

C++ Programming for Games

Module I

e-Institute Publishing, Inc.

 1

©Copyright 2004 e-Institute, Inc. All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system without prior written permission from e-Institute Inc.,
except for the inclusion of brief quotations in a review.

Editor: Susan Nguyen
Cover Design: Adam Hoult

E-INSTITUTE PUBLISHING INC
www.gameinstitute.com

Frank Luna, Game Institute Faculty, C++ Programming for Games

All brand names and product names mentioned in this book are trademarks or service marks of their
respective companies. Any omission or misuse of any kind of service marks or trademarks should not be
regarded as intent to infringe on the property of others. The publisher recognizes and respects all marks
used by companies, manufacturers, and developers as a means to distinguish their products.

E-INSTITUTE PUBLISHING titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Sales Department at
sales@gameinstitute.com

 2

Table of Contents

CHAPTER 1: INTRODUCING C++...9

INTRODUCTION ..10
CHAPTER OBJECTIVES ...10
1.1 GETTING STARTED—YOUR FIRST C++ PROGRAM ..10

1.1.1 Creating the Project..10
1.1.2 Adding A .CPP File to the Project ..12
1.1.3 Writing the Code ...13
1.1.4 Compiling, Linking, and Executing...14

1.2 THE “PRINT STRING” PROGRAM EXPLAINED ...16
1.2.1 Comments..16
1.2.2 White Space...17
1.2.2 Include Directives ...18
1.2.3 Namespaces...18
1.2.4 The main{...} Function...20
1.2.5 std::string ..20
1.2.6 Input and Output with std::cin and std::cout ..20

1.3 VARIABLES ..21
1.3.1 Variable Declarations and Definitions ...24
1.3.2 Variable Names...25
1.3.3 The sizeof Operator ...25
1.3.4 The unsigned Keyword ...26
1.3.5 Literal Assignments...27
1.3.6 Type Conversions ..27
1.3.7 Typedefs ..30
1.3.8 Const Variables...30
1.3.9 Macros ..30

1.4 ARITHMETIC OPERATIONS ...31
1.4.1 Unary Arithmetic Operations..32
1.4.2 Binary Arithmetic Operations ...33
1.4.3 The Modulus Operator..34
1.4.4 Compound Arithmetic Operations ..35
1.4.5 Operator Precedence ..36

1.5 SUMMARY..37
1.6 EXERCISES ...38

1.6.1 Arithmetic Operators ..38
1.6.2 Cin/Cout ..38
1.6.3 Cube ..38
1.6.4 Area/Circumference ..39
1.6.5 Average ...39
1.6.6 Bug Fixing...39

CHAPTER 2: LOGIC, CONDITIONALS, LOOPS AND ARRAYS ...41
INTRODUCTION ..41
CHAPTER OBJECTIVES: ..42
2.1 THE RELATIONAL OPERATORS ..42
2.2 THE LOGICAL OPERATORS...44
2.3 CONDITIONAL STATEMENTS: IF, IF…ELSE ..48

2.3.1 The If Statement ..49
2.3.2 The Else Clause...50
2.3.3 Nested If…Else Statements..51
2.3.4 The Switch Statement ..53
2.3.5 The Ternary Operator ...55

 3

2.4 REPETITION..56
2.4.1 The for-loop...56
2.4.2 The while Loop...58
2.4.3 The do…while Loop..60
2.4.4 Nesting Loops..61
2.4.5 Break and Continue Keywords..62

2.5 ARRAYS ...63
2.5.1 Array Initialization ..64
2.5.2 Iterating Over an Array...64
2.5.3 Multidimensional Arrays ...65

2.6 SUMMARY..67
2.7 EXERCISES ...68

2.7.1 Logical Operator Evaluation ..68
2.7.2 Navigator...68
2.7.3 Average..69
2.7.4 Factorial..69
2.7.5 Matrix Addition ...70
2.7.6 ASCII ...71
2.7.7 Linear Search ..71
2.7.8 Selection Sort...73

CHAPTER 3: FUNCTIONS ...75
INTRODUCTION ..75
3.1 USER DEFINED FUNCTIONS ..78

3.1.2 Functions with One Parameter ...80
3.1.3 Functions with Several Parameters...82

3.2 VARIABLE SCOPE ...83
3.2.1 Example 1..83
3.2.2 Example 2..85
3.2.3 Example 3..86

3.3 MATH LIBRARY FUNCTIONS ..87
3.4 RANDOM NUMBER LIBRARY FUNCTIONS...88

3.4.1 Specifying the Range ...91
3.5 FUNCTION OVERLOADING..92

3.5.1 Default Parameters ...94
3.6 SUMMARY..96
3.7 EXERCISES ...97

3.7.1 Factorial..97
3.7.2 ToUpper; ToLower..97
3.7.3 3D Distance...98
3.7.4 Arc Tangent 2 ..99
3.7.5 Calculator Program ..100
3.7.6 Slot Machine..101
3.7.7 Binary Search ..102
3.7.8 Bubble Sort ..103

CHAPTER 4: REFERENCES AND POINTERS...107
INTRODUCTION ..108
CHAPTER OBJECTIVES ...108
4.1 REFERENCES ..108

4.1.1 Constant References ..110
4.2 POINTERS ...111

4.2.1 Computer Memory Primer ..111
4.4.2 Pointer Initialization ...112
4.4.3 Dereferencing..114

4.3 ARRAYS REVISITED..117

 4

4.3.1 Pointer to the Beginning of an Array ..117
4.3.2 Pointer Arithmetic...118
4.3.1 Passing Arrays into Functions ..120

4.4 RETURNING MULTIPLE RETURN VALUES ..122
4.4.1 Returning Multiple Return Values with Pointers ..122
4.4.2 Returning Multiple Return Values with References ..124

4.5 DYNAMIC MEMORY...125
4.5.1 Allocating Memory..126
4.5.2 Deleting Memory...127
4.5.3 Memory Leaks ...127
4.5.4 Sample Program ...128

4.6 STD::VECTOR..132
4.7 FUNCTION POINTERS..135

4.7.1 The Uses of Function Pointers ..136
4.7.2 Function Pointer Syntax..137

4.8 SUMMARY..138
4.9 EXERCISES ...139

4.9.1 Essay Questions ..139
4.9.2 Dice Function..140
4.9.3 Array Fill...140
4.9.4 Quadratic Equation...141

CHAPTER 5: CLASSES AND OBJECT ORIENTED PROGRAMMING...144
INTRODUCTION ..144
CHAPTER OBJECTIVES ...145
5.1 OBJECT ORIENTED PROGRAMMING CONCEPTS ..145
5.2 CLASSES ..146

5.2.1 Syntax..146
5.2.2 Class Access: The Dot Operator...148
5.2.3 Header Files; Class Definitions; Class Implementations ...150
5.2.2.1 Inclusion Guards..152

5.2.4 DATA HIDING: PRIVATE VERSUS PUBLIC ..153
5.2.5 Constructors and Destructors ...155
5.2.6 Copy Constructors and the Assignment Operator...157

5.3 RPG GAME: CLASS EXAMPLES..158
5.3.1 The Range Structure..158
5.3.2 Random Functions ..159
5.3.3 Weapon Class..159
5.3.4 Monster Class ...160
5.3.5 Player Class ..165
5.3.6 Map Class ...173

5.4 THE GAME ...177
5.4.1 Segment 1 ..179
5.4.2 Segment 2 ..180
5.4.3 Segment 3 ..180
5.4.4 Segment 4 ..182

5.5 SUMMARY..183
5.6 EXERCISES ...184

5.6.1 Gold Modification ...185
5.6.2 Character Races..185
5.6.3 Leveling Up...185
5.6.4 Magic Points ...185
5.6.5 Random Encounters During Rest ..186
5.6.6 A Store...186
5.6.7 Items..187
5.6.8 Multiple Enemies...187

 5

CHAPTER 6: STRINGS AND OTHER TOPICS ..188
INTRODUCTION ..189
CHAPTER OBJECTIVES ...189
6.1 CHAR STRINGS...189
6.1 STRING LITERALS...191
6.2 ESCAPE CHARACTERS ..192
6.2 C-STRING FUNCTIONS..193

6.2.1 Length..193
6.2.2 Equality ...194
6.2.3 Copying ...195
6.2.4 Addition ...195
6.2.7 Formatting...196

6.3 STD::STRING ...199
6.3.1 Length..199
6.3.2 Relational Operators ...200
6.3.3 Addition ...201
6.3.4 Empty Strings ..201
6.3.5 Substrings ..202
6.3.6 Insert..203
6.3.7 Find ...204
6.3.8 Replace ..204
6.3.9 Bracket Operator...205
6.3.10 C-String Equivalent ...205
6.3.11 getline ..206

6.4 THE THIS POINTER ...208
6.5 FRIENDS ...211

6.5.1 Friend Functions ...211
6.5.2 Friend Classes...212

6.6 THE STATIC KEYWORD ..212
6.6.1 Static Variables in Functions ..212
6.6.2 Static Data Members ...213
6.6.3 Static Methods ...214

6.7 NAMESPACES ...215
6.7.1 Variations of the “using” Clause ..217

6.8 ENUMERATED TYPES ...218
6.9 SUMMARY..219
6.10 EXERCISES ...220

6.10.1 String Reverse..220
6.10.2 To-Upper ...220
6.10.3 To-Lower ...220
6.10.4 Palindrome ..221

CHAPTER 7: OPERATOR OVERLOADING...222
INTRODUCTION ..223
CHAPTER OBJECTIVES ...224
7.1 VECTOR MATHEMATICS...224
7.2 A VECTOR CLASS...232

7.2.1 Constructors ..233
7.2.2 Equality ...233
7.2.3 Addition and Subtraction...234
7.2.4 Scalar Multiplication...234
7.2.5 Length..235
7.2.6 Normalization..235
7.2.7 The Dot Product ..235
7.2.8 Conversion to float Array ...236

 6

7.2.9 Printing ...237
7.2.10 Inputting ..237
7.2.11 Example: Vector3 in Action ..237

7.3 OVERLOADING ARITHMETIC OPERATORS..240
7.3.1 Operator Overloading Syntax ...241
7.3.2 Overloading the Other Arithmetic Operators ...242
7.3.3 Example using our Overloaded Operators ...243

7.4 OVERLOADING RELATIONAL OPERATORS ...244
7.5 OVERLOADING CONVERSION OPERATORS ...246
7.6 OVERLOADING THE EXTRACTION AND INSERTION OPERATORS...247
7.7 A STRING CLASS; OVERLOADING THE ASSIGNMENT OPERATOR, COPY CONSTRUCTOR, AND BRACKET OPERATOR.....250

7.7.1 Construction and Destruction ...250
7.7.2 Assignment Operator ..251
7.7.3 Copy Constructor ..253
7.7.4 Overloading the Bracket Operator..254

7.8 SUMMARY..254
7.9 EXERCISES ...255

7.9.1 Fraction Class..255
7.9.2 Simple float Array Class...256

CHAPTER 8: FILE INPUT AND OUTPUT...259
INTRODUCTION ..260
CHAPTER OBJECTIVES ...260
8.1 STREAMS ...260
8.2 TEXT FILE I/O..261

8.2.1 Saving Data...261
8.2.2 Loading Data ..262
8.2.3 File I/O Example...263

8.3 BINARY FILE I/O..268
8.3.1 Saving Data...268
8.3.2 Loading Data ..269
8.3.3 Examples ...270

8.4 SUMMARY..273
8.5 EXERCISES ...274

8.5.1 Line Count...274
8.5.2 REWRITE...274

CHAPTER 9: INHERITANCE AND POLYMORPHISM ...275
INTRODUCTION ..276
CHAPTER OBJECTIVES ...276
9.1 INHERITANCE BASICS ..277
9.2 INHERITANCE DETAILS ..284

9.2.1 Repeated Inheritance ..284
9.2.2 isa versus hasa ..284
9.2.3 Moving Between the Base Class and Derived Class ...285
9.2.4 Public versus Private Inheritance ...287
9.2.5 Method Overriding..288

9.3 CONSTRUCTORS AND DESTRUCTORS WITH INHERITANCE..290
9.4 MULTIPLE INHERITANCE..292
9.5 POLYMORPHISM...292

9.5.1 First Attempt (Incorrect Solution)...293
9.5.2 Second Attempt (Correct Solution) ...296

9.6 HOW VIRTUAL FUNCTIONS WORK...300
9.7 THE COST OF VIRTUAL FUNCTIONS ...302
9.8 ABSTRACT CLASSES ..303
9.9 INTERFACES...305

 7

9.10 SUMMARY..307
9.11 EXERCISES ...308

9.11 Employee Database..308
C++ MODULE I CONCLUSION...313

 8

 Chapter 1

Introducing C++

 9

Introduction

C++ is a powerful language that unifies high-level programming paradigms, such as object oriented
programming, with low-level efficiencies, such as the ability to directly manipulate memory. For these
reasons, C++ has been embraced as the language of choice among game developers. C++ fulfills the
need for high-level language constructs which aid in the organization of building complex virtual
worlds, but is also able to perform low-level optimizations in order to squeeze out extra performance for
such things as sophisticated special effects, realistic physics, and complex artificial intelligence.

Chapter Objectives

• Create, compile, link and execute C++ programs.
• Find out how C++ code is transformed into machine code.
• Learn some of the basic C++ features necessary for every C++ program.
• Discover how to output and input text information to and from the user.
• Understand the concept of variables.
• Perform simple arithmetic operations in C++.

1.1 Getting Started—Your First C++ Program

A program is a list of instructions that directs the computer to perform a series of operations. An
operation could be adding two numbers together or outputting some data to the screen. In this section
you will learn, step-by-step, how to create, compile, link and execute a C++ program using Visual C++
.NET (either the 2002 or 2003 edition). We recommend that you actually perform these steps as you
read them in order to fully understand and absorb all that you are learning. If you are not using Visual
C++ .NET, consult your particular C++ development tool’s documentation for information on how to
create, compile, link and execute a C++ program.

1.1.1 Creating the Project

After you launch Visual C++ .NET, go to the menu and select File->New->Project. The following
dialog box appears:

 10

Figure 1.1: The “New Project” dialog box.

Enter a name of your choosing for the project and the location to which you wish to save it on your hard
drive. Then press the OK button. A new Overview dialog box now appears, as seen in Figure 1.2.
Selecting th Application Settings

e button displays the dialog box shown in Figure 1.3

Figure 1.2: The “Overview” dialog box. Select the "Application Settings" button from the blue column on the left.

 11

Figure 1.3: The “Application Settings” dialog box. Be sure to select “Console application” and check “Empty

rward, press the “Finish” project.” Afte button.

lication for the Application type setting, and have checked Empty

project for the Additional options setting, press the Finish button. At this point, we have successfully
created a C++ project. The next step is to add a C++ source code file (.CPP) to the project; that is, a file

.CPP File to the Project

dd New
 (.cpp).

n select Open. A blank .CPP file should automatically be opened in

Once you have selected Console app

in which we will actually write our C++ code.

1.1.2 Adding A

To add a .CPP file to your project, go to the menu and select Project->Add New Item… An A
em dialog box appears (Figure 1.4). From the right category, Templates, select a C++ FileIt

Give the .CPP file a name, and the
Visual C++ .NET.

 12

gure 1.4: The “Add New Item” dialog box. Select the file type you wish to add to the project. In this caseFi we want

.1.3 riting the Code

Program 1.1: Print String.

to add a C++ File (.cpp).

 W1

You should now see a blank .CPP file where we can begin to write our code. Type or copy the
llowing C++ code, exactly as it is, into your .CPP file. fo

//===
// print_string.cpp By Frank Luna
//===

#include <iostream>
#include <string>

int main()
{
 std::string firstName = "";

 std::cout << "Enter your first name and press Enter: ";

 std::cin >> firstName;

 std::cout << std::endl;

 std::cout << "Hello, " << firstName << std::endl << std::endl;
}

 13

1.1.4 Compiling, Linking, and Executing

After the C++ code is completed, it must be translated into a language the computer understands—that
is, machine language—in order that it can be executed. There are two steps to this translation process:

1) Compilation
2) Linking

In the compilation step, the compiler co ore
complex projects will contain more than and generates an object file (.OBJ) for
ach one. An object file is said to contain object code.

le. It is the executable file which will run on your platform.

he fir rogram. To compile the program, go to the
enu a NET, the results of your compilation should

mpiles each source code file (.CPP) in your project (m
 one source code file)

e

In the next step, called linking, the linker combines all the object files, as well as any library files
(.LIB), to produce an executable fi

Note: A library file is a set of object code that usually stores the object code of many object files in one
compact file. In this way, users do not have to link numerous object files but can merely link one library
file.

T st step towards generating an .EXE is to compile the p

nd select Build->Compile. At the bottom of VC++ .m
be displayed in the Output window—see Figure 1.5.

Figure 1.5: Compilation Output.

Observe that we have zero errors and zero warnings; this means we have written legal C++ code, and

laying various errors
r warnings. For example, if you removed one of the ending semicolons from Program 1.1 and tried to

compil
identifi
revent ul compile.

Once we have fixed any compiler errors and there are zero errors or warnings, we can proceed to the
next step—the build step (also called linking). To build the program, select the Build->Build Solution

therefore our program has compiled successfully. If we had written any illegal C++ code (e.g., we made
typos or used incorrect C++ punctuation), the compiler would let us know by disp
o

e it, you would get the following error message: “error C2146: syntax error: missing ';' before
er 'cout'”. You can use these error messages to help pinpoint the problems in your code that are
ing a successfp

 14

item from the menu. Similarly to the compilation process, the results of you
in the Output window—see Figure 1.6.

r build should be displayed

Figure 1.6: Build Output.

Observe that we have zero errors and zero warnings; this means we have written legal C++ code, and
therefore our program has linked successfully. As with compilation, there would be error messages if we
had written any illegal C++ code.

At post-build we have an executable file generated for a program. We can now execute the program

 V going to the menu and selecting Debug->Start Without Debugging. Doing so
unche

rst name and press enter. (Note that we bold
is output.) The

from
la

C++ .NET by
s our console application, which outputs the following:

 Enter your first name and press Enter:

Doing as the application instructs, you will input your fi
input text in this book so that it is clear which text is entered as input and which text
rogram then displays the following: p

Program 1.1: Output.

Enter your first name and press Enter: Frank

Hello, Frank

Press any key to continue

Note that by choosing Start without Debugging, the compiler automatically adds the “Press any key to
continue” functionality.

Before continuing with this chapter, spend some time studying the ouput of Program 1.1 and the code
used to create it. Based on the output, can you guess what each line of code does?

Note: If your program has not been compiled or built, you can still go directly to the “Start without
Debugging” menu command, and VC++ .NET will automatically compile, build, and execute the program
in one step.

 15

1.2 The “Print String” Program Explained

The following subsections explain Program 1.1 line-by-line.

1.2.1 Comments

 //===
 // print_string.cpp By Frank Luna
 //===

The first three lines in Program 1.1 are comments. A single lined comment is designated in C++ with

e double forward slashes ‘//’—everything on the same line that follows the ‘//’ is part of the comment.
ent, where everything between a ‘/*…*/’ pair is part of the

he ‘/*…*/’ style comment, you can comment out parts of a line, whereas ‘//’
mment the entire line. For example,

rint firstName*/ firstName << endl;

mment (/*print firstName*/) in the middle of a code line. In general, ‘/*…*/’
mments are highlighted in

omments are strings that are ignored by the compiler. That is, when the compiler compiles the code, it
. For example, at some
ts ou can write a clear

 coworker from using your code incorrectly and
asting , the code that was obvious to you three months ago might not be so obvious
day. ul comments can be beneficial to you as well.

writing “clear” and “useful”
omments, as opposed to “bad” comments. “Good” comments are clear, concise, and easy to

th
C++ also supports a multi-line comm
comment. For example:

 /* This is

 a multi-

 line comment */

lso that by using tNote a
comments always co

 cout << "Hello, " << /*p

ere we have inserted a coH
style comments comment out only what is between them. Observe that co
green in VC++ .NET.

C
skips over any comments. Their main purpose is to make notes in a program
oint you may write some tricky code that is difficult to follow. With commen , yp

English (or some other natural language) explanation of the code.

Writing clear comments becomes especially important when working in teams, where other
programmers will need to read and modify your code. For instance, you might have a piece of code that
expects a certain kind of input, which may not be obvious to others. By writing a comment that explains
he kind of input that is expected, you may prevent yourt

w time. Furthermore
So maintaining usefto

ote that throughout the above discussion, we state that the goal is N

c

 16

understand. “Bad” comments are inconsistent, out of date, ambiguous, vague, or superfluous and are of
no use to anyone. In fact, bad comments can even increase the confusion of the reader. As Bjarne
Stroustrup, the inventor of the C++ language, states in his text, The C++ Programming Language:
Special Edition: “Writing good comments can be as difficult as writing the program itself. It is an art

ts and the #include lines, we have a blank line. Blank lines and spaces are called
hite space, for obvious reasons. The important fact about white space is that the compiler ignores it

(alt u spaces, multiple spaces
bet e piler’s point of view,
the following code is equivalent to Program 1.1 from Section 1.1.3:

ro m ace.

well worth cultivating.”

1.2.2 White Space

Between the commen
w

ho gh there are some exceptions). We very well could have multiple line
we n words, and multiple C++ statements all on the same line. From the com

P gra 1.2: Playing with the white sp

//===
// print_string.cpp By Frank Luna
//===

#include <iostream>

#include <string>
int
main){ (
 std::string
 firstName =
 "";

std::cout << "Enter your first name and press Enter: ";

 std::cin >> firstName; std::cout << std::endl;

 std::cout<<"Hello, "<<firstName<<std::endl<<std::endl; }

You should try to compile the above program to verify that it still works correctly.

(e.g., “s p a c e s”) are not ignored, as they are actually considered space
keywords cannot simply be broken up and expected to mean the same

thing. For example, you cannot write “firstName” as

Note that spaces inside a string
characters. Additionally, C++

fir st Name

Symbols that have actual meaning must be kept intact as they are defined.

 17

Finally, the #include directives, which we discuss in the next section, are special kinds of statements and
they must be listed on their own line.

 Code for outputting and inputting data to and from the console window
s such as sine and cosine

more functionality to the standard library than just described, and we will
ith it as we progress through this course. (Note that there are entire volumes

we will be using code from the C++ standard library, but in order to do so, we must
our code. To do this, we use an include directive (#include

>) rogram 1, we invoked two include directives:

 #

e fir instructs the compiler to take all the code in the specified file (the file in
twee s), “iostream,” and include it (i.e., copy and paste it) into our .CPP file.
milar e code in “string” and include
into der files, which contain C++

andard library code. Note that in addition to including C++ standard library header files, your program

.2.3

lashes, namespaces are used to organize groups of related code and
prevent code name clashes. For instance, the entire C++ standard library is organized in the standard
(std) namespace. That is why we had to prefix most of our code in Program 1.1. Essentially, the

1.2.2 Include Directives

In the programs we write, we will need to use some code that we did not write ourselves. For this
course, most of this “other” code will be found in the C++ standard library, which is a set of C++
utility code that ships with your C++ compiler. Some examples of useful code which the C++ standard
library includes are:

 Functions for computing various math operation
 Random number generators

 from the hard drive Code for saving and loading files to and
 Code to work with strings

There is, of course, much
become more familiar w
dedicated to just the C++ standard library functionality.)

We know that

ude some standard library code into incl
<file . In our first example program, P

 include <iostream>
 #include <string>

Th st include directive

n the angle bracketbe
Si ly, the second include directive instructs the compiler to take all th

our .CPP file. iostream and string are C++ standard library heait
ts

links with standard library files as well; however, this is done automatically—the C++ standard libraries
are linked by default when you create a new C++ project.

1 Namespaces

Namespaces are to code as folders are to files. That is to say, as folders are used to organize groups of
related files and prevent file name c

 18

std:: prefix tells the compiler to search the standard
code we need.

namespace (folder) to look for the standard library

espace. The following revision of Program 1.1 includes a using namespace std clause,
hich moves the code in the std namespace to the global namespace, and as such, we no longer need to

Of course, prefixing all of your code library with std::, or some other namespace can become
cumbersome. With the using namespace X clause, you can move code in some particular
namespace to the global namespace, where X is some namespace. Think of the global namespace as the
“working folder”. You do not need to specify the folder path of a file that exists in the folder you are
currently working in, and likewise, you do not need to specify a namespace when accessing code in the
global nam
w
prefix our standard library code with the std:: prefix:

Program 1.3: Print String with “using namespace std” clause.

//===
// print_string.cpp By Frank Luna
//===

#include <iostream>
#include <string>

using namespace std;

int main()
{
 string firstName = "";

 cout << "Enter your first name and press Enter: ";

 cin >> firstName;

 cout << endl;

 cout << "Hello, " << firstName << endl << endl;
}

he namespace/folder analogy, pref using namespace X clause

re, such as creating your own namespaces, but we will defer a more
detailed discussion until Chapter 5.

Note that you can “use” more than one namespace. For example, if you had defined another namespace
called math, you could write:

using namespace math;
using namespace std;

ixing Standard Library code, and the T

are all you need to know about namespaces for now. Note, however, that there is much more to
namespaces than we covered he

 19

1.2.4

ust have a main function.

or now,
 e ecuted by the

main main ’
enotes

Braces m

.2.5 std::string

std::s
charact
string”
library, rite the include directive #include <string>.

In our example program, we declare a std::string variable called firstName (the variable name

e want with a few exceptions—see Section 1.3.2) and define it to be an empty
string (i.e. “”). This std::string variable firstName will be used to store (i.e., save) the first name
the user enters into the program. std::string is a powerful variable type, and we will return to it in

t with std::cin and std::cout

e might guess that “std::cout <<” outputs data to the
ole window and “

o use them we

std::cout << "Enter your first name and press Enter: ";

We prompt the user to enter his/her name with the following line:

 The main{...} Function

The main{...} function is special because it is the entry point for every C++ program; that is, every
++ program starts executing at main. Consequently, every C++ program mC

The code inside a function’s corresponding curly braces is called the function body or function
efinition. We will discuss in more detail what we mean by the term function in Chapter 3. Fd

just understand that the first instruction in main’s function body is the first instruction x
rogram. p

In C++, the curly braces {} are used to define the beginning and the end of a logical code unit. For
xample, the code inside the braces of defines the unit (function) . The opening brace ‘{e

d the beginning of a code block, and the closing brace ‘}’ denotes the end of the code block.
ust always be paired together; a beginning brace must always have an ending brace.

1

tring is a C++ variable type (more on variables in Section 1.3) that represents a string of
ers (i.e., text used for constructing words and sentences). For example, “hello,” and “this is a
are both strings. As you can tell by the std:: prefix, std::string is part of the C++ standard
 and in order to use it we must w

can be almost anything w

detail in Chapter 6, but for now it suffices to know that it is used to store text strings.

1.2.6 Input and Outpu

Program 1.1 is able to output and input data to and from the console window. By examining the code of
Program 1.1 and its corresponding output, w
cons std::cin >>” inputs information from the console window. This guess is, in
fact, correct. Observe that std::cout and std::cin exist in the std namespace, and t
must write the include directive #include <iostream>.

For example, in Program 1.1 we display the text “Enter your first name and press Enter:” to the console
window with the following line:

 20

 firstName;

The sta ut << std::endl;” instruc s a result,
the pro e cursor to the next line for

Finally, we can chain outputs together with separate i

 std::cout << "Hello, " << firstName

Here we output “Hello, ” followed by the string val wed by
two “new line” commands. We can also chain inputs

Note: The symbol ‘<<’ is called the insertion o extraction
operator. These names make sense when we ut into an
outbound stream of data, and ‘>>’ is used to extr

most every line of code in Program 1.1 ples of
ts. A statement in C++ instructs th reate a

 perform some arithmetic, or output so a statement
h a semicolon (not a new line). A semic iod ends an

English sentence. We could very well have st readability
 this usually is not done.

1.3 Variables

In Prog we ask the user to enter his/her name. e. The
computer knows what name to say “Hello” to becaus the line:

 std::cin >> firstName;

The command std::cin >> prompted the user to e it, the program

ved what was entered in a string variable called firstName has been saved, we

arizes the

std::cin >>

tement “std::co
gram will move th

ts the computer to output a new line. A
either input or output.

l: nsertions per line, as we do with this cal

<< std::endl << std::endl;

ue stored in the variable firstName, follo
 together, but this will be discussed later.

perator. And the symbol ‘>>’ is called the
 consider that ‘<<’ is used to insert outp
act input from an inbound stream of data.

Important Note!
So far, al
statemen

 has ended with a semicolon. These are exam
e computer to do a specific action, such as c
me text. variable,

ends wit
Of particular importance is that

olon ends a C++ statement much like a per
atements that span multiple lines, but for

purposes,

ram 1.1 The program then says “Hello” to that nam
e we saved the name the user entered with

nter some text and when he entered
. Because the stringsa

can output the string with the following line:

 std::cout << "Hello, " << firstName << std::endl << std::endl;

A variable occupies a region of physical system memory and stores a value of some type. There are
several built-in C++ variable types which allow you to store different types of values, and as you will
earn in later chapters, you can even make your own variable types. The following table summl

C++ variable types:

 21

Table1.1: C++ Types.

Variable Type Description

std::string Used to store string variables. Note that

std::string is not part of the core
language, but part of the standard library.

char Used to store single character variables
such as ‘a’, ‘b’, ‘c’, etc. Usually this is an
8-bit value so that it can store up to 256
values—enough to represent the Extended

 A for
a table of the Extended ASCII Character
Set. Observe from the ASCII table, that
characters are actually represented with

, thus a char type is really an
interpreted as a character.

ASCII Character Set. See Appendix

integers
integer, but

int The primary type used to store an integer
value.

short Typically stores a shorter range of integers
than int.

long A signed integer ty
store a longer range

pe that typically can
 of integers than int.

float Used to sto
is, number

re floating point numbers; that
s with decimals like 1.2345 and

–32.985.
double Similar to a float, but typically stores

oint numbers with greater
 than float.

floating p
precision

bool Used to store truth-values; that is, true or
false. Note that true and false are
C++ keywords. Also note that, in C++,
zero is also considered false, and any non-
zero value, negative or positive, is
considered to be true.

The exact range of values each type can hold or the amount of memory that each type occupies is not

ecause these values are largely platform-dependent. A char may be 8-bits (1 byte) on
ay be 32-bits on another platform. Thus, you would usually like to avoid making

n your code, in order that your code remain portable (i.e., works on
ther platforms). For example, if you assume in your code that chars are 8-bits, and then move

development to a platform with 32-bit chars, you will have errors which will need to be fixed.

ote that you can use std::cout and std::cin to output and input these other types as well. For
example, consider the following program.

noted in the table b
some platforms, but m
assumptions about the C++ types i
o

N

 22

Program 1.4: Type Input/Output.

// Program asks user to enter different types of values, the
// program then echoes these values back to the console window.

#include <iostream>
#include <string>

using namespace std;

int main()
{
 // Declare variables and define them to some default value.
 char letter = 'A';
 int integer = 0;
 float dec = 0.0f;

 cout << "Enter a letter: "; // Output
 cin >> letter; // Get input

 cout << "Enter an integer: ";// Output
 cin >> integer; // Get input

 Output cout << "Enter a float number: "; //
 cin >> dec; // Get input

 cout << endl; // Output another new line

 // Now output back the values the user entered.
 cout << "Letter: " << letter << endl;
 cout << "Integer: " << integer << endl;
 cout << "Float: " << dec << endl;
}

Program 1.4: Output.

Enter a letter: F
Enter an integer: 100
Enter a float number: -5.987123

Letter: F
Integer: 100
Float: -5.98712
Press any key to continue

 23

1.3.1 Variable Declarations and Definitions

W e write the following code, w

hen w e say that we are declaring a variable:

 int myVar; // Variable Declaration.

alled myVar of type int. Although myVar has been declared, it is
undefined; that is, the value it stores is unknown. Consequently, it is common to say that the variable

In particular, we declare a variable c

contains garbage. Try compiling and executing this small program to see what value myVar contains:

#include <iostream>
using namespace std;
int main()
{
 int myVar;
 cout << myVar << endl;
}

hen we assign a value to a variable we are defining or initializing the variable:

he r. Note that the assignment operator assigns
alu mparative sense. This is often
onfusi

We can d le at the same time:

eclaration and Definition.

Because variables that contain garbage are useless and prone to introducing errors, it is advisable to

comma
 as this next code snippet shows:

 j = 2.0f, k = 3.0f;

vised for readability purposes, to make one declaration or definition
 line

W

myVar = 10; // Variable Definition.

T ‘=’ symbol, in C++, is called the assignment operato

es to variables—it says nothing about equality in a purely cov
c ng to new C++ students so be sure to try to remember this.

 also declare an define a variab

 int myVar = 10; // Variable D

always define your variables at the time of declaration to some default value. Typically, zero is a good
default value for numeric values, and an empty string, “”, is a good default value for strings.

t is possible to make multiple declarations and/or definitions in one statement using the I

operator

 int x, y, z;

x = 1, y = 2, z = 3;
 float i = 1.0f,

ore compact, it is adDespite being m
per .

 24

Finally, we can also chain assignments together (assigned values flow from right to left):

float a, b, c, d;
a = b = c = d = num;

mes

when we declare/define a variable we must give it a name (identifier) so that
le within the program. Variable names can be almost anything, with some

 with a letter. The variable name 2VarName is illegal. However, the

t use symbols like ‘!’, ‘@’, ‘#’, ‘$’, ‘%’ in your variable names.

Variable names cannot be C++ keywords (Appendix B). For instance, you cannot name a
variable “float” since t the C++ type float.

Variable names cannot

ote: C++ is case sensiti . For example, these identifiers are all unique because they differ by case:
llo, Hello, HELLO, heLLo.

C++ types and the amount of memory they occupy is
platform-dependent. In order to get the size of a type, in bytes, on the current platform, you use the

 float num = 0.0f;

1.3.2 Variable Na

As shown in Program 1.3,
we can refer to that variab
exceptions:

1. Variable names must begin
underscore is considered a letter, and therefore, the identifier _myVar is legal.

2. Variable names can include the underscore (‘_’), letters, and numbers, but no other symbols. For

instance, you canno

3.
hat is a C++ keyword that specifies

4. have spaces between them.

N ve
he

1.3.3 The sizeof Operator

As stated in Section 1.3, the range of values of the

sizeof operator. Consider the following program, written on a 32-bit Windows platform:

Program 1.5: The “sizeof” Operator.

// Program outputs the size of various types.

#include <iostream>
using namespace std;
int main()
{
 cout << "sizeof(b sizeof(bool) << endl; ool) = " <<
 cout << "sizeof(c sizeof(char) << endl; har) = " <<
 cout << "sizeof(s sizeof(short) << endl; hort) = " <<
 cout << "sizeof(int) = " << sizeof(int) << endl;

 25

 cout << "sizeof(long) = " << sizeof(long) << endl;
 cout << "sizeof(float) = " << sizeof(float) << endl;
 cout << "sizeof(double) = " << sizeof(double) << endl;
}

Program 1.5: Output.

sizeof(bool) = 1
sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
sizeof(long) = 4
sizeof(float) = 4
sizeof(double) = 8
Press any key to continue

Note that these results will be specific to the platform on which the program is being e

ired for these C
xecuted. In fact,
++ types on the

ed

from these results we can infer the following value ranges and bytes requ
32-bit Windows platform:

Type Range Bytes Requir
Char [–128, 127] 1
Short [–32768, 32767] 2
Int [–2147483648, 2147483647] 4
Long [–2147483648, 2147483647] 4
Float ± [38102.1 −× , 38104.3 ×] 4
Double] 8 ± [308102.2 −× , 308108.1 ×

Note that there is no difference in range or memory requirements between an int and a long.

1.3.4 The unsigned Keyword

An int supports the range [–2147483648, 2147483647]. Howe
positive values, then it is possible to ta

ver, if you only need to work with
ke the memory reserved for representing negative numbers and

use it to represent additional positive numbers so that our range of positive values increases. This would
be at the cost of sacrificing the ability to represent negative integers. We can do this by prefixing our

Range Bytes Required

integer types with the unsigned keyword. On 32-bit Windows we have the following:

Type
unsigned char [0, 255] 1
unsigned short [0, 65535] 2
unsigned int [0, 4294967295] 4
unsigned long [0, 4294967295] 4

 26

Only integer types can be unsigned. By using unsigned types we have not gained a larger range, we
 type holds 4294967296 unique values (counting

nments

rals ally the number ten. Likewise, the
ring owing code illustrates some literal
signm

have merely transformed our range. That is, an int
ro) whether we use the range [–2147483648, 2147483647] or the range [0, 4294967295]. ze

1.3.5 Literal Assig

L are values that are not variables. For example, 10 is liter
ello world.” The foll

ite
st hello world is literally the string “h

ents: as

 bool b = true; // boolean literal.
 har letter = 'Z'; // charact c er literal.
 std::string str = "Hello"; // string literal.
 int num = 5; // integer literal.
 unsigned int uint = 5U; // unsigned integer literal
 lo // long literal. ng longNum = 10L;
 unsigned long ulong = 50UL; // unsigned long literal.
 float floatNum = 123.987f; // float literal.
 double dblNum = 567.432; // double literal.

 / Note that the literal type suffixes are not case /
 // e following also works: sensitive. Thus, th

 unsigned long ulong2 = 50ul; // unsigned long literal.
 float floatNum2 = 123.987F; // float literal.

There example, it is unclear whether 123.987

 double. To avoid this ambiguity, C++ allows us to attach a type
ffix t then it is treated as a float; otherwise
is tre double s and unsigned types. Observe uint,
ongNum, and ulong, in the above code, where we use the U, L, or combination UL to denote the literal

ersions

nments between various types. For instance, we can assign an int
ariable to a float variable and vice versa. However, there are some caveats. Program 1.6 illustrates
is.

is some ambiguity with floating point numbers. For
should be treated as a float or a
su o the literal. If the literal has an ‘f’ suffix as in 123.987f

ated as a . A similar problem arises with longit
l
type.

1.3.6 Type Conv

It is possible to make variable assig
v
th

 27

Pro mgra 1.6: Type Conversions.

// Demonstrates some type conversions.

#include <iostream>

using namespace std;

int main()
{
 ert from a less precise type // Case 1: Conv
 // to a more precise type:

 char c = 10;
 short s = c;
 cout << “char to short: “ << s << endl;

 // Case 2: Convert from a more precise integer
 // to a less precise integer:

 unsigned char uc = 256;
 cout << “int to uchar: “ << (int)uc << endl;

 // Case 3: Convert from a float to an int,
 // assuming the int can store the float’s value.

 int i = 496512.546f;
 cout << “float to int: “ << i << endl;

 // Case 4: Convert from a float to a short, this
 // time the int can’t store the float:

 s = 496512.987123f;
 cout << “float to short: “ << s << endl;

 }

P Output. rogram 1.6:

char to short: 10
int to uchar: 0
float to int: 496512
float to short: -27776
Press any key to continue

• Case 1: Here we convert from a less precise type to a more precise type. Since the more precise
type can fully represent the less precise type, there is no conversion problem and everything
works out as expected.

 28

• Case 2: Here we convert from a more precise integer to a less precise integer. However, an
unsigned char cannot represent the value 256. What happens is called wrapping. The
unsigned char cannot store values over 255 so it wraps back to zero. Thus 256 becomes

• an int. Observe that the float is truncated—the float

• a short, but the short cannot store the whole number part

ping scenario.

a serious problem that can lead to hard-to-find bugs. Thus, you should
orking with values that your types can correctly store.

es these type conversions implicitly; that is, automatically. However, sometimes
ou nee ll the compiler to treat a type as a different type. We actually see this in Case 2

of Program

 “ << (int)uc << endl;

The (int)uc syntax tells the compiler to treat uc as an int, not as a char. This is because cout will

e
 general, this type of casting can be done with either of the

llowing syntaxes:

result = static_cast<typeToConvertTo>(valueToConvert);
vert;

 int y = (int)result;

zero, 257 would become 1, 258 would become 2, and so on. The values “wrap” back around.
Wrapping also occurs in the opposite direction. For instance, if we assigned –1 to an unsigned
char, the value would wrap around in the other direction and become 255.

Case 3: Here we assign a float to
loses its decimal.

Case 4: Here we assign a float to
of the float. Thus we observe a wrap

Note: Integer wrapping is
always ensure that you are w

he C++ compiler doT

y d to explicitly te
 1.6. Specifically, the line:

 cout << “int to uchar:

output the character representation of uc since it is a char. But we want it to output the integer
representation of the char. Thus we must perform a type cast (conversion between types) and xplicitly
tell the compiler to treat uc as an int. In
fo

 result = (typeToConvertTo) valueToCon

Examples:

 int x = 5;
 float result = static_cast<float>(x);

 29

.3.7 Typedefs 1

At some point, you might find a C++ type that is too long. For example, unsigned int is a lot to
 allows you to define an alternate name (synonym) via the typedef keyword.
ine the following shorter names for the unsigned types:

f unsigned long ulong;

f having to write:

19;

e can simply write:

Variables

es we will want to define a variable that cannot change. Such variables are constant. For
, we may want to define a constant variable pi to represent the mathematical constant

write out repeatedly. C++
For example, we might def

typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typede

Thus, for example, instead o

 unsigned int x =

W

 uint x = 19;

1.3.8 Const

Sometim
example 14.3≈π .

ifying keyword:

 // error, cannot redefine constant pi.

notational convenience. It is clearer to read the symbolic name
a programmer may not immediately connect 3.14 to

To do this we use the const mod

const float pi = 3.14f;

If the programmer tries to change pi, an error will result:

pi = 12.53f;

Constant variables are often used for

π“pi” than it is to read the number 3.14; .

1.3.9 Macros

Sometimes we want to create a symbol name (identifier) that stands for some set of code. We can do
this by defining a macro. For example, the following line of code defines a macro PRINTHELLO, which

hen written, executes the statement: cout << "Hello" << endl;.

// Define a macro PRINTHELLO that means

< endl;

w

// "cout << 'Hello' << endl;"
#define PRINTHELLO cout << "Hello" <

 30

Using this macro we could write a program that outputs “Hello” several times like so:

Program 1.7: Macros

#include <iostream>
using namespace std;

// Define a macro PRINTHELLO that means
// "cout << 'Hello' << endl;"
#define PRINTHELLO cout << "Hello" << endl;

int main()
{
 PRINTHELLO
 PRINTHELLO
 PRINTHELLO
 PRINTHELLO
}

Note that the semi-colon is inc ition a to place one at the
end of each line.

Program 1.7 Output

luded in the macro defin nd thus we did not need

Hello
Hello
Hello
Hello
Press any key to continue

When the compiler compiles the source code and encounters a macro, it internally replaces the macro

mbol with the code for which it stands. Program 1.7 is expanded internally as:

 endl;

 "Hello" << endl;
 "Hello" << endl;

thmetic Operations

sy

int main()
{
 cout << "Hello" <<

cout << "Hello" << endl;
 cout <<

cout <<
 }

1.4 Ari

 31

In addition to declaring, defining, inputting, and outputting variables of various types, we can perform
 them.

Unary Operator Description Example

basic arithmetic operations between

1.4.1 Unary Arithmetic Operations

A unary operation is an operation that acts on one variable (operand). Table 1.2 summarizes three
unary operators:

Table 1.2: Unary Operations.

Negation Operator: - Negates the operand. int x = 5;
int y = -x; // y = -5.

Increment Operator: ++ Increments the operand by
e

increment operator can
prefix or postfix the
operator.

int x = 5;
++x; // x = 6 (prefix)
x++; // x = 7 (postfix)

one. Note that th

Decrement Operator: -- Decrements the operand by
one. Note that the
decrement operator can
prefix or postfix the

int x = 5;
--x; // x = 4 (prefix)
x--; // x = 3 (postfix)

operator.

Observe that the increment and decrement operators can be written as a prefix or postfix. The technical
ifference between prefix and postfix is determined by where the increment/decrement occurs in a

 illustrates:
d
statement. The following program

rogram 1.8: Prefix versus Postfix. P

#include <iostream>
using namespace std;

int main()
{
 int k = 7;
 cout << "++k = " << ++k << endl;
 cout << "k++ = " << k++ << endl;

 cout << k << endl;
}

 1.8: Output. Program

++k = 8
k++ = 8

 32

9
Press any key to continue

D see the difference betwo you een the prefix and postfix increment/decrement operator? In the first call

 cou layed. Hence the number 8 is displayed.
owev <, k is first displayed, and then is incremented. Hence the
mbe at it was indeed incremented,

 expression, when using the
efix decremented first, before it is used. Conversely, when using the

, after it is used.

4.2 Operations

++ co

 Multiplication operator (*),
 (/)
 (%).

n, multiplication and division are defined for all numeric types. The modulus
nteger operation only. The only arithmetic operation defined for std::string is the

addition operator. The following program illustrates the arithmetic operations:

to t <<, k is incremented first, before being disp
er, in the second call to cout <H

nu r 8 is displayed again. Finally, we output k a third time to show th
cond time. Therefore, in a complexbut only after it was displayed the se

form, the value is incremented/pr
postfix form, the value is incremented/decremented last

1. Binary Arithmetic

C ntains five binary arithmetic operators:

1) Addition operator (+),

 Subtraction operator (-), 2)
)3

4) Division operator
5) Modulus operator

Addition, subtractio
operator is an i

Program 1.9: Arithmetic Operations.

// Program demonstrates some arithmetic operations.

#include <iostream>
#include <string>

using namespace std;

int main()
{
 //=========================
 // Do some math operations:

 float f1 = 10.0f * 10.0f;
 float f2 = f / 10.0f; 1
 float fDif = f1 - f2;

 cout << f1 << " - " << f2 << " = " << fDif;
 cout << endl << endl;

 33

 //============================
 // Do some integer operations:

 int i1 = 19 + 4;
 int i2 = 10 - 3;

 int remainder = i1 % i2;

 cout << i1 << " % " << i2 << " = " << remainder;
 cout << endl << endl;

 //===========================
 // Do some string operations:

 string s1 = "Hello, ";
 string s2 = "World!";

 string stringSum = s1 + s2;

 cout << s1 << " + " << s2 << " = " << stringSum;
 cout << endl << endl;
}

Program 1.9: Output.

100 - 10 = 90

23 % 7 = 2

Hello, + World! = Hello, World!

Press continue any key to

1.4.3

e modulus operator returns the remainder of an integer division. For example,

 The Modulus Operator

Th

7
3

7
+= . 223

H e call the nere w umerator 2, in 72 , the remainder—it is the remaining part that cannot be divided

enly We will say two integers divide evenly if and only if the division results in an integer;
., no

ple,

ev by seven. (
i.e t a fraction.)
Consider the exam 135 . In this case, the remainder is five; that is, 13 divides into 5 zero times, and

 the r rt that cannot be evenly divided by 13 is 5. so emaining pa

 34

1. Compound Arithmetic Oper4.4 ations

+ de lly perform two operations, namely an arithmetic
eration and an assignment operation. The following table summarizes:

ithmetic Operations.

tion Equivalent Meaning

C+
p

fines the following “shortcut” operators that rea
o

Table 1.3: Compound Ar

Compound Arithmetic Opera
x += y x = x + y
x -= y x = x – y
x *= y x = x * y
x /= y x = x / y
x %= y x = x % y

The following program illustrates how they are used in a C++ program:

Program 1.10: Compound Arithmetic Operators.

#include <iostream>

using namespace std;

int main()
{
 int x = 0;
 int y = 0;

 cout << "Enter an integer: ";
 cin >> x;

 cout << "Enter an integer: ";
 cin >> y;

 // Save to separate variables so each operation is
 // independent of each other.

 int a = x;
 int b = x;
 int c = x;
 int d = x;
 int e = x;

 a += y;
 b -= y;
 c *= y;
 d /= y;
 e %= y;

 cout << "x += y = " << a << endl;

 35

 out << "x -= y = " << b << endl; c
 cout << "x *= y = " << c << endl;
 cout << "x /= y = " << d << endl;
 cout << "x %= y = " << e << endl;
}

Program 1.10: Output.

Enter an integer: 50
Enter an integer: 12
x += y = 62
x -= y = 38
x *= y = 600
x /= y = 4
x %= y = 2
Press any key to continue

Note: The output of Program 1.9 brings up an important point. Namely, 50 / 12 is not 4, but
approximately 4.1667. What happened? The decimal portion of the answer is lost because integers are
being used, and they are unable to represent decimals. Bear this truncation in mind when doing division
with integers and ask yourself whether or not this is a problem for your particular circumstances.

Con

 in

n w
prece e r of greatest precedence to least precedence.

ultiplication, division and the modulus operations have the same precedence level. Similarly, addition
and
divi n
division
above e

ot

Someti

e add cedence to an operation by
rrounding it with a pair of parentheses, much like you do in mathematical notation. We can force the

addition to come before multiplication by using the following parentheses:

1.4.5 Operator Precedence

sider the following statement:

t x = 5 + 3 * 8;

I hich order will the compiler perform the various arithmetic operations? Each operator has a defined

d nce level, and operators are evaluated in the orde
M

 subtraction have the same precedence level. However, the precedence level of multiplication,
sio , and modulation is greater than that of addition and subtraction. Therefore, multiplication,

, and modulation operations always occur before addition and subtraction operations. Thus the
xpression is evaluated like so:

 int x = 5 + 3 * 8;
 = 5 + 24

 = 29

N e that operators with the same precedence level are evaluated left to right.

mes you want to force an operation to occur first. For example, you may have actually wanted
ition to take place before the multiplication. You can give greatest preth

su

 36

nt x = (5 + 3) * 8; i

 = 8 * 8
 = 64

Par h
should

e inne ple illustrates:

 int x = (((5 + 3) - 2) * 6) + 5;
) * 6) + 5
 + 5

 = 36 + 5
 = 41

ns evaluate to a numeric value. The terminology for something
that evaluates to a number is called a numeric expression. More generally, something that evaluates

xists lo

C++ code to object code. The linker then combines the object code,
 produce an executable program that can be run on the operating

age code).

2. White space consists of blank lines and spaces, which are ignored by the compiler. Use white
ur code in a more readable way.

3. The C++ standard library includes code for outputting and inputting data to and from the console

4. Every C++ program must have a main function, which defines the program entry point.

5. Namespaces are used to organize code into logical groupings and to prevent name clashes.

6. A variable occupies a region of physical system memory and stores a value of some type.
Variable names can consist of letters and numbers, but cannot begin with a number (the

 is considered a letter). Recall that C++ is case sensitive.

ent eses can also be nested so that you can explicitly specify the second, third, etc. operation that
 occur. In an expression with nested parentheses, the operations are evaluated in the order from

rmost parentheses to the outermost parentheses. The following examth

 = ((8 – 2
 = (6 * 6)

Note: Observe how arithmetic operatio

to something else is considered an expression. As you will see in the next chapter, there e gical
expressions (expressions with logical operators), which evaluate to truth-values.

1.5 Summary

1. A C++ compiler translates

from several object files, to
system (i.e., machine langu

space to format yo

window, functions for computing various math operations such as sine and cosine, random
number generators, code for saving and loading files to and from the hard drive, code to work
with strings, and much, much more.

underscore

 37

7. C++ can implicitly convert between its intrinsic types; however, one must be alert for decimal
truncation and integer wrapping. It is good practice to try and avoid type conversions when
practical.

ence define the order in which the compiler performs a series of
 parentheses to explicitly define the order in which the operations should be

is also makes your code clearer.

sks the user to input two real numbers, and . Compute the sum

8. The rules of operator preced

operations. Use
performed. Consequently, th

1.6 Exercises

1.6.1 Arithmetic Operators

rite a program that aW 1n 2n 21 nn + , the
ifference , the product , and the quotient (assume21 nn − 21 nn ⋅ 21 / nn 02 ≠nd), and output the results.

ollows:

4.67 + -14.2 = 50.47

64.67 - -14.2 = 78.87
64.67 * -14.2 = -918.314

4.55423
continue

m example given in Section 1.1.3. This time, ask the user to enter his first and last
y a space, on one line (i.e., use one “cin >>” operation to read both the first and last
Does a problem occur? If so, describe it in complete sentences. Then try and find a

round” to the problem, by any means possible.

Your program output should be formatted as f

Enter a real number n1: 64.67

4.2Enter a real number n2: -1
6

64.67 / -14.2 = -
Press any key to

1.6.2 Cin/Cout

Rewrite the progra
names, separated b
name in one pass).

atemporary “work

1.6.3 Cube

 38

Write a program that asks the user to input a real number n. Compute 3n and output the result. Your
program output should be formatted as follows:

Enter a real number: 7.12
7.12^3 = 36
Press any ke

0.944
y to continue

6.4 nce

rite the user to input the radius r of a circle. Compute the area A and
rcumference C of the circle using the formulas and

1. Area/Circumfere

W a program that asks
ci 2rA ⋅= π rC ⋅⋅= π2 respectively, and output the

sults. pproximationre Note that for this exercise you can make the a 14.3≈π . Your program output
uld be formatted as follows:

Enter the radius of a circle: 10
The area A of a circle with radius 10 = 314
The circumference C of a circle with radius 10 = 62.8
Press any key to continue

1.6.5 Average

Write a program that asks the user to input five real numbers. Compute the average of these numbers
and output the results to the user. Your program output should be formatted as follows:

Enter a0: 5
Enter a1: 10
Enter a2: -2
Enter a3: 2.7
Enter a4: 0
The average of the five inputs a0...a4 = 3.14
Press any key to continue

1.6.6 Bug Fixing

sho

 39

The following program contains several bugs. Ente
compile it. What error/warning messages do you get? plet
each error/warning message means. Afterwards, fix the th

r the program into your C++ editor and try to
 In com e sentences, describe what you think
 errors so at it compiles correctly.

#include <iostream> #include <string>

int mian()
{
 string str = "Hello World!"

 cout << str << endl;

 cout << float x = 5.0f * str << end;

 int 65Num = 65;

 cout << "65Num = " < 65Num << endl;
}

 40

 Chapter 2

 Logic, Conditionals, Loops and

Introduction

Arrays

 41

The previous chapter
deas

 limited in terms
of the i we can er we expand our C++ “vocabulary” and
“ to oints are less than
zero then player is to execute blocks of
cod This ut and
upd worl a
logical container. In a casino gam

o nt in the container

C bj

• Discover how to execute a block of code repeatedly using the various kinds of loop statements

ate the individual elements in
s.

nal Operators

robably already familiar with their
operators allow us to determine some

emen ample, given the following two variables:

hat c e can determine is that they are not equal. Moreover, we can
y var1 is greater than , or is less than var1. The C++ relational operators allow us to
press ational operations are a type of boolean expression. A
olea e that evaluates to a truth-value—true or false. For example, when relating two

equality is true) or not equal (equality is false).

ble 2

ble 2.

elatio

covered the creation of trivial C++ programs, but we are still very
 express using C++. In this chapt

grammar” in order
 the

 program more interesting actions such as, “If the player’s hitp
 dead and the game is over.” In addition, we will learn how

e repeatedly.
ate the game

 is particularly useful in games where we need to repeatedly check user inp
d accordingly. Finally, we will learn how to store a collection of variables in

e example, this would be useful to represent a deck of cards
programmatically; y
represents a card in th

u could keep a container of 52 ints, where each eleme
e deck.

hapter O ectives:

• Understand and evaluate logical expressions.
• Form and apply conditional, if…then, statements.

C++ exposes.
• Learn how to create containers of variables and how to manipul

those container

2.1 The Relatio

The relational operators are fairly straightforward because you ar
 classes. The relational

e p
concepts from your high school algebra
el tary relationships between variables. For ex

 int var1 = 15;

int var2 = 7;

them? One thing wW an we say about
sa var2 var2

eas in code. Note that relex these types of id
n expression is onbo

objects, it can be said that they are either equal (

Ta .1 summarizes the C++ relational operators:

Ta 1: The Relational Operators.

R nal Operator Description
Equa tor. ls operators Recall that the single equal sign ‘=’ is the assignment opera

== Consequently, C++ uses a double equal sign ‘==’ to test

 42

equality. This operator returns if the two operands artrue e
equal, otherwise it returns false.

Not equals operator The not equals operator returns true if the two operands a
equal, otherwise it returns . !=

re not
false

Less than operator

The less than operator returns true if the left hand operand is
less than the right hand operator, otherwise it returns false. <

Greater than The
operator

>
is greater tha
false.

 greater than operator returns true if the left hand operand
n the right hand operator, otherwise it returns

Less than or equals The less
operator operand
<= it return

than or equals operator returns true if the left hand
is less than or equals the right hand operator, otherwise
 false.

s

Greater than or The gre
equals operator operand i

>= otherwise

ater than or equals operator returns true if the left hand
s greater than or equals the right hand operator,
 it returns false.

To see how these operators can be used in a C++ program, consider the following program:

Program 2.1: Relational operations.

// Program demonstrates how the relational operators
// are evaluated.

#include <iostream>
using namespace std;

int main()
{
 // Set output flag so that 'bool' variables are
 // output as 'true' and 'false' instead of '1'
 // and '0', respectively.
 cout.setf(ios_base::boolalpha);

 float num1 = 0.0f;
 float num2 = 0.0f;

 cout << "Enter a number: ";
 cin >> num1;

 cout << "Enter another number: ";
 cin >> num2;

 bool isEqual = num1 == num2;
 bool isNotEqual = num1 != num2;

 bool isNum1Greater = num1 > num2;
 bool isNum1Less = num1 < num2;

 bool isNum2GrterOrEql = num2 >= num1;
 bool isNum2LessOrEql = num2 <= num1;

 cout << endl;

 43

 cout << "isEqual = " << isEqual << endl;
 cout << "isNotEqual = " << isNotEqual << endl;
 ut um1Greater = " << isNum1Greater << endl; co << "isN
 ut um1Less = " << isNum1Less << endl; co << "isN
 ut << isNum2GrterOrEql = " << isNum2GrterOrEql << endl; co "
 ut << isNum2LessOrEql = " << isNum2LessOrEql << endl; co "
}

utput 2.1 O

Enter a number: -5.2
Enter another number: 12.84

isEqual = false
isNotEqual = true
isNum1Greater = false
isNum1Less = true
isNum2GrterOrEql = true
isNum2 ssOrE = false Le ql
Press any key to continue

Observe that we store the result of a relational expression in a bool value. Recall that a bool variable
type is used to store truth-values—true or false.

te: In Program 2.1 we use a line that we have not seen before; that is,

 cout.setf(ios_base::boolalpha);

This line is used to set formatting flags which control the way cout outputs information. In this case we
, which tells put values as “tru f

.2 The Log

), there are three other elementary types of
ings we would like to say. Consider two bool variables, A and B. Eventually, we will need to make

tatements such as these: “If A and B are both true then this,” or “While either A or B is true then this,”
r “If A and not B are both true then this.” To express these ideas in code, C++ provides a logical and

e or operator (||), and a logical not operator (!).
he ‘&&’ and ‘||’ operators are binary operators; that is, they act on two operands. Conversely, the ‘!’

-value of the operand(s). The following truth tables, where ‘T’ denotes
ue and ‘F’ denotes false, show the truth-values of these logical operators for different truth

 of A and B.

No

pass a flag ios_base::boolalpha cout to out bool e” or “false.” I
we did not include this line, cout would output true values as “1” and false values as “0.” We will
discuss other various formatting flags as we across them in this course.

2 ical Operators

When working with boolean values (true or false values
th
s
o
operator (&&), a logical inclusiv
T
operator is a unary operator which acts on one operand. Note that the truth-value of these logical
operations depends on the truth
tr
combinations

 44

Table 2.1: Th
f and onl

e logical AND (&&) truth table. Observe from the four possible combinations that an AND operation is
y if both of its operands are true. true i

A B A && B
T T T
T F F
F T F
F F F

Table 2.2: Log
and o ly if at l

ical OR (||) truth table. Observe from the four possible combinations that an OR operation is true if
east one of its operands is true.

B A || B
n

A
T T T
T F T
F T T
F F F

Table 2.3: Logical NOT (!) truth ta

hen negated and fa
ble. The not operator simply negates the truth-value of a boolean operand—true
lse becomes true when negated. becomes false w

A !A
T F
F T
--- ---
--- ---

Note: An inclusive or, A || B, is true if A is true, or B is true, or both are true. An exclusive or is
r B is true, but not both. Observe that we do not need an exclusive or operator because

n exclusive or out of our three existing operators. For instance, the following logical
 to true if either A is true or B is true, but not A and B (not both):

ive OR: (A || B) && !(A && B)

e some boolean expressions with the logical operators
ue, B is false, and C is true.

xamp

true if A is true o
we can formulate a
expression evaluates

Exclus

Before looking at a sample program, let us evaluat
by hand first. Suppose A is tr

E le 1: Evaluate A && !B.

ting the knownSubstitu truth-values (using ‘T’ for true and ‘F’ for false) into the expression and
evaluating step-by-step yields:

 A && !B
= T && !F

 45

= T && T
= T

xamp

E le 2: Evaluate !B || C.

Substituting our known truth-values (using ‘T

ing step-by-step yields:
’ for true and ‘F’ for false) into the expression and

aluat

B |

amp

ev

 ! | C
= !F || T
= T || T
= T

xE le 3: Evaluate (A || C) && !(A && C).

Substituting our known truth-values (using ‘T’ for true and ‘F’ for false) into the expression and

 F

thoug 2.2 shows how the
gical expressions are evaluated.

evaluating step-by-step yields:

 (A || C) && !(A && C)
= (T || T) && !(T && T)
= T && !T
= T && F
=

h logical operators are mostly used in conditional statements, ProgramAl
lo

Program 2.2: Logical expressions evaluated.

// Program demonstrates how the logical operators
// are evaluated.

#include <iostream>
using namespace std;

int main()
{
 cout.setf(ios_base::boolalpha);

 bool B0 = false;
 bool B1 = false;
 bool B2 = false;

 cout << "Enter 0 for false or 1 for true: ";
 cin >> B0;
 cout << "Enter 0 for false or 1 for true: ";
 cin >> B1;

 cout << "Enter 0 for false or 1 for true: ";
 cin >> B2;

 bool notB0 = !B0;
 bool notB1 = !B1;

 46

 bool notB2 = !B2;

 bool isB0AndB1 = B0 && B1;
 bool isB0AndB1AndB2 = B0 && B1 && B2;

 bool isB0OrB1 = B0 || B1;
 bool isB1OrB2 = B1 || B2;

 // Exclusive OR...
 bool isB0ExclOrB1 = (B0 || B1) && !(B0 && B1);

 // Complex logical expression...
 bool isComplex = (B0 && (B1 || B2)) &&
 !((B0 && B1) || (B0 && B2));

 cout << "B0 = " << B0 << endl;
 cout << "B1 = " << B1 << endl;
 cout << "B2 = " << B2 << endl;
 cout << "notB0 = " << notB0 << endl;
 cout << "notB1 = " << notB1 << endl;
 cout << "notB2 = " << notB2 << endl;
 cout << "isB0AndB1 = " << isB0AndB1 << endl;
 cout << "isB0AndB1AndB2 = " << isB0AndB1AndB2 << endl;
 cout << "isB0OrB1 = " << isB0OrB1 << endl;
 cout << "isB1OrB2 = " << isB1OrB2 << endl;
 cout << "isB0ExclOrB1 = " << isB0ExclOrB1 << endl;
 cout << "isComplex = " << isComplex << endl;
}

Output 2.2

Enter 0 for false or 1 for true: 0
Enter 0 for false or 1 for true: 1
Enter 0 for false or 1 for tr 0ue:
B0 = false
B1 = true
B2 = false
notB0 = true
notB1 = false
notB2 = true
isB0AndB1 = false
isB0AndB1AndB2 = false
isB0OrB1 = true
isB1OrB2 = true
isB0ExclOrB1 = true
isComplex = false
Press any key to continue

For the given program, input B0 = 0 = false, B1 = 1 = true, B2 = 0 = false1, it is important
that each logical expression from this program be evaluated manually (as was done in the preceding
three examples) and the results verified with the program’s output. Do your results match the program’s
utput? o

1 Recall that C++ treats zero as false and any non-zero number, positive or negative as true.

 47

Also try the program using different inputs, and again verify the resulting program output by first
evaluating the logical operations yourself, either mentally or on paper. It is important that you are able
to evaluate logical expressions mentally and quickly, and some of the exercises of this chapter will help
you in building this skill.

The “hardest” logical expression Program 2.2 performs is the “complex” one. Therefore, we will walk
through the evaluation of this expression step-by-step for the input given in the sample run. For this

, 0, respectively, and therefore:

B0 = false

ecall that the logical expression was:

 || B2)) && !((B0 && B1) || (B0 && B2));

’ to denote false.

omp B2)) && !((B0 && B1) || (B0 && B2));
 && T) || (F && F))
 (F) || (F))
) && !(F || F)
 && !(F)

ot co is the same result which Program 2.2 calculated.

ators, we can use parentheses to control the order in which
e log

.3 Conditional Statements: If, If…Else

the relational and logical operators, we can begin
n general, a conditional statement takes on the form: “If A is true then
olean expression (i.e., evaluates to either true or false) and P is a

llow on the condition that A is true (i.e., A implies P). The statement
en” is called the antecedent and the statement(s) which follow(s) the

lled the consequent. For example, in the statement “If the player’s hitpoints are less than
ntecedent would be “the player’s hitpoints are less than zero” and the

are the key to any computer program, as the program must be able to
ake various decisions based on current conditions and react to user input. For example, in a game we

particular sample run, we entered 0, 1

B1 = true
B2 = false

R

isComplex = (B0 &&(B1

e will use ‘T’ to denote true and ‘FW

i lex = (B0 && (B1 ||sC
 = (F && (T || F)) && !((F

 (T)) && !(= (F &&
 = (F && T

 = (F)
 = F && T

 = F

incidentally, this N

Finally, observe that like the arithmetic oper
th ic rators are evaluated. al ope

2

Now that we can form boolean expressions with both
to form conditional statements. I

,” where A is some boP follows
statement (or statements) that fo
after the “if” and before the “th
“then” is ca
zero then he is dead,” the a
consequent would be “he is dead.”

Clearly, conditional statements
m

 48

need to be able to test whether game objects have collided (e.g., if collided then execute collision
physics), or whether the player still has enough magic points to cast a spell (e.g., if magic points are
greater than zero then cast magic missile), or whether the user has pressed a key or mouse button (e.g., if

ft arrow key pressed then strafe left; if right mouse button pressed then fire secondary weapon).

tatement

ditional statements to control program flow. If the antecedent is true
nt C++ statement(s). For example, consider the following short program:

ogram demonstrates the ‘if’ statement.

le

2.3.1 The If S

In the context of C++, we use con
then execute the conseque

Program 2.3: Pr

#include <iostream>
us namespace std; ing

int main()
{
 float num = 0.0f;
 cout << "Enter a real number: ";
 cin >> num;

 cout << endl;
 char cube = 0;
 c < "Cube " << num << " ?out < ?? (y)es / (n)o: ";
 cin >> cube;

 // Did the user enter a 'y' or 'Y' for yes--test both uppercase
 // and lowercase version.
 if(cube == 'y' || cube == 'Y')
 num = num * num * num;

 cout << endl;
 cout << "num = " << num << endl;
}

Output 2.3a.

Enter a real number: 2
Cube 2 ??? (y)es / (n)o: Y
num = 8
Press any key to continue

Output 2.3b.

Enter a real number: 2
Cube 2 ??? (y)es / (n)o: n
num = 2
Press any key to continue

 49

If (cube == 'y' || cube == 'Y') evaluates to true then the code “num = num * num *
num;” is executed, otherwise it is not executed. Thus an “if” statement can be used to control which
code is to be executed based on the condition.

Program 2.3 executes one statement if the condition,(cube == 'y' || cube == 'Y'), is true.

ust use a compound
rly braces. Program 2.4 illustrates this (new lines

mpound Statements.

More than one statement can be executed in consequence but to do so we m
atement, which is a set of statements enclosed in cust

have been bolded).

Program 2.4: Co

#include <iostream>
us namespace std;ing

in in() t ma
{
 float num = 0.0f;
 cout << "Enter a real number: ";
 cin >> num;

 ch ube = 0; ar c
 cout << "Cube " << num << " ??? (y)es / (n)o: ";
 cin >> cube;

 if(cube == 'y' || cube == 'Y')
 {
 cout << "Cubing num..." << endl;
 num = num * num * num;
 cout << "Done cubing..." << endl;
 }

 cout << "num = " << num << endl;
}

Output 2.4.

Enter a real number: 4
Cube 4 ??? (y)es / (n)o: y
Cubing num...
Done cubing...
num = 64
Press any key to continue

Note: The indentation of the line that follows the if(boolExpression) line is made purely for
readability purposes in order to identify the code that is to be executed if is true.
Remember, white space is ignored.

boolExpression

2.3.2 The Else Clause

 50

To give more control over the program execution flow, C++ provides an else clause. The else
clause allows us to say things like “If A is true then P follows, else Q follows.” Program 2.5
demonstrates how the else clause can be used.

Program 2.5: The else clause.

// Program demonstrates the 'else' clause.

#include <iostream>
using namespace std;

int main()
{
 int num = 0;
 cout << "Enter an integer number: ";
 cin >> num;

 // Test whether the entered number is >= to zero.
 if(num >= 0)
 {
 // If num >= 0 is true, then execute this code:
 cout << num << " is greater than or equal to zero.";
 cout << endl;
 }
 else // num < 0
 {
 // If num >= 0 is *not* true then execute this code:
 cout << num << " is less than zero." << endl;
 }
}

Output 2.5a.

Enter an integer number: -45
-45 is less than zero.
Press any key to continue

Output 2.5b.

Enter an integer number: 255
255 is greater than or equal to zero.
Press any key to continue

Program 2.5 asks the user to enter an integer number n and then outputs some information based on the
ero. As you can see, due to the conditional statements, the code

relationship between n and the number z
that is executed varies depending on the input.

2.3.3 Nested If…Else Statements

 51

An if…else statement can branch execution along two separate paths—one path if the condition is true
ever, what if you need more than two execution paths?

at if you wanted to say: “if A then B else, if C then D else, if E then F else G.” This can
 achi eral nested if…else statements. Program 2.6 shows how this might be used to

g-type game based on the character the user

ogram …else statements.

or a second path if the condition is not true. How
F
e
or instance, wh

b eved by using sev
initialize a player’s character class in a fantasy role-playin
selected.

Pr 2.6: Program illustrates creating multiple execution paths using nested if

#include <iostream>
#include <string>
using namespace std;

int main()
{
 // Output some text asking the user to make a selection.
 cout << "Welcome to Text-RPG 1.0" << endl;
 cout << "Please select a character class number..."<< endl;
 cout << "1)Fighter 2)Wizard 3)Cleric 4)Thief : ";

 // Prompt the user to make a selection.
 int characterNum = 1;
 cin >> characterNum;

 // Initialize character variables to default value.
 int numHitpoints = 0;
 int numMagicPoints = 0;
 string weaponName = "";
 string className = "";

 if(characterNum == 1) // Fighter selected?
 {
 numHitpoints = 10;
 numMagicPoints = 4;
 weaponName = "Sword";
 className = "Fighter";
 }
 else if(characterNum == 2) // Wizard selected?
 {
 numHitpoints = 4;
 numMagicPoints = 10;
 weaponName = "Magic Staff";
 className = "Wizard";
 }
 else if(characterNum == 3) // Cleric selected?
 {
 numHitpoints = 7;
 numMagicPoints = 7;
 weaponName = "Magic Staff";
 className = "Cleric";
 }
 else // Not 1, 2, or 3, so select thief.
 {
 numHitpoints = 8;
 numMagicPoints = 6;

 52

 weaponName = "Short Sword";
 className = "Thief";
 }

 cout << endl;
 cout << "Character properties:" << endl;
 co < "Class name = " << className ut < << endl;
 cout << "Hitpoints = " << numHitpoints << endl;
 cout << "Magicpoints = " << numMagicPoints << endl;
 co < "Weapon = " << weaponName ut < << endl;
}

Output 2.6.

Welcome to Text-RPG 1.0
Please select a character class number...
1)Fighter 2)Wizard 3)Cleric 4)Thief : 2

Character properties:
Class name = Wizard
Hitpoints = 4
Magicpoints = 10
Weapon = Magic Staff

 Press any key to continue

Here we provide four different execution paths based on whether the user chose a “Fighter,” “Wizard,”
“Cleric,” or “Thief.” Adding more execution paths is trivial. You need only add more “else if”
statements in the pattern shown.

2.3.4 The Switch Statement

The switch statement is essentially a cleaner alternative to nested if…else statements. It is best
explained by example, so consider the following:

rogram 2.7: Program illustrates creating multiple execution paths using the switch statement. P

#include <iostream>
#include <string>
using namespace std;

int main()
{
 int num = 0;
 cout << "Enter an even integer in the range [2, 8]: ";
 cin >> num;

 switch(num)
 {
 case 2:

 53

 cout << "Case 2 executed!" << endl;
 break;
 ca : se 4
 cout << "Case 4 executed!" << endl;
 break;
 case 6:
 cout << "Case 6 executed!" << endl;
 break;
 ca : se 8
 cout << "Case 8 executed!" << endl;
 break;
 default:
 cout << "Default case executed implies you do not ";
 cout << "enter a 2, 4, 6, or 8." << endl;
 break;
 }
}

Output 2.7.

Enter an even integer in the range [2, 8]: 4
Case 4 executed!
Press any key to continue

Here num is the value to test against several possible cases. The code first compares num against the first
case 2. If num equals 2 then the code following case 2 is executed; otherwise, the code jumps to the
next case—case 4. If num equals 4 then the code following case 4 is executed; otherwise, the code
jumps to the next case, and so on. The case is used to handle any other case not specifically
handled equals 5, there is no case statement to handle the
case wh se handles it.

p break statement is necessary following your case
 a case handler and there is not an ending break
o the next case handler, and then the next and so on

ncountered. The break statement
essentia ly exi the switch statement, which is typically desired after a particular case was
andled. To illustrate, Program 2.8 shows what happens if you do not include a break statement.

ent with no “breaks.”

default
 in the switch statement. For example, if num

, so therefore the default caere num is 5

An im ortant f tatement is that a act about the switch s
handling code. When the execution flows into

 flow automatically falls tstatement, the program
til th end un e of the default case handler, or until a break is e

l ts out of
h

Program 2.8: Program demonstrates a switch statem

#include <iostream>
#include <string>
using namespace std;

int main()
{
 int num = 0;
 cout << "Enter an even integer in the range [2, 8]: ";
 cin >> num;

 switch(num)

 54

 {
 case 2:
 cout << "Case 2 executed!" << endl;
 case 4:
 cout << "Case 4 executed!" << endl;
 case 6:
 cout << "Case 6 executed!" << endl;
 case 8:
 cout << "Case 8 executed!" << endl;
 default:
 cout << "Default case executed implies you do not ";
 cout << "enter a 2, 4, 6, or 8." << endl;
 }
}

Output 2.8.

Enter an even integer in the range [2, 8]: 4
Case 4 executed!
Case 6 executed!
Case 8 executed!
Default case executed implies you do not enter a 2, 4, 6, or 8.
Press any key to continue

On the other hand, this execution fall-through may be used for your own purposes. For example, you

break;
 case 3: // Fall through to case 4
 case 4: // Fall through to case 5

e same code for 3, 4, and 5.
 break;

.3.5 The Ternary Operator

ompact notation to represent a basic if…else statement. It is the only operator
rands. The general syntax is this:

ator:

might have a situation where you want to execute the same code for several cases. This can be
implemented like so:

case 0: // Fall through to case 1
case 1: // Fall through to case 2
case 2:
 ... // Execute same code for 0, 1, and 2.

 case 5:
 ... // Execut

2

The ternary operator is a c
 C++ that takes three opein

nary OperTer (boolExpression ? value1 : value2)

 55

The ternary operator may be read as follows. If boolExpression is true then the ternary operation
valuates to value1, else it evaluates to value2. Consider this specific example, where B is of type

10 : -5;

xpression evaluates to 10, which is then assigned to x. However, if B is not true
aluates to –5, which is then assigned to x. Notice that this is equivalent to:

;

ause of its cryptic

2.4 Repetition

The ab
will ne
enemy projectile” or “While the player is not dead, continue game play.” C++ facilitates the need for

petition via loops. C++ provides three different loop styles; these variations are for convenience
onl
three d

2. 1

The fo
The fol

Pro m

e
bool:

 int x = B ?

If B is true then the e
then the expression ev

 int x;
 if(B)
 x = 10
 else
 x = -5;

Finally, it is worth mentioning that many programmers dislike the ternary operator bec

ntax. sy

ility to repeat C++ statements is an important one. For instance, to make nontrivial programs we
ed to be able to say things like “For each game character, test whether or not any were hit by an

re
y—you could use only one of these styles and forever ignore the other two. However, by providing

ifferent styles, you can pick the style that is most natural to the type of repetition needed.

4. The for-loop

r-loop is commonly used when you need to repeat some statement(s) a known number of times.
lowing program executes an output statement ten times.

gra 2.9: Program demonstrates the for-loop.

#include <iostream>
using namespace std;

int main()
{
 for(int cnt = 0; cnt < 10; ++cnt)
 {
 cout << cnt << ": Hello, World!" << endl;
 }

 56

}

Output 2.9.

0: Hello, World!
1: Hello, World!
2: Hello, World!
3: Hello, World!
4: Hello, World!
5: Hello, World!
6: Hello, World!
7: Hello, World!
8: Hello, World!
9: Hello, World!
Press any key to continue

The syntax of the for-loop is simple. There are essentially four parts to a “for loop.”

art 1; Part 2; Part 3)

for(P
{

art 4; P
 }

• Part 1: This can be any C++ statement(s). However, it is usually used to initialize a counting

variable; that is, a variable that counts the loop cycles. The code of Part 1 is executed first and
executed once. Program 2.9 declares and initializes a counting variable called cnt to zero;

int cnt = 0.”
only
that is, “

• Part 2: This is the conditional part; that is, the loop continues to loop only so long as this

is condition is tested in every loop cycle. Program 2.9 makes the condition
uld continue to loop as long as the counting variable is less than ten; that is,

condition is true. Th
that the program sho
“cnt < 10.”

• Part 3: This can be any C++ statement(s). However, it is usually used to modify the counting

y. The statement(s) of Part 3 are executed for every loop cycle. In Program
ounter variable so that cnt is increased by one for every loop cycle.

Because cnt is initialized to zero and it is incremented by one for every loop cycle, it follows

variable in some wa
2.9, we increment the c

that Program 2.9’s for-loop will repeat exactly ten times.

• Part 4: This part contains the statement(s) which you want to execute for every cycle of the loop.
Just as in an “if” statement, the curly braces are optional for one statement. However, if you need
to execute several statements per cycle then you need the curly braces to form a compound
statement.

, the following code is functionally equivalent to the for-loop of

int cnt = 0;

To show the flexibility of the for-loop
Program 2.9:

 57

for(; cnt < 10;)
{
 cout << cnt << ": Hello, World!" << endl;
 ++cnt;
}

What we have done here is moved the counter initialization outside the loop and replaced Part 1 with an
mpty statement, which is perfectly legal since Part 1 can be “any C++ statement(s)”. Second, we have

rt 4, and we replaced Part 3 with an empty statement.
gal since Part 3 can be “any C++ statement(s)”. Convince yourself that this

 2.9.

 and Part 3 of the for-loop can contain multiple statements. For example:

e
moved the counter increment from Part 3 to Pa
Again, this is perfectly le
alternate for-loop is functionally equivalent to the for-loop of Program

Finally, Part 1

Program 2.10: Program demonstrates the for-loop.

#include <iostream>
us namespace std; ing
int main()
{
 fo t cnt1 = 0, int cnt2 =r(in -cnt2) 9; cnt1 < 10; ++cnt1, -
 {
 cout << cnt1 << "---Hello, World!---" << cnt2 << endl;
 }
}

Output 2.10.

0---Hello, World!---9
1---Hello, World!---8
2---Hello, World!---7
3---Hello, World!---6
4---Hello, World!---5
5---Hello, World!---4
6---Hello, World!---3
7---Hello, World!---2
8---Hello, World!---1
9---Hello, World!---0
Press any key to continue

This time there are two counter variables (separat

cremented and the oth
ed by commas), which are initialized to 0 and 9.

er is decremented. Consequently, as shown from the output,
ards. Part 2—the condition—remains the same; that is, it still

Moreover, one is in
one counts forward and one counts backw

e loop ten times. specifies that w

2.4.2 The while Loop

 58

The while-loop is commonly used when you need to repeat some statements an unknown number of
mes. For example, in a poker game, after every hand, the program might ask the user if he wants to

ser input, the program will decide whether to “repeat” and play again, or to
ti
play again. Based on this u
exit the loop.

The following program illustrates a while-loop that terminates based on user input.

Program 2.11: Program demonstrates the while-loop.

#include <iostream>
using namespace std;

int main()
{
 // Boolean value, true if we want to quit, false otherwise.
 bool quit = false;

 // Keep looping so long as quit is not true.
 while(!quit)
 {
 // Ask the user if they want to quit or not.
 char inputChar = 'n';
 cout << "Continue to play? (y)es/(n)o...";
 cin >> inputChar;

 // Test for both uppercase or lowercase.
 if(inputChar == 'n' || inputChar == 'N')
 {
 cout << "Exiting..." << endl;
 quit = true;
 }
 else
 cout << "Playing game..." << endl;
 }
}

O .11. utput 2

Continue to play? (y)es/(n)o...y
Playing game...
Continue to play? (y)es/(n)o...Y
Playing game...
Continue to play? (y)es/(n)o...y
Playing game...
Continue to play? (y)es/(n)o...n
Exiting...
Press any key to continue

Program 2.11 is a useful example because, in addition to the while-loop, it demonstrates many of the
other topics of this chapter; namely, relational operators (e.g., inputChar == 'n'), logical operators
(e.g., !quit) and conditional statements (if…else).

 59

As Program 2.11 implies, the while-loop takes on the following general syntax:

Execute this C++ statement(s);

The condition used in Program 2.11 is the boolean expression !quit (not quit), which instructs the

s !quit is true. If the condition is true, we execute the statements in
the loop body. Inside the loop body, the program asks the user if he wishes to continue. If the player
chooses “no” then the program assigns true to quit, thereby making false. This will cause the

 depends on user input.

ile Loop

o the while-loop. However, a do…while is guaranteed to execute at least
ce. these statements at least once regardless of the condition, then while the
nditi o do these statements.” Program 2.12 shows the do…while syntax.

ogram 2.12: P

while(condition is true)

program to keep looping so long a

!quit
while-loop to terminate on the next cycle when the condition !quit is tested again. Observe that this
loop will repeat an unknown amount of times and its termination

2.4.3 The do…wh

The do…while loop is similar t
Essentially it says: “Do on

co on holds, continue t

Pr ro emonstrates the do…while lgram d oop.

#include <iostream>
using namespace std;
int main()
{
 bool condition = false;

 do
 {
 c < "Enter a 0 to quit or 1 to coout < ntinue: ";
 cin >> condition;
 }
 while(condition);
}

Output 2.12.

Enter a 0 to quit or 1 to continue: 1
Enter a 0 to quit or 1 to continue: 1
Enter a 0 to quit or 1 to continue: 0
Press any key to continue

A
b

s you can see from Program 2.12, despite condition being initialized to false, we still enter the loop
ody. Inside the body, the program assigns the truth-value the user entered to condition. Then at the

end, the condition is tested to see if we will loop again. By moving the loop condition to the end, we are
guaranteed the loop body statements will be executed at least once.

 60

Note that it does not take too much imagination to see how a do…while loop could be rewritten using a
while-loop. Consequently, in practice, the do…while loop is not encountered very often.

2.4.4 Nesting Loops

Just as if…else statements can be nested, loops can be nested; that is, a loop inside a loop. Consider the
following program, which nests a for-loop inside a while-loop:

Program 2.13: Program demonstrates nested loops; that is, loops inside loops.

#include <iostream>
using namespace std;

int main()
{
 bool quit = false;

 while(!quit)
 {
 for(int cnt = 0; cnt < 10; ++cnt)
 cout << cnt << " ";

 cout << endl;

 char inputChar = 'n';
 cout << "Print next ten integers (y)es/(n)o? ";
 cin >> inputChar;

 if(inputChar == 'n' || inputChar == 'N')
 {
 cout << "Exiting..." << endl;
 quit = true;
 }
 }
}

Output 2.13.

0 1 2 3 4 5 6 7 8 9
Print next ten integers (y)es/(n)o? y
0 1 2 3 4 5 6 7 8 9
Print next ten integers (y)es/(n)o? y
0 1 2 3 4 5 6 7 8 9
Print next ten integers (y)es/(n)o? n
Exiting...
Press any key to continue

 61

Here the outermost while-loop executes the innermost for-loop. The inner for-loop outputs the integers
, and -loop continues to loop as long as the user specifies to continue. Thus, rows of

 user answers “yes” to the question.

p need to be handled which terminate the loop early. For example,
) over a set of game items until you find a specific one. However, once you find it,

ou can stop your search and exit the loop. To facilitate this case, C++ provides the keyword,
which b
an infi
the play

gram 2.14: Program demonstrates the ‘break’ keyword. (Note that Program 2.14 has the same functionality as
Program 2.11 and therefore will have same output for the same input.)

0-9 the outer while
integers 0-9 will continue to be output as long as the

2.4.5 Break and Continue Keywords

Sometimes spec
u may iterate (loop

ial cases inside a loo
yo
y break

reaks out of the current loop. To illustrate, Program 2.14 rewrites Program 2.11, this time using
nite loop; that is, a loop that is always true (and as such, will loop infinite times). This time, if
er chooses not to continue, a break statement is executed to exit the infinite loop.

Pro

#include <iostream>
using namespace std;

int main()
{
 // Loop forever.
 while(true)
 {
 // Ask the user if they want to quit or not.
 char inputChar = 'n';
 cout << "Continue to play? (y)es/(n)o...";
 cin >> inputChar;

 // Test for both uppercase or lowercase.
 if(inputChar == 'n' || inputChar == 'N')
 {
 cout << "Exiting..." << endl;
 break; //<--This will exit out of the infinite loop.
 }
 else
 cout << "Playing game..." << endl;
 }
}
In addition to breaking out of a loop early, there may be special cases that allow us to decide early on

hether we can jump straight to the next loop cycle. The following program sums the numbers from
s this by testing for

o the next loop

w
zero to fifteen. However, it ignores the numbers three, seven, and thirteen. It doe
these numbers, and if it finds one of them, then the program simply continues (jumps) t
cycle, thereby ignoring them (i.e., not including them in the sum).

Program 2.15: Program demonstrates the ‘continue’ keyword. (Note that Program 2.15 does not output anything.)

#include <iostream>
using namespace std;

 62

in in() t ma
{
 int sum = 0;
 for(int cnt = 0; cnt <= 15; ++cnt)
 {
 nt == 3 || cnt == 7 || cnt == 13) if(c
 continue; // <--jump straight to next loop cycle.

 // Otherwise, add the number to the sum.
 sum += cnt;
 }
}

statements. However, in some cases, the break and
continue keywords provide a much cleaner, shorter, and intuitive way of expressing the idea than a
more complex if…else statement would.

2.5 Arrays

hus fa e needed, we simply declared them like so:

 “”;

owev 00 variables or an even greater amount? It is not practical to actually
d give them all unique names. We can, however, declare a set of variables

 the act way using an array. An array is a contiguous block of memory that
vidual variables in an array the elements of the array,
olds the array size. To declare an array we use the

tions:

at elements.
int n[200]; // Array with 200 integer elements.

 specific element in an array can be accessed using the bracket operator and supplying an array
index, which identifies the element:

0f to element zero.

Note: It does not take too much effort to realize that the functionality of the break and continue
statements can be implemented with if…else

T r, when variables wer

=std::string str
 float f = 0.0f;
 int n = 0;

H er, what if you need 1
declare so many variables an

f same type in a compo
contains n number of variables. We call the indi
nd we call the number of elements an array ha

following general syntax:

 type identifier[n];

Where n is an integer constant that specifies the number of elements the array contains. Here are some
specific examples of array declara

 float fArray[16]; // Array with 16 flo

 std::string str[5000]; // Array with 5000 string elements.

A

fArray[0] = 1.0f; // Assign 1.

 63

 fArray[1] = 2.0f; // Assign 2.0f to element one.
 fArray[12] = 13.0f;// Assign 13.0f to element twelve.

//fArray[20] = 21.0f;// !! BAD, OUT OF BOUNDS INDEX !!

Important:

Observe that arrays are zero-based; that is, the first element in the array is identified with an index of
zero. And therefore, the last element is identified with an index of n-1, where n is the total number of
elements.

Supplying an out of bounds index results in code that compiles—the compiler will not force you to correct

ou are essentially accessing memory that does not
fArray was declared to store 16 elements. Thus, an

t of bounds index.

cessed one by one and assigned an initial

t in

intArray[5] = 78;
intArray[6] = 0;

rray[7] = 4;

+ provides an alternative syntax:

Array[8] = {-4, 6, -2, 0, 33, 78, 0, 4};

entry in the curly brace list corresponds to element [0], the second entry to [1], and so on.
ent is explicitly initialized, the compiler can deduce

eds, and therefore, the array size, 8, is not explicitly required. That is,
is next statement is equivalent:

In actuality, all the preceding array initialization syntaxes are only practical for small arrays. Manually
initializing an array with a thousand elements, for example, is clearly impractical.

2.5.2 Iterating Over an Array

it. However, it is strongly advised not to do so as y
belong to you. In the former example, the array
index of 20 is an ou

2.5.1 Array Initialization

To initialize the elements of an array, each element could be ac
value like so:

 in tArray[8];

intArray[0] = -4;
 intArray[1] = 6;
 intArray[2] = -2;

[3] = 0; intArray
intArray[4] = 33;

 intA

 In addition, C+

 int int

Here the first
By using this curly brace notation, where each elem
how many elements the array ne
th

 int intArray[] = {-4, 6, -2, 0, 33, 78, 0, 4};

 64

Typically, when a large array of items are stored, the elements are somewhat related to a larger whole.
For example, in 3D computer graphics we usually represent a 3D object with an array of polygons.

hese polygons form a larger whole, namely the 3D object. If all of the polygon parts of the 3D object
 3D object itself moves in that direction. As such, we normally do

ot modify the elements of arrays individually. Rather, we usually want to apply the same operation to
every element (e.g., initialize all elements to zero, add all corresponding elements of two arrays into a
third array). A loop is perfect for doing this. Program 2.16 iterates through every element in two arrays
of the same size and adds their corresponding elements together and stores the sum in a third array,
which is also of the same size.

Program 2.16: Program demonstrates iterating over arrays.

T
move in the same direction then the
n

#include <iostream>
using namespace std;

int main()
{
 int array0[7] = {1, 2, 3, 4, 5, 6, 7};
 int array1[7] = {-9, -8, -7, -6, -5, -4, -3};

 int sum[7];//<--Stores the addition result.
 for(int i = 0; i < 7; ++i)
 {
 // Add the corresponding i-th elements and store in sum.
 sum[i] = array0[i] + array1[i];

 cout << array0[i] << " + " << array1[i] << " = ";
 cout << sum[i] << endl;
 }
}

Output 2.16.

1 + -9 = -8
2 + -8 = -6
3 + -7 = -4
4 + -6 = -2
5 + -5 = 0
6 + -4 = 2
7 + -3 = 4
Press any key to continue

Loops and arrays go hand-in-hand and many problems are solved using by them together. Note how the
ounter variable of the c for-loop naturally becomes an index into the i-th element of the array.

rrays

2 ltidimensional A.5.3 Mu

 65

It is possible to have an array of arrays; that is, an array where each individual element is also an array.

One can be declared using the following double bracket syntax:

 type identifier[m][n];

Figure 2.1: An array or arrays, where each element contains an array. If we say the array of arrays goes from top to
bottom and each element of this array of arrays contains an array going left to right then we have a table layout.

As Figure 2.1 shows, an array of arrays forms a rectangular table or matrix. The constant m specifies the
number of rows and the constant n specifies the number of columns. Such a matrix is of size (or

imension) . Here are some specific examples of matrix declarations:

 float fMatrix[16][12]; // Matrix with 16x12 elements.
int n[20][20]; // Matrix with 20x20 elements.
std::string str[500][100]; // Matrix with 500x100 elements.

We can access a specific element in a matrix using the double bracket syntax and supplying two array
dices, which identifies the row and column of the element:

fMatrix [0][0] = 1.0f; // Assign 1.0f.

 = 2.0f; // Assign 2.0f.
] = 13.0f;// Assign 13.0f.

 //fMatrix[16][3] = 21.0f;// !! BAD, OUT OF BOUNDS INDEX !!

In a
syntax

 three columns.

{

};

d

nm×

in

 fMatrix [1][2]
 fMatrix [12][10

ddition to performing individual element initializations, you can initialize matrices using curly brace
as shown here:

 // Matrix with four rows of

int matrix[4][3] =

{1, 2, 3}, // Row 1
{4, 5, 6}, // Row 2
{7, 8, 9}, // Row 3
{10, 11, 12}// Row 4

 66

Becaus ix is done with a double nested loop—one that

erates over the rows and one that iterates over the columns. The following double for-loop iterates
ove

for(int i = 0; i < 4; ++i)

New line for each row.
}

 arrays and so on by following the same general pattern. That is, a 3D

s:

 type identifier[m][n][p];

ultidimensional array greater than a 3D array to
avoid overly complex situations.

2.6 Summary

1. The relational operators allow us to determine certain elementary relationships between

a. The logical AND operator (&&)

e of the extra dimension, iteration over a matr
it

r the preceding matrix and outputs its elements to the console window:

// Loop over rows.

 {

 // Loop over columns.
 for(int j = 0; j < 3; ++j)

 {
 cout << matrix[i][j] << " ";
 }
 cout << endl; //

You can create arrays of arrays of
array would be declared a

But, as a rule of thumb, it is advised that you not use a m

variables, such as equality and inequality.

2. We use three logical operators:

b. The logical OR operator (||)
operator (!). c. The logical NOT

 67

These logical operators allow us to form more complex boolean expressions and therefore enable

 make decisions at runtime. They allow us
ecuted if a particular condition is satisfied

ue then execute this code).

4. Loops enable us to repeat a block of code a variable number of times.

ontiguous block of memory that contains n amount of variables. We call the
les in an array the elements of the array, and we call the number of elements an

array holds, the array size.

2.7.1 Logical Operator Evaluation

hat Boolean value do the following expressions

 || B || C || D

 && B && C && D

 d. !((A && B) || (B && !C)) || !(C && D)

e. !(!((A && !D) && (B || C)))

ne unit north, east, south or west.
ach time the player enters a selection, update the coordinates of the user and output the current

position. Start the player at the origin of the coordinate system. Your program’s output should look like
e followin :

ast, (S)outh, (W)est (Q)uit? n
urren P 0, 1)
Move (N)orth, (E)ast, (S)outh, (W)est (Q)uit? e

us to make more useful conditional statements.

to any program that needs to3. Conditionals are the key
to make certain that a block of code will only be ex
(i.e., if this condition is tr

5. An array is a c
individual variab

2.7 Exercises

Assume A is true, B is true, C is false and D is false. W
evaluate to?

a. A

 b. A

 c. !C && !D

2.7.2 Navigator

Write a program that displays a menu which allows the user to move o
E

th g

Current Position = (0, 0)
ove (N)orth, (E)M
C t osition = (

 68

Curren osi
ove (N)orth, (E)ast, (S)outh, (W)est (Q)uit? s

w

ove (N)orth, (E)ast, (S)outh, (W)est (Q)uit? q

Write an averaging program. The program must prompt the user to enter a positive integer that specifies
es to average. The program must then ask the user to input these n

values. The program should then compute the average of the values inputted and output it to the user—
use the following average formula:

t P tion = (1, 1)
M
Current Position = (1, 0)
Move (N)orth, (E)ast, (S)outh, (W)est (Q)uit?
Current Position = (0, 0)
M
Exiting...
Press any key to continue

2.7.3 Average

the number of values n the user wish

n
aaa

avg n 110 ... −+++
= .

Your program’s output should look like the following:

1] = 2
2] = 3
3] = 4
[4] = 5
verage = 3

Factorial

orial of a positive integer n, denoted n!, is defined as follows:

)

ent, 0! = 1. To ensure that you are comfortable with the factorial operation, let us write out a
uple of examples.

• Evaluate 4!.

Enter the number of values to average: 5
0] = 1 [
[
[
[

A
Press any key to continue

2.7.4

The fact

()() ()()(123...21 −−= nnn . n!

mBy agree
co

 69

 4! = 4

(3)(2)(1) = 24.

• Evaluate 6!.

trices. Consider

⎣ −⎦⎣ −++⎦− 63160300163

Write a program that creates three matrix variables of dimension

 6! = 6(5)(4)(3)(2)(1) = 720.

Write a program that asks the user to enter in a positive integer n. Compute the factorial of n and output
the result to the user. Your program’s output should look like the following:

Enter a positive integer to compute the factorial of: 5
5! = 120
Press any key to continue

2.7.5 Matrix Addition

The sum of two matrices is found by adding the corresponding elements of the two ma
the following two matrices and A B.

 ⎥⎢=A ⎥⎢=B
⎤⎡− 825 ⎤⎡ 201

⎦⎣ 001 ⎦⎣ − 630

The sum, found by adding corresponding elements, is:

 ⎢=+BA ⎥
⎤

⎢
⎡−

=⎥
⎤

⎢
⎡ +++−

=⎥
⎤

⎢
⎡

+⎥
⎤⎡− 1024280215201825

⎣⎦⎣ 0001 ⎦

32× , two of which are to be initialized

in such a way that they are identical to A and B; the third will be used to store the sum of A and B.
sing a double for-loop to iterate over the matrix elements, compute the sum of each component and
ore the result in the third matrix (e.g., C[i][j] = A[i][j] + B[i][j]). Finally, output the matrix sum. Your

program’s output should look like the following:

-5 2 8
1 0 0

 =

y key to continue

U
st

A =

B
1 0 2
0 3 -6

A + B =
-4 2 10
1 3 -6

ress anP

 70

2.7.6 ASCII

Write a program that outputs every character in the extended ASCII character set in the range [33, 255].
Note that we omit characters from [0, 32] since they are special command characters. (Hint: Recall that
characters are represented by the char and unsigned char types, so simply loop through each

 : 59: ; 60: < 61: = 62: >
 D 69: E 70: F 71: G 72: H

 97: a 98: b 99: c 100: d 101: e 102: f
03: g 104: h 105: i 106: j 107: k 108: l 109: m 110: n 111: o 112: p

: ô 148: ö 149: ò 150: û 151: ù 152: ÿ
 155: ¢ 156: £ 157: ¥ 158: ₧ 159: ƒ 160: á 161: í 162: ó

 170: ¬ 171: ½ 172: ¼
73: ¡ 174: « 175: » 176: ░ 177: ▒ 178: ▓ 179: │ 180: ┤ 181: ╡ 182: ╢
83: ╖ 184: ╕ 185: ╣ 186: ║ 187: ╗ 188: ╝ 189: ╜ 190: ╛ 191: ┐ 192: └

┬ 195: ├ 196: ─ 197: ┼ 198: ╞ 199: ╟ 200: ╚ 201: ╔ 202: ╩
 ╥ 211: ╙ 212: ╘

▐
 Φ

8: ε 239: ∩ 240: ≡ 241: ± 242: ≥
√ 252: ⁿ

inear Search

t of data for values that have some
e and you want to

s; that is, a subset of
n order to do this, you will need to search the

rs of each class and copy those members into their corresponding class
subset.

possible value—33-255—and output it.) Your program’s output should look like the following:

33: ! 34: " 35: # 36: $ 37: % 38: & 39: ' 40: (41:) 42: *
43: + 44: , 45: - 46: . 47: / 48: 0 49: 1 50: 2 51: 3 52: 4
53: 5 54: 6 55: 7 56: 8 57: 9 58:
3: ? 64: @ 65: A 66: B 67: C 68:6
73: I 74: J 75: K 76: L 77: M 78: N 79: O 80: P 81: Q 82: R
83: S 84: T 85: U 86: V 87: W 88: X 89: Y 90: Z 91: [92: \
93:] 94: ^ 95: _ 96: `
1
113: q 114: r 115: s 116: t 117: u 118: v 119: w 120: x 121: y 122: z
123: { 124: | 125: } 126: ~ 127: ⌂ 128: Ç 129: ü 130: é 131: â 132: ä
133: à 134: å 135: ç 136: ê 137: ë 138: è 139: ï 140: î 141: ì 142: Ä
143: Å 144: É 145: æ 146: Æ 147
153: Ö 154: Ü
163: ú 164: ñ 165: Ñ 166: ª 167: º 168: ¿ 169: ⌐
1
1
193: ┴ 194:
203: ╦ 204: ╠ 205: ═ 206: ╬ 207: ╧ 208: ╨ 209: ╤ 210:
213: ╒ 214: ╓ 215: ╫ 216: ╪ 217: ┘ 218: ┌ 219: █ 220: ▄ 221: ▌ 222:
223: ▀ 224: α 225: ß 226: Γ 227: π 228: Σ 229: σ 230: µ 231: τ 232:
233: Θ 234: Ω 235: δ 236: ∞ 237: φ 23
43: ≤ 244: ⌠ 245: ⌡ 246: ÷ 247: ≈ 248: ° 249: · 250: · 251: 2
253: ² 254: ■ 255:
Press any key to continue

2.7.7 L

Background Information

In writing computer programs you will often need to search a se
particular properties. For example, imagine you have some fantasy role-playing gam

on the character classeorganize a global dataset of “players” into subsets based
a subset of clerics, and etc. Iwarriors, a subset of wizards,

global player list for the membe

 71

As another example, suppose a
particular identification number,

 business issues identification numbers to its customers. Given a
 the business would like to search its customer database for the

customer information (e.g., name, address, order history, etc.) that corresponds with the given
 that the value used for the search, which in this example is an identification

umber, is called a If the business searched for a customer’s information using the

xample

identification number. Note
search key.n

customer’s last name, then the last name would be the search key.

One method of searching a set of data is called a linear search. The linear search simply scans the
dataset element-by-element until it finds the elements it is looking for. Clearly, this search can be fast if
the particular element is found early on (not guaranteed), or can be slow if the particular element is one
of the last few elements to be scanned.

E : Find the array position of the value ‘9’ in the following dataset: {7, 3, 32, 2, 55, 34, 6, 13, 29,
22, 11, 9, 1, 5, 42, 39, 8}.

Solution: We use the linear search m
we find that the value ‘9’ is

ethod; that is, reading the array left to right and element-by-element
located in the eleventh position (e.g., index [11]) of the array (recall that

 general, we have the following linear search algorithm:

ine S

array positions start at 0 and not 1).

In

L ar earch.

Let x[n] = x[0],…,x[n-1] be an array of given integers to search.
Let store the array index of the item we are searching for. Position be an integer to
Let are searching for. Value be the value we

For 0=i to 1−n , do the following:
 If(x[i] = Value)
 Position = i;
 Break;
 Else
 Continue;

eExercis

rogram search the array for the integer the user entered and output its array position (i.e.,
s array index). Your output should look similar to the following:

tem f dex [4]
Press any key to continue

Hardcode the following integer array: {7, 3, 32, 2, 55, 34, 6, 13, 29, 22, 11, 9, 1, 5, 42, 39, 8} into your

rogram. Display this array to the user. Then ask the user to input an integer to search for. Yourp
p should then
it

List = 7, 3, 32, 2, 55, 34, 6, 13, 29, 22, 11, 9, 1, 5, 42, 39, 8
nter an integer in the list to search for: 55 E
I ound at in

 72

2.7.8 Selection Sort

Background Information

 you may want to sort records
f customers by age, zip code, and/or gender; or in 3D computer graphics you might want to sort 3D

geometry (e.g., polygons) based on their distance from the viewer. Because sorting is so important, we
ill end up spending several lab projects working on the different sorting techniques that have been

also

A frequent task that occurs in writing computer programs is the need to sort a set of data. For example,
you might want a list of integers sorted in ascending or descending order;
o

w
devised. However, to begin with, we will start with one of the simplest (and one of the least
efficient) sorting methods, called the selection sort.

The selection sort algorithm is as follows:

Ascending order Selection Sort.

Let x[n] = x[0],...,x[n-1] be an array of given integers to sort.
Let p be an integer to store an array index.

For 0=i to 2−n , do the following:

1. Find the array index of the smallest value in the subarray x[i],…,x[n-1] and store
it in p.

2. Swap x[i] and x[p].
3. Increment i.

To be sure that you understand what this algorithm specifies, consider the following example:

Example:

Consider the following integer array:

= { 7, 4, 1, 8, 3 };
 we scan through the subarray x[0],…,x[n-1] and search for the smallest number. We find

t integer 1 is located at index p = 2. The algorithm then tells us to swap x[i] and x[p],
tly means to swap x[0] and x[2]. Doing so yields the new array configuration:

barray x[1],…,x[n-1] and searching for the
= 4. Swapping x[1] and x[4] yields:

1, 3, 7, 8, 4

x[5]

When 0=i
allesthat the sm

which curren

1, 4, 7, 8, 3

1 . Scanning through the suIncrementing i, we now have =i
smallest integer we find 3 at index p

 73

Incrementing i, we now have 2=i . Scanning through
smallest integer we find 4 at index p = 4. Swapping x[2

1, 3, 4, 8, 7

 the subarray x[2],…,x[n-1] and searching for the
] and x[4] yields:

Incrementing i, we now have . Scanning through the subarray x[3],…,x[n-1] and searching for the
smallest integer we find 7 at index p = 4. Swapping x[3] and x[4] yields:

1, 3, 4, 7, 8

. Observe that we make passes, since the
ts.

As you can see, this algorithm moves one element into its correct sorted position per pass. That is, for
each cycle it finds the smallest element in the subarray x[i],…,x[n-1] and moves it to its correct sorted

osition, which is the front of the subarray: x[i]. This makes sense because, if we are sorting in
cending order then the smallest element in the subarray x[i],…,x[n-1] should be first. Because each

pass correctly sorts one element, we do not need to consider that element anymore. We effectively
nore that element by shortening the subarray by one element (incrementing i). We then repeat the
ocess with our new shortened subarray by searching for the next smallest element and placing it in its

sorted position, and so on, until we have sorted the entire array.

xercise

3=i

We have successfully sorted the array in ascending order
last pass correctly sorts both the x[n-2] and x[n-1] elemen

2−n

p
as

ig
pr

E

sk the user to input ten random (non-sorted) integers and store them in an array. Sort these integers in
cending order using the selection sort and output the sorted array to the user. Your output should

look similar to the following:

ter ten unsorted integers...
] = 5

[1] = -3
[2] = 2
] = 1
] = 7

[5] = -9
[6] = 4
] = -5
] = 6

[9] = -12

sorted List = 5, -3, 2, 1, 7, -9, 4, -5, 6, -12,
rting...

Sorted List = -12, -9, -5, -3, 1, 2, 4, 5, 6, 7,
Press any key to continue

A
as

En
[0

[3
[4

[7
[8

Un
So

 74

 Chapter 3

 Functions

Introduction

 75

A function is a unit of code designed to perform a certain task. In order to perform its task, a function
me information and/or returns some information. The concept is somewhat similar to

e trigonometric function
typically inputs so
mathematical functions. Consider th ()xsin , which takes a parameter x and

) some value, namely the sine of x. For example, the sine of 45° is approximately
, given 45° as a parameter, the function works to compute

hen returns or evaluates to the result 0.707.

he utility of functions can be be easily demonstrated if we first consider a program without them. To
lustrate, suppose we have a program that must input the radius of a circle from the user and compute

evaluates (returns
0.707, () 707.045sin =° ; that is to say ()xsin
the sine of the given angle, and t

T
il
the area throughout the program. (Recall the area of a circle is given by 2rA ⋅= π , where r is the radius
of the given circle.) As a first attempt we might do the following:

Program 3.1: Program without Functions.

#include <iostream>
using namespace std;

int main()
{
 float PI = 3.14f;

 // Input a radius and output the circle area.
 float radius = 0.0f;
 cout << "Enter a radius of a circle: ";
 cin >> radius;
 float area = PI*radius*radius;
 cout << "Area = " << area << endl;

 // Do some other work...
 cout << "Other work..." << endl;

 // Input another radius and output the circle area.
 cout << "Enter a radius of a circle: ";
 cin >> radius;
 area = PI*radius*radius;
 cout << "Area = " << area << endl;

 // Do some other work...
 cout << "Other work..." << endl;

 // Input another radius and output the circle area.
 cout << "Enter a radius of a circle: ";
 cin >> radius;
 area = PI*radius*radius;
 cout << "Area = " << area << endl;

 // and so on...
}

Output 3.1.

Enter a radius of a circle: 2

 76

Area = 12.56
Other work...
Enter a radius of a circle: 3
Area = 28.26
Other work...
Enter a radius of a circle: 1
Area = 3.14
Press any key to continue

ate code which
esse a rams with duplicated code are hard
to m to be made, it would be necessary to make the change
or c e ogram, going through each source
cod l rror.

compute the area and return the result. For the sake of discussion, let us assume such a
unction exists and call it Area; moreover, assume the task of Area—that is inputting the radius from

the user, computing the area and returning the result—is executed by simply writing “Area()” in a C++
program. (When we execute a function we say that we call it or invoke it.) Program 3.1 can now be
rewritten like so:

Program 3.2: Revision of Program 3.1 using an Area function. Note that this program will not compile yet because
the function Area is not actually defined. Note that we have bolded the calls to the area function.

The main problem which Program 3.1 suffers is code duplication—there is duplic

nti lly performs the same task. Besides bloating the code, prog
aintain because if changes or corrections need
orr ction in every duplicated instance. In a large real world pr
e fi e and making changes is not only a waste of time, but it is prone to e

The problems of Program 3.1 could be resolved using a function whose sole task is to input the radius
from the user,
f

#include <iostream>
using namespace std;

int main()
{
 // Input a radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // Do some other work...
 cout << "Other work..." << endl;

 // Input another radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // Do some other work...
 cout << "Other work..." << endl;

 // Input another radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // and so on...
}
Program 3.2 is much cleaner and more compact. There is no longer duplicate code for the input code

pute a and calculation code—we simply write “Area()” wherever necessary to input a radius and com

 77

circle area. Moreover, if a change or correction needs to be made to the code Area executes, it would
modification of the Area function. With that, let us see how Area works.

ons, let us examine the actual syntactic details of making
unction (i.e., create) the following needs to be specified:
pe of value the function evaluates to)

 name (i.e., what you want to refer to it as)
eter list (i.e., what values does it take as input, if any)

gure ction, from the preceding discussion, would be
plem

only necessitate

3.1 User Defined Functions

Now that we understand the benefits of functi
and using them. To define a f

 return type (i.e., the ty

 param
body (i.e., the code to be executed when the function is invoked)

3.1 shows the syntax of how the Area funFi

im ented.

Figure 3.1: Function definition.

l compile and run.

on of Program 3.2, this time with the Area function defined.

lProgram 3.3 rewrites Program 3.2, this time defining Area so that the program wi

Program 3.3: Revisi

#include <iostream>

 78

using namespace std;

fl Area() oat
{
 float PI = 3.14f;

 float radius = 0.0f;
 cout << "Enter a radius of a circle: ";
 cin >> radius;

 float area = PI*radius*radius;

 return area;
}

int main()
{
 // Input a radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // Do some other work...
 cout << "Other work..." << endl;

 // Input another radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // Do some other work...
 cout << "Other work..." << endl;

 // Input another radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // and so on...
}

Observ
functio lared or defined before it is called, as the compiler must recognize the

nction before you call it. A function declaration (also called a function prototype) consists of the
return type, function name, and parameter list followed by a semicolon—there is no body in a function

. However, once
 call the function. Program 3.4 rewrites

Program 3.3 using a function declaration.

e from Program 3.3 that the function Area is defined before any calls to that function. A
n must be either dec

fu

declaration. Once a function is declared, it can be defined elsewhere in the program
declared, the function definition can come even after you

Program 3.4: Revision of Program 3.3, this time using a function declaration.

#include <iostream>
using namespace std;

// Function declaration. The function declaration just tells the
// compiler the function exists (it will be defined later), and
// its name, return type and parameters.
float Area();

int main()

 79

{
 // Input a radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // Do some other work...
 cout << "Other work..." << endl;

 // Input another radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // Do some other work...
 cout << "Other work..." << endl;

 // Input another radius and output the circle area.
 cout << "Area = " << Area() << endl;

 // and so on...
}

// Function definition. The function definition contains the
// ction body and consists of the code that specif fun ies what
// the function actually does.
float Area()
{
 float PI = 3.14f;

 float radius = 0.0f;
 cout << "Enter a radius of a circle: ";
 cin >> radius;

 float area = PI*radius*radius;

 return area;
}

Note: It is illegal syntax to define a function inside another function. This includes main because main
is a function, itself.

3.1.2 Functions with One r

The Area function did not have a parameter. But let us look at an example which does have a parameter.
A useful function might be one that cubes (3x) the given input, as follows:

rogram 3.5: Function with a parameter. We have bolded the function calls to .

Paramete

CubeP

#include <iostream>
using namespace std;

// Declare a function called 'Cube' which has a parameter
// of type 'float' called 'x', and which returns a value
// of type 'float'.

 80

float Cube(float x);

int main()
{
 float input0 = 0.0f;
 cout << "Enter a real number: ";
 cin >> input0;

 cout << input0 << "^3 = " << Cube(input0) << endl;

 float input1 = 0.0f;
 cout << "Enter another real number: ";
 cin >> input1;

 cout << input1 << "^3 = " << Cube(input1) << endl;
}

// Provide the definition of Cube--it computes x^3.
float Cube(float x)
{
 float result = x * x * x; // x^3 = x * x * x.

 return result;
}

Program 3.5 Output

Enter a real number: 2
2^3 = 8
Enter another real number: 3
3^3 = 27
Press any key to continue

The Cube function is similar to the function except that it takes a parameter (i.e., its parameter list

side the parentheses of the f
Area

unction declaration/definition is not empty). A parameter is not a value in
riable). That is, the function caller will “pass in” or

le for the function to use. The actual value passed into a
alled an argument.

0). Here input0 is the argument—it stores a
Cube hat is, the value stored in input0 is copied into

meter x. The word “copied” is important, as input0 and x are not the same variables but
the function is called. This copying of argument value to

rame he argument is copied to the parameter, the code inside the
e value that was passed into it.

gure code relative to the calling program code. Think of a
eed data into it (copy arguments into the parameters), it

s so n body), and it outputs a result (returns something back to
u). Again, functions are useful primarily because they prevent code duplication and provide a level of

in
and of itself, but rather a value placeholder (va
“input” a value into this placeholder variab
particular function call is c

For example, in program 3.5, we write Cube(input

ecific value which is input into the function; tsp
the Cube para
will contain copies of the same value when

ter is called passing by value. Once tpa
body of Cube can execute, where x contains th

Fi 3.2 shows how you can think of function
function as a separate “machine” where you f

mething with those parameters (functiodoe
yo

 81

code organization; that is, breaking up programs into more manageable parts, where each part does a
specific task.

Figure 3.2: Calling functions with parameters and returning results.

3.1.3 Functions with Several Parameters

Functions are not limited to zero or one parameter, but can have several parameters. The following
program uses a function named PrintPoint, which takes three parameters: one each for the x-
coordinate, y-coordinate and z-coordinate of a point. The function then outputs the coordinate data in a
convenient point format.

Program 3.6: Functions with several parameters.

#include <iostream>
using namespace std;

void PrintPoint(float x, float y, float z);

int main()
{
 PrintPoint(1.0f, 2.0f, 3.0f);

 PrintPoint(-5.0f, 3.5f, 1.2f);

 PrintPoint(-12.0f, 2.3f, -4.0f);

 PrintPoint(9.0f, 8.0f, -7.0f);
}

void PrintPoint(float x, float y, float z)

 82

{
 cout << "<" << x << ", " << y << ", " << z << ">" << endl;
}

Pr 3.6 Output ogram

<1, 2, 3>
<-5, 3.5, 1.2>
<-12, 2.3, -4>
<9, 8, -7>
Press any key to continue

As Program 3.6 shows, additional parameters could be added and

 is called, an argument for each parameter is provided.
separated with the comma operator.

other thing to notice about the PrintPoint function is that because its sole task is to output a point
 the console window, it does not need to return a value. It is said that the function returns void, and

specified for the return type. Observe that you do not need to write a return
 a function that returns void.

nctions themselves can contain other code units such as if statements and loops. Furthermore, these

s now to see how this vocabulary is used.

When a function

A
to

n

as such, void is
statement for

3.2 Variable Scope

As Figure 3.2 implies, by using functions our programs are broken up into code parts. Moreover,
fu
code units can be nested. This brings up the topic of variable scope. Variable scope refers to what
variables a code unit can “see” or “know about”. A variable defined inside a particular code unit is said
to be a local variable relative to that code unit. Additionally, a variable defined outside a particular
code unit is a global variable relative to that code unit. (A subunit of code is not considered to be
“outside” the unit of code that contains the subunit.) A unit of code can “see” variables that are global
and local, relative to it. Let us look at a couple of example

3.2.1 Example 1

Program 3.7: Variable scope example 1.

#include<iostream>
using namespace std;

float gPI = 3.14f;

float SphereVolume(float radius);

int main()

 83

{
 cout << "PI = " << gPI << endl;
 cout << endl;

 float input0 = 0.0f;
 cout << "Enter a sphere radius: ";
 cin >> input0;

 float V = SphereVolume(input0);
 cout << "V = " << V << endl;
}

float SphereVolume(float radius)
{
 float V = (4.0f/3.0f)*gPI*radius*radius*radius;

 return V;
}

Program 3.7 Output

PI = 3.14

Enter a sphere radius: 3
V = 113.04
Press any key to continue

The first variable defined is gPI. Because gPI is outside the code units of main and SphereVolume,
it is global relative to both of them, and both functions can “see”, use, and modify gPI.

The next set of variables occurs inside the main function unit of code. These variables, input0 and V,
re local to main and global to no code unit. Therefore, main is the only code unit that can “see” them.

ot “see” input0, and if you try to use input0 in SphereVolume,
 error. Note, however, that you can define a variable with the same variable

er code unit, as we do with V. Because the variables V are defined in separate
 are completely independent of each other.

ned, SphereVolume defines its own separate version of V. This V is local to
lume is the only code unit that can “see” this V. Additionally,

e. When the argument input0 is passed into
 variable radius. It is important to understand

t input0 and radius are separate variables in memory.

t are destroyed when the program exits that code unit. For
example, when SphereVolume is invoked, the program will create memory for the variable V. After

a
For example, SphereVolume cann
you will get a compiler
name as a variable in anoth
code units they

Finally, as already mentio
SphereVolume and therefore SphereVo
th m variable radius is local to SphereVolum

in input0 is copied to the
e para eter

the function, the value stored
es place and thathat this copy tak

Important: Variables declared in a code uni

the function ends (after V is returned) the memory for V is deleted.

 84

3.2.2 Example 2

Program 3.8: Variable scope example 2.

#include<iostream>
using namespace std;

int main()
{
 for(int i = 0; i < 5; ++i)
 {
 int cnt;
 cout << "Hello, World!" << endl;
 ++cnt;
 }

 cout << "cnt = " << cnt << endl;
}

This short program fails to compile. In particular, we get the error “error C2065: 'cnt' : undeclared

entifier.” This error is caused because cnt is local to the for-loop code unit. The variable cnt is
bal to main, and as such, main cannot “see” it. Thus, the program reports that it is

d” when main attempts to access it.

rogram 3.8 also has a logic error. Namely, the counting variable cnt is
er of loop cycles. Recall the “important” note from the Section 3.2.1.

id
neither local nor glo
“undeclare

Besides the compilation error, P

ot keeping track of the numbn
Variables declared in a code unit are destroyed when the program exits that code unit. Every time the
for-loop repeats, cnt is re-created and re-destroyed after that loop cycle, and therefore, the value does
not persist. The program needs to be rewritten as follows:

Program 3.9: Revision of Program 3.8.

#include<iostream>
using namespace std;

int main()
{
 int cnt;
 for(int i = 0; i < 5; ++i)
 {
 cout << "Hello, World!" << endl;
 ++cnt;
 }

 cout << "cnt = " << cnt << endl;
}

cnt is global to the for-loop, and will not be created and destroyed every time the loop
peats. In this way, it will be able to actually count the loop cycles. Furthermore, cnt is now local to

main, and so fixes the “'cnt' : undeclared identifier” error.

Note that
re

 85

3.2.3 Example 3

Program 3.10: Variable scope example 3.

#include<iostream>
using namespace std;

int main()
{
 float var = 5.0f;

 if(var > 0.0f)
 {
 float var = 2.0f;

 cout << "var = " << va dl; r << en
 }

 cout << "var = " << var << endl;
}

Program 3.10 Output

var = 2
var = 5
Press any key to continue

Recall that we can create varia

u
bles of t t in ifferent code units. This is
nctions b f op statements. Program 3.10

eclares a variable called var local to main and assigns 5.0 to it. The program then asks if var is greater

ut. However, this presents a dilemma: Which
ar is used in the cout statement: the one local to the ‘if’ statement or the one local to main? As a

he same name if they exis d
straightforward with separate f ut can be tricky when using i /lo
d
than zero. It is, and the program executes the ‘if’ statement consequent. The program declares a new
variable also called var (which is legal since the ‘if’ statement is a separate code unit) and assigns 2.0 to
it. The program then proceeds to output var using co
v
rule, C++ always uses the variable “closest” to the working code unit. In this example, the program
chooses to output the variable var that is local to the ‘if’ statement because it is “closer” to the ‘if’
statement than the variable var that is global to the ‘if’ statement (local to main). The program output
verifies this—the cout statement inside the ‘if’ statement printed out the local version of var, which
contained the value 2.

 86

3.3 Math Library Functions

s for many of the elementary math functions and operations,
oot and absolute value
ust be included. The

ble 3.

The C++ standard library provides function
such as trigonometric, logarithmic, and exponential functions, as well as square r
functions. To use the standard math functions, the <cmath> header file m
following table summarizes some of the most commonly used math functions:

Ta 1: Some Standard Library Math Functions.

Function Declaration Description

()xcos .float cosf(float x); Returns
()xsinfloat sinf(float x); Returns .
()xtan . float tanf(float x); Returns
()x1cos− . float acosf(float x); Returns
()x1sin − . float asinf(float x); Returns
()x1tan − . float atanf(float x); Returns

float sqrtf(float x); Returns x .
()xln . float logf(float x); Returns

float expf(float x); xe . Returns
float powf(float x, float y); Returns yx .
float fabsf(float x); Returns x .
float floorf(float x); Returns the largest integer x≤ .
float ceilf(float x); Returns the smallest integer x≥ .

Remark 1: The trigonometric functions work in radians and not degrees. A number x can be converted
from radians to degrees by multiplying it by π°180 . For example:

°=°⋅=°⋅== 360180218022 πππx . Likewise, a number x can be converted from degrees to radians
y multiplying it by °180π . For example: ππ 2180360360 =°⋅°=° . b

Remark 2: The functions above work with floats, hence the ‘f’ suffixes. The standard math library

t work with doubles. The double versions are the same except that the ‘f’
example, the double version of the cosine function would be double

x). In real-time 3D computer game graphics floats are typically used, which is the
e float versions were given in the above table.

s how to call some of these “calculator” functions. The results can be
mputations on a calculator.

ogram library functions.

also provides versions tha
ffix is omitted. For su

cos(double
son why threa

The following program show
verified by performing the co

P 3.11: Examples of using the standard mathr

#include <iostream>

 87

#include <cmath>

us namespace std; ing

int main()
{
 float PI = 3.14f;
 float quarterPI = PI / 4.0f;

 cout << "cosf(0.0f) = " << cosf(0.0f) << endl;
 cout << "sinf(quarterPI) = " << sinf(quarterPI) << endl;
 cout << "sqrtf(2.0f) = " << sqrtf(2.0f) << endl;
 cout << "logf(expf(1.0f)) = " << logf(expf(1.0f)) << endl;
 cout << "powf(2.0f, 3.0f) = " << powf(2.0f, 3.0f) << endl;
 cout << "fabsf(-5.0f) = " << fabsf(-5.0f) << endl;
 cout << "floorf(2.3f) = " << floorf(2.3f) << endl;
 cout << "ceilf(2.3f) = " << ceilf(2.3f) << endl;
}

Program 3.11 Output

cosf(0.0f) = 1
sinf(quarterPI) = 0.706825
sqrtf(2.0f) = 1.41421
logf(expf(1.0f)) = 1
powf(2.0f, 3.0f) = 8
fabsf(-5.0f) = 5
floorf(2.3f) = 2
ceilf(2.3f) = 3
Press any key to continue

3.4 Random Number Library Functions

The C++ standard library provides a function called rand (include <cstdlib>), which can be used to
generate a pseudorandom number. This function returns a random integer in the range [0,
RAND_MAX], where RAND_MAX is some predefined constant. Consider the following example:

Program 3.12: Random numbers without seeding.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
 int r0 = rand();
 int r1 = rand();
 int r2 = rand();
 int r3 = rand();
 int r4 = rand();

 88

 cout << "r0 = " << r0 << endl;
 cout << "r1 = " << r1 << endl;
 out << "r2c = " << r2 << endl;
 r3 << endl; cout << "r3 = " <<
 r4 << endl; cout << "r4 = " <<
}

Program 3.12 Output after first run

r0 = 41
r1 = 18467
r2 = 6334
r3 = 26500
r4 = 19169
Press any key to continue

Program 3.12 Output after second run

r0 = 41
r1 = 18467
r2 = 6334
r3 = 26500
r4 = 19169
Pr any key to continuess e

 Output after third run Program 3.12

r0 = 41
r1 = 18467
r2 = 6334
r3 = 26500
r4 = 19169
Press any key to continue

This program is executed several times with the same output every time—that is not very random.

This is because pseudorandom numbers are not really random but generated using a complex
algorithm. The algorithm has a starting point which it uses to start generating
 numbers. If the starting point is always the same then the sequence of generated
 numbers will also always be the same. The solution to this problem is to set the
rting point at the beginning of the application to a value that is different than the previous

ay to achieve this is to use the current system time as a starting point,
nce the system time will be different every time the program runs. Because a different starting point is

ns, the random numbers generated will be different each time the

ystem time we use the time function (include <ctime>). The MSDN (Microsoft
etwork) library states: “The time function returns the number of seconds elapsed since

mathematical
pseudorandom
pseudorandom
algorithm’s sta
starting points used. An easy w
si
used every time the application ru
application runs.

To get the s
Developers N

 89

midnight (00:00:00), January 1, 1970, coordinated universal time (UTC), according to the system

he pseudorandom number generator’s starting point is set using the srand function. (This is called
r.) The following code snippet sets the starting point to that

 time(0));

rned from time is passed to srand. Note that the pseudorandom number generator is
re making any calls to rand.

et us now rewrite Program 3.12 with seeding:

clock.”

T
seeding the pseudorandom number generato
of the current time:

srand(

The value retu
seeded once per application befo

L

Program 3.13: Random numbers with seeding.

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main()
{
 srand(time(0));

 int r0 = rand();
 int r1 = rand();
 int r2 = rand();
 int r3 = rand();
 int r4 = rand();

 " <cout << "r0 = < r0 << endl;
 cout << "r1 = " << r1 << endl;
 cout << "r2 = " << r2 << endl;
 cout << "r3 = " << r3 << endl;
 cout << "r4 = " << r4 << endl;
}

 As the output shows, we get different pseudorandom numbers every time the program runs.

Program 3.13 Output after first run

r0 = 16879
r1 = 22773
r2 = 31609
r3 = 31002
r4 = 15582
Press any key to continue

 90

Program 3.14 Output after second run

r0 = 16928
r1 = 20159
r2 = 4659
r3 = 31504
r4 = 6460
Press any key to continue

Program 3.14 Output after third run

r0 = 16996
r1 = 16499
r2 = 19359
r3 = 12545
r4 = 26458
Press any key to continue

3.4.1 Specifying the Range

Usually [0, RAND_MAX] is not desired; rather, we would like to
ecify ber in the range [0, n-1] can be computed, where n is an integer we

 operator. For example, to compute a random integer in the range [0,

t nu
t va

 as:

his works when you consider the fact that the remainder of a number
ided by n must be in the range [0, n-1]. This is because if the remainder was greater than or equal to

 then idend again. Remember, a remainder is the remaining part
t can t divisible by n).

2 + rand() % 11;

, a random number in the range
 the range. A random numsp

specify, by using the modulus (%)
24] we would write:

i m = rand();

l = num % 25;
n
in

is is more compactly writtenTh

int num = rand() % 25;

It is not difficult to see how t
div
n, the divisor could divide into the div

not be evenly divided by n (i.e., is notha

We also want ranges that do not start at zero. For example, we may want a range like [2, 10]. This is
easily formulated. First, we start with

rand() % 11;

This gives a random number in the range [0, 10]. To get the two, we can shift our random range over by
adding two like so:

 91

But now our shifted range is [2, 12]. This is remedied by subtracting two from the right side modulus

s:

 2);

alized and generated in
 range [a, b] using the formula:

ading

ometimes, two or more versions of some function are needed. For example, suppose that we want an
o

eturn the computed area, but, in addition, we also want an Area function, which simply returns the
 parameter. Here are the two versions:

ea Version 1

operand. That i

2 + rand() % (11 –

This yields a random number in the range [2, 10].

Using the same method of the preceding example, a random number can be gener
the

a + rand() % ((b + 1) – a)

3.5 Function Overlo

S
Area function, like the one in Section 3.1, which prompts the user to enter a radius and then proceeds t
r
computed area given the radius as a

Ar

float Area()
{
 float PI = 3.14f;

 float radius = 0.0f;
 cout << "Enter a radius of a circle: ";
 cin >> radius;

 float area = PI*radius*radius;

 return area;
}

Area Version 2

float Area(float radius)
{
 float PI = 3.14f;
 return PI * radius * radius;
}

e both versions of our area function were named Becaus “Area”, the compiler would be expected to
it is assumed that the compiler would not be

e to distinguish between them. This is not the case, however, because these two versions of Area are
ture. The signature of a function includes the

object to the redefinition of Area, and even if it did not,
abl
not ambiguous due to their differing function signa

 92

function name and parameter listings. If either the function name or the parameter listings between
ed. Parameter listings

y by quantity, type or both. Observe that the return type is not part of the function signature. The act
ons—which differ in signature—of a function is called function

t us look at another example. Recall that the PrintPoint function from Section 3.1.3 was
plemented like so:

 x, float y, float z)

<< "<" << x << ", " << y << ", " << z << ">" << endl;

ng the coordinates x, y, and z, a programmer may want to pass in a 3-element array,
o the x-coordinate, [1] to the y-coordinate, and [2] to the z-coordinate.

o facilitate this, we overload PrintPoint like so:

A better way to implement our new PrintPoint is in terms of the other PrintPoint function. That is:

{
 PrintPoint(p[0], p[1], p[2]);

rogram 3.15: Function Overloading.

several functions varies, then the compiler can deduce which function was call
var
of defining several different versi

rloading. ove

L
im

e

void PrintPoint(float
{
 cout
}

 passiIn addition to
where element [0] corresponds t
T

void PrintPoint(float p[3])
{
 cout << "<" << p[0] << ", " << p[1] << ", " << p[2] << ">" << endl;
}

void PrintPoint(float p[3])

}

Program 3.15 revises Program 3.6, this time using both versions of PrintPoint.

P

#include <iostream>
using namespace std;

void PrintPoint(float x, float y, float z);
void PrintPoint(float p[3]);

int main()
{
 PrintPoint(1.0f, 2.0f, 3.0f);

 PrintPoint(-5.0f, 3.5f, 1.2f);

 float point1[3] = {-12.0f, 2.3f, -4.0f};

 float point2[3] = {9.0f, 8.0f, -7.0f};

 PrintPoint(point1); // use array version

 93

 PrintPoint(point2); // use array version
}

void PrintPoint(float x, float y, float z)
{
 cout << "<" << x << ", " << y << ", " << z << ">" << endl;
}

void PrintPoint(p[3]) float
{
 PrintPoint(p[0], p[1], p[2]);
}

Program 3.15 Output

<1, 2, 3>
<-5, 3.5, 1.2>
<-12, 2.3, -4>
<9, 8, -7>
Press any key to continue

The client (user of the functions) is now provided with two options. The client can either pass in the

coordinates of the point, or pass in a 3-element array that represents the point. Providing
uivalent functions with different parameters is convenient because, depending on the data
tion with which the client is working, the client can call the most suitable function version.

individual
several eq
representa

3.5.1 Default Parameters

A default parameter is a parameter where the caller has the option of specifying an argument for it. If the
function caller chooses not to specify an argument for it then the function uses a specified default value
called the “default” parameter. To illustrate, consider the following:

Program 3.16: Default Parameters.

#include <iostream>
#include <string>
using namespace std;

// Function declaration with default parameters. Default parameters
// take the syntax '= value' following the parameter name.
void PrintSomethingLoop(string text = "Default", int n = 5);

int main()
{
 // Specify an argument for both parameters.
 PrintSomethingLoop("Hello, World", 2);

 94

 // Specify an argument for the first parameter.
 PrintSomethingLoop("Hello, C++");

 // Use defaults for both parameters.
 PrintSomethingLoop();
}

void PrintSomethingLoop(string text, int n)
{
 for(int i = 0; i < n; ++i)
 cout << text << endl;
 cout << endl;
}

ram Prog 3.16 Output

Hello, World
Hello, World

Hello, C++
Hello, C++
Hello, C++
Hello, C++
Hello, C++

Default
Default
Default
Default
Default

Press any key to continue

Admitt
parame
the par

e fun nition. The function PrintSomethingLoop simply outputs
e passed-in text parameter n number of times. The first time this function is called, we specify

arguments for both parameters. The second time this function is called, we specify the text parameter
nly and leave n to the default value—5. Note that it would be impossible to do the opposite (to specify
 but leave text to its default value) because if we did, we would have something like

PrintSomethingLoop(10); and the compiler would think we were trying to pass in 10 for text. Thus,
efault parameters must be the right-most parameters. For example, if you had parameters listed left to
ght, a through d, d would be considered the default parameter because it is the right-most parameter. If

d was specified, then you could also include c as a default parameter (the next right-most parameter).
However, you could not set a as a default parameter unless b, c, and d were also default parameters. You

lt parameter unless c and d were also default parameters, and so on. The third
 default values for both and specify no arguments. The

corresponding program output verifies that, indeed, the default values were used.

edly, this is a contrived and impractical function. Still, it illustrates the concept of default
ters. First of all, to specify a default value for a parameter, the syntax “= value” is appended to
ameter name. Also observe that the default parameter syntax (“= value”) is only specified in
ction declaration and not in the defith

th

o
n

d
ri

could not set b as a defau
time this function is called we use the

 95

3.6 Summary

 return type, its
name, its parameter list, and a body (i.e., the code to be executed when the function is invoked).

2. Variable scope refers to what variables a part of the program can “see” or “know” about. A

to that code unit. A unit of
code can “see” variables that are global and local, relative to it.

+ standard library provides functions for many of the elementary math functions and
ns, such as trigonometric, logarithmic, exponential functions, as well as square root and

 To use the standard math functions, the <cmath> header file must be
included.

 numbers. Remember to first seed the random number

nd only once per program) using the srand function, so that
your programs generate different random numbers every time they run. To use the random

ral versions of a function with the same
n includes the

everal versions of a function
different versions so that the
 both. Note that a function

 an argument for
 function uses a

eter a default
parameter, we append the syntax “= value” to the parameter name (e.g.,

1. A function is a unit of code designed to perform a certain task. By dividing our program into
several different functions, we organize our code into more easily manageable parts. Moreover,
functions help avoid code duplication. To define a function you must specify its

variable defined in a particular code unit is said to be local relative to that code unit. A variable
defined outside a particular code unit is said to be global relative

3. The C+

peratioo
absolute value functions.

4. Use the rand function to generate random
generator with the system time (a

number functions the <cstdlib> header file must be included.

5. Function overloading allows implementation of seve
name as long as the function signature is still different. The signature of a functio
function name and parameter listings. Therefore, to implement s
with the same name the parameter listings must vary between the
signatures differ. Vary parameter listings in quantity, in type, or
signature does not include the return type.

6. A default parameter is a parameter where the caller has the option of specifying

it. If the function caller chooses not to specify an argument for it then the
d the “default” parameter. To make a paramspecified default value which is calle

void Func(int x =
5)). Note that the default parameter syntax (“= value”) is only specified in the function
declaration and not in the definition.

 96

3.7 Exercises

3.7.1 Factorial

ewrite the factorial proR gram (Section 2.8.4) using a function. That is, implement a function called
r) a positive integer n. The function should then compute

e fact n unction is to have the following prototype:

atted like so:

3! = 6
Press any key to continue

ecall that characters (i.e., char types) are represented internally with an integer value. The following
chart shows an abridged listing of an abridged ASCII table.

7: 9 58: : 59: ; 60: < 61: = 62: >
63: ? 64: @ 65: A 66: B 67: C 68: D 69: E 70: F 71: G 72: H
73: I 74: J 75: K 76: L 77: M 78: N 79: O 80: P 81: Q 82: R
83: S 84: T 85: U 86: V 87: W 88: X 89: Y 90: Z 91: [92: \
3:] 4: ^ 5: _ 101: e 102: f

o 112: p
y 122: z

24 125: } 12 ~ 127: ⌂

e ential orde g of the letters (e.g., integers 65, 66, 67, correspond with letters ‘A’, ‘B’,
s ely). This s uential ordering makes it easy to setup a loop that iterates through each

e bet.

CII table, implement a function called ToUpperCase, which inputs a
 character. For example, if the letter ‘a’
 is already in uppercase form, then the
e input, then return ‘A’). If the input

Factorial that inputs (i.e., has a paramete
orial of , and return the result. The fth

 int Factorial(int n);

After you have implemented this function, test your function by calculating 5!, 0!, 9!, and 3!, and output

e results to the console window. The output should be formth

5! = 120
0! = 1
9! = 362880

3.7.2 ToUpper; ToLower

R

33: ! 34: " 35: # 36: $ 37: % 38: & 39: ' 40: (41:) 42: *
43: + 44: , 45: - 46: . 47: / 48: 0 49: 1 50: 2 51: 3 52: 4
53: 5 54: 6 55: 7 56: 8 5

9 9 9 96: ` 97: a 98: b 99: c 100: d
103: g 104: h 105: i 106: j 107: k 108: l 109: m 110: n 111:
13: q 114: r 115: s 116: t 117: u 118: v 119: w 120: x 121: 1
123: { 1 : | 6:

Observe th sequ rin
and ‘C’, re pectiv eq

tter in th alphale

sing the preceding abridged ASU
single character variable and returns the uppercase form of that

haracteris input, the function should return ‘A’. If the input c
function should return that uppercase form (e.g., if ‘A’ is th

 97

character is not a letter character (i.e., not a member of the alphabet) then return a null character (‘/0’).

char ToUpperCase(char input);

Additionally, implement a complementary function called ToLowerCase, which inputs a single char
e form of that character. For example, if the letter ‘A’ is input, the

eady in lower case form, then the function should
return that lowercase form (e.g., if ‘a’ is the input then return ‘a’). If the input character is not a letter

ber of the alphabet) then return a null character (‘/0’). The function is to have
e following prototype:

 char T

ave im
op that

exercise should be the
ppercase letterforms of every letter in the alphabet.

alphabet.

Freque n d to know the distances between objects in the game. The
distanc e

The function is to have the following prototype:

variable and returns the lowercas
function should return ‘a’. If the input character is alr

character (i.e., not a mem
th

oLowerCase(char input);

After you h plemented these functions and verfied them to work, then you are to do the following:
Create a lo iterates over every lowercase letter in the alphabet. For each letter, call ToUpperCase
and output the result to the console screen. The output for this part of the
u

Additionally, create a loop that iterates over every uppercase letter in the alphabet. For each letter, call
ToLowerCase and output the result to the console screen. The output for this part of the exercise
should be the lowercase letterforms of every letter in the

3.7.3 3D Distance

ntly in a 3D game, you will ee
e betw en two points ()zyx uu ,,=u u and ()zyx vvv ,,=v in 3-space is given by the

formula:

() () ()222
zzyyxx uvuvd +−+−= uv − .

plem s the distance between them. The function is to

est this function by using it to compute the distance between these points:

.

 c. and .

Im ent a function that inputs two points and return
have the following prototype:

float dist3(float ux, float uy, float uz,
 float vx, float vy, float vz);

T

 a. ()3,2,1 and ()0,0,0
 b. ()3,2,1 and ()3,2,1 .

()3,2,1 ()5,4,7 −

 98

The output should look like this:

istance between (1, 2, 3) and (7, -4, 5) = 8.7178

ay want to write a separate function to print 3D points to make the output of points less
cumbersome.)

Distance between (1, 2, 3) and (0, 0, 0) = 3.74166
Distance between (1, 2, 3) and (1, 2, 3) = 0
D
Press any key to continue

(Tip: You m

3.7.4 Arc Tangent 2

Background Information

 () xy=θtan , where y and x are coordinates of some point in the 2D plane. Solving for theta Consider
we obtain ()xy1tan −=θ . But, recall from your studies of trigonometry that the inverse tangent
function has some problems; in particular, its range is []°°− 90,90 , which means we cannot get angles
outside quadrants 1 and 4. However, ()yx, can be in any quadrant. Clearly we have a problem, but
making some observations easily solves it. Let us work with a concrete example to make this a bit
asier.

° angle with the positive
paper). he point lies in quadrant 2, we know the inverse tangent will

re we stuck? Not

e

Let 4−=x 4=y . Clearly ()4,4− lives in quadrant 22 and makes a 135 and
x-axis (sketch it out on Because t
not return the correct angle since quadrant 2 is not in the inverse tangent’s range. A
yet. Let us calculate the inverse tangent just to see what happens: () () °−=−= − 454/4tan 1 .

ve that if we add 180° to the inverse tangent result then we obtain the correct angle 135°;
= −tan 1 xyθ

Here we obser
that is,
-45° + 180° = 135°. In fact, if the angleθ falls in quadrant 2 or 3 (which we can determine by

gle by adding 180°. In examining the signs of x and y), we will always be able to get the correct an
summary:

If θ is in quadrants 1 or 4 then ()xy1tan −=θ .

Else if θ is in quadrant 2 or 3 then ()xy1tan −=θ + 180°.

Exercise

Using atanf, write a function with the following prototype:

 float MyArcTangent(f

loat y, float x);

2 We know this by examining the signs of x and y: Since x is negative it has to be to the left of the y-axis, and since y is
positive it must be above the x-axis. Therefore, the point lies in quadrant 2.

 99

()yx,This function should examine the signs of the coordinates of the point and return the correct
angle based on what quadrant the point lies in as described in the background readings for this lab
project. Test your function with the following points: (2, 4), (-1, 5), (-6, -4), (4, -6). You should get the

yArcTangent(4, 2) = 63.4671

yArcT

unction does. Its prototype is:

t , float x);

ld prompt the user to make a selection from the menu. After the user has made their
lection the program should ask for the input values; note that some functions only need one input

ser enters the input values, the program should perform the
. The program should then loop back and again prompt the user to make

ue this process until the user quits:

3) tan(x), 4) atan2(y, x), 5) sqrt(x), 6) x^y
8) e^x, 9) |x|, 10) floor(x), 11) ceil(x), 12) Exit.1

an(x), 4) atan2(y, x), 5) sqrt(x), 6) x^y
, 8) e^x, 9) |x|, 10) floor(x), 11) ceil(x), 12) Exit.4
2

Enter y: 4

n(x), 4) atan2(y, x), 5) sqrt(x), 6) x^y
7) ln(x), 8) e^x, 9) |x|, 10) floor(x), 11) ceil(x), 12) Exit.7
Enter x: 2

) tan(x), 4) atan2(y, x), 5) sqrt(x), 6) x^y

following results:

M
MyArcTangent(5, -1) = 101.27

angent(-4, -6) = 213.707 M
MyArcTangent(-6, 4) = -56.3385
Press any key to continue

Now that you have written the function yourself, you should know that the C++ standard math library
already includes a function that does exactly what your f

 float atanf2(floa y

3.7.5 Calculator Program

To get some practice using the standard math functions you will write a simple calculator program. The
program should display the following menu:

1) cos(x), 2) sin(x), 3) tan(x), 4) atan2(y, x), 5) sqrt(x), 6) x^y, 7) ln(x), 8)
e^x, 9) |x|, 10) floor(x), 11) ceil(x), 12) Exit.

The program shou
se
value, whilst others need two. After the u
calculation and outp e resultut th
a selection. The program should contin

x), 2) sin(x), 1) cos(
7) ln(x),
Enter x: 3.14
cos(x) = -0.999999

, 2) sin(x), 3) t1) cos(x)
) ln(x)7
Enter x:

atan2(y, x) = 1.10715
1) cos(x), 2) sin(x), 3) ta

ln(x) = 0.693147
) cos(x), 2) sin(x), 31
7) ln(x), 8) e^x, 9) |x|, 10) floor(x), 11) ceil(x), 12) Exit.9
Enter x: -5
|x| = 5
1) cos(x), 2) sin(x), 3) tan(x), 4) atan2(y, x), 5) sqrt(x), 6) x^y

 100

7) ln(x), 8) e^x, 9) |x|, 10) floor(x), 11) ceil(x), 12) Exit.11
Enter x: 11.2
eil(x) = 12 c
1) cos(x), 2) sin(x), 3) tan(x), 4) atan2(y, x), 5) sqrt(x), 6) x^y
7) ln(x), 8) e^x, 9) |x|, 10) floor(x), 11) ceil(x), 12) Exit.12
Exiting...
Press any key to continue

);

) Pla

ulate three random

ld look like:

layer’s chips: $1000
) Play slot. 2) Exit. 1
nter your bet: 1500

not enter a valid bet.
ur bet: 1000

slot. 2) Exit.

3.7.6 Slot Machine

Implement a function that returns a random integer in the range [low, high], where low and high
are input parameters. The function prototype should look like this:

 int Random(int low, int high

Be sure to verify that your function implementation works by testing it.

Using your Random function, write a virtual slot machine program. The program should start the player
off with $1000.00, and should display a menu like this:

layer’s chips: $1000 P
1 y slot. 2) Exit.

If the player enters “1”, the program should ask the user to enter in his or her bet. The program needs to
verify that a legal bet was placed; that is, a bet greater than zero and less than or equal to the amount of
money the player has. After the player has input his or her bet, the program must calc
numbers in the range [2, 7] and output them neatly to the screen. If all three numbers are sevens, then
the player wins ten times their betting money; else if, the three numbers are all the same, but not sevens,
then the player wins five times their betting money; else if, two out of the three numbers are the same
then the player wins three times their betting money; else, the player loses his or her bet. At this point,
calculate the player’s new chip amount and redisplay the menu. If at any point the player loses all of his
or her chips, a message should be displayed to the player and the program should exit. Also, if the
player enters “2” from the menu then the program should exit. Here is an example of what the output
shou

P
1
E
You did
nter yoE
3 3 7
You win!
Player’s chips: $3000
1) Play 2
xiting…E

 101

3.7.7 Binary Search

Background Information

n the exercises of the previous chapter we examined the linear search. In the worst cast scenario, the

er search method is the binary search. However, the
 sorted in some way.

 concrete example. Consider the following array of
ending order:

Suppose that you want to find integer 21. Instead of starting the search at the beginning of the array, in
the binary search we start at the middle. The value stored in the middle array element is 14. Since 21 is

 is sorted in ascending order, we are guaranteed that the item we are
searching for lies in the upper half of the array. Thus, we do not need to check any elements in the
lower half of the array. We have, with one test, eliminated half of the elements we would potentially

der the upper half of the previous working dataset, which we have bolded:

ubarray. We now consider the lower half of the previous
orking dataset, which we have bolded:

, 5, 6, 9, 14, 21, 23, 28, 31, 35

In this arbitrarily choose the lower element as the “middle.”
nd that element is the value we are searching for, located at position 6 in the array.

he key idea of the binary search is this: Because the data is sorted, we can quickly eliminate half of
our data set with each scan. This is the beauty of the binary search. To make this result more
rofound, imagine that you had a sorted array of ten thousand integers. Using a linear search you very

the one you want. Conversely, the binary search
liminates half of its data set after each scan. After just one test, the binary search has narrowed the

I
linear search must scan every single element in the given array. For large datasets this can be
problematic (i.e., too slow/inefficient). A fast

 the dataset be alreadybinary search requires that

To illustrate the binary search, let us examine a

ave already been sorted in ascintegers, which h

, 5, 6, 9, 14, 21, 23, 28, 31, 35 1, 4

greater than 14 and the array

have to scan. We now consi

1, 4, 5, 6, 9, 14, 21, 23, 28, 31, 35

Again we start at the middle of our new dataset. The value stored in the middle is 28. Since the value
21 is less than 28 and the array is sorted in ascending order, we are guaranteed that the item we are
searching for lies in the lower half of our working subarray. Thus, we do not need to check any
elements in the upper half of our working s
w

1, 4

case there is not an exact middle, so we will
A

T
y
p
well might have to scan all 10,000 integers to find
e
search down to 5, 000 integers, after the second test the binary search is down to 2,500 integers, and so
on.

 102

Exercise

Write a function that searches, using the binary search algorithm, an integer array and returns the array

osition of the “found” integer that matches the search key. The function should be prototyped as
follows

int numElements, int searchKey);

Use the te

1, 4, 5, 6, 9, 14, 21, 23, 28, 31, 35, 42, 46, 50, 53, 57, 62, 63, 65, 74, 79, 89, 95}

our output should be similar to the following:

1, , 89,

t): 50
0 is in position 13.

earch key (or ‘x’ to exit): 0
ound.

ackground Information

p
:

int BinSearch(int data[],

 following array for st purposes:

{

Y

{ 4 5, 6, 9, 14, 21, 23, 28, 31, 35, 42, 46, 50, 53, 57, 62, 63, 65, 74, 79,
95}
Enter search key (or ‘x’ to exit): 21
21 is in position 6.
Enter search key (or ‘x’ to exi
5
Enter s
 not f0
Enter search key (or ‘x’ to exit): x
Exiting…

3.7.8 Bubble Sort

B

he bubble sort algorithm is similar to the selection sort in that it also makes several passes over the
array, a th er, the bubble sort has a
couple he t to its sorted position per

ass, the other elements “bubble” closer to their correct positions. Second, we can “skip” a pass if it is

The u
integer

x[6] = x[0],…,[5] = {12, 5, 21, 1, 15, 17}.

nd suppose that we wish to sort this array in ascending order.

T

nd after each pass e array becomes more and more sorted. Howev
of advantages over t selection sort. First, besides moving one elemen

p
unnecessary; that is, if the next element is already in its sorted position then we do not need to do any
work and we can skip to the next element.

 b bble sort algorithm is best explained by looking at an example. Consider the following array of
s:

A

 103

Pass 1:

n the first pass, our working subarray is x[0],…,x[5] (the entire array). We start at x[0] and compare it

ext, we compare x[1] and x[2]. Because 12 is less than 21, we do not swap the two values. Thus the
ring x[2] and x[3], we have 21 is greater

an 1, so we swap the two values:

5, 12, 1, 15, 21, 17 // comparing x[3] and x[4]
omparing x[4] and x[5]

g rule:

ighbor x[i+1] then swap x[i] and x[i+1].

In consequ ranteed, for each pass, that the greatest value in the working
subarray will be placed in its sorted position. And indeed, observe that the greatest value, 21, is in its
sorted posit ay).

O
to its right-next-door neighbor x[1]. Because 12 is greater than 5, we swap the two values. This yields:

5, 12, 21, 1, 15, 17

N
array remains unchanged. Continuing the pattern by compa
th

5, 12, 1, 21, 15, 17

Repeating this process yields:

5, 12, 1, 15, 17, 21 // c

From this first pass we observe the followin

• Rule 1: If x[i] is greater than its right-next-door ne

ence to this rule, we are gua

ion (the top of the arr

Pass 2:

We are gu
working su

aranteed from the previous pass that the greatest value is correctly positioned at the top of the
barray. Hence, for the second pass we need only consider the subarray x[0],…,x[4]. We start

5, 1, 12, 15, 17, 21 // comparing x[2] and x[3] results in no change.

volved in a swap operation is x[2]. Moreover, observe that the
 no coincidence and brings us to a new rule:

at x[0] and compare it to its right-next-door neighbor x[1]. Because 5 is less than 12 we do nothing.
Comparing x[1] and x[2] we have 12 is greater than 1, which indicates a swap operation must take place.
Swapping x[1] and x[2] yields:

5, 1, 12, 15, 17, 21

Continuing this pattern results in the following:

5, 1, 12, 15, 17, 21 // comparing x[3] and x[4] results in no change.

Observe that the last element to be in

[2],…,x[5] is sorted. This issubarray x

 104

• ule 2: Suppose we are working with a zero-based array of n elements. For a particular bubble
pass, if the last element to be involved in a swap operation is x[k] then we can conclude that
ubarray x[k],…,x[n-1] is sorted.

R
sort

 sthe

ss 3Pa :

The previous pass told us that the last swap occurred at x[2].

 We start at x[0] and comp
 Thus, for this pass we are only concerned
are it to its right-next-door neighbor x[1].

ap the values. This yields:

1, 5, 12, 15, 17, 21

We are now done with the third pass. Because the last index involved in the last swap was x[1], we can
conclude, from Rule 2, that the subarray x[1],…,x[5] is sorted. But if x[1],…,x[5] is sorted then the last
element x[0] must also be in its sorted position, and from inspection we observe it is. Thus the entire
array has been sorted in ascending order.

The following algorithm outline summarizes the bubble sort:

Table 3: Ascending order Bubble Sort.

with the subarray x[0],…,x[1].
nce 5 is greater than 1 we swSi

Let x[n] = x[0],...,x[n-1] be an array of given integers to sort.
Let SubArrayEnd be an integer to store the last index of the working subarray.
Let nextEnd be an integer used to help compute the end of the next pass’ subarray.

Initialize SubArrayEnd = n – 1.

While SubArrayEnd > 0, do the following:

1. Initialize nextEnd = 0;
2. For to SubArrayEnd - 1, do the following: 0=j

a. If x[j] > x[j+1] then
i. swap x[j] and x[j+1].
ii. nextEnd = j;

b. Increment j.

3. SubArrayEnd = nextEnd.

Exercise

Ask the user to input ten random (non-sorted) integers and store them in an array. Sort these integers in
ascending order using a bubble sort function and output the sorted array to the user. Your function
should have the following prototype:

void BubbleSort(int data[], int n);

 105

where data is the array parameter, and n is the number of elements in the array (i.e., the size of the
array).

Your output should look similar to the following:

Enter ten unsorted integers...
[0] = 5
[1] = -3
[2] = 2
[3] = 1
[4] = 7
[5] = -9
[6] = 4
[7] = -5
[8] = 6
[9] = -12

Unsorted List = 5, -3, 2, 1, 7, -9, 4, -5, 6, -12,
Sorting...
Sorted List = -12, -9, -5, -3, 1, 2, 4, 5, 6, 7,
Press any key to continue

 106

Chapter 4

 References and Pointers

 107

Introduction

We are at the point now where we can write some useful programs. Our programs can make decisions
based on input and the program’s status using conditional statements. We can execute blocks of code
repeatedly with loop statements. We can organize our programs into multiple parts with functions, each
designed for a specific task. However, there are still some outstanding problems.

First, recall that when passing arguments into functions, the argument is copied into the parameter. But
what if you are passing in an array? An array can potentially be very large and copying every element
value from the argument to the parameter would be very inefficient.

Second, we learned in the last chapter that a function could return or evaluate to some value. But what if
we want to return more than one value?

Finally, so far in every program we have written, when we needed memory (variables) we declared them
in the program code. But declaring the variables in the program implies that we know, ahead of time, all
the memory the program will need. But what if the amount of memory needed is variable? For
example, in a massive multiplayer online game, you may use an array to store all of the game players.
Because players are constantly entering and leaving online play, the array may need to resize
accordingly.

All of these problems can be solved with references or pointers.

Chapter Objectives

• Become familiar with reference and pointer syntax.
• Understand how C++ passes array arguments into functions.
• Discover how to return multiple return values from a function.
• Learn how to create and destroy memory at runtime (i.e., while the program is running).

4.1 References

A reference is essentially an alias for a variable. Given a reference R to a variable A, we can directly
access A with R since R refers to A. Do not worry about why this is useful, as we will discuss that
further in coming sections. For now, just focus on learning the syntax of references.

To create a reference you must:

 specify the type of variable the reference will refer to
 follow with the unary address of operator (&)

 108

 follow with the name of the reference
 follow with an initialization, which specifies the variable the reference refers to

For example, to create a reference, called valueRef, to an integer called value we would write:

int value = 0; //<-- Create a variable called 'value'.
int& valueRef = value; //<--Create a reference to 'value'.

Here are some other examples using various types:

// Variables:
 float pi = 3.14f;
 char letter = 'B';
 bool truth = false;
 double e = exp(1.0);

 // References to those variables:
 float& piRef = pi;
 char& letterRef = letter;
 bool& truthRef = truth;

double& eRef = e;

We can access the variable a reference refers to through the reference. This is because a reference is just
an alias to that variable. Program 4.1 verifies this:

Program 4.1: Accessing a variable via a reference to it.

#include <iostream>
using namespace std;

int main()
{
 // Create variable.
 int value = 10;

 // Create reference to 'value'.
 int& valueRef = value;

 // Print the number stored in 'value'.
 cout << "value = " << value << endl;

 // Also print the value referenced by 'valueRef'.
 // Because 'valueRef' is an alias for 'value' it
 // should print the same number stored in 'value'.
 cout << "valueRef = " << valueRef << endl;

 // Modify the reference. However since the reference is
 // just an alias for 'value', modifying 'valueRef' modifies
 // the number stored in 'value'.
 valueRef = 500;

 // Print the number stored in 'value' to prove that modifying
 // the reference modifies the variable it refers to.
 cout << "value = " << value << endl;

 109

 // And print 'valueRef' again.
 cout << "valueRef = " << valueRef << endl;
}

Program 4.1 Output

value = 10
valueRef = 10
value = 500
valueRef = 500
Press any key to continue

We have two different names (value and valueRef), which both refer to the same variable—that is, the
same unit of memory—and as such, they both can access and modify that variable.

Important: References must be initialized when they are declared. You cannot have a reference that
does not refer to anything. This is illegal:

 int& valueRef; //<--Error uninitialized reference.

4.1.1 Constant References

Suppose we try and write the following:

 int& valueRef = 1;

If we try and compile this we will get an error; namely, “error C2440: 'initializing' : cannot convert from
'int' to 'int &' .” This should not be surprising since a reference is an alias to a variable and a literal is
not a variable. Still, sometimes we will want to be able to assign literals to references. We note,
however, that such an alias to a literal should not be able to change the literal through that alias; this
restriction simply follows from the fact that it does not make sense to change a literal—a literal is
literally that value.

To facilitate literal assignments to references we must use constant references:

 const int& valueRef = 1;

If we try to change a constant reference like so:

 valueRef = 20;

we get the error “error C2166: l-value specifies const object.”

A constant reference is actually implemented by the compiler as follows:

 const int temp = 1;
 const int& valueRef = temp;

 110

It creates a temporary const variable to store the literal, and then has the reference refer to this
temporary variable. The temporary will stay alive in memory as long as the reference to it stays alive in
memory.

4.2 Pointers

4.2.1 Computer Memory Primer

In a computer, each byte3 of memory has a unique memory address. Figure 4.1 shows a conceptual
example of a segment of computer memory.

Figure 4.1: A segment of memory. Each upper square represents a byte of memory; the question marks denote that

indows, a short variable is two bytes and a float variable is four bytes. Figure
4.2 shows how a variable varShort of type short and a variable varFloat of type float would be
stored in memory.

we do not know what value is stored in these bytes. Each bottom rectangle represents a unique memory address,
which corresponds to a byte in memory.

We learned in the first chapter that the various C++ intrinsic types require different amounts of memory;
ecall that in 32-bit Wr

Figure 4.2: Variables stored in memory spanning multiple bytes.

Since these two variables require more than one byte apiece, they span over several byte

yout. That being the case, it is natural to ask what the address of varShort and
s in the memory

varFloat is. C++
s the address of multi-byte types to be the address of the “lowest” byte the variable spans. Thus,

from Figure 4.2, the address of varShort is 507 and the address of varFloat is 512.

la
consider

3 A byte is the smallest addressable piece of memory.

 111

4.4.2 Pointer Initialization

A pointer is a special variable type that can store the memory address of another variable. For example,
suppose that a pointer exists called varFloatPtr, which stores the address of varFloat. Figure 4.3
ill

ustrates this relation.

Figure 4.3: Here we have added a pointer variable varFloatPtr, which stores the address of another variable,

namely varFloat. Observe that the pointer occupies four bytes; this is because we are assuming a 32-bit system

riable. Furthermore, given the address of a variable (a pointer), the actual
riable which is being pointed at can be accessed and modifed; this process is called dereferencing.

Thus, like references, the same variable can be accessed via several different pointers that point to it.
owever, as it turns out, pointers can do more than references. In fact, the C++ reference mechanism is

general

nlike t have to be initialized, but they should always be initialized for the
me reason all variables should always be initialized to something—the program is easier to debug
hen y default value. When a variable is filled with garbage, it is not so easy
 recognize that it contains a bad value, and therefore, you may think it contains valid information.

Moreov ter that
points to nothing. So a good default value for pointers, if you wish to postpone initialization, is null.
The null value in C++ is simply zero. Rewriting the preceding pointer declarations with initialization to
null yie

 ool* boolPtr = 0;
 t* intPtr = 0;
 oat* floatPtr = 0;

where pointers are 32-bits.

ou can see why they call these types of variables “pointers”—by storing the address of a variable they Y

essentially ‘point to’ that va
va

H
ly understood to be implemented using pointers “underneath the hood.”

To declare a pointer, the type of variable the pointer will point to must be specified, followed by the
unary indirection operator (*), followed by the name of the pointer. Example declarations:

 bool* boolPtr;
 int* intPtr;

float* floatPtr;

Note: The operator (*) is not ambiguous because the compiler can determine through context whether
to interpret it as the unary indirection operator or as the binary multiplication operator.

U references, pointers do no
sa
w ou are able to recognize a
to

er, unlike references, pointers can be assigned a null value. A null pointer is a poin

lds:

b
in
fl

 112

Note: Some programmers like to define a macro called NULL, which is equal to zero. That is,

#define NULL 0

float* floatPtr = NULL;

se you may see this NULL used in other code,

 is not very interesting. Pointers are variables that store the addresses of other
hat we want to be doing is assigning variable addresses to our pointers. To assign the

ariable to a pointer, we need a way of getting the address of a variable. We can do that
(&)—the same one used with references. The following examples

ustra

This is so that they can nullify pointers by writing:

 bool* boolPtr = NULL;
 int* intPtr = NULL;

We do not use NULL in this book, but we bring it up becau
such as Microsoft Windows code.

Initializing pointers to null
variables, so w

dress of a vad
with the unary address of operator
ill te:

Program 4.2: Initializing pointers and displaying memory addresses.

#include <iostream>
us namespace std; ing

int main()
{
 bool boolVar = true;
 int intVar = 50;
 float floatVar = 3.14f;

 // Initialize p ointers to the addresses of the
 // corresponding variables.
 bool* boolPtr = &boolVar;
 int* intPtr = &intVar;
 float* floatPtr = &floatVar;

 // Print normal variable values.
 cout << "boolVar = " << boolVar << endl;
 cout << "intVar = " << intVar << endl;
 cout << "floatVar = " << floatVar << endl;

 cout << endl;

 // Print the addresses the pointers store.
 cout << "boolPtr = Address of boolVar = " << boolPtr << endl;
 cout << "intPtr = Address of intVar = " << intPtr << endl;
 cout << "floatPtr = Address of floatVar = " << floatPtr << endl;
}

Program 4.2 Output

boolVar = 1
intVar = 50

 113

floatVar = 3.14

boolPtr = Address of boolVar = 0012FED7
intPtr = Address of intVar = 0012FEC8
floatPtr = Address of floatVar = 0012FEBC
Press any key to continue

The syntax ‘&’ followed by the variable name evaluates to the memory address of the variable name. So

re a pointer to a
ar.

e.g., 0012FED7) is a 32-bit hexadecimal number, which is how cout
ply another numbering system that is useful when
exadecimal until Chapter 12 in the next module. If
n then you can cast the pointer to an int before

utputting it:

cout <
cout << "intPtr = Address of intVar = " << (int)intPtr << endl;
out << "floatPtr = Address of floatVar = " << (int)floatPtr << endl;

You will get output similar to this:

intPtr = Address of intVar = 1244872

4.4.3 Dereferencing

Given the address of a variable (i.e. a pointer) we can access and modify the actual variable pointed to
by dereferencing the pointer. To dereference a pointer, we prefix the pointer name ith the indirection
o

the following, for example, float* floatPtr = &floatVar, reads like so: Decla
float called floatPtr and assign to it the address of a float variable called floatV

he strange output for the pointers (T
outputs pointers by default. Hexadecimal is sim
analyzing memory; we will postpone discussing h
you want to see the integer address representatio
o

< "boolPtr = Address of boolVar = " << (int)boolPtr << endl;

c

boolPtr = Address of boolVar = 1244887

floatPtr = Address of floatVar = 1244860

Note: Pointers can only store variable addresses; if we try to assign a value to a pointer like this:
float* floatPtr = floatVar, we get the error: “error C2440: 'initializing' : cannot convert from
'float' to 'float *'.”

 w
perator (*). For example, given the initialized pointer float* floatPtr = &floatVar, we can

dereference floatPtr with the syntax *floatPtr, which evaluates to the variable being pointed to;
that is, floatVar. Figure 4.4 shows the relationship between a pointer and the address, and a
dereferenced pointer and the variable.

 114

F 4.4: A pointer stores an address. By dereferencing a pointer we obigure tain the variable at the address pointed to.

ith th it follows that the variable whose address is stored in the pointer
 modifed by dereferencing the pointer. This is similar to references; that is,

r to a variable, and similarly, with
inter Th following program illustrates:

ogram

W is pointer-variable relationship
can be accessed, read, and
with references, a variable can be accessed via references that refe

e po s, a variable can be accessed via pointers that point to it.

Pr 4.3: Accessing a variable via a pointer to it.

#include <iostream>
u namespace std; sing

in in() t ma
{
 // Create variable.
 int value = 10;

 // Create a pointer to the address of 'value'.
 int* valuePtr = &value;

 // Print:
 cout << "value = " << value << endl;
 cout << "valuePtr = " << valuePtr << endl;
 cout << "*valuePtr = " << *valuePtr << endl;

 // Modify 'value' via the pointer by dereferencing it.
 *valuePtr = 500;

 // Print again to show changes:
 cout << "value = " << value << endl;
 out << "valuePtr = " << valuePtr << endl; c
 out << "*valuePtr = " << *valuePtr << endl; c
}

Program 4.3 Output

value = 10
valuePtr = 0012FED4
*valuePtr = 10
value = 500
valuePtr = 0012FED4
*valuePtr = 500
Press any key to continue

Admittedly, the following paragraph is hard to follow since the use of a pointer introduces a confusing
layer of indirection. Read the paragraph slowly and refer to Figure 4.5.

 115

Figure 4.5: valuePtr stores the address of value. We can get the variable (value) at that address through the

pointer valuePtr by dereferencing it (*valuePtr). Thus we can read and write to the variable value indirectly
via the pointer .

Program 4.3 is similar to Program 4.1, but instead of references we use pointers to indirectly modify the
value s gram 4.3 does is create a pointer to value: int*
valueP e value stored in value and the address stored in
valueP variable valuePtr currently
points to (rem *valuePtr).
Since v
based o

Next th
*value

to mod lly, we print all the va t again to verify that m
assignment, *valuePtr = 500 odified the variable that is pointed to (i.e value). And indeed it was

tr.

 access to a variable. Given the address of a variable, we can get
to that variable in the same way a letter can get to a house given the house address. By going through

g the pointer you get access to the
take an indirect step when you can

just access the variable directly? The following sections of this chapter show the benefits and real-world

constant pointers. There are four syntaxes we need to consider:

 (iv) const float* const constFloatConstFloatPtr;

stant; that is, the pointer variable itself cannot change; however,

and the variable pointed to is also constant.

valuePtr

tored in a variable. The first key operation Pro
tr = &value. The program then prints th
tr (address of value). Then the program prints the value of the

ember that it stores the address of this variable) by dereferencing the pointer (
aluePtr points to value, this output should be the same as just printing value directly, and
n the program output, it is; that is, value == 10 == *valuePtr.

e program makes an assignment to the dereferenced pointer: *valuePtr = 500. Because
Ptr refers to the variable and valuePtr stores the address of (value), we expect this assignment
ify value as well. So fina lues ou aking the

 m
modified: value == 500 == *valueP

In summary, a pointer gives us indirect

the pointer, you get the address of a variable, and then by dereferencin
variable. Of course, it is still not clear why this is even useful. Why

uses of references and pointers.

Note: Just as we can have constants for non-pointer variables and constant references, we can have

 (i) float* const constFloatPtr;
 (ii) float const* constFloat0;
 (iii) const float* constFloat1;

Form (i) means that the pointer is con
the variable pointed to can change. Form (ii) and (iii) are different syntaxes for the same idea; that
being, the pointer is not constant but the variable pointed to is constant. Finally, form (iv) combines
both; it says the pointer is constant

 116

Stroustrup suggests to read these declarations right-to-left; for example, (i) would read
“constFloatPtr is a constant pointer to type float” and (iii) would read “constFloat1 is a
pointer to type const float.”

4.3 Arrays Revisited

4.3.1 Pointer to the Beginning of an Array

With our new unde at them. In C++,
n array name can be converted to a pointer to the first element in the array. Consider the following

= arrayName;

 that firstPtr is a pointer to the first element in the array, which would be

rstanding of the idea of pointers, it is now time to take a closer look
a
array:

short arrayName[8] = {1, 2, 3, 4, 5, 6, 7, 8};

A pointer to the first element can be acquired by writing:

 short* firstPtr

The claim is
arrayName[0]—Figure 4.6.

Figure 4.6: An array name gives a pointer to the first element of the array.

that this is, in fact, the case.

nter to the first element in an array via the array’s name.

If this is true then dereferencing arrayName ought to yield the value of element [0]. Program 4.4
shows

Program 4.4: Verification that we can get a poi

#include <iostream>
using namespace std;

int main()
{
 short arrayName[8] = {1, 2, 3, 4, 5, 6, 7, 8};

 117

 // Use array name to get pointer to the first element.
 short * firstPtr = arrayName;

 cout << "arrayName[0] = " << arrayName[0] << endl;
 cout << "*firstPtr = " << *firstPtr << endl;
}

Program 4.4 Output

arrayName[0] = 1
*firstPtr = 1
Press any key to continue

The output of Program 4.4 verifies the claim; namely, arrayName is a pointer to the first element in the
array.

4.3.2 Pointer Arithmetic

Given a pointer to the first element in an array, how do we access the other elem
ompiler knows the variable type of each element in the array

ents of the array? The
++ c (it knows because the type is

d an integer to the pointer. For example, we may write:

+ 1;

he integer added indicates how many elements to offset. Figure 4.7 illustrates this.

C
specified when you declare the array) and it knows how many bytes need to be offset to get to the next
element. Thus, C++ provides a way to navigate the elements of an array by offsetting the array pointer.

o perform the actual offset operation we adT

firstPtr
 firstPtr + 5;
 firstPtr + 4;

T

Figure 4.7: Pointer arithmetic.

er like this simply evaluates to a new pointer, which points to the offset
he value at that new address the pointer needs to be dereferenced.

Note that offsetting the point
element. In order to get t

 118

In addition to adding with the binary addition operator (+) a pointer can be “incremented”, and also,
pound a

ent 4 array slots away

e assignments to the pointer and thus
ss it points to. In contrast:

is ex ually change the address to which it
o a new pointer to the next element.

s wel s add long the array using decrements
 are seldom encountered. All of

re referred to as pointer arithmetic. Note that multiplication and division is
t defined for pointers.

ust be careful not to use pointer arithmetic to offset into a memory address that is not part
 instance, the array in the preceding example contained ten elements. The offset

goes outside the array boundary and into memory we do not “own.”
used for something else, can be destructive.

over a small array using two different styles of pointer arithmetic and

com ssignments can be performed on it. Examples:

firstPtr++; // Point to next element.
t element after that. ++firstPtr; // Point to nex

firstPtr += 4;// Point to elem

ssignment operators makNote that the increment and compound a
change the addre

 firstPtr + 1;

pression makes no assignment to firstPtr and does not actTh
points. Rather firstPtr + 1 evaluates t

A l a ition type operations, it is possible to move backwards a

operations. However, these types of pointer arithmeticand subtraction
ese pth ointer operations a

no

Note: You m
of the array. For
firstElementPtr + 12

 memory, which may be Accessing this

The following program iterates
prints each element:

Program 4.5: Pointer arithmetic.

#include <iostream>
using namespace std;

int main()
{
 short arrayName[8] = {1, 2, 3, 4, 5, 6, 7, 8};

 // Use array name to get pointer to the first element.
 short* firstPtr = arrayName;

 cout << "Style 1: Addition operator." << endl;
 for(int i = 0; i < 8; ++i)
 {
 cout << *(firstPtr + i) << " ";
 }
 cout << endl;
 cout << "Style 2: Increment operator." << endl;

 for(int i = 0; i < 8; ++i)
 {
 cout << *firstPtr << " ";
 ++firstPtr; // Move pointer to next element.

 119

 }
 cout << endl;
}

Program 4.5 Output

Style 1: Addition operator.
1 2 3 4 5 6 7 8
Style 2: Increment operator.
1 2 3 4 5 6 7 8
Press any key to continue

In the first style the ptr + intege

remented for each loop cycle, each
r style is used, in particular: firstPtr + i. Because ‘i’ is
element is iterated over using this style. In the second style, the

iterates over each element. Observe
e pointed to when we want to

tput i

 the p erators [] to navigate the elements of an array. In reality
e bra et op r arithmetic just discussed, plus a dereference; that is, the
llowi perations:

 1) == firstPtr[0]
 2) == firstPtr[1]

.

n array are accessible and navigable given a pointer to the first

.3.1 ns

what if you are
tially be very large and copying every element value from the

ume uld be very inefficient. C++ handles this problem by copying
ointer argument to the first element of the array into the parameter. The following example program

inc
pointer for each loop cycle is incremented, which again effectively
that in both cases the pointer must be dereferenced to get the actual valu
ou t.

st we In a have always used the bracket op
ck erator is shorthand for the pointeth

fo ng are equivalent o

*(firstPtr +
firstPtr +*(

*(firstPtr + 3) == firstPtr[2]
..

To summarize, all of the elements of a
element in the array.

4 ing Arrays into FunctioPass

When passing arguments into functions, the argument is copied into the parameter. But
passing in an array? An array can poten

nt array to the parameter array woarg
 pa

verifies this:

Program 4.6: Array parameters.

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

void PrintArray(int array[20])
{
 // Output the size, in bytes, of the parameter.

 120

 cout << "sizeof(array) = " << sizeof(array) << endl;

 // Print the array.
 for(int i = 0; i < 20; ++i)
 cout << array[i] << " ";

 cout << endl;
}

int main()
{
 e random number generator. // Seed th
 rand(time(0)); s

 // Array of 20 integers.
 int randomArray[20];

 // Fill each element with a random number in the range [0, 100].
 for(int i = 0; i < 20; ++i)
 randomArray[i] = rand() % 101;

 // Output the size, in bytes, of the array.
 cout << "sizeof(randomArray) = " << sizeof(randomArray) << endl;

 PrintArray(randomArray);
}

Program 4.6 Output

sizeof(randomArray) = 80
sizeof(array) = 4
23 5 20 41 5 32 90 13 49 8 98 39 39 80 1 6 79 60 98 66
Press any key to continue

From the output, we observe that the size of the array parameter is 4 bytes. Thus 20*4 bytes are not

ecause it is clearer to read, but we could have used pointer arithmetic plus a dereference.

rst element, we can also write the function signature

void PrintArray(int* array);

rray(int array[]);
 the first advantage of pointers.

ater, mplex types built out of several

copied into the function, but rather only 4 bytes are—the size of a 32-bit pointer—thus showing a
pointer was copied and not the entire array. From the preceding sections, we know that we can navigate
over all the elements of an array given a pointer to the first element in the array. Hence, by passing a
pointer for efficiency, we are not limited in what we can do with that array. The function PrintArray
shows this as it proceeds to print every element in the array. Note that we use the bracket [] notation
b

Note: Since we pass arrays with a pointer to the fi
like this:

Or like this:

 void PrintA

The efficiency gained by passing pointers to arrays into functions is
lop larger variable types (think of coL when we learn how to deve

 121

intrinsic types), we will see that we can gain the same efficiency by passing pointers to these larger
of copies.

.4 R

ppos function that needs to return multiple values back to the function caller. How
ould y

r references.

le Return Values with Pointers

tMousePos, which needs to return the x- and y-coordinates
the mouse position relative to the screen. Such a function is useful when you need a game (or any
gram) to react to mouse input. The following program illustrates how to implement this function so

o parameters. (Note that, for illustration purposes, we return random numbers for the
ince we do not know yet how to actually get the current mouse position.)

 4.7: Returning multiple return values with pointers.

types instead

4 eturning Multiple Return Values

Su e you have a
w ou do that? The usual return keyword approach restricts you to only one return value, so we

 relies on pointers omust look for an alternative method. This alternative method

4.4.1 Returning Multip

Suppose that we require a function called Ge
of
pro
that it can return tw
mouse’s x- and y-coordinates s

Program

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

void GetMousePos(int* outX, int* outY)
{
 // Pretend to return the mouse's current position.
 *outX = rand() % 801;
 *outY = rand() % 601;
}

int main()
{
 // Seed the random number generator.
 srand ime(0(t));

 // Initialize two variables that will receive the
 // mouse position.
 int x = 0;
 int y = 0;

 // Output before x and y before receiving mouse position.
 cout << "Before GetMousePos(...)" << endl;
 cout << "x = " << x << endl;
 cout << "y = " << y << endl;

 122

 GetMousePos(&x, &y);

 cout << "After GetMousePos(...)" << endl;
 cout << "x = " << x << endl;
 cout << "y = " << y << endl;
}

Program 4.7 Output

Before GetMousePos(...)
x = 0
y = 0
After GetMousePos(...)
x = 597
y = 353
Press any key to continue

From the output we verify that GetMousePos did indeed modify both x and y, thereby “returning”
more than one value. How does it work? When we call a function with parameters, C++ does its
normal processing; that is, it copies the argument value to the parameter. But in this case, the argument
value is a memory address (&x and &y)—so it copies the address of x and the address of y into outX
and , respectively. This means that the parameters and now point to the variables x

ariable.
Thus, we can modify x and y from inside the function. Figure 4.8 shows the relationship between x and

, and and , visually.

outY outX outY
and y. From what we studied previously, given a pointer to a variable, we can access that v

y outX outY

Figure 4.8: Observe that the parameters and outY point to the variables x and y, respectively.

” a function, thereby “returning”
se pointer parameters. The ability to return multiple values through

nter vantage of pointers.

outX

In this way, we can modify multiple “outside” variables from “inside
multiple return values through the
poi parameters is the second ad

 123

4 Returning Multiple Return .4.2 Values with References

e ca ction follows the same line or
n, with the distinction being that it replaces pointer syntax with reference

the x- and y-coordinates
n is useful when you need a game (or any

wing program illustrates how to implement this function so
at it c , for illustration purposes, we return random numbers for the

e we do not know yet how to actually get the current mouse position.)

W n also return multiple return values with references. This se
reasoning as the previous sectio
syntax.

Suppose that we require a function called GetMousePos, which needs to return
of the mouse position relative to the screen. Such a functio
program) to react to mouse input. The follo

an return two parameters. (Note thatth
mouse’s x- and y-coordinates sinc

Program 4.8: Returning multiple return values with references.

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

void GetMousePos(int& outX, int& outY)
{
 // Pretend to return the mouse's current position.
 outX = rand() % 801;
 outY = rand() % 601;
}

int main()
{
 // Seed the random number generator.
 srand(time(0));

 // Initialize two variables that will receive the
 // mouse position.
 int x = 0;
 int y = 0;

 // Output before x and y before receiving mouse position.
 cout << "Before GetMousePos(...)" << endl;
 cout << "x = " << x << endl;
 cout << "y = " << y << endl;

 GetMousePos(x, y);

 cout << "After GetMousePos(...)" << endl;
 cout << "x = " << x << endl;
 cout << "y = " << y << endl;
}

 124

Program 4.8 Output

Before GetMousePos(...)
x = 0
y = 0
After GetMousePos(...)
x = 265
y = 24
Press any key to continue

From the output, we verify that GetMousePos did indeed modify both x and y, thereby “returning”
more than one value. So how does it work? When we call a function with parameters, C++ does its
normal processing; that is, it copies the argument value to the parameter. But in this case, the parameter
is a reference, so the parameters become references to the arguments. Thus the parameters, outX and

.5 Dynamic Memory

ered thus far is that their size is fixed and their size must be
specified in advance (i.e., at compile time). For instance, this is not legal:

cin >> n;

e ca e this. This presents a problem because it is not hard to
agin ive multiplayer online
me, re constantly entering

define an array with
axim aximum amount of players. However, it is unlikely that the array

 at all times, and therefore, memory will be wasted.

o rem d-size arrays, C++ provides the concept of dynamic memory. The word
dynam can create and destroy memory at runtime (while the program is

 all, we must use pointers. This
is beca rator which we will use to allocate additional memory returns a pointer to that

ory is a
ird important function of pointers.

outY, now refer to the variables x and y. From what we studied previously, given a pointer to a
variable we can access that variable. Thus, we can modify x and y from inside the function.

4

One of the drawbacks of the arrays cov

 int n = 0;

cout << "Enter an array size: ";

 float array[n];

W nnot create a variable-sized array lik
im e a case where the number of array items will vary. For example, in a mass
ga you may use an array to store all of the game players. Because players a
and leaving online play, the array may need to resize. One possibility is to
“m um size” that can handle a m

valuewill be filled to the maximum

T edy the problem of fixe

ic” is used in the sense that we“
running). It is used in contrast to static memory, which is memory fixed at compile time.

How do we incorporate dynamic memory into our applications? First of

use the C++ ope
memory. Therefore, we are forced into using pointers with dynamic memory. Dynamic mem
th

 125

4.5.1

turns a pointer to the
ry. Here are some examples:

ool = new bool;

le[5000]; // dynamic array

.

ents of dynamic arrays is done in the same way as
with regular arrays—using the bracket operator [] or pointer arithmetic.

e initialized during allocation using parentheses syntax:

t* dynFloat = new float(6.28f);

 array size: ";

t[n];

this is legal. Thus, we can allocate (and destroy) memory to meet the current
r with dynamic memory, we can allocate memory only if it is

0];

 Allocating Memory

To create memory dynamically we use the new operator. The new operator re
newly allocated memo

e memory. // Allocat
bool* dynB

 int* dynInt = new int;
float* dynFloat = new float;

 char* dynCharArray = new char[80]; // dynamic array
 long* dynLongArray = new long[256]; // dynamic array
 double* dynDoubleArray = new doub

 // Initialize values
 *dynBool = true;

*dynInt = 5;
 *dynFloat = 6.28f;

Note that when using the new operator to allocate arrays, the operator returns a pointer to the first
element in the array. Therefore, accessing the elem

Additionally, the non-array values can b

// Allocation and value initialization.
 bool* dynBool = new bool(true);
 int* dynInt = new int(5);
 floa

The key benefit of dynamic memory is that variable amounts of memory can be allocated at runtime.
For example, we can now rewrite the earlier problem with a code snippet like so:

 int n = 0;

r an cout << "Ente
 cin >> n;

 float* array = new floa

sing dynamic memory, U
needs of the program at runtime. Moreove
needed. For example, we can do the following:

 if(memoryNeeded)

w float[500 dynMemory = ne

In this way, the array of 5000 floats will only be allocated if the program actually needs it. Clearly
dynamic memory gives us a great deal of control over memory and this turns out to be one of the more
powerful features of pointers (and C++ in general).

 126

4.5.2 Deleting Memory

One of the key differences between static and dynamic memory is that the creation and deletion of static
emory is handled automatically, whereas the programmer must create and delete dynamic memory

manual

o delete memory that was allocated with new, the delete operator must be invoked on the pointer to
the memory. Here are some examples to match the previous section’s new operations:

 dynBool = 0;
 delete dynInt;

 ray;
 Cha
 lete
 nLon
 ete
 dynDoubleArray = 0;

Observe that when you delete an array, you need to use a special delete operator; the delete[]
operator. Also ll after deletion. This is good programming practice
becaus point to any memory after it is deleted. Consequently,

rogram are easier to debug because it will be clear if the program is trying to use a null pointer.

float* arrayOfFloats = new float[100];

Leaker() called!" << endl;

m
ly.

T

 delete dynBool;

 dynInt = 0;
 delete dynFloat;
 dynFloat = 0;

de
yn
lete[] dynCharAr

d rArray = 0;
[] dynLongArray; de

yd gArray = 0;
[] dynDoubleArray; del

 note that the pointers are set to nu
e t ensures that the pointer does noti

s p
Conversely, if the pointer was deleted but not nullified, then it would be harder to determine if the
pointer was actually valid or not. By nullifying the pointer after its deletion, we explicitly state that it is
now an invalid (null) pointer, and there is no ambiguity about its validity.

Rule: For every new operation invoked, a corresponding delete operator must be invoked when you
are done with the memory. If deleting an array, be sure to use the delete[] syntax.

4.5.3 Memory Leaks

Memory leaks refer to the case where a pointer to memory which was allocated with new is lost before
that memory was deleted. The following snippet illustrates a common example:

void MemLeaker()
{

cout << "Mem
 }

 127

int main()

for(int i = 0; i < 500; ++i)

ere an array of 100 floats is allocated in the function MemLeaker. When the function returns, all local

variables are deleted automatically, which includes the pointer arrayOfFloats. Remember that a
 to other memory. What this amounts to is that we have lost our
ve allocated. Because the corresponding delete operator for that

dynamic memory was never called, the memory will not be deleted—thereby causing a memory leak.

eaker leaks a certain amount of memory each time it is called, if this function is
alled often enough, it is possible that it will drain all of the available memory, which will be
roblematic as your machine may eventually run out of available memory in which to perform

ariables. It is imperative to always delete any memory which you have
you are done using that memory. For reference, the function should be written

 Program

 largest we have seen so far in this course. Each part has been
ents carefully. The program allows the user

 resiz an arr various elements in the array via a menu interface.
 this way w e. Memory will be allocated and destroyed while the

{

 MemLeaker();
 }

H

pointer is a variable too, it just points
pointer to the dynamic memory we ha

Moreover, since the pointer to that memory was lost, it is impossible to ever delete it since we have no
idea where that memory lives anymore—access to it was lost when the pointer (i.e. the address) was
lost.

The memory loss problem is compounded by the fact that MemLeaker is called hundreds of times inside
ain. Because MemLm

c
p
operations or allocate new v
allocated with new when
like this:

void MemLeaker()
{
 float* arrayOfFloats = new float[100];

 cout << "MemLeaker() called!" << endl;

 delete[] arrayOfFloats;
 arrayOfFloats = 0;

 }

4.5.4 Sample

The following sample program is the
commented with explanations, so be sure to read the comm

 at ruto e ay ntime and set the values of the
In e can see dynamic memory in us

ng. program is runni

Program 4.9: Dynamic memory.

#include <iostream>
using namespace std;

 128

//==
// Desc: Function iterates through each element in the given
// array.
// ay - pointer to the first element of an arr integer array.
// e - the number of elements in the siz array.
//==== ======================== ==================================
vo rintArray(int* array, int size) id P
{
 // If the array is of size zero than call it a null array.
 if ze == 0) (si
 {
 cout << "NULL Array" << endl;
 }
 else
 {
 // size not zero so loop through each element and
 // print it.
 cout << "{";
 for(int i = 0; i < size; ++i)
 cout << array[i] << " ";

 cout << "}" << endl;
 }
}

//==
// Desc: Function returns a new array given the new size.
// array - pointer to the first element of an integer array.
// oldSize - the number of elements currently in 'array'.
// Size - the number of elements we want in the new array. new
// =========================== ===================================
in esizeArray(int* arrayt* R , int oldSize, int newSize)
{
 // Create an array with the new size.
 int* newArray = new int[newSize];

 // New array is a greater size than old array.
 if(newSize >= oldSize)
 {
 // Copy old elements to new array.
 for(int i = 0; i < oldSize; ++i)
 newArray[i] = array[i];
 }
 // New array is a lesser size than old array.
 else // newSize < oldSize
 {
 // Copy as many old elements to new array as can fit.
 for(int i = 0; i < newSize; ++i)
 newArray[i] = array[i];
 }

 // Delete the old array.
 de [] array; lete

 // urn a pointer to th Ret e new array.
 re newArray; turn
}

 129

int main()
{
 // Our main array pointer and a variable to keep track
 // of the array size.
 in rray = 0; t* a
 int arraySize = 0;

 // Boolean variable to let us know when the user wants
 // qu so that we can termin to it, ate the loop.
 bool done = false;
 while(!done)
 {
 // Every loop cycle print the array.
 PrintArray(array, arraySize);

 // Print a menu giving the user a list of options.
 cout <<
 "1) Set Element "
 "2) size Array " Re
 "3) Quit ";

 // Input the users selection.
 int selection = 1;
 ci s tion; n >> elec

 // Some variables that will receive additional input
 // depending on the users selection.
 int index = -1;
 int value = 0;
 int newSize = 0;

 // d out what menu opti Fin on the user selected.
 switch(selection)
 {
 // Case 1: Set Element
 ca : se 1
 // Ask for the index of the element the user wants
 // to set.
 cout << "Index = ";
 cin >> index;

 // Make sure index is "in array bounds."
 if(index < 0 || index >= arraySize)
 {
 cout << "Bad Index!" << endl;
 }
 else
 {
 // Ask the user to input the value the user
 // wants to assign to element 'index'.
 cout << "[" << index << "] = ";
 cin >> value;

 // Set the value the user entered to the index
 // the user specified.
 array[index] = value;
 }

 130

 break;
 // Case 2: Resize Array
 case 2:
 // Ask the user to enter the size of the new array.
 cout << "Size = ";
 cin >> newSize;

 // Call the resize function. Recall that this
 // function returns a pointer to the newly resized
 // array.
 array = ResizeArray(array, arraySize, newSize);

 // Update the array size.
 arraySize = newSize;
 break;
 // Quit...
 default:
 // Cause the loop to terminate.
 done = true;
 break;
 }
 }

 delete [] array;
 array = 0;
}

Program 4.9 Output

NULL Array
1) Set Element 2) Resize Array 3) Quit 2
Size = 4
{-842150451 -842150451 -842150451 -842150451 }
1) Set Element 2) Resize Array 3) Quit 1
Index = 3
[3] = 4
{-842150451 -842150451 -842150451 4 }
1) Set Element 2) Resize Array 3) Quit 1
Index = 2
[2] = 3
{-842150451 -842150451 3 4 }
1) Set size Array 3) Quit 1 Element 2) Re
Index = 0
[0] = 1
{1 -842150451 3 4 }
1) Set Element 2) Resize Array 3) Quit 1
Index = 1
[1] = 2
{1 2 3 4 }
1) Set Element 2) Resize Array 3) Quit 2
Size = 7
{1 2 3 4 -842150451 -842150451 -842150451 }
1) Set Element 2) Resize Array 3) Quit 1

 131

Index = 4
[4] = 5
{1 2 3 4 5 -842150451 -842150451 }
1) Set Element 2) Resize Array 3) Quit 2
Size = 5
{1 2 3 4 5 }
1) Set Element 2) Resize Array 3) Quit 3
Press any key to continue

Note: Notice the trick in this code:

 cout <<
 "1) Set Element "
 "2) Resize Array "
 "3) Quit ";

“Adjacent” strings like this will be put into one string. That is, the above is equal to:

 cout << "1) Set Element 2) Resize Array 3) Quit ";

er several lines to make the code more readable.

owerful tool, the risk of memory leaks requires extreme caution. In
ct, so guages, such as Java, have deemed pointers to be too dangerous and

mer. Although not having pointers
d low ming simpler, the loss of this memory control can lead

g an array, and it turns out that this is a common operation in
e worthwhile if

re were a way to “wrap up” the code that resizes an array into a package of code. Once this resizing
de was verified to work and that it contained no memory leaks, this code “package” could be used
roughout our programs with the confidence that all the memory management was being done correctly

ortunately for us, such a package exists and is part of the standard library.

 a special type called std::vector (include <vector>). A vector in this context
hich can dynamically resize itself. The following program shows a simple example:

d::vector as a resizable array.

In this way, we can break long strings up ov

4.6 std::vector

Although dynamic memory is a p
me other programming lanfa

error prone, and therefore they do not expose pointers to the program
an -level memory access can make program
to inefficiencies.

The key theme of Program 4.9 was resizin
non-trivial programs. In order to resize the array, dynamic memory was used. It would b
the
oc

th
behind the scenes. F

The code package is
is simply an array w

Program 4.10: Using st

#include <iostream>
#include <vector>
using namespace std;

 132

int main()
{
 vector<float> floatVec;

 floatVec.resize(12);

 cout << "My size = " << floatVec.size() << endl;

 for(int i = 0; i < 12; ++i)
 floatVec[i] = i;

 for(int i = 0; i < 12; ++i)
 cout << "floatVec[" << i << "] = " << floatVec[i] << endl;

}

rogram 4.10 OutputP

My size = 12
floatVec[0] = 0
floatVec[1] = 1
floatVec[2] = 2
floatVec[3] = 3
floatVec[4] = 4
floatVec[5] = 5
floatVec[6] = 6
floatVec[7] = 7
floatVec[8] = 8
floatVec[9] = 9
floatVec[10] = 10
floatVec[11] = 11
Press any key to continue

Program 4.10 demonstrates some syntax not yet discussed. First a variable is declared called floatVec

 angle brackets <> a type is specified, which indicates what type of
tore floats in the vector.

ething called resize(12).
operator, called resize, particular to vector that instructs the vector to resize

vector keeps track of its size—its size can be accessed using its
ize

e accessed in the same way elements in an array are accessed,
vector has many more operators than resize, but they will

r in this course. For now, just think of vector as a resizable array.

 now rewritten using vector. Note that by using vector, less code needs to be written.
t memory management does not need to be done as all the memory

anage side vector.

of type vector, and inside the
tor stores. We selements the vec

ent, the vector variable name is followed by a dot and somIn the next statem

This syntax calls an
itself to size 12. Also observe that a

 operator. .s

Finally, the elements in floatVec can b

cket operator. Note that by using the bra
 discussed latebe

Program 4.9 is
More importantly, observe tha

ment is “wrapped up” inm

 133

Pr 4.11: Dynamic memory “wogram rapped up” in std::vector.

#include <iostream>
d ctor> inclu e <ve
using namespace std;

v ri ctor(vector<int>& v) oid P ntVe
{
 if(v.size() == 0)
 {
 cout << "NULL Array" << endl;
 }
 else
 {
 cout << "{";
 for(int i = 0; i < v.size(); ++i)
 cout << v[i] << " ";

 cout << "}" << endl;
 }
}

int main()
{
 vector<int> array;

 // Boolean variable to let us know when the user wants
 // to quit, so that we can terminate the loop.
 bool done = false;
 w) hile(!done
 {
 // Every loop cycle print the array.
 PrintVector(array);

 // Print a menu giving the user a list of options.
 c <out <
 "1) Set Element "
 "2) Resize Array "
 "3) Quit ";

 // Input the users selection.
 i l n = 1; nt se ectio
 cin >> selection;

 // Some variables that will receive additional input
 // depending on the users selection.
 int index = -1;
 int value = 0;
 int newSize = 0;

 // Find out what menu option the user selected.
 s (selection) witch
 {
 // Case 1: Set Element
 case 1:
 // Ask for the index of the element the user wants
 // to set.

 134

 cout << "Index = ";
 cin >> index;

 // Make sure index is "in array bounds."
 if(index < 0 || index >= array.size())
 {
 cout << "Bad Index!" << endl;
 }
 else
 {
 // Ask the user to input the value the user
 // wants to assign to element 'index'.
 cout << "[" << index << "] = ";
 cin >> value;

 // Set the value the user entered to the index
 // the user specified.
 array[index] = value;
 }
 break;
 // Case 2: Resize Array
 case 2:
 // Ask the user to enter the size of the new array.
 cout << "Size = ";
 cin >> newSize;

 // Call the resize operator. Recall that this
 // function returns a pointer to the newly resized
 // array.
 array.resize(newSize);
 break;
 // Quit...
 default:
 // Cause the loop to terminate.
 done = true;
 break;
 }
 }
}

s of objects that live in computer memory. A program’s instructions
achine code) are also loaded into memory. This is necessary because these instructions will need to

be loaded in and out of the CPU’s instruction register (a register that stores the current instruction
structions. What happens when a function is
nt, to start executing the code of a function,

the execution flow needs to jump from the current execution path to the beginning of the execution path
of the function we wish to call. Since a function has a memory address, this is not a difficult task.

4.7 Function Pointers

Variables are not the only type
(m

being executed), in order for the computer to execute the in
called? Ignoring arguments and parameters for the mome

 135

Simply set the instruction pointer (a CPU register that points to the memory address of the next
machine instruction to execute) to point to the address of the first instruction of the function. Figure 4.9
shows an example of this concept.

Figure 4.9: CPU instructions in memory. The question marks simply indicate that we do not know what the actual
bits of these instructions look like, but we assume they are instructions as marked in the figure. We see that a few

instructions, after the first instruction of main, we come to a function call instruction, which modifies the instruction
pointer to point to the first instruction of some function also in memory. The flow of execution thus flows into this

function, and the function code is executed. The last instruction of the function modifies the instruction pointer again,
this time setting it back to the instruction that followed the original function call instruction. Thus we observe the

flow of execution into a function and then back out of a function.

The r, a

ore elaborate explanation is best left to a course on computer architecture and machine language. The
y point to remember is that a function lives in memory and thus has a memory address. Therefore, we

can have pointers to functions.

ike re al level of indirection instead of
alling the function directly, so let us look at an example.

 preceding paragraph gave a simplified explanation of what occurs “behind the scenes.” Howeve
m
ke

4.7.1 The Uses of Function Pointers

L
c

gular pointers, it may not be obvious why we need an addition

 136

Later in this course, we will introduce Windows programming; that is, creating programs with menus,
dialog boxes, etc—no more console window! One of the things that we will learn is that Windows
rogramming is fundamentally different from how we currently write our programs. In particular,

Window en. A Windows program constantly scans for events such as mouse
clicks, tions, and so on. When an event occurs, the program needs to respond to
it. Eac ogram generally responds differently to a specific event. This is one of the

ature hat makes the programs different from each other. For example, a game responds to keyboard
 than a word processor does.

Window (the ccurs, Windows
needs to call a An event handler is a function that
contain the c event. Because each program generally
handles an eve enerally be different for each program. Therefore,
each W n event handler function, and then registers a pointer to this
functio ith , via the function
ointer hen an event occurs. Figure 4.10 demonstrates this concept.

p
s programs are event driv

key presses, menu selec
ifferent Windows prh d

s tfe
input much differently

s operating system) is constantly checking for events. When an event o
 function to handle the event, called an event ha
ode that should be executed in response to an

ndler.
s

nt differently, the event handler will g
indows program defines its ow

n w
, w

Windows. Consequently, Windows can call this event handler function
p

Figure 4.10: Defining an event handler and registering a pointer to it with Windows. In this way, the internal

4.7.2

To dec

The re
address

Windows code can call this event handling function, via the pointer, when an event occurs.

 Function Pointer Syntax

lare a function pointer variable, the following syntax is used:

returnType (*PointerName)(paramType paramName, ...)

turn type and parameter listing of the function pointer must match that of the function whose
 is being assigned to the function pointer. Consider this example:

 137

float Square(float x)
{
 return x * x;
}

pointer to Square. Note address of operator (&)
 // is not necessary for function pointers.

float x) = Square;

Note that a function pointer can be invoked without dereferencing.

4.8 Summary

1. A reference is essentially an alias for a variable. Given a reference R to a variable A, we can
dire ince R refers to A. Using references we can, for example, return
multiple return values from a function.

2. A pointer type that can store the memory address of another variable. Given

a p actual variable to which it points can be accessed and modified by
deref multiple return values can be returned from a
function, arrays can be efficiently passed to functions, and dynamic memory can be used.

converted to a pointer to the first element in the array. Given a
etic.

4. Dynamic memory allows the creation and destruction of memory at runtime (while the program
cate memory, use the C++

oid memory leaks, every new

delete/delete[] operation.

tor instead of dynamic memory. std::vector
eventing accidental memory leaks. Moreover, by

nage and

ode needs to call a section of your
code. For example, Windows may need to call your event handler function.

int main()
{
 // Get a

 float (*squarePtr)(

 // Call Square via pointer:

 cout << "squarePtr(2.0f) = " << squarePtr(2.0f) << endl;
}

ctly access A with R s

 is a special variable
ointer to a variable, the

erencing the pointer. By using pointers

3. In C++, the array name can be

pointer to its first element, an array can be navigated by using pointer arithm

is running) in order to meet the current needs of the program. To allo
new operator and to destroy it, use either the delete operator for non-array pointers or the
delete[] operator for array pointers. Remember that to av
operation should eventually have a corresponding

5. If a resizable array is required, use std::vec

handles the dynamic memory for you, thus pr
using std::vector, less code is required and the program becomes easier to ma
maintain.

6. Function pointers are useful when a third party section of c

 138

4.9 Exercises

s

e) Pointer arithmetic:

ory:

3. oes it do?

eaks) and easier alternative to dynamic memory?

4.9.1 Essay Question

1. Explain in your own words and using complete sentences what the following terms are:

a) References:

b) Constant References:

c) Pointers:

d) Constant Pointers:

f) Static Mem

g) Dynamic Memory

h) Runtime

2. State three benefits of pointers.

What is the symbol for the “address of” operator and what d

4. What is the symbol of the “indirection operator” and when is it used?

5. How are references probably implemented “behind the scenes?”

6. Why is dynamic memory useful?

7. Explain how arrays are passed into functions.

emory l8. What is a safer (i.e., avoids m

9. Explain a situation where function pointers might be useful.

 139

4.9.2 Dice Function

ction that returns two random numbers, both in the range [1,
6]. Implement the function two times: once using references, and a second time using pointers. Your
function declarations should like this:

After you have implemented and tested this function, write a small craps-like gambling game that allows
e user to place bets on the dice roll outcomes. You are free to make up your own game rules.

rray Fill

Write a function called RandomArrayFill that inputs (i.e., takes a parameter) an integer array, and
also es a parameter) is
then to write a rando array. The function
eclaration of this function should look like so:

ow wri a program that asks the user to input the size of an integer array. The program then needs to
reate an array of exactly this size. Next, the program must pass this created array to the

 of the array. After
 output

 create: 6
 with random numbers...

rray = {57, 23, 34, 66, 2, 96}
Press any key to continue

r you h plementing the above function, rewrite it again, but this time using std::vector.
he function declaration of this new function should look like so:

Write a dice rolling function; that is, a fun

 void Dice(int& die1, int& die2);
 void Dice(int* die1, int* die2);

th

4.9.3 A

 that inputs (i.e., tak an integer, which contains the size of the array. The function
m number, in the range [0, 100], to each element of the

d

 void RandomArrayFill(int* array, int size);

N te

 c
RandomArrayFill function, so that a random number is assigned to each element

hich, the program must output every array element to the console window. Your programw
should look similar to this:

Enter the size of an array to
Creating array and filling it
A

Afte finis im
T

andomArrayFill(std::vector& vec); void R

 140

4.9.4 Quadratic Equation

Background Info

Recall that the standard form of a quadratic equation is given by:

Here, a, b, and c are called the coefficients of the quadratic equation. Geometrically, this describes a
arabola—Figure 4.11. Often we want to find the values of x where the parabola intersects the x-axis;
at is, find x such that . These values of x are called the roots of the quadratic

cbxaxy ++= 2 .

p
02 =++= cbxaxyth

equation.

Figure 4.11: Parabola with a 2-unit scale, a horizontal translation of 3 units, and a vertical
translation of –4 units. The roots are approximately 1.58 and 4.41.
 () 432 2 −−= xy

 141

Conveniently, a mechanical formula exists that allows
formula, called the quadratic formula, is as follows:

us to find the roots of a quadratic equation. This

a
acbb 42 −±−x

2
=

To be sure that you understand how this equation works we will do some examples.

xample 1E : Find the roots of the following quadratic equation: . 62 −− xx

Using the quadratic formula we have:

()()
2

51
2

251
12

614112 ±
=

±
=

⋅
−−±

=
−±− c

2
4

=
a

abbx

So, and .

xample 2

31 =x 22 −=x

E : Find the roots of the following quadratic equation: .

Using the quadratic formula we have:

122 +− xx

()()

1
2

02
12

11442
2

42

=
±

=
⋅
−±

=
−±−

=
a

acbbx

So, .

xample 3

121 == xx

E : Find the roots of the following quadratic equation: .

sing the quadratic formula we have:

522 ++ xx

U

()()
2

162
12

51442
2

42 −±−
=

⋅
−±−

=
−±−

=
a

acbbx

Recalling that we obtain:

12 −=i

iii 21
2

42
2

162
2

162 2

±−=
±−

=
±−

=
−±−

So, and .

dratic equation can contain imaginary numbers; a
 a real and an imaginary component is termed a complex number.

 ix 211 +−= ix 212 −−=

Observe in example three that the roots to the qua
number that includes both

 142

Exercise

Write a function that inputs (i.e., takes as parameters) the coefficients of a quadratic equation, and
outputs the result. The function should return two solutions with two parts: 1) A real part and 2) an
imaginary part. Of course, if a solution does not have an imaginary part (or real part, for that matter)
then the corresponding component will just be zero (e.g., i20 + , i03 +). The function should be
prototyped as follows:

bool QuadraticFormula(float a, float b, float c,
 float& r1, float& i1, float& r2, float& i2);

ts of the quadratic equation. And where r1 denotes the real part of
solution 1 and where i1 denotes the imaginary part of solution 1. Likewise, r2 denotes the real part of
solu n

Not h ermined as follows: If the function contains
n i aginary part th false true. We do this because some applications
ight not want to work with non-real results (i.e., results that have imaginary parts), and such

application can easily test for a non-real result by examining the return value of this function.

 above three examples.
Your output should be formatted similar to this:

Where a, b, and c are the coefficien

tio 2 and i2 denotes the imaginary part of solution 2.

e t at the return type is a bool. The return v
m en return , otherwise return

alue is det
a
m

Test your function with the coefficients given in the quadratic equations from the

Coefficients a=1, b=2, c=5 yield S1 = -1 + 2i, and S2 = -1 – 2i

 143

 Chapter 5

 Classes and Object Oriented
Programming

Introduction

 144

Thus far we have been using intrinsic C++ variable types such as bool, char, int, float, arrays, etc,
rary std::string type, to represent simple quantities. These types work well to

s names and numbers. However, many real-world objects which need to be
as an aggregate set of various intrinsic types (e.g., a game player has many

atistic s a name, health, armor, etc). Moreover, many real-world objects can
orm actions. A game player can run and fire his/her weapon, for example. The primary theme of

is chapter is to learn how to create complex types called classes, which will enable the creation of

er Objectives

ct oriented programming attempts to solve.
 members of that class.

ss design strategies.

ted Programming Concepts

std::string name;

float positionX;

 armor;

 logically group the variables associated
 represented by variables, objects

ns. These actions are usually specific to a particular type of object. For
ample, a player in a role-playing game might be able to perform actions such as fight, talk,

ample, a function called
oreover, these functions

ould have access to the player’s data properties so that, for example, hit points could be decreased whn
e player was injured, magic points increased when a new level is attained, and so on.

 of data (properties) and perform actions (functions). The key idea of object-
ervation in code so that new variable types can be defined

ich c at behave like real-world objects. These new variable types
or this style of programming is four-fold.

and the standard lib
describe trivial things such a
escribed in code are built d

st al properties such a
perf
th
variables which consist of several components and can perform actions.

Chapt

• Understand the problems obje
nd instantiate• Define a class a

• Learn some basic cla

5.1 Object Orien

Many real-world objects are described by a multitude of data members. For example, a player in a game
might have several properties:

int hitPoints;
int magicPoints;

 float positionY;
 std::string weaponName;
 int weaponDamage;

int

Because there may be many players in a game, we would like to

h each player via one name. In addition to an object’s properties,wit
can also perform certain actio
ex
castSpell, etc. These verbs can be represented in code with functions; for ex

ght would execute the code necessary to perform a combat simulation. Mfi
w
th

Real-world objects consist
oriented programming is to model this obs

an be used to instantiate variables thwh
are called classes. The motivation f

 145

Fir

in
st, i ral for humans to think in terms of real objects than it is to
k in terms of computer instructions and memory. This is especially true in large and complex

 natural organizational system. When creating these
sses, all the related code associated with the class is organized in a tight code unit. Instead of having

Finally
facilities lik tes. These topics are covered towards the end of
this bo

5.2 C

A class ew variable type. For example, we can define a class called Wizard. We
can the the same way we instantiate variables of the
intrinsi

Wizard type Wizard.

Note th the class. The class definition states to
the com oes not create an object. In the above
exampl is the object (i.e., an instance of class Wizard).

A conc used to explain the difference between a class and an object is a
blueprint. A house blueprint, for example, specifies how a house would be made, but it is not a house
itself. The actual houses built based on that blueprint would be called objects (i.e., instances) of that
bluepri variable itself. The
actual variables built based on that class would be called objects (i.e., instances) of that class.

5.2.1 Syntax

In general, a class is defined with the following syntax:

t is intuitive. It is much more natu
th
systems.

Second, object-oriented programming provides a
cla
a lot of data variables scattered throughout the code and manipulating that data through functions, we
obtain a much more self-contained code unit of related code through classes.

Third, data can be encapsulated with object-oriented programming. The class writer can enforce which
parts of the class are visible to outside code, and which parts should be kept purely internal. In this way,
the class writer prevents users of the class from accidentally making destructive modifications to internal
class data.

, object-oriented programming enables a higher level of code reuse and generalizations through
e inheritance, polymorphism, and templa

ok.

lasses

 allows us to define a n
n instantiate Wizard objects (i.e., instances) in

r example, we will be able to write: c types. Fo

 wiz0; //Instantiate a variable called wiz0 of

at the definition of a class is different than an instance of
ject of the class has, but it dpiler what properties an ob

e, Wizard is the class and wiz0

eptual analogy which is often

nt. Similarly, a class specifies how a variable would be made, but it is not a

 146

class ClassName
 {
 // Methods

 // Data members
};

For example, we might define our aforementioned Wizard class like so:

d fight(
d talk();

ethods (also called member functions) are the class functions, which specify the actions which

izard class, we define a Wizard to have a name, hit
oints, magic points, and armor. Thus we have built a complex Wizard type out of simpler components.

Note: We prefix the data members of a class with ‘m’ (for member) so that we can readily distinguish
d not required.

fter nted. Method
utside the class definition scope and follow this general

eturnType ClassName::MethodName(ParameterList...)

oid Wizard::fight()

}

void W

lass Wizard c
{
public:
 // Methods
 voi);

voi
 void castSpell();

 // Data members
 std::string mName;
 int mHitPoints;
 int mMagicPoints;
 int mArmor;
};

M
objects of this class can perform. Data members are the variable components that together form a more
complex type, such as a Wizard. In the above W
p

them from non-class member variables; this is purely for notation an

 class methods still need to be implemeA our class has been defined, the
implementations (i.e., definitions) occur o
syntax:

r
{
 ...Body Code
}

To illustrate a simple example, we implement the functions of Wizard, like so:

v
{

cout << "Fighting." << endl;

izard::talk()

 147

{

}

void Wizard::castSpell()
{
 < endl;
}

The on
method
The sco in the same sense in which it was used with namespaces. Recall
that the prefix told the compiler that the standard library code we need belongs to the standard
namesp e use the scope resolution operator to specify the class to which

e met

Note: It is possible to define methods inside the class instead of outside. For example, we could

class Wizard
{

 }

ot Operator

cout << "Talking." << endl;

cout << "Casting Spell." <

ly syntactic difference between a method definition and a “regular” function definition is that the
 name must be prefixed with the class name followed by the scope resolution operator (::).
pe resolution operator is used
 std::
ace. Similarly with classes, w
hod belongs. th

implement the Wizard methods like so:

public:
 // Methods
 void fight()
 {
 cout << "Fighting." << endl;

 void talk()
 {
 cout << "Talking." << endl;
 }
 void castSpell()
 {
 cout << "Casting Spell." << endl;
 }

 // Data members
 std::string mName;
 int mHitPoints;
 int mMagicPoints;
 int mArmor;
};

However, for reasons Section 5.2.3 will give, this is usually considered bad form.

5.2.2 Class Access: The D

 148

In Section 5.2.1 we defined and implemented a Wizard class. This class is now ready to be used. Let
ct:

iz0;

we have a object created, we want it to perform actions. So let us call some of its
thod the dot operator (.) is used as follows:

 that was used to resize a vector. This is because std::vector is
 executes the necessary code to resize the

e methods are associated with a particular object—that is, we invoke them through an object with
ay ask whether a method can access the data members of the calling object. For

xample, when wiz0.fight() is called, and a fight simulation begins, can fight() access the armor
 wiz0? It would seem reasonable that it could, since

a part of the object as the data members are. Indeed, a member function can access
lling object. We will see many examples of how this is done throughout this
w it actually works in the next chapter.

s to be read or modified. To access a data member, the dot
rato ws:

0;

 wiz0.mName << endl;

// Test to see if player has enough magic points to cast a spell
s > 4)
l();

members. For example, if we have several Wizard objects
e, number of hit points, and magic points. In other words,

cts are completely independent from each other.

e identify different
at array using the bracket operator ([]). With objects, we identify different

ata members of that object with the dot operator, followed by the method or data member
e.

te pointers to class types in the same way that we create pointers to intrinsic types.
r to an object? For example, suppose we create a wizard instance like so:

us first instantiate an obje

 Wizard w

Now that Wizard
methods. To invoke a class me

 wiz0.fight();

 wiz0.talk();

Note that this is the same dot operator

method of that class, whichactually a class and resize is a
vector.

incS
the dot operator—we m
e
property mArmor or the mHitPoints properties of
fight() is as much
the data members of the ca

apter, and we will see hoch

Suppose now a data member of wiz0 need

r is also used, as this next snippet shoope

 wiz0.mArmor = 1

 cout << "Player's name = " <<

 if(wiz0.mMagicPoint

 wiz0.castSpel
 else

 cout << "Not enough magic points!" << endl;

Note that each object has its “own” data
wiz0, wiz1,…, they each have their own nam

jethe data members of ob

of the dot operator as a subscripting symbol. In an array wIt may be helpful to think
elements that belong to th

thods and dme
amn

Note: We can crea
What if we have a pointe

Wizard* wiz0 = new Wizard;

 149

rence the pointer to get the variable,

must come before the dot operation.

rship operator (->):

5.2.3 Header Files; Class Definitions; Class Implementations

One of the goals of C++ is to separate class definitions from implementation. The motivation behind
this is that a programmer should be able to use a class without knowing exactly how it works (i.e.,

you may be using classes you did not
rite yourself—for example, when you learn DirectX, you will use classes that Microsoft wrote.

lass definitions from implementation, two separate files are used: header files (.h)
les (.cpp). Header files include the class definition, and implementation files
entation (i.e., method definitions). Eventually, the source code file is compiled

compiled class implementation, which

To invoke a method or access a data member we must first derefe
and then we can use the dot operator as normal:

(*wiz0).fight();

agicPoints = 5; (*wiz0).mM

We use the parentheses to specify that the dereference operation

However, this syntax is considered cumbersome, so a shorthand syntax was developed. When using a
pointer to an object, we can invoke a member function or access a data member using the indirect
membe

wiz0->fight();
wiz0->mMagicPoints = 5;

without knowing the implementation details). This occurs when
w

In order to separate c
and implementation fi
ontain the class implemc

to either an object file (.obj) or a library file (.lib). Once that is done, you can distribute the class header
file along with the object file or library file to other programmers. With the header file containing the
lass definition, and with the object or library file containing the c

is linked into the project with the linker, the programmer has all the necessary components to use the
class without ever having to see the implementation file (that is, the .cpp file). For example, the DirectX
Software Development Kit includes only the DirectX header files and the DirectX library files—you
never see the implementation files (.cpp).

In summary, given the header file and object file or library file, other programmers are able to use your
class without ever seeing how it was implemented in the source code file. This does two things: first,
others will not be able to modify the implementation, and second, your implementation (intellectual
property) is protected.

To illustrate, let us rewrite the Wizard class and its implementation, but this time using header files and
source code files.

// Wiz.h (Wizard header file.)

#ifndef WIZARD_H
#define WIZARD_H

 150

#include <iostream>
#include <string>

class Wizard
{
public:
 // Methods
 void fight();
 void talk();
 void castSpell();

 // Data members
 std::string mName;
 int mHitPoints;
 int mMagicPoints;
 int mArmor;
};

 // WIZARD_H #endif

// Wiz.cpp (Wizard implementation file.)

#include "wiz.h"
using namespace std;

void Wizard::fight()
{
 cout << "Fighting." << endl;
}

void Wizard::talk()
{
 cout << "Talking." << endl;
}

void Wizard::castSpell()
{
 Casting Spell." << endl; cout << "
}

// Main.cpp (The file with main.)

#include <iostream>
#include <string>
#include can declare Wizard objects. "wi so we z.h" //<--Include
using namespace std;

int main()
{
 Wizard wiz0; // Declare a variable called wiz0 of type Wizard.

 wiz0.fight();
 wiz0.talk();

 wiz0.mArmor = 10;

 151

 cout << "Player's name = " << wiz0.mName << endl;

 // Test to see if player has enough magic points to cast a spell
 if(wiz0.mMagicPoints > 4)
 wiz0.castSpell();
 else
 cout << "Not enough magic points!" << endl;
}

Throughout the rest of this course we will separate our class definition from its implementation into two
separate files.

Note: A segment of code that uses a class is called a client of the class. For example, Main.cpp is a
client file of Wizard because it uses objects of that class.

Note: When including header files in the project which you have written, such as Wiz.h, use quotation
marks in the include directive instead of the angle brackets (e.g., “Wiz.h”)

5.2.2.1 Inclusion Guards

Observe that in Wiz.h our class is surrounded with the following:

#ifndef WIZARD_H
#define WIZARD_H
…
#endif // WIZARD_H

This is called an inclusion guard. These statements are called preprocessor directives and they direct
the compiler on how to compile the code.

The first line, #ifndef WIZARD_H, has the compiler ask if a symbol called WIZARD_H has not been
already defined. If it has not been defined then the code between the #ifndef and the #endif will be
compiled. Here the code contained between this “compiler if statement” is the class and another
preprocessor directive #define WIZARD_H. The directive #define WIZARD_H tells the compiler to
define a symbol called WIZARD_H. Thus, the first time the compiler sees Wiz.h in a translation unit,
WIZARD_H is not defined, so the class will be compiled, and WIZARD_H will also be defined. Any other
time the compiler sees Wiz.h in a translation unit, WIZARD_H will already be defined and thus the class
will not be recompiled again. This prevents a redefinition of the class, which is desirable because it only
needs to be compiled once per translation unit.

But why would the same class be included more than once in a translation unit? Consider the Wizard
class file breakdown Wiz.h, Wiz.cpp, and Main.cpp. We include iostream and string in Main.cpp, but
Main.cpp also includes Wiz.h, which in turn includes iostream and string as well. Thus iostream and
string would be included twice in the translation unit Main.cpp, which would cause a class redefinition
error. However, iostream and string contain the above mentioned inclusion guards, thereby preventing

 152

them from being compiled more than once, and thus preventing a redefinition error. This same scenario
can occur with our own classes as well, so we too need inclusion guards.

5.2.4 Data Hiding: Private versus Public

C++ class writers can enforce which parts of the class are visible to outside code, and which parts should
be kept purely internal. To do this, C++ provides two keywords: public and private. All code in a
class definition following a public keyword and up to a private keyword is considered public, and
all code in a class definition following a private keyword up to a public keyword is considered
private. Note that classes are private by default.

Note: The public and private keywords are used to enforce which parts of the class are visible to
outside code. A class’s own member functions can access all parts of the class since they are inside the
class, so to speak.

The public portion of a class is referred to as the class-interface because that is the interface exposed to
other code units. The private portion of a class is considered to be part of the class implementation,
because only the internal implementation has access to it.

The general rule is that data members (class variables) should be kept internal (private) and only
methods should be exposed publicly. By making the programmer go through member functions, the
class can safely regulate how the internal class data can be accessed and manipulated. Hence, the class
can maintain the integrity of its internal data. Why does the integrity need to be maintained? Because
the class methods most likely have some expectations about the data, and by going through member
functions it can enforce these expectations.

Using this general rule, our Wizard class can be rewritten like so:

class Wizard
{
public:
 // Methods
 void fight();
 void talk();
 void castSpell();

private:
 // Data members
 std::string mName;
 int mHitPoints;
 int mMagicPoints;
 int mArmor;
};

However, now the data members cannot be accessed and the code fails to compile:

 wiz0.mArmor = 10;

 153

 cout << "Player's name = " << wiz0.mName << endl;

 // Test to see if player has enough magic points to cast a spell
 if(wiz0.mMagicPoints > 4)
 wiz0.castSpell();
 else
 cout << "Not enough magic points!" << endl;

The errors generated are:
“error C2248: 'Wizard::mArmor' : cannot access private member declared in class 'Wizard',”
“error C2248: 'Wizard::mName' : cannot access private member declared in class 'Wizard',”
“error C : cannot access private member declared in class 'Wizard'.”

This should not be surprising as these variables were just made private and cannot be accessed directly.

To solve this problem, a similar, but safer, functionality must be provided via the class interface. First,
we will add a setArmor method, which allows a client to set the armor. It is implemented
like so:

 void Wizard::setArmor(int armor)

{
 if(armor >= 0)
 mArmor = armor;
}

Here th t we said member functions can
access

wiz0.setArmor(10);

We are setting the mArmor member of wiz0 to ten.

Why is Wizard::setArmor “better” than making mArmor public? By forcing the client to go through
Wizard::setArmor, we can add our own safety checks to maintain data integrity. For example, in our
Wizard armor was nonnegative.

Next, a way for the client to get t irect access to the name must be
provided. This is done by making a function that returns a copy of the name. Thus the client cannot
modify the internal name, but only a copy. This function is implemented like so:

std::string Wizard::getName()
{
 return mName;

Finally, the mMagicPoints data member must be considered. In actuality, the client should not be
getting access to this value. The class itself can test whether or not the wizard has enough magic points
internally. We rewrite Wizard::castSpell like this:

2248: 'Wizard::mMagicPoints'

Wizard::

e member function sets the data member mArmor (remember tha
the class data). Thus if we write:

::setArmor implementation, we added a check to make sure

he name of a Wizard without giving d

}

 154

void Wizard::CastSpell()
{
 if(mMagicPoints > 4)
 cout << "Casting Spell." << endl;
 else
 cout << "Not enough magic points!" << endl;
}

The client code can now be rewritten with our new interface as follows:

int main()
{

 wiz0.Fight();
 wiz0.Talk();

 wiz0.set

 cout << "Player's name = " << wiz0.getName() << endl;

 wiz0.CastSpell();
}

Note: In addition to defining a class, you can define what is called a structure. In C++, a structure is
exactly the same as a class except that it is public by default, whereas a class is private by default. For
example, we can write a Point2D structure like so:

struct Point2D
{
 float x;
 float y;
};

We do not need to explicitly designate it as public because structures are public by default. Structures
can have member functions as well, but in practice, structures are usually used for types that only have
data members. Because structures are essentially the same as classes, we use the two terms
interchangeably.

5.2.5 Constructors and Destructors

Every class has a constructor special kinds of methods. If you do not
explicitly define these method default versions automatically. In short, a
constructor is a method that is automatically executed when an object is instantiated and a destructor is a
method that is automatically executed when an object is deleted.
A constructor is usually used to initialize data members to some default value or to allocate any dynamic
memory the class uses or to execute any initialization code that you want executed as the object is being
created. Conversely, the destructor is usually used to free any dynamic memory which the class has
allocated because if it does not delete it when the object is being destroyed, it will result in a memory

 Wizard wiz0;

Armor(10);

 and destructor, which are
s, the compiler will generate

 155

leak. Note that you never invoke a destructor yourself; rather, the destructor will automatically be called
when an object is being deleted from memory.

Constructors and destructors are special methods and they require a specific syntax. In particular, a
constructor has no return type and its name is also the name of the class. Likewise, a destructor has no
return type, no parameters, and its name is the name of the class but prefixed with the tilde (~). This
next snippet shows how the constructor and destructor would be declared in the Wizard class definition:

class Wizard
{
public:
 // Constructor.
 Wizard();

 // Overloaded constructor.
 Wizard(std::string name, int hp, int mp, int armor);

 // Destructor
 ~Wizard();
...

The implementations of these function is done just as any other method, except there is no return type.
The following snippet gives a sample implementation:

Wizard::Wizard()
{
 // Client called constructor with zero parameters,
 // so construct a "wizard" with default values.
 // We call this a “default” constructor.
 mName = "DefaultName";
 mHitPoints = 0;
 mMagicPoints = 0;
 mArmor = 0;
}

Wizard::Wizard(std::string name, int hp, int mp, int armor)

ent called constructor with parameters, so
 // construct a "wizard" with the specified values.
 mName = name;
 mHitPoints = hp;

 m
}

Wizard::~Wizard()
{
 // No dynamic memory to delete--nothing to cleanup.
}

N e that we have overloaded the constructor function. Recall that the act of defining several
different versions—which differ in signature—of a function is called function overloading. We can
overload methods in the same way we overload functions.

{
 // Cli

 mMagicPoints = mp;
Armor = armor;

ote: Observ

 156

Constructors are called when an object is created. Thus instead of writing:

 Wizard wiz0;

We now write:

wiz0();// Use “default” constructor.

or:

 Wizard wiz0(“Gandalf”, 20, 100, 5);// Use constructor with
 // parameters.

Note that the following are actually equivalent; that is, they both use the default constructor:

 Wizard wiz0; // Use “default” constructor.
 W ;// Use “default” constructor.

 Constructors and the Assignment Operator

 and an assignment operator. If you do not explicitly define
these methods, the comp e default ones automatically. A copy constructor is a method
that constructs an object via another object of the same type. For example, we should be able to
construct a new Wizard object from another Wizard object—somewhat like a copy:

...
Wizard wiz1(wiz0);// Construct wiz1 from wiz0.

If you use the default copy constructor, the object will be constructed by copying the parameter’s bytes,
byte-by-byte, into the object being constructed, thereby performing a basic copy. However, there are
times when this default behavior is undesirable and you need to implement your own copy constructor
code.

Similarly, an assignment operator is a method that specifies how an object can be assigned to another
object. For example, how should a Wizard object be assigned to another Wizard object?

Wizard wiz0;
...
Wizard wiz1 = wiz0;// Assign wiz0 to wiz1.

If you use the default assignment operator, a simple byte-by-byte copy from the right hand operand’s
memory into the left hand operand’s memory will take place, thereby performing a basic copy.
However, there are times when this default behavior is undesirable and you need to override it with your
own assignment code.

 Wizard

izard wiz0()

5.2.6 Copy

Every class also has a copy constructor
iler will generat

Wizard wiz0;

 157

We discuss the details of cases where you would need to implement your own copy constructor and
assignment operator in Chapter 7. For now, just be aware that these methods exist.

Game: Class Examples

To help reinforce the concepts of classes, we will create several classes over the following subsections.
We will then use these classes to make a small text-based role-playing game (RPG).

When utilizing the object oriented programming paradigm, the first thing we ask when designing a new
program is: “What objects does the program attempt to model?” The answer to this question depends on
the program. For example, a paint program might utilize objects such as Brushes, Canvases, Pens,
Lines, Circles, Curves, and so on. In the case of our RPG, we require various types of weapon
objects, monster objects, player objects, and map objects.

After we d on what objects our program will use, we need to design corresponding classes
which define the properties of these kinds of objects and the actions they perform. For example, what
aggregate set of data members represents a Player in the game? What kind of actions can a Player
perform in the game? In addition to the data and methods of a class, the class design will also need to
consider the relationships between the objects of one class and the objects of other classes—for
example, how they will interact with each other. The following subsections provide examples for how
these class design questions can be answered.

5.3.1 The Range Structure

Our game will rely on “dice rolls” as is common in many role-playing games. We implement random
dice rolls with a random number generator. To facilitate random number generation, let us define a
range structure, which can be used to define a range in between which we compute random numbers:

5.3 RPG

 have decide

// Range.h

#ifndef RANGE_H
#define RANGE_H

// Defines a range [mLow, mHigh].
struct Range
{
 int mLow;
 int mHigh;
};

#endif //RANGE_H
This class is simple, and it contains zero methods. The data members are the interface to this class.
Therefore, there is no reason to make the data private and so we leave them public. (Note as well that we
actually used the struct type rather than the class type as discussed in section 5.2.4).

 158

5.3.2 Random Functions

Our game will require a couple of utility functions as well. These functions do not belong to an object,
l implement them using “regular” functions.

per se, so we wil

// Random.h

#ifndef RANDOM_H
#define RANDOM_H

#include "Range.h"

int Random(Range r);

int Random(int a, int b);

#endif // RANDOM_H

// Random.cpp

#include "Random.h"
#include <cstdlib>

// Returns a random number in r.
int Random(Range r)
{
 return r.mLow + rand() % ((r.mHigh + 1) - r.mLow);
}

// Returns a random number in [low, high].
int Random(int low, int high)
{
 return low + rand() % ((high + 1) - low);
}

• Random: This function returns a random number in the specified range. We overload this
function to work with the Range structure, and also to work with two integer parameters that
specify a range. Section 3.4.1 describes how this calculation works.

5.3.3 Weapon Class

 159

Typically in an RPG game there will be many different kinds of weapons players can utilize. Therefore,
it makes sense to define a Weapon class, from which different kinds of weapon objects can be
instantiated. In our RPG game the Weapon class is defined like so:

// Weapon.h

#ifndef WEAPON_H
#define WEAPON_H

#include "Range.h"
#include <string>

struct Weapon
{
 std::string mName;
 Range mDamageRange;
};

#endif //WEAPON_H

An object of class Weapon has a name (i.e., the name of the weapon), and a damage range, which
specifies the range of damage the weapon inflicts against an enemy. To describe the damage range, we
use our Range class. Again, note that this class has no methods because it performs no actions. You
might argue that a weapon attacks things, but instead of this approach, we decide that game characters
(players and monsters) attack things and weapons do not; this is simply a design decision. Because
there are no methods, there is no reason to protect the data integrity. In fact, the data members are the
class interface.

The following code snippet gives some examples of how we might use this class to instantiate different
kinds of weapons:

 Weapon dagger;

dagger.mName = "Dagger";
dagger.mDamageRange.mLow = 1;
dagger.mDamageRange.mHigh = 4;

Weapon sword;
sword.mName = "Sword";
sword.mDamageRange.mLow = 2;
sword.mDamageRange.mHigh = 6;

5.3.4 Monster Class

 160

In addition to weapons, an RPG game will have many different types of monsters. Thus, it makes sense
to define a Monster class from which different kinds of monster objects can be instantiated. In our
RPG game the Monster class is defined like so:

// Monster.h

#ifndef MONSTER_H
#define MONSTER_H

#include "Weapon.h"
#include <string>

class Player;

class Monster
{
public:
 Monster(const std::string& name, int hp, int acc,
 int xpReward, int armor, const std::string& weaponName,
 int lowDamage, int highDamage);

 bool isDead();

 int getXPReward();
 std::string getName();
 int getArmor();

 void attack(Player& player);
 void takeDamage(int damage);
 void displayHitPoints();

private:
 std::string mName;
 int mHitPoints;
 int mAccuracy;
 int mExpReward;
 int mArmor;
 Weapon mWeapon;
};

#endif //MONSTER_H

The first thing of interest is the first line after the include directives; specifically, the statement class
Player;. What does this do? This is called a forward class declaration, and it is needed in order to
use the Player class without having yet defined it. The idea is similar to function declarations, where a
function is declared first, in order that it can be used, and then defined later.

Monster Class Data:

• mName: The name of the monster. For example, we would name an Orc monster “Orc.”

 161

• mHitPoints: An integer that describes the number of hit points the monster has.

• mAccuracy: An integer value used to determine the probability of a monster hitting or missing a

game player.

• mExpReward: An integer value that describes how many experience points the player receives
upon defeating this monster.

• mArmor: An integer value that describes the armor strength of the monster.

• mWeapon: The monster’s weapon. A Weapon value describes the name of a weapon and its

range of damage.

Note how objects of this class will contain a Weapon object, which in turn contains a Range object. We
can observe this propagation of complexity as we build classes on top of other classes.

Monster Class Methods

:

nsterMo :

e constructor simply takes a parameter list, which is used to initialize the data members of a Monster
object at the time of construction. It is implemented like so:

Monster::Monster(const std::string& name, int hp, int acc,
 int xpReward, int armor, const std::string& weaponName,
 int lowDamage, int highDamage)
{
 mName = name;
 mHitPoints = hp;

mAccuracy = acc;
mExpReward = xpReward;

 mArmor = armor;
 mWeapon.mName = weaponName;
 mWeapon.mDamageRange.mLow = lowDamage;
 mWeapon.mDamageRange.mHigh = highDamage;
}

As you can see, this function copies the parameters to the data members, thereby initializing the data
members. In this way, the property values of a monster object can be specified during construction.

isDead

Th

:

This simple method returns true if a monster is dead, otherwise it returns false. A monster is defined to
be dead if its hit points are less than or equal to zero.
bool Monster::isDead()
{
 return mHitPoints <= 0;
}

 162

This method is important because during combat, we will need to be able to test whether a monster has
been killed.

getXPReward:

This method is a simple accessor method, which returns a copy of the mExpReward data member:

int Monster::getXPReward()
{
 return mExpReward;
}

getName:

This is another accessor method, which returns a copy of the mName data member:

std::string Monster::getName()
{

getArmor

 return mName;
}

:

This is another accessor method; this one returns a copy of the mArmor data member:

int Monster::getArmor()
{
 return mArmor;
}

attack:

This m nly nontrivial method of Monster. This method executes the code which has a
monster attack a game Player (a class we will soon define). Because a monster attacks a Player, we
pass a reference to a Player into the function. We pass by reference for efficiency; that is, just as we
do not want to copy an entire array into a parameter, we do not want to copy an entire Player object.
By passing a reference, we merely copy a reference variable (a 32-bit address).

The attack method is responsible for determining if the monster’s attack hits or misses the player. We
use the following criteria to determine whether a monster hits a player: If the monster’s accuracy is
greater than a random number in the range [0, 20] then the monster hits the player, else the monster
misses the player:

 if(Random(0, 20) < mAccuracy)

If the monster hits the player, then the next step is to compute the damage the monster inflicts on the
player. W dom number in the range of damage determined by the monster’s
weapon Range:

ethod is the o

e start by computing a ran
—mWeapon.mDamage

 163

int damage = Random(mWeapon.mDamageRange);

However, armor must be brought into the equation. In particular, we say that armor absorbs some of the
damage. Mathematically we describe this by subtracting the player’s armor value from the random
damage value:

 int totalDamage = damage - player.getArmor();

It is possible that damage is a low value in which case totalDamage might be less than or equal to
zero. In damage is actually inflicted—we say that the attack failed to penetrate the armor.
Conversely, if totalDamage is greater than zero then the player loses hit points. Here is the attack
function in its entirety:

void Monster::attack(Player& player)
{
 cout << "A " << mName << " attacks you "
 << "with a " << mWeapon.mName << endl;

 if(Random(0, 20) < mAccuracy)
 {
 int damage = Random(mWeapon.mDamageRange);

 int totalDamage = damage - player.getArmor();

 if(totalDamage <= 0)
 {
 cout << "The monster's attack failed to "
 << "penetrate your armor." << endl;
 }
 else
 {
 cout << "You are hit for " << totalDamage
 << " damage!" << endl;

 player.takeDamage(totalDamage);
 }
 }
 else
 {
 cout << "The " << mName << " missed!" << endl;
 }
 cout << endl;
}

takeDamage

 this case, no

:

This method is called when a player hits a monster. The parameter specifies the amount of damage for
which the monster was hit, which indicates how many hit points should be subtracted from the monster:
void Monster::takeDamage(int damage)
{
 mHitPoints -= damage;
}

 164

displayHitPoints:

This method outputs the monster’s hit points to the console window. This is used in the game during
battles so that the player can see how many hit points the monster has remaining.

void Monster::displayHitPoints()
{
 cout << mName << "'s hitpoints = " << mHitPoints << endl;
}

5.3.5 Player Class

The Player class describes a game character. In our game there is only one player object (single
player), however you could extend the game to support multiple players, or let the user control a party of
several characters. The Player class is defined as follows:

// Player.h

#ifndef PLAYER_H
#define PLAYER_H

#include "Weapon.h"
#include "Monster.h"
#include <string>

class Player
{
public:
 // Constructor.
 Player();

 // Methods
 bool isDead();

 std::string getName();
 int getArmor();

 void takeDamage(int damage);

 void createClass();
 bool attack(Monster& monster);
 void levelUp();
 void rest();
 void viewStats();
 void victory(int xp);
 void gameover();
 void displayHitPoints();

private:
 // Data members.

 165

 std::string mName;
 std::string mClassName;
 int mAccuracy;
 int mHitPoints;
 int mMaxHitPoints;
 int mExpPoints;
 int mNextLevelExp;
 int mLevel;
 int mArmor;
 Weapon mWeapon;
};

#endif //PLAYER_H

The Player class is similar in many ways to the Monster class, as can be seen by the similar data
members and functions. However, there are some additional data and methods the Player class
contains which the Monster class does not.

Player Class Data:

• mName: The name of the character the player controls. You name the character during character

• mClassName: A string that denotes the player class type. For example, if you play as a wizard

 “Wizard.”

• mAccuracy: An integer value used to determine the probability of a player hitting or missing a
monster.

• mHitPoints: An integer that describes the current number of hit points the player has.

• mMaxHitPo ger that describes the maximum number of hit points the player can

currently have.

• mExpPoints: An integer that describes the number of experience points the player has currently
earned.

• mNextLevelExp: An integer that describes the number of experience points the player needs to

reach the next level. We define the amount of experience needed to reach the next level in terms
of the player’s current level; that is, mNextLevelExp = mLevel * mLevel * 1000;

• mLevel: An integer that describes the current level of the player.

• mArmor: An integer value that describes the armor strength of the player.

• mWeapon: The player’s weapon. A Weapon value describes the name of a weapon and its range

of damage.

creation.

then your class name would be

ints: An inte

 166

Player Class Methods:

Player:

The constructor of our Player class is a default one—it simply initializes the data members to default
values. This is no because these values will be changed during character creation.

Player::Player()
{
 mName = "Default";
 mClassName = "Default";
 mAccuracy = 0;
 mHitPoints = 0;
 mMaxHitPoints = 0;
 mExpPoints = 0;
 mNextLevelExp = 0;
 mLevel = 0;
 mArmor
 mWeapon.mName = "Default Weapon Name";
 mWeapon.mDamageRange.mLow = 0;
 mWeapon.mDamageRange.mHigh = 0;
}

isDead

t problematic

 = 0;

:

This simple method returns true if a player is dead, otherwise it returns false. A player is defined to be
dead if its hit points are less than or equal to zero.

bool Player::isDead()
{
 return mHitPoints <= 0;
}

This method is important because during combat, we will need to be able to test whether a player has
been killed.

getArmor:

An accessor method; this one returns a copy of the mArmor data member:

int Player::getArmor()
{
 return mArmor;
}

takeDamage:

 167

This method is called when a monster hits a player. The parameter specifies the amount of damage for
which the player was hit, which indicates how many hit points should be subtracted from the player:

void Player::takeDamage(int damage)
{
 mHitPoints -= damage;
}

createClass:

This method is used to execute the code that performs the character generation process. First, it asks the
user to enter in the name of the player. Next, it asks the user to select a character class. Then, based on
the character class chosen, the properties of the Player object are filled out accordingly. For example, a
“fighter” is given more hit points than a “wizard.” Similarly, different classes start the game with
different weapons.

void Player::createClass()
{
 cout << "CHARACTER CLASS GENERATION" << endl;
 cout << "==========================" << endl;

 // Input character's name.
 cout << "Enter your character's name: ";
 getline(cin, mName);

 // Character selection.
 cout << "Please select a character class number..."<< endl;
 cout << "1)Fighter 2)Wizard 3)Cleric 4)Thief : ";

 int characterNum = 1;
 cin >> characterNum;

 switch(characterNum)

 case 1: // Fighter
 mClassName = "Fighter";
 mAccuracy = 10;
 mHitPoints = 20;
 mMaxHitPoints = 20;
 mExpPoints
 mNextLevelEx
 mLevel = 1;
 mArmor = 4;
 mWeapon.mName = "Long Sword";
 mWeapon.mDamageRange.mLow = 1;
 mWeapon.mDamageRange.mHigh = 8;
 break;
 case 2: // Wizard
 mClassName = "Wizard";
 mAccuracy = 5;
 mHitPoints = 10;
 mMaxHitPoints = 10;
 mExpPoints = 0;
 mNextLevelExp = 1000;

{

 = 0;
p = 1000;

 168

 mLevel = 1;
 mArmor = 1;
 mWeapon.mName = "Staff";
 mWeapon.mDamageRange.mLow = 1;
 mWeapon.mDamageRange.mHigh = 4;
 break;
 case 3: // Cleric
 mClassName = "Cleric";
 mAccuracy = 8;
 mHitPoints = 15;
 mMaxHitPoints

 mNextLevelExp = 1000;

 mWeapon.mName = "Flail";

 mWeapon.mDamageRange.mHigh 6;
 break;
 default: // Thief
 mClassName = "Thief";

 mMaxHitPoints = 12;
 mExpPoints = 0;
 mNextLevelExp = 1000;
 mLevel = 1;
 mArmor = 2;
 mWeapon.mName = "Short Sword";
 mWeapon.mDamageRange.mLow = 1;
 mWeapon.mDamageRange.mHigh = 6;
 break;
 }
}

attack

= 15;
mExpPoints = 0;

mLevel = 1;
mArmor = 3;

mWeapon.mDamageRange.mLow = 1;
=

mAccuracy = 7;
mHitPoints = 12;

:

The attack method is essentially the sam s Monster::attack. However, one important difference is
that we give the player an option of what to do on his attack turn. For example, in our game, the player
can choose to fight or run:

 int selection = 1;
 cout << "1) Attack, 2) Run: ";
 cin >> selection;
 cout << endl;

This can be extended to give the player more options such as using an item or casting a spell.

If the player chooses to attack, then the execute code is very similar to Monster::attack, except that
the roles are reversed; that is, here a player attacks a monster, whereas in Monster::attack, a
monster attacks a player.

switch(selection)
{

e a

 169

case 1:
 cout << "You attack an " << monster.getName()
 << " with a " << mWeapon.mName << endl;

 if(Random(0, 20) < mAccuracy)
 {
 int damage = Random(mWeapon.mDamageRange);

 int totalDamage = damage - monster.getArmor();

 if(totalDamage <= 0)
 {
 cout << "Your attack failed to penetrate "
 << "the armor." << endl;
 }
 else
 {
 cout << "You attack for " << totalDamage
 << " damage!" << endl;

 // Subtract from monster's hitpoints.
 monster.takeDamage(totalDamage);
 }
 }
 else
 {
 cout << "You miss!" << endl;
 }
 cout << endl;
 break;

On the other hand, if the player chooses to run, then the code computes a random number, where there is
a 25% chance that the player can escape.

case 2:

// 25 % chance of being able to run.
 int roll = Random(1, 4);

 if(roll == 1)
 {
 cout << "You run away!" << endl;
 return true;//<--Return out of the function.
 }
 else
 {
 cout << "You could not escape!" << endl;
 break;
 }

Observe that this function returns true if the player runs away, otherwise it returns false.

levelUp:

 170

This method tests whether or not the player has acquired enough experience points to level up. It is
called after every battle. If the player does have enough experience points then some of the player’s
statistics such as hit points and accuracy are randomly increased.

void Player::levelUp()
{
 if(mExpPoints >= mNextLevelExp)
 {
 cout << "You gained a level!" << endl;

 // Increment level.
 mLevel++;

 // Set experience points required for next level.
 mNextLevelExp = mLevel * mLevel * 1000;

 // Increase stats randomly.
 mAccuracy += Random(1, 3);
 mMaxHitPoints += Random(2, 6);
 mArmor += Random(1, 2);

 // Give player full hitpoints when they level up.
 mLevel = mMaxHitPoints;
 }
}

rest:

This method is called when the player chooses to rest. Currently, resting simply increases the player’s
hit points to the maximum. Later you may wish to add the possibility of random enemy encounters
during resting or other events.

r::rest()
{
 cout << "Resting..." << endl;

 mHitPoints = mMaxHitPoints;
}

viewStats

void Playe

:

Often, a player in an RPG likes to view his player’s statistics, so that he knows what items are in his
inventory, how many hit points he has, or how many experience points are required to reach the next
level. f information with the viewStats method:

void Player::viewStats()
{
 cout << "PLAYER STATS" << endl;
 cout << "============" << endl;
 cout << endl;

 cout << "Name = " << mName << endl;
 cout << "Class = " << mClassName << endl;

We output this type o

 171

 cout << "Accuracy = " << mAccuracy << endl;
 = " << mHitPoints << endl;
 cout << "MaxHitpoints = " << mMaxHitPoints << endl;
 cout << "XP = " << mExpPoints << endl;
 cout << "XP for Next Lvl = " << mNextLevelExp << endl;
 cout << "Level = " << mLevel << endl;
 cout << "Armor = " << mArmor << endl;
 cout << "Weapon Name = " << mWeapon.mName << endl;
 cout << "Weapon Damage = " << mWeapon.mDamageRange.mLow

<< "-" << mWeapon.mDamageRange.mHigh << endl;

 cout << endl;
 cout << "END PLAYER STATS" << endl;
 cout << "================" << endl;
 cout << endl;
}

victory

cout << "Hitpoints

:

This method is called after a player is victorious in battle. It displays a victory message and gives the
player an experience point award.

void Player::victory(int xp)
{
 cout << "You won the battle!" << endl;
 cout << "You win " << xp
 ndl << endl;

 mExpPoints += xp;
}

gameover

 << " experience points!" << e

:

This method is called if the player dies in battle. It displays a “game over” string and asks the user to
press ‘q’ to quit:

void Player::gameover()
{
 cout << "You died in battle..." << endl;
 cout << endl;
 cout << "================================" << endl;
 cout << "GAME OVER!" << endl;
 cout << "================================" << endl;
 cout << "Press 'q' to quit: ";
 char q = 'q';
 cin >> q;
 cout << endl;
}

displayHitPoints:

 172

This method simply outputs the player’s hit points to the console window. This is used in the game
during battles so that the player can see how many hit points he has left.

void Monster::displayHitPoints()
{
 cout << mName << "'s hitpoints = " << mHitPoints << endl;
}

5.3.6 Map Class

The final class we implement is called Map. An object of this class is used to represent the game board
of either the gam art of the game world, or a dungeon in the game world. In our small game
we use a single Map object for our limited 2D game world. One responsibility of a Map object is to keep
track of the player’s world position; that is, its coordinates. In doing so, we make the Map class
responsible for i user’s movement input. Additionally, since a Map should know where
objects are on the map, it should know where the monsters are. Therefore, we also make the Map class
responsible for handling enemy encounters.

A further extension to the Map class would be to define “landmarks” on it, or key areas where you want
something special to occur. For example, perhaps at coordinates (2, 3) you want to place a dungeon, so
that when the player moves to coordinates (2, 3), the game will describe the exterior of the dungeon and
ask if the player wants to enter. A town would be another example.

Let us now look at the header file that contains the Map class:

e world, p

nputting the

// Map.h

#ifndef MAP_H
#define MAP_H

#include "Weapon.h"
#include "Monster.h"
#include <string>

class Map
{
public:

 // Constructor.
 Map();

 // Methods
 int getPlayerXPos();
 int getPlayerYPos();
 void movePlayer();
 Monster* checkRandomEncounter();
 void printPlayerPos();

 173

private:
 // Data members.
 int mPlayerXPos;
 int mPlayerYPos;
};

#endif //MAP_H

Map Class Data:

• mPlayerXPos: The x-coordinate position of the player.

• mPlayerYPos: The y-coordinate position of the player.

Map Class Methods:

Map:

The constructor initializes the player’s position coordinates to the origin; that is, the player starts off at
the origin:

Map::Map()
{
 // Player starts at origin (0, 0)
 mPlayerXPos = 0;
 mPlayerYPos = 0;
}

getPlayerXPos:

This method is an accessor function that returns the current x-coordinate of the player.

int Map::getPlayerXPos()
{
 return mPlayerXPos;
}

getPlayerYPos:

This method is an accessor function that returns the current y-coordinate of the player.

int Map::getPlayerYPos()
{
 return mPlayerYPos;
}

movePlayer:

 174

As stated, we make it a Map’s responsibility to keep track of the player’s position. This function is
called when the player wants to move. It prompts the user to enter in a direction of movement and then
updates the player’s coordinates accordingly:

void Map::movePlayer()
{
 int selection = 1;
 cout << "1) North, 2) East, 3) South, 4) West: ";
 cin >> selection;

 // Update coordinates based on selection.
 switch(selection)
 {
 case 1: // North
 mPlayerYPos++;
 break;
 case 2: // East
 mPlayerXPos++;
 break;
 case 3: // South
 mPlayerYPos--;
 break;
 default: // West
 mPlayerXPos--;
 break;
 }
 cout << endl;
}

checkRandomEncounter:

This function is the key function of the Map class. It generates a random number in the range [0, 20].
Depending upon which sub-range in which the generated number falls, a different encounter takes place:

• Range [0, 5] – The player encounters no enemy.
• Range [6, 10] – The player encounters an Orc.
• Range [11, 15] – The player encounters a Goblin.
• Range [15, 19] – The player encounters an Ogre.
• Range [20] – The player encounters an Orc Lord.

The bulk of this method code consists of testing in which range the random number falls and then
creating the appropriate kind of monster.

Monster* Map::checkRandomEncounter()
{
 int roll = Random(0, 20);

 Monster* monster = 0;

 if(roll <= 5)
 {

 175

 // No encounter, return a null pointer.
 return 0;
 }
 else if(roll >= 6 && roll <= 10)
 {
 monster = new Monster("Orc", 10, 8, 200, 1,
 "Short Sword", 2, 7);

 cout << "You encountered an Orc!" << endl;
 cout << "Prepare for battle!" << endl;
 cout << endl;
 }
 else if(roll >= 11 && roll <= 15)
 {
 monster = new Monster("Goblin", 6, 6, 100, 0,
 "Dagger", 1, 5);

 cout << "You encountered a Goblin!" << endl;
 cout << "Prepare for battle!" << endl;
 cout << endl;
 }
 else if(roll >= 16 && roll <= 19)
 {
 monster = new Monster("Ogre", 20, 12, 500, 2,
 "Club", 3, 8);

 cout << "You encountered an Ogre!" << endl;
 cout << "Prepare for battle!" << endl;
 cout << endl;
 }
 else if(roll == 20)
 {
 monster = new Monster("Orc Lord", 25, 15, 2000, 5,
 "Two Handed Sword", 5, 20);

 cout << "You encountered an Orc Lord!!!" << endl;
 cout << "Prepare for battle!" << endl;
 cout << endl;
 }

 return monster;
}

Observe that the function returns a pointer to the encountered monster. We chose to use a pointer
because with pointers we can return a null pointer. A null pointer is useful in the case in which the
player encounters no enemy.

Also note that when we do create a Monster, dynamic memory must be used so that the system does not
automatically destroy the memory when the function returns—remember, once we use dynamic memory
it is our responsibility to destroy it. We make it the responsibility of the function caller, which receives
the pointer, to delete it.

printPlayerPos:

 176

When the player is at the main menu, we would like to display the player’s current coordinate position
on the map. This is what this function is used for.

void Map::printPlayerPos()
{
 cout << "Player Position = (" << mPlayerXPos << ", "
 << mPlayerYPos << ")" << endl << endl;
}

5.4 The Game

The classes that the objects of our game are members of have now been defined, and we are ready to
instantiate these objects and put them to use. But, before looking at the game code, let us look at a
sample output of the game so that we have an idea of the game flow.

Note: You can download the executable and source code for this program from the
www.gameinstitute.com website. You may want to run the program yourself a few times, in order to get
familiar with its functionality before examining the code.

CHARACTER CLASS GENERATION
==========================
Enter your character's name: Frank
Please select a character class number...
1)Fighter 2)Wizard 3)Cleric 4)Thief : 1
Player Position = (0, 0)

1) Move, 2) Rest, 3) View Stats, 4) Quit: 1
1) North, 2) East, 3) South, 4) West: 1

Player Position = (0, 1)

1) Move, 2) Rest, 3) View Stats, 4) Quit: 1
1) North, 2) East, 3) South, 4) West: 2

You encountered an Ogre!
Prepare for battle!

Frank's hitpoints = 20
Ogre's hitpoints = 20

1) Attack, 2) Run: 1

You attack an Ogre with a Long Sword
You attack for 3 damage!

A Ogre attacks you with a Club
You are hit for 4 damage!

Frank's hitpoints = 16
Ogre's hitpoints = 17

 177

1) Attack, 2) Run: 1

You attack an Ogre with a Long Sword
You attack for 6 damage!

A Ogre attacks you with a Club
The Ogre missed!

Frank's hitpoints = 16
Ogre's hitpoints = 11

1) Attack, 2) Run: 1

You attack an Ogre with a Long Sword
You miss!

A Ogre attacks you with a Club
You are hit for 3 damage!

Frank's hitpoints = 13
Ogre's hitpoints = 11

1) Attack, 2) Run: 1

You attack an Ogre with a Long Sword
You attack for 5 damage!

A Ogre attacks you with a Club
You are hit for 4 damage!

Frank's hitpoints = 9
Ogre's hitpoints = 6

1) Attack, 2) Run: 1

You attack an Ogre with a Long Sword
You miss!

A Ogre attacks you with a Club
You are hit for 3 damage!

Frank's hitpoints = 6
Ogre's hitpoints = 6

1) Attack, 2) Run: 1

You attack an Ogre with a Long Sword
You attack for 6 damage!

You won the battle!
You win 500 experience points!

Player Position = (1, 1)

1) Move, 2) Rest, 3) View Stats, 4) Quit: 3

 178

PLAYER STATS
============

Name = Frank
Class = Fighter
Accuracy = 10
Hitpoints = 6
MaxHitpoints = 20
XP = 500
XP for Next Lvl = 1000
Level = 1
Armor = 4
Weapon Name = Long Sword
Weapon Damage = 1-8

END PLAYER STATS
================

Player Position = (1, 1)

1) Move, 2) Rest, 3) View Stats, 4) Quit: 2
Resting...
Player Position = (1, 1)

1) Move, 2) Rest, 3) View Stats, 4) Quit: 4

As the game output shows, the game first proceeds to create a game character. The core game then
begins which allows the user to move about the map, fight random monsters, rest, view the player stats,
or exit. This is one big loop which continues as long as the player does not die, or the player does not
quit.

To create the m to our project. A “client file” is a
file which uses ., Weapon, Monster, Player). Let us
now look at the client file one segm e.

5.4.1 Segment 1

ain game logic, we add a client file called game.cpp
 the classes we created in the previous section (e.g

ent at a tim

// game.cpp

#include "Map.h"
#include "Player.h"
#include <cstdlib>
#include <ctime>
#include <iostream>
using namespace std;

int main()
{
 srand(time(0));
 Map gameMap;

 179

 Player mainPlayer;

 mainPlayer.createClass();

Code segment 1 is quite trivial. We include the necessary header files and begin the main function.
The first thing we do is seed the random number generator (Section 3.4). Next, we instantiate a Map
object called gameMap and we instantiate a Player object called mainPlayer. Finally, we execute
the character class creation code by calling createClass for mainPlayer.

5.4.2 Segment 2

// Begin adventure.
bool done = false;
while(!done)
{
 // Each loop cycly we output the player position and
 // a selection menu.

 gameMap.printPlayerPos();

 int selection = 1;
 cout << "1) Move, 2) Rest, 3) View Stats, 4) Quit: ";
 cin >> selection;

 Monster* monster = 0;
 switch(selection)
 {

In segment 2, we begin the main “game loop.” This is the loop which will continue to execute until
either the player dies or the player quits the game. The key tasks the game loop performs are to display
the player’s position every loop cycle and to prompt the user to make a menu selection. We then
execute different code paths depending on the chosen selection via a switch statement.

5.4.3 Segment 3

case 1:
 // Move the player.
 gameMap.movePlayer();

 // Check for a random encounter. This function
 // returns a null pointer if no monsters are
 // encountered.
 monster = gameMap.checkRandomEncounter();

 // 'monster' not null, run combat simulation.

 if(monster != 0)
 {

 180

 reak' statement. // Loop until a 'b
 while(true)
 {
 // Display hitpoints.
 mainPlayer.displayHitPoints();
 monster->displayHitPoints();
 cout << endl;

 // Player's turn to attack first.
 bool runAway = mainPlayer.attack(*monster);

 if(runAway)
 break;

 if(monster->isDead())
 {
 mainPlayer.victory(monster->getXPReward());
 mainPlayer.levelUp();
 break;
 }

 monster->attack(mainPlayer);

 if(mainPlayer.isDead())
 {
 mainPlayer.gameover();
 done = true;
 break;
 }
 }

 // The pointer to a monster returned from
 // checkRandomEncounter was allocated with
 // 'new', so we must delete it to avoid
 // memory leaks.
 delete monster;
 monster = 0;
 }

break;

The case where the player moves is the largest code unit. First we call Map::movePlayer, which
prompts the user to enter the direction of movement. Next we check if the player encountered an enemy
with the Map::checkRandomEncounter method. Recall that this function returns null if no monster
was encountered. This fact allows us to use a simple if statement to determine whether or not a monster
was encountered. If the pointer is not null, then a monster was encountered and we proceed to enter a
“combat loop;” that is, a loop that continues until the player dies or runs away, or the monster dies.

Inside the combat loop we output the player’s hit points and the monster’s hit points for every loop cycle
so that the game player can observe the progress of the battle. Afterwards, we have the player attack the
monster:

 bool runAway = mainPlayer.attack(*monster);

 181

Before doing anything else, we check to see whether the player ran away, and if so, we break out of the
combat loop:

if(runAway)
 break;

If the player did not run, but rather attacked and killed the monster then we execute our victory message
and test to see if the player leveled up:

 if(monster->isDead())
 {
 mainPlayer.victory(monster->getXPReward());
 mainPlayer.levelUp();
 break;
 }

If the monster did not die from the previous attack then it is the monster’s turn to attack the player:

 monster->attack(mainPlayer);

If the attack kills the player, we execute the “game over” message and exit the game loop:

if(mainPlayer.isDead())
 {
 mainPlayer.gameover();
 done = true;
 break;
 }

This cycle of turn-based attacking continues until the combat loop is terminated.

Finally, after the battle is over we must delete the pointer to dynamic memory which the
Map::checkRandomEncounter method returned:

 delete monster;
 monster = 0;

5.4.4 Segment 4

 case 2:
 mainPlayer.rest();
 break;
 case 3:
 mainPlayer.viewStats();
 break;
 case 4:
 done = true;
 break;

 182

 }// End Switch Statement
 }// End While Statement
}// End main function.

The last several segments are trivial. If the player chose to rest then we call the Player::rest
method. If the player chose to view the character statistics then we call the Player::viewStats
method. If the player chose to exit then we assign true to done, which will terminate the game loop.

Note: Hopefully, this program walkthrough has provided you with an idea of how to go about breaking
up a program into objects. Try your best to understand how the entire program works together, because
the exercises of this chapter will ask you to make some modifications to the program.

5.5 Summary

1. In the real world, objects typically have a multitude of properties that define them (e.g., a fighter
jet has a quantity describing its ammo count, its fuel, its altitude, and so on). Furthermore, many
kinds of objects can perform actions (e.g., a jet can fly, fire a missile, land, and so on). Classes
allow us to model real-world objects in code; that is, with classes we can define new variable
types which consist of several properties (data members), and which can perform actions
(member functions). Consequently, with classes, we can instantiate variables that behave like
real-world objects.

2. The public and private keywords are used to enforce which parts of the class are visible to

outside code. A class’ own member functions can access all parts of the class since they are
inside the class, so to speak. The general rule is that data members (class variables) should be
kept internal (private) and only methods should be exposed publicly. By making the
programmer go through member functions, the class can safely regulate how the internal class
data can be manipulated. Hence, the class can maintain the integrity of its internal data.

3. In addition to defining a class, you can define what is called a structure. In C++, a structure is

exactly the same as a class except that it is public by default, whereas a class is private by
default.

4. One of the goals of C++ is to separate class definitions from implementation. The motivation

behind this is that a programmer should be able to use a class without knowing exactly how it
works. This occurs when you realize that you may be using classes you did not write yourself—
for example, if you learn DirectX, you will use classes that Microsoft wrote. In order to separate
class definitions from implementation, two separate files are used: header files (.h) and
implementation files (.cpp). Header files include the class definition, and implementation files
contain the class implementation (i.e., method definitions). Eventually, the source code file is
compiled to either an object file (.obj) or a library file (.lib). Once that is done you can distribute
the class header file along with the object file or library file to other programmers. With the

 183

header file containing the class definition, and with the object or library file containing the
compiled class implementation, which is linked into the project with the linker, the programmer
has all the necessary components to use the class without having seen the implementation file
(that is, the .cpp file). For example, the DirectX Software Development Kit includes only the
DirectX header files and the DirectX library files—you never see the implementation files (.cpp).
This does two things: first, others cannot modify the implementation, and second your
implementation (intellectual property) is protected.

5. Every class has a constructor and destructor, which are special kinds of methods. If you do not

explicitly define these methods, the compiler will generate default ones automatically. A
constructor is a method that is automatically executed when an object is instantiated and a
destructor is a method that is automatically executed when an object is deleted. A constructor is
usually used to initialize data members to some default value or to allocate any dynamic memory
the class uses or to execute any initialization code that you want executed as the object is being
created. Conversely, the destructor is usually used to free any dynamic memory which the class
has allocated. If it does not delete it when the object is being destroyed, it will result in a memory
leak. Note that you never invoke a destructor yourself; rather, the destructor will automatically
be called when an object is being deleted from memory.

6. When utilizing the object oriented programming paradigm, the first thing we ask when designing

a new program is: “What objects does the program attempt to model?” The answer to this
question depends on the program. After we have decided what objects our program will use, we
need to design corresponding classes, which define the properties of these kinds of objects and
the actions they perform. In addition to the data and methods of a class, the class design will
also need to consider the relationships between the objects of one class and the objects of other
classes—for example, how they will they interact with each other.

5.6 Exercises

 184

The exercises for this chapter are suggestions for modifications to the role-playing game discussed in
Sections 5.3 and 5.4. They are not very specific on the exact details about what must happen—they are
kept open-ended on purpose. You are free to implement these solutions any way you choose —add new
data and methods to the existing classes, or create new classes.

5.6.1 Gold Modification

Add an integer data member to the Player class that keeps track of the player’s amount of gold. After
each battle, generate a random gold reward that the player receives, in addition to the experience point
award. It would make sense for harder enemies (ogres, Orc lords) to provide a larger gold reward then
orcs and goblins. Be sure to also modify the Player::viewStats() method to display the current
amount of gold the player owns.

5.6.2 Character Races

Modify the character creation process so that the user can choose a character race (e.g., dwarf, human,
elf, halfling). Additionally, give statistical pros and cons to each race. For example, an elf may start the
game with a higher accuracy rating than a dwarf, but lower hit points. Conversely, a dwarf may start out
with more hit points than an elf, but less accuracy.

5.6.3 Leveling Up

The leveling up process we implemented in Section 5.3 does not take the player’s class into
consideration. Modify the leveling up process to reflect the class of the character. For example, a
“fighter” should gain more hit points than a “wizard.”

5.6.4 Magic Points

Add an integer data member to the Player class that describes the number of magic points the player
currently has. Additionally, add a “max magic points” data member that describes the maximum
number of magic points the player can have at his/her current level. Be sure to also modify the
Player::viewStats() method to display the current amount of magic points the player has. Also,
be sure to increase the amount of magic points when the character levels up—and a “wizard” should
gain more hit points than a “fighter.”

 185

After you have added magic points to the system, create a Spell structure and then instantiate a few
types of spell objects, such as “magic missile,” “fireball,” and “shield.” You may want to implement the
Spell structure like so:

struct Spell
{
 std::string mName;
 Range mDamageRange;
 int mMagicPointsRequired;
};

• mName: The name of the spell (e.g., “Fireball”).
• mDamageRange: The range of damage the spell inflicts.
• mMagicPointsRequired: The number of magic points required to cast the spell.

Finally, add a “cast spell” option to the combat menu, which allows the player to select and cast a spell
from a list of spells in his/her spell book. Be sure to verify that the player has enough magic points to
cast the spell. And also be sure to deduct the magic points required to cast the spell from the player’s
magic point count, after a spell is cast.

5.6.5 Random Encounters During Rest

In the current implementation, a player can rest to full hit points after every battle with no risk. Since
there is no such thing as a free lunch, add random encounters when resting– maybe a 25% chance of an
attack during rest.

5.6.6 A Store

Add a store to the map at some location. That is, in the main game loop do something like:

if(gameMap.getPlayerXPos() == 2 &&
 gameMap.getPlayerYPos() == 3)
{
 Store store;
 store.enter(gamePlayer);
}

Thus, if the player lands on the point (2, 4), the player enters the store. And Store is a class you define
which contains methods for displaying the store’s inventory, and for buying/selling weapons, armor, and
items. Note that you may want to write a small armor structure so that you can name armor:

struct Armor

 186

{
 std::string mName;
 int armorValue;
};

5.6.7 Items

Allow the player to buy and carry healing potions, which can be used to heal the player during combat.
Moreover, allow the user to carry magic fireball potions, which can be used against enemies in battle.
You can add an Item array (you define the Item class) to the Player class for storing these items, or
use a std::vector to store them.

So that the player can use an item during combat, add a “use item” option to the combat menu.

5.6.8 Multiple Enemies

Modify the game so that the player can encounter several enemies at once. For example,
Map::checkRandomEncounter() can return a pointer to an array of enemies. Then update
Player::attack(Monster& monster) to instead take an array of monsters: Player::attack(Monster
monsters[]).

 187

 Chapter 6

Strings and Other Topics

 188

Introduction

Recall that a string is an ordered set of characters (e.g., ‘h’, ‘e’, ‘l’, ‘l’, ‘o’), which is commonly used to
form words and sentences (e.g., “hello”). So far, we have been using the standard library type
std::string to represent strings, but we may ask: how does std::string work internally? The
first theme of this chapter is to address that question and to discover how strings can be described using
only intrinsic C++ data types. The second theme of this chapter is to survey the additional functionality
std::string provides via its class method interface. Finally, this chapter closes by discussing some
miscellaneous C++ keywords and constructs.

Chapter Objectives

• Understand how C++ natively describes strings.
• Learn some important standard library string functions.
• Review st become familiar with some of its methods.
• Become familiar with this pointer.
• Learn about the friend and static keywords.
• Discover how to create your own namespaces.
• Understand what enumerated types are, how they are defined in C++, and when they would be

used.

6.1 char Strings

We know that the char keyword can represent a character, and we know a string is a set of characters.
Thus, it follows that a string can be represented with an array of chars -- which is how C++ natively
supports strings. A string represented as an array of chars is called a c-string. For instance, the string
“Hello” can be represented as:

char str[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

The character ‘\0’ is a special character called the null character, and it is used to mark the end of a c-
string. A c-string that ends with a null character is called a null-terminating string. The end of the c-
string is marked because it then can be determined when the c-string ends. The ability to figure out when
a string ends is important when navigating the elements of the string. For example, if we assume the
input c-string is a null-terminating string then we can write a function that returns the number of
characters in the c-string (excluding the terminating null character) like so:

d::string and
the

 189

// Assume str is a pointer to a null-terminating string.
int StringLength(char* str)
{
 int cnt = 0;

 // Loop through the array until we reach the end.
 while(str[cnt] != '\0')
 ++cnt; // Count character.

 // Return the number of characters.
 return cnt;
}

Without the null character telling us when the c-string ends, we would not know when to exit the loop
and how many characters to count.

Using StringLength we can write a function to print out a c-string, element-by-element as shown
here:

int main()
{
 char str[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << "str = ";
 for(int i = 0; i < StringLength(str); ++i)
 cout << str[i];

 cout << endl;
}

Again, we need to know how many characters are in the c-string in order to know how many times to
loop. Incidentally, you will never write code to print a c-string like this because cout is overloaded to
print a c-string:

int main()
{
 char str[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << "str = ";
 cout << str;
 cout << endl;
}

Note that even cout needs str to be a null-terminating string so that it too can figure out how many
characters are in the c-string.

You may observe that we could keep track of the number of elements in a c-string in order to do away
with StringLength and the null character completely, and we would know exactly how many
characters are in the c-string. This would work, but it is not convenient to have to carry around an extra
“size” variable per c-string. By using a null-terminating c-string, the string size can be deduced from the
c-string itself, which is much more compact and convenient.

 190

6.1 String Literals

Recall that a literal such as 3.14f is considered to be of type float, but what type is a string literal such
as “hello world”? C++ will treat “hello world” as a const char[12]. The const keyword indicates
that the string is a literal and a literal cannot be changed. Because all string literals are specified in the
program (i.e., they are written in the source code), C++ can know about every literal string the program
uses at compile time. Consequently, all string literals are allocated in a special global segment of
memory when the program starts. The important property about the memory for string literals is that it
exists for the life of the program.

Because string literals are stored in char arrays, pointers to the first element can be acquired like so:

char* pStr = "hello world";

However, it is important not to modify the elements of the string literal via pStr, because “hello world”
is constant. For example, as Stroustrup points out, the following would be undefined:

char* pStr = "hello world";
pStr[5] = '-'; // undefined

Now consider the following:

char* LiteralMsg()
{
 char* msg = "hello world";

 return msg;
}

int main()
{
 cout << "msg = " << LiteralMsg() << endl;
}

In the function LiteralMsg we obtain a pointer to the literal “hello world.” We then return a copy of
this pointer back to the caller, which in this case is main. You might suspect that this code is flawed
because it returns a pointer to a “local” string literal, which would be destroyed after the function
returns. However, this does not happen because memory for string literals is not allocated locally, but is
allocated in a global memory pool at the start of the program. Thus, the above code is correct.

 191

6.2 Escape Characters

In addition to characters you are already familiar with, there exist some special characters, called escape
characters. An escape character is symbolized with a backslash \ followed by a regular character(s).
For instance, the new-line character is symbolized as ‘\n’.

The following table shows commonly used escape characters:

Symbol Description
\n New-line character: Represents a new line.
\t Tab character: Represents a tab space.
\a Alert character: Represents an alert.
\\ Backslash: Represents a backslash character.
\' Single quote mark:
\" Double quote mark

Interestingly, because the backslash \ is used to denote an escape character, you may wonder how you
would actually express the character ‘\’ in a string. C++ solves this by making the backslash character
an escape character itself; that is, a backslash followed by a backslash. Similarly, because the single and
double quotation marks are used to denote a character literal and string literal, respectively, you may
wonder how you would actually express the characters ‘'’ and ‘"’ in a string. C++ solves this by
making the quotation mark characters escape characters: ‘\' ’, and ‘\"’.

Program 6.1 demonstrates how the escape characters can be used.

Program 6.1: Escape Characters.

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
 cout << "\tAfter Tab" << endl;
 cout << "\nAfter newline" << endl;
 cout << "\aAfter alert" << endl;
 cout << "\\Encloses in backslashes\\" << endl;
 cout << "\'Enclosed in single quotes\'" << endl;
 cout << "\"Enclosed in double quotes\"" << endl;
}

Program 6.1 Output

 After Tab

After newline
After alert
\Encloses in backslashes\

 192

'Enclosed in single quotes'
"Enclosed in double quotes"
Press any key to continue

The “alert” causes the computer to make a beeping sound. Observe how we can print a new line by
outputting a new-line character. Consequently, ‘\n’ can be used as a substitute for std::endl. It is
worth emphasizing that escape characters are characters; they fit in a char variable and can be put in
strings as such. Even the new-line character, which seems like it occupies a whole line of characters, is
just one character.

Note: ‘\n’ and std::endl are not exactly equivalent. std::endl flushes the output stream each
time it is encountered, whereas ‘\n’ does not. By “flushing” the output stream, we mean output is kept
buffered up so that many characters can be sent (flushed) to the hardware device at once. This is done
purely for efficiency—it is more efficient to send lots of data to the device (e.g., console window output)
at one time than it is to send many small batches of data. Thus, you may not want to use std::endl
frequently since that would mean you are flushing small batches of data frequently, instead of one large
batch of data infrequently.

6.2 C-String Functions

The previous section showed how we could represent strings as arrays of chars (c-strings). We now
look at some standard library functions that operate on c-strings. To include these functions in your
code, you will need to include the <cstring> header file. Note that this header file is different than the
<string> header file, which is used for std::string.

6

We already talked about length and we even wrote our own function to compute the length of a null-
terminating string. Not surprisingly, the standard library already provides this function for us. The
function is called strlen and the function is prototyped as follows:

size_t strlen(const char *string);

The type size_t is usually defined as a 32-bit unsigned integer. The parameter string is a pointer to
a null-terminating c-string, and the function returns the number of characters in this input string.

Example

.2.1 Length

:

int length = strlen("Hello, world!"); // length = 13

 193

6.2.2 Equality

One of the first things we can ask about two strings is whether or not they are they equal. To answer
this question the standard library provides the function strcmp (string compare):

int strcmp(const char *string1, const char *string2);

The parameters, string1 and string2, are pointers to null-terminating c-strings, which are to be
compared. This function returns three possible types of numbers:

• Zero: If the return value is zero then it means the strings, string1 and string2, are equal.

• Negative: If the return value is negative then it means string1 is less than string2. What

does “less than” mean in the context of strings? A string A is less than a string B if the
difference between the first two unequal characters A[k] – B[k] is less than zero, where k is
the array index of the first two unequal characters.

For example, let A = “hella” and B = “hello”; the first two unequal characters are found in
element [4]—‘a’ does not equal ‘o’. Since the integer representation of ‘a’ (97) is less than the
integer representation of ‘o’ (111), A is less than B.

Consider another example: let A = “abc” and B = “abcd”; the first unequal character is found in
element [3] (remember the terminating null!). That is, ‘\0’ does not equal ‘d’. Because the
integer representation of ‘\0’ (zero) is less than the integer representation of ‘d’ (100), A is less
than B.

• Positive: If the return value is positive then it means string1 is greater than string2. What

 in the context of strings? A string A is greater than a string B if the
difference between the first two unequal characters A[k] – B[k] is greater than zero, where k

haracters.

For example, let A = “sun” and B = “son”; the first two unequal characters are found in element
[1]—‘u’ does not equal ‘o’. Since the integer representation of ‘u’ (117) is greater than the
integer representation of ‘o’ (111), A is greater than B.

Consider another example: let A = “xyzw” and B = “xyz”; the first unequal character is found in
element [3] (remember the terminating null!). That is, ‘w’ does not equal ‘\0’. Because the
integer representation of ‘w’ (119) is greater than the integer representation of ‘\0’ (zero), A is
greater than B.

Example

does “greater than” mean

is the array index of the first two unequal c

:

int ret = strcmp("Hello", "Hello");
// ret = 0 (equal)

ret = strcmp("abc", "abcd");

 194

// ret < 0 ("abc" < "abcd")

ret = strcmp("hello", "hella");
// ret > 0 ("hello" > "hella")

6.2.3 Copying

Another commonly needed function is one that copies one (source) string to another (destination) string:

char *strcpy(char *strDestination, const char *strSource);

The second parameter, strSource, is a pointer to a null terminating c-string, which is to be copied to
the destination parameter strDestination, which is a pointer to an array of chars. The c-string to
which strSource points is made constant to indicate that strcpy does not modify it. On the other
hand, strDestination is not made constant because the function does modify the array to which it
points. This function returns a pointer to strDestination, which is redundant because we already
have a pointer to strDestination, but it does this so that the function could be passed as an argument
to another function (e.g., strlen(strcpy(dest, source));). Also, it is important to realize that
strDestination must point to a char array that is large enough to store strSource.

Example:

char dest[256];

char* source = "Hello, world!";

strcpy(dest, source);

// dest = "Hello, world!"

Note that strcpy does not resize the array dest; rather, dest stores “Hello, world!” at the beginning
of the array, and the rest of the characters in the 256 element array are simply unused.

6.2.4 Addition

It would be convenient to be able to add two strings together. For example:

“hello ” + “world” = “hello world”

This is called string concatenation (i.e., joining). The standard library provides such a function to do
this, called strcat:
char *strcat(char *strDestination, const char *strSource);

 195

The two parameters, strDestination and strSource, are both pointers to null-terminating c-
strings. The c-string to which strSource points is made constant to indicate that strcat does not
modify it. On the other hand, strDestination is not made constant because the function does modify
the c-string to which it points.

This function appends strSource onto the back of strDestination, thereby joining them. For
example, if the source string S = “world” and the destination string D = “hello”, then after the call
strcat(D, S), D = “hello world”. The function returns a pointer to strDestination, which is
redundant because we already have a pointer to strDestination. It does this so that the function can
be passed as an argument to another function (e.g., strlen(strcat(dest, source));).

It is important to realize that strDestination must be large enough to store the concatenated string
(strDestination is not a string literal, so the compiler will not be automatically allocating memory
for it). Returning to the preceding example, the c-string to which D pointed must have had allocated
space to store the concatenated string “hello world”. To ensure that the destination string can store the
concatenated string, it is common to make D an array with “max size”:

const int MAX_STRING SIZE = 256;
char dest[MAX_STRING_SIZE];

This means that some memory might be wasted. However, we can be more precise by using dynamic
memory to obtain an array size that is exactly large enough to store the concatenated string.

Example:

char dest[256];
char* source = "Hello, world!";
strcpy(dest, source);
// dest = "Hello, world!"

strcat(dest, " And hello, C++");
// dest = "Hello, world! And hello, C++"

6.2.7 Formatting

Sometimes we will need to put variable values, such as integers and floating-point numbers, into strings.
That is, we must format a numeric value so that it becomes a string (e.g., 3.14 becomes “3.14”). We can
do this with the sprintf function:

int sprintf(
 char *buffer,
 const char *format,
 [argument] ...
);

 196

This function returns the number of characters in the array (excluding the terminating null) to which
buffer points after it has received the formatted output.

• buffer: A pointer to a char array, which will receive the formatted output.

• format: A pointer to a null-terminating c-string, which contains a string with some special
formatting symbols within. These formatting symbols will be replaced with the arguments
specified in the next parameter.

• argument: This is an interesting parameter. The ellipses syntax (…) indicates a variable

amount of arguments. It is here where the variables are specified whose values are to replace the
formatting symbols in format. Why a variable number of arguments? Because the format
string can contain any number of formatting symbols and we will need values to replace each of
those symbols. Since the number of formatting symbols is unknown to the function, the function
must take a variable amount of arguments. The following examples illustrate the point.

Suppose that you want to ask the user to enter a number and then put the result into a string. Again,
because the number is variable (we do not know what the user will input), we cannot literally specify the
number directly into the string—we must use the sprintf function:

Program 6.2: The sprintf Function.

#include <iostream>
#include <cstring>

using namespace std;

int main()
{
 char buffer[256];

 int num0 = 0;
 cout << "Enter a number: ";
 cin >> num0;

 sprintf(buffer, "You entered %d", num0);
 cout << buffer << endl;
}

The format string contains one formatting symbol called ‘%d’; this symbol will be replaced by the
value stored in the argument num0. For example, if we execute this code we get the following output:

Program 6.2 Output

Enter a number: 11
You entered 11
Press any key to continue

As you can see, the number entered (11) replaced the %d part of the format string.

 197

Now suppose that you want the user to enter a string, a character, an integer, and a floating-point
number. Because these values are variable (we do not know what the user will input), we cannot
literally specify the values directly into the string—we must use the sprintf function:

Program 6.3: Another example of the sprintf function.

#include <iostream>
#include <cstring>

using namespace std;

int main()
{
 char buffer[256];

 char s0[256];
 cout << "Enter a string with no spaces: ";
 cin >> s0;

 int n0 = 0;
 cout << "Enter a number: ";
 cin >> n0;

 char c0 = '\0';
 cout << "Enter a character: ";
 cin >> c0;

 float f0 = 0.0f;
 cout << "Enter a floating-point number: ";
 cin >> f0;

 sprintf(buffer, "s0=%s, n0=%d, c0=%c, f0=%f",s0,n0,c0,f0);

 cout << buffer << endl;
}

Program 6.3 Output

Enter a string with no spaces: hello
Enter a number: 7
Enter a character: F
Enter a floating-point number: 3.14
s0=hello, n0=7, c0=F, f0=3.140000
Press any key to continue

This time the format string contains four formatting symbols called %s, ‘%d’, %c, and %f. These
symbols are replaced by the values stored in s0, n0, c0, and f0, respectively—Figure 6.1 illustrates.

 198

Figure 6.1: Argument list replace formatting symbols.

The following table summarizes the different kinds of format symbols:

%s Formats a string to a string.
%c Formats a character to a string.
%n Formats an integer to a string.
%f Formats a floating-point number to a string.

ow you argument parameter of sprintf requires a variable number of
arguments—one argument is needed for each formatting symbol. In our first example, we used one
formatting symbol and thus, had one argument. In our second example, we used four formatting
symbols and thus, had four arguments.

6.3 std::string

We now know that at the lowest level, we can represent a string using an array of chars. So how does
std::string work? std::string is actually a class that uses char arrays internally. It hides any
dynamic memory that might need to be allocated behind the scenes and it provides many methods which
turn out to be clearer and more convenient to use than the standard library c-string functions. In this
section we survey some of the more commonly used methods.

6.3.1 Length

As with c-strings, we will often want to know how many characters are in a std::string object. To
obtain the length of a std::string object we can use either the length or the size method (they are
different in name only):

string s = "Hello, world!";
int length = s.length();
int size = s.size();
// length = 13 = size

N can see why the

 199

6.3.2 Relational Operators

One of the useful things about std::string is that it defines relational operators which provide a
much more natural syntax than using strcmp.

• Equal: We can test if two strings are equal by using the equality operator (==). If two strings A
and B are equal, the expression (A == B) evaluates to true, otherwise it evaluates to false.

• Not Equal: We can test if two strings are not equal by using the not equal operator (!=). If two

strings A and B are not equal, the expression (A != B) evaluates to true, otherwise it evaluates
to false.

• Less Than: We can test if a string A is less than a string B by using the less than operator (<). If

A is less than B then the expression (A < B) evaluates to true, otherwise it evaluates to false.

• Greater Than: We can test if a string A is greater than a string B by using the greater than
operator (>). If A is greater than B then the expression (A > B) evaluates to true, otherwise it
evaluates to false.

• Less Than or Equal To: We can test if a string A is less than or equal to a string B by using the

less than or equal to operator (<=). If A is less than or equal to B then the expression (A <= B)
evaluates to true, otherwise it evaluates to false.

• Greater Than or Equal To: We can test if a string A is greater than or equal to a string B by using

the greater than or equal to operator (>=). If A is greater than or equal to B then the expression
(A >= B) evaluates to true, otherwise it evaluates to false.

See Section 6.2.2 for a description of how “less than” and “greater than” are defined for strings.

Examples:

string s0 = "Hello";
string s1 = "Hello";
string s2 = "abc";
string s3 = "abcd";

(s0 == s1); // true
(s0 != s1); // false
(s1 != s2); // true
(s2 < s3); // true
(s3 > s2); // true

 200

6.3.3 Addition

We can add two strings together to make a third “sum” string using the addition operator (+):

string A = "Hello, ";
string B = "world!";

string C = A + B; // sum = "Hello, world!"

cout << C << endl;

This outputs: Hello, world!

Furthermore, rather than adding two strings, A and B, to make a third string C, we can directly append a
string to another string using the compound addition operator (+=):

string A = "Hello, ";
string B = "world!";

A += B; // A = "Hello, world!"

cout << A << endl;

The compound addition operator is essentially the std::string equivalent to the c-string strcat
function.

6.3.4 Empty Strings

Sometimes we would like to know if a std::string object is an “empty” string (i.e., contains no
characters). For example, the string “” is an empty string. To test whether a std::string object is
empty we use the empty() method which returns true if the object is empty and false otherwise.
Consider the following short program:

Program 6.4: Empty Strings.

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string emptyString = "";
 string notEmptyStr = "abcdef";

 if(emptyString.empty() == true)
 cout << "emptyString is empty." << endl;
 else
 cout << "emptyString is actually not empty." << endl;

 201

 if(notEmptyStr.empty() == true)
 cout << "notEmptyStr is empty." << endl;
 else
 cout << "notEmptyStr is actually not empty." << endl;
}

Program 6.4 Output

emptyString is empty.
notEmptyStr is actually not empty.
Press any key to continue

As the program output verifies, emptyString is indeed empty, and so the condition
emptyString.empty() == true evaluates to true, thereby executing the corresponding if statement:

On the other hand, notEmptyStr is not empty, so the condition emptyString.empty() == true
evaluates to false, therefore the corresponding else statement is executed:

 cout << "notEmptyStr is actually not empty." << endl;

6.3.5 Substrings

Every so often we will want to extract a smaller string contained within a larger string—we call the
smaller string a substring of the larger string. To do this, we use the substr method. Consider the
following example:

Program 6.5: Substrings.

cout << "emptyString is empty." << endl;

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string str = "The quick brown fox jumped over the lazy dog.";
 string sub = str.substr(10, 9);
 cout << "str = " << str << endl;
 cout << "str.substr(10, 9) = " << sub << endl;
}

Program 6.5 Output

str = The quick brown fox jumped over the lazy dog.
str.substr(10, 9) = brown fox
Press any key to continue

 202

We pass two arguments to the substr method; the first specifies the starting character index of the
substring to extract, and the second argument specifies the length of the substring—Figure 6.2
illustrates.

Figure 6.2: Starting index and length.

As the output verifies, the string which starts at index 10 and has a length of 9 is “brown fox”.

6.3.6 Insert

At times we may wish to insert a string somewhere into another string—it could be at the beginning,
middle, or end. We can do this with the insert method, as this next example illustrates:

Program 6.6: String insertion.

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string str = "The fox jumped over the lazy dog.";
 cout << "Before insert: " << str << endl;

 string strToInsert = "quick brown";
 str.insert(4, strToInsert);
 cout << "After insert: " << str << endl;
}

Program 6.6 Output

Before insert: The fox jumped over the lazy dog.
After insert: The quick brown fox jumped over the lazy dog.
Press any key to continue

We pass two arguments to the insert method; the first is the starting character index specifying where we
wish to insert the string; the second argument specifies the string we are inserting. In our example, we

 203

specify character [4] as the position to insert the string, which is the character space just before the word
“fox.” And as the output verifies, the string “brown fox” is inserted there correctly.

6.3.7 Find

Another string operation that we may need is one that looks for a substring in another string. We can do
this with the find method, which returns the index to the first character of the substring if it is found.
Consider the following example:

Program 6.7: String Finding.

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string str = "The quick brown fox jumped over the lazy dog.";

 // Get the index into the string where "jumped" starts.
 int index = str.find("jumped");
 cout << "\"jumped\" starts at index: " << index << endl;
}

Program 6.7 Output

"jumped" starts at index: 20
Press any key to continue

Here we are searching for “jumped” within the string, “The quick brown fox jumped over the lazy dog.”
If we count characters from left-to-right, we note that the substring “jumped” starts at character [20],
which is what find returned.

6.3.8 Replace

Sometimes we want to replace a substring in a string with a different substring. We can do this with the
replace method. The following example illustrates:

 204

Program 6.8: String replacing.

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string str = "The quick brown fox jumped over the lazy dog.";
 cout << "Before replace: " << str << endl;
 // Replace "quick brown" with "slow blue"
 str.replace(4, 11, "slow blue");
 cout << "After replace: " << str << endl;
}

Program 6.8 Output

Before replace: The quick brown fox jumped over the lazy dog.
After replace: The slow blue fox jumped over the lazy dog.
Press any key to continue

Based on the program output, it is not difficult to see how replace works; specifically, it replaced the
substring, identified by the character range [4, 11], with “slow blue.” If we count the characters in str
before the replace operation occurred, we find that the range [4, 11] identifies the substring “quick
brown.” Based on the output, this is exactly the substring that was replaced with “slow blue.”

6.3.9 Bracket Operator

Sometimes we want to access a specific character in a std::string object. We can do this with the
bracket operator ([]):

string s = "Hello, world!";

char c0 = s[0]; // = 'H'
char c1 = s[1]; // = 'e'
char c2 = s[4]; // = 'o'
char c3 = s[7]; // = 'w'
char c4 = s[12]; // = '!'

6.3.10 C-String Equivalent

Some existing C++ libraries do not use std::string, but instead work with c-strings. Thus if we
want to work with std::string, and still be able to use a C++ library that does not (for example,

en we need a way to convert between the two. DirectX uses c-strings) th

 205

We can create a std::string object from a c-string since std::string provides a constructor and
assignment operator, which both take a c-string parameter. From this c-string representation, an
equivalent std::string object can be built, which describes the same string:

string s = "Assignment";
string t("Constructor");

So going from a c-string to a std::string object is taken care of.

To go in the other direction, that is, to get a c-string representation from a std::string, we use the

 method:

string s = "Assignment";
const char* cstring = s.c_str(); // cstring = "Assignment"

6.3.11 getline

Consider the following small program:

Program 6.9: Attempting to read a line if input with cin.

c_str

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string s = "";
 cout << "Enter a multiple word string: ";
 cin >> s;

 // Echo the string the user entered back to the console window:
 cout << "You entered: " << s << endl;
}

Program 6.9 Output

Enter a multiple word string: Hello, world!
You entered: Hello,
Press any key to continue

What happened? We enter in “Hello, world!” but the program only echoed the string up to a space
(“Hello,”). The problem is that cin only reads up to the first whitespace character. To get around this
problem we use the getline function, which can read up to a line of input. Program 6.10 rewrites the
preceding program using the getline function.

 206

Program 6.10: The getline Function.

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string s = "";
 cout << "Enter a multiple word string: ";
 getline(cin, s);

 // Echo the string the user entered back to the console window:
 cout << "You entered: " << s << endl;
}

Program 6.10 Output

Enter a multiple word string: Hello, world!
You entered: Hello, world!
Press any key to continue

The program now behaves as expected.

The getline function takes two parameters. First, it takes a reference to a std::istream object,
where istream is a class that provides an interface for inputting data from various sources. We note
that cin is actually a global instance of this class that is setup to obtain input from the keyboard. The
second parameter is a reference to a std::string object through which the function returns the
resulting line of string.

In reality, there is a third default parameter where we can specify a delimiter (a character indicating
where to end the flow of input). By default, getline uses the ‘\n’ character as the delimiter. Thus, it
reads up to the first new-line character. Alternatively, we could use another delimiter such as ‘a’, which
would instruct getline to read data up to the first ‘a’ character encountered:

getline(cin, s, 'a');

We will now turn our attention away from strings, and devote the rest of this chapter to some
miscellaneous C++ topics.

 207

6.4 The this Pointer

Consider the following simple class definition and its implementation:

// Class definition
class Person
{
public:
 Person(string name, int age);

 string getName();
 int getAge();
 void talk(Person& p);

private:
 string mName;
 int mAge;
};

// Class implementation
Person::Person(string name, int age)
{
 mName = name;
 age = age;
}

string Person::getName()
{
 return mName;
}

int Person::getAge()
{
 return mAge;
}

void Person::talk(Person& p)
{
 cout << mName << " is talking to ";
 cout << p.mName << endl;
}

We tend to think of a class as defining the properties (data) and actions (methods) that instances of this
class contain. For example, if we instantiate the following objects:

Person mike("Mike", 32);
Person tim("Tim", 29);
Person vanessa("Vanessa", 20);

We say each Person object instance has its own name and age, and each Person object has its own
constructor, getName(), getAge(), and talk() methods, which can access the corresponding data
members.

 208

In general, the data properties of each Person object are unique; that is, no two persons are exactly
alike (Mike has his own name and age, Tim has his own name and age, and Vanessa has her own name
and age). Therefore, each object must really have its own individual data members—so far, so good.
However, what about the member functions? The implementation of a method is the same across all
objects. The only difference is with the data members which that method might access. If we call
mike.getName(), we expect getName() to return mike’s data member mike.mName, if we call
tim.getName(), we expect getName() to return tim’s data member tim.mName, and if we call
vanessa.getName(), we expect getName() to return vanessa’s data member vanessa.mName.
The same is true for the other member functions as well.

It does not seem practical to have a separate function for each object, all of which do the same thing, but
with different data members. So what C++ actually does with member functions is to implement them
like normal functions, but it creates the function with a “hidden” parameter which the compiler passes as
a pointer to the member function’s calling object. For example, the methods that Person defines would
really be written like so:

Person::Person(Person* this, string name, int age)
{
 this->mName = name;
 this->age = age;
}

string Person::getName(Person* this)
{
 return this->mName;
}

int Person::getAge(Person* this)
{
 return this->mAge;
}

void Person::talk(Person& p)
{
 cout << mName << " is talking to ";
 cout << p.mName << endl;
}

When we invoke methods like so:

Person mike("Mike", 32);
mike.getName();
tim.getAge();
vanessa.talk(tim);

This really evaluates to the following:

Person::Person(&mike, "Mike", 32);
Person::getName(&mike);
Person::getAge(&tim);
Person::talk(&vanessa, tim);

 209

Since these are member functions, they are able to directly access the data members of the passed-in
object pointer, whether the data is private or public. A class can always access its entirety within itself.
The public and private keywords only indicate how external code can access the class.

By passing a hidden pointer into the member function, which points to the object which called the
function, the member function is able to access the data members of the calling object.

Although this is all hidden from the programmer, it is not completely hidden. C++ allows you to access
the hidden pointer parameter inside your method definition with the this pointer keyword. The name
this is just the name of the hidden pointer parameter passed into the member function (which you do
not actually see), so that the member function can access the data members of the object which called it.
For example, writing the following:

Person::Person(string name, int age)
{
 mName = name;
 age = age;
}

string Person::getName()
{
 return mName;
}

int Person::getAge()
{
 return mAge;
}

void Person::talk(Person& p)
{
 cout << mName << " is talking to ";
 cout << p.mName << endl;
}

This is equivalent to writing:

Person::Person(string name, int age)
{
 this->mName = name;
 this->age = age;
}

string Person::getName()
{
 return this->mName;
}

int Pe
{
 return this->mAge;
}

rson::getAge()

 210

void Person:

cout << this->mName << " is talking to ";
 cout <
}

In the latter case, the this pointer is used explicitly, and in the former case it is used implicitly.

6.5 Friends

6.5.1 Friend Functions

Sometimes we will have a non-member function that is closely related to a class. It is so closely related
that we would like to give that function the ability to access the class’ private data and methods. To do
this, the class must declare the function a friend. A friend of the class can then access the class’ private
members directly—it does not need to go through the class’ public interface. Consider the following
example:

:talk(Person& p)
{

< p.mName << endl;

class Point
{
 friend void PrintPoint(Point& p);
public:
 Point(float x, float y, float z);

private:
 float mX;
 float mY;
 float mZ;
};

Point::Point(float x, float y, float z)
{
 mX = x;
 mY = y;
 mZ = z;
}

void PrintPoint(Point& p)
{
 cout << "(" << p.mX << ", ";
 cout << p.mY << ", ";
 cout << p.mZ << ")" << endl;
}

int main()
{
 Point p(1.0f, 2.0f, 3.0f);

 PrintPoint(p);
}

 211

Even though PrintPoint is not a member function of class Point, it is still able to access the private
data members of a Point object. This is because we made the function PrintPoint a friend of class
Point. To make a function a friend you use the friend keyword, followed by the function prototype
in the class definition. The friend statement can be written anywhere in the class definition.

Note th function should be a member
function of Point.

6.5.2

Friend classes extend the idea of friend functions. Instead of making a function a friend, you make all
the methods of another class a friend. The syntax to make all the methods of a class friends with our
class is similar to functions. The friend keyword followed by the class prototype in the class definition
is used:

class A{...};

class B
{
 friend class A;
...
};

All the methods of class A would now be able to access the private components of an object of class B.

6.6 The static Keyword

Variable declarations can be prefixed with the static keyword. For example:

static int staticVar;

The meaning of static depends on the context of the variable.

6.6.1 Static Variables in Functions

A static variable declared inside a function has an interesting property. It is created and initialized once
and not destroyed when the function terminates; that is, its value persists across function calls. A simple

at this example is for illustrative purposes only; in reality, the print

 Friend Classes

 212

application of a static variable inside a function is used when you want the function to execute some
special code the very first time it is called:

void Func()
{
 // Created and initialized once at program start.
 static bool firstTime = true;

 if(firstTime)
 {
 // Do work the first time the function is called.
 // ...

 // Set firstTime to false so that this first-time
 // work is not executed in subsequent calls.
 firstTime = false;
 }
}

The static variable firstTime will be initialized once, at the start of the program, to true. Thus, the
first time the function is called it will be true and the if-statement body will execute. However, the if-
statement body then sets firstTime to false. This value will persist even across all calls to this
function. Therefore, firstTime will be false for all subsequent calls to this function, and the if-
statement body will not execute. Thus, by using a static variable in a function, we were able to control
the execution of some code the first time the function was called.

6.6.2 Static Data Members

Sometimes you will want to have a universal class variable that is not part of the objects of that class,
but rather is associated with the class itself. For example, we may want an object counter, which keeps
track of how many objects of some class have been instantiated. This is called reference counting. This
might be useful if you want to know how many “enemy” opponents are left in a game level, for
example. Clearly, each object does not need to “own” a copy of this counter since the count will be the
same across all objects. So the variable should not be part of the objects; rather, because we are
counting objects of a particular class, and we only need one counter, it makes sense that the counter
should be “owned” by the class itself. We can express this kind of class variable by prefixing its
declaration with the static keyword:

class Enemy
{
public:
 Enemy();
 ~Enemy();

 // ...

private:
 static int NUM_ENEMY_OBJECTS;
};

 213

// Special syntax to initialize a class variable.
// We have the variable type, followed by the class
// name, followed by the identifier name, followed by
// assignment.
int Enemy::NUM_ENEMY_OBJECTS = 0;

 class variable, all object instances of that class can still access this universal variable
(but there is only one; that is, each object does not have its “own”). To continue with our reference
counting example, every time an object is created we want to increment NUM_ENEMY_OBJECTS, and every
time an object is destroyed we want to decrement NUM_ENEMY_OBJECTS. In this way,
NUM_ENEMY_OB store how many objects are “alive.” To do this, the following lines are added
to the class constructor and destructor:

y()
{
 // The constructor was called which implies an object
 // is being created, so increment the count.
 ++NUM_ENEMY_OBJECTS;
}

Enemy::~Enemy()

structor was called which implies an object
 // is being destroyed, so decrement the count.
 --NUM_ENEMY_OBJECTS;
}

Recall that the constructor function is called automatically when an object is created and the destructor
is called automatically when an object is destroyed. Thus, we have implemented the required
functionality we seek—the reference count is incremented when objects are created and it is
decremented when objects are destroyed.

6.6.3 Static Methods

We now have a static class variable NUM_ENEMY_OBJECTS, which stores the number of objects of class
Enemy which currently exist. However, that variable is private and cannot be accessed by anything
except instances of that class. To remedy this, a public static accessor method is created called
GetEnemyObjectCount.

class Enemy
{
public:
 Enemy();
 ~Enemy();

 // ...

 static int GetEnemyObjectCount();

Because this is a

JECTS will

Enemy::Enem

{
 // The de

 214

private:
 static int NUM_ENEMY_OBJECTS;
};

int Enemy::GetEnemyObjectCount()
{
 return NUM_ENEMY_OBJECTS;
}

To access a public static class member from outside the class, the class name is used, followed by the
scope resolution operator, followed by the static identifier. Continuing with the Enemy class example,
we would get a copy of NUM_ENEMY_OBJECTS like so:

int cnt = Enemy::GetEnemyObjectCount();

cout << "Num enemies = " << cnt << endl;

Observe how we can access the static method without an object—we access it directly through the class.

Note: Becaus is not associated with any particular object instance, but rather the class
itself, it does not have the hidden this pointer parameter. Because there is no this pointer, there are
no data members which can be accessed. Therefore, static methods can only access static class
variables.

6.7 Namespaces

In the first chapter of the analogy that as folders are used to organize groups of related
files and prevent file amespaces are used to organize groups of related code and prevent
code name clashes. At this point in your programming career, the possibility of name clashes may not
be apparent. For instance, you might say that you will ensure that you do not give two things the same
name, thereby avoiding name clashes altogether. This ideology is reasonable on a small development
scale. However, once you begin large-scale developments where you are working on a team with
dozens of programmers and where you are using several third party C++ libraries, the possibility of
name clashes increases dramatically. For example, when developing a 3D game (using polygons for the
graphics) you may need to define a class called Polygon, but the Win32 API (a C/C++ library used for
developing Windows applications) already defines a function called Polygon. Thus the name
Polygon becomes ambiguous. Does it refer to the function name or the class name? This is a name
clash.

The solution to this problem is a namespace. Since our Polygon concerns 3D graphics we might put it
in a gfx3D namespace. The following code snippet shows the syntax for creating a namespace and
adding a class to it:

e a static method

 this text we made
 name clashes, n

 215

namespace gfx3D
{
 class Polygon
 {
 // ...
 };
}

To add something to a namespace, we must define it (for classes) or declare it (variables and functions)
inside the namespace block. Note that we can add members to a particular namespace across source
code files. For example, the following shows the addition of a class, function, and variable to the gfx3D
namespace from three separate files:

// Polygon.h
namespace gfx3D
{
 class Polygon
 {
 // ...
 };
}

// Area.h
#include "Polygon.h"

namespace gfx3D
{
 float Area(Polygon& p);
}

// Variable.h

namespace gfx3D
{
 const float PI = 3.14f;
}

To use the classes, functions, or variables, which exist in a namespace, the namespace name must be
specified, followed by the scope resolution operator, followed by the identifier. Examples:

cout << gfx3D::PI << endl;

gfx3D::Polygon poly;

float f = gfx3D::Area(poly);

The class Polygon would no longer clash with the Win32 API function called Polygon, because the
class is actually referred to as gfx3D::Polygon, which is a separate name. Note that this is the same
idea as when we had to prefix things in the standard library with std::. Just as we used the using
clause for the std namespace, we can use it with our namespaces as well, thereby bypassing the need to
specify the namespace prefix:

 216

using namespace gfx3D;

...

cout << PI << endl;
Polygon poly;
float f = Area(poly);

However, doing this circumvents the whole point of the namespace to begin with. Once we add using
namespace gfx3D, the Polygon class becomes ambiguous with the Win32 API function Polygon,
because we no longer specify the gfx3D part which enabled the compiler to distinguish between the
two. Therefore, even though we specify “using namespace std” in the example programs for
convenience, in general practice, it is not a good idea to use the using clause unless you are confident
that it will not cause trouble (e.g. you are sure that you will only be using the one namespace).

6.7.1 Variations of the “using” Clause

Sometimes we only want to use some objects in a namespace. For example, instead of “using” the entire
std namespace, we can specify only certain objects in it. Consider the following trivial program:

#include <iostream>

using std::cout; // using cout
using std::endl; // using end

int main()
{
 cout << "Hello, world!" << endl;
}

The only two standard objects we use are std::cout and std::endl. Thus we do not need to “use”
the entire std namespace. Consequently, we specify with the using clause that we will only be using
these two objects:

using std::cout; // using cout
using std::endl; // using end

 217

6.8 Enumerated Types

Sometimes we will want to create a variable that can only be assigned a few select values. For example,
a variable of type DAY should only be assigned Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, or Saturday—any other value would not make sense for a DAY type. Another example would be
a MONTH type. Only a select pool of values can be assigned to a month. To facilitate types such as these
naturally in the language, C++ supports enumerated types. An enumerated type is created with the enum
keyword. Here is an example using DAY:

enum DAY
{
 Sunday,
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday
};

To instantiate a DAY variable, we write:

DAY day1;

We can only assign to any DAY variable a member specified in the DAY enumerated listing; namely,
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.

day1 = Monday;

DAY day2 = Friday;

DAY day3 = 15; // Error: cannot convert from 'int' to 'DAY'

As an implementation detail, an enumerated type is actually represented as an integer internally, and so
each enumerated value can be associated with an integer:

enum DAY
{
 Sunday = 0,
 Monday = 1,
 Tuesday = 2,
 Wednesday = 3,
 Thursday = 4,
 Friday = 5,
 Saturday = 6
};

 218

Consequently, you can cast an enumerated type to an integer and vice versa. However, you must be
careful that the cast is valid. For example, there is no 8th day, so casting 8 to a DAY would be invalid. In
the following code snippet, we initialize an array of seven DAYs to the days of the week:

int main()
{
 DAY days[7];

 for(int i = 0; i < 7; ++i)
 {
 days[i] = (DAY)i;
 }
}

6.9 Summary

1. A char variable can represent a character, so we can represent a string with an array of chars.
A string represented as an array of chars is called a c-string. A c-string that ends with a null
character (‘\0’) is called a null-terminating string. The end is marked as such because the
ability to figure out when a string ends is important when navigating the elements of the string.

2. std::string is a class that uses char arrays internally. It hides any dynamic memory that

might need to be allocated behind the scenes and it provides many methods, which turn out to be
clearer and more convenient to use than the standard library c-string functions.

3. Member functions are similar to non-member functions. The difference is that a hidden pointer

to the object which invoked the method is passed into a hidden parameter of the function. Thus,
the hidden pointer parameter, which is given the name this, points to the object which invoked
the method. In this way, the member function can access the data members of the object that
called it via the this pointer.

4. The static keyword has several meanings, which depend upon context. A static function

variable is initialized once at the program start, persists across function calls, and is not
destroyed until the program ends. A static variable declared inside class is a universal class
variable that is not part of the objects of that class, but rather is associated with the class name
itself. A method can be made static as well. A static method is not associated with any
particular object instance, and therefore does not have a hidden this pointer parameter; rather, a
static method is associated with the class name. We refer to class (static) variables and
method using the scope resolution operator: className::identifier.

5. Namespaces are used to organize groups of related code and prevent code name clashes. You

can create your own namespaces using the namespace keyword. Any class definitions, function
declarations or variable declarations made inside the namespace scope become contained in that
namespace.

 219

6. Enumerated types are used when we want to create a variable that can only be assigned a few
select values. For example, a variable of type DAY should only be assigned Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, or Saturday—any other value would not make sense for
a DAY type. An enumerated type can be defined with the enum keyword.

6.10 Exercises

For the following exercises you can use c-strings or std::string or a combination of both.

6.10.1 String Reverse

 Write a program that does the following:

1. Ask the user to enter up to a line of text and store it in a string s.
2. Reverse the string s.
3. Output the reversed string to the console window.

Your program output should look like this:

Enter a string: Hello, World!
Reversed string = !dlroW ,olleH
Press any key to continue

6.10.2 To-Upper

Write a program that does the following:

1. Ask the user to enter up to a line of text and store it in a string s.
2. Transform each alphabetical character in s into its uppercase form. If a character is not an

alphabetical character—do not modify it.
3. Output the uppercase string to the console window.

Your program output should look like this:

Enter a string: Hello, World!
Uppercase string = HELLO, WORLD!
Press any key to continue

6.10.3 To-Lower

 220

Write a program that does the following:

1. Ask the user to enter up to a line of text and store it in a string s.
2. Transform each alphabetical character in s into its lowercase form. If a character is not an

alphabetical character—do not modify it.
3. Output the lowercase string to the console window.

Your program output should look like this:

Enter a string: Hello, World!
Lowercase string = hello, world!
Press any key to continue

6.10.4 Palindrome

Dictionary.com defines a palindrome as follows: “A word, phrase, verse, or sentence that reads the same
backward or forward. For example: A man, a plan, a canal, Panama!” For our purposes, we will
generalize and say that a palindrome can be any string that reads the same backwards or forwards and
does not have to form a real word or sentence. Thus, some simpler examples may be:

“abcdedcba”
“C++C”
“ProgrammingnimmargorP”

Write a program that does the following:

1. Asks the user to enter up to a line of text and store it in a string s.
2. Tests if the string s is a palindrome.
3. If s is a palindrome then output “s is a palindrome” else output “s is not a palindrome.”

Your program output should look like this:

Enter a string: Hello, World!
Hello, World! is not a palindrome
Press any key to continue

Another sample out

Enter a string: abcdedcba
abcdedcba is a palindrome
Press any key to continue

put:

 221

 Chapter 7

Operator Overloading

 222

Introduction

In the previous chapter, we saw that we could access a character in a std::string object using the
bracket operator ([]). Moreover, we also saw that we could add two std::strings together using the
addition operator (+) and that we could use the relational operators (==, !=, <, etc) with std::string
objects as well. So it appears that we can use (some) C++ operators with std::string. We may
assume that perhaps these operators are defined for every class. However, a quick test verifies that this
is not the case:

class Fraction
{
public:
 Fraction();
 Fraction(float num, float den);
 float mNumerator;
 float mDenominator;
};

Fraction::Fraction()
{
 mNumerator = 0.0f;
 mDenominator = 1.0f;
}

Fraction::Fraction(float num, float den)
{
 mNumerator = num;
 mDenominator = den;
}

int main()
{
 Fraction f(1.0f, 2.0f);
 Fraction g(3.0f, 4.0f);

 Fraction p = f * g;
 bool b = f > g;
}

The above code yields the errors:

C2676: binary '*' : 'Fraction' does not define this operator or a conversion to a type acceptable to the
predefined operator
 C2676: binary '>' : 'Fraction' does not define this operator or a conversion to a type acceptable to the
predefined operator.

Why can std::string use the C++ operators but we cannot? We actually can, but the functionality is
not available by default. We have to define (or overload) these C++ operators in our class definitions.
These overloaded operators are defined similarly to regular class methods, and they specify what the
operator does in the context of the particular class in which it is being overloaded. For example, what

 223

does it mean to multiply two Fractions? We know from basic math that to multiply two fractions we
multiply the numerators and the denominators. Thus, we would overload the multiplication operator for
Fraction and give an implementation like so:

Fraction Fraction::operator *(const Fraction& rhs)
{
 Fraction P;
 P.mNumerator = mNumerator * rhs.mNumerator;
 P.mDenominator = mDenominator * rhs.mDenominator;
 return P; // return the fraction product.
}

With operator overloading we can make our user-defined types behave very similarly to the C++ built-in
types (e.g., float, int). Indeed, one of the primary design goals of C++ was for user-defined types to
behave similarly to built-in C++ types.

The rest of this chapter describes operator overloading in detail by looking at two different class
examples. The first class which we build will model a mathematical vector, which is an essential tool
for 3D computer graphics and 3D game programming.

However, before proceeding, note that operator overloading is not recommended for every class; you
should only use operator overloading if it makes the class easier and more natural to work with. Do not
overload operators and implement them with non-intuitive and confusing behavior. To illustrate an
extreme case: You should not overload the ‘+’ operator such that it performs a subtraction operation, as
this kind of behavior would be very confusing.

Chapter Objectives

• Learn how to overload the arithmetic operators.
• Discover how to overload the relational operators.
• Overload the conversion operators.
• Understand the difference between deep copies and shallow copies.
• Find out how to overload the assignment operator and copy constructor to perform deep copies.

7.1 Vector Mathematics

In this section we discuss the mathematics of vectors, in order to understand what they are (the data) and
what we can do with them (the methods). Clearly we need to know this information if we are to model a
vector in C++ with a class.

In 3D computer graphics programming (and many other fields for that matter), you will use a vector to
model quantities that consist of a magnitude and a direction. Examples of such quantities are physical

 224

forces (forces are applied in a certain direction and have a strength or magnitude associated with them),
and velocities (speed and direction).

Geometrically, we represent a vector as a directed line segment—Figure 7.1. The direction of the line
segment describes the vector direction and the length of the line segment describes the magnitude of the
vector.

Figure7.1: Geometric interpretation of a vector.

Note that vectors describe a direction and magnitude, but they say nothing about location. Therefore,
we are free to choose a convenient location from which they originate. In particular, for solving
problems, it is convenient to define all vectors such that their “tails” originate from the origin of the
working coordinate system, as seen in Figure 7.2.

Figure 7.2: A vector with its tail fixed at the origin. Observe that by specifying the coordinates of the vector’s tail we

can control its magnitude and direction.

 225

Thus we can describe a vector analytically by merely specifying the coordinates of its “head.” This
motivates the following structural representation of a 3D vector:

class Vector3
{
 // Methods...

 // Data
 float mX;
 float mY;
 float mZ;
};

At first glance, it is easy to confuse a vector with a point, as they both are specified via three coordinate
components. However, recall that vector coordinates are interpreted differently than point coordinates;
specifically, vector coordinates indicate the end point to which a directed line segment (originating from
the origin) connects. Conversely, point coordinates specify a location in space and say nothing about
directions and/or magnitudes.

What follows is a description of important vector operations. For now, we do not need to worry about
the detailed understanding of this math or why it is this way; rather, our goal is simply to understand the
vector operation descriptions well enough to implement C++ methods which perform these operations.

Note: The Game Mathematics and Graphics Programming with DirectX 9 Part I courses at Game Institute
explain vectors in detail.

Throughout this discussion we restrict ourselves to 3D vectors. Let zyx uuuu ,,=

r
 and

zyx vvvv ,,=
r

 be any vectors in 3-space, and let 3,2,1=pr and 1,3,5 −=qr .

Vector Equality:

Two vectors are equal if and only if their corresponding components are equal. That is, vu rr

= if and
only if and

Vector Addition

,, yyxx vuvu == zz vu = .

:

The sum of two vectors is found by adding corresponding components:

zzyyxxzyxzyx vuvuvuvvvuuuvu +++=+=+ ,,,,,,rr
.

Example:

 4,1,613,32,511,3,53,2,1 −=+−+=−+=+ qp rr .

 226

Geometrically, we add two vectors vu rr
+ by parallel translating vr so that its tail is coincident with the

head of ur and then the sum vu rr
+ is the vector that originates at the tail of ur and terminates at the head

of vr . Figure 7.3 illustrates.

Figure 7.3: Vector addition. We translate vr so that its tail coincides with ur . Then the sum vu rr

+ is the vector from
the tail of ur to the head of translated vr .

A key observation to note regarding parallel translation of a vector is that the length and direction of the
vector is preserved; that is, translating a vector parallel to itself does not change its properties and
therefore it is legal to parallel transport them around for visualization.

Vector Subtraction:

The difference between two vectors is found by subtracting corresponding components:

zzyyxxzyxzyx vuvuvuvvvuuuvu −−−=−=− ,,,,,,rr
.

Example:

 () 2,5,413,32,511,3,53,2,1 −=−−−−=−−=− qp rr .

Geometrically, we can view the difference vu rr

− as the vector that originates from the head of vr and
terminates at the head of ur . Figure 7.4 illustrates.

 227

Figure 7.4: Vector subtraction. We view vector subtraction as the sum ()vuvu rrrr

−+=− . So first we negate vr and

then translate vr− so that its tail coincides with ur . Then ()vu rr
−+ is the vector originating from the tail of ur and

terminating at the head of vr− .

Observe that subtraction can be viewed as an addition; that is, ()vuvu rrrr

−+=− , where negating a vector
flips its direction.

Scalar Multiplication:

A vector can be multiplied by a scalar, which modifies the magnitude of the vector but not its direction.
To multiply a vector by a scalar we multiply each vector component by the scalar:

 321321 ,,,, kvkvkvvvvkvk ==

r

Example:

 () () () 9,6,333,23,133,2,133 ===pr

As the name implies, scalar multiplication scales the length of a vector. Figure 7.5 shows some
examples.

 228

Figure 7.5: Scalar multiplication. Multiplying a vector by a scalar changes the magnitude of the vector. A negative

scalar flips the direction.

Vector Magnitude:

We use a double vertical bar notation to denote the magnitude of a vector; for example, the magnitude of
the vector vr is denoted as vr . The magnitude of a vector is found by computing the distance from the
tail of a vector to its head:

 2
3

2
2

2
1 vvvv ++=

r

Example:

 14321 222 =++=pr

Geometrically, the magnitude of a vector is its length—see Figure 7.6.

Figure 7.6: Vector magnitude. The magnitude of a vector is its length.

Normalizing a Vector:

 229

Normalizing a vector makes its length equal to 1.0. We call this a unit vector and denote it by putting a
“hat” on it (e.g.,). We normalize a vector by scalar multiplying the vector by the reciprocal of its
magnitude:

v̂r

vvv rrr
=ˆ

Example:

 143142,1413,2,1141ˆ === ppp rrr .

The Dot Product:

The dot product of two vectors is the sum of the products of corresponding components:

 zzyyxxzyxzyx vuvuvuvvvuuuvu ++=⋅=⋅ ,,,,rr

It can be proved that θcosvuvu ⋅=⋅

rr , where θ is the angle between ur and vr . Consequently, a dot
product can be useful for finding the angle between two vectors.

Example:

 () () () 23651332511,3,53,2,1 =+−=+−+=−⋅=⋅ qp rr

Observe that this vector product returns a scalar—not a vector.

The dot product of a vector vr with a unit vector n̂r evaluates to the magnitude of the projection of vr
onto , as Figure 7.7 shows.

n̂r

 230

Figure 7.7: The dot product of a vector vr with a unit vector n̂r evaluates to the magnitude of the projection of vr onto

. We can get the actual projected vector n̂r nvr by scaling n̂r by that magnitude.

Given the magnitude of the projection of vr onto n̂r , the actual projected vector is: ()nnvvn

ˆˆ rrrr
⋅= , which

makes he projection, andsense: nv ⋅ returns the magnitude of tr̂r n̂r is the unit vector along which the
projection lies. Therefore, to get the projected vector we sim ly scale the unit vector p n̂r by the
magnitude of the projection.

Sometimes we will want the vector ⊥vr perpendicular to the projected vector (Figure 7.8). Using our
geometric interpretation of vector subtraction we see that

 nvr

nvvv rrr
−=⊥ . But this then implies ⊥+= vvv n

rrr ,
which means a vector can be written as a sum of its perpendicular components.

Figure 7.8: Finding the vector perpendicular to the vector projected on n̂r .

 231

7.2 A Vector Class

Our goal now is to design a class that represents a 3D vector. We know how to describe a 3D vector
(with an ordered triplet of coordinates) and we also know what operators are defined for vectors (from
the preceding section); that is, what things we can do with vectors (methods). Based on this, we define
the following class:

// Vector3.h

#ifndef VECTOR3_H
#define VECTOR3_H

#include <iostream>

class Vector3
{
public:

 Vector3();
 Vector3(float coords[3]);
 Vector3(float x, float y, float z);

 bool equals(const Vector3& rhs);
 Vector3 add(const Vector3& rhs);
 Vector3 sub(const Vector3& rhs);
 Vector3 mul(float scalar);
 float length();
 void normalize();
 float dot(const Vector3& rhs);

 float* toFloatArray();

 void print();

 void input();

 float mX;
 float mY;
 float mZ;
};
#endif // VECTOR3_H

Note: Why do we keep the data public even though the general rule is that data should always be
private? There are two reasons. The first is practical: typically, vector components need to be accessed
quite frequently by outside code, so it would be cumbersome to have to go through accessor functions.
Second, there is no real data to protect; that is, a vector can take on any value for its components, so
there is nothing we would want to restrict.

The data members are obvious—a coordinate value for each axis, which thereby describes a 3D vector.
The methods are equally obvious—most come straight from our discussion of vector operations from the

 232

previous section. But how should we implement these methods? Let us now take a look at the
implementation of these methods one-by-one.

7.2.1 Constructors

We provide three constructors. The first one, with no parameters, creates a default vector, which we
define to be the null vector. The null vector is defined to have zero for all of its components. The
second constructor constructs a vector based on a three-element input array. Element [0] will contain
the x-component; element [1] will contain the y-component; and element [2] will contain the z-
component. The last constructor directly constructs a vector out of the three passed-in components. The
implementations for these constructors are trivial:

Vector3::Vector3()
{
 mX = 0.0f;
 mY = 0.0f;
 mZ = 0.0f;
}

Vector3::Vector3(float coords[3])
{
 mX = coords[0];
 mY = coords[1];
 mZ = coords[2];
}

Vector3::Vector3(float x, float y, float z)
{
 mX = x;
 mY = y;
 mZ = z;

7.2.2 Equality

The next m ethod returns true if the method
which calls vector (this vector) is equal to the vector passed into the parameter; otherwise, it returns
false. Recall that two vectors are equal if and only if their corresponding components are equal.

bool Vector3::equals(const Vector3& rhs)
{
 omponents are equal.
 return
 mX == rhs.mX &&
 mY == rhs.mY &&
 mZ == rhs.mZ;
}

}

ethod we specified was the equals method. The equals m

// Return true if the corresponding c

 233

7.2.3 Addition and Subtraction

We next implement two methods to perform vector addition and subtraction. Recall that we add two
vectors by adding corresponding components, and that we subtract two vectors by subtracting
corresponding components. The following implementations do exactly that, and return the sum or
differe

Vector3 Vector3::add(const Vector3& rhs)
{
 Vector3 sum;
 sum.mX = mX + rhs.mX;
 sum.mY = mY + rhs.mY;

 return sum;
}

Vector3 Vector3::sub(const Vector3& rhs)
{

 dif.mY = mY - rhs.mY;
 dif.mZ = mZ - rhs.mZ;

 return dif;
}

7.2.4 Scalar Multiplication

After the subtraction method we define the mul method, which multiplies a scalar by this vector (the
vector object that invoked the method), and returns the resulting vector. Again, it is straightforward to
translate the mathematical computations described in Section 7.1 into code. To refresh your memory, to
multiply a vector with a scalar we simply multiply each vector component with the scalar:

 Vector3 Vector3::mul(float scalar)
{
 Vector3 p;
 p.mX = mX * scalar;
 p.mY = mY * scalar;
 p.mZ = mZ * scalar;

 return p;
}

nce.

sum.mZ = mZ + rhs.mZ;

Vector3 dif;
dif.mX = mX - rhs.mX;

 234

7.2.5 Length

The length method is responsible for returning the length (or magnitude) of the calling vector.

Translating the mathematic formula 2
3

2
2

2
1 vvvv ++=

r into code we have:

float Vector3::length()
{
 return sqrtf(mX*mX + mY*mY + mZ*mZ);
}

7.2.6 Normalization

Writing a method to normalize the calling vector is as equally easy. Recall that normalizing a vector
makes its length equal to 1.0, and that we normalize a vector by scalar multiplying the vector by the
reciprocal of its magnitude:

 vvv rrr

=ˆ

Translating this math into code yields:

void Vector3::normalize()
{
 // Get 'this' vector's length.
 float len = length();

 // Divide each component by the length.
 mX /= len;
 mY /= len;
 mZ /= len;
}

7.2.7 The Dot Product

The last method, which is mathematical in nature, implements the dot product. Translating the
following mathematical formula results in the code seen below:

zzyyxxzyxzyx vuvuvuvvvuuuvu ++=⋅=⋅ ,,,,rr

float Vector3::dot(const Vector3& rhs)
{
 float dotP = mX*rhs.mX + mY*rhs.mY + mZ*rhs.mZ;
 return dotP;
}

 235

7.2.8 Conversion to float Array

The conversion method toFloatArray does not correspond to a mathematical vector operation. Rather,
it returns a pointer to the three-element float representation of the calling object (this). Why would
we ever want to convert our Vector3 representation to a three-element float array representation? A
good example might be if we were using the OpenGL 3D rendering library. This library has no idea
about Vector3, and instead expects vector parameters to be passed in using a three-element float
array representation. Providing a method to convert our Vector3 object to a three-element float
array would allow us to use the Vector3 class seamlessly with OpenGL.

The im

float* Vector3::toFloatArray()
{
 return &mX;
}

This code returns the address of the first component of this vector. However, we must remember that
the memory of class objects is contiguous, just like we saw with arrays.

float mX;
float mY;
float mZ;

The memory of mY comes directly after mX, and the memory for mZ comes directly after mY. The above
memory layout is equivalent to:

float v[3];

Thus, by getting a pointer to mX, we are implicitly getting a pointer to the first element in a three-
element array, which represents the vector components. We can now access the x-, y-, and z-
components using the array bracket operator:

Vector3 w(-5.0f, 2.0f, 0.0f);
float* wArray = w.toFloatArray();

// wArray[0] == w.x
// wArray[1] == w.y
// wArray[2] == w.z

plementation of this function might not be obvious.

== -5.0f
== 2.0f
== 0.0f

 236

7.2.9 Printing

The print method is responsible for displaying the calling vector to the console window:

void Vector3::print()
{
 cout << "<" << mX << ", " << mY << ", " << mZ << "> \n";
}

7.2.10 Inputting

Finally, the last method is used to initialize a vector based on user input from the keyboard. In other
words, it prompts the user to enter in the components of a vector one-by-one.

void Vector3::input()
{
 cout << "Enter x: ";
 cin >> mX;
 cout << "Enter y: ";
 cin >> mY;
 cout << "Enter z: ";
 cin >> mZ;
}

7.2.11 Example: Vector3 in Action

Let us now look at a driver program, which uses our Vector3 class.

Program 7.1: Using the Vector3 class.

// main.cpp

#include "Vector3.h"
#include <iostream>
using namespace std;

int main()
{
 // Part 1: Construct three vectors.
 float coords[3] = {1.0f, 2.0f, 3.0f};
 Vector3 u;
 Vector3 v(coords);
 Vector3 w(-5.0f, 2.0f, 0.0f);

 // Part 2: Print the three vectors.
 cout << "u = ";
 u.print();

 237

 cout << "v = ";
 v.print();
 cout << "w = ";
 w.print();
 cout << endl;

 // Part3: u = v + w
 u = v.add(w);
 cout << "v.add(w) = ";
 u.print();
 cout << endl;

 // Part 4: v = v / ||v||
 v.normalize();
 cout << "unit v = ";
 v.print();
 cout << "v.length() = " << v.length() << endl;
 cout << endl;

 // Part 5: dotP = u * w
 float dotP = u.dot(w);
 cout << "u.dot(w) = " << dotP;

 // Part 6: Convert to array representation.
 float* vArray = v.toFloatArray();

 // Print out each element and verify it matches the
 // components of v.
 cout <<
 "[0] = " << vArray[0] << ", "
 "[1] = " << vArray[1] << ", "
 "[2] = " << vArray[2] << endl;
 cout << endl;

 // Part 7: Create a new vector and have user specify its
 // components, then print the vector.
 cout << "Input vector..." << endl;
 Vector3 m;
 m.input();
 cout << "m = ";
 m.print();
}

Program 7.1 Output

u = <0, 0, 0>
v = <1, 2, 3>
w = <-5, 2, 0>

v.add(w) = <-4, 4, 3>

unit v = <0.267261, 0.534522, 0.801784>
v.length() = 1

u.dot(w) = 28[0] = 0.267261, [1] = 0.534522, [2] = 0.801784

 238

Input vector...
Enter x: 9
Enter y: 8
Enter z: 7
m = <9, 8, 7>
Press any key to continue

The code in Program 7.1 is pretty straightforward, so we will only briefly summarize it. In Part 1, we
have:

float coords[3] = {1.0f, 2.0f, 3.0f};
Vector3 u;
Vector3 v(coords);
Vector3 w(-5.0f, 2.0f, 0.0f);

Here, we construct three different vectors using the different constructors we have defined. The vector u
takes no parameters and is constructed with the default constructor. The second vector v uses the array
constructor; that is, we pass a three-element array where element [0] specifies the x-component, element
[1] specifies the y-component, and element [2] specifies the z-component. Lastly, the vector w is
constructed using the constructor in which we can directly specify the x-, y-, and z-components.

Part 2 of the code simply prints each vector to the console window. In this way, we can check the
program output to verify that the vectors were indeed constructed with the values we specified.

Part 3 performs an addition operati .

u = v.add(w);
cout << "v.add(w) = ";
u.prin
cout << endl;

In particular, Part 3 computes u = v + w. Observe how the method caller v is the “left hand side” of the
addition operation, and the argument w is the “right hand side” of the addition operation. Also, notice
that the u.

The first key statement in Part 4 is the following:

v.normalize();

This statement simply makes the vector v a unit vector (length equal to one). The second key statement
in Part 4 is:

cout << "v.length() = " << v.length() << endl;

Here we call the length function for v, which will return the length of v. Because v was just
normalized, the length should be equal to 1. A quick check at the resulting output confirms that the
length is indeed one.

on, and then prints the sum

t();

add method returns the sum, which we store in

 239

Part 5 performs a dot product:

float dotP = u.dot(w);

In words, this code reads: Take the dot product of u and w and return the result in dotP, or in
mathematical symbols, wudotP rr

⋅= . As with addition, observe how the method caller u is the “left
hand side” of the dot product operation, and the argument w is the “right hand side” of the dot product
operation.

In Part 6 we obtain a float pointer to the first element (component) of the vector v. With this pointer,
which is essentially a pointer to a three-element array, we can access all three components of v using the
subscript operator.

float* vArray = v.toFloatArray();

 // Print out each element and verify it matches the
 // components of v.
 cout <<
 "[0] = " << vArray[0] << ", "
 "[1] = " << vArray[1] << ", "
 "[2] = " << vArray[2] << endl;
 cout << endl;

Finally, Part 7 creates a new vector and prompts the user to specify the components via the input
method. Based on the program’s output, we can see the program echoed the values we input, thereby
confirming that the input method initialized the components correctly.

cout << "Input vector..." << endl;
Vector3 m;
m.input();
cout << "m = ";
m.print();

7.3 Overloading Arithmetic Operators

In the previous section we defined and implemented a Vector3 class. However, the class interface is
unnatural. Since a Vector3 object is mathematical in nature and supports mathematical operators, it
would be useful if it were possible to add, subtract and multiply vectors using the natural syntax:

u = v + w; // Addition
v = w - u; // Subtraction
w = v * 10.0f; // Scalar multiplication
float dotP = u * w; // Dot product

 240

This would be used instead of the currently exposed syntax:

u = v.add(w);
v = w.sub(u);
w = v.
float dotP = u.dot(w);

This is where operator overloading comes in. Instead of defining method names for Vector3, we will
overload C++ operators for Vector3 objects to perform the desired function. For example, using the +
operator will be functionally equivalent to using the add method. In this way, we will be able to perform
all of our vector operations using a natural mathematical syntax.

7.3.1 Operator Overloading Syntax

Overloading an operator is simple. It is just like defining a method, except that instead of using a method
name, the operator keyword is used followed by the operator symbol which we are overloading as the
method name. For example, we can overload the + operator like so:

Vector

We treat the name “operator +” as the method name. When we implement the overloaded operator, we
just implement it as we would a regular method with name “operator +”:

Vector3 Vector3::operator+(const Vector3& rhs)
{
 Vector3 sum;

 sum.mZ =

 return sum;
}

This is quite convenient because we want our overloaded + operator to be functionally equivalent to the
add function. We can simply replace add with operator+. Now that we overloaded the + operator
between two vectors we can now perform vector addition with this syntax:

u = v + w;

mul(10.0f);

3 operator+(const Vector3& rhs);

sum.mX = mX + rhs.mX;
 sum.mY = mY + rhs.mY;

 mZ + rhs.mZ;

 241

7.3.2 Overloading the Other Arithmetic Operators

Overloading the other mathematical operators is equally easy, especially since we already have the
desired functionality already written. We already wrote the code which subtracts two vectors, multiplies
a scalar and a vector, and takes a dot product. Thus, all we have to do is replace the method “word”
names sub, mul, and dot, with the operator symbol equivalent: - and *:

Vector3 operator-(const Vector3& rhs);
Vector3 operator*(float scalar);
float operator*(const Vector3& rhs);

Note: Just as we ca sing a different function signature, we can
overload operators hus we can overload the * operator twice,
since we use a different signature. The first, which takes a scalar argument, performs a scalar
multiplication. The second version, which takes a Vector3 argument, performs a dot product.

The implementations to these operator methods are exactly the same as we had before:

Vector3 Vector3::operator-(const Vector3& rhs)
{
 Vector3 dif;
 dif.mX = mX - rhs.mX;
 dif.mY = mY - rhs.mY;
 dif.mZ = mZ - rhs.mZ;

 return dif;
}

ar)
{
 Vector3 p;
 p.mX = mX * scalar;

 return p;
}

float Vector3::operator*(const Vector3& rhs)
{
 float dotP = mX*rhs.mX + mY*rhs.mY + mZ*rhs.mZ;

 return dotP;
}

n overload function names several times u
several times using different signatures. T

Vector3 Vector3::operator*(float scal

 p.mY = mY * scalar;
 p.mZ = mZ * scalar;

 242

7.3.3 Example using our Overloaded Operators

To show off our new overloaded operators, let us rewrite parts of Program 7.1:

Program 7.2: Overloaded Arithmetic Operators.

// main.cpp

#include "Vector3.h"
#include <iostream>
using namespace std;

int main()
{
 // Part 1: Construct three vectors and print.
 float coords[3] = {1.0f, 2.0f, 3.0f};
 Vector3 u;
 Vector3 v(coords);
 Vector3 w(-5.0f, 2.0f, 0.0f);

 cout << "u = "; u.print();
 cout << "v = "; v.print();
 cout << "w = "; w.print();
 cout << endl;

 // Part 2: u = v + w
 u = v + w;
 cout << "u = v + w = ";
 u.print();
 cout << endl;

 // Part 3: subtraction
 v = w - u;
 cout << "v = w - u = ";
 v.print();
 cout << endl;

 // Part 4: w = v * 10.0f
 w = v * 10.0f;
 cout << "w = v * 10.0f = ";
 w.print();
 cout << endl;

 // Part 5: dotP = u * w
 float dotP = u * w;
 cout << "dotP = u * w = " << dotP;
 cout << endl;
}

 243

Program 7.2 Output

u = <0, 0, 0>
v = <1, 2, 3>
w = <-5, 2, 0>

u = v + w = <-4, 4, 3>

v = w - u = <1, 2, 3>

w = v * 10.0f = <10, 20, 30>

dotP = u * w = 130
Press any key to continue

There is not much to discuss here. We have omitted some parts of Program 7.1 and added some new
parts. The key point of our new version is how we perform arithmetic operations using the C++
arithmetic symbols +, -, and *, instead of the word name add, sub, mul, and dot.

Note 1: We did not overload the division operator (/) in our Vector3 class because we did not need it.
You could overload it and define a meaning to it in your classes. The general syntax would be:

ReturnType ClassName::operator/(type rhs)

Note 2: We have overloaded the * operator such that we can write v * 10.0f, for example. However,
equally correct would be 10.0f * v, but we cannot write this as is because our member function
version is setup such that the Vector3 object is the left hand operand and the float scalar is the
right hand operand:

Vector3 Vector3::operator*(float scalar)

The trick is to make a global operator* where the float scalar is the first parameter and the
Vector3 object the second parameter:

 Vector3 operator*(float scalar, Vector3& v);

In this way, you can maintain an elegant symmetry, and write, 10.0f * v , as well.

7.4 Overloading Relational Operators

Thus far, for our Vector3 class, we have overloaded the arithmetic operators and have achieved
pleasant results. However, what about relational type operators? At present, to determine if two vectors
are equal we write:

if(u.equals(v))
 // equal
else
 // not equal

 244

We do this using the Vector3::equals method, which, for reference, is implemented like so:

bool Vector3::equals(const Vector3& rhs)
{
 // Return true if the corresponding components are equal.
 return
 mX == rhs.mX &&
 mY == rhs.mY &&
 mZ == rhs.mZ;
}

However, our goal is to make our user-defined types behave more like the built-in C++ types where it
makes sense to do so. Therefore, we ask if it is possible to also overload the relational operators (==,

). To be sure, we would not be spending time on a section called “overloading relation
not possible!. So indeed we can, and in particular, for Vector3, we are interested

in overloading the equality operator (==) and the not equals operator (!=). Overloading the relational
operators is essentially the same as overloading the arithmetic operators; in both cases, we define the
method as usual, but replace the method name with the operator keyword followed by the operator’s
symbol:

bool Vector3::
{
 // Return true if the corresponding components are equal.
 return
 mX == rhs.mX &&
 mY == rhs.mY &&
 mZ == rhs.mZ;
}

bool Vector3::operator!=(const Vector3& rhs)
{
 // Return true if any one corresponding components
 // are _not_ equal.
 return
 mX != rhs.mX ||
 mY != rhs.mY ||
 mZ != rhs.mZ;
}

Recall from Chapter 2 that the relational operators always return bool values. The relational operators
you overload should do the same to preserve consistency and intuition. With our overloaded equals and
not equals operators we can write code with Vector3 objects that looks like this:

if(u == v)
 // equal
else
 // not equal

if(u != v)
 // not equal
else
 // equal

!=, <, >, <=, >=
operators” if it were

operator==(const Vector3& rhs)

 245

What about the other relational operators such as the less than (<) and greater than (>) operators? We
could overload these operators (in the same way we overload the other relational operators) and say a
vector u is less than a vector v if u’s length is less than v’s length. Likewise, a vector u is greater than a
vector v if u’s length is greater than v’s length. However, this is not standard convention.

7.5 Overloading Conversion Operators

Recall the casting operator, which would allow us to, for example, convert a float to an int:

float pi = 3.14f;
int three = (int)pi; // three = 3 due to truncation.

The decimal part of the float is lost because an integer cannot represent it. But can we define casting
operators that convert between our user-defined types and other types? Indeed we can, by overloading
the casting operators for our class.

In our Vector3 example, we can essentially view the method

float* toFloatArray();

as a conversion of a Vector3 object to a three-element float array object (we return a pointer to the
first element in the array). Our goal now is to overload an operator so that instead of calling
toFloatArray to obtain the array representation, we can simply cast our Vector3 object to a
float*. That is:

// Convert to array representation.
Vector3 v(1.0f, 2.0f, 3.0f);
float* vArray = (float*)v;

// Print out each element and verify it matches the
// components of v.
cout <<
 "[0] = " << vArray[0] << ", " // 1.0f
 "[1] = " << vArray[1] << ", " // 2.0f
 "[2] = " << vArray[2] << endl; // 3.0f

Overloading a conversion operator takes on the following syntax:

operator type();

Where type is the type of object to which we wish to define a conversion. In our Vector3 example,
we wish to convert to type float*. So we replace toFloatArray with our overloaded conversion
operator:

operator float*();

 246

The implementation of our conversion operator is exactly the same as toFloatArray because they
perform the same function.

Vector3::operator float*()
{
 return &mX;
}

To summarize, we have overloaded the conversion operator which converts our Vector3 to type
float e can simply cast
our Vector3 object to a float* like
float* vArray = (.

Note: You can define as many conversion operators as you want for a class—just make sure it makes
sense for your class to convert to those other types. For example, we could define a conversion from a

 an int three-element array:

operator double*();
operator int*();

7.6 Overloading the Extraction and Insertion Operators

We have come a long way with our Vector3 class in making it behave very much like the built-in C++
types, but we can go even further. Recall that we can output and input the built-in types to and from the
console window with cout <<, and cin >>, respectively. We might wonder whether we could make
it so that we could use cout << and cin >> with our user-defined types. Predictably, we can.

In particular, we need to overload the insertion operator (<<) and the extraction operator (>>), and
specify how our user-defined types will be output and input with these operators. Note that these
operators are also sometimes called the output and input operators, respectively. However, one key
difference between the insertion and extraction operators that differs from the other operators we have
discussed is where we overload these operators. Previously, we always made the operators member
functions, but if we look at the syntax:

cout << variable;

We note that this is translated to cout.operator<<(variable). In other words, cout is the object
invoking the operator <<.

Note: For reference, cout and cin are defined in the standard namespace like so:

* so that instead of calling toFloatArray to obtain the array representation, w
so:

float*)v;

Vector3 object to a double three-element array or

 247

extern ostream cout;
extern istream cin;

That is, they are object instances of class ostream and istream.

Obviously, the writers of ostream (the class of which cout is an instance) and of istream (the class
of which cin is an instance) did not know about our user-defined class Vector3; that is, there is no
method:

std::ostream& std::ostream::operator<<(const Vector3& v);

nor

std::istream& std::istream::operator<<(Vector3& v);

Therefore, cout and cin do not work with our objects (by default). Moreover, because we did not
write the istream or ostream class, we cannot add such member functions to them. Therefore, the
only way to overload << and >> so that they work with cout and cin as we would expect, is to make
them n

std::istream& operator>>(std::istream& is, Vector3& v);
std::ostream& operator<<(std::ostream& os, const Vector3& v);

The implem nput and print do:

std::i tream& is, Vector3& v)
{
 cout << "Enter x: ";

 cin >> v.mY;
 cout << "Enter z: ";

 return is;
}

std::ostream& operator<<(std::ostream& os, const Vector3& v)
{
 , " << v.mZ << "> \n";

 return os;
}

Note: Both of these overloaded operators (<< & >>) access the data of a Vector3 object. This is
legal since the data members of Vector3 are public in this case. However, this will not always be the
case. Therefore, typically you will find the overloaded << and >> operators declared as friends (Section
6.5) of the class they operate on. For example, if Vector3’s data were private, we would write:

class Vector3
{

on-member functions:

entations simply do the same thing we had i

stream& operator>>(std::is

cin >> v.mX;
cout << "Enter y: ";

cin >> v.mZ;

cout << "<" << v.mX << ", " << v.mY << "

 248

 friend std::istream& operator>>(std::istream& is, Vector3& v);
 friend std::ostream& operator<<(std::ostream& os, const Vector3& v);
...

In this way, the overloaded << and >> operators could access the private data of Vector3 without
any problems.

With these overloaded operators, we can now output and input Vector3 objects to and from the console
using cout and cin, respectively:

Program 7.3: Using the overloaded insertion and extraction operators.

// main.cpp

#include "Vector3.h"
#include <iostream>
using namespace std;

int main()
{
 // Part 1: Construct three vectors and print.
 float coords[3] = {1.0f, 2.0f, 3.0f};
 Vector3 u;
 Vector3 v(coords);
 Vector3 w(-5.0f, 2.0f, 0.0f);

 cout << "u = "; cout << u;
 cout << "v = "; cout << v;
 cout << "w = "; cout << w;
 cout << endl;

 cin >> u;

 cout << u;
}

Program 7.3 Output

u = <0, 0, 0>
v = <1, 2, 3>
w = <-5, 2, 0>

Enter x: 9
Enter y: 8
Enter z: 7
<9, 8, 7>
Press any key to continue

 249

7.7 A String Class; Overloading the Assignment
Operator, Copy Constructor, and Bracket Operator

We now shift focus from the Vector3 class to a custom made String class. Before we begin,
understand that this String class will be incomplete and we will use it only to further illustrate some
additional operator overloading concepts—it is not meant to replace std::string.

Internally, we represent the string data with a c-string. However, because the size of the string is
unknown, we use dynamic memory so we can resize the string accordingly:

class String
{
public:
 String();
 String(cons hs);
 String(const String& rhs);

 String& operator=(const String& rhs);

private:
 char* mData;
};

7.7.1 Construction and Destruction

We would like to be able to construct a String object from a c-string so we added the constructor:

String(const char* rhs);

(Note: RHS stands for right-hand-side.) At first, you may suspect that all we need to do is this:

String::String(const char* rhs)
{
 mData = rhs;
}

That is, make our internal char pointer point to the c-string. However, our String objects are not
merely pointers to other c-strings; rather, they are completely independent string objects, which use a c-
string as a source to copy characters into their own c-string memory destination. Think about it.
Suppose we did construct a String object dest using a c-string C, and we let dest.mData point to C.
What happens if C changes? If C changes then dest changes as well, since internally, dest’s data
representation is a pointer to C. What happens if C is destroyed? If C is destroyed then dest becomes
invalid automatically, since dest’s internal data representation is a pointer to C (which was destroyed).
This kind of behavior might be surprising to someone using your String class, who would expect

t char* r

 250

String objects to be self-contained and not dependent upon external data. Therefore, when given a c-
string in the constructor, we allocate enough memory to store a copy of this c-string, and then copy the
c-string into the String’s own internal data:

String::String(const char* rhs)
{
 // Get the length of the rhs c-string.
 int len = strlen(rhs);

 // Allocate enough memory to store a copy of the c-string plus
 // one more for null-character.
 mData = new char[len+1];

 // Copy characters over to our own data.
 for(int i = 0; i < len; ++i)
 mData[i] = rhs[i];

 // Set null-character in the last spot.
 mData[len] = '\0';
}

Because we have used dynamic memory, we must free the memory when a String object is destroyed.
Recall that the destructor is a function that is called when an object gets destroyed. Hence, the
destructor is the logical place to put this memory release code:

String::~String()
{
 delete[] mData;
 mData = 0;
}

7.7.2 Assignment Operator

Recall that every class automatically gets a constructor, destructor, copy constructor, and assignment
operator, even if it does not manually define one (the compiler will do this for you). What does the
default assignment operator do? The default assignment operator will perform a simple byte-by-byte
copy from the right hand operand’s memory into the left hand operand’s memory; this is called a
shallow copy.

Consider the following:

String dest("Hello");
String source("C++");

dest = source;

A shallow copy implies a direct memory copy, which means the pointer address will by copied from
source to dest; that is, dest.mData = source.mData;

 251

This raises two problems:

1. The memory to which dest.mData pointed was never deleted before source.mData was
assigned to it. This results in a memory leak.

2. The second problem with a shallow copy in the case of our String class is the same problem

we mentioned in the previous section with the constructor: a shallow copy will simply copy
pointers over. That is, dest.mData == source.mData. Consequently, dest is no longer
independent (it depends on source now—source.mData, specifically) and we get all the
problems we mentioned in the preceding section; namely, if source changes then dest changes,
and if source is destroyed then dest contains a pointer to deleted memory.

s, we must overload the assignment operator and perform a deep copy. In a deep

py, we do what we did in the constructor: we allocate enough memory to store a copy of the
rhs.mData c-string, and then we copy the c-string into the String’s own internal data:

String& String::operator =(const String& rhs)
{
 // Prevent self assignment. We say two Strings
 qual.
 if(this == &rhs)
 return *this;

 // Get the length of the rhs c-string.
 int len = strlen(rhs.mData);

 delete [] mData;

 to store a copy of the c-string plus
 // one more for null-character.
 mData = new char[len+1];

 mData[i] = rhs.mData[i];

 mData[len] = '\0';

 return *this
}

override the copy constructor and
assignment operator and perform copy pointers over and get two
objects that point to one thing, thereby making the objects dependent on each other, instead of self-
contained, indepen

There are a few other things happening in this assignment operator, which you should understand.

To fix these problem
co

// are equal if their memory addresses are e

// Free existing memory.

// Allocate enough memory

// Copy characters over to our own data.
for(int i = 0; i < len; ++i)

// Set null-character.

 // Return a reference to *this object.
;

Note: As a rule, if your classes contain pointers, you should always
a deep copy—otherwise you simply

dent objects.

 252

• We first check for self assignment; for example:

String dest("Hello");
dest = dest;

For our purposes, we define two String objects to be equal if their addresses are equal. You

tring objects are equal if they represent equivalent strings (e.g., “hello”
== nds on the needs of the application.

• Second, we return a reference to the left-hand-side operand; that is, *this. We do this because

it allows us to chain assignments like so:

String a;
String b;
String c;
String d("Hello");

a = b = c = d;

If we returned, say, void instead of a reference to *this, we would not be able to chain
assignments like this, because recall that these operator symbols really look like the following, as
far as the compiler is concerned:

a.operator=(b.operator=(c.operator=(d)));

You have to return something from the “operator function” if you want to be able to pass the
function as an argument into another function.

7.7.3 Copy Constructor

A copy constructor is a method that constructs an object via another object of the same type. If you use
the default copy constructor, the object will be constructed by copying the parameter’s bytes, byte-by-
byte, into the object being constructed, thereby performing a shallow copy. From the previous section,
we know this default behavior is unacceptable for our String class (or virtually any class that uses
dynamic memory).

Because the copy constructor constructs an object via another object of the same type, which is
essentially what our String assignment operator does, we can actually implement the copy constructor
in terms of the assignment operator like so:

String::String(const String& rhs)
{
 mData = 0; // Does not point to anything, yet.
 *this = rhs;
}

may prefer to say two S
 “hello”). Which option you choose depe

 253

Our copy constructor now behaves correctly and does a deep copy (because we overloaded the
assignment operator to do a deep copy).

7.7.4 Overloading the Bracket Operator

Recall that with a std::string, we could access the individual characters of that string with the
bracket operator [] like so:

string s = "Hello, world!";

char c0 = s[0]; // = 'H'
char c1 = s[1]; // = 'e'
char c2 = s[4]; // = 'o'
char c3 = s[7]; // = 'w'
char c4 = s[12]; // = '!'

We can add this exact functionality to our String class by overloading the bracket operator:

char& String::operator[](int i)
{
 return mData[i];
}

As you can see, the bracket operator takes one parameter, which is the index into some container (a
char array in our case). We use this index to fetch the appropriate character out of our internal char
array.

7.8 Summary

1. One of the primary design goals of C++ was for user-defined types to behave similarly to
intrinsic C++ types (e.g., float, int). To facilitate this goal, operator overloading was added
to C++. Operator overloading enables programmers to overload the C++ operators (e.g., ‘+’, ‘*’,
‘<’, ‘!=”, ‘<<’, ‘>>’, etc) and define new behaviors for them. Consequently, we can overload
C++ operators with our user-defined types, which results in behavior similar to the intrinsic C++
types.

2. Operator overloading is not for every class. Only use operator overloading if it makes the class

easier and more natural to work with. Do not overload operators and implement them with non-
intuitive and confusing behavior. To illustrate an extreme case: You would not overload the ‘+’
operator such that it performs a subtraction operation, as this kind of behavior would be very
confusing.

 254

3. A vector is a mathematical object used to represent magnitudes and directions. Examples of
such quantities are physical forces (forces are applied in a certain direction and have a strength
and magnitude associated with them), and velocities (speed and direction). Geometrically, we
represent a vector as a directed line segment. The direction of the line segment describes the
vector direction, and the length of the line segment describes the magnitude of the vector.

4. A shallow copy refers to copying memory byte-by-byte from one segment of memory to another.

A deep copy refers to copying dynamic memory values by allocating enough memory in the
destination to store all the values contained in the source, and then copying the source values into
the destination memory.

7.9 Exercises

7.9.1 Fraction Class

Define and implement a Fraction class with the following specifications:

• Contains a floating-point data member representing the numerator and contains a floating-point
data member representing the denominator.

• Contains a default constructor that takes no parameters and which initializes the fraction to 10 .

• Contains a non-default constructor which takes a floating-point parameter that specifies the

numerator, and takes another floating-point point parameter that specifies the denominator.

• Overloads the arithmetic operators (+, -, *, /) to perform fraction addition, fraction subtraction,
fraction multiplication, and fraction division. (You do not need to reduce the fraction, but you
can if you are motivated to do so.)

• Overloads the relational operators (==, !=, <, >, <=, >=) so that, for any two Fractions A and B,

we can determine if A == B, A != B, A < B, A > B, A <= B, or A >= B.

• Overloads the float and double conversion operator so that you can convert a Fraction
object to a decimal of type double or float; for example, so you can write:

Fraction frac(22, 7); // (22 / 7)
float decimal = (float)frac; // convert to decimal;
 // decimal ≈ 3.142857.

Note that the decimal representation of a fraction is computed simply as:

decimal = numerator / denominator.

 255

• Overloads the insertion (<<) and extraction (>>) operators so that you can output Fractions
with cout and input Fractions with cin.

Be sure to test every operator of your Fraction class thoroughly to verify you have implemented the
operators correctly. Also, be sure to watch out for divisions by zero.

7.9.2 Simple float Array Class

Consider the following class definition:

// FloatArray.h

#ifndef FLOAT_ARRAY_H
#define FLOAT_ARRAY_H

class FloatArray
{
public:
 // Create a FloatArray with zero elements.
 FloatArray();

 // Create a FloatArray with 'size' elements.
 FloatArray(int size);

 // Create a FloatArray from another FloatArray--
 // be sure to prevent memory leaks!
 FloatArray(const FloatArray& rhs);

 // Free dynamic memory.
 ~FloatArray();

 // Define how a FloatArray shall be assigned to
 // another FloatArray--be sure to prevent memory
 // leaks!
 FloatArray& operator=(const FloatArray& rhs);

 // Resize the FloatArray to a new size.
 void resize(int newSize);

 // Return the number of elements in the array.
 int size();

 // Overload bracket operator so client can index
 // into FloatArray objects and access the elements.
 float& operator[](int i);

private:
 float* mData; // Pointer to array of floats (dynamic memory).
 int mSize; // The number of elements in the array.
};

#endif // FLOAT_ARRAY_H

 256

Your task for this exercise is to provide the implementation for FloatArray. Read the comments above
each method for instructions on what the method should do (i.e., how you should implement the
method). (Hint: Reread Program 4.9 from Chapter 4 Section 4.5.4 for help on how to implement the
resize method.) After you are finished with the implementation, write the following driver program to
test it:

// FloatArrayDriver.cpp

#include "FloatArray.h"
#include <iostream>
using namespace std;

void PrintFloatArray(FloatArray& fa)
{
 cout << "{ ";
 for(int i = 0; i < fa.size(); ++i)
 cout << fa[i] << " ";

 cout << "}" << endl << endl;
}

int main()
{
 FloatArray A;

 A.resize(4);
 A[0] = 1.0f;
 A[1] = 2.0f;
 A[2] = 3.0f;
 A[3] = 4.0f;

 cout << "Printing A: ";
 PrintFloatArray(A);

 FloatArray B(A);

 cout << "Printing B: ";
 PrintFloatArray(B);

 FloatArray C = B = A;

 cout << "Printing C: ";
 PrintFloatArray(C);

 A = A = A = A;

 cout << "Printing A: ";
 PrintFloatArray(A);
}

If you implemented the FloatArray class correctly, this driver should compile and display the
following expected output without errors:

 257

Printing A: { 1 2 3 4 }

Printing B: { 1 2 3 4 }

Printing C: { 1 2 3 4 }

Printing A: { 1 2 3 4 }

Press any key to continue

Does your program match the expected output and execute without errors? If not, reconsider your
implementation of FloatArray.

 258

Chapter 8

File Input and Output

 259

Introduction

Many g pect the player to complete the game in one sitting, and we can further assume
that most gamers do not wish to start a game from the beginning each time they play. Therefore, it is

 a game be able to be saved at certain points of progress, and then resumed from those
points at a later time. In order to satisfy this requirement, we will need to be able to save/load game
information to/from a place where it can persist after the program has terminated, and after the computer
has been turned off. The obvious place for such storage is the hard drive. Thus, the primary theme of
this chapter is saving files from our program to disk (file output) and loading files from disk into our
program (file input).

Chapter Objectives

• Learn how to load and save text files to and from your program.
• Learn how to load and save binary files to and from your program.

8.1 Streams

Recall that cout and cin are instances of the class ostream and istream, respectively:

extern ostream cout;
extern istream cin;

What are ostream and istream? For starters, the ‘o’ in ostream stands for “output,” and thus

 means “output stream.” Likewise, the ‘i’ in stands for “input,” and thus istream
stination. It is used analogously

to a water stream. As water flows down a stream so data flows as well. In the context of cout, the
stream flows data from our program to the console window for display. In the context of cin, the stream
flows data from the keyboard into our program.

We discuss cout and cin because file I/O works similarly. Indeed we will use streams for file I/O as
well. In particular, we instantiate objects of type ofstream to create an “output file stream” and
objects of type ifstream to create an “input file stream.” An ofstream object flows data from our
program to a file, thereby “writing (saving) data to the file.” An ifstream object flows data from a file
into our program, thereby “reading (loading) data from the file.”

ames do not ex

necessary that

ostream istream
means “input stream.” A stream is a flow of data from a source to a de

 260

8.2 Text File I/O

In this section we concern ourselves with saving and loading text files. Text files contain data written in
a format readable by humans, as opposed to binary files (which we will examine later) which simply
contain pure numeric data. We will use two standard classes to facilitate file I/O:

: An instance of this class contains methods that are used to write (save) data to a file.

• ifstream: An instance of this class contains methods that are used to read (load) data from a
file.

m, you must include the standard library header file
<fstream> (file stream) into your source code file. Also realize that these objects exist in the standard
namespace.

The ov :

1. Open the file.
2. Write data to the file or read data from the file.
3.

8.2.1 Saving Data

To open a file which we will write to, we have two options:

1) We can create an ofstream object and pass a string specifying the filename we wish to write to (if
this file does not exist then it will be created by the object)

2) We can create an ofstream object using the default constructor and then call the open method.

Both styles are illustrated next, and one is not necessarily preferable over the other.

ofstream outFile("data.txt");

Or:

ofstream outFile;
outFile.open("data.txt");

Interestingly, ofstream overloads the conversion operator to type bool. This conversion returns true
if the stream is valid and false otherwise. For example, to verify that outFile was constructed (or
opened) correctly we can write:

• ofstream

Note: In order to use ofstream and ifstrea

erall process of file I/O can be broken down into three simple steps

Close the file.

 261

if(outFile)
 // outFile valid--construction/open OK.
else
 // construction/open failed.

Once we have an open file, data can be “dumped” from our program into the stream. The data will flow
down the stream and into the file. To do this, the insertion operator (<<) is used, just as with cout:

outFile << "Hello, world!" << endl;
float pi = 3.14f;
outFile << "pi = " << pi << endl;

This would write the following output to the file:

Hello, world!
pi = 3.14

The symmetry between cout and ofstream be ent now. Whereas cout sends data
from our program to the console window to be displayed, ofstream sends data from our program to be
written to a file for storage purposes.

Finally, to close the file, the close method is called:

outFile.close();

8.2.2 Loading Data

To open a file, which we will read from, we have two options:

1) We can create an ifstream object and pass a string specifying the filename from which we
wish to read.

create an ifstream object using the default constructor and then call the open method.

Both styles are illustrated next, and one is not necessarily preferable over the other.

ifstream inFile("data.txt");

Or:

ifstre
inFile.open("data.txt");

ifstream also overloads the conversion operator to type bool. This conversion returns true if the
stream t inFile was constructed (or opened)
correctly we can write:

comes more appar

2) We can

am inFile;

is valid and false otherwise. For example, to verify tha

 262

if(inFile)
 // inFile valid--construction/open OK.
else

Once we have an open file, data can be read from the input file stream into our program. The data will
flow do n operator (>>) is used, as
with cin:

string data;
inFile >> data; // Read a string from the file.
float f;
inFile >> f; // Read a float from the file.

The symm cin ifstream reads data from the
console window, ifstream reads data from a file.

Finally, to close the file, the close method is called:

inFile.close();

8.2.3 File I/O Example

Now that you are familiar with the concepts of file I/O and the types of objects and methods we will be
working with, let us look at an example program. Recall the Wizard class from Chapter 5, which we
present now in a modified form:

// construction/open failed.

wn the stream from the file into our program. To do this, the extractio

etry between and is more apparent now. Whereas cin

// Wiz.h

#ifndef WIZARD_H
#define WIZARD_H

#include <fstream>
#include <string>

class Wizard
{
public:
 Wizard();
 Wizard(std::string name, int hp, int mp, int armor);

 // [...] other methods snipped

 void print();

 void save(std::ofstream& outFile);
 void load(std::ifstream& inFile);

private:
 std::string mName;

 263

 int mHitPoints;
 int mMagicPoints;
 int mArmor;
};
#endif // WIZARD_H

// Wiz.cpp

#include "Wiz.h"
#include <iostream>
using namespace std;

Wizard::Wizard()
{
 mName = "Default";
 mHitPoints = 0;
 mMagicPoints = 0;
 mArmor = 0;
}

Wizard::Wizard(string name, int hp, int mp, int armor)
{
 mName = name;
 mHitPoints = hp;
 mMagicPoints = mp;
 mArmor = armor;
}

void Wizard::print()
{
 cout << "Name= " << mName << endl;
 cout << "HP= " << mHitPoints << endl;
 cout << "MP= " << mMagicPoints << endl;
 cout << "Armor= " << mArmor << endl;
 cout << endl;
}

// [...] ‘save’ and ‘load’ implementations follow shortly.

Specifically, we have removed methods which are of no concern to us in this chapter. Additionally, we
added two methods, save and load, which do what their names imply. The save method writes a
Wizard object to file, and the load method reads a Wizard object from file. Let us look at the
implementation of these two methods one at a time:

void Wizard::save(ofstream& outFile)
{
 outFile << "Name= " << mName << endl;
 outFile << "HP= " << mHitPoints << endl;
 outFile << "MP= " << mMagicPoints << endl;
 outFile << "Armor= " << mArmor << endl;
 outFile << endl;
}

 264

The save method has a reference parameter to an ofstream object called outFile. outFile is the
output file stream through which our data will be sent. Inside the save method, our data is “dumped”
into the output file stream using the insertion operator (<<) just as we would with cout.

To apply our save method, consider the following driver program:
Program 8.1: Saving text data to file.

// main.cpp

#include "Wiz.h"
using namespace std;

int main()
{
 // Create wizards with specific data.
 Wizard wiz0("Gandalf", 25, 100, 10);
 Wizard wiz1("Loki", 50, 150, 12);
 Wizard wiz2("Magius", 10, 75, 6);

 // Create a stream which will transfer the data from
 // our program to the specified file "wizdata.tex".
 ofstream outFile("wizdata.txt");

 // If the file opened correctly then call save methods.
 if(outFile)
 {
 // Dump data into the stream.
 wiz0.save(outFile);
 wiz1.save(outFile);
 wiz2.save(outFile);

 // Done with stream--close it.
 outFile.close();
 }
}

This program does not output anything. Rather, it creates a text file called “wizdata.txt” in the project’s
working directory4. If we open that file, we find the following data was saved to it:

“wizdata.txt”

Name= Gandalf
HP= 25
MP= 100
Armor= 10

Name= Loki
HP= 50
MP= 150
Armor= 12

4 When you specify the string to the ofstream constructor or the open method, you can specify a path as well. For
example, you can specify “C:\wizdata.txt” to write the file “wizdata.txt” to the root of the C-drive.

 265

Name= Magius
HP= 10
MP= 75
Armor= 6

From the file output, it is concluded that the program did indeed save wiz0, wiz1, and wiz2 correctly.

Now let us examine the load method:

void Wizard::load(ifstream& inFile)
{
 string garbage;
 inFile >> garbage >> mName; // read name
 inFile >> garbage >> mHitPoints; // read hit points
 inFile >> garbage >> mMagicPoints;// read magic points
 inFile >> garbage >> mArmor; // read armor
}

This method is symmetrically similar to the save method. The load method has a reference parameter
to an ifstream object called inFile. inFile is the input file stream from which we will extract the
file data and into our program. Inside the load method we extract the data out of the stream using the
extraction operator (>>), just like we would with cin.

ion may seem odd at first (inFile >> garbage). However, note that when we
saved the wizard data, we wrote out a string describing the data (see “wizdata.txt”). For example, before
we wrote mName to file in save, we first wrote “Name =”. Before we can extract the actual wizard
name from the file, we must first extract “Name =”. To do that, we feed it into a “garbage” variable
because it is not used.

To apply our load method, consider the following driver program:

Program 8.2: Loading text data from file.

The garbage extract

// main.cpp

#include "Wiz.h"
#include <iostream>
using namespace std;

int main()
{
 // Create some 'blank' wizards, which we will load
 // data from file into.
 Wizard wiz0;
 Wizard wiz1;
 Wizard wiz2;

 // Output the wizards before they are loaded.
 cout << "BEFORE LOADING..." << endl;
 wiz0.print();

 266

 wiz1.print();
 wiz2.print();

 // Create a stream which will transfer the data from
 // the specified file "wizdata.txt" to our program.
 ifstream inFile("wizdata.txt");

 . // If the file opened correctly then call load methods
 if(inFile)
 {
 wiz0.load(inFile);
 wiz1.load(inFile);
 wiz2.load(inFile);
 }

 // Output the wizards to show the data was loaded correctly.
 cout << "AFTER LOADING..." << endl;
 wiz0.print();
 wiz1.print();
 wiz2.print();
}

BEFORE LOADING...
Name= Default
HP= 0
MP= 0
Armor= 0

Name= Default
HP= 0
MP= 0
Armor= 0

Name= Default
HP= 0
MP= 0
Armor= 0

AFTER LOADING...
Name= Gandalf
HP= 25
MP= 100
Armor= 10

Name= Loki
HP= 50
MP= 150
Armor= 12

Name= Magius
HP= 10
MP= 75
Armor= 6

Press any key to continue

 267

As the output shows, the data was successfully extracted from “wizdata.txt.”

m we did with cin; that is,
cin reads up to same solution we used with
cin—the getline function, which can read up to a line of input. Recall that getline’s first parameter
is a re bject; however, we can still use
ifstream ne ce ifstream is a kind of istream.

8.3 Binary File I/O

When working with text files, there is some overhead that occurs when converting between numeric and
text types. Additionally, a text-based representation tends to consume more memory. Thus, we have
two motivations for using binary-based files:

1. Binary files tend to consume less memory than equivalent text files.
2. Binary files store data in the computer’s native binary representation so no conversion needs to

be done when saving or loading the data.

However, text files are convenient because a human can read them, and this makes the files easier to edit
manually, and I/O bugs easier to fix.

Creating file streams that work in binary instead of text is quite straightforward. An extra flag modifier,
which specifies binary usage, must be passed to the file stream’s constructor or open method:

ofstream outFile("pointdata.txt", ios_base::binary);
ifstream inFile("pointdata.txt", ios_base::binary);

Or:

outFile.open("pointdata.txt", ios_base::binary);
inFile.open("pointdata.txt", ios_base::binary);

Where ios_base is a member of the standard namespace; that is, std::ios_base.

8.3.1 Saving Data

Because there is no necessary conversion required in binary mode, we do not need to worry about
writing specific types. All that is required for transferring data in binary form is to stream raw bytes.
When writing data, we specify a pointer to the first byte of the data-chunk, and the number of bytes it
contains. All the bytes of the data-chunk will then be streamed directly to the file in their byte (binary)

Note: When extracting data with ifstream, we run into the same proble
a space character. To get around this problem we use the

ference to an istream object and not an ifstream o
with getli , sin

 268

form. Consequently, a large amount of bytes can be streamed if they are contiguous, like an array or
class object, with one method call.

To write data to a binary stream the write method is used, as the following code snippet illustrates:

struct Point
{
 int x;
 int y;
};

float fArray[4] = {1, 2, 3, 4};
Point p = {0, 0};
int x = 10;

outFile.write((char*)fArray, sizeof(float)*4);
outFile.write((char*)&p, sizeof(Point));
outFile.write((char*)&x, sizeof(int));

The first parameter is a char pointer. Recall that a char is one byte. By casting our data-chunk (be it a
built-in type, a class, or array of any type) to a char pointer, we are returning the address of the first
byte of the data-chunk. The second parameter is the number of bytes we are going to stream in this call,
starting from the first byte pointed to by the first parameter. Typically, we use the sizeof operator to
get the number of bytes of the entire data-chunk so that the whole data-chunk is streamed to the file.

8.3.2 Loading Data

Loading binary data is similar to writing it. Once we have a binary input file stream setup, we simply
specify the number of bytes we wish to stream in from the file into our program. As with writing bytes,
we can stream in a large amount of contiguous bytes with one function call, labeled read.

float fArray[4];
Point p;
int x;

inFile.read((char*)fArray, sizeof(float)*4);
inFile.read((char*)&p, sizeof(Point));
inFile.read((char*)&x, sizeof(int));

The read method is the inverse of the write method. The first parameter is a pointer to the first byte
of the data-chunk into which we wish to read the bytes. The second parameter is the number of bytes to
stream into the data-chunk specified by the first parameter.

 269

8.3.3 Examples

Now that we are familiar with the basics of binary file writing and reading, let us look at a full example.
Figure 8.1 shows the vertices of a unit cube.

Figure 8.1: Unit cube with vertices specified.

In the first program, we will create the vertices of a unit cube and stream the data to a binary file called
“pointdata.txt.” In the second program, we will do the inverse operation and stream the point data
contained in “pointdata.txt” into our program.

First, we create a basic data structure to represent a point in 3D space:

struct Point3
{
 Point3();
 Point3(float x, float y, float z);
 float mX;
 float mY;
 float mZ;
};

// Implementation
Point3::Point3()
{
 mX = mY = mZ = 0.0f;
}

Point3::Point3(float x, float y, float z)
{
 mX = x;
 mY = y;
 mZ = z;
}

 270

The first program is written as follows:

Program 8.3: Saving binary data to file.

#include <fstream>
#include <iostream>
#include “Point.h”
using namespace std;

int main()
{
 // Create 8 points to define a unit cube.
 Point3 cube[8];

 cube[0] = Point3(-1.0f, -1.0f, -1.0f);
 cube[1] = Point3(-1.0f, 1.0f, -1.0f);
 cube[2] = Point3(1.0f, 1.0f, -1.0f);
 cube[3] = Point3(1.0f, -1.0f, -1.0f);
 cube[4] = Point3(-1.0f, -1.0f, 1.0f);
 cube[5] = Point3(-1.0f, 1.0f, 1.0f);
 cube[6] = Point3(1.0f, 1.0f, 1.0f);
 cube[7] = Point3(1.0f, -1.0f, 1.0f);

 // Create a stream which will transfer the data from
 // our program to the specified file "pointdata.tex".
 // Observe how we add the binary flag modifier
 // ios_base::binary.
 ofstream outFile("pointdata.txt", ios_base::binary);

 // If the file opened correctly then save the data.
 if(outFile)
 {
 // Dump data into the stream in binary format.
 // That is, stream the bytes of the entire array.
 outFile.write((char*)cube, sizeof(Point3)*8);

 // Done with stream--close it.
 outFile.close();
 }
}

This program produces no console output. However, it does create the file “pointdata.txt” and writes the
eight points of the cube to that file. If you open “pointdata.txt” in a text editor, you will see what
appears to be nonsense, because the data is written in binary.

We now proceed to write the inverse program.

Program 8.4: Loading binary data from file.

#include <fstream>
#include <iostream>
#include “Point.h”
using namespace std;

 271

int main()
{
 Point3 cube[8];

 cout << "BEFORE LOADING..." << endl;
 for(int i = 0; i < 8; ++i)
 {
 cout << "cube[" << i << "] = ";
 cout << "(";
 cout << cube[i].mX << ", ";
 cout << cube[i].mY << ", ";
 cout << cube[i].mZ << ")" << endl;
 }

 // Create a stream which will transfer the data from
 // the specified file "pointdata.txt" to our program.
 // Observe how we add the binary flag modifier
 // ios_base::binary.
 ifstream inFile("pointdata.txt", ios_base::binary);

 // If the file opened correctly then call load methods.
 if(inFile)
 {
 // Stream the bytes in from the file into our
 // program array.
 inFile.read((char*)cube, sizeof(Point3)*8);

 // Done with stream--close it.
 inFile.close();
 }

 // Output the points to show the data was loaded correctly.
 cout << "AFTER LOADING..." << endl;
 for(int i = 0; i < 8; ++i)
 {
 cout << "cube[" << i << "] = ";
 cout << "(";
 cout << cube[i].mX << ", ";
 cout << cube[i].mY << ", ";
 cout << cube[i].mZ << ")" << endl;
 }
}

BEFORE LOADING...
cube[0] = (0, 0, 0)
cube[1] = (0, 0, 0)
cube[2] = (0, 0, 0)
cube[3] = (0, 0, 0)
cube[4] = (0, 0, 0)
cube[5] = (0, 0, 0)
cube[6] = (0, 0, 0)
cube[7] = (0, 0, 0)
AFTER LOADING...
cube[0] = (-1, -1, -1)
cube[1] = (-1, 1, -1)

 272

cube[2] = (1, 1, -1)
cube[3] = (1, -1, -1)
cube[4] = (-1, -1, 1)
cube[5] = (-1, 1, 1)
cube[6] = (1, 1, 1)
cube[7] = (1, -1, 1)
Press any key to continue

As the output shows, the data was successfully extracted from “pointdata.txt.”

8.4 Summary

1. Use file I/O to save data files from your programs to the hard drive and to load previously saved
data files from the hard drive into your programs.

2. We generally use two standard library classes for file I/O:

a. ofstream: an instance of this class contains methods that are used to write (save) data to
a file

b. ifstream: An instance of this class contains methods that are used to read (load) data
from a file.

To use these objects you must include <fstream> (file stream).

3. A stream is essentially the flow of data from a source to a destination. It is used analogously to a

water stream. In the context of cout, the stream flows data from our program to the console
window for display. In the context of cin, the stream flows data from the keyboard into our
program. Similarly, an ofstream object flows data from our program to a file, thereby “writing
(saving) data to the file,” and an ifstream object flows data from a file into our program,
thereby “reading (loading) data from the file.”

4. There are two different kinds of files we work with: text files and binary files. Text files are

convenient because they are readable by humans, thereby making the files easier to edit and
making file I/O bugs easier to fix. Binary files are convenient because they tend to consume less

ary data is not
aved. When

constructing a binary file, remember to specify the ios_base::binary flag to the second
parameter of the constructor or to the open method.

5. When writing and reading to and from text files you use the insertion (<<) and extraction (>>)

operators, just as you would with cout and cin, respectively. When writing and reading to and
from binary files you use the ofstream::write and ifstream::read methods, respectively.

memory than equivalent text files and they are streamed more efficiently since bin
converted to a text format; rather, the raw bytes of the data are directly s

 273

8.5 Exercises

8.5.1 Line Count

Write a program that prompts the user to enter in a string path directory to a text file. For example:

C:/Data/file.txt

Your program must then open this text file and count how many lines the text file contains. Before
terminating the program, you should output to the console window how many lines the file contains.
Example output:

Enter a text file: C:/Data/file.txt
C:/Data/file.txt contained 478 lines.
Press any key to continue

text file has, you will need a way to determine
when the end of the file is reached. You can do that with the ifstream::eof (eof = end of file) method,
which returns true if the end of the file has been reached, and false otherwise. So, your algorithm for
this exercise will look something like:

while(not end of file)

read line
 increment line counter

8.5.2 Rewrite

1. Rewrite Programs 8.1 and 8.2 of this chapter to use binary files instead of text files.

2. Rewrite Programs 8.3 and 8.4 of this chapter to use text files instead of binary files.

Because, in general, you do not know how many lines a

 274

Chapter 9

Inheritance and Polymorphism

 275

Introduction

Any modern programming language must provide mechanisms for code reuse whenever possible. The
main benefits of code reuse are increased productivity and easier maintenance. Part of code reuse is
functio ng code is also equally important.

In programming, we generalize things for the same reason the mathematician does. The mathematician
generalizes m oes not solve the same problem more than once in
different forms. By solving a problem with the most general form, the solution applies to all of the
specific forms ritance mechanism, we can define a generalized
class, and give all the data properties and functionality of that generalized class to more specific classes.
In this way, we only have to write the general “shared” code once, and we can reuse it with several
specific classes. So, saves work by applying a general solution to a variety
of specific problems, the programmer saves work by applying general class code to a variety of specific
classes. The concept of code reuse via inheritance is the first theme of this chapter.

In addition to basic generalization, we would like to work with a set of specific class objects at a general
level. For example, suppose we are writing an art program and we need various specific class shapes
such as Lines, Rectangles, Circles, Curves, and so on. Since these are all shapes, we would likely
use inheritance and give them properties and functions from a general class Shape. By combining all
the L ne Shape list (e.g.,
array we give ourselves the ability to work with all shapes at a higher level. For instance, we can
iterate over all the shapes and have them draw themselves, without regard to the specific shape.
Moreo ific shape objects up to Shape, and for them to still
“know” how to draw themselves (that is, the specific shape) correctly in this general form, with the use
of polymorphism.

Cha

• Understand what inheritance means in C++ and why it is a useful code construct.
• Understand the syntax of polym
• Learn how to create general abstract types and interfaces.

ns and classes, but generalizing and abstracti

athematical objects so that he/she d

 as well. Similarly, in C++, via the inhe

 whereas the mathematician

ine objects, Rectangle objects, Circle objects, and Curve objects into o
),

ver, it is possible to generalize the spec

pter Objectives

orphism, how it works, and why it is useful.

 276

9.1 Inheritance Basics

Inheritance allows a derived class (also called a child class or subclass) to inherit the data and methods
of a base class (also called a parent class or superclass). For example, suppose we are working on a
futuristic spaceship simulator game, where earthlings must fight off an enemy alien race from another
galaxy. We start off designing our class as generally as possible, with the hopes of reusing its general
properties and methods for more specific classes, and thereby avoiding code duplication. First we will
have a class Spaceship, which is quite general, as there may be many different kinds of models of
Spaceships (such as cargo ships, mother ships, fighter ships, bomber ships, and so on). At the very
least, we can say a Spaceship has a model name, a position in space, a velocity specifying its speed
and direction, a fuel level, and a variable to keep track of the ship damage. As far as methods go—that
is, what actions a Spaceship can do—we will say all spaceships can fly and print their statistics, but
we do not say anything else about them at this general level. It is not hard to imagine some additional
properties and possible methods that would fit at this general level, but this is good enough for our
purposes in this example. Our general Spaceship class (and implementation) now looks like this:

// From Spaceship.h
class Spaceship
{
public:
 Spaceship();
 Spaceship(
 const string& name,
 const Vector3& pos,
 const Vector3& vel,
 int fuel,
 int damage);

 void fly();
 void printStats();

protected:
 string mName;
 Vector3 mPosition;
 Vector3 mVelocity;
 int mFuelLevel;
 int mDamage;
};

//==
// From Spaceship.cpp
Spaceship::Spaceship()
{
 mName = "DefaultName";
 mPosition = Vector3(0.0f, 0.0f, 0.0f);
 mVelocity = Vector3(0.0f, 0.0f, 0.0f);
 mFuelLevel = 100;
 mDamage = 0;
}

 277

Spaceship::Spaceship(const string& name,
 const Vector3& pos,
 const Vector3& vel,
 int fuel,
 int damage)
{
 mName = name;
 mPosition = pos;
 mVelocity = vel;
 mFuelLevel = fuel;
 mDamage = damage;
}

void Spaceship::fly()
{
 cout << "Spaceship flying" << endl;
}

void Spaceship::printStats()
{
 // Print out ship statistics.

 cout << "==========================" << endl;
 cout << "Name = " << mName << endl;
 cout << "Position = " << mPosition << endl;
 cout << "Velocity = " << mVelocity << endl;
 cout << "FuelLevel = " << mFuelLevel << endl;
 cout << "Damage = " << mDamage << endl;
}

Note that we do not include any specific attributes, such as weapon properties nor specific methods such
as attack, because such properties and methods are specific to particular kinds of spaceships—and are
not general attributes for all spaceships. Remember, we are starting off generally first.

Note: Observe the new keyword protected, which we have used in place of private. Recall that
only the class itself and friends can access data members in the private area. This would prevent
a derived class from accessing the data members. We do not want such a restriction with a class that is
designed for the purposes of inheritance and the derivation of child classes. After all, what good is
inheriting properties and methods you cannot access?. In order to achieve the same effect as
private, but allow derived classes to access the data members, C++ provides the protected
keyword. The result is that derived classes get access to such members, but outsiders are still restricted.

With Spaceship defining the general properties and methods of spaceships, we can define some
particular kinds of spaceships which inherit the properties and methods of Spaceships—after all, these
specific spaceships are kinds of spaceships:

 278

// From Spaceship.h
class FighterShip : public Spaceship
{
public:
 FighterShip(
 const string& name,
 const Vector3& pos,
 const Vector3& vel,
 int fuel,
 int damage,
 int numMissiles);

 void fireLaserGun();
 void fireMissile();

private:
 int mNumMissiles;
};

class BomberShip : public Spaceship
{
public:
 BomberShip(
 const string& name,
 const Vector3& pos,
 const Vector3& vel,
 int fuel,
 int damage,
 int numBombs);

 void dropBomb();

private:
 int mNumBombs;
};

//==
// From Spaceship.cpp
FighterShip::FighterShip(const string& name,
 const Vector3& pos,
 const Vector3& vel,
 int fuel,
 int damage,
 int numMissiles)
 // Call spaceship constructor to initialize "Spaceship" part.
 : Spaceship(name, pos, vel, fuel, damage)
{
 // Initialize "FighterShip" part.
 mNumMissiles = numMissiles;
}

 279

void FighterShip::fireLaserGun()
{
 cout << "Firing laser gun." << endl;
}

void FighterShip::fireMissile()
{
 // Check if we have missiles left.
 if(mNumMissiles > 0)
 {
 // Yes, so fire the missile.
 cout << "Firing missile." << endl;

 // Decrement our missile count.
 mNumMissiles--;
 }
 else // Nope, no missiles left.
 cout << "Out of missiles." << endl;
}

BomberShip::BomberShip(const string& name,
 const Vector3& pos,
 const Vector3& vel,
 int fuel,
 int damage,
 int numBombs)
 // Call spaceship constructor to initialize "Spaceship" part.
 : Spaceship(name, pos, vel, fuel, damage)
{
 // Initialize "BomberShip" part.
 mNumBombs = numBombs;
}

void BomberShip::dropBomb()
{
 // Check if we have bombs left.
 if(mNumBombs > 0)
 {
 // Yes, so drop the bomb.
 cout << "Dropping bomb." << endl;

 // Decrement our bomb count.
 mNumBombs--;
 }
 else // Nope, no bombs left.
 cout << "Out of bombs." << endl;
}

We only show two specific spaceships here, but you could easily define and implement a cargo ship and
a mother ship, as appropriate. Note how we added specific data; that is, bombs are specific to a
BomberShip, and missiles are specific to a FighterShip. In a real game we would probably need to
add more data and methods, but this will suffice for illustration.

 280

Observe the colon syntax that follows the class name. Specifically:

: public Spaceship

This is the inheritance syntax, and reads “inherits publicly from Spaceship.” So the line:

class FighterShip : public Spaceship

says that the class FighterShip inherits publicly from Spaceship. Also, the line:

class BomberShip : public Spaceship

says that the class BomberShip inherits publicly from Spaceship. We discuss what public inheritance
means and how it differs from, say, private inheritance in Section 9.2.3.

Another important piece of syntax worth emphasizing is where we call the parent constructor:

// Call spaceship constructor to initialize "Spaceship" part.
: Spaceship(name, pos, vel, fuel, damage)

As we shall discuss in more detail later on, we can view a derived class as being made up of two parts:
the parent class part, and the part specific to the derived class. Consequently, we can invoke the parent’s
constructor to construct the parent part of the class. What is interesting here is where we call the parent
constructor—we do it after the derived constructor’s parameter list and following a colon, but before the
derived constructor’s body. This is called a member initialization list:

ClassName::ClassName(parameter-list…)
: // Member initialization list
{
}

When an object is instantiated, the memory of its members is first constructed (or initialized) to
something before the class constructor code is executed. We can explicitly specify how a member
variable should be constructed in the member initialization list. And in particular, if we want to invoke
the parent constructor to construct the parent part of the class, then we must invoke it in the member
initialization list—where the parent part is being constructed. Note that we are not limited to calling
parent constructors in the member initialization list. We can also specify how other variables are
initialized. For example, we could rewrite the FighterShip constructor like so:

FighterShip::FighterShip(const string& name,
 const Vector3& pos,
 const Vector3& vel,
 int fuel,
 int damage,
 int numMissiles)
 // Call spaceship constructor to initialize "Spaceship" part.
 : Spaceship(name, pos, vel, fuel, damage),
 mNumMissiles(numMissiles) // Initialize "FighterShip" part.
{}

 281

Here we directly construct the integer mNumMissiles with the value numMissiles, rather than make
an assignment to it in the constructor body after it has been constructed. That is:

mNumMissiles = numMissiles;

This has performance implications, as Scott Meyers points out in Effective C++. Specifically, by using
a member initialization list, we only do one operation—construction. If we do not use a member
initialization list we end up doing two operations: 1) construction to a default value, and 2) an
assignment in the constructor body. So by using a member initialization list, we can reduce two
operations down to one. Such a reduction can become significant with large classes and with large
arrays of classes.

Note: Inheritance relationships are often depicted graphically. For example, our spaceship inheritance
hierarchy would be drawn as follows:

Figure 9.1: A simple graphical inheritance relationship.

Now that we have some specific spaceships, let us put them to use in a small sample program.

Program 9.1: Using derived classes.

// main.cpp

#include <iostream>
#include "Spaceship.h"
using namespace std;

int main()
{
 FighterShip fighter("F1", Vector3(5.0f, 6.0f, -3.0f),
 Vector3(1.0f, 1.0f, 0.0f), 100, 0, 10);

 BomberShip bomber("B1", Vector3(0.0f, 0.0f, 0.0f),
 Vector3(1.0f, 0.0f, -1.0f), 79, 0, 5);

 fighter.printStats();
 bomber.printStats();
 cout << endl;
 fighter.fly();
 fighter.fireLaserGun();
 fighter.fireMissile();
 fighter.fireMissile();

 bomber.fly();

 282

 bomber.dropBomb();
 bomber.dropBomb();
}

Program 9.1 Output

==========================
Name = F1
Position = <5, 6, -3>
Velocity = <1, 1, 0>
FuelLevel = 100
Damage = 0
==========================
Name = B1
Position = <0, 0, 0>
Velocity = <1, 0, -1>
FuelLevel = 79
Damage = 0

Spaceship flying
Firing laser gun.
Firing missile.
Firing missile.
Spaceship flying
Dropping bomb.
Dropping bomb.
Press any key to continue

This is a simple program where we just instantiate a few objects and call their methods. What is of
interest to us is how fighter and bomber can call the methods of Spaceship; in particular, they both
call the fly and printStats methods. Also notice that printStats prints the stats of fighter and
bomber, thereby showing that they inherited the data members of Spaceship. Thus we can see that
they have their own copies of these data members. Again, this is because FighterShip and
BomberShip inherit from Spaceship.

Do you see the benefit of inheritance? If we had not used inheritance then we would have had to
duplicate all the data and methods (and their implementations) contained in Spaceship for both
FighterShip and BomberShip, and any other new kind of spaceship we wanted to add. However,
with inheritance, all of that information and functionality is inherited by the derived classes
automatically, and we do not have to duplicate it. Hopefully this gives you a more intuitive notion of
inheritance and its benefits.

 283

9.2 Inheritance Details

9.2.1 Repeated Inheritance

In the previous section we used inheritance for a single generation; that is, parent and child. Naturally,
one might wonder whether we can create more complex relationships, such as grandparent, parent, and
child. In fact, we can create inheritance hierarchies as large and as deep as we like—there is no limit
imposed. Figure 9.2 shows a more complex spaceship inheritance hierarchy.

Figure 9.2: An inheritance hierarchy.

To create this hierarchy in code we write the following (with class details omitted for brevity):

class Spaceship { [...] };

class AlienShip : public Spaceship { [...] };
class AlienFighterShip : public AlienShip { [...] };
class AlienBomberShip : public AlienShip { [...] };
class AlienCargoShip : public AlienShip { [...] };
class AlienMotherShip : public AlienShip { [...] };

class HumanShip : public Spaceship { [...] };
class HumanFighterShip : public HumanShip { [...] };
class HumanBomberShip : public HumanShip { [...] };
class HumanCargoShip : public HumanShip { [...] };
class HumanMotherShip : public HumanShip { [...] };

9.2.2 isa versus hasa

When a class contains a variable of some type T as a member variable, we say the class “has a” T. For
example, the data members of Spaceship were:
string mName;

 284

Vector3 mPosition;
Vector3 mVelocity;
int mFuelLevel;
int mDamage;

We say a Spaceship has a string, two Vector3s, and two ints. Incidentally, when we compose a
class out of other types, object oriented programmers use the term composition to denote this. That is,
the class is ‘composed of’ those other types.

When a class A inherits publicly from a class B, object oriented programmers say that we are modeling
an “is a” relationship; that is, A is a B, but not conversely. Essentially, this is what public inheritance
means—is a. For example, in our previous spaceship examples, our specific spaceships FighterShip
and BomberShip inherited publicly from Spaceship. This is conceptually correct because
FighterShip is a kind of Spaceship and Bombership is a kind of Spaceship. However, the
reverse is not true. That is, a Spaceship is not necessarily a FighterShip and a Spaceship is not
necessarily a Bombership. This is important terminology. C++ Guru Scott Meyers says this about the
terminology in his book Effective C++: “[…] the single most important rule in object-oriented
programming with C++ is this: public inheritance means “isa.” Commit this rule to memory.”

9.2.3 Moving Between the Base Class and Derived Class

Why is an is a relationship important? As we said, when a class A inherits publicly from a class B, we
specify the relationship that A is a B. Consequently, with this relationship defined, C++ allows us to
convert an A object into a B object. After all, an A object is a kind of B object. To better illustrate, let
us take a moment to review.

Recall that inheritance extends a class. For example, consider a class called Base:

class Base
{
public:
 void f();
 void g();
protected:
 int mBaseData1;
 float mBaseData2;
 std::string mBaseData3;
};

Suppose we need to create a new distinct class, called Derived, which contains all the methods and
data of Base, but adds some additional data and methods specific to Derived. In other words,
Derived extends Base. Instead of recopying the data and functionality from Base into Derived, we
can take advantage of the C++ inheritance mechanism to do this for us:

class Derived : public Base

 285

{
public:
 void h();
protected:
 char mDerivedData1[4];
 std::vector<int> mDerivedData2;
};

We note that since Derived inherits publicly from Base, it contains all the methods5 and data of Base,
plus the additional methods and data specific to Derived. Moreover, because of the public inheritance
we specify that Derived is a Base.

Because Derived inherits the data of Base, the data layout of a Derived object consists of a Base
part. Figure 9.3 illustrates:

Figure9.3: A derived object consists of a Base part.

Furthermore, because Derived is a Base (public inheritance), we can switch back and forth between
the Derived object and its Base part via pointer casting:

Derived* derived = new Derived();
Base* base = (Base*)derived; // upcast
Derived* d2 = (Derived*)base; // downcast

The upcast is considered safe and can be done implicitly as shown here:

Base* base = new Derived(); // upcast done implicitly
Derived* d2 = (Derived*)base; // downcast

We use the term upcast when casting up the inheritance chain; that is, from a derived object to its base
part. Likewise, we use the term downcast when casting down the inheritance chain; that is, from the
base part to the derived object. Note that downcasting is not always safe. Remember, a Derived object
is a specific kind of Base object, but not conversely. In other words, a Derived object will always

5 Excepting constructors, destructors, and the assignment operator. Obviously the constructor and destructor are not inherited
since they say nothing about creating or destroying the derived object. The assignment operator is masked since every class
has its own assignment operator, by default; if you do not implement one, the compiler implements a default one for you.

 286

have a ssarily part of a Derived object. For example, we can
write this:

Base*

Here pureBase is purely a Base object—it is not part of a Derived object and therefore it is illegal to
downcast. If you think about it for a moment you will realize why – the memory for the Derived
object data was never allocated since a Derived object was never constructed. Only the Base data
exists after the new call. Using a downcasted pointer to access derived data members that were never
created would result in a nasty problem indeed. The following, on the other hand, is different:

Derived* derived = new Derived();
Base* base = (Base*)derived; // upcast
Derived* d2 = (Derived*)base; // downcast

In this case we can downcast from base to d2. The difference is that base is part of a Derived object
(i.e., we first upcasted from a Derived object to base).

Before we conclude this section, let us examine some useful vocabulary. Consider the following:

Base* base = new Derived();

We say that the variable base has the static type Base and the dynamic type Derived. Note that this
assignment is completely legal since the memory for the Derived class object has been fully allocated in
the new call. The base pointer would be able to access all of the Base class components and could be
safely downcast to a Derived type pointer as needed. This is legal since any downcasted Derived
pointer would have an actual Derived object (with all of its memory fully intact) to work with.

9.2.4 Public versus Private Inheritance

We have discussed public inheritance as modeling an is a relationship, but it seems that if we must
explicitly specify public inheritance then there must be another type of inheritance. Indeed there is, and
it is called private inheritance. To specify private inheritance you just replace public with private
in the inheritance syntax:

class Derived : private Base

Private inheritance does not mean is a, and consequently, we should not be able to upcast and downcast
the inheritance hierarchy. With private inheritance, inherited members and methods automatically
become private no matter their previously declared access level.

Private inheritance is useful when you want to reuse code via inheritance, but do not want to make the is
a relationship claim. That is, you want to prevent upcasts and downcasts, because the is a relationship
does not make sense for what you are modeling. Private inheritance is a way to express that in the
language. To quote Scott Meyers’s Effective C++: “If you make a class D privately inherit from a class

base part, but a Base object is not nece

pureBase = new Base();

 287

B, you do so because you are interested in taking advantage of some of the code that has already been
written for class B, not because there is any conceptual relationship between objects of type B and
objects of type D.”

9.2.5 Method Overriding

Recall that in Program 9.1 we wrote the line:

fighter.printStats();

which produced the output:

==========================
Name = F1
Position = <5, 6, -3>
Velocity = <1, 1, 0>
FuelLevel = 100
Damage = 0

Also recall that printStats was a method inherited from Spaceship, and was implemented like so:

void Spaceship::printStats()
{
 // Print out ship statistics.

 cout << "==========================" << endl;
 cout << "Name = " << mName << endl;
 cout << "Position = " << mPosition << endl;
 cout << "Velocity = " << mVelocity << endl;
 cout << "FuelLevel = " << mFuelLevel << endl;
 cout << "Damage = " << mDamage << endl;
}

The problem here is that FighterShip has properties which are specific to it, but Spaceship being
the more general class, does not know about them and cannot print them. In particular, FighterShip
has the member mNumMissiles, and most likely we would want to print the number of missiles a
FighterShip has remaining along with its other statistics. Thus, what we must do is override
printStats for FighterShips:

void FighterShip::printStats()
{
 Spaceship::printStats();
 cout << "Missiles = " << mNumMissiles << endl;
}

Luckily, we can still reuse the code from Spaceship. As you can see, we call the parent version
Spaceship::printStats to print the Spaceship part of FighterShip, and then we add only the

 288

new code specific to FighterShip—so we are still reusing code. We could also do something similar
for BomberShip. Program 9.2 shows our new overridden method in action:

Program 9.2: Overridden method.

#include <iostream>
#include "Spaceship.h"
using namespace std;

int main()
{
 FighterShip fighter("F1", Vector3(5.0f, 6.0f, -3.0f),
 Vector3(1.0f, 1.0f, 0.0f), 100, 0, 10);

 fighter.printStats();
 cout << endl;

 fighter.fly();
 fighter.fireLaserGun();
 fighter.fireMissile();
 fighter.fireMissile();

 fighter.printStats();
}

Program 9.2 Output

==========================
Name = F1
Position = <5, 6, -3>
Velocity = <1, 1, 0>
FuelLevel = 100
Damage = 0
Missiles = 10

Spaceship flying
Firing laser gun.
Firing missile.
Firing missile.
==========================
Name = F1
Position = <5, 6, -3>
Velocity = <1, 1, 0>
FuelLevel = 100
Damage = 0
Missiles = 8
Press any key to continue

As you can see, when we call printStats, it prints the number of missiles the ship has remaining.

Now having said all of this, in general you should not override methods in this fashion—instead use
polymorphism, which we will discuss later. The reason is that if you override the method at different
levels of the inheritance hierarchy, and you cast up and down the hierarchy as Section 9.2.3 describes,

 289

you will change what version of the method gets called depending where you are in the inheritance
hierarchy. This is usually not desired.

9.3 Constructors and Destructors with Inheritance

Consider the following simple program:

Program 9.3: Derived object’s construction and destruction order.

#include <iostream>
using namespace std;

class Spaceship
{
public:
 Spaceship();
 ~Spaceship();

};

class AlienShip : public Spaceship
{
public:
 AlienShip();
 ~AlienShip();

};

class AlienBomberShip : public AlienShip
{
public:
 AlienBomberShip();
 ~AlienBomberShip();

};

Spaceship::Spaceship()
{
 cout << "Spaceship() Constructor called." << endl;
}

Spaceship::~Spaceship()
{
 cout << "~Spaceship() Destructor called." << endl;
}

AlienShip::AlienShip()
{
 cout << "AlienShip() Constructor called." << endl;
}

 290

AlienShip::~AlienShip()
{
 cout << "~AlienShip() Destructor called." << endl;
}

AlienBomberShip::AlienBomberShip()
{
 cout << "AlienBomberShip() Constructor called." << endl;
}

AlienBomberShip::~AlienBomberShip()
{
 cout << "~AlienBomberShip() Destructor called." << endl;
}

int main()
{
 // Construct an AlienBomberShip
 AlienBomberShip alienShip;

 // 'alienShip' will be destroyed when 'main' exits.
}

Program 9.3 Output

Spaceship() Constructor called.
AlienShip() Constructor called.
AlienBomberShip() Constructor called.
~AlienBomberShip() Destructor called.
~AlienShip() Destructor called.
~Spaceship() Destructor called.
Press any key to continue

The output of Program 9.3 illustrates that when an object of a child class is constructed, the parent
constructors are invoked in a descending order starting from the top of the hierarchy. For example, in
Program 9.3, first the Spaceship part of AlienBomberShip is constructed, then the AlienShip part
of AlienBomberShip is constructed, and finally the AlienBomberShip constructor is invoked.
Destruction occurs in the reverse order; that is, the destructors are invoked in an ascending order starting
at the bottom of the inheritance hierarchy. Particularly in Program 9.3, first the AlienBomberShip
destructor is called, then the AlienShip destructor is called, and finally the Spaceship destructor is
called.

 291

9.4 Multiple Inheritance

One might wonder if a class can inherit from more than one class. After all, classes in the real world can
be found that share properties of more than one class. For example, humans inherit traits from both of
their parents. C++, unlike some other programming languages, does support multiple inheritance and
the syntax is rather trivial; we simply specify an additional class to inherit from using a separating
comma like so:

class AlienShip : public Spaceship, public DrawableObject
{
 ...
}

Here we have said an AlienShip is a Spaceship, but it is also a DrawableObject (drawable in the
sense that our 3D engine is capable of drawing an AlienShip.)

Although multiple inheritance can solve some problems quite elegantly, it is not without its pitfalls.
However, we will not discuss them in this text because, although multiple inheritance is useful in some
situations, it is not encountered very frequently. There is no need to spend a lot of time on a feature that
is rarely used and indeed, multiple inheritance is not used at all in this course. Multiple inheritance is a
feature that you need only be aware of in case you come across a situation where it might be useful. At
that time, you can investigate the potential problems with using it. Scott Meyers’ Effective C++ spends
a solid fourteen pages on the problems of multiple inheritance and how to use multiple inheritance
effectively if you are interested in a deeper look.

9.5 Polymorphism

In order to introduce polymorphism, we will first present a problem. Our first attempt to solve this
problem will result in failure. We will then show a correct solution to this problem using
polymorphism, but we will not explain why and how polymorphism works until the following section.

Problem: Create a Shape class and derive two other classes, Circle and Rectangle, from it. Each
shape should know its type (a string describing what kind of shape it is; e.g., “circle” and “rectangle”),
and be able to calculate its area and perimeter. Using these classes, instantiate five different circle
objects and five different rectangle objects, and upcast them to Shape so that you can store all the
circles and rectangles in a common Shape pointer container (i.e., array/std::vector). Finally, iterate
through each element in the Shape container and output the element’s shape type (is it a circle or
rectangle?), its area, and its perimeter.

 292

9.5.1 First Attempt (Incorrect Solution)

The restrictions which the problem imposes are what make the problem difficult. In particular, a
problem will occur when we upcast our Circle and Rectangle objects to Shapes. Let us attempt to
do what the problem requires and see where it takes us.

We create a general Shape class like so:

Class Shape
{
public:
 string type();
 float area();
 float perimeter();

};

We are already running into problems when we try to implement this class. Specifically, what is the
type of a shape? What is the area of a shape? What is the perimeter of a shape? We only know types,
areas and perimeters of specific shapes like circles and rectangles, but not of a general shape. In fact,
the entire concept of a shape is abstract. In order to continue, let us have the Shape implementations of
these methods return “undefined” for the shape type, and zero for area and perimeter. Then we will
override the type, area and perimeter methods in the derived classes with a proper implementation.
The following code shows the agreed implementation of Shape:

string Shape::type()
{
 return "undefined";
}

float Shape::area()
{
 return 0.0f;
}

float Shape::perimeter()
{
 return 0.0f;
}

Moving on to the Circle and Rectangle class, we have the following class definitions:

class Circle : public Shape
{
public:
 Circle(float rad);

 string type();
 float area();
 float perimeter();

 293

protected:
 float mRadius;
};

//==

class Rectangle : public Shape
{
public:
 Rectangle(float w, float l);

 string type();
 float area();
 float perimeter();

protected:
 float mWidth;
 float mLength;
};

We have the implementations:

Circle::Circle(float rad)
: mRadius(rad)
{
}

string Circle::type()
{
 return "Circle";
}

const float PI = 3.14f;

float Circle::area()
{
 return PI*mRadius*mRadius;
}

float Circle::perimeter()
{
 return 2.0f*PI*mRadius;
}

//==

Rectangle::Rectangle(float w, float l)
: mWidth(w), mLength(l)
{
}

string Rectangle::type()
{
 return "Rectangle";
}

 294

float Rectangle::area()
{
 return mWidth*mLength;
}

float Rectangle::perimeter()
{
 return 2.0f*mWidth + 2.0f*mLength;
}

No problems are encountered at this specific level. Now that we have our classes defined, the problem
instructs us to create five different Circles and five different Rectangles, and to upcast them into a
container of Shape pointers. Doing so yields the following code:

int main()
{
 Shape* shapes[10];

 shapes[0] = new Circle(1.0f);
 shapes[1] = new Circle(2.0f);
 shapes[2] = new Circle(3.0f);
 shapes[3] = new Circle(4.0f);
 shapes[4] = new Circle(5.0f);

 shapes[5] = new Rectangle(1.0f, 2.0f);
 shapes[6] = new Rectangle(2.0f, 4.0f);
 shapes[7] = new Rectangle(3.0f, 1.0f);
 shapes[8] = new Rectangle(4.0f, 6.0f);
 shapes[9] = new Rectangle(5.0f, 2.0f);

Our final task is to iterate through each element in shapes and output the element’s shape type (a circle
or rectangle), its area, and its circumference. Doing so yields the following code:

 for(int i = 0; i < 10; ++i)
 {
 string type = shapes[i]->type();
 float area = shapes[i]->area();
 float peri = shapes[i]->perimeter();
 cout << "Shape[" << i << "]'s ";
 cout << "Type = " << type << ", ";
 cout << "Area = " << area << ", ";
 cout << "Perimeter = " << peri << endl;
 }

 // Delete the memory.
 for(int i = 0; i < 10; ++i)
 {
 delete shapes[i];
 }
}// end main

Now if we execute this program we get the following output:

 295

Shape[0]'s Type = undefined, Area = 0, Perimeter = 0
Shape[1]'s Type = undefined, Area = 0, Perimeter = 0
Shape[2]'s Type = undefined, Area = 0, Perimeter = 0
Shape[3]'s Type = undefined, Area = 0, Perimeter = 0
Shape[4]'s Type = undefined, Area = 0, Perimeter = 0
Shape[5]'s Type = undefined, Area = 0, Perimeter = 0
Shape[6]'s Type = undefined, Area = 0, Perimeter = 0
Shape[7]'s Type = undefined, Area = 0, Perimeter = 0
Shape[8]'s Type = undefined, Area = 0, Perimeter = 0
Shape[9]'s Type = undefined, Area = 0, Perimeter = 0
Press any key to continue

This is not correct at all. What happened? The Shape versions of type, area, and circumference
were called. This i pcast our objects to Shape. We hinted at this problem at the
end of Section 9.2. t we are at a dead end. However, it is possible to generalize
the specific shape o to draw themselves (that is, the
specific shape) correctly in this general form, by using polymorphism.

This brings us to our second attempt at solving the problem. Before we start, remember the following
statement:

Base* base = new

We say that the va ase and the dynamic type Derived. What we
want is to be able to upcast a derived type to the base type, but for the dynamic type of the object to be
“remembered” so that the dynamic type methods can be invoked, and not the base (static type) methods.

9.5.2 Second Attempt (Correct Solution)

We begin as we did in the first attempt, by defining and implementing the Shape class. We quickly run
into the same previous problem; namely, what is the type of a shape? What is the area of a shape?
What is the circumference of a shape? We again choose to ignore this problem and return “dummy”
values. So far it seems we are taking the same road we took in the previous attempt. However, we
diverge by modifying the methods type, area, and circumference with the virtual keyword:

s not surprising as we u
5 and it might seem tha
bjects up to Shape, and for them to still “know” how

Derived();

riable base has the static type B

class Shape
{
public:
 virtual string type();
 virtual float area();
 virtual float perimeter();

};

string Shape::type()
{
 return "undefined";
}

 296

float Shape::area()
{
 return 0.0f;
}

float Shape::perimeter()
{
 return 0.0f;
}

Methods prefixed with the virtual keyword are called virtual functions or virtual methods (usually
the former).

We now proceed to finish the program exactly as we did in the first attempt. Moving on to the Circle
and Rectangle class, we again have the following class definitions (same as in our first attempt):

class Circle : public Shape
{
public:
 Circle(float rad);

 string type();
 float area();
 float perimeter();

protected:
 float mRadius;
};

//==

class Rectangle : public Shape
{
public:
 Rectangle(float w, float l);

 string type();
 float area();
 float perimeter();

protected:
 float mWidth;
 float mLength;
};

Implementations:

Circle::Circle(float rad)
: mRadius(rad)
{
}

 297

string Circle::type()
{
 return "Circle";
}

const float PI = 3.14f;

float Circle::area()
{
 return PI*mRadius*mRadius;
}

float Circle::perimeter()
{
 return 2.0f*PI*mRadius;
}

//==

Rectangle::Rectangle(float w, float l)
: mWidth(w), mLength(l)
{
}

string Rectangle::type()
{
 return "Rectangle";
}

float Rectangle::area()
{
 return mWidth*mLength;
}

float Rectangle::perimeter()
{
 return 2.0f*mWidth + 2.0f*mLength;
}

Now that we have our classes defined, the problem instructs us to create five different Circles and five
different Rectangles, and to upcast them into a container of Shape pointers. Doing so yields the
following code:

int main()
{
 Shape* shapes[10];

 shapes[0] = new Circle(1.0f);
 shapes[1] = new Circle(2.0f);
 shapes[2] = new Circle(3.0f);
 shapes[3] = new Circle(4.0f);
 shapes[4] = new Circle(5.0f);

 shapes[5] = new Rectangle(1.0f, 2.0f);
 shapes[6] = new Rectangle(2.0f, 4.0f);

 298

 shapes[7] = new Rectangle(3.0f, 1.0f);
 shapes[8] = new Rectangle(4.0f, 6.0f);
 shapes[9] = new Rectangle(5.0f, 2.0f);

Our final task is to iterate through each element in shapes and output the element’s shape type (a circle
or rectangle), its area, and its circumference. Doing so yields the following code:

 for(int i = 0; i < 10; ++i)
 {
 string type = shapes[i]->type();
 float area = shapes[i]->area();
 float peri = shapes[i]->perimeter();
 cout << "Shape[" << i << "]'s ";
 cout << "Type = " << type << ", ";
 cout << "Area = " << area << ", ";
 cout << "Perimeter = " << peri << endl;
 }

 // Delete the memory.
 for(int i = 0; i < 10; ++i)
 {
 delete shapes[i];
 }

}// end main

Now if we execute this program we get the following output:

Shape[0]'s Type = Circle, Area = 3.14, Perimeter = 6.28
Shape[1]'s Type = Circle, Area = 12.56, Perimeter = 12.56
Shape[2]'s Type = Circle, Area = 28.26, Perimeter = 18.84
Shape[3]'s Type = Circle, Area = 50.24, Perimeter = 25.12
Shape[4]'s Type = Circle, Area = 78.5, Perimeter = 31.4
Shape[5]'s Type = Rectangle, Area = 2, Perimeter = 6
Shape[6]'s Type = Rectangle, Area = 8, Perimeter = 12
Shape[7]'s Type = Rectangle, Area = 3, Perimeter = 8
Shape[8]'s Type = Rectangle, Area = 24, Perimeter = 20
Shape[9]'s Type = Rectangle, Area = 10, Perimeter = 14
Press any key to continue

We note that this time, the output is correct. We call this behavior polymorphism; that is, we have
upcasted our objects to a more general Shape type, which behave like their original type. The Shapes
have “many forms” (polymorphism). Classes with virtual functions are termed polymorphic.

We emphasize that the only change we made in this second attempt was the virtual keyword. So it
seems that virtual functions are the solution to our problems. By using virtual functions, the program
“magically remembers” the dynamic type of the object and can therefore invoke the specific methods
even after the objects are upcasted to a more general type up the inheritance ladder. The next section
sets out to show that this is not magic, and describes how and why it works. In other words, we will
learn what the virtual keyword is instructing the compiler to do behind the scenes.

 299

Before we move on though, let us address the following question: Why use polymorphism? If it were
not for the problem description, we would not have had to upcast our Circles and Rectangles to
Shapes, and we could have just kept separate containers of Circles and Rectangles to output the
same information. It is difficult to answer this question at this point. Polymorphism is best appreciated
through experience. However, we can say that it is convenient to have a centralized general container of
objects without having to realize their specific type. In particular, by having such a container we can
work with and apply operations to the objects in the most general form, without regard to the specific
form. This is convenient because we do not need to have separate branches of code for each specific
case—the program “knows” to invoke the method of the dynamic type. We also explore another utility
of polymorphism in Section 9.9.

9.6 How Virtual Functions Work

We demonstrated polymorphism with virtual functions but now we will discuss how they work.
Typically6, a virtual table implementation is used. It works like this: When a class contains a virtual
function it is given a corresponding virtual table (vtable) by the compiler, which is an array of pointers
to all o a vtable contains only virtual functions, not regular functions.
Also note that classes are given vtables, not object instances. Consider the following class hierarchy:

f its virtual functions. Note that

class Base
{
public:
 virtual ~Base();
 virtual void f();
 virtual void g();
 virtual void h();
 virtual void r();
 void s(); // non virtual
 void t(); // non virtual
};

class Derived : public Base
{
public:
 virtual ~Derived();
 virtual void f(); // override
 virtual void g(); // override
 void x(); // new method, non virtual
 void y(); // new method, non virtual
};

The corresponding virtual tables which the compiler will set aside would look like this:

6 We say typically because the actual implementation is compiler dependent.

 300

Figure9.4: A class’ virtual table contains function pointers to the corresponding class methods. Note that only virtual

functions are in the virtual table. Also note that if a derived class does not override a virtual function, then the
corresponding derived class’ virtual table entries point to the base class’ implementations (see h() and r()).

In addition to the vtable, each object instance whose class contains virtual functions is given a virtual
table pointer7 (vptr), which points to the vtable that corresponds with the object's dynamic type. We
note that during the construction of an object we know its dynamic type, and that is the time the vptr can
be initialized. For example,

Base* obj1 = new Base();
Base* obj2 = new Derived();

Here, obj1’s vptr points to the vtable of class Base. Likewise, obj2’s vptr points to the vtable of class
Derived. Figure 9.5 shows a conceptual diagram to illustrate.

Figure 9.5: An object’s virtual pointer points to the virtual table of the object’s dynamic type.

7 The virtual table pointer is stored in some part of the object that only the compiler knows about. It is “hidden” from the
programmer.

 301

We now see how virtual functions work—the vptr points to the vtable that stores the “right” methods
that correspond to the given object’s dynamic type. For example:

obj2->h();

In this call, the compiler fetches obj2’s vptr and follows it to the vtable to which it points, which in this
case is Derived’s vtable. In this case, once at the vtable it can quickly offset to the right function,
Derived::h() since each virtual function is given a unique index within the vtable. Finally,
Derived::h() can be invoked, thus performing the desired result.

Note: If you have virtual functions in your class, then the rule of thumb is to also have a virtual
destructor. For example, suppose that Base and Derived do not have virtual destructors, which
means the destructor is not in the vtable. What happens when you write:

Base* base = new Derived();
...
delete base;

Technically, your program is undefined by the C++ standard. However, what typically happens is that
only Base::~Base will be called, which means Derived::~Derived is not called, which in turn
means that you may get memory leaks and errors if you are expecting Derived::~Derived to be
called. The solution to this problem is to make the destructor virtual so that it gets put into the vtable.
Thus “delete base;” will call the destructor of the dynamic type (Derived) and destroy the object
correctly. (Recall that when a derived object is deleted, its local destructor is called, followed by its base
class destructor.)

9.7 The Cost of Virtual Functions

1. Increased memory taken up by storing a vtable for each class that contains virtual functions.

2. Increased memory taken up by storing a vptr in each object instance whose class contains virtual
functions.

3. Some extra work associated with calling a virtual function; that is, accessing the vptr,

dereferencing the vptr to get to the vtable, offsetting into the vtable to get to the correct function
pointer, and dereferencing the function pointer to invoke the actual function.

4. Virtual functions are usually not inlined since the compiler cannot determine which function to

call at compile time—remember that polymorphism is done at runtime, since dynamic types can
be set at runtime.

Finally, to show some supporting evidence of the virtual function implementation just described
(vtable/vptr), consider the following program:

 302

Program 9.4: Providing evidence for the vptr.

#include <iostream>
using namespace std;

class NonVirtual
{
public:
 void f(){}
protected:
 int number;
 float x;
};

class Virtual
{
public:
 virtual void greeting(){}
protected:
 int number;
 float x;
};

int main()
{
 NonVirtual n;
 Virtual v;
 cout << "Size of NonVirtual = " << sizeof(n) << endl;
 cout << "Size of Virtual = " << sizeof(v) << endl;
}

Program 9.4 Output

Size of NonVirtual = 8
Size of Virtual = 12
Press any key to continue

We see that the size of Virtual is four bytes more than that of NonVirtual, even though they have
the same data. Where did these extra four bytes come from? They came from the vptr that is added to
objects whose class contains virtual functions.

9.8 Abstract Classes

Despite solving the problem posed in Section 9.5 with polymorphism (i.e., virtual functions), we noted
that it did not make sense to instantiate a Shape object. More specifically, we did not know how to
implement the type, area, and perimeter functions of a Shape because a Shape is an abstract
concept and we need concrete details to implement these functions. Consequently, we implemented
Shape’s methods with “dummy” implementations like so:

 303

string Shape::type()
{
 return "undefined";
}

float Shape::area()
{
 return 0.0f;
}

float Shape::perimeter()
{
 return 0.0f;
}

Another oddity is the fact that, at present, we can instantiate Shape objects:

Shape shape; // no error.

But such objects are completely meaningless. All the methods of Shape return worthless values. It only
makes sense to use Shapes when using polymorphism where we can upcast from concrete Shapes (e.g.,
Circles, Rectangles), because then the methods of the dynamic type will be invoked.

All of this is quite inelegant. There are two things we would like to do in this situation.

1. Provide the general Shape method prototypes in the Shape class (type, area, perimeter),
but not an implementation since it does not make sense for abstract Shapes. So we want to force
derived classes to override and implement these prototyped methods where it does make sense
(at the concrete level).

2. Prevent a Shape class from being instantiated altogether; that is, to make the restriction that we

can only instantiate concrete types and upcast to Shape.

C++ accomplishes these two things with abstract classes. An abstract class is a class that contains pure
virtual functions. A pure virtual function is a virtual function that is declared in the base class (the
abstract class) but is not implemented in the base class. It is the responsibility of derived classes to
override the pure virtual functions and pr plementation for them.

Note: Derived classes must override and implement every pure virtual function an abstract class
declares. Also realize that not every method in an abstract class must be “pure virtual.” However, it only
takes one to make the class ct.

A virtual funct ing the function signature with the syntax
‘= 0’. Let us now rewrite Shape as an abstract class:

ovide an im

 abstra

ion can be modified to “pure virtual” by append

 304

class Shape
{
public:
 // Pure virt
 virtual string type() = 0;
 virtual float area() = 0;
 virtual float perimeter() = 0;
};

Note that we also delete the old “dummy” implementations—they are not needed with an abstract class
since derived classes are guaranteed to override these pure virtual functions and provide an
implementation.

Now that we have made Shape abstract we observe that the following produces an error:

Shape shape; // error, Shape abstract.

In particular, the error: “C2259: 'Shape' : cannot instantiate abstract class.”

9.9 Interfaces

We mentioned that polymorphism is useful because it enables us to have a centralized general container
of objects without having to realize their specific concrete type. In particular, by having such a
container we can work with and apply operations to the objects in the most general form, without regard
to the specific form. This is convenient because we do not need to have separate branches of code for
each specific case—the program “knows” to invoke the method of the dynamic type.

Interfaces provide yet another utility of polymorphism. Interfaces are closely related to abstract classes.
In fact, an interface is usually defined as a class that consists of only pure virtual functions. To
illustrate, let us suppose we have a class, called GraphicsEngine, which handles drawing 3D objects
to the screen using the video card. In particular, we want to draw various 3D objects. One approach
would be to have a method that draws each kind of shape the program supports:

class GraphicsEngine
{
public:
 void drawFighterShip();
 void drawMothership();
 void drawBomberShip();
 void drawBomberShip();
 void drawPlanet();
 void drawAsteroid();
 // ... etc
};

This approach is cumbersome and inelegant. Every time we introduce a new kind of 3D object into the
program, we must define a new method. Moreover, if GraphicsEngine was part of a third party

ual functions.

 305

library, we would not be able to modify it. This would be very restrictive! An approach that is much
more scalable and robust (from a software engineering perspective), is to use interfaces.

We will define an Object3D interface with a pure virtual draw method.

class Object3D
{
public:
 virtual void draw() = 0;
};

All of our concrete 3D object classes will inherit from this interface and implement the draw method,
thereby specifying how to draw themselves. Then GraphicsEngine will have its own draw method
implemented like so:

void GraphicsEngine::draw(Object3D* obj)
{
 // Prepare hardware for drawing.

 obj->draw(); // draw the object

 // Do post drawing work.
}

GraphicsEngine::draw takes a pointer to an Object3D and calls Object3D::draw at the
appropriate time. GraphicsEngine does not know how any specific concrete Object3D draws
itself—and it does not care. All it cares about is that the method draw exists and has been overridden in
the concrete class, so that it can invoke the draw method, and the correct method corresponding to the
object’s dynamic type will be invoked. This condition is guaranteed since draw is a pure virtual
function in Object3D—therefore, it must be overridden and implemented by derived classes.

Whenever we need to add a new 3D object to the program, we simply create a new class representing
the 3D object, have it inherit from Object3D, implement the draw method, and then pass it off to
GraphicsEngine::draw. Then, due to polymorphism, the method corresponding to the object’s
dynamic type will be invoked. Incidentally, when a class inherits from an interface and implements the
pure virtual functions, we say the class implements the interface.

We now come to the analogy of an interface being viewed as a contract. Just as a contract guarantees
some agreement, an interface guarantees that a method or set of methods exist and are implemented in
any derived class.

 306

9.10 Summary

1. Inheritance allows a derived class (also called a child class or subclass) to inherit the data and
methods of a base class (also called a parent class or superclass). In this way, we only have to
write the general “shared” code once, and we can pass it along to the specific classes via
inheritance, thereby saving work and reusing code. Furthermore, from an object oriented
programming standpoint, C++ inheritance enables us to model real world inheritance
relationships in code, allowing us to more closely model real world objects with software
objects.

2. When a class contains a variable of some type T as a member variable, we say the class “has a”

T. When we compose a class out of other types, object oriented programmers use the term
“composition” to denote this; that is, the class is composed of those other types. When a class A
inherits publicly from a class B, object oriented programmers say that we are modeling an “is a”
relationship; that is, A is a B, but not conversely. Essentially, this is what public inheritance
means—is a.

3. If Derived is a Base then we can switch back and fourth between the Derived object and its

Base part via pointer casting. We use the term “upcast” when casting up the inheritance chain;
that is, from a derived object to its base part. Likewise, we use the term “downcast” when
casting down the inheritance chain; that is, from the base part to the derived object. Note that
downcasting is not always safe. Remember, a Derived object is a specific kind of Base object,
but not conversely. In other words, a Derived object will always have a base part, but a Base
object is not necessarily part of a Derived object

4. In Base* base = new Derived(); we say that the variable base has the “static type” Base

and the “dynamic type” Derived.

5. Polymorphism allows us to upcast concrete types to a more general type, such that the program
still knows to invoke the methods that correspond to the object’s dynamic types. Virtual
functions are what make a type polymorphic.

6. An abstract class is a class that contains pure virtual functions. A pure virtual function is a

virtual function that is declared in the base class (the abstract class) but is not implemented in the
base class. It is the responsibility of derived classes to override the pure virtual functions and
provide an implementation for them. Derived classes must override and implement every pure
virtual function an abstract class declares. Also realize that not every method in an abstract class
must be pure virtual. However, it only takes one to make the class abstract. A virtual function
can be modified to “pure virtual” by appending the function signature with the syntax ‘= 0’.

7. Interfaces provide yet another utility of polymorphism. Interfaces are closely related to abstract

classes. In fact, an interface is usually defined as a class that consists of only pure virtual
functions. A class that inherits from an interface and implements the pure virtual functions is
said to “implement the interface.” Interfaces enforce contracts; that is, they say: “all classes that
inherit from me must implement my interface.” In this way, other classes can be guaranteed that

 307

all subclasses of an interface implement the pure virtual functions of that interface (i.e., they
implement the interface). This allows software to call the methods of other objects without even
knowing how they are implemented. Consequently, this leads to more general, expandable, and
elegant software.

9.11 Exercises

9.11 Employee Database

Background Information

Thus far we have been working with std::vector as a resizable array; that is, we call the resize
method and then access elements using the bracket operator []. However, another, perhaps more
convenient way, to work with std::vector is to view it as a container where we can add and remove
items to and from the container. Instead of calling resize and assigning values directly to elements,
we simply call an “add” method, which will add a specified item to the next “free” element in the
std::vector. We can also remove items from the container with a “remove” method, which will
erase an item at a specified index. Moreover, the std::vector will resize itself automatically as
needed to grow and shrink as you add/remove items.

The “add” and “remove” methods of std::vector are called push_back and erase, respectively,
and they are summarized as follows:

• push_back(item): Add a copy of the item specified by the parameter to the next “free”
element in the std::vector.

• erase(iterator): Removes the element specified by the iterator from the std::vector.

We discuss iterators when we discuss the STL in Chapter 13 in the next module. For now, just
think of it as a special object that identifies an element in a std::vector. We can get iterators
to the vector elements using an offset and the begin method. The begin method returns an
iterator to the element at index [0]. We can then add an offset value to this iterator to get
iterators to the other elements. E.g., vec.begin() + 1 evaluates to an iterator to element [1],
vec.begin() + 2 evaluates to an iterator to element [2], and so on.

As you know, we can always get the current size of the std::vector with the size method.

The following program displays the contents of a vector and its size for each loop cycle. Furthermore,
for each loop cycle, the user can add or remove a new item to the vector. In this way, you can see how
items are added and removed to the vector container in real-time.

 308

Program 9.5: Using the std::vector methods push_back and erase.

#include <iostream>
#include <string>
#include <vector>
using namespace std;

int main()
{
 vector<int> vec;

 bool quit = false;
 while(!quit)
 {
 // Output size.
 cout << "vec.size() = " << vec.size() << endl;

 // Output vector contents.
 cout << "vec contains: ";
 for(int i = 0; i < vec.size(); ++i)
 cout << vec[i] << " ";
 cout << endl << endl;

 // Display option menu.
 cout << "1) Add int, 2) Remove int, 3) Exit. ";

 // Get menu input.
 int input = 1;
 cin >> input;

 // Do operation based on item chosen.
 switch(input)
 {
 case 1:
 // Add an inputted integer to the vector.
 cout << "Enter an integer: ";
 cin >> input;
 vec.push_back(input);
 break;
 case 2:
 // Remove the element at the inputted index.
 cout << "Enter the index of an integer to remove: ";
 cin >> input;

 // Make sure index is inbounds.
 if(input > 0 && input < vec.size())
 vec.erase(vec.begin() + input);

 break;
 case 3:
 // Exit.
 quit = true;
 break;
 }
 }
}

 309

Program 9.5 Output

vec.size() = 0
vec contains:

1) Add int, 2) Remove int, 3) Exit. 1
Enter an integer: 1
vec.size() = 1
vec contains: 1

1) Add int, 2) Remove int, 3) Exit. 1
Enter an integer: 2
vec.size() = 2
vec contains: 1 2

1) Add int, 2) Remove int, 3) Exit. 1
Enter an integer: 3
vec.size() = 3
vec contains: 1 2 3

1) Add int, 2) Remove int, 3) Exit. 1
Enter an integer: 4
vec.size() = 4
vec contains: 1 2 3 4

1) Add int, 2) Remove int, 3) Exit. 2
Enter the index of an integer to remove: 1
vec.size() = 3
vec contains: 1 3 4

1) Add int, 2) Remove int, 3) Exit. 2
Enter the index of an integer to remove: 3
vec.size() = 3
vec contains: 1 3 4

1) Add int, 2) Remove int, 3) Exit. 2
Enter the index of an integer to remove: 2
vec.size() = 2
vec contains: 1 3

1) Add int, 2) Remove int, 3) Exit. 1
Enter an integer: 6
vec.size() = 3
vec contains: 1 3 6

1) Add int, 2) Remove int, 3) Exit. 3
Press any key to continue

Note that you can accomplish the same thing with resize, and doing some of your own
“bookkeeping.” However, push_back and erase provide a much simpler interface—it does the
“bookkeeping” for you.

 310

 311

Exercise

Suppose a company has the following types of employees: 1) Manager, 2) Engineer, and 3) Researcher.
The following box summarizes the data properties each kind of employee has.

All employees have the following:

1. First name.
2. Last name.
3. Salary.

In addition to what all employees have, managers have the following:

1. Number of meetings per week.
2. Number of vacation days per year.

In addition to what all employees have, engineers have the following:

1. A value specifying whether or not they know C++.
2. Number of years of experience.
3. A string denoting the type of engineer they are (e.g., “mechanical,” “electric,”

“software.”

In addition to what all employees have, researchers have the following:

1. A string specifying the school they received their PhD from.
2. A string specifying the topic of their PhD thesis.

Your task is to write the following program. Create a console application that allows the user to add
employees to and delete employees from a database. Use exactly one std::vector of Employees as
the database. Furthermore, the program should allow the user to save the database to a file (use a text
file); in particular, implement a save method, which is responsible for writing the data of one employee
to the file; so to save all the employees you iterate over the database and call the save method for each
employee.

You should start this program by deciding on what the inheritance hierarchy should look like, what
methods you need (i.e., what should the constructors look like, etc), which functions should be made
virtual/pure virtual, which methods should be overridden in derived classes, and which data types to use
to represent the properties of the various employees.

The menu displayed to the user should look something like this:

1) Add an Employee, 2) Delete an Employee 3) Save Database, 4) Exit.

For example, when the user presses the “1” key, then a new menu “Add an Employee” should be
displayed. Similarly for “Delete an Employee” and “Save Database.”

 312

1. Add an Employee. This should display a submenu: a) Add a Manager, b) Add an Engineer, c)

Add a Researcher.

a) Add a Manager. This should ask the user to input the necessary information to construct
a Manager. Using this information, construct a new Manager and add it to the database
(i.e., the std::vector).

b) Add an Engineer. This should ask the user to input the necessary information to

construct an Engineer. Using this information, construct a new Engineer and add it to
the database (i.e., the std::vector).

c) Add a Researcher. This should ask the user to input the necessary information to

construct a Researcher. Using this information, construct a new Researcher and add
it to the database (i.e., the std::vector).

2. Delete an Employee. This should ask for the last name of the employee (your program does not

need to handle duplicate last names). You then need to write code to search the database for the
given employee and delete him/her from the database (i.e., the std::vector). If the user
enters in a name that does not exist in the database, report that information to the user and return
to the main menu.

3. Save Database. This should traverse the entire database (i.e., the array/std::vector) and call

the save method of each Employee, thereby saving the data of each employee to file.

After you have implemented this program, run the program and manually enter in three distinct
managers, three distinct engineers, and three distinct researchers. Then delete one manager, one
engineer, and one researcher from the database. Third, save the database to a file. Finally, inspect the
file to verify that the information saved was the information you entered, and that the three deleted
employees were not saved. If the file contains the correct information, then you are done with this
exercise. If you are feeling ambitious, add a new option that reads the database from file back into
RAM.

 313

 C++ Module I Conclusion

Congratulations on completing a first course on the C++ programming language. It is hoped by now
that you are proficient with core C++ topics such as variables, console input and output, functions,
loops, programming logic, pointers, strings, and classes; in addition, you should have a basic
understanding of more complex C++ subject matter, such as operator overloading, file input and output,
inheritance, and polymorphism. Mastery in said advance C++ topics will come with time and
experience, as your C++ programming matures.

In the second C++ course, offered at Game Institute, we will begin to move away from the text-based
console applications we have been building, and begin to examine Windows programming. By making
the move to Windows, we enter a whole new world of programming; a world in which we will be
exposed to a set of functions and data structures, collectively called the Win32 API, which is used to
develop Windows programs. With the Win32 API, we will be able to write programs the way you are,
no doubt, familiar to seeing; ones with resizable windows, mouse input, graphics, menus, toolbars, scroll
bars, dialog boxes, and controls.

Of particular interest to us as game programmers is the ability to do graphics with the Win32 API,
something which is not possible with pure C++TP

8
PT. We will learn about fundamental graphic concepts

such as double buffering, sprites, animation and timing, and masking. By the end of the course, we will
have developed a fully functional 2D Air Hockey game (see Figure), complete with graphics, physics,
artificial intelligence, and input via the mouse.

However, before we make the move to Windows, we need to make three stops, and examine some last
minute C++ techniques; in particular, template programming, exception handling, alternative number
systems and bit operations, and a primer of the STL (standard template library).

TP

8
PT That is, C++ has nothing to say about graphic functionality—graphic routines must be exposed by the particular platform

you are working on.

 314

After completing the next C++ module, you will be adequately prepared for your first course in 3D
graphics programming. One of the benefits from that point forward is that you will be writing all sorts of
interesting 3D, AI, physics, and other game related applications in C++, which gives you the opportunity
to continue to mature your C++ programming abilities. By the time you graduate from the full program,
not only will you be a well-trained game developer, but you will also be a highly skilled C++
programmer. This will open up a lot of career opportunities that you might not have even considered.

Be sure to study hard for the final exam, and we hope to see you back here in short order so that you can
begin Module II and start making games!

	Background Information
	Exercise

	Background Information
	Exercise
	Function Declaration
	Description
	float cosf(float x);
	Returns .
	float sinf(float x);
	Returns .
	float tanf(float x);
	Returns .
	float acosf(float x);
	Returns .
	float asinf(float x);
	Returns .
	float atanf(float x);
	Returns .
	float sqrtf(float x);
	Returns .
	float logf(float x);
	Returns .
	float expf(float x);
	Returns .
	float powf(float x, float y);
	Returns .
	float fabsf(float x);
	Returns .
	float floorf(float x);
	Returns the largest integer .
	float ceilf(float x);
	Returns the smallest integer .
	Background Information
	Exercise

	Exercise
	Exercise
	Background Info
	Exercise
	The Dot Product:
	C:/Data/file.txt

	Background Information
	Exercise

