

S
E

R
I

E
S

P

L
A

T
F

O
R

M

S
E

R
I

E
S

 6
0

 P
L

A
T

F
O

R
M

60

Programming Games for
Series 60
EXCERPTS FROM THE MASTER OF SCIENCE THESIS
”SERIES 60 AND SYMBIAN OS BASED SMART PHONE AS A MULTITERMINAL GAME
PLATFORM”
BY JUUSO KANNER
TAMPERE UNIVERSITY OF TECHNOLOGY 2002

Version 1.0
August 5, 2003

Programming Games for Series 60 | 2

Contents

1. Introduction ... 4
2. Symbian Operating System.. 4
3. Series 60 Based Smart Phone as a Device for Games 5

3.1 Requirements..5
3.2 Restrictions..5
3.3 Memory ...6
3.4 Timers ...7
3.5 Key event Handling ...8
3.6 Sounds ..10
3.7 Installation ...11

4. Graphics... 12
4.1 Graphics Architecture..12
4.2 Font and Bitmap Server ..13
4.3 Window Server..14

4.3.1 Client Side Buffer..14
4.3.2 Windows ...16
4.3.3 Control Environment...17
4.3.4 UI Library ..17

4.4 Bitmaps ...18
4.5 Drawing ...20

4.5.1 Sprites...22
4.5.2 Double buffering ...23

4.6 Direct draw ..24
5. Communications ... 25

5.1 Communications architecture..25
5.2 Serial Communications Server..27
5.3 Sockets Server..28
5.4 Game Data Receiving ...29

References... 31

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 3

Legal Notice

Copyright © 2003 Nokia Corporation. All rights reserved.

Copyright © of the original document Juuso Kanner 2002. All rights reserved.

Reproduction, transfer, distribution, or storage of part or all of the contents in this
document in any form without the prior written permission of Nokia is prohibited.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. Other product and company names mentioned herein may be
trademarks or trade names of their respective owners.

Nokia operates a policy of continuous development. Nokia reserves the right to make
changes and improvements to any of the products described in this document without
prior notice.

Under no circumstances shall Nokia be responsible for any loss of data or income or any
special, incidental, consequential, or indirect damages howsoever caused.

The contents of this document are provided “as is.” Except as required by applicable law,
no warranties of any kind, either express or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose, are made in
relation to the accuracy, reliability, or contents of this document. Nokia reserves the right
to revise this document or withdraw it at any time without prior notice.

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 4

1 . I n t r o d u c t i o n
This document is based on the Master of Science thesis, ”Series 60 and Symbian OS
Based Smart Phone as a Multiterminal Game Platform,” by Juuso Kanner, Tampere
University of Technology, 2002. It contains only excerpts of the thesis that are relevant
for the development of advanced games on current Series 60 terminals.

The following chapters have been removed from the original document:

1. Introduction

2. Symbian Operating System Based Smart Phones
(except 2.3 Symbian Operation System)

6. Implementation of a Multiterminal Game for Series 60

7. Conclusion

The references have been updated. Any subsequent additions by Nokia are marked.

Note: This document discusses Symbian OS GT 6.1 as the basis of Series 60 Platform.
This is true for Series 60 Platform v1.x. Series 60 Platform v2.0 is based on Symbian OS
GT 7.0s. This document is primarily applicable to Series 60 Platform v1.x and may be
partially incompatible with Series 60 Platform v2.0.

2 . S ym b i a n O p e r a t i n g S ys t e m
Symbian operating system is the common core of application programming interfaces
(APIs) technology that is shared by all Symbian OS phones. The core is named as
generic technology (GT) and it is divided into different releases. The GT includes a multi-
tasking kernel, middleware for communications, data management and graphics, the
lower levels of the GUI framework, and application engines. [Sy02].

Small hand-held devices, such as smart phones, are usually very resource-constrained
devices. Size of the device and manufacturing costs constrict the memory available,
processing speed and battery-life. Despite the scarce resources, the device needs to
remain stable for a long period of time, even for months. In the case of an out-of-
resources error, it is important for the system to return to the former state that was
stable, without losing any vital data. This makes it important for the system and
applications to catch and handle every run-time error properly.

Errors arising from out-of-resources, like all run-time errors are called exceptions. In
standard C++ these exceptions are handled with a try-catch-and-throw mechanism, but
because of its negative impact on code size, Symbian OS provides its own mechanism
called trap harness. Another reason for Symbian to develop their own exception handler
was that, at the time that Symbian OS was originally developed, the try-catch-and-throw
mechanism was not a part of the C++ standard. The concept of the trap-harness is to
encapsulate functions that may raise an exception with a TRAP macro. The macro can
be used to trap multiple functions, and the functions may be nested. In the case of an
exception, the execution of the function that caused it, is terminated by calling
User::Leave function, which corresponds to throw in standard C++ exception handling.
This is called a leave, and it will return the program execution to the closest TRAP macro,
where suitable recovery actions can be performed. Symbian OS also provides a tool for
cleanup in case of an exception. A cleanupstack is used to refer to objects that are only
referred to by an automatic variable, and which need to be deallocated if a leave occurs.
The TRAP macro will destroy the memory allocated by the automatic variables in the
cleanupstack.

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 5

Symbian OS provides a system for non-preemptive multitasking within a single thread.
The system, including active objects and an active scheduler, were designed to cut down
run-time costs and synchronization problems encountered with preemptively scheduled
threads. Every application in Symbian OS consists of an active scheduler and one or
more active objects. The scheduler encapsulates a wait loop needed for asynchronous
services and schedules active objects according to their priorities. The active objects
encapsulate the actual ansynchronous services. More information about the non-
preemptive multitasking infrastructure of the Symbian OS can be found from reference
[Ta00].

3 . S e r i e s 6 0 B a s e d S m a r t P h o n e a s a D e v i c e
f o r G a m e s

This chapter takes a deeper look into Series 60 and Symbian OS, and describes their
characteristics as a platform for games. In addition, the requirements and restrictions
that are set by smart phones are discussed. The chapter is mainly based on references:
[Ta00], [Sy99] and [No01a].

3.1 Requirements

Unlike to many other devices that are used for gaming, smart phones need to able to
inform a user about different system events while a game, or any other application is
running. Applications need to take into account possible interruptions for example due to
an incoming call or message, and they need to act accordingly. The applications should
also not reserve or consume device resources, like memory or battery-life excessively.

Most of the system messages are indicated to a user with a system owned dialog, called
a global note. The dialogs have a higher window priority than applications and thus they
appear in the front of the applications. One exception in the system events is an
incoming call, which causes telephony application to become the frontmost application,
leaving the interrupted application background. However, all system side events have a
common characteristic, which can be caught by an application. When a system event
occurs, the frontmost application loses focus. This causes application user interface
class’ (CAknAppUI) HandleForegroundEventL method to be called. By overriding
the method, applications can perform needed actions and, for example, pause the
ongoing game.

Applications need to pay attention to battery consumption. When a phone is unused for a
predefined amount of time it goes to a sleep mode to minimize power consumption. That
can not be done, if an application continues doing background processing and for
example polls a variable in a loop. All polling should be done in blocking loops, and all
timers should be stopped when a game is paused. In case a timer is needed to maintain
a connection to another terminal, the timer’s frequency should be lowered to minimum.
Applications can also get events from a system side timer when there has been no user
activity for a predefined interval of time. This is done using the RTimer::Inactivity
method that can be found from e32std.h header file. In battery-powered devices the
software needs to be prepared for a sudden loss of battery power. The battery may fail
or a user may remove it from the device. This should be noted if important user data is
edited. The data should be saved at intervals, and restored after a reboot. In addition,
applications should be prepared for corrupted data, and recover from the situations of
that kind safely.

3.2 Restrictions

In addition to restricted memory size, smart phones have several other restrictions when
compared to PCs. First of all, smart phones do not have as efficient processors as PCs

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 6

do. Math processors are also very rare in smart phones and hence the time critical
calculations should be implemented using integers. Symbian OS has also some
constraints as a platform for games. For instance, writable static data, which is often
used in games to optimise access to widely used data, is not supported by the platform.

Smart phones have also relatively limited hardware. Displays have limited resolution,
size and colour depth. Keypads have a limited number of keys and the layout of the keys
may be disadvantageous for playing games. The layout may also vary between different
hardware solutions, and hence games should provide a possibility for users to redefine
keys. Smart phones do not either have adequate ports to support various game
controllers, like wheels and joysticks, which are familiar from the PC environment. All
these restrictions determine what kinds of games can be implemented and ported to a
smart phone, without loosing their playability. In the long run, however, technologies
used in smart phones will elaborate, and new features and solutions will be introduced.

3.3 Memory

In memory-constrained devices, the memory management is in a very important position.
This concerns both the run time memory usage and the eventual compiled code size.
Most of the Symbian OS and the Series 60 based devices have only 8 MB of RAM, or
less. In addition to RAM, the devices have ROM for preinstalled software and a user
data area, which is used for installed applications and the system's writeable and
persistent data files. In addition, a portable memory card, like a compact flash (CF) card
or a multimedia card (MMC), may be supported depending on the hardware.

The most important rule for RAM usage is that all allocated memory should be
deallocated at as early a stage as possible. The Symbian OS emulator provides a macro
for memory checking, which is supplemented by default to all applications having a
graphical UI (GUI). The macro will panic an application if it does not deallocate its
memory and thus exposes all memory leaks at an early stage of an application
development. On a target hardware, OS’s kernel keeps track of every thread's memory
and deallocates it automatically when a thread exits. This ensures that all memory is
deallocated when an application exits. A problem may occur in applications or servers
that are running for a long period of time. If they do not release unneeded resources
after they have finished using them, a significant amount of resources may be reserved
in the system and from other applications.

When implementing an application, the usage of a stack memory is worth noting. In
Symbian OS each thread has its own memory stack, which cannot grow after the thread
has been launched. The default stack size for an application in Series 60 is only 20 kB,
so it should be used with great caution. There is also divergence between the emulator
environment and the target hardware in stack space available. The stack size in
emulator is not as constrained as on hardware because the Windows' own stack is used
instead. This is why all software should be tested on hardware at as early a stage as
possible, and with stack variables having their maximum sizes. Most of the stack
overflows are caused by the use of stack descriptors. This can be avoided by allocating
descriptors from the heap and by using automatic objects only for very short strings.
Also the usage of recursion can be a very stack consuming. If recursive programming is
necessary, the sizes of the passed parameters and the local automatic variables inside
the recursive part should be minimized.

To minimize the size of the compiled code, the following guidelines should be followed:

o do not export methods unless it is necessary,

o do not create unnecessary virtual methods,

o do not use TRAPs excessively,

o avoid duplicate code,

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 7

o find decomposable functions, and

o use common controls and components

To enable accessing of a function or data from outside of a DLL, exported methods are
listed in a DLL export table. Although in Symbian OS, the methods are exported by
ordinal and not by name, all unnecessarily exported methods grow the size of the export
table vainly. This is why methods should be exported only if they are designed to be
used outside of the library they were introduced in. The same applies to virtual methods
which are listed in a virtual function table of a DLL.

The usage of the TRAP macros should be carefully designed. They are not meant to be
used excessively because of their negative impact on the size of the compiled code.
Most often the TRAPs provided by the Symbian OS's application framework, are enough
for application developers and they do not need to code their own TRAPs.

The last three items in the list are very common ways to minimize the code size for all
platforms, and do not need to be discussed in more details.

Due to the graphical nature of games, bitmaps often form a large portion of their memory
consumption. This applies for both the RAM and the user data area consumption. The
most effective way to contribute to the consumption, without decreasing the number of
bitmaps is to reduce their colour depths. Symbian OS supports 24 bit bitmaps which
equals to 16777216 colours, but the actual maximum number of colour is constricted by
the target hardware. This is why all bitmaps should not be converted to higher than the
maximum colour depth set by the hardware. Small, low-detailed bitmaps, which do not
need that many colours, should be converted to lower colour depth than the maximum
colour depth referred to above. For example 8 bit colours are suitable for most of the
sprites. All masks should be converted to 1 bit bitmaps.

3.4 Timers

Timing is essential for most of the games. Timing services, provided by the system side,
are used for different purposes. In more complex games the game world and graphics
are updated, and user input is read dozens of times in a second. In more straightforward
games, timers are used to handle players’ turns or to evaluate a player’s success in
resolving a given problem and so on. Most of the games need some kind of timing
support from the system.

One of the most deficient services for game developers in Symbian OS are timing
services. The OS does not support low level timer interrupts, and it only provides a
kernel side timer which has the maximum frequency of 64 Hz. The same tick rate is also
used for round-robin scheduling of threads. In the emulator environment the maximum
tick rate is 10 Hz which makes testing of games troublesome or even impossible. The
maximum tick rate of the system can be accessed with the UserHal::TickPeriod
method, which gives the tick period in a platform-independent way. The method is
introduced in e32hal.h header file. A class diagram of the Symbian OS’s timer classes
can be seen in Figure 3.1.

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 8

CActive

CTimer

CPeriodic CHeartbeat

RTimer

Figure 3.1 Class diagram of the Symbian OS timing services

The kernel side timer can be reached using the RTimer class, which is a handle to a
system side server. It provides a simple API to request three different timing events: an
event after a given period of time, an event at a given time, and an event which
completes at a given fraction of a second. The APIs require TRequestStatus to be
passed as a parameter which commits application developers to use active object as
event handlers. To facilitate the usage of the RTimer, Symbian OS provides an abstract
active object, CTimer, which encapsulates the use of the RTimer. This is done using a
simple encapsulation where application developers need to derive from the CTimer and
override the RunL method, which is called when a request is completed. However, due
to the usage of active objects in timing services, the actual timer event handling may be
delayed. When a timer request completes, another active object may already be running,
and the active object which is handling the timer events will not be scheduled until the
other active object has concluded its RunL. This can not be avoided but the impact on
timing accuracy can be minimized by making all RunL methods as short-running as
possible. The event handling may also be delayed if another active object with a higher
priority is scheduled first. This can be avoided by making the active objects, which are
handling timer events, higher priority than other active objects.

Symbian OS also provides two CTimer derived classes to get timer events repeatedly;
CPeriodic and CHeartbeat. Both of these classes call a callback method when an
event occurs. For the CPeriodic, the interval of the events can be given in
microseconds and for the CHeartbeat the interval can only be given in fractions of a
second, which are defined by TTimerLockSpec enumeration. The minimum fraction is
one-twelfth. In CPeriodic, the given interval is rounded upwards to the closest system
tick resolution. The CHeartbeat provides a method to synchronize the timer with the
system timer. Its callback method Synchronize gets called if one or more timer events
are missed, and this way it provides an application the possibility to perform needed
recovery actions. All of the timer classes referred to above can be found from e32std.h
and e32base.h header files.

3.5 Key event Handling

Symbian OS is a event driven system - all applications and servers can be seen as event
handlers. The events, such as key events are handled with active objects, making the
event handling non-preemptively scheduled. An example of an event flow when a user
presses a key can be seen from Figure 3.2.

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 9

User

Kernel /
Keyboard Driver Window Server CONE Application

Interrupt

Key Event

Key Event

Key Event

Figure 3.2 Key event flow

When a user presses a key, the keyboard hardware generates an interrupt, which is
captured by the keyboard driver. After resolving the key code of the event, the driver
sends it to a system side thread called window server. The window server sends the
event to the application whose window group has the focus. This is done using a control
environment (CONE), which is an API between the window server and a user interface
library. The CONE and the window server are explained in Chapter 4.

In the application side the key events are handled in the OfferKeyEventL method
which is called by the window server. Each key press generates three separate events.
The First event is EEventKeyDown, which is generated when a key is pressed down.
This is followed by EEventKey, and when the key has been released, by
EEventKeyUp. The event types are specified by the TEventCode enumeration, which is
passed to OfferKeyEventL as the second parameter. The first parameter is a struct,
TKeyEvent, which specifies more detailed information on the event. If a key is kept
down longer than 0.8 seconds, the window server sends another EEventKey event to
the application; a long key press event. If the key is kept down longer than that, the
window server sends key repeat events in every 0.25 seconds. These time frames are
default values for Series 60, and they can be changed by applications.

TKeyEvent has a member variable, iRepeats, which can be used to separate a long
key press from key repeat events. In case the variable differs from zero, the application
needs to know what the value was when the last key event was received. If the last
event's iRepeats equals to zero, a long key press was received and in the other case a
key repeat event was received. The iRepeats variable is a 32-bit signed integer which
defines the number of events since the last handled event. Because the most of the key
events are handled somewhere, the variable does not define the actual number of
repeats since the first key event. This is why applications need to count the repeats by
themselves if they want to know how long the key was pressed down. The definitions of
TKeyEvent and TEventCode can be found from w32std.h header file.

Games, which need key events more frequently, should set their own key repeat rates.
The key repeat time frames can be changed using the window server's
SetKeyboardRepeatRate API which takes two parameters. The first parameter
specifies the time before the first key repeat event, which equals to a long key press,
and the second parameter specifies the time between subsequent key repeat events.
Setting the time frames equal results a linear repeat rate where time frames are equal
between the first key event and subsequent ones. Because the repeat rates are system-
wide settings they should be changed back to the defaults when another application is
brought into the foreground.

In Series 60 most of the keys are blocked by default; only a power key and an edit key
are non-blocked keys. Anyhow, key overlapping is very essential for games where a user
should be able to press two keys simultaneously. This is why Series 60 provides API for
disabling key blocking. The base class of application UIs, CAknAppUi, provides

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 10

SetKeyBlockMode method, which can be used to disable key blocking. The API takes a
TAknKeyBlockMode enumeration as a parameter, which can have two possible values:
EDefaultBlockMode, and ENoKeyBlock. Key overlapping is also a system wide
setting which should be restored to default value when the game is not on the
foreground.

3.6 Sounds

In Symbian OS, playing and manipulation of sounds is handled by the media server. The
media server supports various audio file formats, such as wav, au and wve, and provides
an API for applications to developed additional file format plug-in modules for the server.
Media server’s client API is devided into three different interfaces: audio sample editor,
audio tone player and audio sample player. The audio sample editor interface provides
advanced audio manipulation methods, which can be used for recording, editing and
playing sounds. The audio tone player interface enables applications to create and play
synthesised sounds. The audio sample player interface can be used to playback sample
data files. The use of the media server interfaces requires an active scheduler to be
running in the same thread.

For most of the games the audio sample player interface provides all needed features to
implement desired sound effects. The interface consists of
MMdaAudioPlayerCallback and CMdaAudioPlayerUtility classes. The
MMdaAudioPlayerCallback is a mixin class that provides callback methods to notify a
client class that an initialization or playing of a sample has been completed. This is why
the class, that is using the sample player interface, needs to be inherited from the mixin
class. The CMdaAudioPlayerUtility class provides methods to load and play a
sample, and to set volume of the playback. The class can only be associated to a single
sample data and thus an application needs to create as many instances of the
CMdaAudioPlayerUtility class as it has different sample data files. Following code
shows an example of the use of CMdaAudioPlayerUtility class.
 // Create a sample player and load a sample from a file

 CMdaAudioPlayerUtility* samplePlayer =

 CMdaAudioPlayerUtility::NewFilePlayerL(

KSampleFileName, *this);

 // Play the sample

 samplePlayer->Play();

In Series 60, every application has a default sound for each key. The sounds may also
depend on whether the key press was a short, long or a repeated key press. Series 60
application UI class, CAknAppUi, provides the support for applications to specify their
own key sounds in a resource file:

RESOURCE AVKON_SKEY_LIST r_example_skey_list

 {
 list =
 {
 AVKON_SKEY_INFO { key=EStdKeyLeftArrow;

sid=EAvkonSIDNoSound;},

 AVKON_SKEY_INFO { key=EStdKeyLeftArrow;

sid=EAvkonSIDNoSound;

type=ESKeyTypeLong;},

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 11

 AVKON_SKEY_INFO { key=EStdKeyLeftArrow;

sid=EAvkonSIDNoSound;

type=ESKeyTypeRepeat;}

 };
 }

Available sound ids, SIDs, are specified in the avkon.hrh header file. In games, if a key
is kept down for a long period of time, the repeat sound should be disabled by specifying
the key event’s sound ID to EAvkonSIDNoSound. This is because playing the repeat
sound every time a key repeat event is received consumes a lot of processing time. If a
continuous sound is needed by a game, the audio sample player should be used instead.

3.7 Installation

In Symbian OS, installation of applications is done using installation files, sis files. Sis
files contain the files to be installed and the needed information to do the installation.
The data in sis files is compressed to save memory and to minimize the time that is
needed to transfer the sis files to a terminal. The installation of an application can be
done directly from a PC, that has a Series 60 PC Suite installed, by running the
corresponding sis file. Sis files can also be installed by first downloading the file using
various communication technologies, such as WAP, Bluetooth and Infrared Data
Association (IrDA), and then by opening it in a messaging application.

Sis files are constructed using package files, pkg files, which hold the required
information to assemble a sis file:

; MyGame.pkg
; Specifies an installation file for MyGame
;Languages
&EN
;Header
#{"MyGame"},(0x1000ABCD),1,0,0

; Required line for Series 60 devices. (Added by NOKIA)
(0x101F6F88), 0, 0, 0, {"Series60ProductID"}

"\epoc32\release\thumb\urel\MyGame.app"-

"!:\system\apps\MyGame\MyGame.app"
"\epoc32\release\thumb\urel\MyGame.rsc"-

"!:\system\apps\MyGame\MyGame.rsc"

All lines, which are preceded by a semi-colon, are comment lines. The first non-comment
line specifies the supported language variants. A sis file may contain more than one
language variant, although only one variant is installed at a time. The second line is
reserved for a package header, that specifies the name and the ID of the application,
major and minor version numbers and a build number. After that Series 60 Product Uid is
stated. This indicates on which Series 60 Platform versions and devices this application
can be installed. Multiple Series 60 Product Uids can be used. Here are some of the
most common Series 60 Product Uids:

Nokia 7650 0x101F6F87

Nokia 3650 0x101F7962

Nokia N-Gage™ Mobile Game Deck 0x101F8A64

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 12

SX1 0x101F9071

Series 60 Platform v0.9 0x101F6F88

Series 60 Platform v1.0 0x101F795F

(previous 3 sentences and the table added by NOKIA)

The following lines define which files will be installed. Each line specifies the source path
in a PC and the target path on the terminal. If the target drive letter is specified as an
exlamation mark, a user may choose the drive at the intallation time. The package file
format supports also some optional parameters, which can be used, for instance, to
specify language dependent files. The sis files are assembled using a command line tool
called makesis, which takes the corresponding pkg file as a parameter.

4 . G r a p h i c s
One of the most important features from a game developer’s point of view is the graphics
support of an OS. This chapter describes the architecture and components of the
Symbian OS’s graphics support and explains how they can be used. This chapter is
mainly based on references [Sy99] and [Ta00].

4.1 Graphics Architecture

The graphics support of Symbian OS is specified in the system’s graphics device
interface (GDI). The GDI defines drawing primitives and provides functions for drawing
text, divergent shapes and bitmaps. All the system’s graphic components depend
ultimately on the GDI as can be seen from Figure 4.1. The components will be discussed
in more detail in the following sections.

In Symbian OS drawing is performed using graphics contexts and graphics devices. The
GDI provides an abstract graphics context class, CGraphicsContext, which is a base
class for all graphics contexts. It defines drawing settings, like pen and brush style, and
provides methods for applications to use GDI’s graphics functionalities. The actual
drawing is done in a graphics device using the settings specified in a graphics context.
The base class for all device classes is CGraphicsDevice, which specifies the
attributes of a device the drawing is assigned to. Figure 4.2 illustrates the class
hierarchy of Symbian OS’s graphics contexts and graphics devices.

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 13

GDI

Font and Bitmap
Server

Window Server

CONE

Uikon

BITGDI

Application
Architecture GUI Application

Figure 4.1 The graphics components of Symbian OS

CGraphicsDevice

CFbsScreenDevice

CFbsDevice CWsScreenDevice

CGraphicsContext

CFbsBitGc

CFbsBitmapDevice

CBitmapDevice CBitmapContext

CWindowGc

Figure 4.2 The class hierarchy of graphics contexts and graphics devices.

The concrete context and device classes are implemented in BITGDI, which is a screen
and bitmap-specific graphics component. It is highly optimized with assembler code to
provide fast graphics drawing. The BITGDI implements rasterising and rendering of
images and it supports drawing in on- and off-screen bitmaps.

4.2 Font and Bitmap Server

The font and bitmap server's (FBS) main task is to manage fonts and bitmaps centrally,
and thus allow them to be shared between all threads in the system. This allows for
major memory savings as only one instance of particular data is maintained in memory.

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 14

When an application loads a font or a bitmap from the user data area, the FBS loads it to
a shared heap. The server maintains a reference counter for each data item on the heap
for keeping track of how many clients are using them. When the counter decreases to
zero, it can be safely destroyed. The heap can be directly accessed by the window
server, which eliminates time-consuming copying from the FBS's memory to the memory
of the window server. All ROM-based fonts and bitmaps are used directly from the ROM.

The FBS can be accessed using the RFbsSession class, which is created for
applications by the window server. The session class is used via the CFbsFont and
CFbsBitmap classes, which provide methods for managing fonts and bitmaps. When an
FBS owned data item is released by a client, the RFbsSession invokes a callback. This
enables the window server to execute its pending redraw requests, before the data is
actually deleted from the shared heap.

4.3 Window Server

The window server is used by all applications having a GUI. It provides an interface to
applications allowing them to operate without direct interactions with other applications.
The main task for the server is to manage system resources, like access to the screen
and keyboard. This is carried out using the Symbian OS's client-server architecture
which enables powerful control of shared resources. The client applications and the
server run in different processes, which excludes a direct access to each other's memory
address space. Thus the communication is handled using a message passing protocol.
The channel between a client and the server is called a session. After the session has
opened, a client may create a server request by using the session to send a message to
the server. This message consists of a 32 bit request type operating code and up to four
32 bit parameters. After the request completes, the server returns a 32 bit completion
code to the client. The server may also send and receive additional data using inter-
process communication services. More information about the client-server architecture
and the inter-process data exchange can be found from [Sy99].

Each client application communicates with the window server using a window server
session class: RWsSession. The primary task of the class is to mediate asynchronous
events to applications. Possible events are redraw events, priority key events and
standard events, including user input events. The window server determines which
applications and windows receive the events. For example, a keyboard event is only sent
to the application whose window group has the focus, and a redraw event is only sent to
the application's windows which are currently visible. Due to the higher process priority
of the window server, the events are handled with higher priority than applications’ other
requests.

4.3.1 Client Side Buffer

Applications’ requests for the window server are usually handled in the following way:

1. The window server’s client side processes the request.

2. A context switch from the client process to the server process occurs.

3. The window server processes the request,

4. A context switch back to the client process occurs.

This approach ensures that the requests are handled in the right sequence, and that the
requests have been processed when the control returns to the client side. However, a
context switch between two processes is a quite heavy procedure, that can create big
overhead for speed critical tasks. Even though, the window server has been
implemented as a fixed process, which has a fixed virtual address area and hence does
not need its address pointers to be updated, the context switch originates unfounded

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 15

speed losses. The clients, raising a request, also has to wait for a synchronous
response. For most of the requests, including drawing methods, this is unnecessary.
Because of these drawbacks, the asynchronous function calls are buffered in a client
side window server buffer. In the GT versions of the Symbian OS the buffer size has
been fixed to 640 bytes. Series 60 has grown the buffer to 6400 bytes, and added
support for applications to alter the buffer size. Larger buffer size is especially valuable
in applications where drawing consists of a number of drawing functions or large amount
of text. This can be seen as decreased flickering. The buffer size can be changed in the
ConstructL of the application's UI class:
void CMyAppUi::ConstructL()

 {

 BaseConstructL();

 // WS buffer size can be set after the BaseContructL is called

 RWsSession &ws = iEikonEnv->WsSession();

 TInt bufsize = 10000;

 ws.SetBufferSizeL(bufsize);

 // Continue normal app UI contruction

 iMyView = new (ELeave) CMyMainView;

 iMyView->ConstructL(ClientRect());

 AddToStackL(iMyView);

 }

When the buffer is flushed, all the methods are passed on to the window server in one
message and thus only two context switches are required. The flush occurs in the
following situations:

1. the buffer is full,

2. a synchronous method is called,

3. EventReady(), RedrawReady() or PriorityKeyReady() is called,

4. Flush() is called, or

5. a method which would overflow the buffer is called.

If a drawing is initiated in response to another event than a window server event, an
explicit Flush should be called. This is the case, for example, in games, where drawing
is usually initiated in response to a timer event.

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 16

4.3.2 Windows

Applications draw on the screen using windows, which are managed by the window
server. Figure 4.3 illustrates the relations between different window classes.

RWindow

RDrawableWindowRBlankWindow

RWindowGroup

RBackedUpWindow

RWindowTreeNode

RWindowBase

Figure 4.3 Window class hierarchy of the Symbian OS

All windows are inherited from the base class, RWindowTreeNode, which specifies their
z-order. Displayable windows are also inherited from the abstract base class,
RWindowBase. RWindow is a standard window, which can be drawn on and redraws of
which are performed by the application. RBackedUpWindow presents a window which
retains its content in a backup bitmap. When an area of the RBackedUpWindow gets
invalid, the window server redraws it automatically from the backup bitmap, without
requiring an application redraw. All classes, which are inherited from RWindowBase,
have a display mode which specifies their colour depth. The display mode is defined by
TDisplayMode enumeration and the mode is usually the same as the screen has.
RWindowGroup is a non-drawable window, which can not be seen on screen. The main
function of RWindowGroup is to handle the keyboard focus and to form a group for the
applications’ other windows. Typically applications have one window group which all
keyboard events are associated to.

The applications’ windows constitute a tree hierarchy where the upper most node is a
window group. Thus every drawable window has a parent and conceivable one or more
siblings and child windows. The z-order of the windows is specified by their ordinal
position, which is relative to their parent window and unique among their siblings. The
drawing order of windows can be changed by altering their ordinal position and an
application can be brought to the foreground by altering its window groups ordinal
position. The frontmost window and window group have the ordinal position of zero. The
window groups ordinal position is also relative to their priority. The priority is zero by
default and can be changed by applications to override the z-order specified by the
ordinal position. An application whose window group has a higher priority than other
applications’, can not be overlapped and can not lose the keyboard focus. The APIs to
access the ordinal position of a window are defined in RWindowTreeNode, and can be
found from the header file w32std.h.

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 17

4.3.3 Control Environment

The window server provides a relatively low-level interface, which should be
encapsulated in active objects due to the asynchronous services. Instead of every
application implementing the communication between the window server and the
application by themselves, the framework provides a control environment (CONE), which
encapsulates the services provided by the window server. CONE runs in each
application process and is used by all applications having a GUI. The base class of
CONE, CCoeEnv, is an active object whose RunL method is invoked when an event from
the window server is received. The main task of CONE is to evaluate these events, and
pass them on to the correct components to be handled. Furthermore, CONE provides a
cleanupstack, an active scheduler, and common utility functions for applications to use.
The active scheduler is also used by CONE itself, to manage the asynchronous services
from the window server. Keyboard events are defined to be handled with a higher priority
than redraw events, which makes the application more responsive for user inputs.

The screen is devided into windows by the window server. To devide the screen further,
the CONE provides an application side control, which is the Symbian OS's basic unit of
interaction. Each drawable window consists of one or more controls, which are inherited
from the abstract base class, CCoeControl. A control that reserves a whole window, is
called a window-owning control, and a control that covers only a part of a window, is a
non-window-owning control, also known as a lodger control. One reason why controls
were introduced, was the advantages they provide over windows. First of all, they are
more compact in memory usage than windows. They also reduce the need for the client-
server communication between an application and the window server, because only one
event is needed to redraw a component which has only one window - despite how many
controls it has. The redraw events are generated for windows and thus a component
which consists of more than one window, would need more than one redraw requests.
Also the logic to detect intersections, is simpler with controls.

The controls can be nested like windows. A control which contains one or more nested
controls, is called a compound control. The nested controls are called component
controls, and they can be compound controls themselves. All compound controls should
override two methods from the base class: CountComponentControls and
ComponentControl. These methods are used for indicating the control ownership to the
CONE. The compound controls also need to handle the distribution of key events to the
component controls.

The window server generates key events for the window group which currently has
keyboard focus. As there is normally only one window group per application, it can be
thought that events are passed to the application which has the focus. To pass the
events to correct controls, the CONE provides a control stack which manages the
channeling for the application. The control stack contains a list of controls which enquire
keyboard events. The events are passed to the controls in the stack according to their
priority. If several controls have the same priority, the events are passed on according to
their position in the stack.

CONE can be accessed from the CCoeControl and CCoeAppUi derived classes using
the iCoeEnv class member. The classes also provide the ControlEnv method, which
can be used if access to those classes is available. If neither of these means can be
used, there is a static function CCoeEnv::Static(), which returns a pointer to
CCoeEnv. However, the latter function should be used only if no other method is
accessible, due to the use of thread-local static (TLS) which is considerably slow.

4.3.4 UI Library

The CONE itself does not provided any concrete UI components, which are provided by
the UI libraries. Series 60 provides a UI library, Avkon, that has been extended and
modified from the standard Symbian OS UI library, Uikon. Avkon provides various UI

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 18

components which have been especially designed for the screen size of Series 60. The
components have also been designed to be easily used with an ITU-T keypad.

Status pane

Main pane

Control pane

Figure 4.4 The Series 60 UI has been divided into three panes.

Avkon UI components have been divided into three categories according to their location
on the screen: status pane, main pane and control pane components. Different panes
are illustrated in the Figure 4.4. The status pane consists of several sub-panes: signal
pane, context pane, title pane, battery pane, uni indicator pane and navi pane. Each
application owns one instance of the status pane, which is automatically created on an
application start up. The signal pane, battery pane, and the uni indicator pane are owned
by a system side server, and they cannot be altered by applications like the rest of the
sub-panes. The main pane is the area where application data is normally displayed. The
Avkon UI library provides various components, and applications may implement they
own concrete controls for the main pane. The components provided by the Avkon UI
library include: list boxes, grids, form and different kinds of pop-up windows, such as
queries and options menu. The control pane consists of softkeys and a scrolling
indicator.

Even though the size of the main pane is adequate for normal applications, most of the
games need as large an area as possible for their graphics. Larger game view enhances
playability and clarifies game graphics. To extend a game view to cover the whole
screen, games can call the CCoeControl::SetExtentToWholeScreen method for a
control in the main pane. The status pane and the control pane can be hidden by making
them invisible. This can be implemented by calling the CCoeControl::MakeVisible
method with EFalse as the parameter.

4.4 Bitmaps

Symbian OS can be considered as a bitmap-oriented OS. Bitmaps are used by all
applications, especially games. Even though the graphics, which are drawn using
primitive drawing methods, such as DrawLine and DrawEllipse, are much more
compact, bitmaps offer more efficient on-screen drawing and more detailed outcome.

Symbian OS provides its own bitmap file format, MBM, which is a multi-bitmap file.
MBMs are created from Windows bitmaps using a bitmap converting tool bmconv. As a
MBM file may contain more than one bitmap, the bmconv creates also a bitmap header
file, MBG file, which provides an enumeration of bitmap IDs for accessing the bitmaps.
When a bitmap is loaded from a MBM file, the corresponding header file should be
included and the correct ID should be given as a parameter for a bitmap loading method.
Bmconv can be used from a command line, or the bitmaps can be defined in a project
file:

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 19

START BITMAP [target-file]
HEADER
TARGETPATH [targetpath]
SOURCEPATH [sourcepath]
SOURCE [colour-depth] [source-bitmap]
END

Bmconv can create two different types of Symbian OS bitmaps, ROM and non-ROM
bitmaps. The non-ROM bitmaps, also known as file store bitmaps, are compressed using
run-length encoding (RLE) and they need to be loaded in RAM before they can be used.
To enhance drawing speed, the ROM bitmaps are not compressed, and thus they can be
used directly from the ROM. By default bmconv creates file store bitmaps.

Symbian OS provides support for transparent bitmaps using masks. Masks are black and
white bitmaps, where white colour describes the transparent area - only the pixels which
are black in the mask are drawn from the original bitmap. Because masks need only two
colours, they should be converted into 1 bit bitmaps to save memory. Figure 4.5
illustrates an example of the mask usage.

Figure 4.5 Example of using a mask to draw a transparent bitmap.

For creating masks, Series 60 provides a command line tool called makemask, which
creates 1 bit masks from 8 bit bitmaps. Makemask uses the last palette index in the
original bitmap as a transparent colour.

Even though Symbian OS provides some APIs to set palettes for bitmaps, they are not
implemented. The APIs were supplemented before any support for colour displays was
implemented. When the support was added, Symbian OS decided only to support
Netscape colour cube set for its palettes. Series 60 has changed the functionality by
providing its own fixed palette for 8 bit bitmaps. Bmvconv is altered to convert 8 bit
bitmaps to use the Series 60 palette, which provides 216 colours and 10 grey shades.
This prevents 3rd party developers to use their own palettes, which most often degrades
the outcome of a bitmap on the screen. Especially the bitmaps which need numerous
shades of a colour, for example to create a gradient, should be converted into at least 12
bit bitmaps. The Series 60 palette is defined in thirdpartybitmap.pal palette file.

Bitmaps are managed with a CFbsBitmap class, which provides methods for creating
and loading bitmaps, and defines their colour depth and size. It uses the RFbsSession
class to access the FBS and thus hides the session class from the user. The
CFbsBitmap also provides methods to directly access the image data of the bitmap. A
pointer to the data address can be obtained with the DataAddress method, and a
specific scan line can be accessed using the GetScanLine method.

Bitmaps are devided into two different heaps in the FBS, according to their sizes. The
bitmaps which are larger than 4 kB are stored in a different heap than the smaller
bitmaps. The partition was implemented to prevent fragmentation, when large bitmaps
are created and destroyed frequently - the heap for large bitmaps is automatically
defragmented. Due to the defragmentation, the heap needs to be locked when a large
bitmap’s content is manipulated. To prevent simultaneous defragmentation and
manipulation, the TBitmapUtil class provides operations to lock and unlock the heap.
The locking of the heap needs to be done only when a bitmap’s image data is edited

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 20

directly – drawing and copying methods provide locking automatically. The following
example locks the FBS heap if the bitmap is a large bitmap and fills in the bitmap data
with colours from zero upwards. It assumes that the bitmap uses 16 bits for each pixel.
This holds true for 12 and 16 bit bitmaps.

// Lock the heap if a large bitmap
if (bitmap->IsLargeBitmap())
 {
 TBitmapUtil bitmapUtil(bitmap);
 bitmapUtil.Begin(TPoint(0,0));
 }
// Edit bitmap
TSize bitmapSize = bitmap->SizeInPixels();
TUint16* bitmapData = (TUint16*)bitmap->DataAddress();
TUint16 colour = 0;
for (TInt y = 0; y < bitmapSize.iHeight; y++);
 {
 for (TInt x = 0; x < bitmapSize.iWidth; x++)
 {
 *bitmapData++ = colour++;
 }
 }
// Release the heap
if (bitmap->IsLargeBitmap())
 {

 BitmapUtil.End();
 }

To make the drawing of bitmaps even faster than with CFbsBitmaps, the window server
provides its own bitmap class, CWsBitmap. It eliminates additional context switches
between the window server and the FBS by taking the ownership of a bitmap handle.
The CWsBitmap is inherited from the CFbsBitmap, and it implements all the same
methods. CWsBitmap should be used instead of its base class, when drawing speed is
crucial.

4.5 Drawing

Applications draw on the screen using windows. This is done using the
CWsScreenDevice graphics device, which is associated to the CWindowGc graphics
context. CONE provides an instance of CWindowGc for applications as the standard
graphics context for drawing controls. It is created by CCoeEnv and can be accessed
using the CCoeControls::SystemGc method. The drawing methods of CWindowGc
are buffered on the client side window server buffer.

Drawing can be either a system- or an application-initiated transaction. System–initiated
drawing is triggered when a window is created, or when the contents of the window
become invalid due to the overlapping of windows. For the latter case, the window server
maintains an invalid region for every window. If a window needs to be redrawn, the
window server sends a redraw event to the application which owns the invalidated
window. CONE then uses the invalid region to establish the controls which need to be
redrawn, and calls their Draw method. This is why every control should implement the
Draw method to redraw themselves. The default implementation of the Draw in
CCoeControl leaves the control blank. The following code shows an example of a Draw
method:

void CExampleControl::Draw(const TRect& /*aRect*/) const

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 21

 {

 // Get the system graphics context

 CWindowGc& gc = SystemGc();

 // Set drawing settings

 gc.SetBrushStyle(CGraphicsContext::ESolidBrush);

 gc.SetBrushColor(KRgbRed);

 // Draw

 gc.DrawLine(TPoint(10,10), TPoint(30,10));

 }

The TRect parameter of the Draw method indicates the invalid region that needs to be
redrawn. Most of the controls, however, ignore the rectangle due to the fact that it is
much simpler and not much slower to draw the whole control again.

Application-initiated drawing is needed when an application’s data or state changes, and
the screen needs to be updated. CCoeControl provides the non-virtual DrawNow
method, which indicates the window server that the control is about to draw, calls
control’s Draw method, and finally indicates the window server that the control has
finished drawing. CCoeControl also provides DrawDeferred method, which
invalidates the window and thus originates a new redraw event from the window server.
The difference between these two methods is, that DrawNow enforces the control to
redraw itself immediately, whereas DrawDeferred causes a redraw event, which will be
handled with a lower priority. Because the CONE handles user input events with a higher
priority than redraw events, any pending user input events are handled first. These
methods, however, are gratuitously heavy operations because they redraw the whole
control again. Usually only the changed parts need to be redrawn, which can be done
with the following code:

void CExampleControl::DrawBitmap(const TPoint& aPoint,

 const CFbsBitmap* aBitmap)
 {
 // Get the system graphics context and control rectangle
 CWindowGc& gc = SystemGc();

// Establish drawing rectangle
 TRect rect = TRect(aPoint,
 TSize(aBitmap.iWidth, aBitmap.iHeight));
 // Activate graphics context
 ActivateGc();
 // Invalidate window
 Window().Invalidate(rect);
 Window().BeginRedraw(rect);
 // Draw a bitmap
 gc.DrawBitmap(aPoint, aBitmap);
 Window().EndRedraw();
 // Deactivate graphics context
 DeactivateGc();
 }

The example code above draws a CFbsBitmap to the place defined by the aPoint
parameter. Notable in the example is that the graphics context needs to be activated
before it can be used, and deactivated after the drawing has ended. Also the window
server needs to get the information that a client is about to start redrawing. This is done
with the BeginRedraw method. The Invalidate method is needed, because the

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 22

window server only allows an application to draw in an invalid area. In a system-initiated
redraw, the CONE activates the graphics context and calls the BeginRedraw method
for an application. The Invalidate method does not have to be called either because
the window has already been invalidated – that is why the system initiated the redraw in
the first place.

4.5.1 Sprites

A sprite is a masked bitmap, which can be moved without applications having to redraw
the underlying window. Hence the games that do not need to update their background
frequently can benefit from the use of sprites. This applies, for example, to PacMan like
games, where some animated figures are moved on top of a non-scrollable and constant
background. The redraw is performed by the window server, which makes it a high
priority task which is implausibly pre-empted. This allows for smooth animation and
movement of a sprite. Symbian OS provides two different types of sprites: pointers and
animated bitmaps. Figure 4.6 illustrates the hierarchy of sprite classes.

RWsSpriteBase

RWsSprite RWsPointerCursor

TSpriteMember
n

Figure 4.6 The hierarchy of sprite classes

RWsSpriteBase is an abstract base class for sprites. It owns one or more
TSpriteMembers, which contain the bitmap data of the sprite. By specifying multiple
members with different bitmaps, the sprite can be animated. TSpriteMember also
defines the mask of the bitmap, the location of the bitmap within the sprite and the time
interval for which the bitmap is displayed. RWsSprite is a concrete class for sprites. In
addition to constructors, it provides only one method, SetPosition, which can be used
to move the sprite. The following code demonstrates an example of creating a sprite
using bitmaps loaded from a MBM file.

RWsSprite sprite = RWsSprite(iEikonEnv->WsSession());
User::LeaveIfError(sprite.Construct(Window(), TPoint(0,0), 0);
for (TInt i=0; i < 8; i += 2)
 {
 iMember[i/2].iBitmap = new (ELeave) CFbsBitmap();
 User::LeaveIfError(member.iBitmap->Load(KBitmapFile,

i, EFalse));
 iMember[i/2].iBitmap = new (ELeave) CFbsBitmap();
 User::LeaveIfError(member.iMaskBitmap->Load(KBitmapFile,

i+1, EFalse)
);

 iMember[i/2].iInvertMask = EFalse;
 iMember[i/2].iOffset = TPoint(0,0);
 iMember[i/2].iInterval = TTimeIntervalMicrosecond32(100000);
 User::LeaveIfError(sprite.AppendMember(iMember[i/2]));
 }

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 23

After the sprite members have been updated and appended to RWsSprite class, the
sprite can be activated by calling RWsSpriteBase::Activate. After this the sprite is
displayed on the screen and it is ready to be moved. The content of the sprite can be
changed using the RWsSpriteBase:UpdateMember method. Because CFbsBitmaps
are also accessible to the window server, only the bitmap handles of a sprite are sent to
the window server. This makes updating of a sprite’s bitmaps considerably fast. When a
sprite is no longer needed, the window server resources need to be released by calling
RWsSpriteBase::Close. This does not free the client side member data, which needs
to be deleted. RWsPointerCursor is a class for applications to create cursors. Its use
is similar to the RWsSprite class, with the exception that after a pointer has been
activated, it will not be shown on the screen until
RWindowTreeNote::SetPointerCursor is called.

4.5.2 Double buffering

If a game’s graphics consists of multiple moving objects which need to be updated
frequently, the window server’s client side buffer may be filled up and thus be flushed
before all objects have been updated. This may appear as flickering for the user.
Flickering or other undesirable effects may also occur if a view, that is built up over a
long period of time, is drawn while it is still been updated. A solution for these problems
is to use double buffering, where graphics are first drawn in an off-screen bitmap, which
is then drawn on the screen as one single window server operation. Especially games
which redraw their screens several times in a second, can benefit prominently from the
use of an off-screen bitmap.

An off-screen bitmap can be created using bitmapped graphics context and graphics
device classes; CFbsBitGc and CFbsBitmapDevice. They are created and used
similarly with other context and device classes. To achieve additional performance, the
bitmap itself should be a CWsBitmap bitmap. After the off-screen bitmap has been
updated, it can be drawn in the window using normal window server’s drawing methods.

When an application draws a bitmap in a window, it gets converted into the same display
mode than the window. This is a time consuming operation that can slow down the
drawing substantially. Hence the games which, for example, use bitmaps for their
animations, should do the conversion before the animation is started. The conversion
can be carried out by using an off-screen bitmap as the following example method
demonstrates:
CFbsBitmap* CExampleControl::LoadAndConvertBitmapL(

Const TDesC& aFileName, TInt
aBitmapId)

 {
 // Load the bitmap
 CFbsBitmap* originalBitmap = new (ELeave) CFbsBitmap();
 CleanupStack::PushL(originalBitmap);
 User::LeaveIfError(originalBitmap->Load(aFileName,

 aBitmapId, EFalse)
);

 // Create a new bitmap, graphics device and context
 CFbsBitmap* newBitmap = new (ELeave) CFbsBitmap();
 CleanupStack::PushL(newBitmap);
 newBitmap->Create(originalBitmap->SizeInPixels(),

 Window()->DisplayMode());
 CFbsBitmapDevice* graphicsDevice = CFbsBitmapDevice::NewL(
 bitmapConverted);
 CleanupStack::PushL(graphicsDevice);
 CFbsBitGc* graphicsContext;
 User::LeaveIfError(graphicsDevice->CreateContext(

 graphicsContext));
 TPoint zero(0,0);

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 24

 // Blit the loaded bitmap to the new bitmap
 bitmapContext->BitBlt(zero, originalBitmap);
 CleanupStack::Pop(3);
 delete bitmapContext;
 delete bitmapDevice;
 delete originalBitmap;
 return newBitmap;
 }

The example method gets a filename and a bitmap ID as parameters, and loads the
corresponding bitmap from a MBM file. To convert the bitmap to the window’s display
mode, a new bitmap is created and the loaded bitmap is blitted into it. If a game has
multiple bitmaps which should be converted, the conversion should be done at the
initialisation stage of a game or a level. Hence the operation can be hidden from a user.

4.6 Direct draw

Drawing on the screen, using the window server, requires a context switch, which
decelerates drawing speed. To bypass the window server, and thus to get rid of the
context switch, a game can access the screen directly. This is called direct drawing. In
Symbian OS there are two ways to draw directly on the screen.

CFbsScreenDevice is a graphics device that can be addressed to a screen driver,
SCDV.DLL. After creating a CFbsBitGc graphics context for it, it can be used like any
other graphics device. However, the drawing is done directly on the screen without using
the window server. The other way to draw directly on the screen, is to enquire screen
memory address from the system. This can be done using the UserSrv class:
 TPckgBuf<TScreenInfoV01> infoPckg;

 TScreenInfoV01& screenInfo = infoPckg();

 UserSvr::ScreenInfo(infoPckg);

 TUint16* screenMemory = screenInfo.iScreenAddress + 16;

The screen memory has a 32 byte header, which needs to be taken into account when
writing to the memory.

Even though writing directly on the screen memory is slightly faster than the
CFbsScreenDevice, the functionality may differ depending on the hardware and
screen’s device drivers. In some Symbian OS based terminals the screen is
automatically updated from the screen memory when the memory is changed, whereas
in other terminals the drawing needs to be explicitly activated. The screen memory
address is also valid only on target hardware, and thus the drawing code needs to be
devided into hardware and emulator dependent parts. In the emulator environment the
drawing can be done to an off-screen bitmap, instead of the screen memory, which is
then blitted to the screen using normal window server drawing methods. The
environment can be detected by using __WINS__ definition.
 #ifdef __WINS__ // Emulator environment

 // Draw to an off-screen bitmap

 #else // Hardware environment

 // Draw directly to the screen memory

 #endif

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 25

A common problem for both of the direct draw methods, is that the window server is not
aware of the drawing, and thus it can not notify an application, if another window or
window group is brought forward. Even though applications get an event when they
loose focus, they can not stop the direct drawing fast enough, and the screen will most
probably get fouled. This may happen, for instance, when an incoming call arrives, and
the telephony application is brought forward.

The late versions of the GT version 6.1, which Series 60 is based on provide an API for
direct draw that will solve the problems referred to above. The API consists of two
classes: a mixin class MDirectScreenAccess, which provides call back methods for
an application, and a concrete class CDirectScreenAccess, which handles
communication to the window server. The following code illustrates how an instance of
CDirectScreenAccess is constructed, and how the direct draw support is activated.

iDrawer = CDirectScreenAccess::NewL(

 iEikonEnv->WsSession(),

 *iEikonEnv->ScreenDevice(),

 Window(),

 *this);

iEikonEnv->WsSession().Flush();

iDrawer->StartL();

iDrawer->ScreenDevice()->SetAutoUpdate(ETrue);

The CDirectScreenAccess’s NewL method takes a window server session, CONE’s
graphics device, application’s window, and a pointer to a MDirectedScreenAccess
derived class as parameters. Before the CDirectScreenAccess::StartL is called to
activate the direct draw support, the client side window server buffer should be flushed.
To enable automatic updating of the screen, screen device’s SetAutoUpdate method
needs be called with ETrue as a parameter. When the direct draw support is activated,
the CDirectScreenAccess creates a CFbsBitGc graphics context, which can be used
by applications to draw on the screen:

iDrawer->Gc()->BitBlt(TPoint(0,0), iBitmap);

When another window is brought on top of the application’s window, the
CDirectScreenAccess gets an event from the window server to abort drawing. The
CDirectScreenAccess then calls MDirectScreenAccess derived class’ AbortNow
method, which has to be overridden by an application to abort the drawing. To prevent
the screen to become fouled, the window server does not draw the overlapping window
until the abort drawing event is handled.

5 . C o m m u n i c a t i o n s
In this chapter the communications components of the Symbian OS are discussed. The
communication technologies which are more important in a game developer’s
perspective have been emphasized. The last section introduces a support for games to
receive additional game data. [Ta00], [Di02], [No02a] and [Sy99] have been used as
references.

5.1 Communications architecture

The mobile nature of smart phones and the development speed of communication
technologies set demands for their communications modules. Smart phones are used in

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 26

various places where available communication services may vary significantly. The
existing services and technologies are continuously evolving and new technologies are
introduced expeditiously. These facts create demands for flexibility and expandability for
smart phones’ communication modules, and hence the Symbian OS’s communications
architecture was designed with these values in mind. It consists of several smaller
modules and supports plug-in modules which can be loaded at run-time. Also the
communication settings can be changed without a reboot.

The version 6.1 of the Symbian OS supports multiple communication technologies, that
are introduced in Figure 5.1. The available technologies of a particular smart phone
depend on its hardware solutions. Nokia 7650 or Nokia 3650 (added by Nokia), for
instance, does not have a serial cable, but supports serial communications via Bluetooth
technologies.

Figure 5.1 Series 60 communication technologies [No01b]

The communications architecture of the Symbian OS is based on top of three
communication servers: ETEL, C32 and ESOCK. The communication services, provided
by the servers, are asynchronous operations and thus they need to be encapsulated into
active objects. Typically a client application creates three different active objects: one for
sending data, one for receiving data and one for application side communications
engine. The dependencies of communication modules are represented in Figure 5.2.

ESOCK
Sockets Server

Infrared
Protocols

Dial-up Support

Internet
Protocols

Comms
Database

ETEL
Telephony

Server

FAX Server
C32

Serial Comms
Server

Web Support

Messaging
Support

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 27

Figure 5.2 Symbian OS’s communications components [Ta00].

ETEL is a telephony server which provides an interface for applications to access
various telephony hardware and services, such as GSM handsets, analog modems and
fax services. The server uses dynamically loadable plug-in modules, telephony server
modules (TSYs), which convert the hardware specific information to application
intelligible format. The client side API of the server is defined in etel.h header file, and it
mainly consists of RTelServer, RPhone, RLine and RCall classes.

5.2 Serial Communications Server

Serial communications server (C32) provides a serial port API for its clients. The server
uses communication server plug-in modules (CSYs), which handle the actual
communication protocols. Symbian OS provides multiple CSY modules, such as the
ones for handling RS232 and infrared serial communications. Custom CSY modules can
also be developed by application developers using serial protocol module API, which is
defined in cs_port.h header file.

The serial communications server is used similarly regardless of the used CSY module.
First at an initialisation stage a client loads the needed drivers, opens the server and
loads the CSY module. After the actual device has been opened and configured, the
server is ready to send and receive data. Finally, all resources need to be released. The
client API of serial communications server is defined in the c32comm.h header file, and it
mainly consist of RComm and RCommServ classes. The following code shows an example
of an initialisation stage for infrared serial communication.
 // Load device drivers

 TInt err = User::LoadPhysicalDevice(_L(“EUART1”));

 if (err != KErrNone && err != KErrAlreadyExists)

 User::Leave(err);

 err = User::LoadLogicalDevice(_L(“ECOMM”));

 if (err != KErrNone && err != KErrAlreadyExists)

 User::Leave(err);

 // Start serial communications server of type RCommServ

 User::LeaveIfError(iServer.Connect());

 // Load CSY module for IrComm

 User::LeaveIfError(iServer.LoadCommModule(_L(“IRCOMM”)));

 // Open port of type RComm

 User::LeaveIfError(iPort.Open(iServer, _L(“"IRCOMM::0"”),

 ECommExclusive));

The example code above can be changed to use RS232 by loading the ECUART CSY
module, instead of the IRCOMM, and by opening COMM:0 port instead of the IRCOMM:0.
The ECommExclusive enumeration in RComm::Open prevents other RComm clients from
using the port.

Writing to and reading from a port can be done with divergent RComm::Read and
RComm:Write methods, which all take a TRequestStatus and a descriptor as
parameters. When a transfer has been completed, an event is generated for the active
object, whose TRequestStatus was passed to the transfer method. This causes the

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 28

active object’s RunL to be called. The descriptor parameter is always an 8-bit descriptor,
which in consequence needs to be converted into Unicode, if the transferred data were
text. The data transfer methods may also take additional parameters, which specify
maximum length or time characteristics for the data transfer.

The serial communications server provides an easy way for applications to use infrared
for their communications. However, the main reason for the IrComm support is to make
conversion of legacy applications, that use a serial port for their communications, easier.
The downside of the IrComm, compared to other IrDA protocols, is that it does not
provide all IrDA services. For instance, the maximum data transfer speed with the
IrComm is only 9600 bits per second, which is not fast enough for example for multi
terminal games, which transfer large amount of data.

5.3 Sockets Server

The sockets server (ESOCK) provides an interface to communications protocols using
sockets. The client API is generic for all protocols and the protocol-specific behaviour is
specified through utility types and constants. The sockets server uses protocol modules,
such as TCP/IP, IrDA and Bluetooth, that are loaded dynamically at run-time. One
protocol module may contain more than one protocol. For example the IrDA module
contains raw IrMUX, IrTinyTP, IrLAP, IrLMP and IrObex protocols. Common protocol
modules can be develop by application developers, correspondingly to TSY and CSY
modules.

The main classes in the client API of the sockets server are RSocketServ, and
RSocket. Similarities to RCommServ and RComm can be seen. The RSocketServ
handles a session for the server and provides information about available protocols, but
doesn’t provide any data transfer services - they are provided by the socket class
RSocket. As the client API is same for all protocols, the properties and semantics of an
individual protocol are differentiated with the TProtocolDesc structure. The
RSocketServer::GetProtocolInfo method can be used to access these
characteristics of the currently loaded protocol. The sockets server needs at least two
different sockets to function comprehensively. One is used for listening incoming
connection requests, and the other is needed for establishing a connection and
transferring data. The client API of the sockets server is defined in es_sock.h header file.

One of the sockets server’s most engrossing protocols from the game developers’ point
of view is Bluetooth. It provides a relatively fast, short range solution, that is free to use,
and thus very applicable for games. Bluetooth’s advantage over infrared is its longer
operating radius and its ability to function without any visual contact between terminals.

Bluetooth consists of a protocol stack, which is illustrated in Figure 5.3. Symbian OS
version 6.1 supports Bluetooth version 1.0, and provides applications with full access to
RFCOMM, L2CAP and SDP protocols. The RFCOMM protocol simulates serial
communication, and thus facilitates conversion of legacy applications to use Bluetooth.
Common choice for applications is to use the logical link control and adaption protocol
(L2CAP), which provides more powerful functions for applications to control the
Bluetooth link. The service discovery protocol (SDP) allows applications to make
enquiries for services and service providers. Usually when a new connections is created,
the SDP is used to search the desired terminal, and to set up the connection settings.
Symbian OS also provides a complete UI component to search the Bluetooth terminals
available. It uses Symbian OS’s notifier framework, which creates a dialog type
component on top of applications’ windows and shows available terminals as a list. The
Bluetooh APIs, like other Symbian OS’s communication APIs, are documented with
example codes in [No02a].

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 29

Figure 5.3 Bluetooth stack. [No02a]

5.4 Game Data Receiving

To support games to receive additional game data, Series 60 enables 3rd party games to
register their data file formats in the OS, by using Multipurpose Internet Mail Extensions,
MIME types. The MIME types are used by communication applications, like the WML
browser and the messaging application, to find out the path where a file, having a
specific type, should be saved. The files can contain, for example, new levels, weapons
or graphics for a game.

In Series 60 the MIME types for games are of the format: application/x-
NokiaGameData-<APPLICATION-ID>, where <APPLICATION-ID> is the game’s
Symbian OS application UID’s last eight digits. The MIME types are declared in Symbian
OS application information files, aif files:

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 30

RESOURCE AIF_DATA
 {
 app_uid=0x12345678; // Application UID
 datatype_list =

 {
 DATATYPE
 {
 priority = EDataTypePriorityHigh;
 type = “application/x-NokiaGame-Data-12345678”;
 }
 };
 }

The priority in the DATATYPE structure specifies how well the current application
handles the data format. EDataTypePriorityHigh should be used for data formats
which can not be handled by other applications.

The target path for the received data file is specified in an ini file, named as
<APPLICATION-ID>.ini. The file needs to be in Unicode format, and it contains
SDDataDir=<GAME-PATH>, where <GAME-PATH> is the path for the received file. The
path is relative to the default game data directory, c:\nokia\games. When a game is
installed, the ini file needs to be copied to \System\SharedData directory, which can be
easily done by specifying the paths in a game’s pkg file.

Series 60 specifies a standard header structure for game data files, that needs to be
adhered to MIME types to work. The structure of the header format is illustrated in
Figure 5.4. The Data type field can be used to specify the type of a file that is internal for
the game. The Name string is an Unicode string that can be used to specify a user
visible text for selecting the data item in a menu. The Data ID and the Data version are
unique numbers which specify the type and the version of the file’s data. The NGDX field
must contain the ASCII string “NGDX”.

Figure 5.4 Standard header for game data files [No02b]

Version 1.0 | August 5, 2003

Programming Games for Series 60 | 31

R e f e r e n c e s

[Di02] Symbian OS Communication Programming, Course material of Digia,
Digia Ltd., 2002. 268 pp.

[No01a] Coding idioms for Symbian OS, ver.1.0, Nokia, 2001. 26 pp.

[No01b] Designing Applications for Smartphones - Series 60 Platform Overview,
Nokia, 2001. 14 pp.

[No02a] Nokia Series 60 Software Development Kit for Symbian OS, Version 0.9,
CD-ROM, Nokia Ltd., 2002 (part of this Development Kit)

[No02b] Support Guide for Developers on Receiving Game Data, ver.1.0, Nokia
Ltd., 2002. 4 pp.

[Sy02] Symbian OS Version 6.x Detailed Operating System Overview,
http://www.symbian.com/technology/symbos-v6x-det.html, Symbian Ltd, (6.3.2002)

[Sy99] EPOC Release 5 C++ Software Development Kit, CD-ROM, Symbian Ltd.,1999.

[Ta00] Tasker, M. et al, Professional Symbian Programming. Mobile Solutions on the
EPOC Platform. Birmingham, UK: Wrox Press Ltd., 2000. 1031 pp.

Version 1.0 | August 5, 2003

	Introduction
	Symbian Operating System
	Series 60 Based Smart Phone as a Device for Games
	Requirements
	Restrictions
	Memory
	Timers
	Key event Handling
	Sounds
	Installation

	Graphics
	Graphics Architecture
	Font and Bitmap Server
	Window Server
	Client Side Buffer
	Windows
	Control Environment
	UI Library

	Bitmaps
	Drawing
	Sprites
	Double buffering

	Direct draw

	Communications
	Communications architecture
	Serial Communications Server
	Sockets Server
	Game Data Receiving

	References

