Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

Cg LanguageSpecification
Copyright (c) 2001-2008VIDIA Corp.

This is version 2.0 of the Cg Language specification. This language specification describes version 2.0 of
the Cg language

L anguage @verview
The Cg language is primarily modeled ARSI C, but adopts some ideas from modern languages such as
C+and Jaa, and from earlier shading languages such as RenderMan and the Stanford shading language.
The language also introduces &/ feew ideas. Inparticular it includes features designed to represent data
flow in stream-processing architectures such as GHRIefiles, which are specified at compile time, may
subset certain features of the language, including the ability to implement loops and the precision at which
certain computations are performed.

Like C, Cg is @signed primarily as avslevel programming language. Features are provided that map as
directly as possible to hardware capabilities. Highea labstractions are designed primarily to not get in

the way of writing code that maps directly to the hadnin the most efficient way possible. The changes

in the language from C primarily reflect fdifences in the ay GPU hardware works compared to ogem-

tional CPUs.GPUs are designed to run large numbers of small threads of processing in parallel, each run-
ning a cop of the same program on a different data set.

Diff @encesffrom ANSIC
Cg was deeloped based on thaNSI-C language with the following major additions, deletions, and
changes. (This is a summary-more detail is provided later in this document):
Sl ent Incompatibiliies

Most of the changes fromNSI C are either omissions or additiongjtithere are a fe potentially silent
incompatibilities. Thesare changes within Cg that could cause a program that compiles without errors to
behae in a manner different from C:

» The type promotion rules for constants aréedént when the constant is not explicitly typed using a
type cast or type suffix. In general, a binary operation between a constant thatdglinibtyetyped
and a variable is performed at the variabfeécision, rather than at the constarmkfault precision.

» Declarations obtruct perform an automatitypedef (as in G+ and thus could eerride a prei-
ously declared type.

» Arrays are first-class types that are distinct from pointa@ssa result, array assignments semantically
perform a cop operation for the entire array.

Smil ar Operations That Must be Expresse:Differenty

There are sgral changes that force the same operation to be expressed differently in Cg than in C:

* A Boolean typebool , is introduced, with corresponding implications for operators and control con-
structs.

* Arrays are first-class types because Cg does not support pointers.

* Functions pass values bylue/result, and thus use aut orinout modifier in the formal parameter
list to return a parameteBy default, formal parameters ane , but it is acceptable to specify this
explicitly. Parameters can also be specifiethasut , which is semantically the sameiaeut

C featuresnot presehin Cg

» Language profiles (described in the Profiles section) may subset language capabilities in a variety of
ways. Inparticular language profiles may restrict the use of for and while loBpsexample, some
profiles may only support loops that can be fully unrolled at compile time.

Cg Toolkit 2.0 1

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

* Reserved kywordsgoto , switch , case , anddefault are not supported, nor are labels.
» Pointers and pointer-related capabilities, such agthed—> operators, are not supported.

* Arrays are supportedubwith some limitations on size and dimensionalRestrictions on the use of
computed subscripts are also permitted. Arrays may be desighateaclesd . The operations
allowed on packed arrays may befeliént from those allowed on unpacked arrafsedefined
packed types are provided forectors and matrices. It is strongly recommended that these predefined
types be used.

. There is neenum or union .
. There are no bit-field declarations in structures.

» Allintegral types are implicitly signed, there is signedkeyword.
Cgfeaturesnot presehin C

* A binding semanticnay be associated with a structure tag, a variable, or a structure element to denote
that objects mapping to a specific hardwe orAPI resource. Bindingemantics are described in the
Binding Semanticsection.

* There is a built-in swizzle operataxyzw or .rgba for vectors. Thisoperator allows the compo-
nents of a vector to be rearranged and also replicated. It also allows the creaticeciolr &rom a
scalar.

» For an Ivalue, the swizzle operator allows components of a vector or matrix to bevdglecttten.

* There is a similar Ualt-in swizzle operator for matrices:
._m<row><col>[_m<row><col>][...] . This operator allwys access to individual matrix
components and allows the creation of a vector from elements of a madrixcompatibility with
DirectX 8 notation, there is a second form of matrix swizzle, which is described later.

* Numeric data types are flifent. Cgs primary numeric data types afleat , half , and fixed
Fragment profiles are required to support all three data typesndy choose to implemehglf
and/orfixed atfloat precision. \értex profiles are required to suppdralf andfloat , but may
choose to implemerttalf atfloat precision. \értex profiles may omit support fdixed opera-
tions, but must still support definition 6ked variables. Cgallows profiles to omit run-time sup-
port forint and other integer types. Cg allows profiles to tdeatble asfloat

e Mary operators support per-element vector operations.

e The?:, [, && !, and comparison operators can be used Withl vectors to perform multiple con-
ditional operations simultaneously.

The side effects of all operands to ve@or, [, and && operators are alys executed.

* Non-static global ariables, and parameters to topdd unctions (such asain()) may be designated
asuniform . A uniform variable may be read and written within a program, just by other
variable. Havever, the uniform modifier indicates that the initiadlue of the variable/parameter is
expected to be constant across a large numbewocations of the program.

* A new set ofsampler* types represents handles to texture sampler units.

» Functions may ha default values for their parameters, as #. CThese defaults are expressed using
assignment syntax.

* Function and operatowerloading is supported.

» Variables may be defined anywhere beforg e used, rather than just at the beginning of a scope as
in C. (That is, we adopt the-&rules that geern where variable declarations are waiml.) \ariables
may not be redeclared within the same scope.

Cg Toolkit 2.0 2

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

* Vector constructors, such as the fofloat4(1,2,3,4) , and matrix constructors may be used
anywhere in an expression.

 Astruct definition automatically performs a correspondiyypedef , asin G+
* Cr-style// comments are allowed in addition to C-stifle...*/ comments.

* A limited form of inheritance is supportedhterface types may be defined which contain only
member functions (no data members) atrdct types may inherit from a single interface and pro-
vide specific implementations for all the member functiomserface objects may not be created; a
variable of interface type may @ any mplementing struct type assigned to it.

Ddail ed LanguageSpecification
Ddinitions

The following definitions are based on eS| C gandard:

Object:
An object is a region of data storage in tikecation environment, the contents of which can represent
values. When referenced, an object may be interpreted as having a particular type.

Declaration:
A declaration specifies the interpretation and attributes of a set of identifiers.

Definition:
A declaration that also causes storage to be reddor an object or code that will be generated for a
function named by an identifier is a definition.

Profies

Compilation of a Cg program, a top function, alvays occurs in the context of a compilation profile.

The profile specifies whether certain optional language features are suppdrésg. optional language
features include certain control constructs and standard library functions. The compilation profile also
defines the precision of thiwat , half , and fixed data types, and specifies whether fiked and
sampler* data types are fully or only partially supporteéthe profile also specifies the environment in
which the program will be run. The choice of a compilation profile is meenally to the language, by
using a compiler command-line switch, for example.

The profile restrictions are only applied to the togléunction that is being compiled and toyarariables

or functions that it references, either directly or indirectfya function is present in the source codat, b
not called directly or indirectly by the topvk function, it is free to use capabilities that are not supported
by the current profile.

The intent of these rules is to all@ sngle Cg source file to contain madifferent top-leel functions that

are targeted at different profiles. The core Cg language specificatiofidiestljy complete to all all of

these functions to be parsetihe restrictions provided by a compilation profile are only needed for code
generation, and are therefore only applied to those functions for which code is being gefiéiatsgeci-
fication uses the wordprogram’ to refer to the top-lel function, ag functions the top-leel function
calls, and aypglobal variables or typedef definitions it references.

Each profile must he a gparate specification that describes its characteristics and limitations.

This core Cg specification requires certain minimum capabilities for all profiesome cases, the core
specification distinguishes betweesrtex-program and fragment-program profiles, witHet#nt minimum
capabilities for each.

Detar aionsand declaration specifiers.

A Cg program consists of a series of declarations, each of which declares one omarnaikey or func-
tions, or declares and defines a single functiBach declaration consists of zero or more declaration speci-
fiers, a type, and one or more declarators. Some of the declaration specifiers are the same adglose in
C; others are meto Cg

Cg Toolkit 2.0 3

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

congd
Marks a variable as a constant that cannot be assigned to within the program. Unless this is combined
with uniform orvarying , the declarator must include an initializer tgegthe variable a value.

extam
Marks this declaration as solely a declaration and not a definifioete must be a nosxtern dec-
laration elsewhere in the program.

in Only usable on parameter avarying declarations. Markthe parameter or varying as an input to
the function or program. Function parameters witlimgout , or inout specifier are implicitlyn

inline
Only usable on a function definitioells the compiler that it shouldwadys inline calls to the func-
tion if at all possible.

inout
Only usable on parameter amdrying declarations. Markshe parameter or varying as both an
input to and an output from the function or program

gaic
Only usable on globalariables. Markshe variable as 'pvate’ to the program, and not visiblzter-
nally. Cannot be combined withniform or varying

out Only usable on parameter amdrying declarations. Markt¢he parameter orarying as an output
from the function or program

uniform
Only usable on global variables and parameters to the vepatain function of a programlf speci-
fied on a non-top-ieel function parameter it is ignored. The intent of this rule is tavadidunction to
sene as é&her a top-lgel function or as one that is not.

Note thatuniform variables may be read and written jusilikon-uniform variables. Theuni-
form qualifier simply provides information aboutviadhe initial value of the variable is to be speci-
fied and stored, through a mechanism external to the language.

varying
Only usable on global variables and parameters to the vepabain function of a programlf speci-
fied on a non-top-ieel function parameter it is ignored.

profile name
The name of anprofile (or profile wildcard— see Profiles) may be used as a specifier grfamc-
tion declaration. It defines a function that is only visible in the corresponding profiles.

The specifiersiniform andvarying specify hav data is transferred between the rest of the world and a
Cg program. Typically, the initial value of auniform variable or parameter is stored in afelient class

of hardware register forwarying . Furthermore, the external mechanism for specifying the initiblev

of uniform variables or parameters may befeint than that used for specifying the initial value of
varying variables or parameterPaameters qualified agniform are normally treated as persistent
state, whilevarying parameters are treated as streaming data, witlvaadae specified for each stream
record (such as within a vexterray).

Non-static global variables are treated @siform by default, while parameters to the topdefunc-
tion are treated asrying by default.

Each declaration is visible (“in scope”) from the point of its declarator until the end of the enclosing block
or the end of the compilation unit if outsideydstock. Declarationsn named scopes (such as structs and
interfaces) may be visible outside of their scope using explicit scope qualifiers,+as in C

Cg Toolkit 2.0 4

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

Samantics

Each declarator in a declaration may optionallyeha €mantic specified with itA semantic specifies o

the variable is connected to the environment in which the program runs. All semantics are profile specific
(so thg havedifferent meanings in ddrent profiles), though there is some attempt to be consistent across
profiles. Eaclprofile specification must specify the set of semantics which the profile understands, as well
as what behavior occurs foryaather unspecified semantics.

Fundion Declarations

Functions are declared essentially as inACf.unction that does not return a value must be declared with a
void return type.A function that takes no parameters may be declared in one ofays:

As in C, using the voiddgword:
functionName(void)

With no parameters at all:
functionName()

Functions may be declared static . If so, they may not be compiled as a program and are not visible
externally

Fundion overloading and optional arguments

Cg supports functionverloading; that is you may define multiple functions with the same name. The func-
tion actually called at gngiven call site is based on the types of thguanents at that call site; the defini-
tion that best matches is called. See the therldad resolution entry elsewhere in this document section
for the precise rulesTrailing arguments with initializers are optionagaments; defining a function with
optional arguments is eqalent to defining multiple werloaded functions that differ by having and not
having the optional @yument. Thesalue of the initializer is used only for the version that does nat liee
argument and is ignored if the argument is present.

Ovenloading of Functions by Profile

Cg supports eerloading of functions by compilation profile. This capability allows a function to be imple-
mented differently for different profiledt is also useful because different profiles may suppdierdifit

subsets of the language capabilities, and because the most efficient implementation of a function may be
different for different profiles.

The profile name must precede the return type name in the function declaratierafple, to define tw
different versions of the functianyfunc for theprofileA andprofileB profiles:

profileA float myfunc(float x) {...};
profileB float myfunc(float x) {...};

If a type is defined (usingtgpedef) that has the same name as a profile, the identifier is treated as a type
name, and is nowailable for profile @erloading at ay subsequent point in the file.

If a function definition does not include a profile, the function is referred to aspam-profile’ function.
Open-profile functions apply to all profiles.

Several wildcard profile names are defined. The narmematches ayvertex profile, while the namgs
matches anfragment or pigl profile. The namegs_1 andps_2 match ay DX8 pixel shader 1.x profile,
or DX9 pixel shader 2.x profile, respaadiy. Smilarly, the namews_1 andvs_2 match ag DX vertex
shader 1.x or 2.x, respeatly. Additional valid wildcard profile names may be defined byviddial pro-
files.

In general, the most specifiension of a function is used. More details are provided in the section on func-
tion overloading, but roughly speaking, the search order is the following:

Cg Toolkit 2.0 5

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

1. wersion of the function with the exact profileedoad

2. wersion of the function with the most specific wildcard profilerload (e.g.vs, “ps_1")

3. wersion of function with no profileverload

This search process alle generic versions of a function to be defined that cawdsedtlen as needed for
particular hardware.

Syntax for Parametersin Function Definiions

Functions are declared in a manner similar to C, but the parameters in function definitions may include a
binding semantic (discussed later) and a default value.

Each parameter in a function definition takes the following form:

<declspecs> <type> identifier [: <binding_semantic>] [= <default>]

<default> is an expression that resolves to a constant at compile time.

Default values are only permitted faniform parameters, and fon parameters to non topvie func-
tions.

Fundion Calls

A function call returns an rvalue. Therefore, if a function returns an, @heyrray may be read but not
written. For example, the following is allowed:

y = myfunc(x)[2];

But, this is not:

myfunc(x)[2] = y;
For multiple function calls within an expression, the calls can occuryroater — itis undefined.

Types
Cg's types are as follows:
* Theint type is preferably 32-bit twe’complement. Profilemay optionally treaint asfloat

 Theunsigned type is preferably a 32-bit ordinadlue. unsigned may also be used with other
integer types to makdfferent sized unsigned values

» The char , short , and long types are tw's complement integers of various sizes. The only
requirement is thathar is no lager thatshort , short is no larger thaint andlong is at least
as large amt

» Thefloat type is as close as possible to tREE single precision (32-bit) floating point format.
Profiles must support tHwat data type.

 Thehalf type is laver-precision IEEE-lile floating point. Profiles must support thalf type, hut
may choose to implement it with the same precision aiaae type.

 Thefixed type is a signed type with a range of at least [-2,2) and with at least 10 bits of fractional
precision. Owerflow operations on the data type clamp rather than wrap. Fragment profiles must sup-
port thefixed type, lut may implement it with the same precision astibf or float types.
Vertex profiles are required to provide partial support (as definedvpdtr thefixed type. \ertex
profiles hae the option to preide full support for thdixed type or to implement théxed type
with the same precision as thalf orfloat types.

* Thebool type represents Booleanlues. Objectsf bool type are either true or false.

Cg Toolkit 2.0 6

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

 Thecint type is 32-bit tw’'s complement. Thidype is meaningful only at compile time; it is not
possible to declare objects of tygiat

» Thecfloat type iSIEEE single-precision (32-bit) floating poinfThis type is meaningful only at
compile time; it is not possible to declare objects of tffmat

 Thevoid type may not be used inyaaxpression. lmay only be used as the return type of functions
that do not return a value.

 Thesampler* types are handles to texture objedtsrmal parameters of a program or function may
be of typesampler* . No ather definition olsampler* variables is permittedA sampler* vari-
able may only be used by passing it to another function &s grarameter Assignment tasam-
pler* variables is not permitted, ammpler* expressions are not permitted.

The following sampler types areways defined:sampler , samplerlD , sampler2D , sam-
pler3D , samplerCUBE , samplerRECT .

The basesampler type may be used in wyrontext in which a more specific sampler type &id.
However, asampler variable must be used in a consistent way throughout the prodgfanexam-
ple, it cannot be used in place of bothamplerlD and asampler2D in the same programThe
sampler type is deprecated and only provided for backwards compatibility with Cg 1.0

Fragment profiles are required to fully support Haenpler , samplerlD , sampler2D , sam-
pler3D , and samplerCUBE data types. Fragment profiles are required taigeopartial support
(as defined below) for theamplerRECT data type and may optionally provide full support for this
data type.

Vertex profiles are required to pvale partial support for the six sampler data types and may option-
ally provide full support for these data types.

* Anarraytype is a collection of one or more elements of the same #peaurray variable has a single
index.

* Some array types may be optionally designatepaaked , using thepacked type modifier The
storage format of gacked type may be different from the storage format of the corresponding
unpacled type. The storage format of packed types is implementation dependantydt be consis-
tent for ay particular combination of compiler and profil@&he operations supported on a peatk
type in a particular profile may be #ifent than the operations supported on the corresponding
unpacled type in that same profile. Profiles may define a maximumwatlle size for packed arrays,
but must support at least size 4 for packed vector (1D array) types, and 4x4 for packed matrix (2D
array) types.

* When declaring an array of arrays in a single declarationpabhked modifier refers to all of the
arrays. Havever, it is possible to declare an unpacked arrapatked arrays by declaring the first
level of array in atypedef using thepacked keyword and then declaring an array of this type in a
second statement. It is not possible to declare a packed array of unpacked arrays.

» For ary supported numeric data tyg&'PE implementations must support the following packed array
types, which are calledector types Type identifiers must be predefined for these types in the global
scope:

typedef packed TYPE TYPE1[1];
typedef packed TYPE TYPE2[2];
typedef packed TYPE TYPE3J[3];
typedef packed TYPE TYPE4[4];

For example, implementations must predefine the type identifleegl , float2 , float3
float4 , and so on for apother supported numeric type.

Cg Toolkit 2.0 7

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

» For ary supported numeric data tyg&'PE implementations must support the fellog packed array
types, which are calledhatrix types Implementations must also predefine type identifiers (in the
global scope) to represent these types:

packed TYPE1 TYPE1x1[1];
packed TYPE2 TYPE1x2[1];
packed TYPE3 TYPE1x3[1];
packed TYPE4 TYPE1x4[1];
packed TYPE1 TYPE2x1[2];
packed TYPE2 TYPE2x2[2];
packed TYPE3 TYPE2x3[2];
packed TYPE4 TYPE2x4[2];
packed TYPE1 TYPE3x1[3];
packed TYPE2 TYPE3x2[3];
packed TYPE3 TYPE3x3[3];
packed TYPE4 TYPE3x4[3];
packed TYPE1 TYPE4x1[4];
packed TYPE2 TYPE4x2[4];
packed TYPE3 TYPE4x3[4];
packed TYPE4 TYPE4x4[4];

For example, implementations must predefine the type identiffevat2xl , float3x3
floatdx4 , and so on. A typedef follows the usual matrix-naming w®ention of TYPEr-
ows_X_columns . If we declarefloatdx4 a |, then

a[3] is equivalent to a._m30_m31_m32_m33

Both expressions extract the thirdwof the matrix.

* Implementations are required to support indexing of vectors and matrices with constant indices.

« Astruct type is a collection of one or more members of possibly different types. It may include
both function members (methods) and data members (fields).

Srua and Interface types

Interface types are defined withirderfacekeyword in place of the normatructkeyword. Interfice types
may only declare member functions, not data membatsrface member functions may only be declared,
not defined (no default implementations it @arlance).

Struct types may inherit from a single intaré type, and must define an implementation member function
for every member function declared in the interface type.
Partiall Support of Types

This specification mandates “partial suppoiir some typesPatial support for a type requires the fol-
lowing:

» Definitions and declarations using the type are supported.

» Assignment and cgpof objects of that type are supported (including implicit copies when passing
function parameters).

» Top-level function parameters may be defined using that type.

If a type is partially supportedaxiables may be defined using that type but no useful operations can be per
formed on them.Patial support for types mais it easier to share data structures in code that is targeted at
different profiles.

Cg Toolkit 2.0 8

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

Type Categories

* Thesigned integratype category includes typest , char , short ,int ,andlong .

 The unsigned intgral type category includes typesnsigned char , unsigned short ,
unsigned int ,andunsigned long . unsigned is the same asnsigned int

» Theintegral category includes botigned integrahndunsigned integratypes

» Thefloating type category includes typefloat , float , half , andfixed (Note that floating
really means floating or fixed/fractional.)

» Thenumerictype category includdategral andfloatingtypes.

* Thecompile-timetype category includes typefloat andcint . These types are used by the com-
piler for constant type cemrsions.

» Thedynamictype category includes all interface and the unsized array entry elsewhere in this docu-
ment types

» The concretetype category includes all types that are not included ircdingpile-timeand dynamic
type category.

» Thescalartype catgory includes all types in the numeric aaigey, thebool type, and all types in the
compile-time catgory. In this specification, a reference to a <gary> type (such as a reference to a
numeric type) means one of the types included in the category (sficatas, half , or fixed).

Condants

Constant literals are defined as in C, including an opti@nad Ox prefix for octal or hexadecimal con-
stants, aneé exponent suffix for floating point constants. A constant may be explicitly typed or implicitly
typed. Explicittyping of a constant is performed, as in C, by suffixing the constant with a one draw
acters indicating the type of the constant:

. d for double

o ffor float

. h for half
e jforint
» Iforlong

» sfor short
e tforchar
* uforunsigned , which may also be followed bst, 1, orl
» xforfixed

Any constant that is not explicitly typed is implicitly typed. If the constant includes a decimal point or an
‘e’ exponent suffix, it is implicitly typed asfloat . If it does not include a decimal point, it is implicitly
typed a<int

By default, constants are base Fr compatibility with C, intger hexadecimal constants may be speci-
fied by prefixing the constant wihx, and integer octal constants may be specified by prefixing the con-
stant withO.

Compile-time constant folding is preferably performed at the same precisionothldtlve used if the oper
ation were performed at run time. Some compilation profiles may atime precision flexibility for the
hardware; in such cases the compiler should ideally perform the constant folding at the higheatehardw
precision allowed for that data type in that profile.

If constant folding cannot be performed at run-time precision, it may optionally be performed using the pre-
cision indicated belw for each of the numeric datatypes:

Cg Toolkit 2.0 9

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

float
s23e8 (“fp32”) IEEE single precision floating point

half
s10e5 (“fp16”) floating point WIEEE semantics

fixed
S1.10 fixed point, clamping to [-2, 2)

double
s52el1 (“fp64”) IEEE double precision floating point

int signed32 bit twos-complement integer

char
signed 8 bit twos-complement integer

short
signed 16 bit twos-complement integer

long
signed 64 bit twos-complement integer

Type Conversions

Some type corersions are allowed implicitlywhile others require an cast. Some implicit\e@rions may
cause a warning, which can be suppressed by usingpéinitecast. Explicit casts are indicated using C-
style syntax (e.g., castingriable to thefloat4 type may be achied via “(float4)variablename”).

Scalar cowersions:

Implicit corversion of ary scalar numeric type to grother scalar numeric type is alled. Awarning
may be issued if the ceersion is implicit and it is possible that precision is lost. implicitvension
of ary scalar object type to gncompatible scalar object type is also aléml. Cowersions between
incompatible scalar object types or object and numeric types are needlleven with an eplicit
cast. ‘sampler’ is compatible with “samplerlD’, ‘‘sampler2D’, ‘‘sampler3D’, ‘‘samplerCubé; and
“samplerRECT. No other object types are compatiblesgmplerlD’ is not compatible with‘sam-
pler2D”, even though both are compatible with “sampler”).

Scalar types may be implicitly cesrted to vectors and matrixes of compatible type. The scalar will
be replicated to all elements of the vector or mat8galar types may also be explicitly cast to struc-
ture types if the scalar type can bgdly cast to ®ery member of the structure.

Vector corversions
Vectors may be carerted to scalar types (selects the first element of ¢loéoy). Awarning is issued
if this is done implicitly A vector may also be implicitly caerted to another vector of the same size
and compatible element type.

A vector may be carerted to a smaller compatibleeetor or a matrix of the same total sizepyba
warning if issued if an explicit cast is not used.

Matrix corversions
Matrixes may be comrted to a scalar type (selects to 0,0 element). As with vectors, this causes a
warning if its done implicitly A matrix may also be ceerted implicitly to a matrix of the same size
and shape and compatible element type

A Matrix may be coverted to a smaller matrix type (selects the uppeft submatrix), or to aector
of the same total size, but a warning is issued if an explicit cast is not used.

Structure cowversions
a dructure may be explicitly cast to the type of its first membeto another structure type with the
same number of members, if each member of the struct can\eetedrio the corresponding member
of the nev struct. Noimplicit conversions of struct types are allowed.

Cg Toolkit 2.0 10

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

Array corversions
An array may bexplicitly converted to another array type with the same number of elements and a
compatible element typeA compatible element type is atype to which the element type of the ini-
tial array may be implicitly corerted to. No implicit comersions of array types are allowed.

Source type
O Scalar [0 Vector [O Matrix 0O Struct 0O Array O

+ + + + + +

o w O W 0OFEg8 0O - O

Scalar 0O

+ + 4 4 +

A
Vector O A OAW@) O W@ 0O E@ O E6) O
A

4 4
T T

~ToQ " 9 -

Matrix O W(zi DAI\/W(l) 0 E@ O E7) O

4

O
Stuct O E O E@4) 0O E@ OE®4/5)
O

t O E@4) O
y - + + t + +
p Array o - E6) 0O E7 0O EQ@® 0O E®B) O
e - + + + + +

A = allowed implicitly or explicitly

W = dlowed, but warning issued if implicit

E = only allowed with explicit cast

- = n ot allowed
notes

(1) not allowed if target is larger than source. Warning if
target is smaller than source

(2) only allowed if source and target are the same total size

(3) only if the first member of the source can be converted to
the target

(4) only if the target struct contains a single field of the
source type

(5) only if both source and target have the same number of
members and each member of the source can be converted
to the corresponding member of the target.

(6) Source and target sizes must be the same and element types
must be compatible

(7) Array type must be an array of vectors that matches the
matrix type.

Explicit casts are:
» compile-time type when applied to expressions of compile-time type.
* numeric type when applied to expressions of numeric or compile-time types.
* numeric vector type when applied to another vector type of the same number of elements.
* numeric matrix type when applied to another matrix type of the same
number of rows and columns.
Type Equivalency
Type T1 is equident to type T2 if ay of the following are true:
* T2isquivalent to T1.

Cg Toolkit 2.0 11

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

 T1and T2 are the same scaleector or dructure type.
A packed array type isotequivalent to the same size unpacked array.

 Tlisatpedef name of T2.

* T1land T2 are arrays of equaient types with the same number of elements.

* The unqualified types of T1 and T2 are &gigint, and both types 1@ the same qualifications.

* T1 and T2 are functions with equilent return types, the same number of parameters, and all corre-
sponding parameters are pair-wise egent.

Type-Romotion Rules

Thecfloat andcint types behee like float andint types, except for the usual arithmetic wan
sion behavior (defined below) and functioretoading rules (defined later).

Theusual arithmetic conversiorier binary operators are defined as follows:

1. Ifone operand isint it is corverted to the other type

2. Ifone operand isfloat and the other ifloating thecfloat is corverted to the other type
3. If both operands afftpatingthen the smaller type is caarted to the larger type
4

If one operand ifloating and the other ifntegral, the integral argument is cearted to the floating
type.
If both operands aiategralthe smaller type is coerted to the larger type

If one operand isigned intgral while the other isinsigned intgral and thg are the same size, the
signed type is carerted to unsigned.

Note that cowmersions happen prior to performing the operation.

Assgnment

Assignment of an expression to a concrete typed objegetsrihe expression to the type of the object.
The resulting value is then assigned to the object or value.

The value of the assignment expressiens£, and so on) is defined as in C:

An assignment expression has tlaue of the left operand after the assignment but is notaduelv The

type of an assignment expression is the type of the left operand unless the left operand has a qualified type,
in which case it is the unqualifieegnsion of the type of the left operand. The side effect of updating the
stored value of the left operand occurs between the previous and the next sequence point.

An assignment of anxpression to a dynamic typed object is only possible if the type of the expression is
compatible with the dynamic object type. The object will them @k he type of the expression assigned
to it until the next assignment to it.

“ Smearing o Scalarsto Vectors

If a binary operator is applied to a vector and a sctilarscalar is automatically type-promoted to a same-
sized vector by replicating the scalar into each component. The t&nargerator also supports smear

ing. Thebinary rule is applied to the second and third operands first, and then the binary rule is applied to
this result and the first operand.

Namespaces
Just as in C, there aredwamespaces. Each has multiple scopes, as in C.

» Tag namespace, which consistswfict tags

Cg Toolkit 2.0 12

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

* Regular namespace:
— typedef names (including an automdgipedef from astruct declaration)
— variables

— function names

Amr aysand Subscripting

Arrays are declared as in C, except thay imay optionally be declared to Ipacked , as escribed ear

lier. Arrays in Cg are first-class types, so array parameters to functions and programs must be declared
using array syntax, rather than pointer syntaikewise, assignment of aarray-typed object implies an

array cop rather than a pointer cgp

Arrays with sizg1] may be declaredub are considered a different type from the corresponding non-array
type.
Because the language does not currently support pointers, the storage order of arrays is only visible when

an application passes parameters teréev or fragment programTherefore, the compiler is currently free
to allocate temporary variables as it sees fit.

The declaration and use of arrays of arrays is in the same style as in C. That is, if the 2Disirray
declared as

float A[4][4];

then, the following statements are true:
» The array is indeed as A[row][column];
* The array can be built with a constructor using

floatdx4 A = { { A[0][0], A[O][1], A[0][2], A[0][3] },
{ A[LI[0], A[L][1], A[1][2], A[1][3] },
{ A[2][0], A[2][1], A[2][2], A[2][3] },
{ A[3I[0], A[3][1], A[3][2], AL3](3] });

* AJ0] is equvaent tofloat4(A[0][0], A[0][1], A[O][2], A[O][3])
Support must be provided for structs containing arrays.
Unsized Arrays

Objects may be declared assizedarrays by using a declaration with an empty §izeand no initializer

If a declarator uses unsized array syntax with an initializex declared with a concrete (sized) array type
based on the declaratolUnsized arrays are dynamic typed objects tha¢ tak he size of ay array
assigned to them.

Minimum Array Requirements

Profiles are required to priole partial support for certain kinds of arrays. This partial support is designed
to support vectors and matrices in all profilésr vertex profiles, it is additionally designed to support
arrays of light state (incted by light number) passed as uniform parameters, and arrays of skinning matri-
ces passed as uniform parameters.

Profiles must support subscripting, copying, size querying and swizzling of vectors and mEiiveser,
subscripting with run-time computed indices is not required to be supported.

Vertex profiles must support the folling operations for gnnon-pacled array that is a uniform parameter

to the program, or is an element of a structure that is a uniform parameter to the program. This requirement
also applies when the array is indirectly a uniform program parameter (that is, it and or the structure con-
taining it has been passed via a chaimoffunction parameters). The three operations that must be sup-
ported are

Cg Toolkit 2.0 13

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

» rvalue subscripting by a run-time computed value or a compile-time value.

» passing the entire array as a parameter to a function, where the corresponding formal function parame-
ter is declared as .

* querying the size of the array withlangth suffix.

The following operations are explicitly not required to be supported:
» lvalue-subscripting

e copying

» other operators, including multiplgdd, compare, and so on

Note that when a uniform array isatue subscripted, the result is an expression, and this expression is no
longer considered to beumiform program parameteiTherefore, if this expression is an arriy subse-
guent use must conform to the standard rules for array usage.

These rules are not limited to arrays of numeric types, and thus imply support for arrays of struct, arrays of
matrices, and arrays of vectors when the arrayusiform program parameterMaximum array sizes

may be limited by the number ofallable registers or other resource limits, and compilers are permitted to
issue error messages in these castmwever, profiles must support sizes of at ledlstt arr[8] ,

float4 arr[8] , and floatdx4 arr[4][4]

Fragment profiles are not required to suppoyt @perations on arbitrarily sized arrays; only support for
vectors and matrices is required.

Fundion Overloading

Multiple functions may be defined with the same name, as long as the definitions can be distinguished by
unqualified parameter types and do notehan open-profile conflict (as described in the section on open
functions).

Function-matching rules:
1. Addall visible functions with a matching name in the calling scope to the set of function candidates.
2. Eliminatefunctions whose profile conflicts with the current compilation profile.

3. Eliminatefunctions with the wrong number of formal parameters. If a candidate functionxdesse
formal parameters, and each of the excess parameters has a default value, do not eliminate the func-
tion.

If the set is emptyail.
For each actual parameter expression in sequence (left to right), perform the following:

a. If the type of the actual parameter matches the unqualified type of the corresponding formal
parameter in ganfunction in the set, reme dl functions whose corresponding parameter does
not match exactly.

b. If there is a function with a dynamically typed formajwanent which is compatible with the
actual parameter type, rexedl functions whose corresponding parameter is not similarly com-
patible.

B. |If there is a defined promotion for the type of the actual parameter to the unqualified type of the
formal parameter of grfunction, remwee dl functions for which this is not true from the set.

d. |If there is a valid implicit cast that ogants the type of the actual parameter to the unqualified
type of the formal parameter ofyafunction, remae dl functions for which this is not true from
the set

e. FRail

Cg Toolkit 2.0 14

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

6. Choose function based on profile:

a. Ifthere is at least one function with a profile that exactly matches the compilation profile, discard
all functions that don’exactly match.

b. Oherwise, if there is at least one function with a wildcard profile that matches the compilation
profile, determine the 'most specific’ matching wildcard profile in the candidate set. Discard all
functions &cept those with this 'most specific’ wildcard profildow 'specific’ a gien wildcard
profile name is relate o a particular profile is determined by the profile specification.

7. If the number of functions remaining in the set is not one, then fail.

Globd Varnables

Global variables are declared and used as in C. Non-statables may hae a #mantic associated with
them. Uniformnon-static variables may yateir value set through the run-timel.

Useaf Uninitialized Vanables

It is incorrect for a program to use an uninitialized static or loaeblle. Havever, the compiler is not
obligated to detect such errorsen if it would be possible to do so by compile-time datefémalysis.

The value obtained from reading an uninitialized variable is undefined. This same rule applies to the
implicit use of a ariable that occurs when it is returned by a tagHeunction. Inparticular if a top-level

function returns &truct , and some element of thatruct is never written, then the alue of that ele-

ment is undefined.

Note: The language designers did not choose to define variables as being initialized to zero because that
would result in a performance penalty in cases where the compiler is unable to determiagable is
properly initialized by the programmer.

Preprocessor

Cg profiles must support the fllNSI C gandard preprocessor capabilitiedf: , #define , and so on.
However, while #include must be supported the mechanism by which the file to be included is located is
implementation defined.

Overview of Binding Semantics
In stream-processing architectures, data packetdbtween different programmable units. OGRU, for
example, packets of vertalata flav from the application to the vert@rogram.

Because padas are produced by one program (the application, in this case), and consumed by another (the
vertex program), there must be some mechanism for defining the interface between.th@galows the
user to choose betweenawdfferent approaches to defining these interfaces.

The first approach is to associate a binding semantic with each element of thie Jdikapproach is a
bind-by-nameapproach. &r example, an output with the binding semaRtOis fed to an input with the
binding semanti¢O0O Profiles may allav the user to define arbitrary identifiers in this “semantic names-
pace’, or they may restrict the allowed identifiers to a predefined set. Often, these predefined names corre-
spond to the names of hardware registesRbrresources.

In some cases, predefined names may control non-programmable parts of tteehafoiiexample, er-
tex programs normally compute a position that is fed to the rasteaimthis position is stored in an out-
put with the binding semantROSITION.

For any profile, there are tav namespaces for predefined binding semantitee namespace used far
variables and the namespace usedigr variables. Therimary implication of having tewnamespaces is
that the binding semantic cannot be used to implicitly specify whether a variableisut .

The second approach to defining data ptks to describe the data that is present in a packet andladio
compiler to decide hwto gore it. In Cg, the user can describe the contents of a data packet by placing all
of its contents into atruct . When astruct is used in this mannewe refer to it as aonnector The

two gpproaches are not mutuallycusive, as is dscussed laterThe connector approach allows the user to
rely on a combination of user-specified semantic bindings and compiler-determined bindings.

Cg Toolkit 2.0 15

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

Binding Semantics

A binding semantic may be associated with an input to a t@bflenction or a global variable in one of
three ways:

» The binding semantic is specified in the formal parameter declaration for the function. The syntax for
formal parameters to a function is:

[const] [in O out [inout] <type> <identifier> [: <binding-semantic>] [= <initializer>];

» If the formal parameter issruct , the binding semantic may be specified with an element of the
struct when thestruct is defined:

struct <struct-tag> {
<type> <identifier>[: <binding-semantic>];

h

» If the input to the function is implicit (a non-static globaliable that is read by the function), the
binding semantic may be specified when the non-static global variable is declared:

[varying [in O out]] <type> <identifier> [: <binding-semantic>];
If the non-static global variable is sruct, the binding semantic may be specified when the
struct is defined, as described in the second bulletabo
* A binding semantic may be associated with the output of a wepflenction in a similar manner:

<type> <identifier> (<parameter-list>) [: <binding-semantic>]

{

Another method ailable for specifying a semantic for an output value is to retwnuat , and to spec-

ify the bindingsemantigs) with elements of thstruct when thestruct is defined.In addition, if the

output is a formal parametehen the binding semantic may be specified using the same approach used to
specify binding semantics for inputs.

Aliasng d Semantics

Semantics must honor a gepn-input and copy-on-output model. Thus, if the same input binding seman-

tic is used for tw different variables, those variables are initialized with the satue vbut the ariables

are not aliased thereafte@utput aliasing is illgd, but implementations are not required to detect it. If the
compiler does not issue an error on a program that aliases output binding semantics, the results are unde-
fined.

Additiona Details for Bindingg Semantics

The following are somewhat redundant, but provide extra clarity:

* Semantic names are case-insewsiti

* Semantics attached to parameters to non-main functions are ignored.
* Input semantics may be aliased by multiple variables.

» Output semantics may not be aliased.

Cg Toolkit 2.0 16

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

Udng aSucturre to Define Bindingg Semantics(Connectors)

Cg profiles may optionally ale the user toaid the requirement that a binding semantic be specified for
eveay non-uniform input (or output) variable to a topdeprogram. D avoid this requirement, all the non-
uniform variables should be included within a singfileict . The compiler automatically allocates the
elements of this structure to hardware resources in a manner that allpwsogram that returns this
struct to interoperate with gnprogram that uses th&ruct as an input.

It is not required that all non-uniform inputs be included within a single struct in order to omit binding
semantics. Bindingemantics may be omitted fromyanput or output, and the compiler

performs automatic allocation of that input or output to a hardwesourceHowever, to guarantee inter
operability of one prograre’autput with another program’input when automatic binding is performed, it
is necessary to put all of the variables in a sisgigct

It is permissible to explicitly specify a binding semantic for some elements sfrtle¢ , but not others.

The compilers automatic allocation must honor these explicit bindings. The allowed set of explicitly spec-
ified binding semantics is defined by the allocation-rule identifiee most common use of this capability

is to bind variables to hardwe registers that write to, or read from, non-programmable parts of the hard-
ware. For example, in a typicalertex-program profile, the outpstruct would contain an element with

an explicitly specifiedOSITIONsemantic. Thiglement is used to control the hardware rasterizer.

Ddining Bindingy Semanticvia an extemal API

It may be possible to define binding semantics on inputs and outputs by uskigraal@PI that manipu-
lates the programs einonment. TheCg RuntimeAPI is such amPI that allaws this, and others maxist.

How Programs Receje and Return Data
A program is a non-static function that has been designated as the main entry point at compilation time.
The varying inputs to the program come from this tametl€unctions varyingin parameters, and gn
global warying variables that do notVvean out modifier The uniform inputs to the program come from
the top-leel functions uniform in parameters and from ymon-static global &riables that are referenced
by the top-lgel function or by ay functions that it calls. The output of the program comes from the return
value of the function (which is aiys implicitly varying), from ag out parameters, which must also be
varying, and from anyarying out global variables that are written by the program.

Paameters to a program of typampler* are implicitlyconst .

Saementsand Expressions
Statements are expressed just as in C, unless an exception is stated elsewhere in this document. Addition-
ally,

« if ,while ,andfor require bool expressions in the appropriate places.

» Assignment is performed usirg The assignment operator returns a value, just as in C, so assign-
ments may be chained.

 The nev discard statement terminatesecution of the program for the current data element (such
as the currentartex or current fragment) and suppresses its outpeitted profiles may choose to omit
support fordiscard

Minimum Requirementsfor if, while, for
The minimum requirements are as follows:

» All profiles should suppoit , but such support is not strictly required for older hardware.

» All profiles should suppofor andwhile loops if the number of loop iterations can be determined
at compile time.“ Can be determined at compile time defined as follows: The loop-iteration
expressions can beva@uated at compile time by use of intra-procedural constant propagation and fold-
ing, where the variables through which constati@s are propagated do not appear as Ivalues within
ary kind of control statementf(, for , or while) or ?: construct. Profilesnay choose to support
more general constant propagation techniques, but such support is not required.

Cg Toolkit 2.0 17

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

» Profiles may optionally support fully genefatr andwhile loops.

New Vetar Operators
These ne operators are defined for vector types:
» Vector construction operatdypell...)
This operator builds a vector from multiple scalars or shorter vectors:
- float4(scalar, scalar, scalar, scalar)
- float4(float3, scalar)
* Matrix construction operatotypelX...)
This operator builds a matrix from multiple rows.

Each rev may be specified either as multiple scalars or gambination of scalars and vectors with
the appropriate size, e.g.

float3x3(1, 2, 3,4, 5,6, 7, 8,9)
float3x3(float3, float3, float3)
float3x3(1, float2, float3, 1, 1, 1)

* Vector swizzle operator: |

a = b.xxyz; /l A swizzle operator example

— Atleast one swizzle character must folline operator.

— There are three sets of swizzle characters aryohthg not be mixed: Set onexgzw = 0123
set two isrgha = 0123 |, and set three istpg = 0123

— The vector swizzle operator may only be applied to vectors or to scalars.

— Applying the vector swizzle operator to a scalaegiihe same result as applying the operator to
a vector of length one. Thusnyscalar.xxx and float3(myscalar, myscalar,
myscalar) yield the same value.

- If only one swizzle character is specified, the result is a scalar mat@ wf length oneThere-
fore, the expressioy returns a scalar.

— Care is required when swizzling a constant scalar because of ambiguity in the use of the decimal
point characterFor example, to create a three-vector from a scak®m one of the follwing:
(1).xxx orl.xxx orl.0.xxx or1.0f.xxx

— The size of the returned vector is determined by the number of swizzle charatersfore, the
size of the result may be ¢mr or smaller than the size of the originactor For example,
float2(0,1).xxyy andfloat4(0,0,1,1) yields the same result.

* Matrix swizzle operator:

For any matrix type of the form ’'<type><rows>x<columns>’, the notation: ’'<matrixOb-
ject>._m<row><col>[_m<nw><col>][...] can be used to access individual matrix elements (in the
case of only one <row>,<col> pair) or to construct vectors from elements of a matrix (in the case of
more than one <row>,<col> pair). Thearand column numbers are zero-based.

For example:

float4x4 myMatrix;
float myFloatScalar;
float4 myFloatVec4;

Cg Toolkit 2.0 18

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

/I Set myFloatScalar to myMatrix[3][2]
myFloatScalar = myMatrix._m32;

/I Assign the main diagonal of myMatrix to myFloatVec4
myFloatVec4 = myMatrix._ m00_m11 m22_m33;

For compatibility with the D3DMatrix data type, Cg also alloone-based swizzles, using a form with
themomitted after the : '<matrixObject>._<row><col>[_<m><col>][...]" In this form, the indees
for <row> and <col> are one-based, rather than the C standard zero-based. So fohmsvare func-
tionally equvaent:

floatdx4 myMatrix;
float4 myVec;

/I These two statements are functionally equivalent:
myVec = myMatrix._ m00_m23_m11 m31,;
myVec = myMatrix._11 34 22 42;

Because of the confusion that can be caused by the one-based indexing, its use is strongly discouraged.
Also one-based indexing and zero-based indexing cannot be mixed in a single swizzle

The matrix swizzles may only be applied to matricéhen multiple components are extracted from a
matrix using a swizzle, the result is an appropriately sieetbv When a swizzle is used to extract a
single component from a matrix, the result is a scalar.

* The write-mask operator: J It can only be applied to an Ivalue that is a vector or matrix. lvallo
assignment to particular elements ofextor or matrix, leaving other elements unchanged. It looks
exactly like a svizzle, with the additional restriction that a component cannot be repeated.

Arithmdic Precisionand Range

Some hardware may not conform exactlylf&E arithmetic rules.Fixed-point data types do notJea
IEEE-defined rules.

Optimizations are permitted to produce slightly different results than unoptimized code. Constant folding
must be done with approximately the correct precision and rangés bot required to produce bitart
results. Itis recommended that compilers yide an option either to forbid these optimizations or to-guar
antee that theare made in bit-exact fashion.

Operaar Precedence
Cg uses the same operator precedence as C for operators that are common betweémthsatyes.

The swizzle and write-mask operator9 havethe same precedence as the structure member operator (
and the array indeoperator]] .

Operatar Enhancements

The standard C arithmetic operatofs €, *, /, % unary —) are extended to support vectors and matri-
ces. Sizeof vectors and matrices must be appropriately matched, according to standard mathematical
rules. Scalato-vector promotion, as described earlaiows relaxation of these rules.
M{n][m]
Matrix with n rows andmcolumns
VIn]
Vector withn elements
-V[n] —> V[n]
Unary vector ngae

Cg Toolkit 2.0 19

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

—M[n] —> M[n]
Unary matrix ngate

V[n] * V[n] —>V[n]
Componentwise *

V[n]/ V[n] —> V[n]
Componentwise /

V[n] % V[n] —> V|[n]
Componentwise %

V[n] + V[n] —> V[n]
Componentwise +

V[n] = V[n] —> V[n]
Componentwise —

ML m] * M[n][m]] —> M[n][m]
Componentwise *

ML m] / M[n][m]] —> M[n][m]
Componentwise /

Ml m] % M[n][m]] —> M[n]im]
Componentwise %

M{[n][m] + M[n][m]] —> M[n][m]
Componentwise +

M [n][m] = Mln][m]] => M[n]im]

Componentwise —
Operaars
Boolean
&& M !

Boolean operators may be appliedbtwml packed bool vectors, in which case yhare applied in element-
wise fashion to produce a result vector of the same size. Each operand mbsbbevactor of the same
size.

Both sides of && andll are alvays evaluated; there is no short-circuiting as there is in C.
Comparisons
< > <= >= |l= ==
Comparison operators may be applied to numesators. Bottoperands must be vectors of the same size.

The comparison operation is performed in elementwise fashion to prothoct asector of the same size.

Comparison operators may also be appliethdol vectors. For the purpose of relational comparisons,
true is treated as one arfidlse is treated as zeroThe comparison operation is performed in element-
wise fashion to producetmol vector of the same size.

Comparison operators may also be applied to numeric or bool scalars.
Arithmetic
+ - * |/ % + + -- unary- unary+
The arithmetic operatdhis the remainder operataas in C. It nay only be applied to twoperands of
cint orint types.

When/ or %is used witlcint orint operands, C rules for integerand%apply.

Cg Toolkit 2.0 20

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

The C operators that combine assignment with arithmetic operations (stehaie also supported when
the corresponding arithmetic operator is supported by Cg.

Conditional Operator
?:

If the first operand is of typeool , one of the following must hold for the second and third operands:
» Both operands @ cmompatible structure types.
» Both operands are scalars with numeribaol type.

* Both operands are vectors with numericbool type, where the tw vectors are of the same size,
which is less than or equal to four.

If the first operand is a pae#t vector obool , then the conditional selection is performed on an element-
wise basis. Both the second and third operands must be numeetarsvof the same size as the first
operand.

Unlike C dde effects in the expressions in the second and third operande/aye edecuted, rgardless of
the condition.

Miscellaneous Operators

(typecast)

Cg supports G typecast and comma operators.

Resawed Words
The following are currently used reserved words in @g.* indicates that the reserved word is case-
insensitie.
_ _[anything] (i.e. ag identifier with two underscores as a prefix)
asm*
asm_fragment
auto
bool
break
case
catch
char
class
column_major
compile
const
const_cast
continue
decl*
default
delete
discard
do
double
dword*
dynamic_cast
else
emit

Cg Toolkit 2.0 21

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

enum
explicit
extern

false

fixed

float*

for

friend

get

goto

half

if

in

inline

inout

int

interface
long

matrix*
mutable
namespace
new
operator

out

packed
pass*
pixelfragment*
pixelshader*
private
protected
public
register
reinterpret_cast
return
row_major
sampler
sampler_state
samplerlD
sampler2D
sampler3D
samplerCUBE
shared

short
signed
sizeof

static
static_cast
string*
struct

switch
technique*
template

Cg Toolkit 2.0 22

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

texture*
texturelD
texture2D
texture3D
texture CUBE
textureRECT
this

throw

true

try

typedef
typeid
typename
uniform
union
unsigned
using

vector*
vertexfragment*
vertexshader*
virtual

void

volatile

while

Cg Standard Libraryy Functions
Cg provides a set of built-in functions and structures to sim@ify programming. Thes&inctions are
similar in spirit to the C standard library functions, providing aveorent set of common functions.

The Cg Standard Library is documented in “spec_stdlib.txt".

VERTEX PROGRAM PROFILES
A few features of the Cg language that are specificettes program profiles are required to be imple-
mented in the same manner for all viegpeogram profiles.
M andatary Computation of Position Output
Vertex program profiles may (and typically do) require that the program compute a position othfsit.
homogeneous clip-space position is used by the hardware rasemizenust be stored in a program output
with an output binding semantic BODSITION (or HPOSor backward compatibility).
Paosition Imvariance

In mary graphics APIs, the user can choose betweem different approaches to specifying peirtex
computations: use aulit-in configurable ‘fixed-function” pipeline or specify a user-writterestex pro-

gram. Ifthe user wishes to mix theseaspproaches, it is sometimes desirable to guarantee that the posi-
tion computed by the first approach is bit-identical to the position computed by the second appn@ach.

“ position irvariance’ is particularly important for multipass rendering.

Support for position weriance is optional in Cgertex profiles, lut for those ertex profiles that support it,
the following rules apply:

» Position invariance with respect to the fixed function pipeline is guaranteeaitdwditions are met:

— A #pragma position_invariant <top-level-function—-name> appears before
the body of the top-iesl function for the verteprogram.

— The vert& program computes position as follows:

OUT_POSITION = mul(MVP, IN_POSITION)

Cg Toolkit 2.0 23

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

where:

OUT_POSITION
is a variable (or structure element) of tyff@at4 with an output binding semantic of
POSITION or HPOS

IN_POSITION
is a variable (or structure element) of tyff@at4 with an input binding semantic of
POSITION.

MVP
is a uniform variable (or structure element) of tyfimatdx4 with an input binding
semantic that causes it to track the fixed-function modelview-projection matrix. (The name

of this binding semantic is currently profile-speciie for OpenGL profiles, the semantic
state.matrix.mvp is recommended).

» Ifthe first condition is met but not the second, the compiler is encouraged to issue a warning.

* Implementations may choose to recognize more genersibws of the second condition (such as the
variables being coppropagted from the original inputs and outputs), but this additional generality is
not required.

Binding Semanticsior Outputs

As shown in Table 10, there arectautput binding semantics for vextprogram profiles:

Table 10 Vertex Output Binding Semantics

Name Meaning Type Default Value

POSITION Homogeneous clip-space float4 Undefined
position; fed to rasterizer.

PSIZE Point size float Undefined

Profiles may define additional output binding semantics with specific behaviors, and these definitions are
expected to be consistent across commonly used profiles.

FRAGMENT PROGRAM PROFILES
A few features of the Cg language that are specific to fragment program profiles are required to be imple-
mented in the same manner for all fragment program profiles.
Binding semanticsior outputs
As shown in Table 11, there are three output binding semantics for fragment program profiles:

Table 11 Fragment Output Binding Semantics

Name Meaning Type Default Value

COLOR RGBAoutput color float4 Undefined

COLORO Sameas COLOR

DEPTH Fragment depth value float Interpolated depth from rasterizer
(in range [0,1]) (in range [0,1])

Profiles may define additional output binding semantics with specific behaviors, and these definitions are
expected to be consistent across commonly used profiles.

If a program desires an output color alpha of 1.0, it shoytloitly write a value of 1.0 to th&Vcompo-
nent of theCOLOPutput. Thdanguage does *not* define a default value for this output.

Note: If the target hardave uses a default value for this output, the compiler may choose to optivaize a
an «plicit write specified by the user if it matches the default hardwaheev Suchdefaults are not
exposed in the language.)

Cg Toolkit 2.0 24

Cg_language(Cqg) Clhanguage Specification Cg_language(Cqg)

In contrast, the language does define a default value f&@ERT Houtput. Thisdefault value is the inter
polated depth obtained from the rasteriz8emantically this default value is copied to the output at the
beginning of thexecution of the fragment program.

As discussed earliewhen a binding semantic is applied to an output, the type of the output variable is not
required to match the type of the binding semartfiia. example, the following is Igd, although not rec-
ommended:

struct myfragoutput {
float2 mycolor : COLOR,;

}

In such cases, thasiable is implicitly copied (with a typecast) to the semantic upon program completion.
If the variables vector size is shorter than the semasti€ctor size, the lgernumbered components of
the semantic receg their default values if applicable, and otherwise are undefined. In the casethb&®

and G components of the output color are obtained fraytolor , while theB and A components of the
color are undefined.

Cg Toolkit 2.0 25

