basis for the group as a whole, as well as for each
individual, to achieve satisfactory results, provided that the participants, and perhaps
the group as a whole as well, have flexible notions of what is satisfactory.

2.2 Group rationality

In Section 1.3.2 we described two interpretations of group preferences: (a) preferences
that may be aggregated from individual preferences, such as social welfare functions,
and (b) preferences that are direct attributes of the group itself, such as the preferences of
a superplayer. Neither of these interpretations is completely acceptable to mainstream
game theorists because neither is consistent with exclusive self-interest. They both
violate the principle of substantive rationality.
As a first step in overcoming the seeming inconsistency between group and individual

interests, let us replace substantive rationality with a less restrictive notion of rational
behavior. Even after weakening the notion of rational behavior, however, it is not
clear that either aggregating individual interests or creating a superplayer will permit
reconciliation of group and individual interests. Thus, as a second step, let us explore
new interpretations of group preferences.
Intrinsic rationality offers the possibility of a new notion of group preference, which

I term emergent group preferences. To illustrate the type of decision problems that may
be amenable to such a concept, consider the following example.

Example 2.1 The Pot-Luck Dinner Larry, Curly, and Moe are going to have a pot-luck dinner. Larry
will bring either soup or salad, Curly will provide the main course, either beef, chicken, or pork, and
Moe will furnish the dessert, either lemon custard pie or banana cream pie. The choices are to be made
simultaneously and individually following a discussion of their preferences, which discussion yields the
following results.
1. In terms of meal enjoyment, if Larry were to prefer soup, then Curly would prefer beef to chicken by a

factor of two, and would also prefer chicken to pork by the same ratio. However, if Larry were to prefer
salad, then Curly would be indifferent regarding the main course.

2. If Curly were to reject pork as being too expensive, then Moe would strongly prefer (in terms of meal
enjoyment) lemon custard pie and Larry would be indifferent regarding soup or salad. If, however,
Curly were to to reject beef as too expensive, then Larry would strongly prefer soup and Moe would be
indifferent regarding dessert. Finally, if Curly were to reject chicken as too expensive, then both Larry
and Moe would be indifferent with respect to their enjoyment preferences.

Larry, Curly, and Moe all wish to conserve cost but consider both cost and enjoyment to be equally important.
Table 2.1 indicates the total cost (in stooge dollars) of each of the 12 possible meal combinations.
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Table 2.1: The meal cost structure for the Pot-Luck Dinner

Lemon custard pie Banana cream pie

Beef (Soup/Salad) 23/25 27/29
Chicken (Soup/Salad) 22/24 26/28
Pork (Soup/Salad) 20/22 24/26

The decision problem facing the three participants is for each to decide independently
what to bring to the meal. Obviously, each participant wants his own preferences hon-
ored, but no explicit notion of group preference is provided in the scenario. A distinctive
feature of the preference specification for this example is that individual preferences
are not even specified by the participants. Rather, the participants express their prefer-
ences as functions of other participants’ preferences. Thus, they are not confining their
interests solely to their own desires, but are taking into consideration the consequences
that their possible options have on others. Such preferences are conditional. These in-
terconnections between participants may imply some sort of group preference, but it is
not clear what that might be. In fact, if the conditional and individual preferences are
inconsistent, then there may be no harmonious group preference, and the group may
be dysfunctional in the sense that meaningful cooperation is not possible. But if they
are consistent, then some form of harmonious group preference may emerge from the
conditional preferences (and any unconditional preferences, should they be provided).
An important question is how we might elicit a group decision that accommodates an
emergent group preference.
To formulate a von Neumann–Morgenstern game-theoretic solution to this decision

problem, each participant must identify and quantify payoffs for every conceivable
meal configuration that conform to their own preferences as well as give due deference
to others. Notice that the unconditional preferences of each of the participants are not
specified, nor are all of the conditional preferences specified. Unfortunately, substantive
rationalitymakes it difficult to obviate such requirements. Thus, traditional game theory
is not an appropriate solution methodology for this problem.
As an alternative we may consider a procedurally rational approach and formulate a

heuristic rule for each participant. Since the decisions are to be made simultaneously,
it is not possible for the participants to apply the conditional relationships, and there
can be conflicting individual heuristics. Consider Larry. He has two possible rules from
which to choose: soup or salad. If he were to assume that Curly would reject beef
as too expensive (which would be a reasonable assumption, since beef is the most
expensive of the three main course dishes), then choosing soup would be a legitimate
heuristic. But, if Curly were to choose pork with Larry having preferred soup, Curly
would then be stuck with his least favorite meal. He might therefore be unhappy, and a
pie-throwing tantrum might ensue. Thus, Larry has a legitimate heuristic for choosing
salad in deference to Curly’s enjoyment.
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The lack of a total ordering constraint in the problem statement presents serious
problems to conventional game theory, since without this constraint it is impossible
to impose standard solution concepts such as defining equilibria. The desire to apply
traditional solution concepts such as game theory may motivate decision makers to
manufacture orderings that that are not warranted. To solve this problem in a way
that fully respects the problem statement, we need a solution concept that does not
depend upon total orderings. It must, however, accommodate the fact that, even though
agents may be primarily concerned with conditional local issues, these concerns can
have wide-spread effects. In Chapter 6, a solution to the Pot-Luck Dinner problem is
provided that is faithful to the problem statement and does not require the imposition
of additional assumptions.

2.3 Conditioning

As we see with the Pot-Luck Dinner example, it is possible for one decision maker’s
preferences to be contingent upon the preferences of others. In fact, it is often far simpler
to define payoffs in a context of the specific options available to others, rather than to
attempt to define a global joint payoff.
To illustrate further, let us re-examine the Battle of the Sexes game, and suppose

that, although H enjoys dog races, he is not a stereotypical machoistic male who has
little consideration for the feelings of the opposite sex. Instead, let us cast him as a
somewhat sensitive fellow who wants his friend to enjoy herself. He feels this way
strongly enough to be willing to moderate his preference for the dog races if, but only
if, S really hates that environment. He may express this feeling by defining two utility
functions, one under the assumption that S detests the dog races, and the other under the
assumption that she tolerates them. Such preferences are conditional for H , in that he
does not commit to either preference independently of S’s attitude. These utilities can
be defined without H even knowing S’s attitude about dog races. Notice, also, that it is
possible for H to make these conditional evaluations without making direct reference
to S’s attitude about ballet.
Conditional preferences may be better understood by invoking a powerful analogy,

namely, probability theory. Two of the most basic concepts of probability theory are the
lawof total probability and the lawof compoundprobability. The lawof total probability
states that the probability of two disjoint events (events whose intersection is empty) is
the sum of the individual probabilities, that is, if A ∩ B = ∅,1 then the probability of
their union is the sumof the individual probabilities, that is, P(A ∪ B) = P(A)+ P(B).
The law of compound probability states that the probability of two non-disjoint events
occurring simultaneously is the probability of one occurring, given that other does,

1 See Appendix C for a definition of notation.
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times the probability of the other one occurring, that is, P(A ∩ B) = P(A|B)P(B),
where the expression P(A|B) is the conditional probability of A given B. To illustrate
these laws, let us look at a simple example. Let R be the event that it rains, let L be the
event of light cloud cover, and let T be the event of thick cloud cover. Suppose that we
learn from a reliable source (e.g., historical data) that the probabilities of rain, given
the cloud cover conditions, are

P(R|L) = 0.1,

P(R|T ) = 0.7.

These are conditional probabilities and indicate that there is a 10% chance of rain with
light cover and a 70% chance of rain with thick cover. Conditional probabilities express
local information in the sense that they characterize the chances of rain given specific
weather conditions. These quantities can be defined regardless of the current weather
conditions.
Now suppose you wish to plan an outdoor party next week. You examine the weather

charts and determine that the probability of light cloud cover next week is 0.8 and that
the probability of thick cloud cover next week is 0.2 (assuming that exactly one of
these two conditions applies – this is an application of the law of total probability
to the problem). According to the law of compound probability, the probability of
simultaneous rain and light cloud cover is P(RL) = P(R|L)P(L). The probability of
simultaneous rain and thick cloud cover is P(RT ) = P(R|T )P(T ). Finally, since the
two weather conditions (RL) and (RT ) are disjoint, we may apply the law of total
probability to compute the probability of rain, namely,

P(R) = P(R|L)P(L)+ P(R|T )P(T )
= 0.1 × 0.8 + 0.7× 0.2

= 0.22,

that is, there is a 22% chance of rain. Thus, we see how to combine local, or conditional,
information regarding the weather (that is, the probability of rain given specific cloud
conditions) with the probability of the atmospheric conditions to obtain an assessment
of the global, or unconditional, probability of rain.
Returning to the Battle of the Sexes game, let us use this same idea to evaluate

H ’s preference for D. Let us suppose that H were to normalize his utility functions
so that they have unit mass, that is, he has a unit of conditional utility to apportion
among his options for each of S’s possible states of mind. Suppose, given that S detests
dogs, that H ’s conditional preference for D is 0.1, and, given that S tolerates dogs,
his conditional preference for D is 0.7. He could then define two conditional utility
functions as follows:

uH |S(D|¬D) = 0.1,

uH |S(B|¬D) = 0.9
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(where ¬ is the negation symbol), to characterize his preferences given that S detests
D, and

uH |S(D|D) = 0.7,

uH |S(B|D) = 0.3

to characterize his preferences given that S tolerates D.
Let us assume that by the time the moment of truth arrives, that is, the moment when

H has to make a decision, he has somehow come into possession of S’s attitude about
D. He is now in a position to evaluate his preferences conditioned on that information.
Suppose S’s aversion to D is four times a strong as her tolerance for D. This attitude
may be guaranteed by defining the normalized utility function uS , which takes values
uS(¬D) = 0.8 and uS(D) = 0.2. Then H may compute his conditioned preference for
D as

uH (D) = uH |S(D|¬D)uS(¬D)+ uH |S(D|D)uS(D)
= 0.1 × 0.8 + 0.7× 0.2

= 0.22.

By a similar calculation, H may compute his conditioned preference for B as uH (B) =
0.78. Thus, even though H strongly prefers D to B on his own, he lets his altruistic
concerns dominate to the extent that, given S’s attitude, he is willing to reverse his
preferences.
Now let us consider the situation where S has a different attitude, such that her

feelings about D are reversed, yielding uS(D) = 0.8 and uS(¬D) = 0.2. Then we im-
mediately obtain uH (D) = 0.58, and H ’s altruistic tendencies are tempered by the fact
that S would not be especially benefited by his sacrifice, and he does not reverse his
preferences. It is important to appreciate the fact that this analysis may be done without
needing to take into consideration S’s attitude about B. In Section 8.1.2 we show in
detail how this game may be formulated according to satisficing theory.
I have no proof that H ’s preferences should be assessed in the manner just cited.

Indeed, it is possible to raise a number of objections to this way of evaluating prefer-
ences. One possible objection is the seemingly arbitrary normalization of preferences
values. This objection may be superficially addressed by recalling that utility functions
are, generally speaking, supposed to be invariant to origin and scale,2 so normalizing
them cannot change the preference orderings. There are circumstances where a deeper
objection may be raised. Referring again to the Battle of the Sexes game, suppose
H is willing to assign a value of 0.1, out of a possible unit of conditional utility, to
the condition of attending D, given that S detests D, but is not willing to assign any
positive conditional utility at all to the condition of attending B (that is, suppose H
has an unmitigated aversion to B). Applying the law of total probability here would be

2 In Chapter 5 we address in detail the invariance consequences of this normalization.
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inappropriate, since the decision maker would not be willing to ascribe a high degree of
desirability to the complement of D. The normalization structure requires, however, that
he assign a value of 0.9 to this proposition, which implies that it is highly conditionally
tolerable. In this situation, H ’s disposition seemingly permits him only to assign very
low utilities to a proposition and its negation, but normalizing the utility functions does
not permit him to withhold his commitment to apportion his entire unit of preferences
among the options. This is exactly the problem raised by Shafer (1976) as a fundamental
problem with the law of total probability – it does not permit agnosticism.3 Likewise,
normalizing utility functions does not permit abstention – the decision maker is obli-
gated to apportion its entire unit of utility among the possibilities. A response to this
possible criticism is that, while it is one thing to withhold belief, it is quite another to
withhold action. If the purpose of making choices is ultimately to act, then the decision
maker cannot simply do nothing (paralysis is itself an action with consequences), even
if all alternatives are distasteful. Thus, if H really has a total aversion to B, he cannot
entertain the idea of conditioning preference on its complement. He can ill afford to be
altruistic with respect to attending a function to which he is completely averse. Instead,
he must assign his entire unit of conditional utility to D, regardless of preferences held
by S.
Another possible objection to the use of conditional preference relationships arises

with the act of joining the product of preferences of one decisionmakerwith preferences
of another decision maker. So doing generates interpersonal utility dependencies that
are typically frowned upon by conventional game theory. They are, however, allowed
in social choice theory. In Chapter 5, I address the interpersonal comparisons issue
in some depth, but for now let me plead guilty to making interpersonal comparisons
while arguing that admitting them is an indispensable aspect of any decision theory that
attempts to accommodate concerns that are wider than those of exclusive self-interest.
In defense of employing normalized conditional preference functions, let me offer

the following observations. First, by normalizing the utilities (both conditional and
unconditional) and combining them according to the law of compound probability, if
we start with a unit of utility, we also end with a unit of utility, so utility combined
this way exhibits conservation. Second, combining conditional utilities by means of
weighted averages gives appropriateweight to all conditional possibilities, an intuitively
pleasing interpretation. A third observation is that this structure represents a situational
commitment, in that the one making the commitment is not required to follow through
if the one to whom the commitment is made does not expect the commitment be
honored. Finally, since this representation of preferences employs the mathematics

3 The so-called Dempster–Shafer theory is an alternative to classical probability theory. It holds that probability
theory cannot distinguish between uncertainty and ignorance, since it does not permit one to withhold belief
from a proposition without ascribing the belief to its complement. Dempster–Shafer theory is an interesting
alternative to probability theory, especially when subjective considerations dominate to the extent that the agent
is simply unable to assign degrees of belief to all possibilities.
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(but admittedly not the usual semantics) of probability theory, it offers a way to connect
the interests of different agents in much the same way that probability theory extends
from the univariate to the multivariate case. This feature will be a central issue in the
formalization of satisficing games in Chapter 6 (also see Appendix D).
This last point may benefit from some elaboration. Multivariate probability theory is

more than a simple extension of univariate probability theory. Except in cases of statis-
tical independence, the joint distribution of two random variables cannot be obtained
from themarginal distributions. Similarly, joint utilities betweenmultiple decisionmak-
ers cannot be obtained from the individual utilities unless the two decision makers have
no consideration for each other. In other words, if the participants were all motivated by
self-interest (every agent for itself), they would have no consideration for the interests
of others and would not feel any obligation to them. Under such a regime, the only
way a participant could accommodate the preferences of others would be to redefine
its own unconditional preferences – it would have to “throw the game” via categorical
altruism. We will examine the conditioning concept in much more detail in Chapter 6,
where I present the idea of a satisficing game. For the present, however, the salient issue
regarding conditioning is that it provides a mechanism for a decision maker to take into
consideration the preferences of others when defining its own conditioned preferences
without categorically relinquishing its own original preferences.
Before leaving the discussion of the structure of the utility functions, a brief comment

regarding the issue of precision is in order. Suppose, with the Battle of the Sexes game,
that H is not able to provide a single numerical value for S’s attitude toward D, but is
only able to specify an interval of values, (α1, α2) where 0 ≤ α1 < α2 ≤ 1, such that
α1 ≤ uS(¬D) ≤ α2. This lack of numerical precision (which also may be present with
the conditional relationships)will create ambiguity in H , since his resulting conditioned
preference will not be unique. This situation is very similar to the problem of dealing
with imprecise probability measures. Fortunately, it is possible to extend the notions
of precise probability measures to accommodate set-valued probabilistic relationships,
and, by employing the mathematical structure of probability theory to characterize
preferences, it is possible to construct conditioned set-valued utilities. I discuss this
topic in more detail in Section 5.2.

2.4 Emergence

In addition to the temporal, or evolutionary, emergence that can occur with repeated
play games such as iterated Prisoner’s Dilemma, multi-agent systems may also exhibit
a different emergence phenomenon, which we may call spatial emergence. Temporal
emergence is an inter-game phenomenon that produces relationships between agents as
time propagates, while spatial emergence is an intra-game phenomenon that produces
relationships between agents as interests propagate through the group. A common
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example of spatial emergence occurs in both conventional game theory and social
choice theory. This phenomenon corresponds to the micro-to-macro, or bottom-up
view, with group preferences emerging as a consequence of individual interests. This
approach often leads to the dilemmas and paradoxes that are so common in game
theory. While such phenomena may serve as models for human behavior in certain
circumstances, they may not lead to productive performance in the design of artificial
autonomous systems. One way to circumvent such paradoxes is to adopt the macro-
to-micro, or top-down approach to spatial emergence, where the interests of the group
as a whole are paramount, and individual preferences are imposed as consequences of
group interest as specified by a superplayer. This latter approach, however, requires
very restrictive assumptions about the group and may not be appropriate if decision
making is distributed among a number of autonomous agents.
Neither the top-down nor bottom-up notion of spatial emergence is a natural fit to

the Pot-Luck Dinner example. A bottom-up approach to this problem would to require
that each participant specify his own preferences for each possible meal and then work
from there to a social choice that would be acceptable to the entire group. But the
sufficient information by which to do this is not contained in the problem statement.
On the other hand, a top-down approach would require the specification of some group
good, such as avoiding conflict, and each participant would have to make a choice that
would be consistent with that good. Such a good, however, is likewise not provided
by the problem statement. Thus, both top-down and bottom-up emergence require the
provision of additional information or conditions.
ThePot-LuckDinner example, however, is characterized by local conditional interde-

pendencies; neither individual nor group orderings of preferences are exhaustively pro-
vided by the problem statement. The example seems to call for a new viewpoint, which
I characterize as an inside-out, ormeso-to-micro/macro, view, where intermediate-level
conditional preferences propagate up to the group level and down to the individual level.
With this model, both individual and group behavior may emerge as consequences of
local conditional interests that propagate throughout the group. (In Section 6.4 I show
how this emergence may occur.)
If antagonism exists between members of the group, a harmonious group preference

may not emerge. However, if the members of the group are willing to compromise, it
may still be possible to define a group preference which, although it does not represent
ideal cooperation, does at least offer a weaker notion of acceptability as an alternative
to the total failure of the group to function. Thus, it is important for the individual
decision makers to possess an ability to compromise in the interest of both their own
welfare and the welfare of others.
This book is largely an outgrowth of attempts to understand how one might design

an artificial social system that accommodates bottom-up, top-down, and inside-out
views. As technology continues to advance, the demand for the creation of autonomous
decision-making systems that function in communal environments is certain to increase.
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One of the questions that must be addressed deals with the “attitude” that will be built
into these systems. If they are designed from the perspective of interest localization,
they may be naturally competitive and approach social interaction with an aggressive
posture. On the other hand, if they are designed from a broader perspective, they may
be more amenable to coordinative and cooperative behavior. They may be willing to
compromise, even to sacrifice some self-interest for the good of others.

2.5 Less is more

Substantive rationality has unquestionably been the dominant paradigm for decision
making for more than six decades. It provides unparalleled respectability, confidence,
and security. Substantive rationality is appropriate when well-defined mathematical
models are available to characterize performance, cost, and uncertainty. It is a superla-
tive concept – it yields the best, but only the best, solution.
Procedural rationality is a viable alternative to substantive rationality when mathe-

matical models are either not available or are only very approximate. In such circum-
stances, the procedural claim to rationality is to follow a set of rules that have been
formulated by an authority. Procedurally rational decisions differ fundamentally from
substantively rational solutions in that they are obtainedwithout relying on comparisons
to the quality of other possible solutions. Procedural rationality is a positive concept –
it yields solutions that have worked in the past under similar circumstances.
Between the superlative grammatical degree of being best and the positive grammat-

ical degree of being good, there is the comparative grammatical degree of being better.
The adjective better requires binary comparisons between valuations. Such compar-
isons are local, in that they involve only the relationship of one valuation to another, in
contrast to the notion of bestness, which requires a global comparison of one valuation
with all others. From this point of view, we may classify an option as being “better”
if, upon forming the binary comparison of gains versus losses, the gains exceed the
losses. Remember that this is an intra-option comparison, rather than an inter-option
comparison and, in this sense, we may claim that intrinsic rationality and satisficing
achieve better, that is, ameliorative, results.
The three degrees of comparison provide significantly different ways to evaluate

choices. The positive degree does not permit comparisons with anything.4 Under this
paradigm, there is no way to determine a degree, or grade, of goodness. An option
either is, or is not, good. The superlative degree requires comparisons of each option
with every other option. Under this paradigm, there is no way to determine a degree, or
grade, of bestness. An option either is, or is not, the best. The superlative degree not only
invites, but indeed demands, head-to-head competition. The comparative degree, as I

4 Post factum comparisons may be used to adjust future behavior, but have no effect on the current decision.
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develop the notion, requires comparisons of attributes associated with a given option
but does not employ comparisons with other options. Under this paradigm, it is possible
to determine degrees, or grades, of betterness – not with respect to other options, but
with respect to the intrinsic qualities of the specific option.
The degree of betterness can be defined in terms of the size of the gains over the

losses. This notion of comparison does not involve competition between options. It is
not exclusive, since many options may qualify as being ameliorative.
Given an arbitrary decision problem, there is always a strong desire to adapt it, if

possible, to the formalisms of optimization. The main argument for doing so is that
otherwise the decisionmaker would needlessly sacrifice either cost or performance. It is
assumed from this point of view that only individually rational decisionmechanisms are
viable. Equilibrium, by thismodel, is a conditionwhereby a decisionmaker is assured of
maximizing the minimum benefit to itself, even if this means minimizing the maximum
benefit to others. An intransigent self-interestedmaximizer lives a pessimistic existence
in a world where all others are viewed, ultimately, as adversaries.
Such an environment is not necessarily natural for artificial systems that are required

to function coordinatively. For such systems, optimality, though desirable, is subordi-
nate to functionality. Individual interests must be accommodated, but so must group
interests. Consider the following scenarios:

Example 2.2 Factory scheduling. A factory consists of a number of autonomous work sectors, each of
which must produce some item. Each position consumes varying quantities of resources (energy, materials,
labor, etc.), which are all drawn from a common and limited store. Each sector’s goal is to maintain its
profitability by producing as much as it can. The corporate goal is to maintain overall profitability, but
there is no central control – each sector must make its own decision.

Example 2.3 Transporting a bulky object. A group of movers (which may be mobile robots) must
transport a bulky object from point A to point B without dropping it. Each member of this group wishes
to avoid hazards (e.g, clutter, obstacles, etc.) as much as possible. There is no leader–follower hierarchy.
Each individual must make its own decision.

In the factory scheduling problem viewed from the point of view of substantive
rationality, each sector is dominated by self-interest – producing as much of its product
as possible – and views the other stations as competitors. Any cooperation between
the sectors is purely incidental. The self-interested optimal solution would be a Nash
equilibrium point such that, if any sector changed its demand for resources, it would
either reduce its output or violate the resource constraints. Unfortunately, there may be
many such equilibria, and there is no way to choose definitively between them without
imposing some notion in addition to strict self-interest. The social welfare solution
would be to choose an equilibrium that maximizes the weighted sum of the payoffs to
all individual utilities. This practice is arbitrary in that there is no guarantee that a set
of options that maximize corporate (social) welfare will satisfy the individual decision
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makers. For example, corporate benefit may be maximized by focusing all resources
on one highly profitable sector, but such a stance is not likely to be an acceptable joint
decision among a larger collection of self-interested utility maximizers.
The object-transporting scenario is a situation where the decision makers clearly

must subordinate individual welfare to group welfare. That is, except for the desire to
avoid hazards, each individual’s self-interest is served by the group’s interest. One way
to view this situation under substantive rationality is as a constrained maximization
problem, where the participants strive to maximize their individual utilities subject to
the constraint that the goal is achieved. Here again, however, individual self-interest
necessitates that, ultimately, each participant must view the others as a competitor for
resources (i.e., avoiding hazards), and an optimal solution will be one such that, if any
participant were to deviate from it, it would either increase its exposure to hazard or
violate the group success constraint.
Self-interest is a very simple concept. Also, as these examples suggest, it is a very

limiting concept, since it justifies ignoring the preferences of others when ordering
one’s own preferences. The advantage of invoking exclusive self-interest to define the
solution is that doing so may drastically reduce the complexity of a model of the group
of interest. The price for doing so is the risk of compromising group interests when
individual preferences dominate or of distorting the real preferences of the individuals
when group interests dominate. The root of the problem, in both of these cases, is the
lack of a way to account for both group and individual interests in a seamless, consistent
way.
Strict self-interest can create scarcity. Scarcity can come about in two ways, as

illustrated in Example 2.5. Since all sectors must draw resources from a common
source, there simply may not be enough to go around, and all of the participants may
consequently suffer. This is the “tragedy of the commons” described by Hardin (1968).
This kind of scarcity is unavoidable and emerges from the structure of the problem.
A second form of scarcity is also manifest in this problem. Suppose there is a consid-
erable amount of resource, but one sector has a superior ability to accumulate it and is
able to obtain as much as it wants. Under substantive rationality, it will do so – it has no
choice – thereby creating a condition of scarcity for the less capable sectors. Perhaps
such pronounced iniquities could be prevented by imposing regulations, but regulations
do not explicitly account for group interests; they merely limit individual interests.
Regulations are arbitrary and can lead to the inefficient distribution of resources.
It is an objective fact that the goal of trying to be better than someone else is different

from the goal of trying to do a job well.5 When a person devotes energy to beating
another person, he or she must expend energy to thwart the other – energy that could
be used for other, more constructive purposes. The same is true with artificial decision
makers. Returning to the factory example, it is obvious that, were a powerful decision

5 Recall the bumper sticker slogan: Whoever has the most toys when he dies, wins.
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Table 2.2: Frameworks for decision making

Rationality concept Decision paradigm Solution concept Knowledge requirements

Substantive (extrinsic) Superlative degree Maximal expectations Global mathematical
rationality (optimal) models

Intrinsic rationality Comparative degree Acceptable tradeoffs Local mathematical
(dichotomous) models

Procedural rationality Positive degree Authoritative procedures Local behavioral
(heuristic) rules

Group

Man

Machine

Individual

Figure 2.1: Achieving sociological and ecological balance.

maker to accommodate the desires of others or of the group in general, it would feel
some pressure to police itself and limit its consumption for the benefit of others, even
though this would mean achieving less than what is possible.
In light of the obvious wisdom of sharing, it does not seem appropriate to insist on

a paradigm of exclusive self-interest when designing coodinative artificial decision-
making systems. Even if the systems are designed by different parties and respond to
their different interests, they may still accommodate each other.
In suggesting a relaxation of substantive rationality, I do not advocate abandonment

of utility theory or the adoption of purely heuristic approaches. Rather, I advocate the
consideration of a third alternative for rationality, one that fills the lacuna between the
substantive and the positive notions. Table 2.2 illustrates this approach to decision-
making and compares its features with those of substantive rationality and procedural
rationality.
A social contract is, essentially, the set of all coordinating regularities by which

a society operates, as if in consequence of an agreement, due to a general preference
to conform to that regularity. No member of the society is bound to such a contract,
but members of the society generally sustain it because it is in their interest to do so
(Lewis, 1969). When designing artificial decision makers that must function in a group
to achieve cooperative behavior, the designer would be wise to conform the design to
a social contract that not only tolerates, but promotes, cooperation. The social contract
implicit with vonNeumann–Morgenstern game theory is that each individualwill do the
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best it can for itself, regardless of the consequences to others, under the assumption that
others will do likewise. Such a contract may be too narrow in scope to accommodate
a society of artificial decision makers that must cooperate. The notion of satisficing
as developed in this book, however, may provide the basis for the design of artificial
societies that are able to achieve a sociological balance between individual and group
interests.
Furthermore, in complex societies involving both humans and machines, it is im-

portant that these two components function in harmony. There is a growing body of
sociological theory that human behavior is much too complex to be explained com-
pletely by exclusive self-interest (Sober and Wilson, 1998;Mansbridge, 1990a). To the
extent that human societies conform to the satisficing concept, the design of artificial
decision-making entities under the satisficing paradigm will also be compatible with
human behavior. This suggests that the effective design of artificial societies that are to
cooperate among themselves and with humans must be both sociologically balanced
between group and individual interests and ecologically balanced between the artificial
society and human society. Figure 2.1 illustrates this two-way balancing concept.





3 Praxeology

Amathematical formalismmay be operated in ever new, uncovenantedways, and force on our hesitant
minds the expression of a novel conception.

Michael Polanyi

Personal Knowledge (University of Chicago Press, 1962)

The basic principle of decision making based on substantive rationality is very simple:
one seeks to maximize expected utility. This principle has led to a body of mathematics
that accommodates ways to rank-order expectations and to search or to solve for the
option (or options) that meet the optimality criteria. The major mathematical compo-
nents of this approach are utility theory, probability theory, and calculus.
The basic principle of decision making based on intrinsic rationality is also

very simple: one seeks acceptable tradeoffs. To be useful, this principle must be
supported by a body of mathematics that accommodates ways to formulate tradeoffs
and to identify the options that meet the satisficing criteria. This chapter introduces
such a mathematical structure. It also is composed of utility theory, probability
theory, and calculus, but with some important differences in the structure and
the application of these components (Stirling and Morrell, 1991; Stirling, 1993;
Stirling, 1994; Stirling et al., 1996a; Stirling et al., 1996c; Stirling et al., 1996b;
Goodrich et al., 1999; Stirling and Goodrich, 1999a; Goodrich et al., 2000).

3.1 Dichotomies

In terms of grammar, there is a logical gap between the superlative paradigm of
being best and the positive paradigm of being merely good. This gap is filled by the
ameliorative paradigm of being better. Rank-ordering is an extrinsic exercise involving
inter-option evaluations; that is, comparing a given attribute of one option to the same
attribute of another option or to a fixed standard. But this is not the only way to evaluate
options. We may also make intra-option evaluations by forming dichotomies involving
different attributes of a given option.

45
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The approach I advocate is very simple and precedes formal theories regarding its use:
a common way people evaluate personal and business options is to compare potential
gains with potential losses. Benjamin Franklin did it this way:

[M]y way is, to divide half a Sheet of Paper by a Line into two Columns, writing over the one Pro,
and over the other Con. Then during three or four Days Consideration I put down under the different
Heads short Hints of the different Motives that at different Times occur to me for or against the
Measure. When I have thus got them all together in one View, I endeavor to estimate their respective
Weights; and where I find two, one on each side, that seem equal, I strike them both out: If I find a
Reason pro equal to some two Reasons con, I strike out the three. If I judge some two Reasons con
equal to some three Reasons pro, I strike out the five; and thus proceeding I find at length where the
Ballance lies; and if after a Day or two of farther Consideration nothing new that is of Importance
occurs on either side, I come to a Determination accordingly. And tho’ the Weight of Reasons cannot
be taken with the Precision of Algebraic Quantities, yet when each is thus considered separately and
comparatively, and the whole lies before me, I think I can judge better, and am less likely to make a
rash Step; and in fact I have found great Advantage from this kind of Equation, in what may be called
Moral or Prudential Algebra. (Franklin, 1987, p. 878)

As a formalized means of decision making, dichotomous evaluations appear in at least
two very different contexts: economics and epistemology. The former is practical and
concrete, the latter is theoretical and abstract.

3.1.1 Cost–benefit analysis

Economists implemented the formal practice of cost–benefit analysis in the 1930s to
evaluate the wisdom of implementing flood control policies. The usual economics
procedure is to express all costs and benefits in monetary units and to endorse an
option if “the benefits to whomsoever they accrue are in excess of the estimated costs”
(Pearce, 1983). An objection to cost–benefit analysis is that Pareto equilibria cannot be
guaranteed, since the procedure may commend an option by which the welfare of some
participants is improved, even though that of others might be reduced. This criticism is
mitigated by the argument that, since the utility (money) is transferable, those who are
made better off can compensate the others by means of side payments after the option
is implemented and still remain better off (Kaldor, 1939; Hicks, 1939). By so doing,
however, it is possible that the distribution of incomemay change in a way that reverses
the original decision to undertake the project, and the same cost–benefit analysis may
encourage the undoing of the project it had previously endorsed (Scitovsky, 1941).
Consider the following two-agent decision problem. X1 and X2 consider making a

transaction with the following cost–benefit structure (in dollars):

Cost Benefit
X1 8 5
X2 −10 5
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Notice that the cost for X2 is negative, that is, X2 is actually paid a bonus for simply
making the transaction, independent of the results that accrue as a result, whereas X1

must pay a fee to make the transaction. Since the sum of the benefits is greater than the
sum of the costs, this transaction is acceptable under the simple rules of cost–benefit
analysis. Unfortunately, this result as it stands is not a Pareto equilibrium, since X1 is
made worse off as a result. Now let us suppose that X2 makes a side payment of $9 to
X1, after which the net gain to each participant is $6, and all is apparently well. But let’s
pursue the analysis one step further and suppose that now, after this redistribution of
wealth, the two decisionmakers consider reversing their transaction by paying the same
costs but negating the benefits. The actual out-of-pocket costs, however, are adjusted
by the net increases they received with the first transaction, resulting in a revised cost–
benefit structure of the form

Cost Benefit
X1 2 −5
X2 −16 −5

Since the revised costs (−$14) are less than the benefits (−$10), it is apparent that
reversing the original transaction is actually acceptable under cost–benefit analysis. This
example admittedly is a bit contrived, since it depends on the usage of negative costs,
but this is not prohibited under the simple rules of cost–benefit analysis. Such a result
obtains because the interests of both entities are aggregated into a single monolithic
interest by comparing the total costs with the total benefits.
Despite its flaws, cost–benefit analysis, founded as it is on a very simple principle, has

proven to be a useful way to reduce a complex problem to a simpler, more manageable
one. One of its chief virtues is its fundamental simplicity. Since it accounts primarily
for group interests, however, traditional cost–benefit analysis is not powerful enough
to produce decisions that are rational from both group and individual perspectives.

3.1.2 Epistemic utility theory

Epistemic logic deals with the classification of propositions on the basis of knowledge
and belief regarding their content.Amajor school of epistemology defines knowledge as
true justified belief and takes as its major challenge the activity of justification. The goal
of this line of thinking is ultimately to converge on the truth and nothing but the truth.
As James observed, however, there is more than one way to approach the quest for
knowledge:

There are two ways of looking at our duty in the matter of opinion – ways entirely different, and yet
ways aboutwhose difference the theory of knowledge seems hitherto to have shown very little concern.
We must know the truth, and we must avoid error – these are our first and great commandments as
would-be knowers; but they are not two ways of stating an identical commandment, they are two
separable laws . . .
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Believe truth! Shun error! – these, we see, are two materially different laws; and by choosing
between them we may end by coloring differently our whole intellectual life. We may regard the
chase for truth as paramount, and the avoidance of error as secondary; or we may, on the other hand,
treat the avoidance of error as more imperative, and let truth take its chance. (James, 1956, pp. 16–17)

The view that the chase for truth is paramount is consistent with substantive rationality:
demand the best (in terms of maximizing expectations) and nothing less than the best
solution. To fashion a view consistent with the notion that the avoidance of error is
imperative, however, we require a system of decision making that is fundamentally
different from the standpoint of substantive rationality. This latter view actually requires
something stronger – it requires a modification to the concept of knowledge. In the
opening lines of his book, The Enterprise of Knowledge, Levi offers the following
insight:

Knowledge is widely taken to be a matter of pedigree. To qualify as knowledge, beliefs must
be both true and justified. Sometimes justification is alleged to require tracing of the biological,
psychological, or social causes of belief to legitimating sources. Another view denies that causal
antecedents are crucial. Beliefs become knowledge only if they can be derived from impeccable first
premises according to equally noble first principles. But whether pedigree is traced to origins or
fundamental reasons, centuries of criticism suggest that our beliefs are born on the wrong side of the
blanket. There are no immaculate preconceptions.

When all origins are dark, preoccupation with pedigree is self-defeating. We ought to look forward
rather than backward and avoid fixations on origins.

Epistemologists should heed similar advice. Whatever its origins, human knowledge is subject to
change. In scientific inquiry, men seek to change it for the better. Epistemologists ought to care for
the improvement of knowledge rather than its pedigree. (Levi, 1980, p. 1)

Levi’s challenge is a natural sequel to and is compatible with James’ assertion that
focusing on the avoidance of error is fundamentally different from focusing on seeking
the truth.Whereas the conventional view is to seek truth at all costs, Levi is content with
the stance of amelioration – change for the better. By relaxing the exclusive demand
for truth, he thereby opens the way for the avoidance of error to receive increased
consideration. He proposes a theory of knowledge dynamics, called epistemic utility
theory, to pursue this goal. The fundamental basis of this theory involves the evaluation
of carefully constructed dichotomies.

3.2 Abduction

One who would follow James’ suggestion that we treat “the avoidance of error as more
imperative” would assume a cautious stance and would be reluctant to incur significant
risk of making a mistake. An argument can be advanced that error-avoidance is nothing
more than cautious truth-seeking. But if James is right in his assertion that truth-seeking
and error-avoidance “are two separable laws,” then each “law” should admit its own
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distinct philosophy of decision making. Let us consider the effect of such a change of
emphasis.
Minimizing the probability of error it not equivalent to avoiding error. Indeed, if an

expressed aim of our inquiry is to avoid error, we may comply with this aim simply
by refusing to make any choice at all. Though this course of action is faithful to the
injunction, it leads to a vacuous decision. Evidently, the decision maker must be willing
to incur some risk of error if a meaningful decision is to be made. But if any risk of
error is to be incurred, it would seem that one could hardly improve on the concept of
minimizing the probability of error.
There is, however, another notion of error-avoidance that is distinct from this standard

approach. Suppose some measure of economic, political, moral, cognitive, aesthetic,
or personal value could be ascribed to a proposition if it were adopted, independently
of its truth or error. If a proposition were to supply valuable information1 of these
types, the decision maker should be more willing to risk error to adopt it than if it
supplied information of only marginal value. Such considerations, though having no
direct bearing on truth, represent an indispensable component of the decision maker’s
goals and should not be ignored when evaluating propositions. As Levi puts it about
truth-seekers, “The choice of a conclusion to a given question on given evidence ought
ideally to satisfy two desiderata: the answer chosen ought to be true, and the answer
ought to supply information of the sort demanded by the question.” (Levi, 1984, p. 52).
If the decision maker stands to risk error as a result of making a choice, the choice must
be informative as well as plausible. Popper expressed a similar concern: “Yet we must
also stress that truth is not the only aim of science.We want more than truth: what we
look for is interesting truth . . . ” (Popper, 1963, p. 229, emphasis in original).
An error-avoider thus imposes an additional restraint on decision making that a naive

truth-seeker does not require; namely, an aversion to committing to propositions that
do not supply information, even if they are true. As a result, an error-avoider pursues
a goal that is distinct from the goal pursued by a truth-seeker. Whereas a truth-seeker
concentrates on searching for the truth with no independent conditions regarding its
informational value,2 an error-avoider concentrates on avoiding propositions that are
either likely to be in error or uninformative or both. Given whatever evidence is avail-
able, it may be possible for an error-avoider to eliminate some propositions, leaving
only those which, on the basis of the available knowledge, may be deemed to be reason-
able as measured by their absence of error and their information value. As additional
knowledge becomes available, more and more propositions may be eliminated. In the
limit, as all relevant knowledge is obtained, the ideal error-avoider should eliminate all

1 Information, as used in this context, does not correspond to either Shannon information (a concept defined
in terms of entropy) or Fisher information (a concept defined in terms of statistical variance). Rather, it is a
consideration of the importance, potential usefulness, or significance of a proposition or set of propositions.

2 Informational value, as used in this context, is distinct from the notion of “value of information” of conventional
decision theory (Raiffa, 1968), which deals with the change in expected utility that obtains if uncertainty is
reduced or eliminated from a decision problem.
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but the truth. If this situation were to obtain, then truth-seeking would be the limiting
case of error-avoidance.
Informational value and truth value are the essential components of the dichotomy

that Levi is constructing. To make this dichotomy explicit, we must formulate precise
mathematical expressions for these concepts. The following example motivates our
discussion.

Example 3.1 Theories of motion. Suppose we are to choose between rival theories to explain a given
phenomenon, such as the observed fact that heavy things, such as stones, fall when released, and light
things, such as smoke, rise when released.

Aristotle proposed the theory that heavy objects fall because the earth is their natural place, and light
objects rise because the sky is their natural place. According to Aristotle, heavy objects possess a quality
called “gravity,” which cause them to descend, and light objects possess a property called “levity,” which
cause them to rise. In his view, these natural motions require no force. “Violent motions,” under this view,
are characterized by the fact that force is required to effect them, such as with a stone, which naturally
would descend unless force were applied to lift it.

Newton also proposed a theory of motion. His basic premise is that the natural motion of an object
is uniform motion in a straight line in a global, inertial, Euclidean reference frame. His description was
much more sophisticated than Aristotle’s: the law of universal gravitation. “Violent motion,” for Newton,
is acceleration, which requires force to change the motion from natural, uniform straight-line motion to
some other type of motion.

Einstein proposed a third theory: the natural motion of an object is a straight line relative to a local
inertial reference frame in curved spacetime. The action-at-a-distance concept that is central to the law
of universal gravitation is replaced with the concept that an object simply follows its own world line.

Let us first consider the theories described in the above example in terms of truth
support without regard for information content. They differ substantially regarding the
descriptive question: “How do things move?” A powerful way to characterize truth
support for propositions such as these is through probability theory. Through experi-
mentation or personal convictions, a decisionmakermay arrive at a probability or family
of probabilities that describe the level of belief associated with these three propositions.
Whether or not these probabilities are numerically precise is not important here. What
is important is that there be some means of assessing the degree of belief about the
truth of these theories.
This probabilistic model of characterizing truth support is widely accepted, although

various alternatives exist, such as Dempster–Shafer theory, possibility theory, and fuzzy
set theory. In this book I do not wish to focus on the appropriateness or relative merits of
these various methods of expressing belief. I adopt probability theory as the model for
truth support, but recognize that the resulting decision theory might also be developed
according to any of the alternative models for representing truth support.
It also becomes instructive to evaluate these three theories of motion strictly in terms

of information. Such a consideration is termed anabductive inference (Levi, 1980). The
process of abduction, or appealing to the best explanation, is the process of evaluating
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propositions in terms of how well they meet the demand for information. One makes
an abductive inference when one evaluates a potential answer to a question in terms of
how valuable the answer is if we set aside all considerations of its truth. For example,
issues such as simplicity, testability, explanatory power, and predictive power could
properly be considered by a scientist in making abductive judgments about a theory.
Abduction guides the formation of propositions for serious consideration. Whitehead
recognized the special significance of the abductive step:

It is more important that a proposition be interesting than that it be true. This statement is almost a
tautology. For the energy of operation of a proposition in an occasion of experience is its interest,
and is its importance. But of course a true proposition is more apt to be interesting than a false one.
(Whitehead, 1937, Part 4, Chapter 16)

Among the consequences of adopting one of the rival theories of motion is that the
decision maker must appeal to the theory to explain and predict observed and future
behavior. In terms of abductive considerations, therefore, a modern person will likely
glean very little information from Aristotle’s description; it simply is not very useful.
It cannot be used, say, to predict how long it will take for a dropped stone to hit the
ground. Both Newton’s and Einstein’s theories, however, are able to make such pre-
dictions – they are thus more interesting. Also, Newton’s action-at-a-distance model
presents problems that Einstein’s model addresses. Thus, when considering these theo-
ries in light of information only, a scientist could form an abductive ranking of them in
terms of this consideration, independently of truth. However, an abductive “conclusion”
is not a decision leading to action. Rather, it is simply a determination to retain a propo-
sition for further evaluation, based on our interest in the proposition, rather than on its
truth. Consider the following problem as a further example of informational value:

Example 3.2 Melba receives an encoded message from Milo, but there is ambiguity in the decoding, so
that Melba knows only that one of three messages was sent:

M-1: Would you like a piece of cheese?
M-2: Would you like to go to a ball game?
M-3: Will you marry me?

Melba’s problem is to decide which of these propositions is the correct one. If she
were in possession of prior probabilities and a utility function, she could maximize her
expected utility. To do so, however, she would have to specify her preferences for these
questions. But Melba is under obligation only to decide which question was asked, not
to evaluate her personal interests in food, sports, or matrimony.
Even though she may have difficulty specifying her preferences, it should be evi-

dent to Melba that (M-3) is a much more important question than is either (M-1) or
(M-2). (M-3) involves life-altering possibilities, while (M-1) and (M-2) involve only
short-term prospects. (M-3) may require days or weeks for its evaluation, while the
other questions may be answered with little or no deliberation. In other words, these
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questions possess vastly different informational value. If Melba were to reject (M-1)
as the message being sent, she would have eliminated an unimportant possibility and
would have narrowed her scope of concern to more weighty matters. Consequently,
she would conserve a considerable amount of informational value. Rejecting (M-3),
however, conserves very little informational value, since the most weighty possibility
would then be dismissed, andMelba would be left to choose between questions regard-
ing relatively inconsequential matters. Melba would thus be reluctant to reject (M-3)
without significant evidence that it was not the question that was asked.
From the point of view of rejecting, rather than accepting, propositions, Melba has

the following Boolean algebra of decisions available to her:

F =




reject none of the propositions,
reject M-1 only,
reject M-2 only,
reject M-3 only,
reject both M-1 and M-2,
reject both M-1 and M-3,
reject both M-2 and M-3,
reject all of the propositions.

Each of these decisions will entail loss of a certain informational value as a result of
its rejection. This informational value is independent of the likelihood of correctness.
Melba has no strict obligation to make a unique best choice if she does not possess
sufficient information to do so reliably. She can choose to defer making a choice, she
can choose to reject those propositions that are of little importance to her and focus on
the propositions of high informational value, or she is still free to attempt to make a
“best” choice for the true proposition.

3.3 Epistemic games

Suppose a decision maker X has at its disposal a set U of propositions that are un-
der consideration and a knowledge corpus K such that all of the elements of U are
consistent with K , and that one and only one element of U is true. Note first that
if X were content with the present state of affairs, there would be no incentive to
consider altering its knowledge corpus, and X would therefore be unmotivated even
to formulate a decision problem. Let us assume that X has a need and desire to im-
prove its knowledge. If X were a truth-seeker as described by James, it might con-
sider choosing the element U that maximizes the expected value of its truth-specific
utility. But if X is a Jamesian error-avoider, it would not be so bold and might con-
sider the more conservative approach of refining U by eliminating from consideration
those propositions that become unattractive when held up to the light of information.
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The non-rejected propositions would then all be considered reasonable possibilities to
pursue.
There are two relevant desiderata to be employed by a Jamesian error-avoider when

evaluating propositions for inclusion into one’s knowledge corpus: namely, the desire
to obtain new information and the desire to avoid error. These two criteria, although
not in direct conflict, are also not in direct alignment. Consequently, we must find some
way to formulate a tradeoff between these two desiderata. Our approach will be a direct
application of conventional von Neumann–Morgenstern game theory – we will seek a
solution that maximizes expected utility. This may seem to be a somewhat incongruous
way to tackle our problem, given our desire to circumvent the superlative (substantive)
in favor of the comparative (ameliorative). Objections to the use of the superlative
paradigm would be well justified if we were, for example, to use it to minimize risk,
as would be done under a conventional Bayesian approach. But I do not propose to do
anything remotely like conventional Bayes decision theory or Neyman–Pearson theory
or maximum likelihood theory or any of the other well-known solution techniques that
are the workhorses of the superlative paradigm. As we shall see, that paradigm simply
identifies the largest set of propositions that are justified under a comparative paradigm,
with no requirement that any of them be justified according to substantive rationality.
My approach here involves the simultaneous playing of two games. The first game,

which we may term the information-conservation game, involves X ’s desire to refine
or narrow its choices in the interest of focusing attention on those propositions that are
deemed to be the most informative. This refinement occurs independently of any error
associated with the propositions. The second game, termed the error-avoidance game,
involves X ’s desire to avoid focusing on propositions that are likely to be in error.
X may play both games simultaneously by forming a utility function that is a weighted
average of the two utilities – information and error-avoidance. The relative weighting
given each game is a measure of X ’s concern for each.

3.3.1 The information-conservation game

In the light of abductive considerations only, X may view the worth of information
without regard for error and may define a utility function to quantify informational
value. A key assumption in this development is that it is possible to define a total
ordering with regard to the informational value of the propositions under consideration.
This leads to a very simple game between a decision maker X and Nature. Nature plays
by selecting the true u ∈ U , and X plays by rejecting a set, A ∈ F , whereF is a Boolean
algebra of proposition sets over U . With this very peculiar game, X does not take the
possibility of error into account. Rather, X ’s criterion for making a selection is based
on abductive considerations only.
If a proposition is of low consequence to X – that is, if it is very uninformative –

it should be given a high informational value of rejection. The more propositions X
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rejects, the more it can concentrate its attention on the ones that are retained. To retain
only the singleton proposition with the lowest (assuming it is unique) informational
value of rejection would permit X to contemplate the value associated with retaining
that and only that proposition. But X can focus its considerations even more than that.
To reject the entire set of propositionswouldprovide theultimate amount of information,
for then X would be in a state of contradiction, since X ’s knowledge corpus would
contain both the belief that one and only one of the members ofU is true as well as the
belief that none of them is true. This situation is possible since X , as it plays this game,
is not concerned with error – only with informational value.
Todefine the utility of informational value of rejection, it is reasonable that the follow-

ing properties should hold. Let PR be a utility function that quantifies the informational
value of rejection.
1. Since X chooses sets, rather than points, PR should be a mapping over the Boolean

algebra, F .
2. Measures of informational value should be non-negative and finite. Consequently, it

is reasonable to suppose that there exists a unit of informational value; that is, the
informational-value utility should range over the unit interval.

3. Rejecting none of the propositions is of no informational value, thus PR(∅) = 0.
Also, rejecting all propositions is of maximal informational value, thus PR(U ) = 1.

4. The incremental value of rejecting any set of propositions that does not intersect any
previously rejected set should be invariant to whatever else has been rejected.

5. The informational value of rejecting disjoint propositions sets must be additive.
That is, if A1 ∈ U and A2 ∈ U and A1 ∩ A2 = ∅, then rejecting both A1 and A2 is
equivalent to rejecting A1 ∪ A2; that is, PR(A1 ∪ A2) = PR(A1) + PR(A2).
This mathematical structure implies that the utility function PR is actually a proba-

bility measure. PR does not, however, possess any of the traditional interpretations of
probability. It is not a means of quantifying such attributes as belief, propensity, fre-
quency, etc. Rather, it is used here as a means of quantifying informational attributes.
To emphasize this point, let us refer to PR as rejectability, rather than probability.
Informational value is a resource. It is consumed by retaining propositions and it

is conserved by rejecting them. Suppose, for some reason, we deem3 {u1} to be un-
acceptable and reject it. By so doing, we conserve PR({u1}) worth of informational
value. If PR({u1}) ≈ 1, then we would be quite willing to discard it in the interest of
conserving informational value. In effect, by rejecting u1 we bank PR({u1}) worth of
informational value – it will never be consumed. If, on the other hand, PR({u1}) were
small, say PR({u1}) ≈ 0, then we would consume very little informational value by
retaining it and there would be little incentive to reject {u1} on that basis. If we reject
{u2} that is distinct from {u1} as well as reject {u1}, the net change in informational
value that accrues is the same as if we were to have simultaneously rejected {u1, u2}.
3 Singleton sets are identified by the notation {·}. Thus, whereas u ∈ U , we have {u} ⊂ U and {u} ∈ F .
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3.3.2 The error-avoidance game

According to X ’s lights, one and only one of the members ofU is true. If X is to avoid
error, then it can do so only if it does not reject a set that contains the true proposition. If
u ∈ U is true, then A ∈ F is true if u ∈ A.Wemay express this situationmathematically
by defining the so-called indicator function,

IA(u) =
{
1, u ∈ A,

0, u ∈ A.
(3.1)

IA is the utility of retaining A when u is true. Wemay form a simple error-avoidance
game for X playing against Nature by, as with the information-conservation game,
taking U as the “proposition space” for both Nature and X . Nature chooses which
proposition u is true and X chooses which set A of propositions not to reject. In
consequence of X ’s choices, error is introduced or it is avoided. With this setup, IA(u)
becomes the error-avoidance utility. It is the utility associated with not rejecting A
if u is error-free. Note that this utility function is very even-handed; it is concerned
only with the truth of the proposition. It does not count one proposition (if true) as
more important, in any way, than another proposition (if true). Instead, the matter’s
relative importance devolves on the information-determining utility function. The error-
avoidance utility function is concerned onlywith avoiding error and notwith accounting
for the seriousness of one error relative to another.
For the special case of A being a singleton set, say A = {u∗}, then I{u∗}(u) is consistent

with the stance of an intransigent truth-seeker who insists on the truth and nothing but
the truth; but if error-avoidance is the aim, we must consider letting A be any member
of the Boolean algebra, F .

3.3.3 Levi’s epistemic game

Suppose X were a utility maximizer. If X were to play the information-conservation
game alone, X would want to maximize informational value of rejection and would
do this by rejecting all propositions; X would reject U . If, however, X were to play
the error-avoidance game alone, X would select the only proposition guaranteed to be
completely error-free; namely, X would select the entire set of propositions, U . But
suppose X were to play both games simultaneously and use, as its utility, a weighted
average of the two utility functions. Let us call this gameLevi’s epistemic game.Without
loss of generality, we may normalize these weights to sum to unity. The resulting utility
function would then be

φ(A, u) = α IA(u) + (1 − α)(1 − PR(A)), (3.2)
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where 0 ≤ α ≤ 1. Another way to think of this situation is to perform a compound
experiment by first tossing a coin with probability of heads equal to α, to play the
error-avoidance game if heads lands up, and to play the information-conservation game
if tails lands up. The average utility of this compound game is given by (3.2).

φ(A, u) is the epistemic utility function (Levi, 1980) and measures the epistemic
value of not rejecting A when u is true. If u ∈ A, then φ(A, u) = (1 − α)(1 − PR(A))
since IA(u) = 0. But if u ∈ A, then φ(A, u) = α + (1 − α)(1 − PR(A)), since
IA(u) = 1.
Since positive affine transformations, that is, transformations that consist of mul-

tiplying the original function by a positive scalar and adding an arbitrary constant,
serve only to change the origin and scale of a utility function, they do not affect the
preference ordering, and we may simplify the epistemic utility function by applying a
transformation of the form

ϕ(A, u) = a1φ(A, u) + a2,

where a1 > 0. With a1 = 1
α
and a2 = − 1−α

α
, we obtain

ϕ(A, u) = 1

α
φ(A, u) − 1 − α

α

= IA(u) − qPR(A), (3.3)

where

q = 1 − α

α
. (3.4)

Sinceφ andϕ are equivalent utility functions, let us also refer toϕ(A, u) as the epistemic
utility function.
The epistemic utility function is a function of two variables, u and A, and represents

the utility associated with Nature choosing proposition u as true, and of X choosing
to reject all propositions except the elements of A. Unfortunately, since X does not
know which element ofU is true, X cannot evaluate the epistemic utility function. If X
possesses a probability to characterize the truth support associated with the elements
of F , however, it can compute the expected value of the epistemic utility function
with respect to this probability. Given a truth-supporting probability measure, termed
a credal probability (Levi, 1980), PS , the expected epistemic utility is

π (A) =
∫
U

ϕ(A, u)PS(du)

=
∫
U
[IA(u) − qPR(A)]PS(du)

= PS(A) − qPR(A). (3.5)
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For finite U and F the power set,4 every singleton proposition is an element of F .
We may compute, for any set A ∈ F , expressions for PS(A) and PR(A) in terms of
mass functions

pS(u) = PS({u}),
pR(u) = PR({u}),
such that

PS(A) =
∑
u∈A

pS(u),

PR(A) =
∑
u∈A

pR(u).

If U is the set of real numbers and F is the Borel field, we may express credal
probability and the informational value of rejection as

PS(A) =
∫
A
pS(u)du,

PR(A) =
∫
A
pR(u)du

for A ∈ F . The functions pS and pR are Radon–Nikodym derivatives of PS and PR with
respect to Lebesgue measure, respectively, and may be interpreted as density functions.
Thus (3.5) may be written as

π (A) =
∑
u∈A

[pS(u) − qpR(u)] (3.6)

when U is a finite set and as

π (A) =
∫
A
[pS(u) − qpR(u)]du (3.7)

when U is a continuum.
Expected epistemic utility permits us to express the dichotomy between avoiding

error and acquiring information. For any set A, X would desire to retain A in the interest
of avoiding error and would desire to reject A in the interest of acquiring informational
value of rejection. The expected epistemic utility of A is then the difference between
the belief that A is error-free and q times the informational value that would accrue if
A were rejected. This difference is maximized when A is the set of all propositions for
which truth support is at least as great as the informational value of rejection, that is,
for the set

�q = argmax
A∈F

π (A) = {u ∈ U : pS(u) ≥ qpR(u)}, (3.8)

4 See Appendix C for a definition.
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which holds for both the finite and continuum cases. The set �q is the set of all
propositions X views as possessing sufficient truth support relative to their informational
value to risk entertaining as serious possibilities for inclusion into its knowledge corpus.
All elements of U \�q , the complement of �q , are such that they are either not likely
to be true or, even if likely to be true, are not sufficiently valuable informationally to
take the risk of choosing erroneously.
We may view PS as the truth-support utility and PR as the rejection-support utility.

These two attributes generate a dichotomy: we are interested in truth, but we are also
interested in informational value. Thus, X would actually render a decision based on a
weighted difference of these two utilities – X evaluates a dichotomy.
The parameter q is the index of boldness (Levi, 1980), and characterizes the degree

to which the decision maker is willing to reject informationally valuable propositions
(that is, propositions with low pR values) in the interest of avoiding error. To ensure
that rejecting A erroneously cannot have higher epistemic utility than rejecting A′

correctly when PR(A′) is sufficiently lower than PR(A), we require that α ≥ 1
2 , which

means that we require that q ≤ 1. When q = 1, the decision maker rejects as many of
the propositions as possible, thereby reducing the size of the set of seriously possible
propositions to aminimum.As q decreases, the size of this set increases, and X becomes
increasingly cautious in its propensity to reject propositions. Thus, wemay equivalently
view q as an index of caution. As boldness increases (q becomes larger), caution
decreases.
Figure 3.1 illustrates the structure of this decision rule. The two utility functions, PS

and PR , are mappings from the proposition space, U , onto a utility space, p(U ), with
elements consisting of (pS, pR) pairs for each u ∈ U , that is,

p(u) = (pS(u), pR(u)) .

Thus, for every element u ∈ U there is a corresponding utility pair in the range space,
p(U ). The decision procedure generates a comparison set consisting of the region of
utility space,Cq ,where truth-supporting value exceeds boldness times the informational
value of rejection:

Cq = {(x, y) ∈ p(U ): x ≥ qy}.

CqΣq

p

p−1

U
p(U)

Proposition space Utility space

Figure 3.1: Levi’s rule of epistemic utility.



59 3.3 Epistemic games

The inverse image of Cq under the utility mapping p composes the decision set:

�q = p−1(Cq ) = {u ∈ U: p(u) ∈ Cq}.

As noted before, epistemic utility theory is based on von Neumann–Morgenstern game
theory, and the corresponding solution is one that maximizes expected utility. This
maximization, however, does not admit the usual interpretation of yielding a best solu-
tion. Rather, the maximization procedure serves only to provide the largest member of
the collection of sets of propositions for which the truth support equals or exceeds the
informational value gained by rejection. The elements of this maximal set, however, do
not themselves necessarily possess any specific optimizing properties (they may, but it
is not required). Thus they are not von Neumann–Morgenstern solutions in any sense.
They are, however, intrinsically rational solutions, in that the gains (truth support) equal
or exceed the losses (informational value of rejection). They are satisficing solutions.
In this sense, they satisfy the adequacy desideratum, A-1, of Section 1.3.

Example 3.3 Continuing with Example 3.2, suppose Melba has a unit of informational value of rejection
she wishes to apportion among the hypotheses M-1, M-2, and M-3. One possible assignment would be

pR(M-1) = 0.60,

pR(M-2) = 0.35, (3.9)

pR(M-3) = 0.05.

According to this assignment, Melba ascribes little informational value to the rejection
of M-3, because that is an important question to be asked. She rates M-2 as being
roughly twice as informationally valuable as M-1, presumably because making a de-
cision about sports is more interesting or important to her than making a decision
about cheese. We reiterate that these assignments are made independently from any
beliefs as to which of the three was the question that was actually asked – the infor-
mational value is only a measure of the importance of that question to Melba. Since
M-2 and M-1 are comparatively of less importance to Melba, she ascribes larger in-
formational value to the rejection of these propositions. By invoking (3.9), Melba is
able to determine the informational value of rejecting any element of the Boolean al-
gebra F . For example, the informational value of rejecting the disjuncts M-1 and M-3
is 0.65.
As for the specification of the credal probability, pS , suppose Melba loves cheese, so

it would be reasonable for Milo to offer her some. Also, she likes to attend ball games,
and it would be reasonable for him to invite her to one. Moreover, since the two are
increasingly romantically inclined, it would be reasonable for him to propose to her.
If Melba has no specific information regarding the likelihood of which of the three
propositions was actually sent, however, she would be in a state of belief neutrality
and would be justified in adopting a least informative distribution; namely, the uniform
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mass function.5 Thus, she could make the assignment

pS(M-i) = 1

3
, i = 1, 2, 3. (3.10)

Melba must also make an assessment of her boldness. If she wishes to reject as
many propositions as possible, she would select q = 1. So doing, using (3.9) and
(3.10), requires that Melba reject M-1 and M-2, leaving M-3 as the only unrejected
proposition. If Melba were somewhat tentative, she might set q = 0.8, in which case
she would reject only M-1, allowing considerations of ball games and matrimony to
remain. In this case, the probability of either of them being the issue raised by Milo
would exceed the informational value of rejecting them as important to Melba.
Once Melba has invoked expected epistemic utility, she has used that consideration

epistemic utility to the maximum extent possible in order to eliminate possibilities.
If only one proposition survives the application of this rule, then it may be regarded as
true. It is not generally the case, however, that even maximum boldness will result in
a unique surviving hypothesis. Far from being a weakness of this approach, however,
this characteristic of epistemic utility theory is a considerable strength. If there is not
sufficient evidence to warrant the rejection of all but one proposition, then that situation
will not occur. There is no compulsion to demand the truth and only the truth.
It is tempting to further analyze the surviving propositions in an attempt to determine

which one is true. Melba might rightly argue: “If I am to act, I cannot very well act on
a set of possibilities – surely I cannot be expected respond simultaneously to both M-2
andM-3!” But in the present context, it is important to realize that arrival at one and only
one possibility is not the intent of epistemic utility. All of the surviving propositions
enjoy equal status in the sense that they are all to be regarded as serious possibilities,
based on their likelihood of being error-free and their importance to the decision maker.
The available evidence has taken the decision problem as far as it can without additional
information being applied. The net benefit of epistemic utility theory for Melba is to
refine her beliefs by eliminating some of the propositions. The theory does not tell her
how to act, nor is it intended to do so.

3.4 Praxeic utility

Praxeology is the branch of knowledge that deals with practical activity and human
conduct. It is the science of efficient action (Kotarbiński, 1965).Whereas epistemology
refers predominantly to the cognitive domain and concerns itself with the issue of
“what to believe,” praxeology lies in the practical domain and concerns itself with
the issue of “how to act.” Thus, whereas an epistemologist takes a set of propositions

5 Melba could also refuse to adopt a numerically definite credal probability, but a discussion of that possibility
will be deferred until Chapter 5.
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under consideration, a praxeologist takes a set of possible actions, or options, under
consideration. Our approach is to adapt epistemic utility theory to praxeic issues. Our
interest in this theory is motivated by its striking compatibility with the comparative
paradigm, since it permits costs andbenefits to be characterizedvia probabilitymeasures
that can be evaluated by the expected epistemic utility test (see Appendix D).

Although freedom from error and informational value are natural semantic notions
for cognitive decisionmaking, they are not always natural for practical decisionmaking.
To apply the ideas of epistemic utility theory to practical decision making, we must
formulate praxeological analogs to the epistemological notions of avoidance of error
and informational value.

Just as an epistemologically motivated decision maker has a goal of improving its
state of knowledge by evaluating propositions, a praxeologically oriented decision
maker has a goal of achieving some valuable objective by implementing options. Thus,
a natural analog for the epistemological concept of veracity is the praxeological notion
of success, in the sense of achieving some fundamental goal of taking action.

To formulate a praxeological analog for the epistemic notion of informational value,
we observe that, just as the management of a finite amount of relevant information is
important when inquiring after truth in the epistemological context, taking effective
action requires the management of a finite amount of resource, such as time, money,
materials, energy, safety, or other assets, in the praxeological context. Thus, an apt
praxeological analog to the informational value of rejection is the conservational value
of rejection. We thereby may rephrase Popper’s injunction to become: we want more
than success – what we look for is efficient success. Thus, we change the context
of the decision problem from one of acquiring information while avoiding error to
one of conserving resources while avoiding failure. With the context shift from the
epistemological issue of belief to the praxeological issue of action, let us refer to the
resulting utility function as praxeic utility rather than epistemic utility.
As with the epistemic game, let us refer to the degree of resource consumption as

rejectability and require it to be expressed in terms of a function that conforms with the
axioms of probability. Thus, for a finite (or continuous) option space, U , rejectability
is expressed in terms of a mass function (or density function if U is a continuum),
pR such that pR(u) ≥ 0 for all u ∈ U and

∑
u∈U pR(u) = 1 (or

∫
U pR(u)du = 1).

We will term pR the rejectability mass function. Inefficient options (those with high
resource consumption) should be highly rejectable; that is, if considerations of success
are ignored, one should be prone to reject options that result in large costs, such as high
energy consumption, exposure to hazard, etc. Normalizing pR to be a rejectability mass
function (density function) insures that the decision maker will have a unit of resource
consumption to apportion among the elements of U . We may view pR as the inutility
of consuming resources. If u ∈ U is rejected, then the decision maker conserves pR(u)
worth of its unit of resources. We will often assume that pR(u) > 0 for all u ∈ U
(a condition of there being no completely cost- or risk-free options).
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Failure is avoided if successful options are not rejected, but efficiency, as well as
success, must also be considered. Our approach to evaluating candidate sets of options
for retention is to define the utility of not rejecting them in the interest of both success
and resource conservation and to retain the set that maximizes this utility. Suppose that
implementing u ∈ U would lead to success, and let A ⊂ U be a set we are considering
for retention. As with epistemic utility, the utility of not rejecting A in the interest of
avoiding failure is the indicator function, (3.1). We may define the praxeic utility of not
rejecting A when u is successful as the convex combination of the utility of avoiding
failure and the utility of conserving resources:

φ(A, u) = α IA(u) + (1 − α)

(
1 −

∑
v∈A

pR(v)

)
, (3.11)

where 0 ≤ α ≤ 1 and is chosen to reflect the decision maker’s personal weighting
of these two desiderata. Setting α = 1

2 means equal concern for avoiding failure and
conserving resources.
If u is successful, then it is clear that praxeic utility is maximized when A = {u}

(the singleton set). Unfortunately, from the standpoint of resource conservation, we
cannot say which u will lead to success (or that only one u will do so), so we cannot
simply reject U \{u}, the complement of {u}. We may, however, possess information
regarding the degree of success support possessed by each u. Let pS be a mass function
(density function) that evaluates each option with respect to the degree to which it
accomplishes the objective of the decision problem, independently of how much re-
source is consumed by implementing it. Let us refer to the degree of success support as
selectability, and let us term pS the selectability mass function (density function).
Wemay then calculate average praxeic utility for any set A ⊂ U byweighting the utility
by the degree of success support associated with each u and summing (integrating) over
all u ∈ U . The expected praxeic utility is then, after making the same positive affine
transformation as before,

π (A) =
∑
u∈A

[pS(u) − qpR(u)] , (3.12)

for finite U and

π (A) =
∫
A
[pS(u) − qpR(u)] du, (3.13)

for U a continuum, where q is given by (3.4).
We may obtain the largest set of options for which the selectability is greater than or

equal to q times the rejectability by choosing the set that maximizes expected praxeic
utility, resulting in the satisficing set

�q = argmax
A⊂U

π (A) = {u ∈ U : pS(u) ≥ qpR(u)}. (3.14)

Let us refer to (3.14) as the praxeic likelihood ratio test (PLRT). �q is the set of
all options for which the benefits (selectability) outweigh the costs (rejectability),
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as scaled by q. The parameter q is the index of boldness of the decision problem
and parameterizes the degree to which the decision maker is willing to risk reject-
ing possibly successful options in the interest of conserving resources. Equivalently,
we may also refer to q as the index of caution, since it parameterizes the degree
to which the decision maker is willing to accommodate increased costs to achieve
success.
Nominally, q = 1, which attributes equal weight to success and resource conserva-

tion interests. Setting q > 1 attributes more weight to resource conservation than to
success.

Theorem 3.1
q ≤ 1 ⇒ �q = ∅.

PROOF
If �q = ∅, then pS(u) < qpR(u) ∀u ∈ U , and hence
1 = ∑

u∈U pS(u) < q
∑

u∈U pR(u) = q , a contradiction. �

When defining the selectability and rejectability mass (or density) functions, the
decision maker must provide operational definitions of what is selectable about the
options and what is rejectable. Typically, the attributes of an option that contribute to
the fundamental goal of the decision problem would be associated with selectability,
and those attributes that inhibit or limit activity would be associated with rejectability.
However, there generally will not be a unique way to frame such decision problems.
For example, suppose my decision problem is to choose a route home from work with
the constraints that I wish to arrive home in a timely manner and I wish to avoid driving
through dangerous parts of town. One way to frame this problem is to specify safety
as a selectability attribute and driving time as a rejectability attribute. An alternative
is to specify danger as a rejectability attribute and the reciprocal of driving time as a
selectability attribute.
Regardless of the way the problem is framed, however, it is essential that the se-

lectability and rejectability attributes not be restatements of the same thing. For ex-
ample, it would not be appropriate to specify safety as a selectability attribute and
danger as a rejectability attribute. In general, at least for single-agent decision prob-
lems, once operational definitions of success and resource consumption are specified,
the selectability of an option should be specifiable without taking into consideration
the consumption of resources, and the consumption of resources should be specifiable
without taking success into consideration (we will need to modify this specifiability
when we consider multi-agent decision problems in Chapter 6).
I have distinguished between the epistemological issues of classifying propositions

in terms of their informational value and their avoidance of error and the praxeolog-
ical issues of classifying options in terms of their conservational efficiency and their
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Table 3.1: Epistemological and praxeological
analogs

Epistemology Praxeology

Propositions Options
Veracity Success
True Instantiated
Knowledge Resource
Probability Selectability/Rejectability
Informational value Conservational value

avoidance of failure. To emphasize this distinction, I have introduced new terms in order
to make explicit the analogy between the cognitive and the practical domains. The epis-
temological and praxeological analogical relationships are characterized in Table 3.1.
With these analogies we convert the epistemological desideratum of acquiring new

information while avoiding error to the praxeological desideratum of conserving re-
sources while avoiding failure. In subsequent discussions, I will not be overly careful
to distinguish between epistemic and praxeic concerns and may intermingle the two
domains. To standardize notation, however, I will usually favor the praxeic terminol-
ogy over the epistemic terminology. Thus, even if the context is purely epistemic,
I will often substitute “selectability” for “belief” and “conservation” for “information,”
leaving the reader to make the proper interpretations from the context.

Example 3.4 Wendle and Ace each receive a free ticket to a ball game but there is a chance of rain. Each
independently chooses either to go to the game (G ), to stay home (H ), or to go to the museum (M ).
We may view this decision problem as a game against Nature, where Nature chooses whether to rain (R )
or to shine (S ). The following are the possible outcomes of this game:

u1: go to the game and it rains (R &G ),
u2: go to the game and it shines (S &G ),
u3: go to the museum and it rains (R &M ),
u4: go to the museum and it shines (S &M ),
u5: stay home and it rains (R &H ),
u6: stay home and it shines (S &H ).

Each player’s preferences, in descending order are

u2 � u3 � u5 � u4 � u1 � u6.

According to the weather report, the probability of rain is β.

Wendle is an expected utility maximizer; that is, he is determined to maximize his
expected enjoyment. To do so, he formulates his decision problem as a game in the
traditional von Neumann–Morgenstern way by converting his preferences into a utility
that is a function, φ, of both his and Nature’s options. The values assumed by this
function are as indicated in the following table:
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Wendle

Nature G H M

R 1 3 5
S 10 0 2

π 10 − 9β 3β 2 + 3β

Wendle calculates the expected utility of choosing option G as

π (G) = βφ(R&G) + (1 − β)φ(S&G)

= β + (1 − β)10

= 10 − 9β,

the expected utility of choosing option H as

π (H ) = βφ(R&H ) + (1 − β)φ(S&H ) = 3β,

and the expected utility of choosing option M as

π (M) = βφ(R&M) + (1 − β)φ(S&M)

= 5β + (1 − β)2

= 2 + 3β.

Wendle chooses the option that maximizes his expected utility. Clearly, π (H ) <

max{π (G), π (M)}, so Wendle will not choose H under any circumstances. He will
choose G if π (G) ≥ π (M), which evaluates to β ≤ 2

3 ; otherwise, he will choose M .
Ace is a satisficer and proceeds according to the dictates of praxeic utility theory. He

views enjoyment as a resource and seeks to conserve his enjoyment, which is governed
by his preferences. Normalizing this ranking to a mass function, Ace defines his con-
servation-determining function (rejectability) as

pR(R&G) = 0.25,

pR(S&G) = 0.0,

pR(R&M) = 0.15,

pR(S&M) = 0.20,

pR(R&H ) = 0.10,

pR(S&H ) = 0.30.

(The reader may be concerned that this specification is somewhat arbitrary, and it is;
there is a degree of arbitrariness in any subjective evaluation. We may gain some scant
comfort in the realization that the specification of φ with the conventional game is also
subjective and arbitrary – there is no “ultimate arbiter” in either case.)
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Ace has a natural way to evaluate his selectability. Not going to the game when it
shines constitutes failure, as does going to the game when it rains and staying home
under any circumstances. The success support for going to the game is proportional to
the probability that it will be sunny, and the success support for going to the museum is
proportional to the probability that it will rain. His selectability mass function is thus

pS(R&G) = 0.0,

pS(S&G) = 1 − β,

pS(R&M) = β,

pS(S&M) = 0.0,

pS(R&H ) = 0.0,

pS(S&H ) = 0.0.

Ace weights selectability and rejectability equally by setting boldness equal to unity.
For Ace to apply praxeic utility theory, he must be able to compare the advantages
and disadvantages of his three choices. The rejectability and selectability functions
as expressed above, however, are functions of both Ace’s and Nature’s options. We
may obtain Ace’s individual rejectability and selectability functions by averaging over
Nature’s options for each of Ace’s options, yielding

pR(G) = pR(R&G) + pR(S&G) = 0.25,

pR(M) = pR(R&M) + pR(S&M) = 0.35,

pR(H ) = pR(R&H ) + pR(S&H ) = 0.40,

and

pS(G) = pS(R&G) + pS(S&G) = 1 − β,

pS(M) = pS(R&M) + pS(S&M) = β,

pS(H ) = pS(R&H ) + pS(S&H ) = 0.0.

Acemay now apply the PLRT to these marginal mass functions. Setting q = 1 provides
equal weight for both desiderata and yields

�q =




{M} if β > 0.75,
{G} if β < 0.35,
{M,G} if 0.35 ≤ β ≤ 0.75.

If it is very likely to rain, then Ace’s only satisficing option is M , and if it is very
unlikely to rain, his only satisficing option is G. In the range of intermediate proba-
bility of rain, however, both M and G are satisficing options for Ace. But Ace must
choose – he cannot go to both. Praxeic utility has narrowed the choice as much as it can
but, to refine the satisficing set to a singleton, Ace must appeal to additional criteria.
There are many ways to do this. For example, if Ace were to choose the satisficing



67 3.4 Praxeic utility

option with maximum selectability, he would choose G if β ≤ 0.5 and M otherwise. If
he were to choose the satisficing option with minimum rejectability, he would choose
G. If he were to choose the satisficing option with the greatest difference between se-
lectability and rejectability, he would chooseG if pS(G) − pR(G) ≥ pS(M) − pR(M),
which obtains when β ≤ 0.55, and would choose M otherwise. He could also choose
randomly between the two satisficing options or invoke any other scheme. The point
is that, praxeic utility is not designed always to force the decision maker to a sin-
gle best option. Rather, it is designed to eliminate as many unacceptable solutions as
possible.
Now let us examine these games in terms of failure. According to the doctrine of

maximizing expected utility, a failure occurs if the decision does not yield the desired
result – in this case, failure is going to the game if it rains, or going to the museum if the
sun shines. Wendle is certain to go to the ball game if, and only if, β ≤ 2

3 , in which case
P(G) = 1; otherwise, Wendle will go to the museum, in which case P(M) = 1. Since
weather is not affected by Wendle’s attendance at either place, PF , the probability of
failure, is

PF =
{
P(R&G) = P(R|G)P(G) = β if β ≤ 2

3 ,

P(S&M) = P(S|M)P(M) = 1 − β if β > 2
3 .

Circumstances can thus occur where Wendle has a greater probability of failing than
of succeeding. Wendle is willing to take the risk, since the reward of going to the game
is considerably higher than the reward for going to the museum.
Ace, however, plays his game in a way that is designed to avoid failure, rather than

from the point of view of doing the “best” thing. Let’s see how this works out for him.
There are three cases to consider.
� When β < 0.35, PF = β, and Ace goes to the game with a low likelihood of failure.
� When β > 0.75, PF = 1 − β, and Ace goes to the museum with a low likelihood of
failure.

� When 0.35 ≤ β ≤ 0.75, bothG and M are good enough, according to Ace’s declared
priorities. Each option is evaluated on its merits and both are found to be acceptable
in that the gains of implementing them outweigh the losses. Thus, Ace will not fail
if he attends the museum, even if it does not rain. He will, however, fail if he goes to
the game and it rains. To evaluate the probability of failure in this case requires the
specification of the probability that he will go to the game, given that both the game
and the museum are satisficing. Suppose he tosses a fair coin and goes to the game if
it lands heads. In this case, the probability of failure will be β/2.
There are a number of significant differences between these two frameworks for

decision making.Wendle forms a single utility and sets about to maximize his expected
enjoyment. He has a rigid notion of success. Ace, however, forms two utilities and
compares them to each other as a means of evaluating each option for the purpose
of conserving as much enjoyment as he can while avoiding getting wet. He has a
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much more flexible notion of success. Wendle has no choice but to take the option that
maximizes his expectations, while Ace affords himself some flexibility in making his
final choice.Wendle’s fate as an optimizer was determined themoment he decided to be
an expectation maximizer, while Ace’s fate as a satisficer is not completely determined
until the moment of truth, when he actually makes his choice.
By keeping the concepts of avoiding failure and consuming resources separate, the

decision maker is able to evaluate the relative strengths of these two attributes of each
option. For example, if an option that conserves resources (low rejectability) also avoids
failure (high selectability), then the option would be attractive to the decision maker
under both criteria. Conversely, an option with high rejectability and low selectability
would be very unattractive. Situations where selectability and rejectability are both
high or both low, however, are more difficult to categorize. In Chapter 5 I discuss these
four situations in detail.

3.5 Tie-breaking

Although decision making under praxeic utility is not designed to return a single de-
cision, if action is to be taken, one and only one u ∈ �q must ultimately be invoked.
The fact that praxeic utility theory does not provide a unique solution is not a defect
of the decision-making procedure. If it is truly a comparative paradigm, praxeic utility
theory should not force the superlative outcome of identifying a unique solution which,
if only by default, is considered to be best.
Praxeic utility theory provides only a partial ordering of the set of options. We can

only say, on the basis of the PLRT, that elements of �q are preferred to elements in
U \�q . This approach does not impose an ordering of the elements of �q . But, at the
moment of truth when action can no longer be deferred, some form of tie-breakingmust
be imposed by the decision maker. Although tie-breaking is an additional decision that
must be made, it constitutes a choice between a set of alternatives where each one is
known to be good enough. In this sense, the final decision is, if not necessarily easy, at
least reassuring, in the sense that the decision maker cannot make a fundamentally bad
choice.
One way to proceed with the design of a tie-breaker is to define an ordering of the

elements of the satisficing set. There aremany possible orderings, with themost obvious
being the selectability and rejectability functions.

Definition 3.1
A satisficing option uS is most selectable if

uS = argmax
u∈�q

{pS(u)}. (3.15)

�
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Definition 3.2
A satisficing option uR is least rejectable if

uR = arg min
u∈�q

{pR(u)}. (3.16)

�

A compromise between these two extremes is a linear combination of selectability
and rejectability.

Definition 3.3
A satisficing option u∗ is maximally discriminating if

u∗ = argmax
u∈�q

{pS(u) − qpR(u)}. (3.17)

�

The notions of most selectable, most rejectable, and discrimination provide partial
orderings of the members of the satisficing set such that at least one element of the set is
preferred to all others. Adopting such auxiliary criteria does not constitute a reversion
to the optimality paradigm. The choice of tie-breaking criterion does not influence the
solution methodology that produced the satisficing set and may be changed without
affecting the structure of that set. Thus the decision maker can delay the application of
the tie-breaker until it is necessary to take action.
Another form of partial ordering of the satisficing set is as follows:

Definition 3.4
A satisficing option u1 is more satisficing than option u2 if it is either (a) not less
selectable and less rejectable than u2 or (b) not more rejectable and more selectable
than u2; that is, either

pS(u1) ≥ pS(u2) and pR(u1) < pR(u2)

or

pS(u1) > pS(u2) and pR(u1) ≤ pR(u2). �

Unfortunately, the set of pairs of options that satisfy the more-satisficing criterion
may be empty. For this reason, it is not of general utility for choosing a tie-breaker.

Definition 3.5
A satisficing option is arbitrary if it is chosen randomly according to some probability
distribution over the set of satisficing options. �
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While an arbitrary tie-breakermayprovide acceptable results, such aprocedure seems
unnecessarily capricious in practice, since there are often auxiliary considerations that,
though not part of the performance criteria, can reflect auxiliary preferences of the
decision maker. In Section 4.1 I discuss a concept of equilibria that augments the basic
satisficing notion and provides a way to refine the satisficing set in a natural way.
If the cardinality of �q is large, computational resources may not permit identifying

all members of this set, and a stopping rule must be established. One approach, in the
spirit of Simon-like satisficing, is to set an aspiration level for the number of elements
in �q . The most simple aspiration is �q = ∅, in which case the first satisficing option
that is identified would be implemented. A more sophisticated criterion would be to
invoke the concept of ordinal optimization (Ho, 1997), and stop when sufficiently many
elements of�q have been identified to ensure that, with high probability, the maximally
discriminating option has been identified. Alternatively, we could employ dominance
to eliminate non-Pareto efficient (with respect to selectability and rejectability) options
prior to making a decision (Goodrich et al., 1998).
Bywayof review, a decisionmakerwhomakes choices by comparing gains and losses

acts in away that is fundamentally distinct from onewho searches for a global optimum.
The latter proceeds by ranking the options to determine the maximal element in a
preference ordering, while the satisficer proceeds by comparing two sets of preferences
and making a binary decision to either reject or not reject each individual option.
Optimization requires making global rankings, while satisficing requires making local
comparisons. Optimization is designed to identify a single best option; satisficing is
designed to identify a set of good enough options.
The boldness parameter, q, governs the size of the satisficing set. Setting q < 1

ascribes more weight to achieving success than to conserving resources. Unlike the
case for cognitive decisions, however, it is rational in the praxeic context for q to be
greater than unity. Setting q > 1 simply means that conserving resources is weighted
heavier than achieving success, which may be appropriate if the cost of taking action
is high relative to the benefit. As q increases, the size of �q decreases. Eventually, as q
becomes sufficiently large, no options will be satisficing and �q will be empty. Let us
assume in what follows, however, that q is such that �q = ∅.

3.6 Praxeology versus Bayesianism

The conventional Bayesian approach for deciding between singleton propositions {v}
and {u} is to define a cost function

L(v, u) = cost of choosing v when u is true, (3.18)

where we assume that L(v, u) > L(u, u) for v = u (that is, the cost of choosing
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incorrectly is larger than the cost of choosing correctly). This structure may be ex-
pressed more conveniently as

L(v, u) = a1(v, u)[1 − I{v}(u)] + a2(u)I{v}(u), (3.19)

where u is true and v is chosen and I{v}(u) is the indicator function for the singleton set
{v}. Thus, the decision maker incurs a cost of a2(u) when u = v and a cost of a1(v, u)
when u = v. Viewing PS as a prior probability, we may define a Bayes rule as any
element of U that minimizes the expected loss, denoted

L̄(v) =
∫
U
L(v, u)PS(du),

whence a Bayes decision is

uBayes = argmin
v∈U

L̄(v). (3.20)

Thus, Bayesian analysis provides a unique (up to an equivalence class) best option that
minimizes the expected loss. Note that this provides a total ordering of the elements
ofU . By contrast, maximizing expected praxeic utility yields the satisficing set (3.14),
which provides only a partial ordering in that it differentiates between elements of �q

and its complement (satisficing versus not satisficing), but does not order the members
of the satisficing set.
The Bayesian utility is a function of singletons (points), but praxeic utility is a func-

tion of sets. This fundamentally different structure accommodates the fact that Bayesian
utility is designed to facilitate inter-option comparisons with the objective of optimiz-
ing, but praxeic utility is designed to accommodate intra-option comparisons with the
objective of satisficing. Thus, the two utility functions are designed for fundamentally
different purposes.
Even when restricting praxeic utility to singletons, the two utility concepts are not

equivalent, in general. We may see this by noting that, for A = {v}, equating φ(A, u)
(see (3.3) and L(v, u) requires that

[a2(u) − a1(v, u)]I{v}(u) + a1(u, v) = I{v}(u) − qpR(v),

which requires that

a2(u) − a1(v, u) = 1

a1(u, v) = qpR(v)

for all v ∈ U and all u ∈ U . This can happen only if a1 is not a function of v, which
implies that pR(v) must be constant, that is, pR is uniform. Thus, Bayesian utility can
be made to be equivalent to praxeic utility only in the special case of conservational
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value neutrality. For example, if U is finite with cardinality m and

a1(u, v) = 1

m
,

a2(u) = m + 1

m
,

q = 1,

pR(v) = 1

m
,

then the two utilities are the same in structure. Thus, decisions made under non-neutral
conservational value must be approached from a point of view significantly different
from that used to examine decisions made under conditions of value neutrality. The
standard Bayesian cost structure accounts for only conditional cost, that is, where the
cost is a function of both the choice that is actually made and the correct choice.
The use of two utilities in praxeic utility permits the independent specification of the
selectability cost (which accounts for the avoidance of failure) and the rejectability cost
(which accounts for the conservation of resources regardless of correctness).
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It is no paradox to say that in our most theoretical moods we may be nearest to our most practical
applications. Alfred North Whitehead

An Introduction to Mathematics (Oxford University Press, 1948)

A dutiful decision maker may not be persuaded to adopt a satisficing solution just
because the gains exceed the losses. The satisficing options should also conform to a
sense of fairness or equanimity. There are three additional criteria that should govern
the ultimate selection of a satisficing option. First, if time and resources permit, a
decision maker should neither sacrifice quality needlessly nor pay more than is nec-
essary. Second, a decision maker should be as certain as possible that the decision
really is good enough, or adequate. Third, a decision maker should not foreclose
against optimality; that is, the optimal decision, should it exist, ought to be satis-
ficing.

4.1 Equilibria

Although the satisficing set �q contains all possible options that satisfy the PLRT and,
in that sense, are legitimate candidates for adoption, they generally will not be equal in
overall quality. Consider the following example.

Example 4.1 Lucy is in the market for a car. To keep the problem simple, assume that her set of
possibilities consists of five choices, which we denote as vehicles A through E . The option space is
the set U = {A , B , C , D , E }. Only three criteria are important: performance, reliability, and affordability.
Suppose that Lucy is able to assign ordinal rankings to the vehicles in each of these attributes, as illustrated
in Table 4.1. Vehicle B , for example, has the best performance, the median reliability, and the highest
cost.

There are a number of questions that may be asked regarding the issue of how to
choose from among the options presented in Example 4.1. The optimizer’s question is
perhaps the most direct: “What is the best deal?” To address this question, we must

73
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Table 4.1: Ordinal rankings of vehicle attributes

Vehicle Performance Reliability Affordability

A 3 1 5
B 5 3 1
C 2 4 4
D 1 5 3
E 4 2 2

Key: 5 = best; 4 = next best; 3 = median; 2 = next
worst; 1 = worst

Table 4.2: Global preference and normalized
gain/loss functions

Global Normalized Normalized
Vehicle preference (J ) gain (pS) loss (pR)

A 9 0.133 0.067
B 9 0.267 0.333
C 10 0.200 0.133
D 9 0.200 0.200
E 8 0.200 0.267

define a preference function. Let us define this function as the equally-weighted sum
of the ordinal rankings of the three attributes; that is,

J = Performance + Reliability + Affordability,

where the affordability number is ordered such that the cheaper vehicle has the higher
affordability. The values of this preference function are displayed in the second col-
umn of Table 4.2. Clearly, the uniquely optimal option is vehicle C , the choice that,
although next worst in performance, is next best in both reliability and price. But asking
for the best deal is not the only rational question one might compose. For example,
suppose Lucy were to frame her question as: “Am I really going to get what I pay
for?” This question does not involve making inter-comparisons among options; rather,
it involves intra-comparisons of attributes for each individual vehicle. To make these
intra-comparisons, a natural procedure is to separate the attributes into two categories:
one to involve the attributes that represent gains to the decision maker as a result of
adopting the option, and the other to involve attributes that represent losses. A natural,
but not unique, categorization of this problem is to identify performance and reliability
as gains, and cost as loss. To compare gains and losses, they must be represented on the
same scale. This may be done by creating selectability and rejectability functions and
normalizing the problem so that the decision maker has a unit of gain utility and a unit
of loss utility to apportion among the options. We may do this by normalizing ordinal
rankings associated with each category, yielding the last two columns of Table 4.2,
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�C �D �E

Figure 4.1: Cross-plot of selectability and rejectability.

where we have reversed the ordering on the affordability attribute to convert it to cost.
These values constitute the selectability and rejectability functions, respectively.
We observe that selectability exceeds rejectability for options A and C , the gain equals
the loss for D, and the loss exceeds the gain for B and E .

Figure 4.1 provides a cross-plot of selectability versus rejectability as u is varied over
its domain, with pR the abscissa and pS the ordinate. Observe that, although A has the
lowest selectability, it also has the lowest rejectability, and a rational decision maker
can legitimately come to the conclusion that this is satisficing, since the benefits at least
outweigh the costs. Option B is at the other extreme. It has the highest performance, but
is also the most expensive. In the value system of the customer, however, the benefits
do not outweigh the costs, and the option is not satisficing. Option E is also easily
eliminated by the cost-benefit test. Now consider options C and D. According to the
PLRT, both are satisficing, and the customer would be justified in choosing either one.
Choosing D, however, would cost more than C without offering increased benefit.
Clearly, C should be preferred to D. It seems necessary, therefore, to classify the
satisficing solutions in more detail.
This example prompts a refinement of the satisficing set to eliminate satisficing

options that are dominated by other satisficing options. For every u ∈ U let

BS(u) = {v ∈ U: pR(v) < pR(u) and pS(v) ≥ pS(u)}
BR(u) = {v ∈ U: pR(v) ≤ pR(u) and pS(v) > pS(u)},

and define the set of options that are strictly better than u:

B(u) = BS(u) ∪ BR(u);

that is, B(u) consists of all possible options that are either less rejectable and not less
selectable than u, or are not more rejectable and more selectable than u. If B(u) = ∅,
then no options can be preferred to u in both selectability and rejectability. Such a u is
an equilibrium option (Stirling et al., 2002).
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Definition 4.1
The set of equilibrium options is

E = {u ∈ U: B(u) = ∅}. �

Definition 4.2
We define the set of satisficing equilibrium options as

Sq = E ∩ �q . �

Theorem 4.1
If U is closed and �q is not empty, then Sq is non-empty.

PROOF
Suppose E = ∅. Then for every u ∈ U either BS(u) �= ∅ or BR(u) �= ∅. Let u∗ be the
maximally discriminating option, that is,

u∗ = argmax
u∈U

{pS(u) − qpR(u)}. (4.1)

Since pS and pR are bounded andU is closed, u∗ ∈ U . We must establish that u∗ ∈ E.
Suppose BS(u∗) �= ∅. Then there exists a v ∈ U such that

qpR(v) < qpR(u
∗) and pS(v) ≥ pS(u

∗).

But this implies that

pS(v) − qpR(v) > pS(u
∗) − qpR(u

∗),

which contradicts (4.1); thus BS(u∗) = ∅. A similar argument establishes that

BR(u∗) = ∅. Consequently, B(u∗) = ∅, so u∗ ∈ E and E �= ∅.
Since pS(u) − qpR(u) ≥ 0 for all u ∈ �q and �q �= ∅, it follows that

pS(u
∗) − qpR(u

∗) ≥ 0, so u∗ ∈ �q . Thus u∗ ∈ Sq and Sq �= ∅. �

Clearly, the maximally discriminating option is a satisficing equilibrium point. If
q = 0, the most discriminating option is also the most selectable satisficing option, uS ,
(see (3.15)). This limiting case represents a very aggressive stance to achieve the goal
at the risk of excessive cost. A most selectable satisficing option may be considered for
cases with large variations in pS and small variations in pR .

Another limiting case occurs as q → ∞, resulting in the least rejectable satisficing
option, uR (see (3.16)). Adopting the least rejectable option is itself very conservative
and reflects awillingness to compromise the fundamental goal in the interest of reducing
cost. It may be appropriate when there are large variations in pR relative to small
variations in pS .
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As additional examples of satisficing equilibria, consider specifying a rejectability
levelρ ∈ (0, 1) and implementing the satisficing option thatmaximizes the selectability
subject to the constraint that the rejectability does not exceed ρ. Let

�ρ
q = {u ∈ �q: pR(u) ≤ ρ}.

The most selectable option of rejectability ρ is then

uρ = argmax
u∈�

ρ
q

pS(u).

If �
ρ
q = ∅, then a most selectable option of rejectability ρ does not exist. Alternatively,

one could implement the satisficing option that minimizes rejectability subject to a
selectability constraint to obtain a least rejectable option of selectability α:

uα = arg min
u∈�α

q

pR(u),

provided �α
q �= ∅, where, for α ∈ (0, 1),

�α
q = {u ∈ �q: pS(u) ≥ α}.
An important possibility emerges in the continuous case, when pS and pR are density

functions. Suppose pS is concave over U . That is, for λ ∈ [0, 1],

λpS(u1) + (1 − λ)pS(u2) ≤ pS(λu1 + (1 − λ)u2) for all u1 ∈ U, u2 ∈ U.

Also, suppose that pR is convex over U ; that is, for λ ∈ [0, 1],

λpR(u1) + (1 − λ)pR(u2) ≥ pR(λu1 + (1 − λ)u2) for all u1 ∈ U, u2 ∈ U.

For these classes of density functions, the following properties are important in devel-
oping a synthesis procedure.

Lemma 1
For continuous and concave selectability pS and continuous and convex rejectability
pR, E ⊂ {u ∈ U: p+

S (u)p
+
R (u) ≥ 0} ∪ {uS, uR} where

p+
S (u) = lim

λ↓0
pS(u + λ) − pS(u)

λ

denotes the right derivative of pS, and similarly define P+
R as the right derivative of

pR.

PROOF
Since uS and uR represent the most discriminating controls for q = 0 and q → ∞,
respectively, by the proof of Theorem 4.1, they are in E. For any other u ∈ E,
concavity of pS and convexity of pR imply that selectability and rejectability are
either both non-increasing or both non-decreasing in the neighborhood of u. Hence,
p+

S (u)p
+
R (u) ≥ 0. �
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If, in addition to being continuous, both pS and pR are differentiable with derivatives
denoted ṗS and ṗR , respectively, the equilibrium set satisfies

E ⊂ {u ∈ U: ṗS(u) ṗR(u) ≥ 0} ∪ {uS, uR}.

Moreover, for concave pS and convex pR the following lemma establishes a necessary
and sufficient condition for determining the equilibrium set.

Lemma 2
For differentiable concave pS and differentiable convex pR

E = {u ∈ U: ṗS(u) ṗR(u) ≥ 0} ∪ {uS, uR}.

PROOF
Let u ∈ {v ∈ U: ṗS(v) ṗR(v) ≥ 0} ∪ {uS, uR}. If u = uS or u = uR then u ∈ E since
the most discriminating control is always in the equilibrium set. Otherwise, u must sat-
isfy ṗS(u) ṗR(u) ≥ 0 which implies that ∃λ ≥ 0 such that ṗS(u) − λ ṗR(u) = 0. How-
ever, since the sum of two concave functions (pS(u) and−λpR(u)) is also concave then
the u which satisfies ṗS(u) − λ ṗR(u) = 0 is a most discriminating control for q = λ.
Since a most discriminating control cannot be dominated, u ∈ E. Thus,

E ⊃ {u ∈ U: ṗS(u) ṗR(u) ≥ 0} ∪ {uS, uR}.

This result, coupled with Lemma 1, establishes the desired result. �

Theorem 4.2
Let U ⊂ R. For pS a concave density function and pR a convex density function over
U, the satisficing set �q is convex. Moreover, for concave differentiable selectability
density and convex differentiable rejectability density, the equilibrium set E and the
satisficing equilibrium set Sq are convex.

PROOF
Convexity of the satisficing set is shown by establishing that, for u1 ∈ �q and u2 ∈ �q ,
the point vλ = λu1 + (1 − λ)u2 ∈ �q for any 0 ≤ λ ≤ 1. By concavity of pS and con-
vexity of pR , we get that

pS[λu1 + (1 − λ)u2] ≥ λpS(u1) + (1 − λ)pS(u2),

−pR[λu1 + (1 − λ)u2] ≥ −λpR(u1) − (1 − λ)pR(u2),

hence

pS[λu1 + (1 − λ)u2] − qpR[λu1 + (1 − λ)u2] ≥ λ[pS(u1) − qpR(u1)]

+ (1 − λ)[pS(u2) − qpR(u2)].
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Since u1, u2 ∈ �q we know that pS(u1) − qpR(u1) > 0 and pS(u2) − qpR(u2) > 0,
whence

pS(vλ) − qpR(vλ) > 0.

Thus �q is convex.
To establish the convexity of E, first note that, by Lemma 1,

E ⊂ {u ∈ U: ṗS(u) ṗR(u) ≥ 0} ∪ {uS, uR}.

If uS = uR then E = {uS}. Otherwise, let u1, u2 ∈ Ewith u1 < u2, and suppose ṗS(u1)
and ṗS(u2) are of opposite sign. Since pS is concave, this requires that ṗS(u1) > 0 and
ṗS(u2) < 0. For u1 and u2 to be elements ofE requires that ṗR(u1) > 0 and ṗR(u2) < 0,
which is impossible since pR is convex. Thus the directional derivatives of pS and pR

cannot change sign in E. Since pS is concave, there can be at most one sign change
in the derivative, so it can be concluded that ṗS(vλ) has the same sign as ṗS(u1) and
ṗS(u2). A similar argument holds for ṗR(vλ) and, consequently, ṗS(vλ) ṗR(vλ) ≥ 0.
So, by Lemma 2, vλ ∈ E. Finally, since the intersection of convex sets is convex, Sq

is convex. �

This theoremmeans that, for concave selectability and convex rejectability defined on
an intervalU = [umin, umax], themaximally satisficing set is also an interval.Moreover,
E = [min{uS, uR},max{uS, uR}].

The following theorem establishes an equivalence between the equilibrium set and
the set of most discriminating solutions. This theorem is useful because it says all
elements of E (not just the endpoints, uS and uR , are maximizing elements, whereas
Sq contains only satisficing and maximizing elements.

Theorem 4.3
Let U ∈ R, let pS be a concave selectability density, differentiable over the interior of
U, and let pR be a convex rejectability density, differentiable over the interior of U.
Then, for every u ∈ E, there exists a boldness value q ∈ [0, ∞) such that u is a most
discriminating satisficing option. Furthermore, if pS − qpR is strictly concave for every
q ∈ [0, ∞), then, for every such q, there corresponds a unique most discriminating
satisficing option.

PROOF
Let u ∈ E and define

u∗ = min{uS, uR},
u∗ = max{uS, uR}.
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Figure 4.2: Satisficing equilibrium regions for a concave pS and convex pR .

For these limiting cases, it has previously been established that by assigning boldness
values of q → ∞ and q = 0, respectively, uR and uS aremost discriminating satisficing
controls. Fix u ∈ (u∗, u∗). The function pS(v) − qpR(v) is extremized when ṗS(v) −
b ṗR(v) = 0. If ṗR = 0 then ṗS = 0 whence, by concavity of pS and convexity of
pR , v = uA = uL for any q. Otherwise, when ṗR �= 0, evaluating ṗS(v) − q ṗR(v) = 0
at v = u implies that qu = ṗS (u)

ṗR (u)
is the boldness required to render u a most discrim-

inating satisficing control. Furthermore, when pS − qpR is strictly concave for all
q ∈ [0, ∞), u = argmaxv∈(u∗,u∗){pS(v) − qpR(v)} is the unique most discriminating
satisficing option. �

Figure 4.1 illustrates the satisficing and satisficing equilibrium sets for a convex
differentiable pR and concave differentiable pS , with the selectability and rejectability
as functions of u, for q = 1. In the figure,�q consists of those u forwhich pS(u) exceeds
pR(u). The setSq consists of those u for which no optionwith higher selectability exists
for a given rejectability level and for which no option with lower rejectability exists for
a given selectability level. Observe that for u ∈ Sq the selectability and rejectability
have slopes with the same sign (see Lemma 2); whence options in this region are in
equilibrium.

4.2 Adequacy

Robert Browning’s sentiment that “a man’s reach should exceed his grasp”
(Browning, 1855) may be good psychology, but it is bad engineering. People may
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be motivated by aspirations that are higher than their abilities, but artificial systems had
better do the job they are designed to do. This realization has prompted engineers to
rely heavily on optimization as a design principle. If a system is designed to be the very
best possible, then, it is reasoned, either it will do the job or the job cannot be done.
There is safety in optimality.
There is also some danger. A tunnel-vision search for the best possible solution

blinds one to the existence of many other possible solutions that would be adequate.
And adequacy is often the real goal, not optimality. Optimality is sometimes simply a
way to insure adequacy.
For some applications, it may be possible or desirable to define minimum standards,

as is done in the case of extrinsic satisficing (see Section 1.3.1). For simple problems,
these minimum standards may be imposed a priori, and any options that do not meet
them may be eliminated without further ado, leaving only the securely satisficing op-
tions. Formore complex situations, however,minimum standardsmay be difficult, if not
impossible, to ascribe a priori, but theymay be ascertained a posteriori, that is, after the
satisficing set has been defined. Minimum standards imposed at this point may serve
to reduce the size of the satisficing set. To be so imposed will first require the standards
to be translated into selectability and/or rejectability thresholds. Let p∗

S and p∗
R denote

selectability and rejectability thresholds such that, if pS(u) < p∗
S or pR(u) > p∗

R , then u
must be rejected, even if pS(u) > pR(u). Then the restricted satisficing set is of the form

�r
q = {u ∈ U : pS(u) > pR(u), pS(u) > p∗

S, pR(u) < p∗
R}.

If the absolute standards are sufficiently high, then�r
q may be empty, in which case it

will be necessary to reduce boldness enough to accommodate the minimum standard.
In Example 4.1, Lucy may a posteriori impose an arbitrary threshold on performance
and reliability such that pS(A) < p∗

S . In this case, option A must be rejected, even
though it is satisficing. If she were to increase p∗

S sufficiently, she would be forced also
to reject option C as well, leaving no options in the restricted satisficing set. The only
way out of this predicament is for her to lower her standards of what is satisficing, that
is, to reduce boldness. By reducing q sufficiently, she will eventually conclude that
option B is satisficing relative to this new standard. However, B must also conform to
Lucy’s a posteriori standards regarding cost; if not, then she must conclude that there
is no vehicle on the market that meets her expectations.
Satisficing as implemented under intrinsic rationality is a principled way to make

dichotomous tradeoffs. Tradeoffs are themost fundamental kinds of decisions, and such
activity cannot be eliminated from even the seemingly most sophisticated forms of de-
cision making such as optimization, although they may manifest themselves in indirect
and even ad hoc ways. For example, every control engineer well knows that specify-
ing the performance criterion and solving for the optimum is only the first step in the
subjective exercise of controller design. Consider, for example, the elementary control
problemof designing an optimal linear quadratic regulator, where the goal is tomaintain
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the state of a linear dynamical system within acceptable deviations from a desired set
point while keeping the cost of control at an acceptable level. The tradeoff between
performance and cost is accomplished by adjusting the relative weights of these two
desiderata. Each weighting ratio leads to a different optimal control policy, and the
task for the designer is to tune the weights iteratively to achieve an acceptable balance.
In reality, there is no universally optimal solution – the “optimal” solution technique is
nothing more than a convenient and systematic design procedure to achieve a solution
that can be defended, at the end of the day, as being “good enough.”
Thus, even though satisficing is based on a different notion of rationality than con-

ventional decision making, in practice it may not be as different as it might first appear.
Tradeoffs are to be made in both cases, the main difference is when and how they
are made. With substantive rationality based approaches, the tradeoffs are made by
adjusting the numerical weights of the utility functions as a result of (possibly ad hoc)
evaluations of the solutions. When the designer is satisfied that the performance justi-
fies the cost, the design is accepted, and the solution is declared to be “optimal.” With
intrinsic rationality, tradeoffs are made by directly comparing the benefits against the
costs, and all options that satisfy that well-defined condition are admissible. Is one
approach more “rational” than another? Ultimately, that is a subjective judgment itself.

4.3 Consistency

The major difference between satisficing and optimizing is that satisficing requires the
formation of dichotomous tradeoffs, while optimization requires some form of mini-
mization or maximization that lacks intrinsic dichotomies. Both approaches, however,
may be governed by exactly the same criteria. If they are, then it would be reasonable
to expect that the optimal decision would also be a satisficing decision. In fact, it would
be difficult to have confidence in any satisficing methodology that did not generate
consistency of this type.
Every decision problem involves polarization. When considering any option, the

decision maker may evaluate it both in terms of the degree to which it satisfies the
demands of the problem and in terms of howmuch it costs to implement it. The tradeoff
between these two desiderata is the essence of decision making, regardless of the
mechanism used to form the decision. Praxeic utility theory keeps the two desiderata
separate, but optimization combines them into a single performance index. The way
this combining is done is somewhat arbitrary; the essential thing to ensure is that due
care be given to the relative weighting of the two desiderata that are to be combined.
It is simple to show that satisficing does not foreclose against optimization. Assuming

that �q �= ∅, we may define the utility function

J (u) = pS(u) − qpR(u).
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Let u∗ = argmaxu∈U J (u). But J (u) ≥ 0 ∀u ∈ �q and, since �q �= ∅, J (u∗) ≥
maxu∈�q J (u) ≥ 0, which implies u∗ ∈ �q . Thus, there exists an optimal solution cor-
responding to exactly the same criterion as is used to define the set of satisficing
solutions.
The following discussion pertains to the analysis of a discrete-time dynamic system

and establishes the consistency of satisficing solutions for the quadratic regulator. The
remainder of this chapter may be skipped without loss of continuity in the book’s
explication of praxeic utility theory.

Example 4.2 Consider a discrete-time system governed by the linear difference equation

xk+1 = Axk + B uk, k = 0, 1, . . . , t − 1.

xk is an n-dimensional column vector called the state vector of the system, A is an n × n matrix,
uk is the control variable, and B is an n × 1 matrix. The control problem is to choose the sequence
{u0, u1, . . . , ut−1} to drive the state from arbitrary initial conditions at k = 0 toward the origin at k = t
in a way that conserves energy consumed by the control variable.

We see that there are two separate desiderata: the error at the terminal time is given by1

e1 = xTt xt ,

and the total energy consumed by the control variable is

e2 =
t−1∑
k=0

u2
k .

The approach taken by conventional optimal control theory is to form a weighted
sum of these two desiderata, namely,

J (u0, u1, . . . , ut−1) = e1 + Re2

= xT
t xt +

t−1∑
k=0

Ru2
k,

and to solve for the sequence {u0, u1, . . . , ut−1} that minimizes J . The solution to this
problem is one of the elegant results of classical optimal control theory and provides a
feedback solution of the form

uk = −Kkxk,

where Kk is the Kalman gain matrix (see Lewis (1986)) given by

Kk = [BTPk+1B + R]−1BTPk+1A

1 The superscript T denotes the matrix transpose.
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with

Pk = ATPk+1(A − BKk),

where the backward recursion is initialized with Pt = I .
The practice of combining the twodesiderata into oneperformance index is somewhat

arbitrary. There is no fundamental justification for doing so, other than the need to settle
on one function to be minimized (it is not generally possible to find one control history
that will simultaneously minimize both e1 and e2). Forming the weighted sum of the
two criteria is also arbitrary. One might just as well consider minimizing the product
or, for that matter, any number of functions of e1 and e2. The sum is used primarily out
of tradition and convenience.
Even after settling on the sum, however, there is still a subtle point that is not

usually discussed by control theorists – the issue of inter-utility comparisons. Although
individual utilities are invariant with respect to positive affine transformations, utilities
cannot be compared with each other unless they are expressed in the same units. Thus,
we might assume that R is a units conversion factor between the units of u and the units
of x. In practice, however, this is not usually the case. Instead, R is treated as a design
parameter and is adjusted to ensure an acceptable compromise between the amount of
energy consumed and the size of the error. It is evident that what “optimality” brings
to this solution, aside from the aura of respectability, is that it provides a systematic
solution technique. At the end of the day there is no pretense that the solution that is
ultimately selected is the very best one possible. It seems that, even with the most basic
and elegant of optimization problems, one cannot completely escape some vestige of
the ad hoc.
Let us now generate satisficing solutions to the quadratic linear regulator problem.

Our approach is fundamentally different from the optimization approach. Rather than
identifying the unique “best” solution, we focus attention on eliminating poor solutions.
We do this by defining the appropriate selectability and rejectability functions and
applying the PLRT.
There is another significant difference between satisficing and optimization. Under

satisficing, we are not looking for a global solution that is the single best option out of
all that are available. Instead, we restrict our attention to a limited temporal extent. This
approach consists of implementing a feedback controller through a series of repeated
open-loop calculations based on the instantaneous state. For a discrete-time receding
horizon of length d, the next d values, {uk, . . . , uk+d−1}, are computed as functions of
the current state, xk . The control uk is implemented, producing a state xk+1, the horizon
is shifted forward one time unit, and the process is repeated. For example, a one-step
control horizon (d = 1) would require the design of only uk , the control for the current
time increment. For d = 2, both uk and uk+1 are required. For this problem, let us set
d = 1 and look only one step ahead by computing the satisficing set of controls only
for time k.
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We begin by setting upper and lower limits on the control variable. This step is not
necessary with the optimal approach, but it is certainly in conformity with reality. Every
practical control problem will have limited control authority. Let Um = (−um, um) be
a finite open interval representing the range of admissible controls.
To calculate selectability, observe that perfect regulation occurswhen x = 0.Viewing

k + 1 as the terminal time, the cost associated with this time is


(u, xk) = xTk+1xk+1

= [Axk + Bu]T[Axk + Bu].

Now define the function

gS(u, xk) = sup
v∈Um

{
(v, xk)} − 
(u, xk)}, (4.2)

since we desire control values that make 
 small in order to have high selectability.
To determine rejectability, observe that the resource is energy, and, irrespective of the
goal, we wish to reject values of u that consume power. Thus, at time k the rejectability
must be proportional to the power, given by

gR(u) = Ru2. (4.3)

Because gS and gR are quadratic in u for fixed xk , it is possible to identify the maximum
and the minimum of these local functions

uES
= arg max

u∈Um

gS(u, xk),

uER
= arg min

u∈Um

gR(u).

It is sufficient to allocate all of the selectability and all of the rejectability to the
equilibriumset. It is easily shown that, for quadratic performance indices, the boundaries
of the equilibrium set are determined by the maximum value of gS and the minimum
value of gR . Let

u∗ = min{uES
, uER

},
u∗ = max{uES

, uER
},

U = [u∗, u∗] = E

and assume um � |u∗| and um � |u∗| so that the boundaries of Um do not affect these
values.
Since gS(u, xk) is quadratic in u, it achieves its maximum at uEL

when restricted to
E. Hence,

pS(u; xk) = gS(u, xk)

GS(xk)
, (4.4)
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where the normalizing term is given by

GS(xk) =
∫ u∗

u∗
gS(v; xk)dv.

Similarly, since gS(u, xk) is quadratic, it assumes its unique maximum at uER
. Thus,

pR(u) = gR(u)

GR(xk)
(4.5)

where the normalizing term is given by

GR(xk) =
∫ u∗

u∗
gR(v)dv.

The most selectable and least rejectable controls are given by

uS = uES
= −[BTB]−1BTAxk, (4.6)

uR = uER
= 0. (4.7)

Because pS is concave and pR is convex, Sq is convex (see Theorem 4.2), which
implies that all possible satisficing equilibrium controls may be obtained via convex
combinations of uR and uS . For λ ∈ [0, 1] define uλ = λuR + (1 − λ)uS . For λ ≈ 0, the
control tends to reduce the accumulated cost at the expense of large terminal error, and
forλ ≈ 1, the control tends to reduce the terminal error at the expense of the accumulated
cost. Thus, λ is a design parameter for a synthesizing procedure. There exists a λD such
that the most discriminating control is given by uD = uλD . The most discriminating
control uD can be calculated directly in a manner similar to the calculations of uS and
uR (i.e., maximizing pS(u, xk) − qpR(u) with respect to u), yielding

uk = −[BTB + q ′R]−1BTAxk,

where

q ′ = q
GS(xk)

GR(xk)
. (4.8)

We may define the satisficing gain as

Kk = [BTB + q ′R]−1BTA,

so that uk = −Kkxk . The satisficing control for the linear quadratic regulator is a state-
feedback control and has a structure similar to the optimal feedback control. Because
the gain Kk is a function of the state xk (via q ′), however, the satisficing feedback is
not linear.
It may be useful to discuss some of the differences between the optimal and the

satisficing solutions.
� The optimal solution is a global solution. It requires knowledge of the system model
for the full extent of the problem. If the system model changes unpredictably, the
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Figure 4.3: Performance results for the single-agent linear regulator problem: (a) control history,
(b) phase plane.

solution is invalidated. The satisficing solution is a local solution. It requires knowl-
edge of the system only for the present. If the system model changes unpredictably,
the solution will adjust.

� The optimal solution guarantees convergence. The satisficing solution does not.
� The optimal solution requires that the model be linear. The satisficing solution does
not exploit linearity. For linear systems, the optimal solution ismore computationally
efficient than the satisficing solution. For nonlinear systems, however, closed-form
optimal solutions are generally not available and the computational burden of ap-
proximately optimal solutions may be significant. The computational burden for the
satisficing solution is independent of linearity.
To compare the optimal and satisficing control policies, let us use an unstable second-

order linear time-invariant system example taken from Kirk (1970). Let

A =
[

0.9974 0.0539
−0.1078 1.1591

]
, B =

[
0.0013
0.0539

]
, R = 0.05.

The resulting control histories are plotted in Figure 4.3(a), with the solid curves
representing the optimal control and the other two curves representing the one-step
satisficing control for two different values of boldness. The optimal trajectory is shown
in Figure 4.3(b) as the solid curve, and the solution of the one-step satisficing controller
is displayed by the other two curves using two different boldness values. For the sat-
isficing control, uD, the most discriminating control, was employed. The optimal cost
for this problem is Jopt = 1803, and the cost for the one-step controllers are J1 = 1973,
J1.6 = 1818. Thus, performance degrades approximately 10% when q = 1 and less
than 1% when q = 1.6 when if a satisficing solution is employed even with a planning
horizon of d = 1.
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The use of a receding horizon makes it possible to develop a tractable satisficing
controller using the principles of praxeic utility theory. As the length of the control
horizon, d, is increased, more of the future state values are taken into consideration for
the calculation of the current control. It is therefore reasonable to expect that perfor-
mance will improve with increasing d. The following theorem establishes the stronger
result that, in the limit as d approaches t f , the quadratic regulator satisficing control
will actually be equivalent to the optimal control.

Theorem 4.4
(Consistency of quadratic regulator) For the deterministic quadratic regulator problem

xk+1 = Axk + Buk, k = 0, 1, . . . , t − 1,

J (u0, u1, . . . , ut−1) = xTt xt +
t−1∑
k=0

Ru2
k .

If the control horizon spans the full extent of the problem, that is, for d = t , then the
most discriminating satisficing control is identical to the optimal control.

PROOF
The most discriminating control, denoted u = {u0, . . . , ut−1}, is
u = arg sup

v∈Rt
{pS(v) − qpR(v)},

where R
t = R × · · · × R, t times. From (4.4), (4.5), and (4.8),

arg sup
v∈Rt

{pS(v) − qpR(v)} = arg sup
v∈Rt

{gS(v) − q ′gR(v)}.

Also, from (4.2) and (4.3),

arg sup
v∈Rt

{gA(v) − q ′gL (v)} = arg inf
v∈RT

{
xTt xt + q ′

t−1∑
t=0

Ru2
k

}
.

Thus,

u = arg inf
v∈Rt

{
xT(t)x(t) + q ′

t∑
k=0

+Rv2
k

}
.

For q ′ = 1, this is exactly the optimal quadratic regulator solution. �

Theorem 4.4 also holds for nonlinear systems (see Goodrich et al. (1998)).
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Solum certum nihil esse certi.
The only certainty is uncertainty.

Pliny the Elder

Historia Naturalis, Bk ii, 7 (1535)

The will is infinite and the execution confined . . .
the desire is boundless and the act a slave to limit.

William Shakespeare

Troilus and Cressida, Act 3 scene 2 (1603)

That decision makers can rarely be certain is obvious. The question is, what are they
uncertain about? The most well-studied notion of uncertainty is epistemic uncertainty,
or uncertainty that arises due to insufficient knowledge. Such uncertainty is usually
attributed to randomness or imprecision. The effect of epistemic uncertainty is to in-
crease the likelihood of making erroneous decisions. The worst thing one can do in
the presence of epistemic uncertainty is to ignore it. It is far better to devise models
that account for as much of the uncertainty as can be described. Consequently, a large
body of theories of decision making in the presence of less than complete information
has been developed over many decades. I do not propose to give an exhaustive treat-
ment of the way epistemic uncertainty is accounted for under classical decision-making
paradigms, but instead summarize two ways to deal with uncertainty. The first is the
classical Bayesian approach of calculating expected utility, and the second is the use
of convex sets of utility functions.
There is a second type of uncertainty, which I term praxeic uncertainty. Praxeic

uncertainty does not deal with the insufficiency of knowledge. The option that is chosen
may be made with complete knowledge – correct in every respect. Evaluation of the
correctness of a solution, however, is not the whole story. We may also be interested
in how difficult it is for the decision maker to arrive at its choice or set of choices.
Praxeic uncertainty is an ecological issue, rather than a nescience issue, and deals with
the innate ability of the decision maker to accomplish its task. The effect of praxeic
uncertainty is to reduce the functionality and sensitivity of the decision maker. There
are two manifestations of praxeic uncertainty. The first, which I call equivocation,

89
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deals with the fitness, or suitability, of the decision maker to operate effectively in the
environment in which it must function. The secondmanifestation of praxeic uncertainty
deals with what I term quasi-invariance, which deals with a fundamental arbitrariness
of the decision problem that results, not from the lack of information, but from the
arbitrariness of the conventions that are used to ground the decision-making criteria.
This type of uncertainty deals more with questions of sensitivity than with correctness.

5.1 Bayesian uncertainty

With many decision-making models there exists a set of parameters, called the state of
Nature, denoted �, that influences the preferences of the decision maker and generates
a family of utility functions parameterized by θ ∈ �. The Bayesian approach to this
situation is to view θ as a random variable and ascribe a probability distribution to it,
called the prior, denoted PC . The prior may be used to calculate the expected value of
the utility function.
In the contexts of epistemic utility theory and praxeic utility theory, both the

selectability and rejectability measures may be functions of the state of Nature.
The expected epistemic utility function given by (3.6) becomes

π (A|ϑ) =
∑
u∈A

[pS(u|ϑ) − qpR(u|ϑ)],

where pS(·|ϑ) and pR(·|ϑ) are now indexed by1 ϑ ∈ �. Note that in Chapter 3 we
referred toπ as expected epistemic utility, where the expectationwas takenwith respect
to error avoidance, pS . Now, however, we have added an additional level of complexity
by considering the state of Nature, which means that the original expected epistemic
utility is now a random variable, since it is a function of the random variable θ . We
may average out the randomness by taking the expectation of the original expected
epistemic utility with respect to the prior, yielding

Eθπ (A) =
∑
u∈A

[ p̄S(u) − q p̄R(u)],

where Eθ is the mathematical expectation operator with respect to the random variable
θ , and

p̄S(u) =
∑
ϑ∈�

pS(u|ϑ)pC (ϑ),

p̄R(u) =
∑
ϑ∈�

pR(u|ϑ)pC (ϑ),

1 To distinguish between the random variable and the values that it assumes, let us use θ to denote the former and
ϑ to denote latter. Thus, we may make sense of such statements as PC [θ = ϑ].
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where pC is the credal probability that characterizes the state of Nature. Under the
Bayesian approach, p̄S and p̄R would be used to form the PLRT.

Example 5.1 Let us revisit Example 3.2, where Melba is trying to decide which message was sent. If
Milo’s favorite team is in town, there is a high likelihood that he would want to invite her to it, and that
information would cause her to reconsider her choice of pS . The trouble is, she does not know whether or
not that team is in town. The state of Nature for this problem is, therefore, Θ = {T , A }, where T stands
for the team being in town and A stands for the team being away.

Suppose, if the team were in town, that Melba’s belief state regarding the messages
would be described by the probability assignment

pS(M-1|T ) = 0.25,

pS(M-2|T ) = 0.50,

pS(M-3|T ) = 0.25,

and, if the team were away, her probability assignment would be

pS(M-1|A) = 0.5,

pS(M-2|A) = 0.0,

pS(M-3|A) = 0.5.

Melba’s prior is of the form pC (T ) = α, pC (A) = 1 − α, where 0 ≤ α ≤ 1, and the
expected selectability mass function is

p̄S(M-1) = 0.5 − 0.25α,

p̄S(M-2) = 0.5α,

p̄S(M-3) = 0.5 − 0.25α.

Using the values for rejectability as given in (3.9) and setting q = 1,Melba would never
reject (M-3) and would retain both (M-2) and (M-3) if α ≥ 0.6.

This approach is in the tradition of what is often termed “decision making under
risk.” According to this approach, the state of epistemic uncertainty is completely
characterized by a numerically definite prior distribution. This assumption fits well
with the von Neumann–Morgenstern concept of maximizing expectations, and the
decision maker simply maximizes its expected utility by averaging over all forms
of randomness, including the state of Nature. Another school of thought regarding
epistemic uncertainty is to deny the assertion that the state ofNature canbe appropriately
modeled as a random variable and to assert that epistemic uncertainty should not be
characterized by probability distributions. Adherents of this view often propose that,
in the presence of such uncertainty, the decision maker should adopt an extremely
conservative approach by viewing Nature as an adversary. Under this assumption,
decision making can be viewed as a zero-sum game between the decision maker and
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Nature, and the decision maker should choose the option that minimizes the maximum
damage that Nature can inflict.

5.2 Imprecision

Adecisionmakerwho does not have a clear understanding of how to specify preferences
regarding the conservation of resources is in a state of value conflict. A decision maker
who does not have a clear understanding of how to specify preferences regarding the
goals to be pursued is in a state of operational conflict. Strict Bayesian doctrine requires
that the decision maker, even if by fiat, declare all conflicts to be resolved. The device
used to effect this resolution is to impose a numerically precise prior. But rational
decision makers cannot be expected to be so decisive in their assessment of goals
and values that they are always willing to provide precise numerical specifications
for their utilities. Circumstances do not always provide a basis for resolving conflicts
before making a decision. Wisdom dictates that, when the decision maker is not in
possession of numerically definite utilities, the decision maker should be willing to
suspend judgment between all rational decisions that are seriously possible given the
data that are in its possession.

X may be conflicted between multiple informational valuations and may not be will-
ing to decide between, say, pR and p′

R , both of which capture aspects of informational
value but are not consistent. One way to address the existence of such conflicts is to
form a family of rejectability functions composed of all convex combinations of pR and
p′

R; that is, the family of functions of the form {pβ

R = βpR + (1 − β)p′
R : β ∈ [0, 1]}

as representing the range of informational values of the decision maker. The param-
eter β represents X ’s compromise between the conflicting informational valuation
systems.
If the set of rejectability functions used to represent X ’s informational values is a

convex set, a condition of informational convexity occurs. Let G denote a set of re-
jectability functions. We say that G is X ’s informational state, and assume that G �= ∅,
thus ensuring that X is never completely indifferent to the outcome of the decision
problem. Let us assume that G is convex; that is, if pR ∈ G and p′

R ∈ G then βpR +
(1 − β)p′

R ∈ G for all β ∈ [0, 1].We shall say that a condition of informational unique-
ness obtains if G consists of a singleton set, the rejectability function {pR}.
I do not attempt to prove that conservational convexity is the best way to deal with

unresolved conflict. But, by admitting any convex combination of rival rejectability
functions to be a rejectability function also, the decision maker does not rule out
any potential resolutions of the conflict. By permitting conflicting informational val-
ues to co-exist, there remains the possibility that future data will permit an ultimate
resolution.
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Suppose, rather than Melba being completely numerically definite regarding her
rejectability function and accepting the rejectability function provided in (3.9), she also
is considering the alternative rejectability function

p′
R(M-1) = 0.30,

p′
R(M-2) = 0.65, (5.1)

p′
R(M-3) = 0.05.

Melba can express this imprecision by the linear combination

pβ

R(M-1) = βpR(M-1) + (1 − β)p′
R(M-1) = 0.30 + 0.30β,

pβ

R(M-2) = βpR(M-2) + (1 − β)p′
R(M-2) = 0.65 − 0.30β,

pβ

R(M-3) = βpR(M-3) + (1 − β)p′
R(M-3) = 0.05,

where 0 ≤ β ≤ 1. The rejectability function pβ

R reflects the situation that Melba is not
completely sure about how to apportion her unit of informational value between (M-1)
and (M-2), so she parameterizes this specification with β, but she is quite sure that her
informational value for rejecting the marriage question is 0.05, so she will trade off
informational value between only (M-1) and (M-2). This formulation provides her with
a capability to hedge her feelings and to analyze how the epistemic uncertainty in her
informational value assessments propagates into her decision-making capabilities.
Melba may apply the expected epistemic utility rule in this situation. If she uses the

same uniform selectability as before and takes q = 1, she finds that she now has a set
of options to consider:

reject (M-2) only for β ≥ 0.1111,

reject (M-1) and (M-2) for β < 0.1111.

A decision maker may not only be conflicted regarding informational values, but
it also may be conflicted regarding its assessments of how to achieve its goals. The
selectability state of X is the set of all selectabilities that are regarded by X as seriously
possible descriptions of the inquiry under investigation. Let B denote the selectability
state for X relative to a given inquiry. Suppose pS ∈ B and p′

S ∈ B are two possible
selectabilities; X is unable to choose between them, and thereby displays its ignorance.
Aswith informational value, oneway to address this problem is to relax the requirement
for a numerically definite selectability and consider all convex combinations of pS

and p′
S .

If the selectability state is closed under all finite convex combinations, then a
condition of selectability convexity occurs. That is, if pS ∈ B and p′

S ∈ B, then
pα

S = αpS + (1 − α)p′
S ∈ B for α ∈ [0, 1]. The decision maker’s ignorance may be

expressed through a convex selectability state. If X has sufficient knowledge to warrant
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the specification of a single selectability, then a condition of selectability uniqueness
exists, and the selectability state contains exactly one selectability. Convexity permits
the decision maker to incorporate its ignorance into the decision problem by relaxing
the requirement that the distribution be numerically definite. Instead, it specifies a con-
vex region in the space of logically possible selectability functions to be considered as
serious possibilities.
Let us now establish an important convexity property. Suppose the set of prior mea-

sures forms a convex set. The following theorem (Levi, 1980) guarantees that the set
of posterior measures is also convex.

Theorem 5.1
Let B be a convex set of unconditional unit-normed measures and define the set of
conditional measures of the form

Bc =
{
ξG(·) = ξ (· ∩ G)

ξ (G)
: G ∈ F, ξ (G) > 0 ∀ξ ∈ B

}
.

Then Bc is convex.

PROOF
Let ξ ∈ B, ξ ′ ∈ B, and α ∈ [0, 1]. For any G ∈ F such that ξ (G) > 0 and ξ ′(G) > 0,
and for any set E ∈ F , we form the conditional measures

ξG(E) = ξ (E ∩ G)

ξ (G)
, ξ ′

G(E) = ξ ′(E ∩ G)

ξ ′(G)
,

both of which lie in Bc. For the convex combination

ξα(E) = αξ (E) + (1 − α)ξ ′(E),

the conditional measure

ξα
G(E) = ξα(E ∩ G)

ξα(G)

also lies in Bc. The theorem will be proved if there exists β ∈ [0, 1] such that

ξα
G(E) = βξG(E) + (1 − β)ξ ′

G(E) (5.2)

holds. Direct substitution shows that (5.2) holds for

β = αξ (G)

ξα(G)
.

Since 0 ≤ β ≤ 1, the theorem is proved. �

Meanwhile, Melba is still having problems determining which question was asked,
since she realizes that she is informationally conflicted. As she ponders, she realizes
that she is also conflicted with respect to her selectability state, since she arbitrarily
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specified the uniform distribution for her selectability state and she had no data or other
evidence to justify doing so. Being conservative, she reasons that her prior probability
is more appropriately modeled as a convex set of the form

pS(M-1) = κ,

pS(M-2) = λ,

pS(M-3) = 1 − κ − λ,

(5.3)

where κ and λ are such that

κmin ≤ κ ≤ κmax,

λmin ≤ λ ≤ λmax,

κ + λ ≤ 0.9,

where κmin, κmax, λmin and λmax are all in the open interval (0, 1) with κmin < κmax and
λmin < λmax. Equations (5.3) representsMelba’s selectability state. Figure 5.1 illustrates
this selectability simplex for κmin = λmin = 0.05 and κmax = λmax = 0.9.

As Melba contemplates how to resolve her problem, she recalls that Milo recently
withdrew a sum ofmoney from his bank. She reasons that, were he to proposemarriage,
he might use the money to purchase an engagement ring, but he also might need it to
purchase ball game tickets, which are moderately expensive. Letting W denote the act
of withdrawing the money, she determines conditional probabilities for withdrawing
the money, given the three possibilities, are P(W|M-3) = 0.74, P(W|M-2) = 0.25,
and P(W|M-1) = 0.01. These probabilities, though numerically precise, reflect local,
rather than global, behavior and isolate consideration to the decision problem at hand.
The localized nature of this context makes it easier to specify numerically precise

P (M-1)

P (M-2)

P (M-3)

Figure 5.1: The prior selectability simplex for Melba.
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probabilities than is the case for the general problem of specifying the selectability
mass function.
Applying Bayes theorem, Melba calculates that her posterior probability function is

P(M-1|W ) = 0.01κ

0.74 − 0.73κ − 0.49λ
,

P(M-2|W ) = 0.25λ

0.74 − 0.73κ − 0.49λ
,

P(M-3|W ) = 0.74(1 − κ − λ)

0.74 − 0.73κ − 0.49λ
.

Melba’s posterior selectability state is

0.01κmin

0.74 − 0.73κmin − 0.49λmin
≤ κ ≤ 0.01κmax

0.74 − 0.73κmax − 0.49λmin
,

0.25λmin

0.74 − 0.73κmin − 0.49λmin
≤ λ ≤ 0.25λmax

0.74 − 0.73κmin − 0.49λmax
,

κ + λ ≤ 0.9.

Figure 5.2 illustrates this selectability state for κmin = λmin = 0.05 and κmax = λmax =
0.9.
Using the same maximum and minimum values for κ and λ as before, the Melba’s

posterior selectability state becomes

0.0007 < κ < 0.1539,

0.0184 < λ < 0.8571.

P (M-1)

P (M-2)

P (M-3)

Figure 5.2: The posterior selectability simplex for Melba.
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5.3 Equivocation

Human decision makers often make qualitative assessments of the difficulty, in terms
of stress or tension, encountered in making decisions. Even if such knowledge does not
have a direct bearing on their immediate decisions, an appreciation of the ecological
difficulty involved in forming the decision is an important aspect of the decision-
making experience. A decision maker need not possess anthropomorphic qualities,
however, to assess the difficulty of making decisions. Nor do I propose to endow an
artificial decision maker with some sort of ersatz anthropomorphic capability. With
the comparative paradigm provided by praxeic utility theory, however, it is possible to
evaluate attributes of the decision problem that correspond more to the functionality
and fitness of the decision maker than to its ability to choose correctly.

5.3.1 Attitude

Are decisions easily made and implemented, or do they tax the capabilities of the
decision maker in fundamental ways? Such assessments are not a typical undertaking
of classical decision theory based on substantive rationality. Maximizing expectations
has no need to concern itselfwith issues such as “difficulty” (except perhaps as decisions
become “too difficult” in the sense that they exceed the decision maker’s computational
ability). Nevertheless, choices are not all of equal difficulty.
Consider Wendle’s situation in Example 3.4. Suppose the probability of rain is

β = 0.7. Wendle’s only rational choice under the maximum expectations paradigm
is to go to the game, even though it is highly likely that he will get wet. He makes this
decision because he strongly prefers the ball game to the museum. In this case, Wendle
is a gambling man and is prepared to live with the consequences, rain or shine.
Obviously, going to the game when the sun is likely to shine is an emotionally easy

decision, whereas going to the game when the probability of rain is moderately high is
emotionally more difficult. If the probability of rain is high, then Wendle’s emotional
state might cause him to question, up to the moment of truth, his desire to go to the
game. But any real doubt would, according to substantive rationality, simply cause him
to adjust his preferences, and hence his utilities, and to reassess his decision. We must
assume that issues such as the future state of Wendle’s health, his travel arrangements,
the time commitment involved, and so forth, were all carefully consideredwhenWendle
established his preferences and generated his utilities and therefore are not subject
to change. We also assume that unforeseen situations, such as accidents, that might
affect Wendle’s will or ability to carry out his rationally conceived decision, have been
accommodated in the evaluation of his expected utility.
As an expected utility maximizer, Wendle’s decision mechanism does not brook any

vacillation on the part of his will or ability. There is no room for equivocation. There is
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no way for Wendle to second-guess himself without sacrificing his rationality. In fact,
there is no way for him even to evaluate the difficulty of his decision, should he wish
to do so. His utility function cannot provide him with any such information – it simply
and dispassionately rank-orders his preferences and his decision mechanism instructs
him to act according to that ranking. Even if he concocts some measure of difficulty,
doing so is simply a post factum exercise that does not change his decision-making
procedure, provided that he remains committed to utility maximization.
Ace is also a gambling man who is prepared to live with the consequences of his

actions. Acting according to praxeic utility theory, however, affords him some means
of assessing the difficulty of making his decision. Unlike Wendle, who has only one
utility function to consider, Ace has two utility functions that are expressly designed
to make comparisons. Not only may he compare them, but he may manipulate them in
various ways with the hope of identifying selectability/rejectability relationships that
will characterize his “attitude” or “disposition” toward the problem at hand.
The difficulty for Ace (and for Wendle, too) does not derive from an epistemic

source – it is not due to epistemic uncertainty about the weather. Indeed, there is
only moderate uncertainty in that regard – with β = 0.7, it is more likely to rain. If
the probability of rain were to increase to, say, β = 0.74, the epistemic uncertainty
regarding the weather would be less, but the decision would be even harder. The reason
the decision is difficult is that there is a fundamental conflict between the two desiderata
that generate his two utility functions. Doing things in the interest of avoiding failure
(staying dry), as characterized by pS , is in opposition to the conservation of his resources
(personal enjoyment), as characterized by pR .

By employing two utilities, rather than only one, it is possible to analyze them in
order to establish the compatibility of the two sets of preferences that exist. If these
preferences are compatible, in that options that conserve resources also avoid failure,
then the decision maker is in a fortunate situation. If the preferences are incompati-
ble, in that options that avoid failure also are highly consuming of resources, then the
decision maker is fundamentally conflicted. These situations illustrate the attitudes, or
dispositions, of the decision maker.
The literature of substantive rationality is devoid of discussions of the attitudes or

dispositions of the decision maker who is assumed to be dispassionate. It is simply
doing what should be done according to rationality alone. Any attitudes or feelings,
should they even exist (and they need not), are completely irrelevant. Furthermore, to
attribute any anthropomorphic characteristics to such a decision maker might be seen
as nothing more than a concocted story line that is of marginal value, if not completely
misleading.
Attitudes, however, cannot be dismissed so easily, even in the sterile environment of

expectations maximization. Like it or not, restlessness, insatiability, and intemperance
are at least tacitly imposed even on an intransigent optimizer. Such attitudes can lead
to inflexible behavior. Especially in multi-agent environments, which I will consider in
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Chapter 6, they may lead to cynical and even antisocial behavior (to import additional
anthropomorphic, but highly relevant, terms).
Optimality does not ensure that the decision is satisfactory to the decision maker.2

If none of the available options achieve the goal adequately, or if all available options
result in extremely unpleasant side effects, adopting the optimal solution may simply
be making the best of a bad situation (whatever comfort that knowledge affords).
It is fortunate if an option that conserves resources (low rejectability) also avoids

failure (high selectability). In this circumstance, a decision maker is content. Many
interesting decision problems, however, are such that options that might be chosen in
the interest of avoiding failure are expensive, hazardous, or have other undesirable side
effects. A decision maker in this situation is conflicted. Contentment and conflict are
basic dispositional states that serve as guides to the decision maker’s functionality.
A situation requiring frequent high-conflict decisions will be a difficult one for the
decision maker. Making high-conflict decisions, however, is not a measure of how well
the decision maker is performing. It may, in fact, be making good, but unavoidably
costly, decisions. It is also true that a high-conflict environment may result in poor
performance because the decision maker is simply not resourceful enough to deal
adequately with its environment. Such a situation might serve as a trigger to prompt
changes in the decision maker, such as activating additional sensors, or seeking more
information about the environment through other means, or obtaining therapy in order
to improve its behavior. The situationmay also trigger a learningmechanism that allows
the decision maker to adapt itself better to the environment.
We may gain insight into the contentedness/conflict disposition of a decision maker

by examining its selectability and rejectability functions. For this analysis, we concen-
trate on the case involving only finitely many options (the theory also extends to the
case of a continuum of options, but little additional insight is gained by so doing). Since
selectability and rejectability are mass functions, it may be useful to appropriate some
additional mathematical machinery of probability theory to aid in interpreting them.
To this end, we introduce the concept of entropy.

Definition 5.1
The entropy of a mass function p is

H (p) = −
∑
u∈U

p(u) log2 p(u). �

It is easily shown (for example, see Ash (1965) or Cover and Thomas (1991)) that
entropy is non-negative; that is, H (p) ≥ 0 for all mass functions p defined over U .
Also, entropy is concave; that is, if p1 and p2 are two mass functions and 0 ≤ λ ≤ 1,

2 As a colleague of mine once noted, “When you travel on company business, the very best accommodations are
barely adequate.”
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then H [λp1 + (1 − λ)p2] ≥ λH (p1) + (1 − λ)H (p2). It is customary to use base 2
logarithms; doing so results in entropy units of bits, a coined word for binary digits.
Although such units are not relevant to our analysis, we will continue with the custom
of using base 2 logarithms.
To understand entropy, let us briefly digress and discuss its use in its conventional

setting, that of Shannon information theory. In this context, the epistemic uncertainty
of an outcome is the degree to which it is unlikely to occur. For a given probability
mass function p we define what is sometimes called the surprise function (see, e.g.,
Ross (2002)),

Sp(u) = log2
1

p(u)
= − log2 p(u).

The surprise function is a measure of the epistemic uncertainty associated with u and
quantifies the degree to which the outcome u can be anticipated. For example, suppose
p(u) ≈ 1, so Sp(u) ≈ 0. Intuitively, since the occurrence of u is highly probable, we
can predict with considerable confidence that the outcome of an experiment governed
by p will be u, and if the experiment were to be repeated many times, we would rarely
be surprised by the occurrence of any other outcome. In other words, the epistemic
uncertainty in the outcome will be reduced only slightly by actually performing the
experiment. Now, suppose p(u′) ≈ 0, so u′ is highly unlikely to occur. Then Sp(u′)
is large, indicating that great epistemic uncertainty is associated with predicting the
occurrence of that event, or, equivalently, epistemic uncertainty in the outcome is greatly
reduced by the occurrence of u′.

Entropy is the average value of epistemic uncertainty over all u ∈ U ; that is, it is the
average amount of surprise one receives upon learning the outcome of an experiment.
There are two equivalent interpretations of this quantity. On the one hand, H (p) can
be viewed as a measure of the average epistemic uncertainty in the outcome of an
experiment governed by p before it is conducted. On the other hand, it is a measure of
the average reduction in epistemic uncertainty after the experiment has been conducted.
Putting this latter interpretation slightly differently, entropy is the average increase in
epistemic certainty as a result of conducting the experiment.
To appreciate entropy in the context of praxeic utility theory, we require interpre-

tations of entropy for both selectability and rejectability in ways that are analogous
to the usual Shannon interpretation. This will involve two manifestations of praxeic
uncertainty, which we term praxeic uncertainty of the first kind and praxeic uncertainty
of the second kind.
Let usfirst consider praxeic uncertainty of thefirst kind, andview the expediencyof an

option as the degree towhich it leads to the avoidance of failure. Then inexpediency, the
degree to which an option leads to failure, is the notion of praxeic uncertainty associated
with selectability. It is analogous to epistemic uncertainty, the degree to which an
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outcome is unlikely to occur. In this context, the surprise function can be interpreted as
a futility function which quantifies the degree to which an option fails. To illustrate,
if pS is a selectability mass function and pS(u) ≈ 1, then SpS (u) ≈ 0, which indicates
that, since implementing u is highly selectable, there is little inexpediency associated
with doing so. Conversely, suppose pS(u′) ≈ 0. Then SpS (u

′) is large, indicating that
great inexpediency is associated with implementing that option. H (pS) then becomes
a measure of the average inexpediency (that is, the average futility) associated with
the decision problem before taking action. Equivalently, it is a measure of the average
reduction in inexpediency after taking action, or to put it slightly differently, it is the
average increase in the degree to which success (praxeic certainty of the first kind) is
achieved as a result of taking action.
To interpret the entropy of rejectability, let us view expense as the degree to which

resources are consumed, and consider its complement – inexpense – as praxeic uncer-
tainty of the second kind. In this context, the surprise function can be interpreted as
a frugality function. If pR(u) ≈ 1, then SpR (u) ≈ 0, which indicates that u is highly
rejectable, thus little inexpense (or, alternatively, very much expense) occurs if a highly
rejectable option is implemented. On the other hand, if pR(u′) ≈ 0 and u′ is imple-
mented, then SpR (u

′) is large, indicating that great inexpense (little, if any, expense)
obtains if u is implemented. H (pR) is a measure of the average inexpense, or frugality,
associated with the decision problem before taking action. Equivalently, it is a measure
of the average reduction in inexpense after taking action, or to put it more intuitively, it
is the average increase in the consumption of resources (praxeic certainty of the second
kind) as the result of taking action.
Let n be the cardinality of the option space U (assumed to be finite). Entropy

is maximized by the uniform distribution; that is, if p∗(u) = 1
n for all u ∈ U , then

H (p∗) ≥ H (p) for all mass functions p over U , and has entropy H (p∗) = log2 n.
A near-uniform pS would generate high average expediency, in that all options would
work equally well – but none would perform exceptionally well. A low-entropy pS

would indicate that most of the selectability mass is concentrated on a few options
that are conducive to the avoidance of failure. A near-uniform pR would generate high
average inexpense, meaning that all of the options cost the same, and none are inex-
pensive. A low-entropy pR indicates that the rejectability mass is concentrated on a
few options that consume a disproportionate amount of resource and, consequently,
there exists a subset of options that are inexpensive; implementing them will conserve
resources.

Definition 5.2
If pS(u) = 1

n (that is, selectability under pS is equal to the uniform distribution), then
the option is failure neutral. If the selectability mass function is uniform, then the
decision maker’s attitude will be one of neutrality in avoiding failure. �
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Definition 5.3
If pR(u) = 1

n (that is, rejectability under pR is equal to the uniform distribution), then
the option is conservation neutral. If the rejectability mass function is uniform, then
the decision maker’s attitude will be one of conservation neutrality. �

Definition 5.4
If pS(u) > 1

n (that is, the selectability of u under pS is greater than the selectability of
u under the uniform distribution), then u is attractive with respect to performance – u
is expedient. �

Definition 5.5
If pR(u) > 1

n (that is, the rejectability of u under pR is greater than the rejectability of
u under the uniform distribution), then u is unattractive with respect to cost or other
penalty – u is expensive. �

The relationship between selectability and rejectability permits the definition of four
dispositional modes of the decision maker with respect to each of its options. Let U be
the set of all possible options.

Definition 5.6
If u ∈ U is expedient and expensive, then the decision maker will be in a position of
desiring to reject, on the basis of cost, an option that is attractive in terms of avoiding
failure – it will be in a dispositional mode of ambivalence with respect to u. Let UA

be the set of all ambivalent options. �

Definition 5.7
If u ∈ U is inexpedient and inexpensive then the decision maker will desire the option
on the basis of cost, but will be reluctant to do so because of poor performance in
avoiding failure. The decision maker will be in a dispositional mode of dubiety with
respect to u. Let UD be the set of all dubious options. �

Definition 5.8
If u ∈ U is expedient and inexpensive, then the decision maker is in the position of
desiring to implement it – a dispositional mode of gratification with respect to u. Let
UG be the set of all gratifying options. �

Definition 5.9
If u ∈ U is inexpedient and expensive, then the decision maker will desire to reject it.
If the decision maker were compelled to adopt such an option, it would be in a state
of frustration. Since, however, not all of the decision maker’s options will be in this
category, it will always be able to refuse to adopt any such options. We thus say that,
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Figure 5.3: Dispositional regions: G = gratification, A = ambivalence, D = dubiety, R = relief.
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Figure 5.4: Example attitude states for a two-dimensional decision problem.

if u is inexpedient and expensive, then the decision maker is in a dispositional state of
relief with respect to u. Let UR be the set of all such options. �

Clearly,

U = UA ∪ UD ∪ UG ∪ UR.

These four modes provide a qualitative measure of the way the decision maker is
matched to its task. Gratification and relief are modes of contentment, while dubiety
and ambivalence are modes of conflict. To consider these modes, let us return again
to Example 3.4, and note that Ace’s attitude with respect to H is always one of relief.
His attitude with respect to M is one of ambivalence if β > 0.35, otherwise it is one of
relief. For G, his attitude is one of gratification if β ≤ 2

3 , one of dubiety if
2
3 < β ≤ 3

4 ,
and one of relief for β > 3

4 .
Figure 5.3 illustrates the dispositional regions for q = 1 (recall that q is the index

of boldness – see Section 3.3). As a further illustration of these modes, Figure 5.4
displays various cases for n = 2, a two-dimensional decision problem. In these plots,
the diagonal line represents the simplex and the pS and pR values are plotted as vectors
that lie on the simplex (i.e., the sum of the two components is one). For Figure 5.4(a)
the decision maker is dubious with respect to u1 and ambivalent with respect to u2,
for Figure 5.4(b) the decision maker is gratified with respect to u1 and relieved with
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respect to u2, and for Figure 5.4(c) the decision maker is neutral with respect to either
u1 or u2.

5.3.2 Figures of merit

Formal expressions to capture some of the features of the qualitative analysis described
in Section 5.3.1 utilize two measures that are similar but not identical. I term these two
figures of merit diversity and tension.

Diversity
One important feature of the selectability and rejectability functions is their dissimilar-
ity. To obtain a measure of dissimilarity, we again appeal to the notion of entropy and
apply the Kulback–Leibler distance measure.

Definition 5.10
The Kulback–Leibler (KL) distance measure of two mass functions, say p1 and p2,
is given by

D(p1‖p2) =
∑
u∈U

p1(u) log2
p1(u)

p2(u)
.

�

The KL distance measure is an indication of the relative entropy of two mass func-
tions. D(·‖·) is not a true metric; it is not symmetric and does not obey the triangle
inequality. It is, however, non-negative, and it is easily seen that D(p1‖p2) = 0 if and
only if p1(u) = p2(u) for all u ∈ U .
We may apply the KL distance measure to the problem of ascertaining the dissimi-

larity of the selectability and rejectability functions.

Definition 5.11
The diversity functional is:

D(pS‖pR) =
∑
u∈U

pS(u) log2
pS(u)

pR(u)
,

or, equivalently,

D(pS‖pR) = −
∑
u∈U

pS(u) log2 pR(u) − H (pS).
�

Small values of the diversity functional are obtained when the selectability and
rejectability functions are similar, indicating a condition of potential conflict. If they
are identical, then the decision maker is in a position of wishing to reject, on the basis
of cost, precisely the options that are in its best interest in terms of performance – an
unfortunate condition that may be totally paralyzing.
When n = 2 we may express selectability and rejectability mass functions by the

vectors pS = [s, 1 − s] and pR = [r, 1 − r ], respectively, as s and r each range over
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Figure 5.5: The contour plot of the diversity functional for a two-dimensional decision problem.

the unit interval, and the diversity function becomes

D(pS‖pR) = s log2
s

r
+ (1 − s) log2

1 − s

1 − r
.

Figure 5.5 illustrates a contour plot of the diversity functional for this case. Lighter
shading indicates greater diversity. Observe that the diversity value is low for s ≈ r ,
but increases as the difference between these values grows.
Returning to Example 3.2, Melba is still in her quandary regarding the message

received from Milo. With

pS = [0.333, 0.333, 0.333]

and

pR = [0.65, 0.35, 0.05],

Melba’s diversity is D(pS‖pR) = 0.57. Now suppose that, upon reflection, Melba
decides that the institution of marriage is not overwhelmingly more important than the
institution of athletics (this decision does not, however, necessarily reflect her personal
interest in either of these pursuits). This might cause her to recompute her rejectability
to become, say,

p′
R = [0.65, 0.25, 0.15].

Her diversitywould now be D(pS‖p′
R) = 0.20. Under the formermodel of rejectability,

Melba’s satisficing set under unit boldness (q = 1) is�q = {M-3}while, under the latter
model, it becomes �′

q = {M-2,M-3}. The latter decision problem is now not quite as
definitive for Melba as is the former one, where there was greater diversity between
selectability and rejectability.
Diversity is infinite if there exist options with nonzero selectability and zero re-

jectability. Such options are free options, since no cost independent of avoiding failure
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is incurred by adopting them (analogy: coasting saves fuel, but may or may not get you
to your destination). Diversity is not a measure of performance; that is, if one decision
maker has a more diverse selectability/rejectability pair than another, that is not an
indication that it will perform better than the other. It does, however, provide a measure
of the conflict experienced by the decision maker.

Tension
An alternative measure of the equivocation experienced by the decision maker is to
formulate a function that permits a convenient comparison with the state of being
neutral with respect to attitude. Although the diversity functional provides insight into
the relationship between selectability and rejectability, it does not afford a convenient
comparison with the case where the decision maker is neutral with respect to either
selectability or rejectability. To develop such ameasure, it is convenient to re-normalize
the selectability and rejectability functions. Consider first the case where pS and pR

are mass functions and U is finite. Let

pS = [pS(u1), . . . , pS(un)],

pR = [pR(u1), . . . , pR(un)]

be selectability and rejectability row vectors, and letµ = [ 1n , . . . , 1
n ] denote the uniform

mass function row vector, where n is the cardinality of U . Although these vectors are
unit length under the L1 norm, they are not of unit length under the L2 norm. It will

be convenient to normalize these vectors with respect to L2. Let |pS| =
√
pSpTS , with

similar definitions for |pR| and |µ|. The L2 normalized mass function vectors will be
denoted by p̃S = pS

|pS | and similarly for p̃R and µ.
We may express the similarity between pS and pR through the inner product of

the corresponding unit vectors, yielding the expression p̃Sp̃TR . This quantity will be
unity when pS ≡ pR , and will decrease as the two mass functions tend to become
orthogonal, thus capturing some of the properties we desire to model. If we normalize
by the product of the projections of pS and pR onto the uniform distribution, we tend
to scale up the inner product as the mass function vectors become distanced from the
uniform distribution.

Definition 5.12
The tension functional is

T (pS‖pR) = p̃Sp̃TR
p̃Sµ̃Tp̃Rµ̃T

,

which simplifies into the convenient form:

T (pS‖pR) = npSpTR = n
n∑

i=1

pS(ui )pR(ui ).
�
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When U is continuous, we consider the case where U is an interval, that is, U =
[a, b]. A similar analysis reveals that the tension functional becomes

T (pS‖pR) = (b − a)
∫ q

a
pS(u)pR(u)du.

Theorem 5.2
For U = {u1, . . . , un},
0 ≤ T (pS‖pR) ≤ n min{max

i
{pS(ui )},max

i
{pR(ui )}}.

If pS(ui ) = pR(ui ) for i = 1, . . . , n, then

1 ≤ T (pS‖pR) ≤ n max
i

{pS(ui )}.

For U = [a, b],

0 ≤ T (pS‖pR) ≤ (b − a) min{max
u∈U

{pS(u)},max
u∈U

{pR(u)}}.

If pS(u) = pR(u) for all u ∈ U, then

1 ≤ T (pS‖pR) ≤ (b − a) max
u∈U

{pS(u)}.

If either pS or pR is uniform, then

T (pS‖pR) = 1.

PROOF
Clearly, T (pS‖pR) is always non-negative. For U = {u1, . . . , un},

n
n∑

i=1

pS(ui )pR(ui ) ≤ n max
i

{pS(ui )}
n∑

i=1

pR(ui ) = n max
i

{pS(ui )}.

By a similar argument, n
∑n

i=1 pS(ui )pR(ui ) ≤ n maxi {pS(ui )}. Consequently,
T (pS‖pR) ≤ n min{max

i
{pS(ui )},max

i
{pR(ui )}}.

If pS(ui ) = pR(ui ) for i = 1, . . . , n, then, by Hölder’s inequality,
(

n∑
i=1

1

n
pS(ui )

)2

≤
n∑

i=1

1

n2

n∑
i=1

p2
S(ui ).

Simplifying,

1

n2
≤ 1

n

n∑
i=1

p2
S(ui ),
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Figure 5.6: The contour plot of the tension functional for a two-dimensional decision problem.

or, upon rearranging,

1 ≤ n
n∑

i=1

p2
S(ui ) = T (pS‖pS) ≤ n max

i
{pS(ui )}.

Suppose pS is uniform. Then

n
n∑

i=1

1

n
pR(ui ) = n

n

n∑
i=1

pR(ui ) = 1,

and similarly if pR is uniform.
The proof for U = [a, b] follows by a similar argument. �

If the rejectability function is uniform, then the decision maker is rejectability-
neutral. If the selectability is uniform, then the decision maker is selectability-neutral.
If T (pS‖pR) > 1, the decision maker is in a state of conflict, and if T (pS‖pR) < 1, the
decision maker is in a state of contentment. When n = 2, and with selectability and
rejectability mass vectors of the form pS = [s, 1 − s] and pR = [r, 1 − r ], the tension
function is

T (pS, pR) = 2[sr + (1 − s)(1 − r )].

Figure 5.6 illustrates tension for this case, with lighter shading indicating increased
tension. Comparing this figure with Figures 5.3 and 5.4 illustrates that the tension
function is consistent with the attitudinal properties of the decision maker, in that high-
tension regions correspond to dispositions of dubiety or ambivalence, and low-tension
regions correspond to dispositions of relief or gratification. Furthermore, when either
s or r is close to 0.5 (resulting in the uniform distribution), the tension is near unity,
indicating that the decision maker’s attitude is neutral.



109 5.4 Quasi-invariance

As an example of tension, consider Example 4.1, where Lucy is choosing a car.
Referring to the selectability and rejectability values provided in Table 4.2, the tension
is easily computed to be T (pS‖pR) = 1.09, which is somewhat less than the upper
bound of 5 × 0.267 = 1.335, indicating that she is slightly conflicted in her decision.

A decision maker operating in the mode of gratification is well-tuned to its task.
This is the situation when decisions that possess high selectability also possess low
rejectability. Such a decision maker should be expected to achieve its goals with ease.
A conservation-neutral decision maker will function much as would a conventional
Bayesian decision maker. If it is failure neutral, it will function much like a minimax
decision maker. If the decision maker is both conservation neutral and failure neutral,
it is completely indifferent to the outcome, and there is little point in even attempting
to make a decision other than randomly.
Diversity and tension are related concepts, but there are some significant differences.

For example, comparingFigures 5.5 and5.6 indicates that, along the line s = r , diversity
is constant (zero), while tension reaches a maximum of T (pS, pR) = 2 at s = r = 0
and s = r = 1, but dips to a saddle point of T (pS, pR) = 1 at s = r = 1

2 . Diversity and
tension, however, are not performance measures. They are simply figures of merit that
evaluate the structure of the selectability and rejectability functions and serve to some
extent as measures of the decision maker’s functionality.

5.4 Quasi-invariance

As they are generally applied in decision making, utilities are used to make intra-utility
comparisons; that is, they provide an ordering of preference among the options available
to the decision maker. One of the key properties of von Neumann–Morgenstern utility
theory is that the solution to a decision problem should be independent of the units
(scale and origin) in which the utility is expressed. This is the principle of invariance,
which holds that the solution should not change if utilities are scaled by positive affine
transformations. Difficulties may arise, however, if multiple utilities are employed and
the decision requires inter-utility comparisons; that is, comparing the value of one utility
function with the value of another utility function. Such comparisons are generally not
invariant to changes in scale or origin, and solutions may be affected by positive affine
transformations.
The issue of inter-utility comparison, also termed interpersonal comparisons of

utility, arises in traditional game theory, particularly in the theory of bargaining
(Nash, 1950), and in social choice theory (Harsanyi, 1977). In bargaining, as well as
in game theory generally, solutions are desired that are invariant to changes of scale
and origin of the utility functions involved. Consequently, interpersonal comparisons
are undesirable for such applications. Interpersonal comparisons are used extensively,
however, in social choice theory. To make such comparisons meaningful, it is essential
that the utility functions have the same origin and the same utility unit (Harsanyi, 1977).
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The comparisons of the type required by praxeic utility theory are similar in some
respects to the interpersonal comparisons made in social choice theory but are quite
different in other respects. In the social choice context, a decision maker must assess
the utilities that another separate decision maker would derive from various social
situations and compare these with the utilities that the decision maker would derive
from the same situations. For example, let X and Y be two decision makers, and
suppose X ’s utility function is fX and X ’s assessment of Y ’s utility function is f̂ Y .
If fX and f̂ Y have the same scale and unit, then X may make assessments such as:
“If f̂ Y (u) > fX (u), then u would be of more benefit to Y than it would be to me.” In the
praxeic utility context, however, X must compare different attributes of each proposition
by addressing questions such as: “If pS(u) > pR(u), then Iwill derivemore avoidance of
failure than resource consumption by not rejecting u.” These two types of comparisons
are different in that the former involves utility comparisons involving different decision
makers, whereas the latter involves comparisons involving different attributes of the
decision. The former requires a decision maker to evaluate how another decision maker
feels relative to itself, while the latter requires a decision maker to evaluate how it
feels regarding different criteria. In the former case, scale and origin are issues because
different decision makers may be operating with different units. In the latter case, scale
and origin are issues because the decision maker may conceivably attach different units
to the attributes of failure avoidance and resource consumption.
In one obvious sense, pS and pR are comparable since the special structure of pS and

pR as mass functions automatically provides them each with a unit mass to apportion
among the elements of U . To ascertain whether this structure is adequate to guarantee
meaningful comparisons betweenmass functions, wemust make a careful study of how
these utilities behave under positive affine transformations. Let p be a mass function
over an n-dimensional option space and let us transform this mass function using a
positive affine transformation such that the transformed utility is also a mass function.
Thus, we are restricted to transformations of the form

π (u) = εp(u) + δ

with ε > 0, subject to the constraints that π (u) ≥ 0, u ∈ U , and
∑

u∈U π (u) = 1.

Definition 5.13
A transformation, T , of a mass function is said to be isomassive if it preserves the unit
mass characteristics of the function; that is, if T [p(u)] ≥ 0 and

∑
u∈U T [p(u)] = 1.

�

Theorem 5.3
Let p be a mass function over a space U consisting of n elements. The transformation

Tε[p(u)] = εp(u) + 1 − ε

n
, (5.4)
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where 0 ≤ ε ≤ 1, is an affine isomassive transformation such that, if π = Tε[p], then

p(u) ≤ 1

n
implies p(u) ≤ π (u) ≤ 1

n
, (5.5)

p(u) ≥ 1

n
implies p(u) ≥ π (u) ≥ 1

n
. (5.6)

If ε > 1 − np(u0), where

u0 = argmin
u∈U

{p(u)}, (5.7)

then the transform

T −1
ε [p(u)] = 1

ε

[
p(u) − 1 − ε

n

]
(5.8)

is an affine isomassive transformation such that, if π = T −1
ε [p], then π is a mass

function such that

p(u) ≤ 1

n
implies π (u) ≤ p(u), (5.9)

p(u) ≥ 1

n
implies π (u) ≥ p(u). (5.10)

PROOF
Let π (u) = εp(u) + δ. For π to qualify as a mass function, we must have π (u) ≥ 0 for
all u ∈ U . Since it is possible that p(u) = 0 for some u ∈ U , in which case π (u) = δ,
δ must be non-negative. We must also have

∑
u∈U π (u) = 1, or∑

u∈U

[εp(u) + δ] = ε + nδ = 1,

which means that δ = 1− ε
n . The condition δ ≥ 0 thus implies ε ≤ 1. Finally, since the

transformation must be positive, ε must be non-negative, thus 0 ≤ ε ≤ 1.
To establish the ordering of p and π , suppose that p(u) ≤ 1

n . Then

(1 − ε)p(u) ≤ 1 − ε

n

or, upon rearranging,

p(u) ≤ εp(u) + 1 − ε

n
= π (u).

Furthermore,

π (u) = εp(u) + 1

n
(1 − ε)

= ε

(
p(u) − 1

n

)
+ 1

n

≤ 1

n
,
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since p(u) ≤ 1
n . Thus, p(u) ≤ π (u) ≤ 1

n . By a similar argument, it is easily established
that, if p(u) ≥ 1

n , then p(u) ≥ π (u) ≥ 1
n .

Also, it is immediately obvious that, if ε > 1 − np(u0) and π (u) = T −1
ε [p(u)],

then π (u) ≥ 0 for all u ∈ U and
∑

u∈U π (u) = 1, so π (u) is a mass function. Then
T −1

ε [·] is the inverse transform of Tε[·], and p(u) = Tε[π (u)], so (5.9) and (5.10)
hold. �

Observe that Tε and its inverse transform, T −1
ε , are order preserving so that, if

p(u1) ≤ p(u2), then T [p(u1)] ≤ T [p(u2)]. Note also, that the requirement that the
transformation of a mass function must also be a mass function imposes an additional
constraint that eliminates one of the degrees of freedom, so there is only one free pa-
rameter in the transformation, namely, ε. Consequently, there is no clear distinction
between scale and origin for this class of utilities. Since there are no clear analogs to
the notions of scale and origin for isomassive transformations, the notions do not apply,
and we must look for an alternative criterion for meaningful comparisons using this
family of utility functions.
To understand the effect of the transformation Tε , we apply the notion of entropy.

Theorem 5.4
Let p and π be two mass functions defined on a space U consisting of n elements such
that the relationships

p(u) ≥ 1

n
implies 1 > p(u) ≥ π (u) ≥ 1

n
, (5.11)

p(u) = 1

n
implies p(u) = π (u) = 1

n
, (5.12)

p(u) ≤ 1

n
implies 0 < p(u) ≤ π (u) ≤ 1

n
(5.13)

hold. Then H (π ) ≥ H (p).

PROOF
Let �(u) = π (u) − p(u) and define

U+ =
{

u ∈ U: p(u) >
1

n

}
,

U0 =
{

u ∈ U: p(u) = 1

n

}
,

U− =
{

u ∈ U: p(u) <
1

n

}
.
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Then

H (π ) − H (p) =
∑

U

[p(u) + �(u)] log2
1

π (u)
+

∑
u

p(u) log2 p(u)

=
∑

U

p(u) log2
p(u)

π (u)
+

∑
U

�(u) log2
1

π (u)

= D(p‖π ) +
∑
U+

�(u) log2
1

π (u)

+
∑
U0

�(u) log2 n +
∑
U−

�(u) log2
1

π (u)
.

For u ∈ U+, (5.11) implies that �(u) ≤ 0 and

log2
1

π (u)
≤ log2 n,

so

�(u) log2
1

π (u)
≥ �(u) log2 n.

Also, for u ∈ U−, �(u) ≥ 0 and

log2
1

π (u)
≥ log2 n,

so

�(u) log2
1

π (u)
≥ �(u) log2 n.

Thus,

H (π ) − H (p) ≥ D(p‖π ) +
∑

U

�(u) log2 n = D(p‖π ) ≥ 0,

since
∑

U �(u) = 0. �

From Theorems 5.3 and 5.4 we may conclude that Tε is an entropy-increasing trans-
formation and T −1

ε is an entropy-decreasing transformation. The effect of applying Tε is
to decrease the dynamic range of the mass function to make it flatter, or more uniform.
The flatter a distribution becomes, the higher its entropy. The more peaked it becomes,
the lower its entropy. Note that, if p is uniform, then it is a fixed point of the transfor-
mation, that is, p = Tε[p] for all values of ε. Any distribution that places all of its mass
on one point has zero entropy. It is not possible to transform an arbitrary mass func-
tion to a zero-entropy mass function by means of an affine isomassive transformation.
However, let us define the minimum-entropy transform as the transform T −1

ε0
, where

ε0 = 1 − p(u0), and u0 is given by (5.7). Under this transformation, the transformed
mass function of at least one element of U , namely, u0, will have zero mass.
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Thus, isomassive transformations serve only to modulate the entropy of the mass
function without changing the intra-probability orderings. Tε serves to make the hills
of the mass function less steep and the valleys less deep as ε becomes smaller. T −1

ε

serves tomake the hills of themass function steeper and the valleys deeper as ε becomes
smaller.
To evaluate the comparability of pS and pR we set q = 1, the nominal value of

boldness that assigns equal weight to selectability and rejectability.

Definition 5.14
An option u ∈ U is invariant with respect to disposition if arbitrary isomassive
transformations of pS and pR do not change the dispositional classification of u. �

Definition 5.15
Let p′

S be an arbitrary isomassive transformation of pS and p′
R be an arbitrary isomassive

transformationof pR .Anoptionu ∈ U is invariantwith respect toordering if pS(u) ≥
pR(u) implies p′

S(u) ≥ p′
R(u) and pS(u) ≤ pR(u) implies p′

S(u) ≤ p′
R(u). �

Definition 5.16
An option that is invariant with respect to disposition and is invariant with respect to
ordering for the modes of relief and gratification is said to be quasi-invariant. �

Let U be a finite set of options with selectability and rejectability functions pS and
pR , respectively.

Theorem 5.5
Every u ∈ U is quasi-invariant.

PROOF
Let p′

S = Tε1 [pS] be any isomassive transform of pS , and let p′
R = Tε2 [pR] be any

isomassive transform of pR . If pR(u) > 1
n and pS(u) < 1

n (relief), then by Theorem 5.3,
p′

S(u) < p′
R(u). Also, if pR(u) < 1

n and pS(u) > 1
n (gratification), then p′

R(u) < p′
S(u).

Now suppose pR(u) > 1
n and pS(u) > 1

n (ambivalence) or pR(u) < 1
n and pS(u) < 1

n

(dubiety). By Theorem 5.3, isomassive transformations preserve these dispositional
modes, since p′

R(u) > 1
n and p′

S(u) > 1
n or p′

R(u) < 1
n and p′

S(u) < 1
n . Inter-utility

ordering is not preserved for these dispositions, however, since it is not necessarily
true that, for example, pS(u) > pR(u) implies p′

S(u) > p′
R(u). Thus, comparisons of

pS and pR are invariant with respect to disposition for all dispositional modes and are
invariant with respect to ordering for the modes of relief and gratification. �

Quasi-invariance characterizes the properties of satisficing decisions with boldness
of one. Invariance with respect to disposition tells us that isomassive transformations
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cannot alter the basic attitudinal properties of a decision problem. If a decision is
gratifying under one set of selectability and rejectability pairs, it will remain so under
any isomassive transformations of the pair; similarly for the other modes.
With respect to the modes of contentment (gratification and relief), the theorem also

tells us that these modes are stable, in that isomassive transformations will not alter the
ordering of selectability and rejectability and hence will not alter the decision (at least
with unity boldness). To illustrate, let p′

S be an isomassive transform of pS , and sup-
pose u is such that pR(u) > 1

n and pS(u) < 1
n . Then p′

S(u) < pR(u) for all admissible
ε. In other words, an option that was formerly very unattractive cannot be made at-
tractive by an isomassive transformation. Similarly, if pS(u) > 1

n and pR(u) < 1
n , then

p′
S(u) > pR(u), meaning that a highly attractive option cannot be made unattractive by

an isomassive transformation.
The dispositional modes of ambivalence and dubiety are the modes of conflict. In

these modes, decision making is the most difficult. Although these modes cannot be
altered by isomassive transformations, the selectability–rejectability orderings within
the regions UA and UD are not invariant. It is not surprising that these modes would be
sensitive to the precise numerical values of the selectability and rejectability functions.
They are necessarily unstable modes.
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Unless we make ourselves hermits, we shall necessarily influence each other’s opinions; so that the
problem becomes how to fix belief, not in the individual merely, but in the community.

Charles Sanders Peirce

The Fixation of Belief, Popular Science Monthly (1877)

Decision makers are usually not hermits and do not function in isolation from others.
They are usually influenced by the opinions (i.e., preferences) of other decisionmakers,
and their problem is one of how to select a course of action, not only for themselves,
but for the community. If each individual were to possess a notion of rationality for the
group as well as a notion of rationality for itself, it might be in a position to improve
its behavior.
Group rationality, however, is not a logical consequence of rationality based on

individual self-interest. Under substantive rationality, where maximization of indi-
vidual satisfaction is the operative notion, group behavior is not usually optimized
by optimizing each individual’s behavior, as is done in conventional game theory.
Unfortunately, those who put their final confidence in exclusive self-interest may ulti-
mately function disjunctively, and perhaps illogically, when participating in collective
decisions.
The point of departure for conventional game theory is games of pure conflict, with

the prototype being constant-sum games, where one player’s loss is another player’s
gain. For a constant-sum game, any notion of group-interest is vacuous; individual self-
interest is the only appropriate motive. Non-constant-sum games represent non-purely
conflictive situations, but though a vast theory of games has been developed, its main
emphasis is on conflict. Schelling (1960) has developed what he calls a “reorientation”
of game theory, wherein he attempts to counterbalance the notion of conflict with
a game-theoretic notion of coordination. The antipodal extreme for a game of pure
conflict is a game of pure coordination, where all players have coincident interests and
desire to take actions that are simultaneously of self and mutual benefit. In contrast to
pure conflict games where one player wins only if the others lose, in a pure coordination
game either all players win or all lose. In general, games may involve both conflict and
coordination; Schelling terms such games mixed-motive games.

117
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Table 6.1: The payoff matrix for a
zero-sum game with a coordination
equilibrium

X2

X1 C1 C2

R1 (0, 0) (0, 0)
R2 (0, 0) (1, −1)

Although Schelling’s attempt at reorientation is useful, it is not a fully adequate way
to mitigate the notion of conflict, since his reorientation does not alter the fundamental
structure of game theory as ultimately dependent on the principle of individual rational-
ity. Lewis attempts to patch up the problem by introducing the notion of coordination
equilibrium as a refinement of Nash equilibrium. Whereas a Nash equilibrium is a
combination in which no one would be better off had he alone acted otherwise, Lewis
(1969) strengthens this concept and defines a coordination equilibrium.

Definition 6.1
A coordination equilibrium is a combination in which no one decision maker would
have been better off had any one decision maker alone acted otherwise, either himself
or someone else (Lewis, 1969, p. 14). �

Coordination equilibria are common in situations of mixed opposition and coinci-
dence of interest. In fact, even a zero-sum game can have a coordination equilibrium,
as is evident from the example displayed in Table 6.1, taken from Lewis (1969), where
(R1,C1) is a coordination equilibrium. Attempts to reorient game theory, while perhaps
desirable for coordination scenarios, are not entirely successful; the issue of mitigating
individual rationality is not resolved.
Rather than reorienting game theory to accommodate situations where coordination

is a more natural operational descriptor of the game than is conflict, I propose to
change the foundational cornerstone of the theory. My goal is to arrive at a notion
that is completely neutral with respect to conflictive and coordinative descriptors and
equally accommodates both of them. By so doing, we may unify the solution concept
so that there will not be a need to seek different equilibria.
The price to be paid for complete conflict/coordination neutrality is the abandonment

of the rigid principle of optimization, which I propose to replace with the more pliable
notion of satisficing. Satisficing admits degrees of fulfillment, whereas optimization is
absolute. Thus, while the assertion “What is best for me and what is best for you is also
jointly best for us together” may be nonsense, the statement “What is good enough for
me and what is good enough for you is also jointly good enough for us together” may
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be perfectly sensible, so long as the notions of what it means to be good enough are
not inflexible. Satisficing grants room for compromise. There is the opportunity for one
or both parties to relax their standards of individual performance in the interest of the
good of the dyad.
This chapter presents a theory of multi-agent decision making that is based on the

new concept of satisficing presented in Chapter 3. The result is a new theory of games,
called satisficing games (Stirling and Goodrich, 1999a). The development proceeds as
follows: first, a way to express both group and individual preferences is defined in a
way that accounts for the interdependencies that exist between decision makers. Next,
a multi-agent version of praxeic utility theory is developed. Finally, the consequences
of this model of group and individual behavior are investigated.

6.1 Joint and individual options

We have seen that, in addition to the superlative paradigm, a comparative paradigm
for decision making under conditions of intrinsic rationality is possible. Further, we
have developed formalisms for such a paradigm based on the dichotomy between
avoiding failure (selectability) and conserving resources (rejectability). Key features
of this paradigm are: (a) it admits set-valued, rather than point-valued decisions, and
(b) decisions are based on a notion of satisficing that has been formalized and made
mathematically precise through the application of praxeic utility theory.
Thus far, we have applied praxeic utility theory to single decision makers, but there

is no reason, as far as the theory is concerned, why it cannot be extended to the multi-
agent case, with the option space consisting of option vectors where each element of the
vector corresponds to a particular individual. In fact, in the development of the game
in Example 3.4, we viewed Nature as at least a passive player of the game and formed
the utilities accordingly.
Since they possess the mathematical structure of probabilities, selectability and re-

jectability can be extended naturally to the multivariate (i.e., multi-agent) case by
defining joint selectability and rejectability measures which may then be used to eval-
uate a joint dichotomy to establish the notion of joint satisficing for the community.
In addition, individual decision makers may establish individual notions of satisfic-
ing by computing their marginal selectability and rejectability values from the joint
expressions. In this way, both group and individual preferences may be expressed.

Definition 6.2
An N -membermulti-agent system (N a positive integer), denotedX = {X1, . . . , XN },
is a collection of N decision makers, each with its option space Ui , i = 1, . . . , N . �
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6.2 Interdependency

Our ultimate goal is to construct joint selectability and joint rejectability functions from
which we may identify the joint options that are satisficing from the point of view of
the entire community. We may then extract the individual selectability and rejectability
functions as the marginals of these joint functions, from which we may identify the
options that are individually satisficing. To achieve this goal, however, we must first
deal with a more fundamental issue: the interconnections between selectability and
rejectability.
In our development of praxeic utility theory, we determined the selectability of

options by examining them in the light of the support they lend to the avoidance
of failure, without taking into consideration the conservation of resources. We also
determined the rejectability of options by examining them strictly in terms of the
resources they consume, without taking avoidance of failure into consideration. This
separation of interests is possible when only a single decision maker is involved, but in
an environment of multiple decision makers, it is not generally possible to determine
selectability and rejectability in isolation from each other.
An act by any individual member of a multi-agent system has possible ramifica-

tions for the entire system. Some participants may be benefited by the act, some may
be damaged, and some may be indifferent. Furthermore, although an individual may
perform the act in its own interest or for the benefit of others or the entire system, the
act is usually not implemented free of cost. Resources are expended, or risk is taken,
or some other penalty or unpleasant consequence is incurred, perhaps by the individ-
ual whose act it is, perhaps by other participants, and perhaps by the entire system.
Although these undesirable consequences may be defined independently from the ben-
efits, the measures associated with benefits and costs cannot be specified independently
of each other, due to the possibility of interaction. A critical aspect of modeling the
behavior of such a system, therefore, is the means of representing the interdependence
of both positive and negative consequences of all possible joint options that could be
undertaken.

Example 6.1 Lucy and Ricky are going to buy the family car. Lucy gets to choose the make, either
a Porsche (P) or a Honda (H), and Ricky gets to choose the number of seats, either two (T) or four (F).
Selectability for them is defined in terms of style, and rejectability is measured in terms of the number
of passengers that can be accommodated (the fewer the passengers, the greater the consumption and
hence the lower the conservation).

Being praxeic utility enthusiasts, Lucy and Ricky wish to identify a set of satisficing joint options.
To do so, they must compute their joint selectability and rejectability mass functions, denoted by

pSLSR : {P , H } × {T , F } → [0, 1],

pRL RR : {P , H } × {T , F } → [0, 1],
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respectively.1 These functions can be determined in isolation from each other only if issues of joint
selectability are completely separated from issues of joint rejectability. This would mean, for example,
that even if Lucy knew that that Rickywere committed to rejecting T , shewould not changeher assessment
of the selectability of P (assuming she at least unconditionally highly favors P ), even though the joint
option (P , F ) is impossible. If, however, such conditional knowledge would influence Lucy’s assessment,
then the joint selectability and joint rejectability cannot be specified in isolation.

This example illustrates that we must look to a more fundamental structure to
capture the inter-relationships that may exist between joint selectability and joint
rejectability.

6.2.1 Mixtures

A natural way to account for inter-relationships is to express joint selectability and
joint rejectability as marginals of a more general measure, which we may call interde-
pendency. This will require us to examine subsets of options by multiple players. To
develop the notion of interdependence and to define the interdependence measure, we
require a number of definitions.

Definition 6.3
A mixture is any subset of decision makers considered in terms of their interaction
with each other, exclusively of possible interactions with other decision makers not
in the subset. A selectability mixture, denoted S = Si1 · · · Sik , is a mixture consisting
of Xi1, . . . , Xik that is considered exclusively from the point of view of avoidance of
failure. The joint selectability mixture is the selectability mixture consisting of all de-
cisionmakers in the multi-agent system, denoted S = S1 · · · SN . Amyopic selectability
mixture is a mixture of the form S = Si . It occurs when an individual decision maker
views its avoidance of failure as though it were functioning with complete disregard
for all other decision makers. A rejectability mixture, denoted R = R j1 · · · R j� , is a
mixture consisting of X j1, . . . , X j� and is considered exclusively from the point of view
of resource conservation. The joint rejectability mixture is the rejectability mixture
consisting of all decision makers in the system, denoted R = R1 · · · RN . A myopic
rejectability mixture is a mixture of the formR = Ri .
An intermixture is the concatenation of a selectability mixture and a rejectabil-

ity mixture and is denoted SR = Si1 · · · Sik R j1 · · · R j� . The joint intermixture is the
concatenation of the joint selectability and joint rejectability mixtures and is denoted
SR = S1 · · · SN R1 · · · RN . A myopic intermixture is a mixture of the form SR =
Si Ri . �

1 In general, the product set notation notation A× B, for any sets A and B, means the set of all ordered pairs (x, y),
where x ∈ A and y ∈ B.
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Definition 6.4
Given arbitrary option spaces Ui j , j = 1, . . . ,m, the product option space, de-
noted Ui1 × · · · ×Uim , is the set of all m-tuples u = (ui1, . . . , uim ) where ui j ∈ Ui j ,
j = 1, . . . ,m. A rectangle in Ui1 × · · · ×Uim is a subset of the form

Fi1 × · · · × Fim = {(ui1, . . . , uim ): ui j ∈ Fi j , j = 1, . . . ,m}.
The joint (selectability or rejectability) option space is the product space U =

U1 × · · · ×UN . Elements of U are called option vectors or joint options. The se-
lectability subspace associated with a selectability mixture S = Si1 · · · Sik is the prod-
uct space US = Ui1 × · · · ×Uik . Elements of US are called selectability sub-vectors.
The rejectability subspace associated with a rejectability mixture R = R j1 · · · R j�
is the product space UR = Uj1 × · · · ×Uj� . Elements of UR are called rejectability
sub-vectors.
The joint interaction space is the product space U × U. Elements of U × U are

called interaction vectors. The interaction subspace associated with an intermixture
SR = Si1 · · · Sik R j1 · · · R j� is the product spaceUSR = Ui1 × · · · ×Uik ×Uj1 × · · · ×
Uj� , Elements of USR are called interaction sub-vectors. �

Definition 6.5
A selectability measure PS for the mixture S = Si1 · · · Sik is a normalized measure
(i.e., PS(US) = 1) defined over the measurable subsets of US .2 We will denote this
measure as PS or, alternatively, as PSi1···Sik . The joint selectability measure PS is a
selectability measure for the joint selectability mixture S. A rejectability measure for
themixtureR is a normalizedmeasure PR = PRj1···R j�. The joint rejectabilitymeasure
PR is a rejectability measure for the joint rejectability mixture R.
An interdependence measure PSR for the intermixture SR is a normalized mea-

sure defined over the measurable subsets of US × UR. The joint interdependence
measure, PSR, is an interdependence measure for the joint intermixture SR. Amyopic
interdependence measure for a single agent is of the form PSi Ri , but, because of
the requirement that single-agent selectability and rejectability be specified indepen-
dently, a myopic interdependence measure must factor into the product of the myopic
selectability and rejectability measures, that is, PSi Ri = PSi PRi for i = 1, 2, . . . , N .3

�

The joint interdependence measure provides a complete description of all indi-
vidual and group relationships in terms of their positive and negative consequences.

2 A measurable set is an element of a σ -field of sets (i.e., a collection of sets that is closed under complementation
and countable unions). When the Ui s are finite the σ -field will be taken as the power set of US , and when the
Ui s are a continuum, the σ -field is the Borel field over US . Normalized measures are probability measures, but
to emphasize that the context here does not involve randomness, we use the term selectability and rejectability
in lieu of probability.

3 This situation is analogous to the probabilistic notion of independence, whereby the probability of independent
events factors into the product of the probabilities of the events.
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Let V ⊂ U andW ⊂ U be two sets of option vectors; that is, V × W is a rectangle in
U × U. Then PSR(V × W) is a representation of the failure avoidance associatedwithV
and the resource conservation associated with W when the two option vector sets are
viewed simultaneously. In other words, PSR(V × W) characterizes the disposition of
the decision-making system with respect to selectingV (in the interest of avoiding fail-
ure) and rejectingW (in the interest of conservation). Particularly when V ∩ W �= ∅, it
may appear contradictory to consider simultaneously rejecting and selecting options.
It is important to remember, however, that considerations of selection and rejection
involve two different criteria. It is no contradiction to consider selecting, in the interest
of achieving a goal, an option that one would wish to reject for unrelated reasons, nor is
it a contradiction to consider rejecting, because of some undesirable consequences, an
option one would otherwise wish to select. Evaluating such tradeoffs is an essential part
of decision making, and the interdependence measure provides a means of quantifying
all issues relevant to this tradeoff.

6.2.2 Conditioning

It may appear that the construction of the interdependencemeasure will be a formidable
task. Fortunately, however, the fact that it is a probability measure provides a greatly
simplified means of constructing it. First, we require some additional definitions.

Definition 6.6
Given an intermixture SR = Si1 · · · Sik R j1 · · · R j� , a sub-intermixture of SR is an
intermixture formed by concatenating subsets of S andR:

S1R1 = Sip1 · · · Sipq R jr1 · · · R jrs ,
where {i p1, . . . , i pq } ⊂ {i1, . . . , ik} and { jr1, . . . , jrs } ⊂ { j1, . . . , j�}. We shall use the
notation S1R1 ⊂ SR to indicate that S1R1 is a sub-intermixture of SR.
The SR-complementary sub-intermixture associated with a sub-intermixture

S1R1 of an intermixtureSR, denotedSR\S1R1, is an intermixture created by concate-
nating the selectability and rejectability mixtures formed by the relative complements
of S and R; that is, SR\S1R1 = (S\S1)(R\R1). Clearly, SR\S1R1 ⊂ SR. SR is
the union of SR\S1R1 and S1R1, denoted SR = SR\S1R1 ∪ S1R1. �

We require that interdependence measures be consistent, that is, for any sub-
intermixture S1R1 of an intermixture SR we require

PS1R1 (F) = PSR(F × USR\S1R1 ),

PSR\S1R1 (G) = PSR(US1R1 × G)

for all rectangles F × G ⊂ US1R1 × USR\S1R1 . This requirement means that the se-
lectability and rejectability measures are consistent with the interdependence measure,
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that is,

PSi1 ···Sik (Vi1 × · · · × Vik ) = PSi1 ···Sik R j1 ···R j� (Vi1 × · · · × Vik ×Uj1 × · · · ×Uj�)

and

PRj1 ···R j� (Wj1 × · · · ×Wj�) = PSi1 ···Sik R j1 ···R j� (Ui1 × · · · ×Uik ×Wj1 × · · · ×Wj�).

In particular, the joint selectability and joint rejectability measures are consistent
with the joint interdependence measure:

PS(V) = PSR(V × U), (6.1)

PR(W) = PSR(U × W). (6.2)

The primary vehicle for relating intermixtures and sub-intermixtures is through the
use of transition functions (as defined, for example, byNeveu (1965).Wemay construct
the joint interdependencemeasure bypartitioning the system into intermixtures and then
relating the intermixtures through transition interdependence functions.

Definition 6.7
Let SR be an intermixture and let S1R1 be a sub-intermixture of SR. A transition
interdependence function, denoted PSR\S1R1|S1R1 , is a mapping such that:
(a) for every u ∈ US1R1 , PSR\S1R1|S1R1 (·|u) is a normalized measure over USR\S1R1 ;

and
(b) for every measurable set F ⊂ USR\S1R1 , PSR\S1R1|S1R1 (F|·) is a point-valued func-

tion on US1R1 .
Let us assume that all transition interdependence functions are consistent with inter-

dependence measures. If SR is an arbitrary intermixture with sub-intermixture S1R1,

PSR(F × G) =
∫
F
PSR\S1R1|S1R1 (G|f)PS1R1 (df) (6.3)

for all measurable F ⊂ US1R1 and all measurable G ⊂ USR\S1R1 . �

Equation (6.3) provides the essential mechanism for relating behavior considered in
isolation to behavior considered in a group and serves as an important building block for
constructing the joint interdependencemeasure from local components. To see how this
is accomplished, let S1R1 be an intermixture in SR and let S2R2 be a sub-intermixture
in S1R1. Then

PSR(F) =
∫
FS1R1

PSR\S1R1|S1R1 (FSR\S1R1 |fS1R1 )PS1R1 (dfS1R1 ),

where F = FSR\S1R1 ∪ FS1R1 . Using the fact that PS1R1 can also be expressed in terms
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of a transition interdependence function between S2R2 and S1R1 \ S2R2, we obtain

PSR(F) =
∫
FS1R1

PSR\S1R1|S1R1 (FSR\S1R1 |fS1R1 )

· PS1R1\S2R2|S2R2 (dfS1R1\S2R2 |fS2R2 )PS2R2 (dfS2R2 ), (6.4)

where FS1R1 =FS1R1\S2R2 ∪ FS2R2 .
The basic concept of interdependency is cast in measure theory, but, as is the case

with probability theory in general, for applications it is more useful to work with mass
functions (for discrete option spaces) or density functions (for continuous option spaces)
rather than directly with interdependence measures.

Definition 6.8
Let U = U1 × · · · ×UN , where each Ui contains countably many elements. Let Fi =
2Ui , the power set ofUi and let PSR be an interdependence measure for the intermixture
SR. An interdependence mass function is a mass function, pSR, defined by

pSR(v) = PSR({v}),
where v ∈ USR and {v} is the singleton set consisting of v. �

To keep notation as clear as possible, for a selectability mixture S =
Si1 · · · Sik we write pS(s) or, equivalently, pS(si1, . . . , sik ), or yet again equivalently,
pSi1 ···Sik (si1, . . . , sik ), for s = {si1, . . . , sik }, where s ∈ US is a selectability sub-vector.
Similarly, for a rejectability mixture R = R j1 · · · R j� we write pR(r) or, equiv-
alently, pR(r j1, . . . , r j�), or yet again equivalently, pRj1 ···R j� (r j1, . . . , r j�), for r =
{r j1, . . . , r j�}, where r ∈ UR is a rejectability sub-vector. Finally, for an intermix-
ture SR = Si1 · · · Sik R j1 · · · R j� we write pSR(s; r) or, equivalently, pSR(si1, . . . , sik ;
r j1, . . . , r j�), or yet again equivalently, pSi1 ···Sik R j1 ···R j� (si1, . . . , sik ; r j1, . . . , r j�) for sub-
vectors s = {si1, . . . , sik } and r = {r j1, . . . , r j�}. For v ∈ SR consisting of selectabil-
ity sub-vector s ∈ S and rejectability sub-vector r ∈ R, we write v = (s; r). Thus,
pSR(v) = pSR(s; r).
We extend this notation to conditional interdependence mass functions by defin-

ing pSR\S1R1|S1R1 (s; r|s1; r1) for (s; r) ∈ USR\S1R1 and (s1; r1) ∈ US1R1 as the condi-
tional interdependence mass function of (s; r) given that all interdependence mass
over US1R1 is ascribed to (s1; r1). This conditional mass function permits the de-
cision makers to deal with all possible hypothetical situations; that is, conditioned
on each (s1; r1) ∈ US1R1 , the conditional mass function characterizes the joint se-
lectability and rejectability of each (s; r) ∈ USR\S1R1 . Letting f = (s1; r1) ∈ S1R1 and
g = (s; r) ∈ SR\S1R1, the transition relationship (6.3) becomes

PSR(F × G) =
∑
f∈F

∑
g∈G

pSR\S1R1|S1R1 (g|f)pS1R1 (f). (6.5)
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When F = {f} = {(s1; r1)} ⊂ SR and G = {g} = {(s; r)} ⊂ SR\S1R1 are singleton
sets, we write (6.5) as

pSR(s, s1; r, r1) = pSR\S1R1|S1R1 (s; r|s1; r1) · pS1R1 (s1; r1). (6.6)

Wemay factor the interdependence function pS1R1 (s1; r1) further by defining the sub-
intermixture S2R2 of S1R1, as follows. Let (s1; r1) = (s′, s2; r′, r2), where (s′; r′) ∈
US1R1\S2R2 and (s2; r2) ∈ US2R2 . Then pS1R1 (s1; r1) = pS1R1\S2R2|S2R2 (s

′; r′|s2; r2) ·
pS2R2 (s2; r2). Substituting this into (6.6) yields

pSR(s, s′, s2; r, r′, r2) = pSR\S1R1|S1R1 (s; r|s′, s2; r′, r2)

·pS1R1\S2R2|S2R2 (s
′; r′|s2; r2) · pS2R2 (s2; r2). (6.7)

Equation (6.7) is known as the chain rule of probability theory (Eisen, 1969). This
rule permits the global expression of the interdependence function as the product of
local conditional relationships. Just as it is often easier to compose a joint probability
distribution from conditional distributions (e.g., Markov processes), it is conceptually
easier to construct joint interdependencies from conditional interdependencies than to
construct the joint interdependencies directly.

Definition 6.9
LetU = U1 × · · · ×UN , where eachUi is a Euclidean space consisting of a continuum
of elements (e.g., Ui ⊂ R

n), let Fi be the Borel field over Ui and let PSR be the inter-
dependence measure for the intermixture SR. Furthermore, suppose PSR is absolutely
continuous with respect to Lebesguemeasure overUSR. The interdependence density
function is a Lebesgue measurable function, pSR, that satisfies the property

PSR(V) =
∫
V
pSR(v)dv

for all measurable V ⊂ USR; that is, pSR is the Radon–Nikodym derivative of PSR
with respect to Lebesgue measure. The transition relationship (6.3) becomes

PSR(F × G) =
∫
F

∫
G
pSR\S1R1|S1R1 (g|f)pS1R1 (f) dg df.

Letting f = (s1; r1) ∈ S1R1 andg = (s; r) ∈ SR\S1R1, the interdependence density
becomes

pSR(s, s1; r, r1) = pSR\S1R1|S1R1 (s; r|s1; r1) · pS1R1 (s1; r1)

where pSR\S1R1|S1R1 (s; r|s1; r1) is the conditional interdependence density function.
�
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To illustrate, let X = {X1, X2, X3} and let S = S1S2 and R = R3. Then SR =
S1S2R3, SR \ SR = S3R1R2. The interdependence measure is

PS1S2S3R1R2R3 (V1 × V2 × V3 ×W1 ×W2 ×W3) =
∫
V1×V2×W3

PS3R1R2|S1S2R3 (V3 ×W1 ×W2|v1, v2, w3)

·PS1S2R3 (dv1 × dv2 × dw3). (6.8)

Now let S1R1 = S2R3, so SR \ S1R1 = S1. Then

PS1S2S3R1R2R3 (V1 × V2 × V3 ×W1 ×W2 ×W3) =∫
V1×V2×W3

PS3R1R2|S1S2R3 (V3 ×W1 ×W2|v1, v2;w3)

·PS1|S2R3 (dv1|v2;w3) · PS2R3 (dv2 × dw3). (6.9)

If the option space is discrete, the interdependence mass function is

pS1S2S3R1R2R3 (v1, v2, v3;w1, w2, w3) = pS3R1R2|S1S2R3 (v3;w1, w2|v1, v2;w3)

·pS1|S2R3 (v1|v2;w3)pS2R3 (v2;w3). (6.10)

The function pS3R1R2|S1S2R3 (v3;w1, w2|v1, v2;w3) is the conditional interdependence
associated with X3 selecting option v3, X1 rejecting optionw1, and X2 rejecting option
w2, conditioned on X1 ascribing its entire unit of selectability mass on v1, X2 ascribing
its entire unit of selectability mass on v2, and X3 ascribing its entire unit of rejectability
mass on w3. In other words, suppose X1 views v1 as totally avoiding failure, X2 views
v2 as the total absence of conservation, and X3 views w3 also as the total absence
of conservation; then pS3R1R2|S1S2R3 (v3;w1, w2|v1, v2;w3) characterizes the conditional
interdependence associated with X3 selecting v3, X1 rejecting w1, and X2 rejecting
w2. When the option space is continuous and densities exist, the interdependence den-
sity function assumes the same form as (6.10), with all functions being interpreted as
densities, rather than as mass functions.
Conditional interdependence permits the expression of situational altruism (see

Section 1.3.2), whereby a decision maker may accommodate the interests of another
decisionmaker by adjusting its selectability or rejectability given that the other decision
maker places its selectability or rejectability on certain options.

Example 6.2We continue with Example 6.2 with Lucy = X L and Ricky = X R , and consider R = R L R R ,
the joint rejectability mixture. The corresponding joint rejectability function pR L R L (r L , r R ) may be factored
to become

pR L R R (r L , r R ) = pR L |R R (r L |r R )pR R (r R ).

Each option r R ∈ U R = {T , F } generates a different conditional rejectability mass function pR L |R R (·|r R );
that is, pR L |R R (r |r R ) ≥ 0 for all r ∈ U L = {P , H } and ∑

r ∈U L
pR L |R R (r |r R ) = 1. The joint interaction
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space is then

U = U L × U R = {P , H } × {T , F }.

Now, suppose that Lucy not adopting a certain option, say P , would be beneficial to Ricky if he were to
favor one of his options, say F , but if he were not to favor F , then Lucy would not be influenced by Ricky’s
interests. Lucy could accommodate this situation by the following conditional rejectability structure.

pR L |R R (r L |r R ) =




{
1 if r L = P and r R �= F ,
0 if r L �= P and r R �= F ,

p′
R L
(r L ) if r R = F ,

(6.11)

where p′
R L

is Lucy’s rejectability based solely on her own interests without taking into consideration
Ricky’s desires. Notice that Lucy can specify this conditional rejectability without knowing Ricky’s actual
rejectability structure – it is a purely hypothetical consideration. If Ricky were indeed to place low re-
jectability on F , and hence high rejectability on the complement of F , by setting pR R (T ) ≈ 1, then Lucy
would accommodate that situation and her individual rejectability of P would become

pR L (P ) =
∑

s ∈ U L

pR L |R R (P |R R )pR L (s) ≈
{
1 if pR L (T ) ≈ 1,
p′

R L
(P ) if pR R (T ) � 1.

(6.12)

In this way, Lucy exhibits situational altruism; that is, she is willing to accommodate Ricky by rejecting
P if, but only if, doing so is critical to Ricky’s welfare. If, however, at the moment of commitment, Ricky
does not in fact have a strong preference for F , the opportunity to take advantage of Lucy’s largesse is
not exercised and Lucy is not vulnerable to needless extra cost.

Clearly, conditional preferences are neutral. Instead of situational benevolence, a de-
cision maker may practice situational malevolence by adjusting its conditional prefer-
ences in ways designed to injure others, even at its own expense. In fact, a decision
maker can both reward and punish another’s behavior by appropriately defining its con-
ditional preferences. Once we eschew the strict doctrine of individual rationality, there
is no built-in bias associated with preference relationships between decision makers.

6.2.3 Spatial emergence

Although each of the conditional mass functions used to create the interdependence
function represents a total ordering, it is a local total ordering and involves only a subset
of agents and concerns. Each of these local total orderings is only a partial ordering,
however, if viewed from the global, or community-wide, perspective. By combining such
local total orderings together according to the chain rule of probability, a global total
ordering emerges from the local orderings. The joint selectability and rejectability mass
functions then characterize emergent global behavior and the individual selectability
and rejectability marginals characterize emergent individual behavior. Thus, both in-
dividual and group behavior emerge as consequences of local conditional interests that
propagate throughout the community from the interdependent local to the interdepen-
dent global and from the conditional to the unconditional.
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As noted by Pearl (1988), conditional probabilities permit local, or specific, re-
sponses to be characterized; they possess modularity features similar to logical produc-
tion rules. Conditional behavior is behavior at the local level, that is, with all relevant
circumstances specified. By factoring the interdependence function into products of
conditional interdependencies, we are able to characterize the global relationships in
terms of local relationships, which are often easier to specify. In effect, the interdepen-
dence function provides amechanism for implementing some types of production rules.
The interdependence function possesses several properties that make it a useful and

efficient way of characterizing relationships that may exist between decision makers:
First, it provides an evaluation of every possible consideration that could be relevant
to the decision, when viewed jointly from the perspectives of avoidance of failure
and conservation of resources. Second, it contains no redundant information. In this
sense, it is a parsimonious characterization of all possible failure avoidance/resource
conservation situations that can occur. Finally, it guarantees that local, or conditional,
assessments of failure avoidance and resource conservation are consistent with global,
or unconditional, combined assessments. Contradictory assessments cannot exist.
Let us refer to the interdependence measure, the interdependence mass function, and

the interdependence density function all as interdependence functions, and let context
determine which of these quantities is relevant.

Example 6.3 We are now in a position to specify the interdependence function for Lucy’s and Ricky’s
car-buying adventure in Example 6.1. This function is of the form pSL SR R L R R (u L , u R ; vL , v R ), where

(u L , u R ; vL , v R ) ∈ U × U = {{P , H } × {T , F }} × {{P , H } × {T , F }}.
Let us begin by expressing the interdependence function as the product of conditional selectability and

rejectability functions.

pSL SR R L R R (u L , u R ; vL , v R ) = pSL |SR R L R R (u L |u R ; vL , v R ) · pSR |R L R R (u R |vL , v R )

·pR L |R R (vL |v R ) · pR R (v R ). (6.13)

We may invoke some obvious simplifications at this point by noting that any single decision maker’s
selectability will not depend on its rejectability, so we may rewrite (6.13) as

pSL SR R L R R (u L , u R ; vL , v R ) = pSL |SR R R (u L |u R , v R ) · pSR |R L (u R |vL )

·pR L |R R (vL |v R ) · pR R (v R ). (6.14)

pR R is Ricky’s myopic rejectability and pR L |R R is Lucy’s rejectability conditioned on Ricky’s rejections.
Also, pSR |R L is Ricky’s selectability conditioned on Lucy’s rejections and pSL |SR R R is Lucy’s selectability
conditioned on Ricky’s selections and rejections. For this simple two-choice problem, rejecting one option
means selecting the other, so we may simplify pSL |SR R R to become pSL |R R , yielding a factorization of the
interdependence function of the form

pSL SR R L R R (u L , u R ; vL , v R ) = pSL |R R (u L |v R ) · pSR |R L (u R |vL ) · pR L |R R (vL |v R ) · pR R (v R ). (6.15)

Let us begin with the specification of Ricky’s myopic rejectability. Since there are only two choices, his
rejectability assignment must be of the form

pR R (T ) = β,

pR R (F ) = 1 − β,
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where, in the interest of conserving resource (room for passengers), we may assume that 0 < β <

0.5.
We next consider pSL |R R . Given that Ricky rejects T , Lucy’s obvious response would be to place all of

her selectability mass on H (since Porches are not available in four-door models). Given that Ricky rejects
F , she would place α worth of selectability on P and 1 − α on H . Let us assume that Lucy considers a
Porsche to be more stylish than a Honda, which means that we restrict 1 ≥ α > 0.5. Lucy’s conditional
selectability function pSL |R R would thus be of the form

v R

u L T F
P 0 α

H 1 1 − α

To specify pSR |R L , note that if Lucy rejects H , then Ricky should place all of his selectability mass on
T . If, on the other hand, Lucy rejects P , then Ricky’s myopic preferences are operative and his conditional
selectability function, pSR |R L , would be

vL

u R P H
T β 1
F 1 − β 0

Finally, to specify pR L |R R , let us suppose that Lucy is willing to offer some deference to Ricky’s interests
and is willing to adopt a stance of situational altruism. Accordingly, she incorporates the conditional
rejectability defined by (6.11), with

p′
R L
(P ) = 1 − α,

p′
R L
(H ) = α.

The resulting conditional rejectability function is

v R

vL T F
P 1 1 − α

H 0 α

Substituting these functions in to (6.15) yields the interdependence function displayed in Table 6.2. The
next step is for the participants to obtain a multiple-agent satisficing solution based upon these values.

6.3 Satisficing games

Praxeic utility theorywas developed for an abstract option space of arbitrary dimension-
ality; all that is required is that the selectability and rejectability measures be defined.
Consequently, the theory immediately extends to the multi-agent case by considering
multipartite option spaces. The role of the interdependence function is to character-
ize all of the relevant relationships that exist among the members of the multi-agent



131 6.3 Satisficing games

Table 6.2: The interdependence function for Lucy and Ricky

(uL , uR, vL , vR) pSL SR RL RR (uL , uR, vL , vR) pSL SR RL RR

(P, T, P, T ) 0 (H, T, P, T ) β2

(P, T, P, F) αβ(1 − α)(1− β) (H, T, P, F) (1 − α)2β(1 − β)
(P, T, H, T ) 0 (H, T, H, T ) 0
(P, T, H, F) α2(1 − β) (H, T, H, F) α(1− α)(1− β)
(P, F, P, T ) 0 (H, F, P, T ) β(1− β)
(P, F, P, F) α(1− α)(1− β)2 (H, F, P, F) (1− α)2(1− β)2

(P, F, H, T ) 0 (H, F, H, T ) 0
(P, F, H, F) 0 (H, F, H, F) 0

community. Once this function is defined, the joint selectability and rejectability func-
tions are obtainable via (6.1) and (6.2), resulting in

pS(u) =
∑
v∈U

pSR(u; v), (6.16)

pR(v) =
∑
u∈U

pSR(u; v) (6.17)

for the discrete case, and

pS(u) =
∫
U
pSR(u; v)dv, (6.18)

pR(v) =
∫
U
pSR(u; v)du (6.19)

for the continuous case.

Definition 6.10
Let {X1, . . . , XN }be a set of N decisionmakers, letUi be the option space corresponding
to Xi , and let U = U1 × · · · ×UN be the joint option space. A satisficing game is
the triple {U, pS, pR}, where pS is the joint selectability function and pR is the joint
rejectability function.
The joint solution to the satisficing game {U, pS, pR} with boldness q is the set

Σq = {u ∈ U: pS(u) ≥ qpR(u)}. (6.20)

Σq is termed the jointly satisficing set, and elements of Σq are jointly satisficing
options. Equation (6.20) is the joint praxeic likelihood ratio test (JPLRT). �

The set of individually satisficing options for each player is obtained by computing
the marginal selectability and rejectability functions for each Xi , i = 1, . . . , N from
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(6.16) and (6.17), yielding

pSi (ui ) =
∑
u j∈Uj

j �=i

pS1···SN (u1, . . . , uN ), (6.21)

pRi (ui ) =
∑
u j∈Uj

j �=i

pR1···RN (u1, . . . , uN ) (6.22)

for i = 1, . . . , N .

Definition 6.11
The individual solutions to the satisficing game {U, pS, pR} are the sets

	i
q = {ui ∈ Ui : pSi (ui ) ≥ qpRi (ui )}, (6.23)

i = 1, . . . , N .	i
q is the individually satisficing set for Xi , i = 1, . . . , N . The product

set consisting of the individually satisficing sets is the satisficing rectangle:

Rq = 	1
q × · · · × 	N

q = {(u1, . . . , uN ): ui ∈ 	i
q , i = 1, . . . , N }. (6.24)

�

Example 6.4 We may now compute the joint and individually satisficing decisions for Lucy and Ricky in
Example 6.1. In the interest of simplicity, let us impose the constraint that β = 1 − α, that is, Ricky’s
myopic rejectability of two seats is equal to Lucy’s non-altruistic rejectability of Porsche. This restriction
will reduce the complexity of the following expressions without reducing the pedagogical value of the
example. To compute the jointly satisficing set, we apply (6.16) and (6.17) to obtain

PSL SR (P , T ) = α2(1 − α)2 + α3,

PSL SR (P , F ) = α3(1 − α),

PSL SR (H , T ) = (1 − α)2 + α(1 − α)3 + α2(1 − α),

PSL SR (H , F ) = α2(1 − α)2 + α(1 − α)

and

PR L R R (P , T ) = 1 − α,

PR L R R (P , F ) = α(1 − α),

PR L R R (H , T ) = 0,

PR L R R (H , F ) = α2.

From these values it is clear that (P , F ) is never satisficing, (H , T ) is always satisficing, and the
satisficing status of (P , T ) and (H , F ) depend on the values of α. The jointly satisficing set is easily
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computed to be, for q = 1,

Σq =



{{H , T }, {H , F }} for 0.5 ≤ α ≤ 0.555,
{H , T } for 0.555 < α < 0.660,
{{H , T }, {P , T }} for 0.660 ≤ α ≤ 1.

(6.25)

We may compute the marginals for Lucy and Ricky as follows. For Lucy, we obtain

pSL (P ) = α2,

pSL (H ) = 1 − α2,

pR L (P ) = 1 − α2,

pR L (H ) = α2,

and for Ricky we obtain

pSR (T ) = 1 − α + α3,

pSR (F ) = α − α3,

pR R (T ) = 1 − α,

pR R (F ) = α.

Comparing these values with q = 1, we see that Lucy’s individual satisficing set is

ΣL
q =

{ {P } for 0.707 ≤ α ≤ 1,
{H } for 0.5 ≤ α < 0.707,

and Ricky’s individually satisficing set is

ΣR
q = {T }.

Concatenating the individual interests of Lucy and Ricky, we obtain the satisficing rectangle

Rq = ΣL
q × ΣR

q =
{ {P , T } for 0.707 ≤ α ≤ 1,

{H , T } for 0.5 ≤ α < 0.707.
(6.26)

We see that when 0.5 ≤ α ≤ 0.707 the join option {H , T } is both jointly and individually satisficing,
and when 0.707 ≤ α ≤ 1, the option vector {P , T } is both jointly and individually satisficing. The prob-
lem is parameterized by Ricky’s myopic preferences regarding the number of passengers that can be
accommodated, and by Lucy’s style preferences.

6.4 Group preference

One of the issues that has perplexed game theorists is how to characterize group pref-
erences. The root of the problem is that optimization at the group level cannot be made
to be consistent with optimization at the individual level. But, if we replace the demand
for optimization with an attitude of satisficing, both group and individual interests may
emerge from a more holistic model of inter-agent relationships.
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As we saw in Section 6.2.3, it is possible to combine the conditional interdepen-
dencies that exist between decision makers to form an interdependence function that
accounts for all of the preference relationships that exist between members of a group.
The fact that the interdependence function is able to account for conditional prefer-
ence dependencies between decision makers provides a coupling between decision
makers that permits them to widen their spheres of interest beyond their own myopic
preferences. This widening of preferences leads to a concept of group preference.

Definition 6.12
The satisficing group preference at boldness q of a multi-agent system is the set of
all option vectors such that joint selectability equals or exceeds the index of boldness
times the joint rejectability; that is, it is the jointly satisficing set Σq . �

This is a weak notion of preference. It does not imply that there is some coher-
ent notion of “group good,” although such an implication is certainly not ruled out.
To interpret this notion of group preference further requires operational definitions
of joint selectability and joint rejectability. For problems where these notions are ex-
plicitly defined, it is straightforward to say what it means to be good enough for the
group. However, if the interdependence function comprises conditional selectabilities
and rejectabilities, a coherent operational definition of group selectability and group
rejectability, and hence group preference, may be difficult to ascertain from the product
of these conditional preferences.
This observation may help to explain why the notion of group preference is so

elusive. It would seem that the notion of “group preference” should convey the idea
of harmonious behavior, such as the individuals pursuing some common goal. But,
since the group preference is not an explicit aggregation of the individual preferences
of the participants (although it may be implicit in the conditional preferences), nor is it
imposed by a superplayer, it need not correspond to harmonious behavior.
The interdependence function comprises the totality of preference relationships that

exist between the players of the game. These preferences may be conditional or uncon-
ditional, they may be cooperative or competitive, and they may be egoistic or altruistic.
They may result in highly efficient goal-directed behavior or they may result in dys-
functional behavior. Thus, the notion of satisficing group preference is completely
conflict/coordination neutral. With a competitive game the group preference may be
to oppose one another, while for a cooperative game the group preference may be to
coordinate.
There is no requirement or expectation that group preferences will be derived by ag-

gregating individual preferences (a bottom-up approach) or via a superplayer to dictate
choices to the individuals so as to insure that the group’s goals are met (a top-down ap-
proach). If such structures naturally occur through the specification of the preferences
(conditional or otherwise), they can be accommodated in the satisficing context.
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Consider the example of Lucy and Ricky buying a car as discussed in Example 6.4.
The various conditional preferences that appear in (6.15) propagate through the system
to define a set of group preferences given by (6.25). Notice, however, that these group
preferences are not derived as aggregations of individual preferences (in fact, Lucy’s
myopic preferences are never specified – only her conditional preferences are given),
nor are they dictated by a superplayer.
If neither top-downnor bottom-up structures existwith the game, then coherent group

preferences, if they exist, may be emergent, in the sense that they are determined by the
totality of the linked preferences, and display themselves only as the links are forged.
It is analogous to making a cake. The various ingredients (flour, sugar, water, heat, etc.)
influence each other in complex ways, but it is not until they are all combined in proper
proportions that a harmonious group notion of “cakeness” emerges. However, if the
ingredients are not compatible, then no harmonious notion of cakeness can emerge.
The options that lie in the individually satisficing sets 	i

q define the preferences for
the individuals. These preferences may be myopic, that is, specified unconditionally,
as is required with conventional game theory, or they may emerge from conditional
preferences as the marginal selectability and rejectability functions are derived from
the joint selectability and rejectability functions.
As was seen in Example 6.4 involving the purchase of Lucy and Ricky’s car, it is not

generally true that the individual satisficing decisions and the joint decisions must be
consistent in some sense, that is, that at least one of the conditionsΣq = Rq ,Σq ⊆ Rq ,
or Σq ⊇ Rq will hold. Unfortunately, this is not the case. In fact, the two sets may be
disjoint. The marginal selectability and rejectability functions will not, in general,
yield the same decisions as will the joint selectability and rejectability functions, even
if both pS1...,SN and pR1...,RN factor into products of the form pS1...,SN = pS1 · · · pSN and
pR1...,RN = pR1 · · · pRN . I will discuss this issue in more detail and describe ways to
reconcile group and individual preferences in Section 7.2.
To illustrate further the emergence of individual and group preferences, let us now

address the Pot-Luck Dinner problem that was introduced in Example 2.1. To examine
this problem from the satisficing point of view, we first need to specify operational
definitions for selectability rejectability. Although there is not a unique way to frame
this problem, let us take rejectability as cost of the meal and take selectability as
enjoyment of the meal. The interdependence function is a function of six independent
variables and may be factored, according to the chain rule, as

pSL SC SM RL RC RM (x, y, z; u, v, w) = pSC |SL SM RL RC RM (y|x, z; u, v, w)

·pSL SM RL RC RM (x, z; u, v, w), (6.27)

where the subscripts L , C , and M correspond to Larry, Curly, and Moe, respectively.
The term pSC |SL SM RL RC RM (y|x, z; u, v, w) expresses the selectability that Curly places
on option y, given that Larry selects x and rejects u, that Curly rejects v, and that Moe
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selects z and rejects w. From the statement of the problem, we realize that, based on
Larry’s selectability, Curly’s selectability is independent of all other considerations.
Thus we can simplify the conditional selectability to obtain

pSC |SL SM RL RC RM (y|x, z; u, v, w) = pSC |SL (y|x).
Next, we apply the chain rule to the second term on the right-hand side of (6.27), which
yields

pSL SM RL RC RM (x, z; u, v, w) = pSL SM |RL RC RM (x, z|u, v, w) · pRL RC RM (u, v, w).

But, on the basis of Curly’s rejectability, the joint selectability for Larry and Moe is
independent of all other considerations, so

pSL SM |RL RC RM (x, z|u, v, w) = pSL SM |RC (x, z|v).
By making the appropriate substitutions, (6.27) becomes

pSL SC SM RL RC RM (x, y, z; u, v, w) = pSC |SL (y|x) · pSL SM |RC (x, z|v) · pRL RC RM (u, v, w).

(6.28)

We desire to obtainΣq , the jointly satisficing options for the group and	L
q ,	

C
q , and

	M
q , the individually satisficing option sets for Larry, Curly, and Moe, respectively. To

do so, we must specify each of the components of (6.28). To compute pSC |SL , recall that
Curly prefers beef to chicken to pork by respective factors of 2 conditioned on Larry
preferring soup, but that Curly is indifferent conditioned on Larry preferring salad. We
may express these relationships by the conditional selectability functions:

pSC |SL (bee f |soup) = 4/7, pSC |SL (bee f |sald) = 1/3,

pSC |SL (chkn|soup) = 2/7, pSC |SL (chkn|sald) = 1/3,

pSC |SL (pork|soup) = 1/7, pSC |SL (pork|sald) = 1/3.

To compute pSL SM |RC , we recall, given that Curly views pork as completely rejectable,
Moe views lemon custard pie as highly selectable and Larry is indifferent. Given that
Curly views beef as completely rejectable, Larry views soup as selectable, and Moe is
indifferent. Furthermore, given that Curly views chicken as completely rejectable, both
Larry and Moe are indifferent. These relationships may be expressed as

pSL SM |RC (soup, lcst |pork) = 0.5,

pSL SM |RC (soup, bcrm|pork) = 0.0,

pSL SM |RC (sald, lcst |pork) = 0.5,

pSL SM |RC (sald, bcrm|pork) = 0.0,

pSL SM |RC (soup, lcst |bee f ) = 0.5,

pSL SM |RC (soup, bcrm|bee f ) = 0.5,

pSL SM |RC (sald, lcst |bee f ) = 0.0,

pSL SM |RC (sald, bcrm|bee f ) = 0.0,
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and

pSL SM |RC (soup, lcst |chkn) = 0.25,

pSL SM |RC (soup, bcrm|chkn) = 0.25,

pSL SM |RC (sald, lcst |chkn) = 0.25,

pSL SM |RC (sald, bcrm|chkn) = 0.25.

Lastly, we need to specify pRL RC RM , the joint rejectability function. This is done
by normalizing the meal cost values in Table 2.1 by the total cost of all meals (e.g.,
pRL RC RM (soup, bee f, lcst) = 23/296).
With the interdependence function so defined and letting q = 1, the jointly and indi-

vidually satisficing meals are as displayed in Table 6.3 along with the attitude specific
to each choice. Each of these option vectors is good enough for the group, considered
as a whole. Figure 6.1 provides a cross-plot of joint rejectability and selectability; the
satisficing combinations are the ones that lie above the line q = 1, as labeled. The
horizontal and vertical lines represent the uniform distribution lines ( 1n = 1

12 ). We can
easily see that the meal {soup, bee f, bcrm} is not an equilibrium choice, since it is
more rejectable and less selectable than {soup, bee f, lcst}.
The individually satisficing items, as obtained by computing the selectability and

rejectability marginals, are also provided in Table 6.3 to be soup, beef, and lemon
custard. Notably, this set of choices is also jointly satisficing. Thus, all of the individual
preferences are intact at a reasonable cost and, if pie throwing should ensue, we may
assume that it would be for recreation only and not retribution.
The joint rejectability is almost uniform, with H (pRL RC RM ) = 3.57 bits (the entropy

of the uniform distribution is 3.58 bits). Joint selectability, although somewhat less
uniform, is still high, with H (pSL SC SM ) = 3.27 bits. These numbers mean that this
system has the ability to produce a meal that is adequate but not greatly pleasing and
that there are no bargains. This sense is reinforced by Table 6.3 and Figure 6.1, where
we see that the first two jointly satisficing options listed are both gratifying (but just
barely), the third is ambivalent, and the fourth is dubious. Individually, Larry and Moe
are gratified, but Curly is ambivalent.
With the Pot-LuckDinner,we see that, although total orderings for neither individuals

nor the group are specified, we can use the a priori partial preference orderings from
the problem statement to generate emergent, or a posteriori, group and individual
orderings. This is the inside-out, or meso-to-micro/macro view of spatial emergence
that was discussed in Section 2.1. For this example, a harmonious interpretation of
group preference, namely, the avoidance of conflict, can be associated with the jointly
satisficing set, since the two jointly gratifying meals fully conform to the preferences
included in the problem statement. However, this group desideratum was not specified
a priori, nor was harmony between group and individual preferences guaranteed. The
players of this game are fortunate that the intersection of the jointly satisficing set
Σq and the satisficing rectangle Rq is not empty. If it were, then the group would be
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Table 6.3: Jointly and individually satisficing choices for the
Pot-Luck Dinner

Jointly satisficing

Meal pSL SC SM pRL RC RM Attitude

{soup, beef, lcst} 0.237 0.078 Gratification
{soup, chkn, lcst} 0.119 0.074 Gratification
{soup, beef, bcrm} 0.149 0.091 Ambivalence
{sald, pork, lcst} 0.080 0.074 Dubiety

Individually satisficing

Participant Choice pS pR Attitude

Larry soup 0.676 0.480 Gratification
Curly bee f 0.494 0.351 Ambivalence
Moe lcst 0.655 0.459 Gratification

0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

pR

pS

{soup, beef, lcst}

{soup, beef, bcrm}

{soup, chkn, lcst}

{sald, pork, lcst}

Figure 6.1: The cross-plot of joint rejectability and selectability for the Pot-Luck Dinner.

dysfunctional. In Section 7.2 I describe a way for the players of a satisficing game to
negotiate when jointly satisficing and individually satisficing sets are incompatible.
A posteriori individual orderings also emerged from this exercise: Larry prefers soup

to salad, Moe prefers lemon custard pie to banana cream pie, and Curly prefers beef
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to either chicken or pork. Note, however, that Curly is not required to impose a total
ordering on his preferences (chicken versus pork). This approach does not force the
generation of unwarranted preference relationships.
These attitudes (as defined in Section 5.4) are also apparent from calculations of

diversity. The diversity values are 0.113, 0.070, and 0.112 for Larry, Curly, and Moe,
respectively. Curly’s selectability and rejectability are more nearly aligned than are
eitherLarry’s orMoe’s, indicating that this decision problem is somewhatmore difficult,
or stressful, for Curly than for either of his partners. Relative to his dinner mates, Curly
is ambivalent. This situation might prompt Curly to be in better touch with his own
preferences or to find out more about the preferences of his partners before deciding,
or both.

6.5 Optimizing versus satisficing

Von Neumann–Morgenstern utility functions are designed to express the preferences
of individuals as a function only of the possible options chosen by themselves and
others. This restriction in design is necessary if the outcome is to be consistent with
the principle of individual self-interest. It is only because other players can influence
a given player’s payoff that a player is obligated, in defense of its own self-interest, to
consider the interests of others as well as its own. Thus, although a self-interested player
must take into account other player’s utilities when choosing its strategy, it has no need
or desire to consider the interests of other players when defining its own interests. This
stance fosters competitive behavior, regardless of whether the game is conflictive or
cooperative in nature.
Satisficing game theory, on the other hand, is completely neutral with regard to

conflictive and coordinative aspects of the game; both aspects can be accommodated by
appropriately structuring the interdependence function. Selectability and rejectability
do not favor either aspect. With competitive games, conflict can be introduced through
conditional selectability and rejectability functions that account for the differences in
goals and values of the players. With cooperative games, coordinated behavior can be
introduced through the same procedure.
The use of interdependence functions in place of vonNeumann–Morgenstern utilities

is an important difference between von Neumann–Morgenstern games and satisficing
games. The interdependence function does not measure the amount of utility that ac-
crues to a player as a result of a joint option being taken. Rather, it measures the
preferences of all players as a function of their preferences for selecting and rejecting
various options. If desired, the strength of the preferences can be made proportional to
the payoff values.
A distinctive feature of satisficing theory as I have developed it is the incorporation

of two distinct utility functions. These normalized utilities, denoted selectability and



140 6 Community

rejectability, are used to compare the positive and negative aspects of each option.
The usage of such “dual utilities” has also been advocated by Margolis (1990), who
advocates the use of two distinct utilities to characterize group and individual interests.4

Margolis presents the view that a decisionmaker in a group context will possess a social
utility and a private utility, and will adjust the assignment of its resources to achieve a
balance between the two utility functions. This approach is essentially a special case of
satisficing. Assuming that explicit utilities for both the group and the individuals were
available (which assumption is not required for the satisficing approach), we could
frame a decision problem such that, say, selectability represented the private utilities of
selecting individual options and rejectability represented the social utility of rejecting
a group option. Margolis’ model would then comply with the satisficing approach.
Optimization is a strongly entrenched procedure and dominates conventional

decision-making methodologies. There is great comfort in following traditional paths,
especially when those paths are founded on such a rich and enduring tradition as ra-
tional choice affords. But, when synthesizing an artificial system, the designer has the
opportunity to impose upon the agents a more socially accommodating paradigm. In
particular, the designer of an artificial system must accommodate all of the relevant
inter-relationships that exist between the participants. The set of possible interactions
between decision makers is rich and diverse, as indicated by the following list of the
major forms of group organization. The reader may judge whether or not individual
rationality is an adequate model of behavior for these forms.

Definition 6.13
Xi conflicts with X j if Xi ’s avoidance of failure or resource conservation interests are
in opposition to those of X j .
Xi exploits X j if Xi is able to influence X j to increase its avoidance of failure or

decrease its conservation of resources without regard for those of X j .
X j submits to Xi if X j acts in a way to increase the avoidance of failure or increase

the conservation of resources for Xi without regard for its own failure avoidance or
resource conservation.
Xi is indifferent to X j if X j ’s existence is completely irrelevant to Xi (though not

necessarily vice versa).
Xi tolerates X j if Xi acknowledges the existence of X j but Xi ’s failure avoidance

and resource conservation are independent from those of X j , and the decision makers
neither reinforce nor inhibit each other in any systematic way.
Xi accommodates X j if Xi seeks to increase failure avoidance or increase resource

conservation for X j so long as it does not decrease failure avoidance or decrease
resource conservation for itself.

4 Other researchers have also advocated the use of multiple utilities. For example, Harsanyi’s “ethical” and
“subjective” preferences distinguish betweenpurely social considerations andpersonal interests (Harsanyi, 1955;
Sen, 1990), but Margolis’ development is, to my knowledge, the only other attempt to incorporate such utilities
in a way that is not based upon the premises of classical rational choice.
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Xi coordinateswith X j if Xi ’s failure avoidance and resource conservation interests
are compatible with those of X j . �

Any mixture of these preference relationships may exist in any given game and all
such preferences may be expressed via the interdependence function. Note that this
list does not include the term “cooperation.” Cooperation has a special connotation
in von Neumann–Morgenstern game theory. Decision makers are said to cooperate if
they enter into binding coalitions; that is, they agree before decisions are made that,
at the moment of truth, they will function as a unit. Much of N -person game theory
deals with the ways in which coalitions may be justified. Chapter 7 discusses in detail
the role of coalitions in multi-agent decision making and argues that coalitions should
naturally emerge, if they arise at all, from the structure of the inter-agent preference
relationships, rather than being imposed by logic that makes up for the shortcomings
of the basic premises used to justify the choices.





7 Congruency

The enormous potential in mutual benefit (cooperative) strategies will not be tapped – or even
understood – until we broaden our perspective beyond the narrow prejudice that we always do best
by trying to beat others. Alfie Kohn

No Contest (Houghton Mifflin, 1986)

Unless a community is a total dictatorship or is given to complete anarchy, there will be
some form of sociality that is conducive to at least a weak form of agreement-seeking,
or congruency. Cooperative societies may be expected to agree to work together, com-
petitive societies may be expected to agree to oppose each other, and mixed-motive
societies may be expected to agree to compromises that balance their interests. The
procedures used to arrive at these agreements, however, are not determined simply as
a function of the preference structure of the decision makers, either for von Neumann–
Morgenstern scenarios or for satisficing scenarios. Instead, the procedures often involve
some form of negotiation. Negotiation is a deliberative process whereby multiple de-
cision makers can evaluate and share information when they have incentives to strike
a mutually acceptable compromise.

In this chapter we first review von Neumann–Morgenstern N -person game theory,
which forms the basis of classical negotiation theory. We then describe a new approach
to negotiation based on satisficing game theory.

7.1 Classical negotiation

With the von Neumann–Morgenstern approach to decision making, the decision mak-
ers must each choose a strategy that represents an equilibrium such that it cannot
improve its expected satisfaction by unilaterally altering its choice. Thus, the prob-
lem is reduced to one of identifying the equilibrium point (or points – there may be
more than one). To define the equilibria it is necessary to abstract the game from its
context and to capture all relevant information in the utility functions. By so doing,
the game becomes an array of expected utilities and the context is reduced merely
to a story line that accompanies the game to give it appeal and that also allows the
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solution, once it is obtained, to be interpreted. The story line itself has nothing to do
with generating the solution. Once the equilibria are identified, the game is solved. The
procedure used to solve it remains in the background. Optimization, by its nature,
is concerned only with outcomes – it is insensitive to the process of obtaining a
solution.

This insensitivity presents a problem, however, in negotiation due to the difficulty
of dealing with the dynamic nature of coalition formation. Consequently, much of
classical game theory has been focused on situations where the process of nego-
tiation can be presumed irrelevant to actual play. In other words, all of the deals,
promises, threats, etc., are presumed to take place before the first move is actually
played (Shubik, 1982).

One of the great challenges to von Neumann–Morgenstern game theory is to balance
individual preferences in a way that is consistent with any group preferences that are
conceivable without an explicit notion of group preference. An exclusive reliance on in-
dividual rationality greatly limits the opportunity to account for group interest. Seeking
a Pareto equilibrium is often suggested as a way to account for the interests of the group.
The success of this application presupposes, however, that the players are disposed to
be cooperative. But no such supposition is a priori justified by individual rationality.
Any such dispositions are extra-game-theoretic, that is, if they do not influence the
utility functions, they are not part of the mathematical game, no matter what story
line accompanies the payoff array. The Prisoner’s Dilemma game (see Section 8.1.3)
is an excellent example. Although mutual cooperation is a Pareto equilibrium, under
the von Neumann–Morgenstern version of the game, the players have absolutely no
incentive to do so – indeed, they have a strong incentive not to cooperate. Cooperative
behavior cannot be justified or motivated by individual rationality unless it coincides
with self-interest.

Shubik’s argument that it is inappropriate to ascribe preferences or wants to a group
(see Shubik (1982, p. 124)) may be right in the context of exclusively individual self-
interest. From the individual perspective, the players can have no concept of group
preference; all they know about is their own preferences as expressed via their utility
functions. Anything else is extra-game-theoretic. Consider Example 2.2 involving a
factory scheduling problem. There is no way to assure that maximizing individual
preferences maximizes corporate preferences. If we view the corporation as a group, we
may succeed in defining group preferences, but we have no way to accommodate them,
since we have no notion of group utility. We might consider viewing the corporation as
a superplayer, but such an “individual” is not a decision maker and does not possess its
own utility function. The bottom line is that group rationality simply cannot be defined
in terms of individual rationality, and von Neumann–Morgenstern game theory was not
designed for that purpose.

Although vonNeumann–Morgenstern game theory does not accommodate the notion
of group rationality, common sense certainly does. It is indeed possible for individual
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workers in a factory to not only want to do well themselves but also want each of their
neighbors, as well as the entire corporation, to do well, even if the latter achievements
come somewhat at their expense. It may be claimed that any such ulterior motives
should be reflected in the individual utilities, but individual utilities are only a function
of the options available to the other players, not of their preferences for those options.
While it may be possible to modify the utility functions somewhat to account for social
welfare, it is difficult to see how such a practice accommodates group preferences in a
general way.

The strength of von Neumann–Morgenstern theory is that it produces solutions that
are superior, according to individual rationality, to all alternatives. Its weakness is that
individual rationality does not imply group rationality, nor vice versa. Its instrumentality
is that it tells us about outcomes we can expect when individually rational decision
makers negotiate. In this way it is a natural analysis tool. Its limitation is that it does
not give procedures for actually doing the negotiating – it is not a natural synthesis
tool. One can always artificially interweave negotiatory events into an explanatory
story justifying how a decision should be obtained, even though the story is not an
explicit part of the generative decision-making model and may be misleading. But
synthesis requires that the decision makers must actually live the story and perform the
negotiatory functions.

Decision problems involving only two players are seemingly simple. If the game
involves conflict, then a Nash equilibrium seems to address the situation adequately,
except for the annoying fact that such equilibria may not be unique. If the game is
a coordination game, the Pareto solution concept makes sense, except that, here as
well, Pareto equilibria may not be unique. Thus, even for the simplest non-trivial game
situations, it is not obvious how to settle on a unique strategy. But things get much more
difficult when we move to the general N -player game context. At least, when N = 2,
either both the players form a single grand coalition or they each go their separate ways.
When N > 2, there are many coalition possibilities, and none of them is binding. The
dynamics of coalition formation is one of the largely unsolved problems of game theory.
One reason it is unsolved is that solution concepts based on maximizing expectations
are not constructive in the sense that, although they tell us how to recognize the optimal
solution when we see it, they do not tell us how to find it. Although they may tell us
what a good (perhaps even optimal) negotiated solution looks like, they do not tell us
how to negotiate.

A number of maximal-expectations-based negotiatory solution concepts have been
proposed. But remember that these solution concepts do not define processes; they
are nothing more than justifications for processes that are presumed somehow to
occur in the heat of battle. They do, however, lend themselves to the creation of
story lines that sound convincing and provide reasonable explanations for behavior
that intelligent self-interested decision makers would conceivably experience when
negotiating.
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Definition 7.1
A cooperative game is a game in which the players can originally choose a payoff
together; that is, theyhave the opportunity to communicate and formbinding agreements
before the game is played. �

It is axiomatic that players in a cooperative game will choose from the set of Pareto
equilibria (see Definition 1.9); otherwise some players would sacrifice needlessly. A
second principle is often invoked, namely the principle of security. Suppose a player
were to “go it alone,” and refused to cooperate. Such a player should never agree to
a strategy vector (Pareto-optimal or not) unless its resulting individual payoff were at
least as great as its security level (see Definition 1.12). This assumption is a necessary
consequence of the basic axiom of the individual maximization of expectations and
illustrates the restrictiveness of that point of view. It does not permit, for example, an
expression of altruism, wherein a player may sacrifice some of its possible satisfaction
for the benefit of others or for the benefit of the entire community.

Definition 7.2
Thenegotiation set is the set of all Pareto equilibriumstrategyvectorswhose component
strategies meet the corresponding individual security levels. �

The “go it alone” strategy is unnecessarily pessimistic inmany situations, and rational
players should be interested in exploring the possibilities that open up to them as a
consequence of their cooperation with other players. In particular, when the payoff is
such that it can be reapportioned among the players, the formation of coalitions can be
extremely attractive.

Definition 7.3
Payoffs are said to be transferable if they are money-like, that is, they can be exchanged
freely between players. These transfers are called side-payments. �

Definition 7.4
A coalition is a group of players who have agreed to function as a unit. The grand coali-
tion� is the coalition formed by all players in the game. The set of all possible coalitions
is the power set X , that is, the collection of all subsets of X = {X1, . . . , X N }. �

Consider any coalition, G ∈ X . Since we assume that payoffs are transferable, the
payoff that G receives is well defined (e.g., the payoff may be money). Let the payoff
function for Xi be denoted by πi . (For additional details, see Appendix B.)

Definition 7.5
The coalition payoff for a coalition G is the mapping from the joint strategy space to
the real numbers, wG : S → R, that characterizes the payoff that G receives as a result
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of forming a coalition. Note that this function is not necessarily defined in terms of the
individual payoff functions πi . �

Now observe that G cannot fare worse than if all of the decision makers not in G
combine against it in a single rival coalition. In other words, if the players were to
coalesce into two groups, G andX\G, this would be the arrangement that could do the
most damage to G.

Definition 7.6
The characteristic function of a coalition G is the maximum coalition payoff that G
can be assured of achieving. Notationally, we define this value as follows. We first must
decompose the joint strategy space into two subspaces, one composed of strategies
for the members of G, the other for the members of X\G. Let these two subspaces
be denoted SG and SX\G , respectively. Then the characteristic value of the coalition
G is

v(G) = max
s′∈SG

min
s′′∈SX\G

{wG(s′, s′′)}.

The characteristic function is a generalization of the security level introduced ear-
lier in the context of individual payoffs and reduces to that notion for single-member
coalitions. �

An important property of the characteristic function is that it is superadditive.

Definition 7.7
A function v is said to be superadditive if, for any disjoint coalitions G1 and G2,

v(G1 ∪ G2) ≥ v(G1) + v(G2). �

Superadditivity is a consequence of the fact that, acting together, the members of G1

and G2 can achieve everything that they could achieve if they acted in two separate
subgroups, and they can possibly achieve more if they cooperate.

Definition 7.8
A game is said to be essential if there exist two coalitions such that they can strictly
increase their joint security level by joining together; that is, if

v(G1 ∪ G2) > v(G1) + v(G2)

for some coalitions G1 and G2. If this does not occur, that is, if forming coalitions does
not ever provide improved security, then the game is said to be inessential. �

The characteristic function provides a general description of both individual and
group interests under the von Neumann–Morgenstern tradition of game theory.
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It provides a means of identifying coalitions that are justifiable according to the basic
notions of rationality upon which the theory is built. There are three criteria that any
such rational coalition must satisfy.

Let s be a candidate strategy for consideration as being rational. The first criterion
is that, under the grand coalition, the entire group must receive at least its security
level; that is, the sum of the individual payoffs under s must be at least as large as the
characteristic function of the grand coalition:

N∑
i=1

πi (s) ≥ v(�).

But, by definition, v(�) is not only achievable, but the most that is achievable by all
decision makers working cooperatively, thus

N∑
i=1

πi (s) ≤ v(�).

These two relationships imply that

N∑
i=1

πi (s) = v(�). (7.1)

In other words, for a strategy to be acceptable it must be a Pareto equilibrium.
The second criterion is that, if s is implemented, no individual player should be

required to receive less than its security level; that is,

πi (s) ≥ v(Xi ), i = 1, . . . , N . (7.2)

Definition 7.9
Any strategy that satisfies both (7.1) and (7.2) is called an imputation strategy or
imputation.1 �

The third criterion is motivated by the following observation. Suppose the players
are entertaining an agreement to play strategy vector s′, which, if consummated, would
return the payoff vector {πi (s′), i = 1, . . . , N }. Now let G be a potential coalition. If
the sum of the individual payoffs received by the members of G when playing s′ is less
than the maximum coalitional payoff they can be guaranteed to receive if they were
to form a coalition, then the members of G should, if rational, refuse to consummate
s′. For, by playing as a coalition, they can be assured of receiving at least v(G), which
may then be redistributed by side payments to make all members of the coalition

1 In the literature, much of the discussion of this subject deals directly with the payoffs and not explicitly with
strategies. This is satisfactory, since payoffs are functions of strategies and it is often simpler to operate in a
payoff space. In this current development, however, we wish to operate in strategy space, so we deviate slightly
from conventional practice.
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Pareto better off than they would have been if s′ were implemented. In the jargon
of game theory, the coalition G should block s′. Thus, the third rationality condition
is that∑
Xi ∈G

πi (s′) ≥ v(G) (7.3)

for every coalition G.

Definition 7.10
The core is the set of strategy vectors that satisfy all three rationality conditions: (7.1),
(7.2), and (7.3). �

The core is a fundamental equilibrium concept. The strategy vectors that lie in it
are those that survive an intense form of competition between players. Anyone may
combine with anyone else to block a potential solution. There are no loyalties and
no prior commitments. Nor are patterns of collusion prohibited. Until everyone is
satisfied, negotiations may continue, and players are free to overturn any provisional
arrangements.

But the core is no panacea. The requirements are so strenuous that, for many games,
the core is empty. In fact, it can be shown (see, e.g., Bacharach (1976)) that, if a
constant-sum game is essential, then the core is empty.

A famous example of a game with an empty core is the three-player game Laissez-
Faire, which also goes by the name Share a Dollar. There are 100 pennies (a dollar)
on the table, and it is decided by majority vote which coalition gets to share the dollar,
which can be divided between two players only. A strategy is a three-tuple of the form
s = {s1, s2, s3}, where si is the number of pennies that Xi receives. The payoff for Xi

is defined as the number of pennies that comes to Xi ; that is,

π1(s1, s2, s3) = s1,

π2(s1, s2, s3) = s2,

π3(s1, s2, s3) = s3.

Since no player can completely eliminate the possibility of being frozen out of a deal,
it is easy to see that the characteristic function for this game is

v(X1) = v(X2) = v(X3) = 0,

v(X1, X2) = v(X1, X3) = V (X2, X3) = 100,

v(X1, X2, X3) = 100.

The game is essential, since, for example, X1 and X2 may achieve a security level of
100 by cooperating, while the sum of their individual security levels is zero. Let us
verify the claim that the core is empty for this game. Suppose it is not empty and that
s = {s1, s2, s3} belongs to it. Since, by hypothesis, elements of the core satisfy (7.3),
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this means that

π1(s) + π2(s) ≥ 100,

π1(s) + π3(s) ≥ 100,

π2(s) + π3(s) ≥ 100.

Adding these three inequalities, we have

2π1(s) + 2π2(s) + 2π3(s) ≥ 300 or π1(s) + π2(s) + π3(s) ≥ 150,

but this is impossible, since π1(s) + π2(s) + π3(s) ≤ 100. Thus, the core is empty.
The dynamics of this game are vicious. Suppose that X1 and X2 provisionally agree

on s = {50, 50, 0}. As long as X1 and X2 stick together, all is fine, but suppose X3 now
approaches, say, X2 with a proposal of s′ = {0, 60, 40}. This would surely entice X2

away from s, since it would gain an extra 10 pennies. But nothing prohibits X1 from
approaching X3 with an offer of the form s′′ = {50, 0, 50}, which would entice X3 away
from a coalition with X2. Such recontracting is endless. Every proposed arrangement
can be frustrated by a counter-offer – every strategy vector is blocked. The game has
no solution that will please every player, someone will be disgruntled. This is what it
means for the core to be empty.

The empty core exposes the ultimate ramifications of a decision methodology based
strictly on individual expectations maximization. This model imposes an insatiable,
intemperate, and restless attitude on the players – hardly a constructive environment
in which to conduct negotiations. Much research has focused on ways to extend the
theory to validate solutions not in the core. Shapley (1953) suggests that players in an
N -person game should formulate a measure of how much their joining a coalition
contributes to its value and should use this metric to justify their decision to join or
not to join. This formulation, however, requires the acceptance of additional axioms
involving the play of composite games (Rapoport, 1970).

Another way to extend the notion of the core is to form coalitions on the basis of
no player having a justifiable objection against any other member of the coalition,
resulting in what is called the bargaining set. Also, it is certainly possible to invoke
various voting or auctioning protocols to address this problem. Extra-game-theoretic
considerations, such as friendship, habits, fairness, etc., may also be applied to modify
the behavior of agents desiring to achieve some rationale for forming coalitions. All
of these considerations, however, either require the imposition of additional assump-
tions or extend beyond consideration of strict individual rationality in rather ad hoc
ways. Rapoport summarizes the situation for conventional N -person game theory
succinctly:

If . . . we wish to construct a normative theory, i.e., be in a position of advising “rational players” on
what the outcomes of a game “ought” to be, we see that we cannot do this without further assumptions
about what explicitly we mean by “rationality.” (Rapoport, 1970, p. 136)
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There are many variations to this basic theory, involving both cooperative and non-
cooperative game theory (see, e.g., Hart and Mas-Colell (1994), but we will not pursue
them. The core is an adequate example of the way one can generate rational explana-
tions for why a strategy is a good one. The core does not provide us, however, with a
constructive process by which such a solution can be actually reached – only how to
recognize it when we see it. All “negotiations,” in effect, take place before the game
is played. Actually playing the game is anticlimactic. Perhaps this is what is supposed
to happen. Maybe the possibilities are so rich and so varied that it is impossible to
define a constructive procedure that would lead, in a sure-fire way, to a good solu-
tion. If so, then the role of conventional game theory as a mechanism for modeling
negotiatory systems must be limited to telling us what to expect when rational deci-
sion makers negotiate. This is simply a fact of life under the expectations-maximizing
paradigm. It leads to concepts that tell us what to do, but not how to do it. In par-
ticular, they cannot tell us how to build computer models of negotiation. They are
instructive, but not constructive, and should not be asked to deliver more than they
can.

Another stream of theory for the design of negotiatory systems is to rely more
heavily on heuristics than on formal optimization procedures. The approach taken by
Rosenschein and Zlotkin is to emphasize special compromise protocols involving
pre-computed solutions to specific problems (Rosenschein and Zlotkin, 1994; Zlotkin
and Rosenschein, 1996c, 1996b, 1996a). Formal models that describe the mental states
of agents basedupon representations of their beliefs, desires, intentions, andgoals canbe
used for communicative agents (Cohen and Levesque, 1990; Cohen et al., 1990; Kraus
andLehmann, 1999; Lewis andSycara, 1993; Shoham, 1993; Thomas et al., 1991;Well-
man and Doyle, 1991). In particular, Sycara develops a negotiation model that accounts
for human cognitive characteristics and views negotiation as an iterative process in-
volving case-based learning and multi-attribute utilities (Sycara, 1990; Sycara, 1991).
Kraus et al. (1998) provide logical argumentation models as an iterative process in-
volving exchanges among agents to persuade each other and bring about a change of
intentions. Zeng andSycara (1997, 1998) develop a negotiation framework that employs
a Bayesian belief-update learning process through which the agents update their be-
liefs about their opponent. Durfee and Lesser (1989) advance a notion of partial global
planning for distributed problem solving in an environment of uncertainty regarding
knowledge and abilities.

These approaches offer realistic ways to deal with the exigencies under which de-
cisions must be made in the real world. However, they all have a common theme,
which is that, if a decision maker could maximize its own private utility subject to
the constraints imposed by other agents, it should do so. Although the preponder-
ance of economic decision-making philosophy seems to be based ultimately upon the
premise of individual rationality, it does not follow that this is the only viable model for
the analysis of human systems. Nor, more importantly, does it follow that a model of
behavior for human systems should be uncritically adopted for the design of artificial
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systems, particularly if the model is subject to criticism as the appropriate model of
human behavior.

7.2 Satisficing negotiation

7.2.1 The negotiation theorem

Communities usually exist or are created for a purpose, and often the purpose is larger
than the individual.When this is the case, the functionality of the communitywill depend
on the interests of the group as well as of the individual. Since we cannot manufacture
a notion of group rationality from individual rationality, we must abandon our demand
for exclusive self-interest if we want to deal with group rationality. Fortunately, as was
discussed in Section 6.4, a notion of group rationality may be expressed in terms of
praxeic utility theory and the satisficing notion.

Definition 7.11
Let pS and pR be joint selectability and rejectability functions defined over the joint
strategy space S. The satisficing strategy vector set at boldness q is

Σq = {s ∈ S: pS(s) ≥ qpR(s)}. �

The set Σq defines the set of group strategies that are satisficing for the entire
community. The elements of this set are such that the overall avoidance of failure of
the community, as expressed by pS, outweighs the overall resource consumption of
the community, as expressed by pR. According to the principle of intrinsic rationality,
all elements of Σq are good enough for the community. As discussed in Section 6.4,
the interpretation of the concept of group satisfaction depends on the context. To reit-
erate, the notion of group preference is coordination/conflict neutral. For a competitive
game, the group preference may be to oppose one another, while for a cooperative game
the group preference may be to coordinate. Furthermore, the group preference can be
emergent.

But what is good enough for the community may not coincide with what is good
enough for the individuals. The individual satisficing sets

�i
q = {si ∈ �i : pSi (si ) ≥ qpRi (si )}

identify the individual strategies that are satisficing, or good enough, for the i th indi-
vidual, and the satisficing rectangle

Rq = �1
q × · · · × �N

q

is the collection of individually satisficing sets. The two setsΣq andRq thus represent all
strategies that are either good enough for the group or good enough for the individuals.
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They correspond to well-defined notions of group and individual preferences. But, as
we saw in Section 6.3, individual and joint decisions are not necessarily compatible,
in that Rq and Σq may be disjoint! There is, however, a more primitive and weaker
notion of consistency that is guaranteed to hold.

Theorem 7.1
(The negotiation theorem.) If si is individually satisficing for Xi , that is, si ∈ �i

q , then
it must be the i th element of some jointly satisficing vector s ∈ Σq .

PROOF
We will establish the contrapositive, namely, that if si is not the i th element of any
s ∈ Σq , then si �∈ �i

q . Without loss of generality, let i = 1. By hypothesis, pS(s1, v) <

qpR(s1, v) for all v ∈ U2 × · · · × UN , so
pS1 (s1) = ∑

v pS(s1, v) < q
∑

v pR(s1, v) = qpR1 (s1), hence s1 �∈ �1
q . �

Thus, if a strategy is individually satisficing, it is part of a jointly satisficing strategy
vector, although it need not be part of all jointly satisficing strategy vectors. The con-
verse, however, is not true: if si is the i th element of a jointly satisficing vector, it is not
necessarily individually satisficing for Xi . (As a counterexample, consider the problem
discussed in Section 6.3, and observe that F is the second element of a jointly satisficing
set for the Lucy and Ricky problem for certain values of α, but F is not individually
satisficing for Ricky for any values of α.)

The content of the negotiation theorem is that no one is ever completely frozen out of
a deal – every decision maker has, from its own perspective, a seat at the negotiating
table. This is perhaps the weakest condition under which negotiations are possible.

To ensure that negotiation is not vacuous, we must assume that the purposes of the
individuals who are party to the negotiation are served only when a mutually acceptable
agreement is reached. Thus, failure can be avoided only if the community agrees on a
joint decision that is acceptable to all participants. Therefore, in addition to whatever
collective goals that may exist, a group preference must include the desire to avoid
failing to reach an agreement. This constraint suggests three principles of negotiation.
N-1: Negotiators are usually more concerned with meeting minimum requirements

than with achieving maximum performance.
N-2: Negotiations should lead to decisions that are both good enough for the group

(i.e., failure to agree is avoided) and good enough for each individual.
N-3: Negotiation is, institutionally, a narrowing down of options; it is more natural to

work with a set of good enough joint options and invoke an iterative process to
converge to a deal than to search directly for a single joint option that is a best
compromise.2

2 The concept of narrowing down does not mean that the set of possible options is closed and does not preclude
the introduction of creative new options that can emerge as a result of exchanges that occur during negotiation.
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Satisficing is well-suited to these principles. The joint satisficing set Σq and the
individually satisficing sets �i

q provide each Xi with information critical to negotiation:
a complete assessment, from its point of view, of all joint options that are good enough
for the group (at a minimum, avoiding failure to agree), and of all individual options
that are good enough for itself (according to its own interests). The negotiation problem
is for each Xi to arrive at a compromise of its own interests with the interests of others
so as to avoid an impasse.

For a decision maker to compromise would require it to lower its standards of what
is good enough. No such concept exists under the auspices of exclusive self-interest –
optimization does not admit grades, or degrees. Satisficing, or being good enough,
on the other hand, is a graded concept. For a decision maker to lower its standards,
however, would require a good reason. One possible reason is for the good of the group,
at least in the interest of avoiding of failure to reach a compromise.

A decision maker who possessed a modest degree of altruism would be willing to
undergo some degree of self-sacrifice in the interest of others. Such a decision maker
may be viewed as an enlightened liberal; that is, one who is intent upon pursuing its
own self-interest but gives some deference to the interests of others. Such a decision
maker would be willing to lower its standards, at least somewhat and in a controlled
way, if doing so would be of benefit to others.

Even in a non-harmonious negotiation scenario where altruism is not a factor, a
decisionmakermay be inclined to lower its standards in order to avoid failure, especially
if the consequences of the group failing to achieve a mutually agreeable decision are
high (and thus all players are frustrated) compared with the individual compromising
its individual interests.

The natural way for Xi to express a lowering of its standards is to decrease its
boldness. Generally, we may set q = 1 to reflect equal weighting of the desire to avoid
failure and the desire to conserve resources. By decreasing q, we lower the standard
for failure avoidance relative to resource conservation and thereby increase the size of
the satisficing set. As q → 0 the standard is lowered to nothing, and eventually every
option is satisficing for Xi . Consequently, if all decision makers are willing to reduce
their standards sufficiently, a compromise can be achieved.

Definition 7.12
Let qi be the boldness level for decision maker Xi . The boldness vector is the array
q = (q1, . . . , qN ). The least bold value is qL = min{q1, . . . , qN }. �

Definition 7.13
The set of all strategy vectors that are also individually satisficing for Xi is Xi ’s
compromise set Ci , given by

Ci = {s = {s1, . . . , sN } ∈ ΣqL : si ∈ �qi }. �
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Note that the standard for a compromise is set by the least bold value, qL , which
reflects the notion that the standards of a group can be no higher than the standards of
any member of the group.

Theorem 7.2
Ci �= ∅, i = 1, . . . , N.

PROOF
The negotiation theorem implies that the set

Di = {s = {s1, . . . , sN } ∈ Σqi : si ∈ �qi } �= ∅.

But Di ∈ Σqi , and since qL ≤ qi , we have Σqi ⊂ΣqL , hence Di ∈Ci . �

Definition 7.14
A strategy vector s = (s1, . . . , sN ) is a satisficing imputation at boldness q if pS(s) ≥
qL pR(s) and pSi (si ) ≥ qi pRi (si ) for i = 1, . . . , N . That is, the strategy vector is jointly
satisficing for the group and each component option is individually satisficing for the
corresponding member of the group.

The satisficing imputation set at q, denotedNq, is the set of satisficing imputations
at q, and is given by Nq = ∩N

i=1Ci . �

Definition 7.15
A rational compromise at q, designated s∗, is a satisficing imputation that maximizes
the joint selectability to rejectability ratio; that is,

s∗ = arg max
s∈Nq

pS1···SN (s)
pR1···RN (s)

. �

A rational compromise provides maximal benefit for the group while ensuring that
each decision maker’s preferences are not compromised more than the decision maker
permits. IfNq = ∅, then no rational compromise is possible at boldness q. Thus, at least
some of the agents must be willing to lower their standards if a compromise is to occur.
It is reasonable to assume that there is a lower limit to how much any decision maker
would be willing to compromise. If that limit is reached for some decision maker and no
agreement is reached, then that decision maker must break off negotiations and declare
an impasse. Until that point is reached, however, negotiations may proceed in good
faith according to the algorithm given in Figure 7.1, which is suitable for communities
of enlightened liberals.

Reducing the boldness qi is a controlled way to relax the standards of rationality,
which may be necessary in difficult situations if a compromise is to be reached. The
amount that qi must be reduced belowunity is ameasure of the amount of compromising
needed to reach a mutually acceptable solution. The satisficing imputation set is similar
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Step 1: Xi forms Σi
qL and Σi

qi , i = 1, . . . ,N ; initialize with qi = 1 .

Step 2: Xi forms its compromise set by eliminating all strategy vectors for
which its component is not individually satisficing, resulting in

Σi
qL : si ∈

∈

Σi
qi}.

Step 3: BroadcastCi and qi to all other participants, receiving similar information
from them.

Step 4: Form the satisficing imputation set, Nq = ∩N
j=1Cj . If Nq =

=
∅, then

decrement qj , j = 1, . . . , N, and repeat previous steps until Nq ∅.
Step 5: Xi implements the ith component of the rational compromise

s∗ = arg max
s Nq

pS1...SN (s)
pR1...RN (s)

.

Ci =  {s ∈

Figure 7.1: The Enlightened Liberals negotiation algorithm.

in general structure to the von Neumann–Morgenstern imputation set (i.e., the set of
payoffs that are both jointly and individually secure (Shubik, 1982)). But it differs
significantly in that the superlative notion of security (maximin value) is replaced with
the dichotomous notion of satisficing. This leads to a theory of social behavior that is
very different from standard N -person von Neumann–Morgenstern game theory.

7.2.2 The Resource Sharing game

The following simple example illustrates the fundamental differences between sub-
stantive and intrinsic rationality. Suppose a factory operates N processing sectors that
function independently of each other, except that, if their power requirements exceed a
fixed threshold, they must draw auxiliary power from a common source. Unfortunately,
there are only N − 1 taps to this auxiliary source, so one of the sectors must operate
without that extra benefit. Although each sector is interested in its individual welfare,
it is also interested in the overall welfare of the factory and is not opposed to making a
reasonable compromise in the interest of overall corporate success.

Let U denote the set of auxiliary power levels that are feasible for each Xi to tap
and let fi : U → [0, ∞) be an objective function for Xi ; that is, the larger fi , the more
effectively Xi achieves its goal. Xi ’s choice is tempered, however, by the total cost of
power, as governed by an anti-objective function, gi :U → [0, ∞), such that, the smaller
gi , the less the cost. Work cannot begin until all players agree on a way to apportion
the auxiliary power. Table 7.1 displays these quantities for a situation involving three
decision makers.

A standard approach under substantive rationality is to view this as a cooperative
game. The payoffs may be obtained by combining the two objective functions, yielding
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Table 7.1: The objective functions for the
Resource Sharing game

U f1 g1 f2 g2 f3 g3

0.0 0.50 1.0 0.10 1.0 0.25 1.0
1.0 2.00 2.0 2.00 3.0 0.50 5.0
2.0 3.00 4.0 3.00 6.0 1.00 5.0
3.0 4.00 5.0 4.00 9.0 2.00 5.0

individual payoff functions of the form

πi (ui ) = αi fi (ui ) − βi gi (ui ) (7.4)

i = 1, 2, 3, where αi and βi are chosen to ensure compatible units. To achieve this
compatibility, we normalize fi and gi to unity by setting

αi = 1∑
u∈U fi (u)

,

βi = 1∑
u∈U gi (u)

.

A classical way to solve this problem is to invoke a negotiation protocol. Of the
various protocols that are possible, the only one that does not require assumptions
additional to that of self-interested expectations maximization is the core. Recall that
the core is the set of all payoffs that (i) are Pareto equilibria, (ii) ensure that each
decision maker achieves its individual security level, and (iii) ensure that every coalition
achieves its group security level. Unfortunately, aswith Laissez-Faire, the core is empty.
Essentially, this is because only two decision makers can share in the auxiliary power
source, effectively disenfranchising the third decision maker. This situation potentially
leads to an unending round of recontracting, where participants continually make offers
and counter-offers in a fruitless attempt for all to maximize their expectations.

Rather than apply yet another patch to substantive rationality, we develop a solution
in the new garb of intrinsic rationality by viewing the decision makers in their true
character as enlightened liberals who are willing to accept solutions that are serviceably
good enough for both the group and the individuals. From the point of view of the group,
an option is satisficing when the joint selectability exceeds the joint rejectability. Let
us define joint rejectability as the normalized product of the individual costs functions,
namely,

pR1 R2 R3 (u1, u2, u3) ∝ g1(u1)g2(u2)g3(u3),

where “∝” means the function has been normalized to sum to unity. To compute the
joint selectability, we note that, under the constraints of the problem, only two of the
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agents may use the auxiliary power source. We may express this constraint by defining
the joint selectability function as

pS1S2S3 (u1, u2, u3) ∝
{

f1(u1) f2(u2) f3(u3) if u ∈ �,

0 otherwise,

where � is the set of all triples u = {u1, u2, u3} such that exactly one of the entries is
zero. The individual rejectability and selectability marginal mass functions are obtained
by summing over these joint mass functions according to 6.17 and 6.18.

The enlightened liberals algorithm yields, for q > 0.88, an empty satisficing impu-
tation set. But, when q is decremented to 0.88, the satisficing imputation set is

N = {{0, 1, 3}, {0, 2, 3}, {0, 3, 3}}
and the rational compromise is u∗ = {u∗

1, u∗
2, u∗

3} = {0, 1, 3} which, coincidentally, is
the Pareto optimal solution. It is not surprising that, at unity boldness, there are no
options that are simultaneously jointly and individually satisficing for all participants,
since there is a conflict of interest (recall that the core is empty). But, if each individual
adopts the point of view offered by intrinsic rationality, it gradually lowers its personal
standards to a point where it is willing to be content with reduced benefit, provided its
costs are reduced commensurately, in the interest of the group achieving a collective
goal. The amountq must be reduced to reach a jointly satisficing solution is an indication
of the difficulty experienced by the participants as they attempt to resolve their conflicts.
Reducing boldness is a gradual mechanism by which decision makers subordinate indi-
vidual interest to group interest. In other words, individual interests are eventually sub-
ordinated so that no individual interests conflict. This mechanism is very natural in the
regime ofmaking acceptable tradeoffs, but is quite foreign to the concept ofmaximizing
expectations (“finally, something we can agree to” versus “nothing but the best”).

The attitude parameters for this decision problem are given in Table 7.2. We interpret
these values as follows.
1. Group diversity is high and group tension is low, indicating that, as a group, the

system is fairly well suited for its environment. This is because overall productivity
increases with the tapping of the additional power, even though some of the agents
benefit more than others. This interpretation is borne out by fact that the group is
gratified with the joint decision.

2. X2 has the lowest diversity and the highest tension. This situation is reflected in
the structure of C, since X2 has several choices that are good enough, but is either
dubious or ambivalent about all of them. Thus, X2 experiences the most conflict
in making decisions, with a tension value of 1.307 with an upper bound of 1.89.
X2 is dubious about its component of the rational compromise, since, although
the performance to cost ratio is greater than 1, both are below the level obtainable
with a uniform distribution of selectability and rejectability. Thus, although X2 does
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Table 7.2: Attitude parameters for the
Resource Sharing game (q = 0.88)

Agent H (pS) H (pR) Diversity Tension

X1 1.837 1.784 0.550 0.931
X2 1.811 1.680 0.025 1.307
X3 1.665 1.823 1.214 0.733
Group 4.300 5.282 2.851 0.505

Agent pS(u∗
i ) pR(u∗

i ) Attitude

X1 0.402 0.083 gratification
X2 0.204 0.158 dubiety
X3 0.276 0.312 ambivalence
Group 0.051 0.004 gratification

Table 7.3: Cost functional values for the Resource Sharing
game

Agent π (0) π (1) π (2) π (3) Dynamic range

X1 −0.031 0.044 −0.018 0.004 0.075
X2 −0.042 0.062 0.014 −0.034 0.104
X3 0.004 −0.179 −0.046 0.221 0.400

not pay a great deal, it does not get a great benefit in return. X2 experiences only
mediocre performance; this is the reason for its relatively high stress – it is not very
well suited for its environment. This assessment may be used by X2 to change its
relationship with its environment. For example, it may attempt to restructure its
costs or reconfigure its processing capabilities.

3. X3 is ambivalent, meaning that, even though it achieves a good benefit, its costs
are commensurately high. It is interesting to note that X3 is the only one who must
actually compromise its standards in order to achieve a group solution; this is because
X3 has no cheap options.

4. A perhaps surprising feature of this example is that X1, although frozen out of the
coalition, is the least conflicted of the three agents; in fact, it is gratified with the joint
solution. We may gain some insight as to why this is so by examination of the cost
functional, π , as illustrated in Table 7.3. We observe from this table that X1 has the
smallest dynamic range of cost. Thus, X1 is less insensitive to the outcome than is
X2 or X3. Since X1 has little to gain or lose, it is not seriously conflicted with its
neighbors and has little incentive to compete for resources.
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As this example illustrates, indicators of attitude are not indicators of performance.
Rather, they are indicators of how well suited, or tuned, the decision maker is to function
in its environment. A decision maker in a highly stressful environment may in fact be
making very good decisions. High stress, however, can motivate the decision maker to
re-evaluate its ecological standing.

7.2.3 Intrinsic decisions

A characteristic of classical negotiation concepts is that the notion of what is rational
is externally imposed upon the decision makers. They are obligated to comply with
the strict dictates of individual rationality and are not at liberty to compromise in any
way that would grant an advantage to anyone at their expense. This is a significant
handicap when negotiating. The essence of true negotiating is the ability and authority
to make tradeoffs. Without such authority, a decision maker is constrained to be rigid
and unyielding. The problem with compromise under substantive rationality is that
making concessions with respect to individual self-interest places the decision maker
in the untenable position of having to abandon all of its standards completely, which it
cannot do and maintain any semblance of individual rationality.

Under the satisficing paradigm, however, the standards are not rigid. Rather, there are
graded degrees of what is good enough, as determined by the boldness parameter q. The
criterion for evaluating options is internal; rationality is intrinsic. The decision maker
has the ability to judge each option on its ownmerits, rather than relying on performance
relative to other options. Thus, a decision maker can exhibit some flexibility. It can
accommodate the notion of compromise without abandoning its standards completely.

A significant difference between the satisficing imputation set and the core is that we
do not need to compute jointly satisficing sets for all possible coalitions. This is because
coalitions are artifacts of substantive rationality. The motivation for coalitions in coop-
erative game theory is the need to reduce a group decision-problem to a super-individual
decision problem so that individual expectations maximization can be applied to decide
which coalition should be instantiated. This need is obviated under intrinsic rationality.
Cooperative associations, if they form at all, emerge implicitly from the structure of
the interdependence function. For this resource sharing problem, coalitions do not
naturally exist, and they should not be fabricated simply to obtain a plausible solution.

Substantive rationality – choosing the best and only the best – is perhaps the strongest
possible notion of rationality, but, by the argument presented here, it is more important
to be good enough than to be best. Intrinsic rationality – getting something that is
acceptable to everyone – is a weaker notion, but it is also more fundamental. Evaluating
dichotomies is a more primitive activity than searching for extrema. It is local, rather
than global; it is internal to the issue, rather than external.

Satisficing theory represents a principled alternative between strict optimality and
pure heuristics and mitigates the problems that arise with both extremes. The main
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problems with optimization-based negotiation are that (a) the criteria do not address
possible conflicts between group and individual preferences; and (b) optimization is
not constructive – it may identify a best compromise, but does not provide a procedure
for reaching it. Purely procedurally rational approaches to negotiation address both of
these problems, but they lack the demonstrated capacity for self-policing. By softening
but not abandoning the rigid demands of substantive rationality, intrinsic rationality
retains the capacity for self-policing and provides a framework for the construction of
negotiatory processes that account for both group and individual preferences.

7.3 Social welfare

Social choice theory is the study of the relationships between the preferences of a
society and the preferences of its members. It differs from general game theory in
one somewhat subtle way. With games, each individual participant considers its own
set of options, which may be different for each participant. Social choice theory, on
the other hand, usually deals with voting situations, where all individuals share the
same option set, and one and only one option is chosen as the winner. The social
choice problem is to reconcile collective choice with individual choice. Our discussion
begins with a review of the fundamental result of any social choice theory that is built
on the concept of total orderings. We then develop the concept of satisficing social
welfare.

7.3.1 Arrowian social welfare

Suppose that every member of a collection of decision makers has its own total ordering
function over a set of propositions. When is it possible to devise a voting scheme as a
function of the individual preference orderings that provides a total ordering of the pref-
erences of the entire group of decision makers? In other words, under what conditions
can there exist a decision rule that preserves reflexivity, antisymmetry, transitivity, and
linearity for the society? Such a function is called an Arrowian social-welfare func-
tion. Arrow’s impossibility theorem provides an answer to this question. He proceeds
by first postulating a set of properties of democratic choice that would be reasonable
for the members of any society to desire. Sen’s account (Sen, 1979) of this result lists
four properties.
R: There must be unrestricted freedom of individual choice. Each individual is allowed

to choose any of the possible orderings of the propositions.
P: The Pareto principle must apply. That is, if every member of the society prefers ui

to u j , then the society must also prefer ui to u j .
I: The social choice rule must be independent of irrelevant alternatives. That is, the so-

cial choice over a set of propositions must depend on the orderings of the individuals
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only over those propositions, and not the preferences with respect to propositions
that are not members of the set.

D: There must not be a dictator. That is, there must not be an individual such that,
whenever it prefers ui to u j , then the society must also prefer ui to u j , irrespective
of the preferences of the other individuals.

Arrow proved, with his famous impossibility theorem, that if the individuals each
possess total orderings over the preference set, then there is no method of combining
individual preferences to generate an Arrowian social-welfare function that satisfies
properties R, P, I, and D (Arrow, 1951; Sen, 1979).

An important application of this theorem is to establish the fact that any collective
choice function that honors the four conditions and is reflexive, antisymmetric, and
linear must necessarily be intransitive. This is the basis for the Voters’ Paradox that is
often used to illustrate the complexity of multi-agent decision making. It is illustrated
in the following example, evidently discovered by Nanson (1882).

Example 7.1 Voters’ Paradox. Consider a society of three individuals, X 1, X 2, and X 3, and three
alternatives, u1, u2, and u3. The preferences of these three individuals are

X 1: u1 � u2 and u2 � u3,

X 2: u2 � u3 and u3 � u1, (7.5)

X 3: u3 � u1 and u1 � u2.

If we adopt the method of majority voting, we see that u1 defeats u2 by two votes to one and u2 defeats
u3 by the same margin, so transitivity requires that u1 should defeat u3. But, in fact, u3 defeats u1 by two
votes to one – thus the paradox.

7.3.2 Satisficing social welfare

Conventional approaches to social welfare start by first considering individual
orderings, with each individual defining its preference rankings independently of ex-
plicit consideration of possible interdependencies on others (Sen, 1979). Social pref-
erences are then considered as functions of the individual preferences. But, as we
see, it can be impossible to construct a social-welfare function in a way that avoids
problems such as intransitivity if we also insist on other reasonable and desirable
characteristics.

The root of the problem is the assumption that individual preferences can be isolated
and formed independently of the interests of others. In actuality, individual prefer-
ences may not be independent, and this observation is the basis for attempts to iden-
tify conditions that eliminate the possibility of paradoxes. Sen (1979), for example,
has shown that group intransitivity can be avoided if the set of voter preferences
are “value restricted” in that all voters agree that some alternative is not best, or
some alternative is not intermediate, or some alternative is not worst, in anyone’s
preference ranking. Thus, one way to avoid paradoxes is somehow to get behind
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the scene and impose certain constraining dependencies between the voters’ prefer-
ences.

While the observation that interdependencies between individual voters’ preferences
may be useful for constructing hedges against paradoxes, it is also, and more funda-
mentally, a recognition of the fact that such interdependencies can exist, and when
they do, they should not be ignored. Unfortunately, however, if we view individual
preferences as the starting point for the construction of a social-welfare function, there
is no systematic way to account for these preference interdependencies. Perhaps, if we
start at the headwaters of preference formulation, rather than somewhere downstream,
we may be able to provide more comprehensively and systematically for these inter-
dependencies. This approach will require us to implement a mechanism to express the
natural preference couplings, should there be any, between individuals.

One way to do this is to move from the restricted domain of interest localization that
is associated with the superlative paradigm of global ordering to the more universal
view of interest globalization that is associated with the comparative paradigm of local
ordering. The interdependence function provides a convenient device with which to
account for the connections between preferences. Since this function has the structure
of a probabilitymass function, it permits themodeling of correlations between decision-
maker preferences, should they exist.

Let {X1, . . . , X N } be a set of voters and let U = {u1, . . . , un} be a set of alternatives,
one ofwhichwill ultimately be chosen as a result of a collective decisionof all voters. Let
U = U1 × · · · × UN denote the product set consisting of all possible N -tuples of voters’
choices. Let v and w denote arbitrary elements of U; that is, v = {v1, . . . , vN }, where
vi ∈ U , i = 1, . . . , N , is a vector of individual choices; similarly for w. The interde-
pendence function is a mass function pSR: U× U → [0, 1] that expresses all of the
positive and negative dependencies that exist between the voters’ preferences.

From the interdependence function we may extract the joint selectability and re-
jectability functions by integrating out the cross-interdependencies between selectabil-
ity and rejectability, yielding

pS(v) =
∑
w∈U

pSR(v;w),

pR(v) =
∑
w∈U

pSR(w; v).

Although these functions represent the joint selectability and rejectability of all possible
voting combinations, in the end only one of the alternatives will be implemented, and
the benefit and cost to the society as a whole for each alternative may be found by
evaluating these functions at the vectors {ui , . . . , ui } for i = 1, . . . , n.

Definition 7.16
The satisficing social-welfare function is given by

W (u) = pS(u, . . . , u) − pR(u, . . . , u). (7.6)
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An option that maximizes the satisficing social-welfare function is a collective choice,
denoted by

uC = arg max
u∈U

W (u). (7.7)

�

The satisficing preferences for each individual are obtained by first computing the
marginal selectability and rejectability functions, as given by 6.17 and 6.18 and then
computing the satisficing sets for each, as given by 6.19.

Definition 7.17
The consensus set is the intersection of all individual satisficing sets.

Cq = ∩N
i=1�

i
q . (7.8)

If uC ∈ Cq , then uC is an acclamation. �

An element of the consensus set is good enough for every individual, and an accla-
mation is not only good enough for every individual, but is also in the best interest
of the society; that is, it maximizes the satisficing social welfare function. If Cq �= ∅
but there are no acclamations, then society as a whole may not be well served by the
outcome, even though the outcome is good enough for each individual. If the consensus
set is empty, then there are no mutually acceptable alternatives and no outcome can be
pleasing to all individuals.

Observe that, unlike the social-welfare functions proposed by Arrow and others
under the paradigm of substantive rationality, the satisficing social-welfare function is
not a function of individual preferences, except in the special case of complete voter
inter-independence, that is, if no individual’s preferences are influenced by any other
individual’s preferences. In this case, the interdependence function is composed of the
product of marginal selectability and rejectability functions, that is,

pSR(v1, . . . , vN ; w1, . . . wN ) =
N∏

j=1

pSj (v j )
N∏

j=1

pR j (w j ),

where pSj and pR j are the marginal selectability and rejectability mass functions for
X j . The satisficing social-welfare function is then

W (u) =
N∏

j=1

pSj (u) −
N∏

j=1

pR j (u). (7.9)

Let us now examine the Voters’ Paradox from the satisficing point of view and
assume complete inter-independence. To do so, we must define the selectability and
rejectability functions, which requires us to provide operational definitions for failure
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Table 7.4: Selectability and rejectability for the
Voters’ Paradox under conditions of complete
voter inter-independence

U pS1 pS2 pS3 pR1 pR2 pR3

u1 0.500 0.167 0.333 0.333 0.333 0.333
u2 0.333 0.500 0.167 0.333 0.333 0.333
u3 0.167 0.333 0.500 0.333 0.333 0.333

Table 7.5: Conditional selectability for the
correlated Voters’ Paradox

u pS3|S2 (u|u1) pS3|S2 (u|u2) pS3|S2 (u|u3)

u1 0.100 0.000 0.333
u2 0.000 0.100 0.167
u3 0.900 0.900 0.500

avoidance and resource conservation. Perhaps the simplest way to frame this problem
is to associate the ordinal preference orderings given by (7.5) with selectability (failure
avoidance) and to view resource conservation as simply the cost of casting a vote, with
the same cost to each alternative. Using a simple numerical scale of 3 being best, 2
next best, and 1 worst for selectability, and modeling rejectability with the uniform
distribution, the selectability and rejectability functions become, upon normalization,
those shown in Table 7.4, from which we compute the individual satisficing sets as

�1
q = {u1, u2},

�2
q = {u2, u3},

�3
q = {u1, u3}.

We immediately see that the consensus set is empty. We also see that the satisficing
social-welfare function is constant. We may conclude that, under a condition of inter-
independence, the satisficing solution sheds no additional light on the Voters’ Paradox.

We now consider a way to enrich this example by allowing less than complete
inter-independence between voters’ preferences. Let us suppose that X1 and X2 are
preference-independent, but that the preferences of X3 are coupled to those of X2. The
joint selectability function may then be factored as

pS1S2S3 (v1, v2, v3) = pS1 (v1)pS2 (v2)pS3|S2 (v3|v2),

where pS1 and pS2 are as given in Table 7.4, but pS3|S2 is given by Table 7.5.
Straightforward calculation yields the marginal selectability functions that are pre-

sented in Table 7.6. The marginals for X1 and X2 are unchanged but, although X3’s
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Table 7.6: Marginal selectability and rejectability
for the correlated Voters’ Paradox

U pS1 pS2 pS3 pR1 pR2 pR3

u1 0.500 0.167 0.128 0.333 0.333 0.333
u2 0.333 0.500 0.106 0.333 0.333 0.333
u3 0.167 0.333 0.766 0.333 0.333 0.333

marginals have changed, X3’s ordinal preferences remain as

X3: u3 � u1 and u1 � u2.

The individual satisficing sets, for q = 1, are

�1
q = {u1, u2},

�2
q = {u2, u3},

�3
q = {u3}.

The consensus set is empty, as with the original formulation.
The satisficing social-welfare function for this last case, however, is not constant,

but is easily computed from (7.6) to be

W (u1) = −0.033,

W (u2) = −0.020,

W (u3) = −0.009.

There is now a unique collective choice, namely, u3, even though the individual prefer-
ences have the same ordinal ranking. Note that the paradox is preserved when consider-
ing individual preferences only, because the interdependencies between the voters are
not revealed by the marginal selectability functions. Clearly, the individual preferences
do not tell the whole story when conditional preferences exist.

This phenomenon is exactly the same thing as happens with correlated random
variables in statistical inference theory. One can derive the marginal statistical distribu-
tions from the joint distribution, but the joint distribution cannot be obtained from the
marginals unless the random variables are statistically independent. The joint distribu-
tion is the more basic quantity and contains more information than the marginals. In
our context, the joint selectability function contains information that cannot be derived
from the individual selectability functions.

The major difference between social welfare à la Arrowian analysis and social wel-
fare à la the interdependence function is that, under the former paradigm, individ-
ual preferences are basic, and social welfare is viewed as a function of individual
preferences. Under the latter paradigm, individual preferences may be dependent upon



167 7.3 Social welfare

preference relationships involving others. The issue is really one of interest localization
versus interest globalization, as introduced in Section 2.1.

While it is debatable which of these paradigms is a better model for human behavior,
the major interest in this book is to develop decision logic formalisms for artificial
societies. It is likely that the choice of paradigm will depend largely on the purpose for
which the society is to be developed. For conflictive or competitive applications, it may
be that the interest-localization paradigm will be more effective but, for cooperative
environments, it is likely that interest globalization will be more appropriate.





8 Complexity

Complexity is no argument against a theoretical approach if the complexity arises not out of the theory
itself but out of the material which any theory ought to handle. Frank Palmer

Grammar (Penguin, 1971)

Uncertainty and complexity are opposite sides of the nescience coin. One who suffers
from uncertainty is frustrated by a lack of knowledge; one who suffers from complexity
is frustrated by a lack of know-how. Knowing what to do is one thing, but knowing
how to do it is quite another thing. Even if one knows of a way, in principle, to solve
a problem, the computational burden of the solution may be impossible with existing
technology. In such cases the solutionmust await the development of improvedmethods
of computation.

Apparent complexity can often be reduced by eliminating irrelevant attributes of
the decision problem, a procedure that Rasmusen terms “no-fat modeling.” This ap-
proach is as follows: “First, a broad and important problem is introduced. Second,
it is reduced to a very special but tractable model that hopes to capture its essence.
Finally, in the most perilous part of the process, the results are expanded to apply
to the original problem” (Rasmusen, 1989). Once the problem has been reduced to its
essence, game theory provides away to compute solutions to be expanded to the original
problem.

Perhaps the most important simplifying assumption that is employed when reducing
a problem to a form tractable for von Neumann–Morgenstern game theory is individual
rationality. This assumption motivates another, somewhat subtle, assumption: social
relationships (i.e., relationships that may exist between the players, such as emotions,
attitudes, etc.) are excluded from consideration when defining the expected utilities
of the players. This exclusion is entirely appropriate under the paradigm of individual
rationality, since the players are assumed to be self-interested optimizers who have no
concern for the interests of others. Such players are asocial. For example, with the von
Neumann–Morgenstern treatment of the Prisoner’s Dilemma, jail-time is assumed to be
the only issue that is relevant to an individual’s decision and hence is the only quantity
represented in the payoff matrix. There is no attempt to accommodate any relationships
that may exist between them, and an attempt to do so would be seen by many game
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theorists as a fundamental change that would transform the Prisoner’s Dilemma into
an entirely different game. With von Neumann–Morgenstern game theory, the payoff
array is the game; once it is defined, the story line is irrelevant.

Asocial behavior is not entirely excluded from consideration by game theory, but
the only way social relationships can be accommodated is for a player categorically to
modify its own utility with the utilities of others. But, as I have claimed earlier, this
only simulates social relationships such as altruism and does not fundamentally alter the
structure of the game. In such a case it is only the definition of self-interest that changes,
not the criterion for defining preferences. As Sen (1990, p. 19) observed: “It is possible
to define a person’s interests in such a way that no matter what he does he can be seen
to be furthering his own interests in every isolated act of choice . . . no matter whether
you are a single-minded egoist or a raving altruist or a class-conscious militant, you
will appear to be maximizing your own utility in this enchanted world of definitions.”

The paradoxes and dilemmas that frequently arise in game theory may be charming
and even entertaining1 but, if such apparent incongruities arise due to the elimination of
critical social relationships from the game model that are only post factum re-inserted
to interpret the phenomena as incongruities, they cannot serve as valid models of
the problem under consideration. Removing the “fat” from a model must not reduce
it to skin and bones. When the opportunity exists to coordinate for the benefit of
others, eliminating the sociological issues that could engender such cooperation from
the individual expected utility functions can compromise the essence of the game
and make it difficult or impossible to comply with the third of Rasmusen’s steps,
namely, to expand the results to the original problem. Confining the players solely to
the consideration of their own interests may make a problem more tractable, but it may
also make it unnecessarily more difficult to account for social relationships.

Although humans may be able to make the judgments necessary to expand an overly
simplified model to the context of the original problem, it is less likely that artificial
decision makers will be able to make such inferences. Consideration of social relation-
ships may make the model more complex, but if additional complexity is required to
account for all relevant factors, it cannot be safely eliminated. Since satisficing game
theory provides a mechanism for accounting for social relationships, it may offer a
more accommodating model than does conventional game theory when the players are
not appropriately characterized as asocial, optimization-obsessed individuals.

The price to be paid for an enlarged view is increased complexity. As discussed
in Chapter 6, the ability to define conditional preferences provides the opportunity to
account for social relationships as well as individual interests. The resulting interdepen-
dence function is more complicated in its structure than von Neumann–Morgenstern
expected utility functions because it accounts for the interaction of two kinds of

1 Two delightful as well as serious and instructive books on game theory are S. J. Brams’ Superior Beings: If They
Exist, How Would We Know? (New York: Springer-Verlag, 1983) and J. D. Williams’ The Compleat Strategyst
(New York: Dover, 1986). These books apply game theory to numerous social situations and discuss a number
of paradoxes.
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preferences among decision makers, namely, the avoidance of failure and the con-
servation of resources. One of the potential advantages of satisficing games, however,
is that the interdependence function can be constructed from local conditional informa-
tion and therefore the need for exhaustive global preference orderings can sometimes
be eliminated. Consequently, its specification may actually be simpler than the speci-
fication of von Neumann–Morgenstern utilities, since global preferences may emerge
from local preferences via the conditioning structure.

Nevertheless, satisficing game theory is potentially more complex than von
Neumann–Morgenstern game theory for systems that are heavily interconnected. To
see how this increase in complexity comes about, consider a system of N decision
makers and suppose that the i th decision maker has ni choices. A utility function for
the i th decision maker thus has N independent variables, and the utility function make
take on n1n2 · · · nN different values. Thus, a total of N

∏N
i=1 ni different values must

be specified for the game. The interdependence function, however, has 2N indepen-
dent variables, and therefore may assume

∏N
i=1 n

2
i values. For example, suppose N = 5

and each decision maker can make only two choices, so ni = 2. Each von Neumann–
Morgenstern utility functionmay assume 32 values, generating a totality of 160 possible
specifications for the entire system, whereas the interdependence function may require
1024 total specifications. This is the computational price that must be paid for account-
ing for preferences. Total preference interconnectivity does not come cheaply.

8.1 Game examples

This section illustrates, by means of examples, the increase in complexity that can
occur with the adoption of a satisficing approach. Four well-known two-player games
are discussed, and the satisficing approach is contrasted with the conventional von
Neumann–Morgenstern approach. In each of these games, social relationships are mod-
eled by parameters that may vary according to the emotional state of the players. The
first game, “Bluffing,” is a two-player zero-sum game of strict competition. The second
game, “Battle of the Sexes,” is a two-player coordination game in which the players’ in-
terests are compatible. The third game, “Prisoner’s Dilemma,” is a mixed-motive game
involving notions of conflict and coordination. Finally, the fourth game, the “Ultimatum
game,” is a coordination game that exhibits apparently irrational behavior on the part
of human players. These games have all been extensively analyzed from the point of
view of von Neumann–Morgenstern game theory and thus make ideal examples of the
difference between the classical approach and the satisficing approach.

8.1.1 Bluffing

Bluffing (von Neumann and Morgenstern, 1944; Bacharach, 1976) is a game involving
two players, X1 and X2, who each stake themselves by putting on the table an ante,
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Table 8.1: The payoff matrix
for the Bluffing game

X2

X1 F C

S 0 (b − a)/2
B a 0

a. X1 then randomly draws one of two cards, marked Hi and Lo, from a hat, without
revealing the result to X2. X1 has two choices. The first is to fold (F), in which case X2

claims X1’s ante, and the game is over. Otherwise, X1 must raise (R), that is, add an
amount b − a to the ante, making the total stake b. If X1 raises, then X2 must decide
whether to fold, in which case X1 claims X2’s ante, or X2 must call (C), in which case
X1 must reveal the card that was drawn. X1 wins b if the card is Hi, otherwise, X2

wins b. X1 has four possible strategies. Let them be denoted (F, F), (F, R), (R, F),
and (R, R), where the first entry in the pair is X1’s response should the drawn card be
Lo, and the second entry is the response should the drawn card be Hi. Clearly, (F, F)
and (R, F) are dominated, and may be eliminated from consideration by a rational X1.
Notation may be simplified by relabeling the two non-dominated options for X1 as
playing straight, or S = (F, R), and bluffing, or B = (R, R). X2’s strategies are also
simple: F or C . The payoff matrix for this game is given in Table 8.1, where each entry
in the matrix corresponds to X1’s expected returns (rather than guaranteed returns).

The classical von Neumann–Morgenstern approach to this game is for each player
to maximize its security level, that is, to maximize the minimum expected payoff. This
principle leads to the notion of non-cooperative, or Nash, equilibria, that is, pairs of
independently made choices such that neither player has motive to change, provided
that the other player does not change. The minimax theorem establishes the fact that all
finite two-player, zero-sum games have an equilibrium pair of pure or mixed strategies.
For the bluffing game, the equilibrium is a mixed strategy: X1 should play S with
probability 2a

a+b , and X2 should play F also, it turns out, with probability 2a
a+b . The

minimax point, or value, of the game, is b−a
b+a a. This is the value that, on average, X1

would win (and X2 would lose) if the game were played many times. If a referee were
to arbitrate, it would be fair simply to require X2 to pay X1 this amount in lieu of
playing the game.

Although players would ostensibly participate in this game for the sole purpose of
acquiring wealth and thus would presumably optimize, the fact that the game is not
a fair one suggests that there may be ulterior motives. This is particularly relevant to
X2, since it has a higher likelihood of losing than winning, even under optimal play.
Although any such ulterior motives are not provided by the expected utilities that appear
in the payoff matrix, let us assume that the following social relationships exist: suppose
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that part of X2’s motive for playing is to embarrass its opponent by calling the other’s
bluff, and that X1 mitigates its desire to win by its aversion to being dishonest, that
is, to bluffing. We may capture these considerations by parameterizing the intensity of
these relationships.

To cast this as a satisficing game, we must first establish operational definitions for
failure avoidance and resource conservation. In accordance with the policy of asso-
ciating the avoidance of failure with the fundamental goal of the game, this outcome
corresponds to winning; any move that wins the game avoids failure. Resource con-
servation will be associated with taking risk (i.e., for X1 to bluff and for X2 to call).
In accordance with the standard assumption associated with praxeic utility theory, we
will assume that winning and taking risk are independent concepts for each individual;
that is, X1’s bluffing risk and X2’s calling risk are independent, respectively, from each
player’s winning.

Our approach is to construct an interdependence function and to examine both joint
and individual satisficing behavior. To compute the joint behavior, we invoke (6.12)
and (6.13) and form a jointly satisficing set. We proceed by expressing the interde-
pendence function as the following product (in the interest of brevity, we omit the
arguments):

pS1S2R1R2 = pR1|S1S2R2 · pR2|S1S2 · pS2|S1 pS1 . (8.1)

Since failure avoidance and resource conservation are independent concepts for each
player, it is immediate in this case that

pR1|S1S2R2 (v1|u1, u2; v2) = pR1|S2R2 (v1|u2; v2)

and

pR2|S1S2 (v2|u1, u2) = pR2|S1 (v2|u1).

We may simplify things further by observing that, conditioned on knowing X2’s prefer-
ence for risk taking (calling), X1 may calculate its preference for risk taking (bluffing)
without considering its preference for winning. Accordingly, we have

pR1|S2R2 (v1|u2; v2) = pR1|R2 (v1|v2),

and we may simplify (8.1) to become

pS1S2R1R2 (u1, u2; v1, v2) = pR1|R2 (v1|v2) · pR2|S1 (v2|u1) · pS2|S1 (u2|u1) · pS1 (u1). (8.2)

To see how to generate pR1|R2 , let us examine pR1|R2 (S|F), that is, the rejectability
X1 should associate with the option S, given that X2 commits to rejecting F . In this
situation, X1 knows that X2 will call, so it is not safe for X1 to raise unless it draws Hi.
Consequently, X1 rejects B. Similarly, if X1 knows that X2 rejects C , X1 knows it is
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safe to bluff and so will reject S. Summarizing, we have

pR1 |R2
(S|F) = 0,

pR1 |R2
(B|F) = 1,

pR1 |R2
(S|C) = 1,

pR1 |R2
(B|C) = 0.

(8.3)

Let us next examine the conditional selectability mass function pR2|S1 (v2|u1).
Suppose u1 = S. Under this circumstance, X2 knows that X1 will not bluff, and so
X2 must reject calling, so pR2|S1 (C |S) = 1. Now suppose u1 = B, that is, X2 knows
that X1 will bluff. Let β denote the rejectability of folding in this case. Setting β ≈ 0
means that X2 ascribes low rejectability to folding and consequently a high rejectability
to calling X1’s bluff. The resulting conditional rejectability is

pR2 |S1 (F |S) = 0,

pR2 |S1 (C |S) = 1,

pR2 |S1 (F |B) = β,

pR2 |S1 (C |B) = 1 − β.

(8.4)

Let us next consider the conditional selectability mass function pS2|S1 (u2|u1).
Suppose u1 = S, that is, X1 commits to playing straight. Knowing this, X2 should
take no risk, and must fold. If, however, u1 = B, then X2 knows that X1 will raise, no
matter what X1 draws. Because of the symmetry in this game, it is obvious that X2’s
attitude toward calling, knowing that X1 will bluff, must be the same as X2’s attitude
toward rejecting folding, knowing that X1 will bluff. Thus, we have

pS2 |S1 (F |S) = 1,

pS2 |S1 (C |S) = 0,

pS2 |S1 (F |B) = 1 − β,

pS2 |S1 (C |B) = β.

(8.5)

Finally,wemust construct X1’smyopic selectability, pS1 . Letα denote X1’s selectability
of bluffing.

pS1 (S) = 1 − α,

pS1 (B) = α.
(8.6)

The values of the interdependence function as parameterized byα andβ are summarized
in Table 8.2. We see that, whereas the von Neumann–Morgenstern approach requires
the specification of eight parameters, which reduces to four parameters, as illustrated
in Table 8.1, under the zero-sum assumption, the satisficing approach requires the
specification of 16 values, albeit parameterized by only two quantities.



175 8.1 Game examples

Table 8.2: The interdependence function for the
Bluffing game

(u1, u2, v1, v2) pS1S2R1R2 (u1, u2, v1, v2) pS1S2R1R2

(S, F, S, F) 0 (B, F, S, F) 0
(S, F, S,C) 1 − α (B, F, S,C) α(1 − β)2

(S, F, B, F) 0 (B, F, B, F) αβ(1 − β)
(S, F, B,C) 0 (B, F, B,C) 0
(S,C, S, F) 0 (B,C, S, F) 0
(S,C, S,C) 0 (B,C, S,C) αβ(1 − β)
(S,C, B, F) 0 (B,C, B, F) αβ2

(S,C, B,C) 0 (B,C, B,C) 0

Applying (6.12) and (6.13) yields

pS1S2 (S, F) = 1 − α,

pS1S2 (S,C) = 0,

pS1S2 (B, F) = α(1 − β),
pS1S2 (B,C) = αβ,

(8.7)

and

pR1R2
(S, F) = 0,

pR1R2
(S,C) = 1 − αβ,

pR1R2
(B, F) = αβ,

pR1R2
(B,C) = 0.

(8.8)

To determine the jointly satisficing set, we first must specify the boldness, q. For this
game, it is reasonable that q = 1, thus ascribing equal weight to winning and taking
risk. For 0 < α < 1 and 0 < β < 1, the jointly satisficing set is

Σq =
{
Σ1
q = {(S, F), (B,C)} if β > 1

2 ,

Σ2
q = {(S, F), (B, F), (B,C)} if β ≤ 1

2 .

This set may be viewed as a list of possibilities that, if followed by both players, would
generate results that are jointly “good enough” for both of them, where “good enough”
means that the positive attributes of the action (the joint support for winning) equals or
exceeds the negative attributes (the risk incurred by bluffing and calling).

Bluffing is a game of pure conflict, and it is not expected that players would wish to
adopt a joint decision. Thus, to complete our analysis we must compute the individually
satisficing solutions. The individual selectability function for X1 is computed as

pS1 (u) = pS1S2 (u, F) + pS1S2 (u,C)

for u ∈ {S, B}, with a similar calculation required to obtain X1’s individual rejectability,
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and X2’s individual selectability and rejectability. The resulting functions are

pS1 (S) = 1 − α, pR1 (S) = 1 − αβ,

pS1 (B) = α, pR1 (B) = αβ,

and

pS2 (F) = 1 − αβ, pR2 (F) = αβ,

pS2 (C) = αβ, pR2 (C) = 1 − αβ.

The resulting univariate satisficing sets are

	1
q =

{
{B} for β < 1,

{S, B} for β = 1,

	2
q =




{F} for αβ < 1
2 ,

{C} for αβ > 1
2 ,

{F,C} for αβ = 1
2 ,

and the satisficing rectangle is

Rq = 	1
q × 	2

q =




{B, F} for αβ < 1
2 , β < 1,

{B,C} for αβ > 1
2 , β < 1,

{{B, F}, {B,C}} for αβ = 1
2 , β < 1,

{{B, F}, {B,C}, {S, F}, {S,C}} for αβ = 1
2 , β = 1,

{{B, F}, {S, F}} for αβ < 1
2 , β = 1,

{{B,C}, {S,C}} for αβ > 1
2 , β = 1.

There is a marked difference between the satisficing solution and the traditional min-
imax solution. With the satisficing approach, both players are content with breaking
even; whereas, the minimax approach presents a clear advantage to X1. But the min-
imax approach is not without its problems. Bacharach (1976) identifies a desirable
property of any choice: if both players use the same choice principle, neither will af-
terwards regret having used it. If the game is to be played repeatedly, we may interpret
the probabilities in a mixed strategy as long-run relative frequencies, and randomiz-
ing according to the optimal distribution is a way to prevent an intelligent opponent
from learning one’s intentions. It seems plausible, under these circumstances, that the
minimax expected utility principle is rational. For one-off games (games played once),
however, long-run relative frequencies are not relevant, and one must adopt a different
justification for playing a mixed strategy. If a player employs the minimax expected
utility principle for a one-off game, it is possible to regret doing so (for example, X1

bluffs when drawing Lo, and X2 calls). Thus, it seems that the maximin strategy is
problematical as an optimal strategy for one-off scenarios.
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Even for one-off games, why would X1 ever settle for a satisficing solution when it
has at least a probabilistic advantage by choosing a random strategy according to the
optimal distribution defined by the minimax theorem? I do not have an easy answer.
On the one hand, the optimizer bases its decision on the expected returns without
consideration of any “personality” factors, such as the players’ propensities regarding
bluffing and folding. Indeed, any such propensities are dictated to the players by the
optimal distributions – the decision makers are assumed to be completely dispassionate.
On the other hand, the satisficing decision criteria are structured at least partly in terms
of preferences that are related to the players’ “personalities,” namely, their respective
propensities to bluff and fold. It should be noted, however, that the interdependence
function itself is structured in accordance with the goals of the players to win the
game (as the payoff matrix under the conventional formulation); only the parameters
α and β are left as free variables to be specified according to the propensities of the
players.

Another question is: why would a rational X2 ever consent to play the game, know-
ing that it is more likely to lose than to win?2 Game theory always seems to as-
sume that the game will be played, even if under duress. While this may essentially
be true in situations where games are used as models of actual economic behavior,
compulsion is not a factor in the literal application of the theory, such as the card
game under discussion. An optimizing X2 should never willingly play the game in the
first place.

8.1.2 Battle of the Sexes

As introduced in Chapter 1 and repeated here in the interest of continuity, Battle of the
Sexes3 is a game involving a man and a woman who plan to meet in town for a social
function. She (S) prefers to go to the ballet (B), while he (H ) prefers the dog races (D).
Each prefers to be with the other, however, wherever the social function may be. The
payoff matrix for this game is given in Table 1.2 in ordinal form.

An approach that does not require communication is for each player to flip a coin
and choose according to the outcome of that randomizing experiment. If they were to
repeat this game many times, then, on average, each player would realize an outcome
midway between next best and next worst for each. But, for any given trial, they would
be in one of the four states with equal probability.

If the players could communicate, then a much better strategy would be to alternate
between (D, D) and (B, B), thus ensuring an average level of satisfaction midway
between best and next best for each. If they possess the ability to learn from experience,
they may also converge to an alternation scheme under repeated play.

2 Of course, casinos depend upon such behavior, but who would argue that betting against the house is rational?
3 This game was widely discussed long before sexist issues became sensitive, and cell-phones became available.

I hope readers will not be offended by the stereotypical roles assumed by the players.
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Table 8.3: The payoff matrix for the
Distributed Manufacturing game

X2

X1 Shades Cloths

Lamps ($20, $5) ($10, $4)
Tables ($8, $3) ($15, $10)

Regardless of the strategies that may be employed, this game, as it is configured
by the payoff matrix, illustrates the shortcomings of conventional utility theory for
the characterization of behavior when cooperation is essential. Each player’s level of
satisfaction is determined completely as a function if his or her own enjoyment. For
example, the strategy vector (D, D) is best for H , but it is because he gets his way
on both counts: he goes to his favorite event and he is with S. Her feelings, however,
are not taken into consideration. According to the setup, it would not matter to H if S
were to detest dog races and were willing to put up with that event at great sacrifice
of her own enjoyment, just to be with H . Such selfish attitudes, though not explicit,
are at least implied by the structure of the payoff matrix, and are likely to send any
budding romance to the dogs. The problem is that the solution concept, based as it is
upon individual rationality, fosters competition, even though cooperation is desired.

As an illustration of a subtle type of competition that may emerge from this game,
consider a distributed manufacturing game involving the the operation of a shop floor.
Producer X1 can manufacture lamps or tables, and Producer X2 can manufacture lamp
shades or table cloths, but each must choose which product to manufacture without
direct communication. Coordinated behavior would make both of their products more
marketable, as indicated in Table 8.3, which displays the net profit accruing to each
producer as a function of their joint decisions. Clearly, this is an instantiation of the
Battle of the Sexes game.

Using these numbers, X1 might reason that, since his profit for (Lamps, Shades) is
twice the profit to X2 for (Tables, Cloths) but the incremental change in profit is the
same for both, then his preference is stronger and should prevail. On the other hand,
however, X2 might reason that, since it is worth twice as much to her if they produce
(Tables, Cloths), rather than (Lamps, Shades) and it is only 4

3 more valuable to X1 if
they produce (Lamps, Shades) rather than (Tables, Cloths), her preference is stronger
and should prevail. Of course, if side-payments are allowed, then this could help resolve
the dilemma, but that would also create a secondary game of how to arrive at equitable
side-payments – which might produce an infinite regress of dilemmas.

Let us cast the Battle of the Sexes as a satisficing game. We must first establish each
player’s notions of failure avoidance and resource conservation. In accordance with
our previous discussion, the former is related to the most important goal of the game,
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which is for the two players to be with each other, regardless of where they go. Resource
conservation, on the other hand, deals with the costs of being at a particular function.
Obviously, H would prefer D if he did not take into consideration S’s preferences;
similarly, S would prefer B. Thus, we may express the myopic rejectabilities for H and
S in terms of parameters h and s, respectively, as

pRH (D) = h,
pRH (B) = 1 − h,

(8.9)

and

pRS (D) = 1 − s,
pRS (B) = s,

(8.10)

where h is H ’s rejectability of D and s is S’s rejectability of B. The closer h is to
zero, the more H is adverse to B with an analogous interpretation for s with respect
to S attending D. To be consistent with the stereotypical roles, we may assume that
0 ≤ h < 1

2 and 0 ≤ s < 1
2 . As will be subsequently seen, only the ordinal relationship

need be specified, that is, either s < h or h < s.
Selectability is a measure of the failure avoidance associated with the options. Since

being together is a joint, rather than an individual objective, it is difficult to form
unilateral assessments of selectability, but it is possible to characterize individually the
conditional selectability. To do so requires the specification of the conditional mass
functions pSH |RS and pSS |RH ; that is, H ’s selectability conditioned on S’s rejectability
and S’s selectability conditioned on H ’s rejectability. If S were to place her entire unit
mass of rejectability on D, H might account for this, if he cares at all about S’s feelings,
by placing some portion of his conditional selectability mass on B. S might construct
her conditional selectability in a similar way, yielding

pSH |RS (D|D) = 1 − α,

pSH |RS (B|D) = α,

pSH |RS (D|B) = 1,

pSH |RS (B|B) = 0,

(8.11)

and

pSS |RH (D|D) = 0,

pSS |RH (B|D) = 1,

pSS |RH (D|B) = β,

pSS |RH (B|B) = 1 − β.

(8.12)

The valuations pSH |RS (B|D) = α and pSS |RH (D|B) = β can be considered conditions
of situational altruism. If Swere to place all of her rejectabilitymass on D, then H might
defer to S’s strong dislike of D by placing α of his selectability mass, as conditioned by
her preference, on B. Similarly, S could show a symmetric conditional preference for
D if H were to reject B strongly. The parameters α and β are H ’s and S’s indices of
situational altruism, respectively, and serve as a way for each to control the amount of
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deference he or she is willing to grant to the other. In the interest of simplicity, we shall
assume that both players are maximally altruistic and set α = β = 1. In principle, how-
ever, they may be set independently to any value in [0, 1]. Notice that, even in this most
altruistic case, these conditional preferences do not commit one to categorical abdica-
tion of his or her own unilateral preferences. H still myopically (that is, without taking
S into consideration) prefers D, and S still myopically prefers B, and there is no inti-
mation that either participant must throw the game in order to accommodate the other.

With these conditional and marginal functions, we may factor the interdependence
function as follows:

pSH SS RH RS
(x, y; z, w) = pSH |SS RH RS

(x |y; z, w)

· pSS |RH RS
(y|z, w) · pRH RS

(z, w)

= pSH |RS (x |w) · pSS |RH (y|z)
· pRH (z) · pRS (w),

where we have assumed that H ’s selectability conditioned on S’s rejectability is de-
pendent only on S’s rejectability, that S’s selectability conditioned on H ’s rejectability
is dependent only on H ’s rejectability, and that the myopic rejectability values of H
and S are independent.

Application of (6.12) and (6.13) results in joint selectability and rejectability values
of

pSH SS (D, D) = (1 − h)s,
pSH SS (D, B) = hs,
pSH SS (B, D) = (1 − h)(1 − s),
pSH SS (B, B) = h(1 − s),

(8.13)

and

pRH RS
(D, D) = h(1 − s),

pRH RS
(D, B) = hs,

pRH RS
(B, D) = (1 − h)(1 − s),

pRH RS
(B, B) = (1 − h)s.

(8.14)

The marginal selectability and rejectability values for H and S are

pSH (D) = s, pRH (D) = h, (8.15)

pSH (B) = 1 − s, pRH (B) = 1 − h, (8.16)

and

pSS (D) = 1 − h, pRS (D) = 1 − s, (8.17)

pSS (B) = h, pRS (B) = s. (8.18)
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Setting the index of caution, q, equal to unity, we obtain the jointly satisficing set as

Σq =




{(D, B), (B, D), (B, B)} for s < h,
{(D, D), (D, B), (B, D)} for s > h,
{(D, D), (D, B), (B, D), (B, B)} for s = h,

the individually satisficing sets are

	H
q =




{B} for s < h,
{D} for s > h,
{B, D} for s = h,

	S
q =




{B} for s < h,
{D} for s > h,
{B, D} for s = h,

and the satisficing rectangle is

Rq = 	H
q × 	S

q =




{B, B} for s < h,
{D, D} for s > h,
{{B, B}, {D, D}} for s = h.

Thus, if S’s aversion to D is less than H ’s aversion to B, then both players will
go to H ’s preference, namely, D, and conversely. This interpretation is an example of
interpersonal comparisons of utility. As discussed in Chapter 5, such comparisons are
frowned upon by conventional game theorists, but are essential to social choice theory,
so long as the utilities are expressed in the same units and have the same zero-level.
Since the utilities are mass functions, however, the analysis in Section 5.3 applies. We
observe, for example, that if s < h then H is ambivalent with respect to B and S is
dubious with respect to D. Consequently, according to the analysis of Section 5.4,
these preferences are not invariant under isomassive transformations, and it would be
possible to reorder the preferences by such transformations. Thus, it is imperative that
both players have reliable assessments of the strength of their own and their partner’s
preferences relative to each other.

It is useful to discuss structural differences between the representation of this game
as a traditional game and its representation as a satisficing game. With the traditional
game, all of the information is encoded in the payoff matrix, with the values that
are assigned representing the importance, cost, or informational value to the players.
The payoff matrix characterizes the gains or losses to a player conditioned on the
action of itself and the other player. For example, suppose values were assigned to the
ordinal payoff matrix given in Table 1.2, resulting in a numerical payoff matrix given in
Table 8.4, where the values are in cardinal units of, say, “satisfaction.” We would be
justified in assuming that S would be twice as satisfied, given that she is with H , to be
at B rather than at D. Also, given that she would gain one unit of satisfaction in that
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Table 8.4: A numerical payoff matrix
for the Battle of the Sexes game

S

H D B

D (2, 1) (−1, −1)
B (−2, −2) (1, 2)

way, she would experience that same amount of dissatisfaction were she alone at B,
and twice that amount if she were alone at D.

With the satisficing game structure, all of the information is encoded into the in-
terdependence function. This function may be factored into products of conditional
interdependencies that represent the joint and individual goals and preferences of the
players. The joint selectability function (8.13) and the joint rejectability function (8.14)
characterize the state of the problem as represented by the conditional goals and indi-
vidual preferences of the the players. Specifying numerical values for the preference
parameters, h and s, is as natural, it may be argued, as it would be to specify numerical
values for the payoff matrix.

The essential difference between the von Neumann–Morgenstern and the satisficing
representations of this game is that the von Neumann–Morgenstern utilities do not
permit the preferences of one player to influence the preferences of the other player.
But in the context of the game, it is reasonable to assume that such preferences exist. If
they do, then there should be a mechanism to account for them. Classical game theory
does not provide such a mechanism, but satisficing game theory does, at the expense of
added complexity.

Another important way to compare these two game formulations is in terms of the
solution concept. The classical solution to the traditional problem is to solve for mixed
strategy Nash equilibria corresponding to a numerically definite payoff matrix. The
main problem with using a mixed strategy, as far as this discussion is concerned, is that,
for it to be successful, both players must use exactly the same payoff matrix, and they
must use the randomized decision probabilities that are calculated to maximize their
payoffs. Even small deviations in these quantities destroy the equilibrium completely
and the solution has no claim on rationality, let alone optimality. The reason for this
sensitivity is that the players are attempting to optimize and, to do so, they must exploit
the model structure and parameter values to the maximum extent possible.

The satisficing solution concept, on the other hand, adopts a completely different
approach to decision making. There is no explicit attempt to optimize. Rather than
ranking all of the possible options according to their expected utility, the attributes
(selectability and rejectability) of each option are compared and a binary decision is
made with respect to each option, and it is either rejected or it is not. For this problem,
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Figure 8.1: The contour plot of the diversity functional for the Battle of the Sexes game.

the comparison was made in terms of the parameters s and h, and all that is important is
their ordinal relationship; numerically precise valueswould not necessarily be exploited
were they available.

It is instructive to evaluate the joint diversity function for this problem as a function
of the parameters h and s. From (8.13) and (8.14), we may express the diversity function
as

D(h‖s) = (1 − h)s log
(1 − h)s

h(1 − s)
+ h(1 − s) log

h(1 − s)

(1 − h)s
.

Figure 8.1 illustrates this quantity. Note, in keeping with intuition, that the fitness
significantly improves as the difference between h and s increases.

This game illustrates the common-sense attribute of the satisficing solution without
the need for randomizing decisions or for S to guess what H is guessing S is guessing,
and so forth, ad infinitum. The players go to the function that is considered by both
to be the less rejectable. This decision is easily justified by common-sense reasoning.
Furthermore, the satisficing solution is more robust than than the conventional solution.
There is no need to define numerically precise payoffs, and there is no need to calculate
precise probability distributions according to which random decisions will be chosen.
Finally, there is no need to specify more than an ordinal relationship regarding player
preferences to arrive at a decision.

To apply this result to the Distributed Manufacturing game illustrated in Table 8.3,
we interpret h as X1’s rejectability of producing lamps and s as X2’s rejectability of
producing table cloths. One reasonable way to compute these rejectabilities is to argue
that the rejectability ratio for each player of its two options ought to be the reciprocal
of the individual profit ratios for the two cooperative solutions. This approach yields
the ratios h

1−h = 15
20 and s

1−s = 5
10 , or h = 3

7 and s = 1
3 . Since s < h in this case, the

only jointly and individually satisficing solution is (Tables, Cloths).
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Table 8.5: The payoff matrix in ordinal form for
the Prisoner’s Dilemma game

X2

X1 C D

C (3, 3) (1, 4)
D (4, 1) (2, 2)

Key: 4 = best; 3 = next best; 2 = next worst; 1 = worst

8.1.3 Prisoner’s Dilemma

One of the most famous of all games is the Prisoner’s Dilemma. This game involves
two players, X1 and X2, who have been charged with a serious crime, arrested, and
incarcerated in a way that precludes any communication between them. The prosecu-
tion has evidence sufficient only to convict them of a lesser crime with a moderate jail
sentence. To get at least one conviction on the more serious crime, the prosecution en-
tices each prisoner to give evidence against the other, that is, to defect (D). Otherwise,
each prisoner may cooperate (C) with the other by not supplying evidence. Defection
yields dropped charges if the other prisoner cooperates; cooperation yields the maxi-
mum sentence if the other defects. If both cooperate, both receive short sentences; if
both defect, both receive moderate sentences.

The classical von Neumann–Morgenstern solution is obtained in terms of a payoff
matrix, as illustrated in ordinal form in Table 8.5. Clearly, playing D for either player
is the dominant strategy. Furthermore, (D, D) is also the unique Nash equilibrium
pair. Unfortunately, this solution is inferior to playing the Pareto equilibrium solution,
(C,C), as it results in the next-worst, rather than the next-best, consequence.

One of the characteristics of the von Neumann–Morgenstern approach is that it ab-
stracts the game from its context, or story line – all relevant information is captured
by the utility functions. These utilities represent individual preferences as functions of
joint actions; they do not represent joint preferences. It is only when the two utility
functions are juxtaposed in the payoff matrix that the “game” emerges and strategies
can be devised. Under this view, the players are assumed to be absolutely certain that
self-interest is the only issue. The von Neumann–Morgenstern approach does not coun-
tenancemixedmotives.Accounting for any dispositions for coordinated behaviorwould
change the payoff matrix and, hence, the game.4 There is no room for equivocation.

4 It is interesting to note that the story that gives the Prisoner’s Dilemma its name was invented post hoc to
conform, for pedagogical illustration, to the payoff matrix with the given structure, rather than the other way
around (Straffin, 1980). This illustrates the mind-set of many game theorists: the actual “game” is the payoff
matrix, not the story line.
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This is a powerful, but necessary, assumption under the von Neumann–Morgenstern
approach to this game.

It is interesting to examine repeated-play versions of this game from the heuristic
point of view.Of course, the standard vonNeumann–Morgenstern approachmust return
the Nash solution, no matter how many times the game is played, but other approaches
have revealed quite different behavior. An interesting approach was introduced by
Rapoport, who proposed a simple tit-for-tat rule of repeated play: start by cooperating,
thereafter play what the other player chose in the previous round. This purely heuristic
rule won the Axelrod Tournament (Axelrod, 1984). One of its main characteristics is
that it does not abstract the game from the story – the actions are taken completely
within the game context.

The von Neumann–Morgenstern and Rapoport approaches to this game represent
two extremes. With the von Neumann–Morgenstern approach, all relevant knowledge
is encoded into the expected utility functions, self-interest is the only issue, and ex-
pected utility maximization is the operative solution concept. With the Rapoport ap-
proach, the players’ dispositions enter into the decision, the solution concept is an ad
hoc rule to be followed, and there are no attempts to rank-order options or maximize
performance.5

Let us apply satisficing game theory to the Prisoner’s Dilemma game. Our task is to
define the interdependence mass function, from which the selectability and rejectability
mass functions can be obtained and compared for each joint option. To generate the
interdependence mass function, we must first define operational notions for failure
avoidance and resource conservation.

The fundamental objective of the players, as expressed by their utility functions,
is to get out of jail quickly – self-interest is the primary consideration. Laboratory
experimentswith randomly selected humans, however, result in the cooperative solution
being chosen relatively frequently with single play and no communication between the
participants (Wolf and Shubik, 1974). This evidence suggests that, for the game to
be a model of human behavior, motives may exist in addition to self-interest. The
individual utilities displayed in Table 8.5, however, do not accommodate any other
interests, and there is no way to build anything but self-interest into the conventional
formulation of the game. The satisficing approach, however, requires the formulation
of two utility functions, thus opening up the possibility of accommodating issues in
addition to exclusive self-interest.

One possibility is group interest, which apparently emerges in repeated play as a
result of learned cooperation.6 We view the players of this game as individuals who are

5 Traditional game theorists point out that Rapoport’s solution is not optimal, but Axelrod (1984) has shown that,
for repeated-play games where future payoffs are important, there does not exist an optimal strategy that is
independent of the strategies used by other players.

6 Although other psychological factors, such as the other’s expected behavior, may contribute to the results of
repeated-play games, for simplicity we restrict attention to the notion of group interest.
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concerned primarily with their own task, but at the same time have a degree of con-
sideration for other players’ difficulties and consider it a cost to them if an action they
take makes it difficult for others. Such players are enlightened liberals, as described
in Section 7.2. Accordingly, we proceed by associating failure avoidance with reduc-
ing individual jail time, and associating resource conservation with group jail time.
Thus, short individual sentences will have high individual selectability, and long group
sentences will have high joint rejectability.

The notion of group interest can have significance only if the players each acknowl-
edge some form of dependence on the other, however weak it may be. To the extent that
these dependencies reinforce each other, the players implicitly forge a joint opinion
regarding the relative merits of cooperation and conflict. The success of Rapoport’s
approach suggests that there may be (at least) two attitudes in the minds of the players
that may affect their decisions: (a) a propensity for dissociation, that is, for the players
to go their separate ways without regard for coordination, and (b) a propensity for
vulnerability, that is, for the players to expose themselves to individual risk in the hope
of improving the joint outcome.

Let α ∈ [0, 1] be a measure of the joint value the players place on rejecting the
joint option (C,C). We may identify α as a dissociation index: if α ≈ 1, the players
are completely dissociated and coordination is unlikely. Also, let β ∈ [0, 1] be a mea-
sure of the joint value placed on rejecting the joint option (D, D). β may be viewed
as a vulnerability index: β ≈ 1 means the players are each willing to risk a long jail
sentence in the hope of both obtaining a shorter one. A condition of high dissocia-
tion and high vulnerability would indicate lack of concern for the welfare of the other
player while at the same time implying a willingness to expose oneself to dire con-
sequences. We may prohibit this situation by imposing the constraint that α + β ≤ 1.
If, for example, α = 1 and β = 0, then self-interest is the only consideration. If, how-
ever, α = 0 and β = 1, then the players are willing to assume high risk to achieve
cooperation.

If the sentence lengths are independent of the identity of the players, then the joint
rejectability of (D,C) should be equal to the joint rejectability of (C, D). With this
assumption and the constraints on α and β, we define the joint rejectability mass
function:

pR1R2
(C,C) = α, pR1R2

(C, D) = 1 − α − β

2
,

pR1R2
(D,C) = 1 − α − β

2
, pR1R2

(D, D) = β.

(8.19)

Although selectability deals with individual objectives, it is a joint consideration,
since the consequences of the players’ decisions are not independent, and thus prefer-
ences cannot be independent. A convenient way to express this dependency is to exploit
the probabilistic structure of the interdependence mass function and to compute joint
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Table 8.6: The conditional selectability pS1S2 |R1R2
(v1, v2|w1, w2)

for the Prisoner’s Dilemma game

(w1, w2)

(v1, v2) (C,C) (C, D) (D,C) (D, D)

(C,C) 0 0 0 1
(C, D) 0 0 0 0
(D,C) 0 0 0 0
(D, D) 1 1 1 0

selectability conditioned on joint rejectability,

pS1S2 |R1R2
(v1, v2|w1, w2)

for all (v1, v2) ∈ U and all (w1, w2) ∈ U, where

U = U ×U = {(C,C), (C, D), (D,C), (D, D)}.
The interdependence mass function may then be obtained by the product rule:

pS1S2R1R2
(v1, v2; w1, w2) = pS1S2 |R1R2

(v1, v2|w1, w2) · pR1R2
(w1, w2). (8.20)

The function pS1S2 |R1R2
(v1, v2|w1, w2) characterizes the selectability of the joint option

(v1, v2) given that the players jointly place all of their rejectability mass on (w1, w2).
We may compute the conditional selectability by invoking straightforward and in-
tuitive rules of the form: “If X1 and X2 jointly reject (w1, w2), then they should
jointly select (v1, v2).” Let, say, (w1, w2) = (C,C), that is, the players jointly reject
cooperation. Given this situation, it is trivially obvious that the preferred joint op-
tion is for both to defect.7 We may encode this rule into the conditional selectability
mass function by placing all of the selectability mass on the joint option (D, D),
that is, pS1S2 |R1R2

(D, D|C,C) = 1. If exactly one player rejects cooperating, then it
is obvious that, in this case as well, the preferred joint option is for both to de-
fect, consequently, we set pS1S2 |R1R2

(D, D|C, D) = 1 and pS1S2 |R1R2
(D, D|D,C) = 1.

We complete this development by noting that, if both players reject defecting, then
pS1S2 |R1R2

(C,C |D, D) = 1. Table 8.6 summarizes the structure of this conditional se-
lectability function.

Substituting the conditional selectability function given by Table 8.6 and the joint
rejectability given by (8.19) and (8.20) and applying (6.12) yields the joint selectability
function:

pS1S2 (C,C) = β, pS1S2 (C, D) = 0,

pS1S2 (D,C) = 0, pS1S2 (D, D) = 1 − β.
(8.21)

7 This apparent triviality is a consequence of each player having only two options, since rejecting one implies
selecting the other, but the situation is not so trivial when there are more than two options.
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Figure 8.2: Satisficing decision regions for the Prisoner’s Dilemma game: (a) bilateral decisions
and (b) unilateral decisions.

Comparing the bilateral selectability, (8.21), with the bilateral rejectability, (8.19),
we obtain the bilateral satisficing set, which consists of all decision pairs, (w1, w2) ∈ U,
such that

pS1S2 (w1, w2) ≥ qpR1R2
(w1, w2).

Thus, parameterized by α and β, this set is, for the special case q = 1,

Σq =




{(C,C)} for β ≥ 1
2 ,

{(D, D)} for β ≤ α,

{(C,C), (D, D)} for α < β < 1
2 .

(8.22)

These regions are depicted in Figure 8.2(a). The bilateral satisficing set coincides with
the Pareto equilibrium solution, (C,C), when the vulnerability index is at least as
large as 1

2 . It coincides with the Nash solution when the vulnerability index is less
than the dissociation index. If the vulnerability index is greater than the dissociation
index but less than 1

2 , then the bilateral satisficing set contains both (C,C) and (D, D).
To take action in this situation requires the invocation of a tie-breaker. For example,
(D, D) is the satisficing option placing higher emphasis on individual interest (higher
selectability), and (C,C) is the satisficing option placing higher emphasis on group
interest (lower rejectability).

We may compute the unilateral satisficing set by computing the univariate selectabil-
ity and rejectability marginals in accordance with (6.17) and (6.18), from which the
univariate satisficing set for either player is

	q =




{C} for β > 1+α
3 ,

{D} for β < 1+α
3 ,

{C, D} for β = 1+α
3 .

The unilateral decision regions are illustrated in Figure 8.2(b). Note that the set is a
singleton except in the special situation of β = 1+α

3 .
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In contrast to the von Neumann–Morgenstern solution to this game, the satisfic-
ing solution accounts for the social inclinations of the players. The von Neumann–
Morgenstern solution emerges as a special case (e.g., α = 1 and β = 0), but the satis-
ficing solution gives the solution for all admissible (α, β) pairs. Uncertainty regarding
these parameters may be handled in several ways. A decision maker is free to (a) regard
them as random variables with known or interval-valued distributions and compute
expectations, (b) regard them as deterministic interval-valued parameters and perform
worst-case analysis, or (c) regard them as unknown parameters for which only an or-
dinal relationship is assumed. Thus, under fairly general circumstances, a decision can
be rendered even though there may be considerable uncertainty regarding the values of
the social indices.

8.1.4 The Ultimatum game

TheUltimatumgame is as follows: one player, called the proposer, offers another player,
called the responder, a fraction of a fortune, and the responder chooses whether or not
to accept the offer. If the responder accepts, then the two players divide the fortune
between themselves according to the agreed-upon ratio, but if the responder declines
the offer, neither player receives anything. In both cases, the game is over; there is no
opportunity for reconsideration.

The von Neumann–Morgenstern solution to this game is for the proposer to offer the
smallest non-zero amount it can, and for the responder to accept whatever is offered.
This is the play predicted by individual rationality. Interestingly, such a strategy is rarely
adopted by human players. Even with one-off play, proposers are inclined to offer fair
deals, and responders are inclined to reject unfair deals (Roth, 1995).

There have been many attempts to explain this phenomenon, with the most pop-
ular ones being: (a) humans find it difficult to permit a rival to gain an advan-
tage; (b) group dependency motivates players to maintain socially acceptable rep-
utations; (c) people initially do no not fully understand the game and must learn
to optimize through trial-and-error; and (d) players are more influenced by social
norms than by strategic considerations such as optimization (Nowak et al., 2000;
Sigmund et al., 2002; Binmore, 1998).

With all of these explanations except the last one, which has a distinctive heuristic
flavor, the players have modified their utilities to account for social considerations, but
individual rationality has not been replaced. They are still playing to maximize their
expected utility; their utilities just happen to include issues in addition to financial
payoffs. In other words, relevant social relationships exist but, since von Neumann–
Morgenstern game theory is based solely on individual rationality, it does not readily
accommodate them.

Two issues are relevant here. First, if social relationships are material considerations
for the behavior of the players, it seems reasonable that such attributes should be
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Table 8.7: The payoff matrix
for the Ultimatum minigame

X2

X1 a d

h (1 − h, h) (0, 0)
� (1 − �, �) (0, 0)

explicitly included in the structure of the game, rather than being merely appended
as post factum explanations for apparently anomalous behavior. Perhaps too much has
been abstracted from the story line in the vonNeumann–Morgenstern formulation of the
game to ensure that a payoff array captures all of the essential attributes of the players.

The second issue is that, taking the results of the Ultimatum game at face value, it is
difficult to cling to the hypothesis that people are always expected utility maximizers.8

There is much empirical evidence to the contrary, and it is at least an open question.
Consequently, reasonable alternative hypotheses deserve to be investigated.

The Ultimatum game permits the proposer to offer any fraction of the fortune to
the responder, and thus the proposer has a continuum of options at her disposal, while
the responder has only two options: a (accept), or d (decline). The game loses little of
its effect, and its analysis is much simpler, if we follow the lead of Gale et al. (1995)
and consider the so-called minigame, with only two possible offers, h and � (high
and low), with 0 < � < h ≤ 1

2 . These values correspond to the fraction of the fortune
that the proposer, denoted X1, is prepared to offer to the responder, denoted X2. This
minigame analysis captures the essential features of the continuum game and permits us
to see clearly the relationships between the two players. With this restriction, the option
sets for X1 and X2 are U1 = {h, �} and U2 = {a, d}, respectively. The von Neumann–
Morgenstern payoff matrix for the Ultimatum minigame is given in Table 8.7.

The unique Nash equilibrium for this game is for X1 to play � and X2 to play a.
According to the doctrine of individual rationality, the players should adopt this joint
strategy. The response of many human players of this game, however, is an indication
that there is more to this game than meets the eye, since players are more prone to
play fair than to optimize. Evidently, greed on the part of proposers is often mitigated,
causing them to make reasonably fair offers, and responders often refuse to accept
an offer if it is too low, presumably because of envy, humiliation, or other emotional
attributes. But if social considerations are important, they should be part of the game
structure. There are (at least) two emotional aspects that appear to be relevant. First, if
the responder’s indignation is relevant to the game, a parameter representing this social
attribute should be part of the mathematical structure of the game.

8 The tenuous argument that people always maximize, but with respect to imprecisely known utilities, can neither
be proven nor disproven.
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A second potential social attribute is that the proposer may be motivated by consid-
erations other than temerarious greed; namely, the pragmatic notion that the responder
may reject the offer if it is extremely unfair, thus denying the proposer any benefit.
Consequently, even if the proposer is avaricious, she may make an equitable offer if
she suspects that the responder would be prone to reject an inequitable one, but if she
suspected that the proposer were not so prone, she would make a inequitable offer.
In other words, the proposer may be willing to modulate her greed by the (perceived)
indignation of the responder.

Assuming that self-interest (however displayed, via the payoff structure or via an
emotional state of mind) is the motivating attribute of the players, we may take intem-
perance and indignation as the dominant social attributes of this game (altruism is also
a possible attribute, but the analysis is simpler if we assume that such tendencies are not
significant). We will denote these two attributes by the intemperance index α and the
indignation index β, and assume that 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. The condition α ≈ 1
means that the proposer is avaricious, while α ≈ 0 means that the proposer is moderate
and willing to restrain her demand for wealth. The condition β ≈ 1 means that the
responder is extremely prone to indignation, while β ≈ 0 means that the responder is
extremely tolerant.

To formulate a satisficing representation of this game, we must first establish op-
erational definitions for the notions of selectability and rejectability. Selectability will
be characterized by the fundamental goal of the game, which is to obtain a share of
the fortune. Rejectability, on the other hand, will be characterized by costs or hazards
which, for this game, is failure to consummate a deal. The following application of the
chain rule is an appropriate way to proceed:

pS1S2R1R2 (u1, u2; v1, v2) = pS2|S1R1R2 (u2|u1; v1, v2) · pR1|S1R2 (v1|u1; v2)

· pR2|S1 (v2|u1) · pS1 (u1). (8.23)

We make the following simplifying assumptions: (a) a single player’s selectability and
rejectability are independent; and (b) conditioned on X1’s selectability, X2’s selectabil-
ity is independent of X1’s rejectability. With these assumptions, we may simplify (8.23)
to become

pS1S2R1R2 (u1, u2; v1, v2) = pS2|S1 (u2|u1) · pR1|R2 (v1|v2) · pR2|S1 (v2|u1) · pS1 (u1).

(8.24)

To compute pS2|S1 , we observe that, if X1 were to place all of her selectability mass
on h, then X2 should place all of his selectability mass on a. But if X1 were to place
all of her selectability mass on l, then X1 would be indignant and would select d with
weight β. The resulting conditional mass functions are

pS2|S1 (a|h) = 1, pS2|S1 (d|h) = 0,

pS2|S1 (a|�) = 1 − β, pS2|S1 (d|�) = β.
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To compute pR1|R2 , suppose that X2 were to place all of his rejectability mass on d.
If X1 were to know that X1 would reject declining and hence would accept the offer,
the amount she would offer would depend upon her intemperance. If her intemperance
index were high, most of the mass would go to rejecting h. However, in the interest of
avoiding failure, X1 would be wise to modulate her temerity with the indignation she
expects X2 to feel if a low offer were tendered. On the other hand, if X2 were to place all
of his rejectability mass on a, then he would determine to decline the offer. However,
even in that situation, there is no reason for X1 not to accommodate X2’s indignation,
so she might as well continue to offer the same deference to X2. The corresponding
conditional rejectability functions for X1 are

pR1|R2 (h|a) = α(1 − β), pR1|R2 (�|a) = 1 − α(1 − β),

pR1|R2 (h|d) = α(1 − β), pR1|R2 (�|d) = 1 − α(1 − β).

To compute pR2|S1 , we observe that, if X1 were to place all of her selectability mass
on h, then X2 would surely accept the offer, hence would ascribe his entire unit of
conditional rejectability mass to d. If, however, X1 were to ascribe her entire unit of
conditional rejectability mass to �, then X2 would reject a according to his indignation
factor. The resulting conditional rejectability mass functions for X2 are

pR2|S1 (a|h) = 0, pR2|S1 (d|h) = 1,

pR2|S1 (a|�) = β, pR2|S1 (d|�) = 1 − β.

Finally, to compute pS1 we note that, without taking into account any other factors, X1

would offer � in proportion to her intemperance, thus,

pS1 (h) = 1 − α, pS1 (�) = α.

The product of these conditional probabilities composes the interdependence func-
tion which can then be used to generate the selectability and rejectability marginals that
define group and individual satisficing behavior. For this problem, the product generates
rather complicated expressions which are best evaluated with the aid of a computer as
functions of the intemperance and indignation parameters.

Figure 8.3 illustrates plots of pS1 (h) and pR1 (h) as functions of α and β as they
each vary over the interval [0, 1]. These two functions appear as sheets in the figure.
With q = 1, the intersection of these sheets is the line of demarcation between X1

choosing h (i.e., when pS1 (h) ≥ pR1 (h)). Notice that when intemperance (α) is low,
X1’s satisficing decision is to offer h for all values of perceived indignation (β). But, as
α increases toward unity, X1’s decision to choose � becomes sensitive to X2’s perceived
indignation. This situation illustrates X1’s consideration of X2’s perceived attitude: the
higher X1’s indignation, the higher must be X1’s intemperance in order for her to try
to take advantage of X2.
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Figure 8.3: The proposer’s decision rule for the satisficing Ultimatum minigame.
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Figure 8.4: The responder’s decision rule for the satisficing Ultimatum minigame.

Figure 8.4 illustrates plots of pS2 (a) and pR2 (a) as functions of α and β, as they
each vary over the interval [0, 1]. These two functions appear as sheets in the figure.
With q = 1, the intersection of these sheets is the line of demarcation between X2

choosing a (i.e., when pS2 (a) ≥ pR2 (a)). For low to moderately high values of either
X1’s perceived intemperance index or X2’s indignation index, X2’s satisficing decision
is to accept the offer. But, if X1 is perceived to be extremely intemperate and X2 is
extremely indignant, then X2’s satisficing decision is to decline the offer.

The satisficing formulation of the Ultimatum minigame requires each player to deter-
mine the other player’s social index. This may be difficult, especially for the proposer.
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Although she has the advantage of making the first move, she must rely upon an a priori
estimate of X2’s indignation. Fortunately for her, as Figure 8.4 illustrates, her choice is
not sensitive to the indignation of the responder unless she is extremely intemperate.

On the other hand, since the responder has the second move, he has the advantage of
estimating the proposer’s intemperance from the size of her offer. He may set his value
of α to be inversely proportional to the size of the offer, using that estimate along with
his indignation index to position himself on the grid displayed in Figure 8.4 to make
his decision.

8.1.5 The game-theoretic role of social relationships

The satisficing solutions to the four games discussed above have a common property,
namely, the solutions are parameterized by indices that characterize the social disposi-
tions of the players, and the decisions change as the parameters are varied according
to these dispositions. Even though the games are expressed in mathematical form, they
are not completely abstracted from the story line, as is the case with the von Neumann–
Morgenstern representation.

One of the strengths of the von Neumann–Morgenstern approach is that, by encoding
the important considerations of the problem into a payoff matrix, all irrelevant aspects
of the problem (the “fat”) can be stripped away, leaving only the essence. But, if the
simplifications result in the elimination of essential social relationships, the resulting
game may generate anomalies, paradoxes, or dilemmas. Such incongruities may be
nothing more than artifacts of an overly simplified and under-modeled representation
of the original problem. If, however, social relationshipswere included in the game, then
the apparant incongruities might disappear and the solutions might be consistent with
common sense. For example, consider the Ultimatum game, where (as the evidence
with respect to human behavior attests) the von Neumann–Morgenstern representation
fails to consider essential social relationships. With this game, a good case can be made
that the “anomaly” of irrational behavior is nothing more than an artifact.

Since satisficing game theory is not based on individual rationality, social relation-
ships can be relevant and there is no need to strip them away. Satisficing game theory
does not require the introduction of social relationships, but it does accommodate them.
If no such relationships exit, then the interdependence function can encode exactly the
same information as is encoded in a payoff matrix, and the satisficing game will give
the von Neumann–Morgenstern solution. For example, with the Prisoner’s Dilemma,
setting the vulnerability index to zero and the dissociation index to unity (and thereby
eliminating any social relationships from the problem) results in the Nash equilibrium
of mutual defection.

AsRasmusen correctly observes, expanding from a simplified problem to the original
problem is perilous. It is especially perilous for artificial decision-making entities.
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Humans may be able to compensate for anomalies and paradoxes by examining them
in the context of the original problem, but it is doubtful that machines will be able
to do so successfully. Machines are incapable of either rational or irrational behavior.
They are also incapable of recognizing anomalies, paradoxes, and dilemmas. They do
exactly what they are programmed to do, and oversimplified machine logic will lead to
dysfunctional performance.

Since individual rationality obviates social relationships and therefore can result in
oversimplified models of social behavior, it is not an adequate paradigm for developing
models that possess the social sophistication needed for functional artificial societies
in cooperative environments. Machines that are expected to perform in complex social
environments must possess commensurately complex models of the society. Thus,
rather on concentrating on the removal of “fat” in the interest of simplification, the
more important issue is how to introduce, coherently, unambiguously, and efficiently,
the complexity that will be necessarily present in any functional society of artificial
decision makers. Satisficing game theory is one way to address this issue.

8.2 Mitigating complexity

The above examples illustrate that, if we allow the preferences of a decision maker to
be influenced by the preferences of other decision makers, the complexity of the system
increases at an exponential rate with the number of decision makers. It is vital that this
complexity bemanaged properly and that systemmodels do not degenerate into amessy
tangle of arbitrary linkages. We must insist upon three properties of such a model. It
must be self-consistent, in that none of the preference linkages are contradictory. It
must be complete, in that all relevant linkages are accommodated. Finally, it must be
non-redundant. Fortunately, the representation of these linkages via the structure of
probability theory accommodates these three properties in a parsimonious and fairly
facile way.

A contradiction arises if a given premise leads to a conclusion and its negation.
If the sky is cloudy, we may conclude that the probability of rain is increased. It
would be a contradiction to assert that the probability that it will not rain is also
increased. Fortunately, the mathematical structure of probability does not permit such
contradictory assertions. Probabilistic conclusions are matters of degree, and it is the
degree of the assertion that is guaranteed to be non-contradictory. Since interdependency
functions have the mathematical structure of probability, they inherit the property of
non-contradictoriness. With the Battle of the Sexes game, for example, conditional
selectabilities such as those given by (8.11) ensure that the relationships between H
and S cannot be contradictory. Given that S rejects D, H commits to select B, and not
to select D. Thus, H cannot have contradictory preferences.
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The interdependence function provides a complete description of all preference re-
lationships. There is no preference linkage between decision makers that cannot be
captured by the appropriate choice of conditional interdependence. Although in prac-
tice many of the links between participants may be null, the links nevertheless exist
and may be activated if desired. The interdependence function possesses no redun-
dancy. The removal of any link joining any two participants destroys the direct linkage,
and any path through other participants cannot capture the isolated behavior that was
eliminated.

The interdependence function permits full selectability and rejectability connectivity
between all participants, where each participant influences, and is influenced by, every
other member of the system. Such a fully-linked system is maximally complex. At
the other extreme, each participant may be designed to function myopically, with total
disregard for all other participants. Between these completely coupled and completely
decoupled extremes, however, are many useful structures which, if properly exploited,
will permit the functional design of multi-agent systems that are capable of coordinated
behavior. Many systems of interest are only sparsely connected, such that any given
agent influences or is influenced by only a small subset of the entire population. Such
systems exhibit a form of spatial localization. To illustrate, consider two models of
intermediate complexity.

The first is a simple hierarchical model that would be appropriate for decision makers
who reside in a military-like society or in any society where decision makers and
resources have priorities but rank takes precedence. The secondmodel involves decision
makers whose actions must coordinate with their nearest neighbors, but, conditioned
on what their immediate neighbors do, are independent of more distant participants. Let
us refer to this as a Markovian model, since the interdependence function is assumed
to possess the Markov property of conditional independence.

Hierarchical
A system X = {X1, . . . , XN } of decision makers is a linear hierarchy if there exists a
rank-ordering function, r , such that r (Xi ) > r (X j ) means that X j must wait until Xi has
made its choice before X j can choose.Without loss of generality, we assume that the de-
cision makers are indexed in rank-decreasing order, that is, r (X1) > · · · > r (XN ). The
decision-making process is initialized by X1 computing a satisficing decision and com-
municating this information to X2, who computes its satisficing decision conditioned
on X1’s choice and communicates both choices to X3. X3 performs a similar operation,
and the process continues until XN makes its satisficing decision conditioned on the
choices of all participants higher up in the hierarchy. This approach takes full advantage
of the hierarchy and ensures that all participants will make conditionally satisficing de-
cisions. The decision maker at the top of the hierarchy may restrict its attention to its
own self-interest, thereby simplifying the linkages between itself and lower-ranking de-
cision makers. Similarly, as we move down the hierarchical chain, subsequent decision
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makers may do likewise with respect to the agents below them in the hierarchy. This
structure is applicable to a number of practical applications, such as leader–follower
architectures for robotic systems, satellite formations, and military-like operations.

Markovian
Suppose that the members of a decision-making system are associated through some
type of functional or proximal relationship, such as being neighbors, and that each
decision maker has direct communication with and awareness of only these neighbors.
For example, consider a array of mobile robots such that each robot is aware only
of the other robots within its limited field of view. Let X = {X1, . . . , XN } be such a
system and let Fi (t) be the subset of X that lie in Xi ’s field of view at time t . The
interdependence function then factors into the form (ignoring arguments):

pS1...SN R1...RN =
N∏
i=1

pSi Ri |Fi ,

where pSi Ri |Fi is the conditional interdependence of Xi with the other decision makers
in its field of view. This local interdependence represents all of the information that is
in the possession of Xi at time t , and thus is the only information that can be used by
Xi for negotiated decision making. As the scenario evolves, however, participants may
enter or leave a given field of view. This type of non-stationary, open environment is
accommodated by this Markovian structure.

A multi-agent system whose interdependence function can be specified in terms of
a small number of parameters is said to be parsimonious. Note that, even though the
four games described above are quite densely interconnected, the 16 values of each
of the interdependence functions are completely specified by a small set of param-
eters. In general, even though the linkages between decision makers may be dense,
it may be possible to express these linkages in terms of only a few fundamental
parameters.

Furthermore, as these examples indicate, the conditional linkages between decision
makers are often expressed in terms of zero or 1. This structure indicates a very de-
cisive relationship between participants and greatly simplifies the specification. Such
relationships are very much like behavioral production rules. For example, the condi-
tional selectability function given by (8.11) is an exact mathematization of the natural
language rule

If S rejects D, then H must select B.

If S rejects B, then H must select D.

The correspondence between rules in a knowledge base and the interdependency
function is a potentially very useful one. For many applications, the strength of these
preference linkages must be determined by human judgment. Such judgment often
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takes the form of parametric representations such as those illustrated by the above
examples. When such judgments are possible, the structure of the factors that compose
the interdependence function may be greatly simplified.

8.3 An N-player example

Consider a system of decision makers X = {X1, . . . , XN } whose members are collec-
tively tasked to form themselves into an equally spaced column and proceed at a known
collective velocity in this formation. To make the problem a little more interesting, let us
suppose that the spacing between participants is dynamic; that is, it changes over time
according to some function that is provided to all participants.Wewill assume, however,
that each participant has a limited field of viewand can sense only the participants imme-
diately in front of and to the rear of itself. It has no knowledge of any other participants
(for example, the lead participant senses only the participant to its rear, and the rearmost
participant senses only the participant in front of it). This is the Markovian assumption.
Suppose time flows in discrete increments, that is, t ∈ {0, 1, 2, . . .}, and that at each t
each participant is able to determine the distances between itself and and its immediate
neighbors. Let xi (t) denote the position of Xi at time t ; then each interior participant Xi ,
i = 2, 3, . . . , N − 1, knows yi,i+1(t) = xi+1(t) − xi (t) and yi−1,i (t) = xi (t) − xi−1(t)
for each t , with the front and rear participants knowing y1,2(t) = x2(t) − x1(t) and
yN−1,N (t) = xN (t) − xN−1(t), respectively. Let v(t) denote the collective velocity and
let c(t) denote the desired spacing between participants. Each participant must deter-
mine how to change its velocity to conform to the equal-spacing requirement. Let ui (t)
denote the discrete position change command that Xi makes in response to its envi-
ronment, and assume that the set of possible commands is the set U = {µ1, . . . µn}.
For this problem we shall take µk = d(k − 2) and n = 3, yielding the action space,
U = {−d, 0, d}.

Since each interior participant is aware of only itself and its immediate neighbors,
we may form a family of N − 2 linear systems of the form

xi−1(t + 1) = xi−1(t) + ui−1(t),

xi (t + 1) = xi (t) + ui (t),

xi+1(t + 1) = xi+1(t) + ui+1(t),

yi−1,i (t) = xi (t) − xi−1(t),

yi,i+1(t) = xi+1(t) − xi (t),

for i = 2, . . . , N − 1, with

x1(t + 1) = x1(t) + u1(t),

x2(t + 1) = x2(t) + u2(t),

y1,2(t) = x2(t) − x1(t),



199 8.3 An N-player example

and

xN−1(t + 1) = xN−1(t) + uN−1(t),

xN (t + 1) = xN (t) + uN (t),

yN−1,N (t) = xN (t) − xN−1(t),

for the first and last members of the platoon. Under the Markovian assumption, these
linear subsystems must be controlled independently of each other. Unfortunately, none
of these subsystems is observable, that is, the state cannot be uniquely reconstructed
from the observations. Consequently, standard feedback control techniques cannot be
applied. This is a coordination game of asymmetric information, which we dub the
Markovian Platoon game. A distinguishing characteristic of this game is that no proper
subset of the set of participants possesses all of the information necessary to make
a decision for the entire set. We approach this problem by first obtaining an optimal
solution. We then apply the satisficing theory by computing a Markovian interdepen-
dence function for each participant.

8.3.1 The optimal solution

We may formulate this as a optimal control problem under conditions of uncertainty;
that is, each participant attempts to optimize its performance given whatever knowledge
it possesses while accounting as best it can for knowledge limitations. Let us consider
an interior participant, say Xi , i ∈ {3, . . . , N − 2}. Xi knows the distances between Xi
and Xi+1 and between Xi and Xi−1, but does not know the distances between either
Xi+1 and Xi+2, or Xi−2 and Xi−1. Consequently, Xi cannot know with certainty how
either Xi+1 or Xi−1 will respond. We adopt the following performance index for Xi :

Ji (ui , ui−1, ui+1) = ||yi−1,i + ui − ui−1| − c| + ||yi,i+1 + ui+1 − ui | − c|.

Unfortunately, Xi cannot simply minimize this function with respect to its command,
ui , since it does not know what commands Xi−1 and Xi+1 will make. Under the optimal
approach, Xi should choose the value for ui that minimizes the expected value of Ji ,
where the expectation is taken with respect to a joint probability characterizing the
behavior, from the point of view of Xi of the joint decision (ui−1, ui+1). The guiding
principle for the formulation of such a joint probability is that, if the distance between Xi
and Xi−1 is less than c, then, from the point of view of Xi (i.e., without any knowledge
of Xi−2), Xi−1 would be more likely to move away from Xi than toward Xi , with a
similar relationship holding between Xi and Xi+1. This principle may be implemented
with the following mass function:

qi−1,i+1(ui−1, ui+1|yi−1,i , yi,i+1) ∝ 1

||yi−1,i − ui−1| + |yi,i+1 + ui+1| − c| + ε

for i = 2, . . . , N − 1, where ε is a small quantity added to ensure that the ratio is
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bounded. To form its decision, Xi then computes

u∗
i = arg min

u∈U

n∑
j=1

n∑
k=1

Ji (u, µ j , µk)qi−1,i+1(µ j , µk |yi−1,i , yi,i+1)

for i = 2, . . . , N − 1. The boundary participants, X1 and XN , implement

u∗
1 = arg min

u∈U

n∑
j=1

J1(u, µ j )q2(µ j |y1,2),

u∗
N = arg min

u∈U

n∑
j=1

JN (u, µ j )qN−1(µ j |yN−1,N ),

where

J1(u1, u2) = ||y1,2 + u2| − c|,
JN (uN−1, uN ) = ||yN−1,N + uN−1| − c|,
and

q2(u|y1,2) ∝ 1

|y1,2 + u2| + ε
,

qN−1(u|yN−1,N ) ∝ 1

|yN−1,N − uN−1| + ε
.

Figure 8.5 illustrates the results of a simulation involving N = 6 participants with
time along the horizontal axis and the relative position of the participants plotted along
the vertical axis. Note that the group velocity as been subtracted from each individ-
ual velocity, resulting in “in place” marching. Each column of symbols represents a
snapshot of the participants at the given time. For this simulation,

c(t) = 1 + 0.05 sin (2π t/70),

δ = 0.05,
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Figure 8.5: The optimal solution to the Markovian Platoon.
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and the initial spacings between participants was chosen pseudo-randomly according
to a uniform distribution over a range of ±0.15 centered at the desired spacing. As time
evolves, the desired spacing between the participants is modulated at a low frequency –
this time-varying spacing is assumed as common knowledge for all participants. This
simulation indicates that the optimal solution is basically stable, yielding an RMS (root
mean square) error of 0.621 averaged over all participants over 30 time increments over
50 independent trials.

8.3.2 The satisficing solution

To formulate a satisficing solution, we must first establish operational definitions for
selectability and rejectability. The selectability of an action will be determined by the
degree to which it achieves the desired spacing, and the rejectability of an action will
be taken as the degree to which the participants are apt to collide with each other. We
will assume a Markovian structure, yielding a local interdependence function for each
interior participant of the form

pSi−1Si Si+1Ri−1Ri Ri+1 = pSi |Si−1Si+1Ri−1Ri Ri+1

· pSi−1Si+1|Ri−1Ri Ri+1 · pRi|Ri−1Ri+1 · pRi−1Ri+1
, (8.25)

for i = 2, . . . , N − 1. For X1 and XN , the local interdependence functions are

pS1S2R1R2 = pS1S2|R1R2 · pR1R2, (8.26)

pSN−1SN RN−1RN = pSN−1SN |RN−1RN · pRN−1RN . (8.27)

Using the above-defined working definitions for selectability and rejectability, we may
form the factors of (8.25). Let us consider the first factor, pSi |Si−1Si+1Ri−1Ri Ri+1 . Employing
a functional form similar to what was used for the optimal solution, we express this
conditional selectability mass function as

pSi |Si−1Si+1Ri−1Ri Ri+1 (ui |ui−1, ui+1; vi−1, vi , vi+1) ∝ 1

A + B + ε
,

where

A = (|yi−1,i + vi − vi−1| + |yi,i+1 + vi+1 − vi |) · (||yi−1,i + ui − ui−1| − c|)
and

B = ||yi,i+1 + ui+1 − ui | − c|.
By a similar argument, we may express the second factor of (8.25) as

pSi−1Si+1|Ri−1Ri Ri+1 (ui−1, ui+1|vi−1, vi , vi+1) ∝ 1

C + D + ε
,



202 8 Complexity

where

C = (|yi−1,i − vi−1| + |yi,i+1 + vi+1|) · (||yi−1,i − ui−1| − c|)
and

D = ||yi,i+1 + ui+1| − c|.
We may complete the specification of (8.25) by computing the third and fourth factors
as

pRi |Ri−1Ri+1 (vi |vi−1, vi+1) ∝ 1

|yi−1,i + vi − vi−1| + |yi,i+1 + vi+1 − vi | + ε
,

pRi−1Ri Ri+1 (vi−1, vi , vi+1) ∝ 1

|yi−1,i − vi−1| + ||yi,i+1 + vi+1| + ε
.

For X1 and XN , the factors of (8.26) become

pS1S2|R1R2 (u1|u2, v1, v2) ∝ 1

|y1,2 + v2 − v1| · ||y1,2 + u2 − u1| − c| + ε
,

pR1R2 (v1, v2) ∝ 1

|y1,2 + u2 − u1| + ε
,

pSN−1SN |RN−1RN (uN−1, uN |vN−1, vN )

∝ 1

|yN−1,N + vN − vN−1| · ||yN−1,N + uN − uN−1| − c| + ε
,

pRN−1RN (vN−1, vN ) ∝ 1

|yN−1,N + uN − uN−1| + ε
.

Figure 8.6 illustrates the satisficing solution to the Markovian Platoon problem ob-
tained by adopting the maximally discriminating satisficing decision. These results also
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Figure 8.6: The satisficing solution to the Markovian Platoon.
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demonstrate stability. The satisficing solution tracks essentially the same as does the
optimal solution, with an RMS error of 0.615 averaged over all participants over 30
time increments over 50 independent trials.

Both optimization theory and satisficing theory provide systematic synthesis proce-
dures, and they both have claims to being rational. They differ in the way goals and
costs are expressed and in the decision mechanism used. With the optimal approach,
knowledge is expressed asymmetrically via a performance index and a probabilistic de-
scription of uncertainty, and decisions are made by making intra-utility comparisons.
With the satisficing approach, knowledge is expressed symmetrically via the interde-
pendence function, and decisions are made by making inter-utility comparisons. These
representations, though different in structure, may be made to be essentially equivalent
(as evidenced in the Markovian Platoon problem) by considering the same attributes,
employing compatible assumptions, and by quantifying the significance of attributes
in similar units.





9 Meliority

The protest of common sense [is] the complaint of mere habit.
Michael Polanyi

Personal Knowledge (University of Chicago Press, 1962)

Principles of rationality serve as normative models of behavior, but rationality can
never be anything more than an ideal. Even the most determined adherent to a par-
ticular code of rationality must recognize that circumstances often prohibit the at-
tainment of the ideal in practice. This realization, however, should not change the
standard that is sought. Indeed, failure to achieve the standard should serve as mo-
tivation to improve the ability to perform, rather than a rationale for lowering the
standards.
Perhaps the most salient criticism of satisficing à la Simon’s aspiration levels (see,

e.g., Levi (1997) and Zeleny (1982)) and other forms of ‘bounded rationality’ is that
they condone the deliberate acceptance of a solution that is less than the ideal. In terms
of human behavior, deliberately falling short of achieving the goal to which one has
made a commitment may be disingenuous,1 but at least the decision maker can mount
an explanation for his or her failure. One possible explanation for a decision maker who
has apparently committed to optimality only to equivocate is that, after all, he or she is
not really an optimizer, but is merely using the tools of optimization to find a solution
that is good enough. If it happens to be optimal, so much the better, but that would be
a bonus, not a necessity.
The trouble is, that while humans are quite capable of operating with a double

standard, it is not clear how to endow an artificial decision-making entity with such
an ability. Equivocation may be as difficult a concept to capture in a machine as is
any other human attribute. In those circumstances where being good enough, and not
optimality, is the real goal, then it is imperative that a clear definition of what it means
to be good enough be made explicit, and that decision making under this definition be
removed from the realm of ad hoc activity.

1 Levi condemns as fraudulent the making of a promise that one is certain will not be kept, and argues that one
is obligated to seek training, education, and the use of appropriate therapies and prosthetic devices to enhance
capabilities in a sincere attempt to achieve the ideal.
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9.1 Amelioration versus optimization

For many decades, substantive rationality has been the paradigm of choice with which
to address decision problems. Much effort has been devoted to the art of making ra-
tional choices according to various notions of optimization. Substantive rationality has
more than proven its worth in countless applications – success has been virtually un-
qualified. In the engineering domain, control theory, estimation and detection theory,
communication theory, and various signal processing techniques are all instantiations
of automated decision making, with similar success stories in computer science, statis-
tics, and economics. The foundational principles upon which these applications rest is
almost always some manifestation of optimization.
This book is an invitation to consider amelioration, as well as optimization, as a

species of rational decision making. Decision makers will need good reasons to con-
sider a change from a convention that is as compelling as optimization. The old adage,
“If it’s not broken, don’t fix it,” holds considerable power. To make any claims that the
method presented here should supplant existing approaches that have enjoyed demon-
strated success would be inappropriate without compelling evidence. I do not recom-
mend the general redoing of more than a half-century of formalized decision-making
theory.
At the same time, I point out that amelioration does not contradict optimization.

Rather, it softens it. I do not abandon optimization, but I do consider amelioration as
an alternative. It should be considered on its own merits as appropriate for a given
application and may even be more appropriate than optimization.
The art of decision making is in a state of continual change as new problems are

considered. Dramatic increases in computational power make it possible to address
problems of ever increasing complexity. One of the great success stories of computing
is the automation of decision making. Computers can be much more than prosthe-
ses to facilitate computation. They can also be prostheses of the mind and serve as
instruments with which to explore expanded domains. One of these domains is the
progression from merely automated (self-acting) decision making to truly autonomous
(self-governing) decision making. To achieve this capability, however, it is likely that
many refinements and alternatives to conventional approaches must be explored. Some
of these alternatives may not have the apparent power, efficiency, and security that
conventional approaches afford, but they may have compensating attributes that make
their consideration worthwhile.
There are a number of properties of satisficing decision theory that can be exploited

to advantage by both single and multiple decision makers. These properties are:
(a) binary choices based on local criteria,
(b) multiple solutions, and
(c) guiding versus dictating solutions.
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In multiple-agent decision-making scenarios, some additional properties may be ex-
ploited, including
(d) accommodation of group interest,
(e) mitigation of competition when it is not natural, and
(f ) flexible negotiation.
Satisficing requires making binary decisions, where the decision is either to retain

consideration of an option as good enough for adoption or to reject it as not good
enough. This is perhaps the most primitive form of decision making and does not
involve comparisons with other options. Instead, it is a local decision, based only on
the intrinsic merits of the option. Options that survive this binary comparison may be
viewed as being “better” options, in the sense that the benefits are “better” than the
costs, but they may not be viewed as being best in any reasonable sense.
In general, satisficing yields a set of solutions rather than just one solution. Since

every member of this set has the property that the gains at least compensate for the
losses, implementing any of them is ameliorative with respect to choosing an option
not in the satisficing set. The set can be further refined in a number of ways. One way
is to impose the additional requirement of equilibrium by eliminating those satisficing
options that cost more but do not provide more benefit or that provide less benefit
but do not cost more. Another way to refine this set is to eliminate those options that
are not securely satisficing, that is, that do not meet or exceed an externally applied
threshold. A third way to prune the satisficing set is to eliminate satisficing options
whose benefits do not exceed a fixed benefit threshold or whose costs do exceed a fixed
cost threshold. These systematic ways of refining the satisficing set, however, may
still leave the decision maker with multiple options. Simply choosing one at random
would perhaps be acceptable, but, at this point, it might also be reasonable to resort
to substantive rationality and pick a single option in the set according to an ancillary
criterion.
The selectability and rejectability criteria are not designed to identify a single option

but only to identify options that are defensibly good enough. Since the decision maker
has some ultimate flexibility in making the final choice, the criteria do not absolutely
dictate the solution, as would be the case with optimality. By mitigating the demand
that the best and nothing but the best be selected, the decision maker is provided with a
set of selections, each of which enjoys a claim to being adequate. This flexibility permits
the decision maker to accommodate its own non-quantifiable biases, should it desire,
in making the ultimate decision.
Perhaps the most important distinction between satisficing and approaches based

ultimately on a notion of optimality occurs inmultiple decision-maker environments. In
multi-agent settings, optimality is usually instantiated via von Neumann–Morgenstern
game theory, but that theory is based on the notion of exclusive self-interest. Each
decision maker has its own utility function which, although of necessity is a function
of the options available to all players of the game, is not a function of the preferences
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of the other players. It is not possible to create a notion of group interest that is based
on exclusive self-interest. Satisficing, however, does provide an avenue to account
for group interest, since the interdependence function accounts for couplings between
decision-maker preferences.
The ultimate consequence of group interaction where each decisionmaker is focused

primarily on its own self-interest is the engendering of competition. Even if the deci-
sion makers are not naturally disposed to compete, competition can arise as an artifact
of each decision maker attempting to maximize its own benefits. Sharing cannot be
accommodated if doing so would put any of the decision makers at a voluntary dis-
advantage, no matter how slight the disadvantage may be or how beneficial sharing
would be to others. A related consequence of competition is the creation of artificial
scarcity even if there is seemingly an abundance of resource, since it may be possible
(and thereforemandatory undermaximization) for some decisionmakers to accumulate
more resources than they need. Satisficing, on the other hand, does not engender com-
petition unless it naturally arises due to conflicting preferences of the decision makers.
Furthermore, since the decision makers are not mandated to maximize, they are able to
participate in sharing strategies that can accommodate the interests of others, even if it
is at their own expense.
Negotiation is especially problematic under substantive rationality. Negotiation usu-

ally requires compromise, but substantive rationality brooks no compromises that do
not guarantee the decision maker at least as much as it could obtain if it did not partici-
pate in negotiations. When negotiation is constrained by optimization, there may be no
joint strategy that is acceptable for all decision makers. Under satisficing, however, it is
possible to devise negotiation strategies that provide all decision makers with options
that are good enough for themselves and with the joint options that are good enough
for the group as a whole.
With all of these potential advantages of satisficing, however, there are some disad-

vantages which, if not dealt with properly, could undermine the satisficing approach.
First, the fact that decisions are made according to local binary criteria opens the door
to accepting decisions whose primary virtue is that that they are cheap. Both an in-
expensive economy car or a moderate expensive luxury sedan may satisfy a buyer’s
satisficing equation, but the buyer may not be neutral between the choices. The notions
of dubiety, gratification, and ambivalence, however, serve to further classify such deci-
sions, and provide the decision maker with additional criteria by which to make a final
choice.
Perhaps the most challenging concern with satisficing, especially in a multi-agent

environment, is how to deal with the greater complexity compared with conventional
game theory in accounting for other decision makers’ preferences. The growth of this
kind of complexity can sometimes be controlled by the use of various kinds of local-
ization assumptions, but, ultimately, I have no sure-fire way to keep the complexity at a
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manageable level. My only defense of this situation is that, complex though the models
may be, they are not more complex than they need to be to characterize the essential
inter-relationships that exist between decision makers. Complexity is undoubtedly the
biggest problem that automatedmulti-agent decisionmakingwill face in the foreseeable
future. As far as constructing realistic models to account for the possible interactions
between decision makers is concerned, satisficing theory seems no worse off and no
better off than any other methodology.

9.2 Meta-decisions

One of the most important issues that a decision maker or the designer of an artificial
decision-making systemmust face is themeta-decisionof choosing the decision-making
paradigm. Most decision-making approaches appearing in the literature are based on
two major paradigms: substantive rationality and procedural rationality. If these are the
only paradigms available, then the meta-decision itself must be restricted to these two
paradigms. Suppose one were to approach the meta-decision from the perspective of
substantive rationality. One would then choose the paradigm with the larger expected
utility. On the other hand, if one were to approach the meta-decision problem from
the perspective of procedural rationality, one would then apply a heuristic that would
dictate the choice. But how does one define either a utility or a heuristic by which to
compare paradigms? How does one avoid the infinite regress problem in either case?
Is it even possible, when forming such a decision problem, to distinguish between a
heuristic and a utility function? Even more fundamentally, is it even possible to make
a meaningful comparison between the two paradigms? These questions seem to be
undecidable.
Oneway to address these questions is to assert that it is possible to proceed in a rational

way without even asking them, let alone answering them. But doing so requires that a
third choice mechanism be invoked, such as intrinsic rationality. Intrinsic rationality
permits the decision maker to consider each of the paradigms on its own merits without
the need to compare them. If, in the deep-seated, almost instinctive, judgment of the
paradigm chooser, the benefits that would be derived by adopting substantive rationality
outweigh the costs, then substantive rationality is to be seriously considered – it is good
enough, or satisficing. Also, procedural rationality can be evaluated as either satisficing
or not. But, since these two paradigms are no longer the only possible mechanism for
making choices, onemay also consider the satisficing status of intrinsic rationality itself
as the paradigm of choice.
The choice of which notion of rationality is to be observed when designing artificial

decision-making systems cannot be avoided. The choice will in large part determine
the operational characteristics, or “personality,” of the system. A goal of this book is
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to place intrinsic rationality on the table as being worthy of serious consideration, both
for analyzing existing decision-making activities and as a means for designing artificial
decision-making systems.
To illustrate, consider the application domain of integrating technology and human

performance in the design of automated systems to enhance safety and performance in
automobile driving. The study of safety augmentation systems for collision and accident
avoidance and performance augmentation systems for adaptive speed control represent
important, active research areas that involve decisionmaking in critical situations. Such
systems must be designed in a way that is compatible with human performance. In fact,
if a system does not perform in a way that is similar to the way the human operator
performs, the operator will fail to have confidence in it, no matter how state-of-the-art
and reliable it may be, and will not use it.
Human automobile drivers are seldom optimizers. A driver on a winding road will

navigate curves no faster than he or she deems safe. Whereas an experienced race-car
drivermay be able to define the fastest safe speed and successfully navigate a turn at that
speed, such performance would never be attempted by an average driver. Even average
drivers will differ significantly in what they regard as the safe speed to navigate any
given curve. When traveling on the open road, an optimizer would insist on traveling at
exactly the speed limit, but the evidence clearly indicates a great variety in the speeds
of various drivers. These, and many other examples that can easily be cited, are strong
indications that optimality, as a principle, is simply not appropriate for most operators
of automobiles. An automobile driving augmentation system that is strongly based on
some notion of optimality, therefore, is likely to be received with skepticism by many,
if not most, drivers.
Driving involves making tradeoffs. It involves making comparisons between the

benefits, such as speed and enjoyment, versus the costs of danger and fuel consumption,
to name but a few of the considerations. A good case can be made that satisficing is a
more natural paradigm for the design of, say, an adaptive cruise control device, than
optimization would be. The ultimate test of the success of any such automated device
is, first, if users are willing to trust their safety to it, and, second, if its operational
characteristics are consistent with the operator’s driving skills and other driving-related
behavior.
This example illustrates that the choice of decision-making mechanism is far from

obvious. Such meta-decisions will become increasingly important as technological
advances provide increasing opportunities for the design of such systems. In just a few
short years, computers have advanced from the laboratory to the desk-top, from the
desk-top to the lap-top, and from the lap-top to the hand-held, with no end in sight
as to their ultimate portability and capability. Along with this development comes the
obligation to advance the ways in which they may be used and trusted as their influence
permeates deeper and deeper into society.
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9.3 Some open questions

Satisficing game and decision theory, as developed in this book, is a new concept
and has not yet been established in operational settings as a viable decision-making
paradigm. However, work to that end is progressing on several fronts. It is not the intent
of this book, however, to demonstrate operational performance. My goal is much more
modest: I seek to build the case for further exploration of the merits of this different
point of view.
There are a number of unaddressed and unsolved problems pertaining to this new the-

ory. The following list of open questions may provide points of departure for additional
research.
1. The approach developed in this book provides a contrast to conventional game theory,

which tells us about outcomes we can expect from substantively rational decision
makers. Game theory has been used extensively as a means of modeling human
behavior, but there is considerable evidence that people often do not behave in ways
consistent with substantive rationality; that is, they are not optimizers, or even con-
strained optimizers (Mansbridge, 1990a; Sober and Wilson, 1998; Bazerman, 1983;
Bazerman and Neale, 1992; Rapoport and Orwant, 1962; Slote, 1989). An impor-
tant, open question is whether or not, and under what conditions, the notion of
satisficing based on intrinsic rationality provides a valid model for human behavior;
that is, are people satisficers as we have defined the term? An answer to this question
may be provided by appropriately designed psychological testing and evaluation.

2. A characteristic of conventional game theory is that it employs rationality postulates
that are imposed at the individual level rather than at that of the group. Game theory
is designed to ensure that each participant achieves the best result possible for itself,
even if it is only in themaximin sense, regardless of the effect on others. Game theory
does not easily accommodate group interest, since the preferences of each decision
maker are expressed as functions only of the choices of other participants and are
not conditioned on their preferences. With conventional game theory, attitudes such
as cooperation and conflict are not built into the utility functions. Instead, they
become evident only when the utilities are juxtaposed – the linkages are external.
A characteristic of our approach, however, is that preference relationships between
participants can be expressed via the interdependence function – the linkages are
internal, and group preferences can emerge from these linkages. This feature invites
further investigation. Does the explicit linkage of inter-agent preferences provide a
basis on which to construct an artificial society that captures important aspects of
human social behavior?

3. Satisficing decision theory may provide an appropriate framework for the design of
negotiatory processes. One of the problems with von Neumann–Morgenstern game
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theory as a framework for negotiation is that it is not constructive – it may identify a
best compromise but does not provide a procedure for reaching it. The main trouble
is dealingwith the dynamic nature of coalition formation. Consequently, the strategic
form is used extensively, and much of classical game-theoretic attention has been
focused on situations where the process of negotiation can be presumed irrelevant to
actual play. Heuristic approaches to negotiation are amenable to the development of
processes, but they lack the capacity for self-policing, and quality cannot be assured.
The principal run-time “decision-making” activity under substantive rationality is
searching for an option that possesses the externally defined attribute of “optimality”
and, under procedural rationality, is rule following. But under intrinsic rationality,
the principal run-time activity is evaluating dichotomies and making choices dy-
namically and interactively according to internal assessments of both group and
individual preferences. This feature is potentially a great advantage when designing
negotiatory processes. When negotiating, is seeking a good enough compromise a
more robust and flexible posture than directly seeking a best compromise?

4. No realistic decision problem can account for all logically possible options. All
decision problems are framed against a background of knowledge and assumptions
that result in a subset of options that are deemed relevant by the decision maker. This
set may or may not be adequate for the task at hand, and one of the most difficult of
all decision-theoretic issues is to decide whether or not this set of options should be
enlarged and, if so, how to go about expanding it. Rank-ordering-based techniques,
by their very nature, provide only relative information and cannot be used to address
this concern. Dichotomy-based techniques, such as praxeic utility theory, may stand
a better chance of addressing this issue, since they are grounded in the fundamental
properties of the options and permit self-policing.
For example, being unable to find a good enough option in a situation may lead a
decision maker to reconsider what it is willing or unwilling to do. If, for another
example, there are no options for which the selectability-to-rejectability ratio pro-
vides a clear choice, this is evidence that the decision problem is a tense one for
the decision maker. This is not to say that the decision maker cannot make a good
decision. Rather, it is merely evidence that it may not be well-suited, in an ecological
sense, for the task. This realization may trigger the expansion of the set of options.
In practical situations this may require activating additional sensors, applying more
computational power, interrogating information sources, or initiating other means of
acquiring additional information, perhaps at a cost, in an attempt to equip the decision
maker to deal better with its environment.

5. Biologically and cognitively inspiredmetaphors, such as neural networks, evolution-
ary systems, fuzzy logic, and expert systems, though perhaps lending great anthropo-
morphic insight, deal primarily with the way knowledge is encoded and represented.
They do not offer new logics for decision-making processes and are at root based on
some manifestation of substantive rationality. But there is no reason why intrinsic
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rationality cannot be applied to these approaches as well. Satisficing should apply to
the design of neural networks, for example, as well as to the design of a traditional
differential equation-based model.

9.4 The enterprise of synthesis

The common task of physical science, philosophy, and psychology is to generate mod-
els of behavior (either physical or social) and to express these models as precisely
as possible. Mathematics provides a language in which to couch these models. This
language is essential to physical science and is at least convenient, to varying degrees,
for philosophy and psychology.
A recent play byMichael Frayn, entitledCopenhagen (Frayn, 1998), is a hypothetical

dialog between Bohr and Heisenberg, who were close collaborators in the first half of
the nineteenth century. During World War II, Heisenberg, a German, paid a visit to
Bohr, a Dane, in occupied Copenhagen. The content of their discussions has been a
topic of great curiosity and speculation, and Frayn’s play dramatizes the possibilities.
It is in an interesting play, but for our purposes, only the following exchange from Act
II is relevant:

Heisenberg: What something means is what it means in mathematics.
Bohr: You think that so long as the mathematics works out, the sense doesn’t matter.
Heisenberg: Mathematics is sense. That’s what sense is!
Bohr: But in the end, in the end, remember, we have to be able to explain it all to
Margrethe!

(Margrethe is Bohr’s wife, a non-scientific, non-mathematically proficient, but very
articulate, lay person.) Bohr recognizes that scientific analysis is not complete until
the written mathematical language of science has been translated into spoken language
(conversation) and communicated to others. The essence of the above hypothetical
conversation is captured by Wigner regarding scientific analysis: “The simplicities of
natural laws arise through the complexities of the languageswe use for their expression”
(Wigner, 1960).
The concept dual to analysis is synthesis. Just as analysis is the primary business

of science, synthesis is the primary business of engineering. Whereas science seeks to
explain natural reality, engineering seeks to create an artificial – that is, man-made –
reality. Much of engineering effort during the last century has concentrated on the
design of entities that do relatively simple things in very limited contexts. With the
explosion in computing capability and accessibility, however, the desire is growing to
create entities that domore complicated things in larger contexts, such as group settings.
Engineering andcomputer science literature is increasinglydevoted todiscussions about
“intelligent” entities that can imitate some of the activities that humans might perform.



214 9 Meliority

Humans govern their behavior by their concepts of rationality. But the question is,
what concept or concepts do they use? There is no single answer. As with any scientific
endeavor, many plausible theories may be proposed, and they may all be effective
in explaining and predicting various behaviors, but there is no way to know for sure
which, if any, of such analysis models is correct. Indeed, scientists, psychologists, and
philosophers do not pretend to know the states of nature and mankind, they only seek
theories that are consistent with observed behavior.
But the engineer must do more than hypothesize. It is not enough simply to concoct a

plausible story line to explain behavior. The artificial entity that is created must actually
“live” the story line and perform the functions that are dictated by the model. Consider
another, hypothetical conversation between the protagonists of Frayn’s play, this time
reversing the roles of the characters.

Bohr: What something means is what it means in conversation.
Heisenberg: You think that so long as the conversation works out, the sense doesn’t

matter.
Bohr: Conversation is sense. That’s what sense is!
Heisenberg: But in the end, in the end, remember, we have to be able to explain it all
to the machine!

Explanations to a machine cannot be done with the spoken language of human con-
versation. They must be done with a language that is “understandable” to a computer.
Mathematics is such a language, and when dealing with individual decision makers,
the mathematics of optimization provides the ideal solution. But when dealing with
social situations, the notion of what is “best” may not be well-defined, and we may
need to consider “good enough,” not merely as a substitute for the best, but as the ideal.
Satisficing provides a new mathematics of amelioration. With it, order can emerge in
a society through the natural local interactions that occur between agents who share
common interests and who are willing to give deference to each other. Rather than
depending upon the non-cooperative equilibria defined by individual rationality, satis-
ficing may lead to the more socially realistic and valuable equilibria of shared interests
and acceptable compromises.
Optimization is a very sophisticated notion of decision making that requires ex-

trinsic total orderings, while satisficing is rather primitive notion of decision making
that requires only intrinsic binary orderings. But this simplicity may be an important
key. Perhaps, when considering the synthesis of multiple decision-making entities, we
should form a dual to Wigner’s sentiment: “The complexities of artificial entities arise
through the simplicities of the components we use for their creation.” It is the most
fundamental component of all that this book addresses: the model of rationality that
undergirds and overarches the design of artificial decision-making systems.
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Bounded rationality deals with the problem of what to do when it is not possible or
expedient to obtain a substantively rational solution owing to informational or computa-
tional limitations. Sims (1980) has characterized the situation as a research “wilderness.”
There are several different notions of bounded rationality, but they tend to follow two
distinct streams. The first stream deals with bounds on the resources, such as compu-
tational power or time, and the second deals with bounds on the information available
to obtain a decision.

Resource-bounded problems deal with the problem of making decisions under severe
computational or time constraints. Consideration of such problems has led to the de-
velopment of procedures that fall under a category termed constrained optimization.
Constraints, in this context, do not refer to functional restrictions on the behavior of
the decision maker, such as energy limitations or performance requirements. Rather,
the constraints of interest here are limitations in the ability of the decision maker to
process information and arrive at a solution. Within this subclass of problems, there are
multiple approaches.

One way to deal with computational constraints is to modify the utility structure to
maximize the comprehensive value of computation by accounting for time/compu-
tational cost as well as the intrinsic utility of the problem (Russell and Wefald, 1991;
Kraus, 1996; Sandholm and Lesser, 1997). Another approach is to invoke a stop-
ping rule, such that searching for an optimum solution proceeds until the cost
of continuing to do so exceeds the expected benefits (Anderson and Milson, 1989;
Hansen and Zilberstein, 1996). Although these approaches are attractive upon first
glance, it can be difficult to balance the computational penalty with performance re-
quirements or to evaluate the costs and benefits of continuing to search. Imposing
constraints may offer more realistic expressions of the exigencies under which de-
cisions must be made, but the results are nevertheless firmly couched in exactly the
same premises as is unbounded (i.e., substantive) rationality. If the results are good
enough, then they are good enough only because it is tacitly assumed that the best so-
lution is always good enough. Essentially all that has changed is the criterion for being
best.
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Another view of bounded rationality is expressed by Kreps, who suggests that an
apt definition for this concept is to be “intendedly [individually] rational, but limitedly
so” (Kreps, 1990). This view admits the relaxation of the premise of total ordering
but retains the premise of individual rationality. It is acknowledged, under this view,
that informational limitations make it impossible to specify a complete ordering of
premises (but, if one could, then one would certainly optimize). Essentially, the idea
is to acquire a better understanding of the environment in which the agent is operat-
ing by learning from the past. Bicchieri (1993) recognizes that the individualistic, or
micro, paradigm provides an inadequate explanation for group, or macro, phenomena,
and argues that individual rationality must be supplemented by models of learning
and by an evolutionary account of the emergent social order. A number of learning
mechanisms have been suggested, including the methods of artificial intelligence such
as neural computing, genetic algorithms, simulated anealing, and pattern recognition,
with the expectation that such boundedly rational agents will learn to behave as if they
were operating under conventional substantive rationality and at least achieve an ap-
proximately optimal solution (Sargent, 1993). Machine learning researchers have had
some success in uncovering such processes (Bowling, 2000; Kalai and Lehrer, 1993;
Fudenberg and Levine, 1993; Hu and Wellman, 1998).

A particular instantiation of this version of bounded rationality is found with evolu-
tionary game theory (Maynard-Smith, 1982). Under this theory, “the game is played
over and over again by biologically or socially conditioned players who are randomly
drawn from large populations . . . and one assumes that some evolutionary selection pro-
cess operates over time on the population distribution of behaviors” (Weibull, 1995).
The evolutionary process requires two elements: a selection mechanism to establish
preferences with respect to the varieties of available strategies, and a mutation mech-
anism to induce variety. The selection mechanism requires the imposition of a fitness
ordering to govern the growth rates of the populations who employ the various strate-
gies. Mutations are alternative strategies that randomly invade a population of decision
makers; a strategy is evolutionarily stable if it is resistant (in terms of growth rates) to
small invasions. The motivation for designing an evolutionary game is the hope that it
will converge to an evolutionarily stable strategy that has desired characteristics (such as
cooperative behavior). However, whereas the behavior of a von Neumann–Morgenstern
game is expectant, in that the equilibria can be determined before the game is played,
the behavior of an evolutionary game is temporally emergent and cannot be anticipated
beforehand.

As with conventional von Neumann–Morgenstern theory, evolutionary game theory
is built on the premises of rational choice. Bounding exists due to the relaxation (but not
the relinquishment) of the total-ordering premise, and the individual rationality premise
remains intact. Evolutionary game theory is a research area of growing importance.
Although attention in this book is focused primarily on single-play decision problems,
there is no conceptual reason why the development herein (which relaxes the premise of
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individual rationality) could not be extended to the multi-play case. Such an extension,
however, is a topic for future research.

There are many other ways to form hybrid decision logics that blend the extremes of
substantive and procedural rationality. Ad hoc juxtapositions of maximizing expecta-
tions and applying heuristics, however, are, at root, still heuristic, and the capacity for
self-policing is compromised and may be destroyed.1

1 For example, when designing a controller for a nonlinear dynamical system, a common practice is to linearize
the system (a heuristic) and then design an optimal controller for the linearized system. There is no way to assure
that the resulting design will function properly when applied to the nonlinear system.
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In this appendix we summarize the basic concepts of von Neumann–Morgenstern game
theory that are relevant to our treatment of that topic in this book.

Definition B.1
An agent, or player, X , is a decision maker; that is, an entity that is capable of
autonomously choosing from among a set of options. �

Definition B.2
A decision problem for X is a triple, (U, π, C), consisting of an option space, U (also
called the action space), to be applied by the players, a set of outcomes or consequences,
C , to be realized by the players, and a mediation mechanism, or mapping function,
π : U → C , that relates choices and outcomes. �

Definition B.3
A joint decision problem, or game for a family of agents, {X1, . . . , X N }, where
N ≥ 2, is a triple (U,π,C) whereU = U1 × · · · × UN is the joint action space with Ui

being Xi ’s individual action space, C = C1 × · · · × CN with Ci being Xi ’s individual
consequence space, and π = (π1, . . . , πN ) where πi : U → Ci is a vector of mapping
functions, one for each player.

An option vector is an ordered set of options, u = {u1, . . . , uN }, one for each player,
where ui ∈ Ui . �

Definition B.4
A strategy, si , for Xi is a rule for it to follow which tells it which option, ui ∈ Ui , to
choose. The strategy space, Si , is the set of all strategies for Xi .

A strategy vector is is an ordered set of strategies, s = {s1, . . . , sN }, consist-
ing of one strategy for each player. The joint strategy space is the product space
S = S1 × · · · × SN . �

There is an important difference between an option and a strategy. Strictly speaking,
a strategy is a complete set of instructions to tell the agent what option to take in every
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conceivable situation, even if it does not ever expect to reach that situation. For a multi-
stage game (one that involves multiple moves by the players), a strategy for Xi is a
sequence of options such that, at the kth stage, the kth element (which is an option) of
the strategy is invoked. For single-stage games, a strategy is simply a rule to choose a
single option from the option space. Another way to think about it is this: a strategy is
a mental exercise that defines what should be done, and an action is the physical act of
implementing the options.

The classical treatment of decision making and game theory was developed by von
Neumann and Morgenstern (1944). This approach is based on utility theory. Utility
theory requires each player to assign preferences to rank-order the various outcomes
as a function of the possible strategy vectors.

Definition B.5
A payoff function, πi , for Xi is a mapping from the joint strategy space to the real
numbers. πi : S → R. �

The payoff functions for all players are used to form an N -dimensional array such
that each cell of the array contains an N -dimensional vector of payoff functions, one for
each player, corresponding to each strategy vector. For example, consider a two-player
single-stage game, each with two elementary options. Then the array becomes a 2 × 2
payoff matrix of the form given in Table 1.1.

Definition B.6
A zero-sum game is a game such that, for every strategy vector,

N∑
i=1

πi (s) = 0. �

Now that games have been formalized mathematically, we are in a position to discuss
ways to solve them, that is, for each player to determine its strategy.

Definition B.7
An equilibrium is a strategy vector consisting of an acceptable strategy for each of the
players. �

Definition B.8
A solution concept is a rule that defines what it means to be acceptable, and hence
defines an equilibrium. �

There are several possible solution concepts leading to several kinds of equilibria.
The four that are the most widely discussed are dominance, Nash equilibria, Pareto
equilibria, and coordination equilibria.
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Definition B.9
A strategy s∗

i is dominant for Xi if

πi (s1, . . . , s∗
i , . . . , sN ) > πi (s1, . . . , s ′

i , . . . , sN )

for all s j ∈ Sj , j �= i , and all s ′
i ∈ Ui such that s ′

i �= s∗
i . Dominance, however, is a very

strong property, and most interesting games do not have dominant strategies. �

Definition B.10
A strategy vector s∗ = {s∗

1 , . . . , s∗
N } is a Nash equilibrium if, were any single agent to

change its strategy, it would reduce its payoff; that is, if

πi (s
∗
1 , . . . , s∗

i , . . . , s∗
N ) ≥ πi (s

∗
1 , . . . , s ′

i , . . . , s∗
N )

for all s ′
i ∈ Si for i = 1, . . . , N . �

Definition B.11
A strategy vector s∗ = {s∗

1 , . . . , s∗
N } is a Pareto equilibrium if no single agent, by

changing its strategy, can increase its own payoff without lowering the payoff of at
least one other agent; that is, if, for any i , s ′

i �= s∗
i is such that

πi (s
∗
1 , . . . , s ′

i , . . . , s∗
N ) > πi (s

∗
1 , . . . , s∗

i , . . . , s∗
N ),

then

π j (s
∗
1 , . . . , s ′

i , . . . , s∗
N ) < π j (s

∗
1 , . . . , s∗

i , . . . , s∗
N )

for some j �= i . �

Definition B.12
A strategy vector s∗ = {s∗

1 , . . . , s∗
N } is a coordination equilibrium if no single agent

would increase its payoff should any one agent alone act otherwise, either itself or
someone else; that is, if s′ = {s∗

1 , . . . , s ′
j , . . . , s∗

N } for any j where where s ′
j �= s∗

j , then

πi (s′) ≤ πi (s∗)

for all i = 1, . . . , N . �





Appendix C: Probability theory basics

Probability theory developed as a means of analyzing the notion of chance and, as
a mathematical discipline, it has developed in a rigorous manner based on a system
of precise definitions and axioms. However, the syntax of probability theory exists
independently of its use as a means of expressing and manipulating information and
of quantifying the semantic notions of belief and likelihood regarding natural entities.
In this book we employ the syntax of probability theory to quantify semantic notions
that relate to the synthesis of artificial entities. In this appendix we present the basic
notions of probability theory. However, since much of the terminology is motivated by
the historical semantics, it will be necessary to supplement the standard treatment with
terminology to render the definitions more relevant to our usage.
We begin by establishing the notation that is used in this book.

Definition C.1
A set is a collection of simple entities, called elements. If A is a set and the points
ω1, ω2, . . . are its elements, we denote this relationship by the notation

A = {ω1, ω2, . . .}.

Ifω is an element of the set A, we denote this relationship by the notationω ∈ A, where
∈ is the element inclusion symbol.
Often, we will specify a set by the properties of the elements. Suppose A comprises

the set of all pointsω such thatω ∈ S possesses property P .We express this relationship
by the notation

A = {ω: Property P holds}.

For example, suppose A is the set of all ω such that f (ω) ≥ g(ω). We write this as

A = {ω ∈ S: f (ω) ≥ g(ω)}.

1. If ω is not an element of A, we express this relationship by the notation ω �∈ A.
2. If a set contains exactly one element ω, it is termed a singleton set, denoted {ω}.
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3. If A and B are sets and every element of B is also an element of A, we say that B is
a subset of A or, equivalently, A is a superset of B, and denote this relationship by
the notation

B ⊂ A or A ⊃ B,

where the symbols ⊂ and ⊃ are called set inclusion symbols.
4. If B is not a subset of A, we express this relationship by the notation B �⊂ A or

A �⊃ B.
5. If {ω} is a singleton set and ω is an element of A, we write {ω} ⊂ A to distinguish
between the interpretations of ω as an element and {ω} as a set.

6. Let A and B be sets. The union of A and B is the set of elements that are members
of either A or B (or both). We use the union symbol ∪ to denote this relationship;
that is,

A ∪ B = {ω: ω ∈ A or ω ∈ B}.

7. The intersection of A and B is the set of elements that are members of both A and
B. We use the intersection symbol ∩ to denote this relationship; that is,

A ∩ B = {ω: ω ∈ A and ω ∈ B}.

8. The complement A relative to B is the set of all elements that are in A but not in B.
We use the set minus symbol \ to denote this relationship, that is,

A\B = {ω: ω ∈ A and ω �∈ B}. �

Definition C.2
The most fundamental concept of probability theory is that of an event. In the analysis
context, an event corresponds to the state of the actual world.
1. An elementary event is the outcome of a simple experiment.
2. A sample space, �, is the set of all elementary events that may derive from an
experiment.

3. A collection of elementary events is called an event. In particular, the entire sample
space� is called the sure event, and the empty set ∅ is called the null, or impossible,
event.

4. For any event A, its complementary event, denoted �\ A, is also an event. �

Using the same mathematical structure as conventional probability theory, we may
form definitions suitable for a praxeological context. In this context, an event corre-
sponds to the state of a possible world that would be realized if certain actions were
taken. To distinguish between this and the standard probabilistic interpretation, we will
refer to events in the praxeic context as options.
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Definition C.3
An option corresponds to a possible action or collection of actions that a decision maker
may implement.
1. An elementary option is a single action that that may be taken. We also refer to
elementary options as actions.

2. An option space, U , is the set of all elementary options that may be taken by a
decision maker.

3. A collection of elementary options is called an option. In particular, the entire
action space U is called the sure option, and the empty set ∅ is called the null, or
impossible, option.

4. For any option A, its complementary option, denoted U \ A, is also an option. �

Definition C.4
A Boolean algebra of events (or options), denoted F , is a class of events (options)
in �(U ) containing ∅ and closed under the operations of complementation and finite
union. Thus, if A1 ∈ F and A2 ∈ F , then U \ A1 ∈ F and A1 ∪ A2 ∈ F . �

Definition C.5
A σ -field of events (or options), also denoted F , is a class of events (options) in �(U )
containing ∅ and closed under the operations of complementation and countable union.
Thus, if Ai ∈ F , i = 1, 2,. . . , then U \ Ai ∈ F ,⋃∞

i=1 Ai ∈ F . �

There are a number of traditional semantic notions of probability in the analysis
context, such as relative frequency, propensity, subjective belief, etc. These usages may
be generally viewed as measures of truth support. Praxeic utility theory employs prob-
ability in two ways, both of which are different than any of the traditional usages. The
first way is to use it as a measure of success support, which we term selectability.
Thus, just as an event that is very likely to be true (i.e., to have occurred) will have
a high probability value, an option that is very likely to succeed (i.e., to lead to the
achievement of a goal) will have a high selectability value.
The second usage is that of a measure of the amount of resource that is consumed by

adopting an option, which we term rejectability. Thus, an option that would consume
a large fraction of the available resource would have a high rejectability value. We
will assume that selectability and rejectability are semantic concepts that are defined
independently of each other.

Definition C.6
A probability measure, denoted PC , over a σ -field F of events in a sample space �

is a function such that

PC (∅) = 0,
PC (�) = 1.
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If Ai , i = 1, 2, . . . is a family of disjoint sets, then

PC

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

PC (Ai ).

A selectability measure, denoted PS , is a probability measure over σ -field F of
options. Likewise, a rejectability measure, denoted PR , is also a probability measure
over a σ -field F of options. �

Definition C.7
A probability space is a triple (�,F, PC ). A selectability space is a triple (U,F, PS).
A rejectability space is a triple (U,F, PR). �

Definition C.8
Let (�,F, PC ) be a probability space such that � contains countably many elements,
and let F be the power set of � (i.e., the set of all subsets of �). A probability mass
function, pC , is given by

pC (ω) = PC ({ω}),
where {ω} denotes the singleton set consisting of the elementary event ω for all ω ∈ �.
Let (U,F, PS) be a selectability space such that U contains countably many ele-

ments, and letF be the power set ofU . A selectability mass function, pS , is given by

pS(u) = PS({u})
for all elementary options u ∈ U .
Let (U,F, PR) be a rejectability space such thatU contains countablymanyelements,

and let F be the power set of U . A rejectability mass function, pR , is given by

pR(u) = PR({u})
for all elementary options u ∈ U . �

Definition C.9
Let (�,F, PC ) be a probability space such that� is a continuum of elementary events
inR, and letF be a σ -field over�. A probability density function, pC , is the Radon–
Nikodym derivative of PC with respect to Lebesgue measure, and

PC (A) =
∫

A
pC (ω) dω

for all A ∈ F .
Let (U,F, PS) be a selectability space such that U is a continuum of elementary

options in R, and let F be a σ -field over U . A selectability density function, pS , is
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the Radon–Nikodym derivative of PS with respect to Lebesgue measure, and

PS(A) =
∫

A
pS(u)du

for all A ∈ F .
Let (U,F, PS) be a rejectability space such that U is a continuum of elementary

options in R, and let F be a σ -field over U . A rejectability density function, pR , is
the Radon–Nikodym derivative of PR with respect to Lebesgue measure, and

PR(A) =
∫

A
pR(u)du

for all A ∈ F . �

Definition C.10
Let U1 and U2 be option spaces. The product option space is the set of all ordered
pairs of elememts of U1 and U2, respectively, and is denoted as

U1 × U2 = {(u, v): u ∈ U1 and v ∈ U2}.
If A ⊂ U1 and B ⊂ U2, the corresponding product subset, or rectangle, is the set

of ordered pairs of elements of A and B, respectively, and is denoted

A × B = {(u, v): u ∈ A and v ∈ B}. �

Definition C.11
Let A and B be events. The conditional probability of A given that B occurs is denoted
P(A|B). The symbol | is called the conditioning symbol. �

Definition C.12
Let A and B be options.
1. The conditional selectability of A given that B is selected is denoted PS|S(A|B).
2. The conditional selectability of A given that B is rejected is denoted PS|R(A|B).
3. The conditional rejectability of A given that B is selected is denoted PR|S(A|B).
4. The conditional rejectability of A given that B is rejected is denoted PR|R(A|B).

�





Appendix D: A logical basis for praxeic
reasoning

The implication that probability theory has a praxeic role to play may appear to be an
arbitrary and perhaps dubious appeal to a convenient analogy simply for purposes of
posturing for credibility or enhancing intuition. However, the purpose of this appendix
is to establish that the praxeic characterization arises from exactly the same kind of
assumptions that underly the construction of probability theory for dealing with epis-
temic issues. We establish the claim that the mathematics of probability theory is the
appropriate mechanism with which to characterize preference relationships between
members of a multi-agent system. To facilitate this development, we will form prax-
eic analogies to the various epistemic concepts and present the epistemic concepts in
parallel with the praxeic ones.
Probability is based on two-valued logic, i.e., Aristotelian logic. In the epistemic

context, this means that an event is either true or false. For any event set A, we will
say that A is true if any member of the set is true. If probability theory is to apply to
praxeic considerations, it must be based on two-valued logic in that context as well.
The praxeic Aristotelian analog to truth is instantiation – an action is either performed
or it is not. For any set A of actions, we will say that A is instantiated if any member
of the set is instantiated.
The goal of an epistemic inquiry is to ascertain truth. Analogously, the goal of a

praxeic endeavour is to ascertain how to act. In this regard, there are two desiderata.
The first is the achieving of the objective of the activity and the second is the conserving
of resources. The first desideratum is, of course, related to the fundamental purpose of
the endeavour, and the second desideratum exists because, in any practical situation,
resources (money, fuel, time, exposure to hazard, etc.) must be expended in order to
accomplish whatever tasks are appropriate in the pursuit of the first desideratum.
In the epistemic context, a basic notion to characterize an event in the quest for truth

is plausibility, or the attractiveness of an option in terms of its veracity. There are two
praxeic notions that are analogous to plausibility. The first is the notion of suitability
to characterize the fitness of an action set in the interest of achieving the fundamental
purpose of the endeavor. The second notion is that of resistibility to characterize the
avoidance of an action set in the interest of conserving resources. The notions of
suitability and resistibility must not be restatements of the same thing.
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D.1 Desiderata for coherent evaluation

In the epistemic context we are interested in expressing degrees of plausibility regarding
the truth of events under consideration, and in the praxeic context we are interested
in expressing degrees of suitability and resistibility regarding the instantiation of the
actions under consideration. Jaynes (2003) offers three basic desiderata that any theory
of plausible reasoning ought to possess. The first desideratum is standard for all of
formalized decision theory.

D-1 Degrees of support are represented by real numbers.

All degrees of support (in both the epistemic and praxeic contexts) must be defined in
the context of the environment that pertains to the problem.Let e denote the environment
(i.e., the state of nature). Since the plausibility (suitability, resistibility) of an event
(option) may change as the environment changes, we will generally need to introduce
additional notation to reflect this fact. We will use the notation A � e to denote the event
A with respect to the environment e.1 We say that A � e is true (instantiated) if any
element of A is true (instantiated) and e is the environment. We say that AB � e is true
(instantiated) if both A � e and B � e are true (instantiated) and we say that A|B � e is
true (instantiated) if A � e is true (instantiated) given that B � e is true (instantiated).2

In accordance with Desideratum D-1, we must provide numerical values for prefer-
ence orderings. Let us first consider the epistemic context and introduce the ordering
(�P , ∼=P ) corresponding to (“is more plausible than,” “is as plausible as”). We may
then define a utility function fP (A � e) corresponding to this ordering such that, if
A � e �P B � e, then fP (A � e) ≥ fP (B � e).
In the praxeic context, we employ the orderings (�S, ∼=S) and (�R, ∼=R), meaning

(“is more suitable than,” “is as suitable as”), and (“is more resistible than,” “is as re-
sistible as”), respectively. Let fS(A � e) and fR(A � e) be utility functions denoting the re-
spective numerical degrees of suitability and resistibility of A being instantiated under e.
We will assume that the functions fP , fS , and fR all possess a continuity prop-

erty, such that an infinitesimal change in the degrees of plausibility, suitability, and
resistibility will generate only infinitesimal changes in the numerical values that the
corresponding utility functions assume. When our discussion applies to all three utility
functions, it will be convenient to suppress the subscript and let f represent a utility
function for any of the contexts.
We now introduce the notion of conditioning, that is, the plausibility (suitability,

resistibility) of one event (option), given that another event (option) is true (instantiated).
Suppose that B � e is known to be true (instantiated). Then f (A|B � e) denotes the

1 The symbol “ � ” is the standard mathematical logic notation for the conjunction of two statements.
2 We use the standard shorthand notation AB for A ∩ B.
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conditional plausibility (suitability, resistibility) of A � e being true (instantiated) given
that B � e is true (instantiated).
To motivate the second desideratum, suppose e is changed to a new environment e′

in such a way that f (A � e′) > f (A � e) but that f (B|A � e′) is not changed. This should
never decrease the plausibility (suitability, resistibility) of AB, that is, we require
f (AB � e′) ≥ f (AB � e). For example, if e changes in such a way as to make A more
suitable but the suitability of B is not altered given that A is instantiated under either
environment e or e′, then the suitability of AB cannot decrease. Furthermore, if a change
in e makes A more plausible (suitable, resistible) then it makes its complement less
plausible (suitable, resistible); i.e., if f (A � e′) > f (A � e), then f (Ac

� e′) < f (Ac
� e),

where Ac is the complement of A. We summarize this requirement with the following
desideratum.

D-2 Qualitative evaluations of support must agree with common sense.

The third desideratum is a fundamental consistency argument.

D-3 If a conclusion can be obtained in more than one way while considering exactly
the same issues, then every possible way must lead to the same result.

These three desiderata are sufficient to formulate specific quantitative rules of be-
havior that are suitable for governing both epistemic and praxeic activities.

D.2 Quantitative rules of behavior

We now seek a consistent rule for relating the plausibility (suitability, resistibility) of
AB to the plausibilities (selectabilities, resistibilities) of A and B considered separately.
We may evaluate the statement that A and B are both true (instantiated) under e by first
considering f (B � e), the truth (instantiation) support for B under e, and then consid-
ering the statement that A is true (instantiated) given B under e, namely, f (A|B � e).
Of course, since the intersection is commutative (AB = BA), we may reverse the roles
of A and B without changing anything (this is in accordance with Desideratum D-3).
To elaborate, for a given environment, if both A and B are true (instantiated), then

B must be true (instantiated). But if B is true (instantiated) then, for A also to be true
(instantiated), it must be that A given B is true (instantiated). Furthermore, if B is false
(not instantiated) then AB must also be false (not instantiated), regardless of whether
or not A is true (instantiated). Thus, if we first consider the plausibility (suitability, re-
sistibility) of B, then the plausibility (suitability, resistibility) of A will be relevant only
if B is true (instantiated). Consequently, given the plausibilities (suitabilities, resistibil-
ities) of both B and A|B, we do not require the plausibility (suitability, resistibility) of
A alone in order to compute the plausibility (suitability, resistibility) of AB.
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If we reverse the roles of A and B, then we see that the plausibility (suitability,
resistibility) of A and B|A is also sufficient to determine the plausibility (suitability,
resistibility) of BA. The upshot of this development is that the plausibility (suitability,
resistibility) of AB is a function of the plausibilities (suitabilities, resistibilities) of B
and A|B or, equivalently, of A and B|A. In other words,
f (AB � e) = F[ f (B � e), f (A|B � e)] = F[ f (A � e), f (B|A � e)], (D.1)

where F is some function to be determined.
Next, we observe that the consistency desideratum requires, when considering

f (ABC � e), that if we consider BC first as a single event (option), application of
(D.1) yields

f (ABC � e) = F[ f (BC � e), f (A|BC � e)]. (D.2)

Next, we apply (D.1) to f (BC � e) to obtain

f (BC � e) = F[ f (C � e), f (B|C � e)]

which, when substituted into (D.2), yields

f (ABC � e) = F{F[ f (C � e), f (B|C � e)], f (A|BC � e)}. (D.3)

However, since set intersection is associative, we have A(BC) = (AB)C . Consider-
ing AB first, we also obtain

f (ABC � e) = F[ f (BC � e), f (A|BC � e)],

and repeated use of (D.1) also yields

f (ABC � e) = F{ f (C � e), F[ f (B|C � e), f (A|BC � e)]}. (D.4)

The consistency desideratum requires that (D.3) and (D.4) must be the same. Thus,
the function F must satisfy the following constraint, called the associativity equation
(Jaynes, 2003; Aczél, 1966):

F[F(x, y), z] = F[x, F(y, z)]. (D.5)

A further constraint on F is that it also must satisfy the common sense desideratum.
To ensure this property, suppose e changes to e′ such that f (B � e′) > f (B � e) but
f (A|B � e′) = f (A|B � e). Then common sense insists that f (AB � e′) ≥ f (AB � e).
Also, we require that, if f (B � e′) = f (B � e) but f (A|B � e′) > f (A|B � e), then
f (AB � e′) ≥ f (AB � e). In other words, F(x, y) must be non-decreasing in both
arguments.
It remains to determine the structure of F that satisfies all of these constraints. By

direct substitution, it is easily established that (D.5) is satisfied if

w[F(x, y)] = w(x) · w(y) (D.6)

for any function w. The following theorem establishes this as the general solution.
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Theorem D.1
(Cox, 1946) Suppose F is differentiable in both arguments, then (D.6) is the general
solution to (D.5) for some positive, continuous, monotonic function w. Consequently,
for any events (options) A and B,

w[ f (AB � e)] = w[ f (A|B � e)] · w[ f (B � e)], (D.7)

which is called the product rule, and

w[ f (A � e)]+ w[ f (Ac
� e)] = 1,

which is called the sum rule. Furthermore,

w[ f (U � e)] = 1

and

w[ f (A ∪ B � e)] = w[ f (A � e)]+ w[ f (B � e)]− w[ f (AB � e)].

For a proof of this theorem see Cox (1946, 1961), Tribus (1969), or Jaynes (2003).
Jaynes observes that (D.5) was actually first solved by Abel as early as 1826 in a
different context (Abel, 1881). Also, Aczél has established the same result without the
assumption of differentiability (Aczél, 1966).

D.3 Constructing probability (selectability, rejectability)

Lets us now impose the additional assumption that w is non-decreasing. Also, since
w composed with f is a function of the events (options), we may, without loss of
generality, define a function P over the events (options) as P(A) = w[ f (A � e)] (since
we now assume the environment is fixed, we may simplify notation by dropping e
from the argument list). Then P possesses exactly the mathematical properties that are
required to define probability over a Boolean algebra of events (options); namely,

P-1 Non-negativity: 0 ≤ P(A)

P-2 Normalization: If U is the entire space, then P(U ) = 1

P-3 Additivity: If A and B are disjoint, then P(A ∪ B) = P(A)+ P(B)

for A, B inB. These three properties are usually taken as axioms in standard expositions
of probability theory à la Kolmogorov (1956). These axioms are then used to derive
all of the well-known probabilistic concepts, such as conditioning and independence.
However, we see that Kolmogorov’s axioms themselves are actually the consequences
of more descriptive desiderata. In particular, conditioning, which is expressed merely
as a definition with conventional treatments, is actually a fundamental concept under
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the more constructive approach offered by Cox. That is, (D.7) becomes the product rule
of probability theory:

P(AB) = P(A|B) · P(B). (D.8)

We conclude that the mathematical structure of probability theory is a valid char-
acterization of uncertainty, whether the context pertains to the epistemic notion of
characterizing the truth support of events or to the praxeic notions of characterizing the
success support and resource consumption support of options. To emphasize the praxeic
context, we will refer to PS and PR as selectability and rejectability functions, respec-
tively, rather than probability functions. PS(A) is the degree of support for selecting A
in the interest of achieving the goal of the decision maker, and PR(A) is the degree of
support for rejecting A in the interest of conserving resources. Furthermore, we may
view these two functions as marginals of an even more general function, which we term
the interdependence function. This function, denoted PSR , is defined over options in
the product space U × U such that, for any options A ⊂ U and B ⊂ U , the functions
PS and PR are marginals of PSR:

PS(A) = PSR(A × U ), (D.9)

PR(B) = PSR(U × B). (D.10)

Let pSR be the mass function associated with PSR (that is, for any singleton pair
(u, v) ∈ U × U , pSR(u; v) = PSR({u} × {v}). We will term pSR the interdependence
mass function. Then pS and pR are the selectability and rejectability marginals of pSR ,
that is, pS(u) = ∑

v∈U pSR(u; v) and pR(v) = ∑
u∈U pSR(u; v). In the general n-agent

case, the action space U will be n-dimensional, and u and v will be n-dimensional
vectors.
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