

Game Programming
for Teens,

Second Edition

Maneesh Sethi

Publisher and General Manager,
Thomson Course Technology PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah O’Donnell

Manager of Editorial Services:
Heather Talbot

Marketing Manager:
Heather Hurley

Senior Acquisitions Editor:
Emi Smith

Senior Editor:
Mark Garvey

Marketing Coordinator:
Jordan Casey

Project Editor:
Jenny Davidson

Technical Reviewer:
Jonathan Harbour

Thomson Course Technology PTR
Editorial Services Coordinator:
Elizabeth Furbish

Copyeditor:
Kezia Endsley

Interior Layout Tech:
Jill Flores

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Brandon Penticuff

Indexer:
Sharon Shock

Proofreader:
Sara Gullion

© 2005 by Thomson Course Technology PTR. All rights reserved. No part
of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or
by any information storage or retrieval system without written permis-
sion from Thomson Course Technology PTR, except for the inclusion of
brief quotations in a review.

The Premier Press and Thomson Course Technology PTR logo and
related trade dress are trademarks of Thomson Course Technology and
may not be used without written permission.

BlitzPlus, Blitz3D, BlitzBasic2D, and BlitzMax are trademarks of Blitz
Research, Ltd. Paint Shop Pro is a registered trademark of Corel Corpora-
tion. MilkShape 3D is a registered trademark of ChumbaLum sOft.
CoolEdit Pro is a registered trademark of Syntrillium Software Corporation.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s techni-
cal support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted through-
out this book to distinguish proprietary trademarks from descriptive terms
by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of
the fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

Educational facilities, companies, and organizations interested in multi-
ple copies or licensing of this book should contact the publisher for
quantity discount information. Training manuals, CD-ROMs, and por-
tions of this book are also available individually or can be tailored for
specific needs.

ISBN: 1-59200-834-8
Library of Congress Catalog Card Number: 2005923913
Printed in Canada
05 06 07 08 09 WC 10 9 8 7 6 5 4 3 2 1

Thomson Course Technology PTR,
a division of Thomson Course Technology

25 Thomson Place
Boston, MA 02210

http://www.courseptr.com

For my parents, Neelam and Prabhjot

Jeez, there are so many people to thank. This feels like I’m accepting an Oscar™: I’m
afraid the band will start playing and usher me off the stage. Anyway, first of all thank
you André LaMothe for giving me a chance and taking me out to lunch. I will get you

back for that one day. Thank you everyone at Premier Press: my production editor Jenny
Davidson, my copy editor, Kezia Endsley, my acquisitions editor, Emi Smith, and my CD
editor, Brandon Penticuff.

Thanks go out to Adam Hepworth, who spent a lot of his “busy” day helping read my text
and correcting a lot of errors. To all of my brothers and sisters, Rachi, who offered her help
even though she was across an ocean, Nagina, whose love and support (and numerous
phone calls) helped carry me through, and Ramit, who gave me a person to look up to and
who helped me through the thick and thin (as well as giving me the chance to use
“abeyance” in a sentence). Thanks for being here and giving me support when I needed it.
To my mom and dad: I couldn’t have done this without you. I love you so much.

Finally, thanks to Edgar L. Ibarra (Feo) for his artwork and Thomas Stenbäck for his work
on the CD’s music. Also, to Ari Feldman, for allowing me to use his sprite library on the
CD.

Also, for contributing a demo program to the book, thanks to Jason Brasier and Edgar
Ibarra for Rockfall and Marcus “Eikon” Smith for Galaxiga.

And to everyone whose name I forgot, you know who you are. Thanks!

IV

Acknowledgments

MANEESH SETHI is a high school student in California who will be enrolled at Stanford
University in 2006. Maneesh has worked with Web design and development since he was
in fifth grade and was the founder and head designer of Standard Design, a Web site
design company. Maneesh has taught game programming on TechTV’s Call for Help and
at game programming conferences such as the XGDX. He is the author of Game
Programming for Teens (First Edition) and Web Design for Teens, both published by Course
PTR, and How to Succeed as a Lazy Student.

Besides game programming, Maneesh enjoys playing games (of course), sports such as
tennis and basketball, and of course, sleep. Learn more about Maneesh, as well as his
award-winning T-shirts and iPod sock case at www.maneeshsethi.com.

V

About the Author

VI

Contents

Introduction .xi

Part I: The Basics of BASIC 1

Chapter 1 Getting Started .3
A Brief History of BASIC .3

Installing BlitzPlus .4
Windows and Panels .5
Toolbars .6
Menus .7

The First Game: KONG .7
Compiling the Code .16

Summary .18

Chapter 2 Getting to Know BASIC .19
Hello, World! .19
Variables .23

Declaring Variables .23
Using Variables .24

Input .26
Conditionals .28

Truth and Falsehood .28
If...Then .29

Contents VII

If...Then…Else .30
Select…Case .32

Logical Operators .33
The NOT Operator .35

The Goto Command .35
A Text-Based Guessing Game .37
Summary .39

Chapter 3 Loops, Functions, Arrays, and Types 41
Understanding Loops .41

For…Next .42
While…Wend .46
Repeat…Until .48

Understanding Functions .51
Scope Considerations .53
When to Use Functions .57

Understanding Arrays .58
Multi-Dimensional Arrays .64

Using Types .67
Coordinate Systems .75
For…Each…Next .77

Putting It All Together: Textanoid! .79
Summary .93

Chapter 4 The Style Factor .95
Developing Style .95

White Space and Indentation .96
Comments .97

Pre-Program Comments .99
Main Program Comments .100
Function Comments .100

Function and Variable Names .101
Names .101
Naming Format .101
Summary .103

ContentsVIII

Part II: Getting Graphical105

Chapter 5 Beginning Graphics .107
Creating the Graphics Window .107

Width and Height .108
Color Depth .109
[Mode] .110

Images .114
LoadImage .114
DrawImage .116
CreateImage .118
MaskImage .122

Colors .125
RGB .126
Color .128
Cls and ClsColor .130

Summary .131

Chapter 6 Page Flipping and Pixel Plotting .133
Page Flipping .133

Buffers .136
SetBuffer .137
CreateImage .143

Locking and Unlocking Buffers .156
Lock/Unlock .156
ReadPixel()/ReadPixelFast() .157
WritePixel/WritePixelFast .161

Using Buffers: A Paint Program .166
Initialization .168
Main Loop .170

Functions .172
Summary .180

Contents IX

Chapter 7 Basic Image Programming .181
Transformations .181

Translating .181
Scaling .186
Rotation .209

Parallaxing .217
TileBlock and TileImage .218

Summary .225

Chapter 8 Animation .227
Using Bitmaps in Animation .227

Making Bitmaps .234
Displaying Movement .239

Summary .247

Chapter 9 Collision Detection .249
Basic Collisions .249
Bounding Circles .253

Distance between Points .253
Radii .255

Bounding Boxes .260
Pixel-Imperfect Collisions .268
Pixel-Perfect Collisions .272
Summary .274

Part III: Completing the Puzzle275

Chapter 10 Handling Input .277
Handling the Keyboard .277

KeyDown() .278
KeyHit() .285

Mapping the Mouse to the Screen .294
Displaying the Mouse Cursor .295
What Was That? Handling Mouse Key Presses 298
The Middle Mouse Wheel .306

Handling Joystick Input .310
Summary .312

Chapter 11 Sounds and Music .313
Sound .313

Loading Sounds .314
Listen Closely—Playing Sounds .316

Music .330
Channels and PlayMusic() .330
Messing With ’Da Channels .331

Summary .335

Chapter 12 Artificial Intelligence .337
Random Numbers .337

Creating a MilliSecs() Timer .342
Chasing and Evading .349

Chasing .349
Evading .354

Summary .356

Chapter 13 The Final Frontier: Invaderz!!! .359
Let’s Bust It: Planning the Game .359
Constants, Functions, and Types in Invaderz!!! 362
Playing Invaderz!!! .366
Epilogue .368

Part IV: Appendixes .371

Appendix A Scan Code Reference .373

Appendix B Useful Links .379
Blitz Basic Links .379
General Game Programming Links .380

Appendix C What’s on the CD. 381
Source .382
Art .382
Sounds .382
Games .382
Programs .383

Index . 384

ContentsX

XI

Hey, reader. Thanks for buying my book. I am really thankful for it.

What is programming? Programming, according to Dictionary.com, is “a set of coded
instructions that enables a machine, especially a computer, to perform a desired sequence
of operations.” In other words, programming allows you to make your computer do what-
ever you want it to do. Programming is used in everything related to the computer, but
there are many distinct flavors of programming. This book teaches game programming.

Game programming is very different from the other types of programming. When you
turn on your computer, you often see static programs—programs that sit there and wait
for you to do something. Not with games. Games are running constantly, and they don’t
need the player to do anything to keep it running.

Of course, does this mean that game programming is a bit tougher than other styles of
programming? Yes and no. Although game programming can be difficult at times, this
book strives to turn the difficult into second nature. We use a language of programming
called BASIC, which, as you can probably guess, is pretty darn basic.

What’s in the Book?
This book is meant to be a guide to teach any beginner how to design and develop games.
Inside the book you will find a wealth of knowledge all written in mind to help you reach
the goal of making a game. Each chapter builds on the previous chapters and makes the
book seem like a staircase—you move up step by step. The last chapter helps use all of
your culminated knowledge in the production of a final game.

Introduction

Part I discusses the BlitzPlus language. During this time, the book does not discuss graph-
ical programs, but instead uses text-based to get the language points across.

Part II teaches the reader all about graphics within games. There is such information as
varying colors, loading and displaying images, making scrolling backgrounds, and things
like that.

Part III examines other related parts to game programming. The reader can learn how to
use keyboard input, sounds, and music, and take into account artificial intelligence. This
part also creates the final game that the book has been leading up to.

Part IV contains all the appendixes for the book. You will find all of the scan codes (for han-
dling input), a list of Web sites to further your knowledge in the field, and what is on the CD.

Who Are You?
I suppose you can answer this question better than I, but let me tell you what I am look-
ing for in a reader. First of all, I am guessing that you are either a teenager who is inter-
ested in game programming or a parent who is interested in having your child learn game
programming. That is pretty much all that is required: interest. This book is not set up to
be difficult. It helps introduce the reader into the world of game programming.

There are literally very few requirements. All you really need is a basic knowledge of math,
like addition, subtraction, multiplication, and division. If you know those techniques, you
are pretty much set! I also suggest that the reader asks his or her parent for help whenever
necessary. I use some rudimentary algebra, but those instances are few and far between,
and should be easy to comprehend.

You don’t need to have any knowledge of other programming languages. Not that it won’t
help if you do, of course. If you do know any other languages, you can learn from this
book as well. But, Game Programming for Teens, Second Edition teaches the language of
game programming along with the ability to actually implement games.

If you are the parent of a child who wants to learn programming, this book is the way to
go. General programming is a long and boring subject, but game programming allows your
child to create things that are fun. Help your child with programming while he or she reads
this book, as well. Not only will you both learn programming, but who knows, it may
strengthen the bond between parent and child (this comes from my psychologist side).

Who Am I?
Hey everybody, I am Maneesh Sethi. I am a high school student, and the reason I am writ-
ing this book is because I believe that, because I am a teenager myself, I would be the best
one to help other teens learn about programming. I began programming in 1999 in C and

XII Introduction

XIII

C++. Two years ago I discovered BlitzPlus and I have studied it ever since. BlitzPlus seems
to be the easiest way for any novice to begin writing games, and I want to help the reader
progress as fast as possible. The Web site for this book is located on
www.maneeshsethi.com, and you can e-mail me with any questions (before or after you
buy the book) at maneesh@maneeshsethi.com. I love to get e-mails!

Conventions Used in This Book
n o t e

Notes provide additional information on a feature, extend an idea on how to do something, or illus-
trate a cool fact.

c a u t i o n

Cautions warn you of potential problems and tell you what not to do.

t i p

Tips give you some pertinent information on a better, faster, or easier way of doing something.

Let’s Get Ready to Rumble…
If you are still browsing this book in the bookstore, now would be the time to take it
home. The bookstore would probably appreciate it if you buy it first (so would I!).

The first part quickly teaches you all of the intricacies of the BlitzPlus programming
language.

And so we begin…

Introduction

This page intentionally left blank

The Basics
of BASIC

Chapter 1
Getting Started .3

Chapter 2
Getting to Know BASIC .19

Chapter 3
Loops, Functions, Arrays, and Types .41

Chapter 4
The Style Factor . 95

PART I

Welcome to the amazing world of game programming! This book will show you
the ins and outs of video games and teach you to develop your own. Game
programming is a huge topic, however, and we are going to hurry through the

boring material in order to get to the fun stuff. In other words, let's start right away!

The easiest language for learning programming (at least in my opinion) is BASIC.
BASIC stands for Beginner's All Purpose Symbolic Instruction Code, but that's not really
important. BASIC is very easy to write and understand, and it's modeled after human
language (it uses words instead of just numbers), so if you can speak English, you
shouldn’t have a hard time with BASIC.

We will be using a program called BlitzPlus in this book. BlitzPlus is built to use a
modified version of BASIC in its programming. We begin with a short history of BASIC,
just to get the ball rolling on the language.

3

Getting Started

chapter 1

A Brief History of BASIC
The language of BASIC was first developed in 1964 by J. Kemeny and T. Kurtz at
Dartmouth College. It was designed to be a very easy language to understand, translate, and
write. It was also meant to be the first step toward writing programs for tougher languages.

In the 1970s two people, Paul Allen and Bill Gates, decided to develop a BASIC language
for the new Altair Personal Computer. The developers of the Altair showed a lot of interest
in the BASIC language, and Gates and Allen licensed it.

Bill Gates and Paul Allen put BASIC onto other types of computers. By 1980, BASIC was
moved to Atari, Commodore, and Apple computers as well as the Altair. Bill Gates devel-
oped an operating system called DOS (Disk Operating System) with a BASIC interpreter.
This allowed any user that owned DOS to write programs in BASIC.

Microsoft, headed by Gates, realized how popular BASIC was and decided to write a com-
piler for it that did not require DOS. QuickBasic, the first standalone BASIC compiler, was
born. Soon after, Microsoft decided to focus on graphics, and developed Visual Basic,
which created graphical programs using BASIC as a core language.

BlitzPlus, the program we are using in this book, was developed by Mark Sibly, and is
geared toward the game developer. BlitzPlus is very easy to learn and understand due to
its BASIC nature, and is a good way to learn game programming without having to worry
about extra code that has almost nothing to do with the actual game itself.

Installing BlitzPlus
We need to get BlitzPlus onto our computers so that we can start writing games as soon
as possible. BlitzPlus is a compiler, so it takes your code and turns it into a program that
any computer can run. However, the demo version that is included on the CD does not
include the compiler, but only the interpreter. Unlike a compiler, an interpreter does not
create an executable file that can be run on any computer; instead, it only runs from with-
in the compiler. In other words, the programs you write will only be able to be run from
the compiler on your computer. If you want to compile the program into a standalone
executable, you can purchase the full BlitzPlus package from http://www.blitzbasic.com.
In addition, you can download new versions of BlitzPlus from http://www.maneesh-
sethi.com (this book’s Web site). The BlitzPlus installer is shown in Figure 1.1.

Okay, first things first. To install this
program, put the CD into your CD-
ROM drive, and run BlitzPlus-
Demo.exe. BlitzPlus will ask you
where you want to install the pro-
gram. Choose a directory (the default
one is a good choice), and press
install. When the installation finishes,
click OK, launch the program, and
you’re done! You now have a full
BASIC interpreter on your computer.

n o t e

The BlitzPlus demo has one annoying part—the demo runs only 30 times before it locks up and
requires you to purchase it. For this reason, I have included on the CD a demo for the old version
of BlitzPlus, BlitzBasic. You can install this by choosing BlitzBasicDemo.exe when loading the CD.
The BlitzBasic demo will run most of the BlitzPlus code, although you may need to make a few small
modifications. BlitzBasic has no time limit, however, and will allow you to continue to write code
for as long as you like.

Understanding the IDE

BlitzPlus can seem a little daunting at first. The program has a lot of menus and icons, but
you can master them with a little effort. The first thing you see when you open the pro-
gram is the documentation window, pictured in Figure 1.2. If you need to find tutorials
or sample programs, this is the place to do it. After you have read through anything that
interests you, open a new document, by selecting File>New or the New icon.

Chapter 1 ■ Getting Started4

Figure 1.1
BlitzPlus installer.

n o t e

The > (arrow) symbol means a selection
from a menu. In other words, File>New
instructs you to open the File menu and
select New.You can access the menus at
the top of the program, right above the
main toolbar.

What you see now, as in Figure 1.3, is
considered the IDE. IDE means
Integrated Development Environment,
and it is an area in which you can write
and compile your programs in the
same workspace.

Each of the windows, toolbars, and
menus are necessary for game pro-
gramming, so a good explanation of
each might be helpful.

Windows and Panels
The main window takes up most of the program space and it is the most important part
of BlitzPlus. This window is where the actual code from the game is typed. The keywords
and important parts of your program will be highlighted when you type in this area. If
you want to see an example, type the word End, so that your screen looks like the one
pictured in Figure 1.4. You will notice that as soon as you complete the word and press
the spacebar, it becomes a different color. This highlight feature helps in reading and
understanding your program.

A Brief History of BASIC 5

Figure 1.2
The Documentation window.

Figure 1.3
The BlitzPlus IDE.

Take a look to the right of the screen. Although not pictured
in the previous figure, the only visible panel located on the
right is under buttons labeled funcs, types, and labels. Each of
these buttons displays separate info on the panel. Funcs shows
which functions you have created, Types shows your defined
types, and Labels shows any existing labels. These descriptions
probably don’t mean much to you now, but by the end of this
book you will understand what they do.

Toolbars
The main toolbar (shown in Figure 1.5) is simply a set of shortcut icons. It allows you to
perform actions quickly without having to search through the menus for the command.
Table 1.1 briefly describes each icon going from left to right.

Chapter 1 ■ Getting Started6

Figure 1.4
Highlighted code.

Figure 1.5
The main toolbar.

Table 1.1 Main Toolbar Shortcut Icons

Icon Description

New Opens a new blank BlitzPlus document.
Open Allows you to open an existing file from the disk.
Save If your program has been saved previously, the Save icon quick-saves

the open document; if not, Save asks for a file name and a location to
save the file to.

Close Closes a single document.
Cut, Copy, and Paste The Cut command saves highlighted text to the clipboard but deletes

the highlighted text, the Copy command saves the highlighted text to
the clipboard but leaves the highlighted text untouched, and Paste
places saved text in the clipboard in the document.

Find Allows you to search for a certain word or certain words in an opened
document.

Run Compiles and runs an open document.
Pause, Continue, Step Over, Advanced debug tools.
Step Into, Step Out, End
Home, Back, Forward All three commands allow you to enter and navigate through the

BlitzPlus documentation. Unless you are in the documentation
window, Back and Forward will be grayed out.

Menus
The menu toolbar allows you to exercise the full power of BlitzPlus. The main toolbar
looks like Figure 1.6. Buried within each menu are many helpful and useful commands.
Table 1.2 shows the most important.

The First Game: KONG
All right, now you will be able to see what a full game looks like. This is basically a simple
Pong clone, and it is easy to control and play. The idea of this game is to score more points
than your opponent by hitting the ball past his side of the table. To play, either run
demo01-01.exe from the CD or compile the code.

To compile the code yourself, you need to find demo01-01.bb on the CD. After finding it,
copy it to your computer and open it through the BlitzPlus compiler. To open it, find the
File menu on the top of the compiler and choose Open. Navigate to demo01-01.bb and
press Enter. The code should now appear inside your compiler.

To actually compile, find the Program menu in BlitzPlus. Select Program>Run Program,
and the game will compile and run! If you get a window asking you to save the file,
choose a directory to save it in or just press Cancel, and the program will run. You have
just compiled your first program!

Feel free to examine the code; although it may seem very weird and hard to understand
now, you will soon be able to figure out this code easily.

Table 1.3 lists the keys you will use for this game.

The First Game: KONG 7

Figure 1.6
BlitzPlus menus.

Table 1.2 BlitzPlus Menu Commands

Command Description

Program>Check for errors This command allows you to error-check your code without
compiling and running it.

Program>Debug Enabled? If this feature is enabled, you will be able to run your program in a
small window (instead of the program taking the entire screen) and
debugging your program becomes much easier.

Okay, let’s actually take a look at the code.
Read it, but don’t worry if some of it is hard
to understand. This is the first program you
have seen, and it isn’t easy. You will learn
how to actually write this code throughout
the book.

;demo01-01.bb - A Complete game of KONG

;Set up graphics mode
Graphics 800,600

;Seed the random generator (make random numbers actually random)
SeedRnd(MilliSecs())

;Create a back buffer
SetBuffer BackBuffer()
;Set the handle to the center of images
AutoMidHandle True

;CONSTS
;The following are key code constants
Const UPKEY = 200 ;Up
Const DOWNKEY = 208 ;Down
Const PAUSEKEY = 25 ;P

Const HUMANSPEED = 7 ;The human's max speed
Const COMPUTERSPEED = 6 ;The computer's max speed

;TYPES
;The player type: both the human and the opponent
Type player

Field y,score ;y position and score
End Type

;The ball type: for the ball
Type ball

Field x,y,xv,yv ;x, y coordinates, and x, y velocity
End Type

Chapter 1 ■ Getting Started8

Table 1.3 Keys Used in KONG

Key Action

Up Arrow Move player up
Down Arrow Move player down
Escape Exit game
P Pause and Unpause

;IMAGES
;The picture of the human player
Global player1image = LoadImage("player1.bmp")

;The picture of the computer player
Global player2image = LoadImage("player2.bmp")

;The picture of the ball
Global ballimage = LoadImage("ball.bmp") ;Load the ball image

;TYPE INITIALIZATION

;Create a ball
Global ball.ball = New ball
;Create the human
Global player1.player = New player
;Create the computer
Global player2.player = New player

This is the end of the declaration section of the code. This part sets up the important
variables for the program as well as the types and images. (Don’t worry; you will be
introduced to all of this as the book progresses.)

After the declaration, we begin the initialization. Initialization is the process of setting up
everything that will be used in the program—in this section, the initialization section sets
up the beginning score values and the players’ position on the screen.

;INITIALIZATION

Text 400,300,"Ready...Set"
;Wait for one second
Delay(1000)
Text 420,330,"GO!!!"
Flip
;Delay for 1/5 of a second
Delay(200)

;Initialize the level
InitializeLevel()

;Set initial scores
player1\score = 0
player2\score = 0

The First Game: KONG 9

The initialization section sets up some important variables for the game, such as the score
and the player variables. These variables keep track of how the player is doing and where
he or she is located.

After initialization, the actual loop begins:

;MAIN LOOP
While Not KeyDown(1)

;Clear the screen
Cls

;Draw the ball
DrawImage (ballimage,ball\x,ball\y)
;Draw the human
DrawImage (player1image, 60, player1\y)
;Draw the computer
DrawImage (player2image, 740, player2\y)

;Test what user pressed
TestKeyboard()
;What should AI do?
TestAI()
;Draw the HUD
DrawScore()

Flip

Delay 20

Wend ;END OF MAIN LOOP

Chapter 1 ■ Getting Started10

What Is a Frame?

I am about to reference the word frame a bunch of times in a few moments, and you should
know what it means. A frame is the screen at any given moment. A game can be compared to
an animated film—both are made up of a bunch of different pictures that, when put together,
create animation. The frames blend together so quickly that the objects on the screen appear to
be moving. An average game runs at 30 frames per second, which means 30 pictures on the
screen are blended together each and every second.

This is the end of the main loop. To put it bluntly, the main loop is the entire game. Every
frame of a game is a single iteration of the main loop. By the way, a loop causes some code
to be repeated over and over until some condition becomes false. Here, the condition is
that the Esc key has not been pressed. Usually, the main loop is a while loop, shown here
in the line

While Not KeyDown(ESCKEY)

At this point, the actual game loop has been completed, so we must now define the func-
tions. A function is called with its name followed by parentheses; for example,
InitializeLevel(). Functions are like little helpers that perform specific activities that we
want to do over and over. If you look at the main loop, you will see that most of these
functions are called from there, and some others are called from within other functions.

;INITIALIZELEVEL()
;Sets up starting values
Function InitializeLevel()

;Put ball in center of the screen
ball\x = 400
ball\y = 300

;Make the ball move in a random direction
ball\xv = Rand(2,6)
ball\yv = Rand(-8,8)

;Place the players in their correct position
player2\y = 300
player1\y = 300
End Function

This function sets up the starting values for the players and the ball. The ball is in the cen-
ter of the screen and it is directed toward the right of the screen (to the computer player’s
side) with a small variation on how high or low it goes. The human player is near the left
edge of the screen, and the computer player is near the right.

;DRAWSCORE()
;Draws the HUD in the top right
Function DrawScore()
;Write the human score
Text 700,0,"Player 1: " + player1\score
;Write the computer's score
Text 700,30,"Player 2: " + player2\score
End Function

The First Game: KONG 11

This is probably the simplest function in this program because all it does is draw the
scores on the top right of the screen.

;TESTKEYBOARD()
;Moves player up and down based on keyboard
Function TestKeyboard()

;If player hits up, move him up
If KeyDown(UPKEY)

player1\y = player1\y - HUMANSPEED
EndIf

;If player presses down, move him down
If KeyDown(DOWNKEY)

player1\y = player1\y + HUMANSPEED
End If

;if player presses Pause, pause the game
If KeyHit(PAUSEKEY)

;make screen blank
Cls

Text 400,300,"Press 'P' to Unpause Game"

Flip

;wait for player to unpause
While Not KeyHit(PAUSEKEY)
Wend

EndIf

End Function

This function determines what keys the user pressed, if any. If it doesn’t make sense to
you, try reading the following pseudocode:

Chapter 1 ■ Getting Started12

If (player presses up)
Move player up

If (player presses down)
Move player down

If (player presses 'P')
Pause the game

Pretty easy to understand, don’t you think? Refer back to the actual code to see the cor-
relation.

Next, look at the function TestAI().

;TESTAI()
;Updates ball and score and enemy
Function TestAI()

;If ball is above computer, move computer up
If ball\y > player2\y

player2\y = player2\y + COMPUTERSPEED

;if ball is lower than computer, move computer down
ElseIf ball\y < player2\y

player2\y = player2\y - COMPUTERSPEED
EndIf

;If ball hits human player, reflect it away from him and vary its velocity and direc-
tion
If ImagesOverlap(ballimage,ball\x,ball\y,player1image,60,player1\y)

ball\xv = -ball\xv + Rand(-4,4)

The First Game: KONG 13

What Is Pseudocode?

Big word, huh? Pseudocode is a very helpful device in game programming because it takes hard-
to-understand concepts and turns them into human language. Pseudocode is the program code put
into easier-to-understand terms. Basically, to convert code into pseudocode, simply change each
line of code into human language. However, pseudocode does not have all the detail that real code
does, so although it is good for understanding concepts, it isn’t a good idea to try and put it back
into a program. Within this book, pseudocode appears in italics.

ball\yv = ball\yv + Rand(-4,4)

;If ball hits computer, reflect it away from computer and vary its velocity and direc-
tion
ElseIf ImagesOverlap(ballimage,ball\x,ball\y,player2image,740,player2\y)

ball\xv = -ball\xv + Rand(-4,4)
ball\yv = ball\yv + Rand(-4,4)

;If ball hits top wall, reflect it downwards
ElseIf ball\y <= 0

ball\yv = -ball\yv + Rand (-1,1)
ball\xv = ball\xv + Rand (-1,1)

;If ball hits bottom wall, reflect it upwards
ElseIf ball\y >= 600

ball\yv = -ball\yv + Rand (-1,1)
ball\xv = ball\xv + Rand (-1,1)

;if ball hits left wall, computer has scored so computer gets one more point
ElseIf ball\x <= 0

player2\score = player2\score + 1 ;computer scores
Text 400,300,"Player 2 Scores!!!"
Flip
;wait two seconds
Delay(2000)

;reset level
InitializeLevel()

;If ball hits right wall, human scored so give him a point
ElseIf ball\x >= 800

player1\score = player1\score + 1 ;human scores
Text 400,300,"Player 1 Scores!!!"
Flip
;wait 2 secs
Delay(2000)
;reset level
InitializeLevel()

EndIf

Chapter 1 ■ Getting Started14

;update ball's position on screen
ball\x = ball\x + ball\xv
ball\y = ball\y + ball\yv

End Function

This one is a lot harder to understand. TestAI() changes the position of the ball based on
its direction variables and changes the position of the computer’s paddle based on the
position of the ball. It also increments the score if either team hits the ball past the oppos-
ing paddle. If you are having trouble understanding this function, maybe the following
pseudocode will clear it up:

If (ball is above computer)
Move computer up

OR if (ball is below computer)
Move computer down

If (ball hits player's paddle)
Change direction of ball

OR if (ball hits computer's paddle)
Change direction of ball

OR if (ball hits top wall)
Change direction of ball

OR if (ball hits bottom wall)
Change direction of ball

OR if (ball hits left wall)
Score a point for computer
Reset the level

OR if (ball hits right wall)
Score a point for the player
Reset the level

Once again, if you want to have a better perspective of this game, run demo01-01.bb off
the CD.

The First Game: KONG 15

c a u t i o n

Because of margin constraints, some of the lines of code may have spread over two lines or more.
In a real game, all of the code must be on one line, or else it won’t run. For example, if I had writ-
ten something like the following line

ElseIf ImagesOverlap(ballimage,ball\x,ball\y,player2image,740,player2\y) ;This
tests to see if the ball has collided with player 2's image.

Typing it into the compiler with the line break would not work. It must be on the same line, even
though the margins in the book made it appear broken up.

Figures 1.7 and 1.8 show the KONG title screen and main screen, respectively.

Compiling the Code
Compiling the code is a very simple
procedure. Just open the file (demo01-
01.bb) off the CD in BlitzPlus (or type
it into the workspace), save the file
(File>Save) onto your computer, and
select Program>Run Program, as
shown in Figure 1.9.

Well, that isn’t what you would call a
full game. I did not add any special
effects or sounds because they aren’t
very important at this point. The idea
is to get a feel for what code looks like
and how it is written. You will notice
that the meanings of most of the func-
tions are easy to understand because
of the function names. This helps in
understanding the program.

Let me summarize the main parts of a
game. The game consists of:

■ The initialization section

■ The main loop

■ The shutdown

Chapter 1 ■ Getting Started16

Figure 1.7
KONG title screen.

Figure 1.8
KONG main screen.

Initialization sets up variables and functions that are used throughout the game.
Declaration is part of initialization and is used to set up variables that will be used later
in the program. The game loop is what you see on the screen. Each iteration (an iteration
is each time the program runs through the loop) of the loop is one frame of the game.
Usually, there are at least 30 frames, or iterations, per second. See Figure 1.10 for a
description of initialization, the game loop (also known as the main loop), and
shutdown in KONG.

The shutdown sequence is the final part of the game, and it runs just before and during the
end of the game. It closes all open files, deletes any running variables, and quits the game.

The First Game: KONG 17

Figure 1.9
Compiling the game.

Of course, there are a few other important parts
to any game, but I will go over them with you
when learning about them is necessary. For now,
read over the commented code (on the CD) and
try to understand what in heck is going on. If you
follow the functions, it shouldn’t be too hard.

Summary
We have certainly covered a lot of ground in this chapter! So far, we have learned about
the history of BASIC, we have installed BlitzPlus, we have learned the important features
of the program, and we have written, read, and played our first game. One important
thing: Do not be disheartened by the length or complexity of the sample code. This game
is not a tough one, and although it seems long now, it will be relatively simple to write by
the time you finish this book.

In this chapter, we went over the following concepts:

■ The history of BASIC

■ Installing the BlitzPlus program

■ Creating our first game

■ Compiling our first game

The next chapter will introduce you to the fundamentals of BASIC; it will discuss common
operators and operations. If you’ve made it this far, the next chapter should be a cinch.

Just sit back, relax, and enjoy the ride.

Chapter 1 ■ Getting Started18

The Day that Maneesh Got
Embarrassed

In March of 2004, I was on a show called “Call for
Help” on TechTV. I decided to demonstrate this
game, KONG, on the show, because it was an easy
to understand and play game. Turns out I made a
bad choice. During the game, some of the random-
ization code got messed up, so the ball bounced up
and down and up and down repeatedly. My game
actually crashed on TV!

You can see the segment on TechTV on my Web
site, http://www.maneeshsethi.com. Just promise
not to laugh!

Figure 1.10
Initialization, game loop, and shutdown.

19

Getting to Know BASIC

chapter 2

This chapter examines the simple and fundamental aspects of the BASIC language. There
will be very few graphics involved in this chapter, so everything you do can be viewed on
the screen in text format.

I suggest taking what you learn about general BASIC programming from this chapter and
writing your own sample programs. Although you will not be able to make graphical pro-
grams, you will be able to make simple text-based programs. Sample programs help
cement ideas that you learn into your mind, so it will be much easier to remember them.
The next chapters build heavily on the concepts you learn here, so make sure you under-
stand the fundamentals explained in this chapter before moving on to the next chapters.

In this chapter, you will learn how to use variables, input, and conditionals. Ready?

Hello, World!
Okay, before you go any further, you’re going to write your first program. This is a com-
mon one for first-time programmers to write in any computer programming language,
most likely because it is so simple. This program simply displays the text Hello, World! on
the screen. That’s right, no graphics, no special effects, just pure, hardcore text.

Let’s go over how to compile the following code. Type what follows into your BlitzPlus
compiler or open demo02-01.bb (see Figure 2.1). Next, select Program>Run Program and
watch the magic.

If you decide to type the code into the compiler, make sure that the workspace into which
you are typing is blank first. Only the code should be displayed in the main window of the
BlitzPlus compiler.

If you don’t want to compile the code, you can also run this program from the CD. Figure
2.2 shows the executed Hello World program.

;demo02-01.bb - Displays text "Hello World"
Print "Hello, World!"

;Wait for five seconds
Delay 5000

Although this program may seem very simple, it is a big hurdle you have just crossed. You
just created a file, typed in the code, compiled it, and ran it as a program. Congratulations!

Let’s analyze this program a bit (although there isn’t much to analyze). First of all, the line

;demo02-01.bb - Displays text "Hello, World!"

is a comment. A comment is any text that is written after a semicolon (;). The comment
ends at the end of the line. A comment does not have to occupy its own line; it can be writ-
ten after some actual program code. For example, this line

Print "This is code" ;This is a comment.

Chapter 2 ■ Getting to Know BASIC20

Figure 2.1 The Hello World program in BlitzPlus.

consists of two parts: a line of code and a comment. Comments are used to help you
understand the code; the compiler does not understand or care about information in
comments. The compiler automatically ignores any comments. Figure 2.3 demonstrates
how comments look inside a compiler.

Hello, World! 21

Figure 2.2 The executed Hello World program.

Figure 2.3 Comments in a compiler.

t i p

You might be wondering, “If it is my code, why would I need a comment to understand it? I wrote
it, so I understand it!” The problem with this assumption is twofold: one, you may decide to share
the code with someone after you write the program, and two, you could forget how your program
works and spend a lot of time trying to figure out what some parts do. More than once I have for-
gotten to comment my code, and the results were not good. I had to spend quite some time trying
to understand a little bit of code I had written only a few months earlier. Anyway, the moral of the
story is always comment your code.

The next line of code is the meat of the program.

Print "Hello, World!"

This line prints the text string "Hello, World!" on the screen (a text string is simply a set
of characters) and begins a new line. To see what I mean by new line, add another Print
command to the code. You will see that the new text is written below the old text.

Note the quotes around "Hello, World!" Quotes are necessary around any part of a string.
The quotes identify to the program that what is being typed is a set of letters and num-
bers, not a variable name. If you leave off the quotes, you will get an error.

n o t e

If you type this program into your compiler, you will notice that after running it, your compiler dis-
plays a dialog box that says, “Program has ended.” Although this occurs in the demo version of
BlitzPlus, it does not happen in the full version. If you want to rid any program of the dialog box,
just type End where you want the program to end. End exits the program without displaying any
dialog boxes. Try it out on demo02-01.bb by adding End somewhere in the source file.

I usually like to provide the function declaration for easy reference when calling functions.
A function declaration describes any parameters taken in by the function as well as the
function name. The function declaration for Print is:

Print [string$]

n o t e

Notice the square brackets ([]) on the left and right of the [string$] variable. These brackets mean
that the variable is optional and not required. If the variable is required but omitted, you will receive
an error and not be able to compile your code.

As you can see, the function’s name is Print and the only parameter is [string$]. A string
is just a series of characters put together; you can think of a sentence as a string. The string
would be the entire sentence lined up together, including the spaces and punctuation.

Chapter 2 ■ Getting to Know BASIC22

First of all, Print is a function. Functions (which are described in more detail later) come
in two flavors: user-defined and compiler-defined. User-defined functions are written by
the programmer (TestKeyboard() from the Chapter 1 game is an example) and compiler-
defined functions are embedded in the compiler and are available for use in a program.
Print is an example of a compiler-defined function.

See Table 2.1 for a description of the Print parameters.

The final line calls the function Delay.

Delay millisecs%

This function simply pauses for the given amount of time before proceeding. In this pro-
gram, I had the program pause for 5000 milliseconds, or five seconds. If you remove this
line from the program, the program will end before the user can read Hello, World!.

One question remains: What is that dollar sign and the percent sign doing after the para-
meters to the functions? That brings you to the next topic, variables.

Variables
Variables are intrinsic to almost every program written. A variable is just that: “variable”.
This means that the value of a variable can change. For example, say you were running a
program that uses a high score that is stored in a variable. When the high score changes,
the high score variable changes to reflect the new score.

Declaring Variables
Variables are very easy to use because they can be used as regular numbers. However,
unlike numbers, variables must first be declared. When a variable is declared, the program
knows that the variable exists, and you can use it in your program.

There are three types of variables in BASIC: integer variables, floating point variables, and
string variables. See Table 2.2 for a description of the types of variables.

Variables 23

Table 2.1 Parameters for Print

Parameter Description

string$ A text string followed by a new line that will be displayed onscreen. If string$
is omitted, only a new line will be printed.

n o t e

When variables are created, they are automatically assumed to be integers, or whole numbers in
other words. Therefore, the percent sign on all integer variables is unnecessary and from now on,
they will mostly be omitted from the code.

Each type of variable is defined in a similar way. Simply type the name of the variable you
want to define followed by the type symbol (%, #, or $). For example,

highscore% = 100
pi# = 3.14159
myname$ = "Maneesh Sethi"

Using Variables
You are now ready to write a few programs using variables. These programs should
demonstrate a few important points about variables.

;demo02-02.bb - Adds two cool numbers

;VARIABLES
favnum = 314
coolnum = 13

;Print the two variables
Print "I like " + favnum + " And I like " + coolnum
;Print the variables added together)
Print "These numbers added together are " + (favnum + coolnum)
;Delay for 5 seconds
Delay 5000

The output is shown in Figure 2.4.

Chapter 2 ■ Getting to Know BASIC24

Table 2.2 Description of Variable Types

Parameter Description

integer% Fixed-point variables with no decimal places.
float# Floating-point variables with decimal places allowed.
string$ A text string.

Well, this is certainly interesting. Let’s check it out. First, a comment is written to describe
the program. This is good practice and should be used on most programs. Next, I initialized
two variables: favnum and coolnum. Then, I called the Print function. The string variable
begins with the static text "I like" and then displays favnum. To display favnum, you use the
concatenation operator (+). The concatenation operator links separate strings together; in
this case, it displays the variable favnum. It finishes out the first Print statement by display-
ing "And I like" + the variable coolnum.

The next Print statement displays "These numbers added together are" and shows 327,
which is equal to 314 + 13. However, try removing the parentheses around favnum and
coolnum, like in Figure 2.5. A strange answer comes up when these parentheses are
removed: 31413!

Variables 25

Figure 2.4 The demo02-02.bb program.

Figure 2.5 Demo02-02.bb without parentheses.

The reason for this strange answer is that without the parentheses, the addition operator
(+) is interpreted as the concatenation operator due to the context in which it is used.
Because there are no parentheses, the operator simply adds the string “13” to the end of
the string “314” and displays it as a string rather than an integer. The only way to fix this
problem is to use parentheses.

Here is an example using only string variables.

;demo02-03.bb - adds strings together
string1$ = "I "
string2$ = "like "
string3$ = "programming!"
;concatenate the strings
completestring$ = string1$ + string2$ + string3$
;print 'em out
Print completestring$
Delay 5000

In this program, a set of single words are created and joined together in the
completestring$ variable using the concatenation operator. As you can see in Figure 2.6,
"I " + "like " + "programming!" becomes "I like programming!".

Input
Finally, you understand how variables work. Now, let’s use those variables to get input
from the user of the program. Using input, you can recognize what keys the user presses,
or you might have the user answer a question. Either way, most input is stored in a vari-
able. Figure 2.7 shows the output of this program.

Chapter 2 ■ Getting to Know BASIC26

Figure 2.6 The demo02-03.bb program.

;demo02-04.bb asks user's name and shows it
;get the user's name
name$ = Input$("Hi! May I know your name please? ")
Print "Hi " + name$ + "."

;Wait five seconds
Delay 5000

The first line is a comment that tells what the program does. The second line takes in the
input, and the third and final line displays what the user entered.

Input$ is declared as this:

Input$(prompt$)

c a u t i o n

Notice that the function name, Input$, has a $ sign attached to the end. This symbol signifies the
return type of the function. Because it is a string, the function only returns strings. What this means
is that if you request the user to put in numbers to add together, such as 2 + 2, the value returned
will be "2 + 2", NOT 4. Of course, if the user typed in 4, the function would return 4.

Input$ is the name of the function. Table 2.3 explains that prompt$ is a string that is dis-
played to the computer before taking the input value. prompt$ is usually used to ask the user
to provide you with the info you want so that the user will know what to tell the program.
Notice that there are parentheses around prompt$ in the function. Parentheses are required;
if you fail to place them in the program, the program will not compile. Also, notice that
there are no brackets around prompt$. This means that the variable is required. If you want
to have a blank prompt$, use "" (two quotation marks) as your prompt.

Input 27

Figure 2.7 The demo02-04.bb program.

In the previous program, name$ is set equal to the Input$ command. When the Input$
command receives an answer from the user, it is stored in the name$ variable. If you left
this line looking like this:

Input$("Hi! May I know your name please? ")

without including a variable, the response that the user made would be simply thrown
away. Using Input$ without a variable is not a good idea.

Input$ only returns strings (that’s why a $ is added to the function name). However, if
the variable you use to retrieve the user input is an integer instead of a string, the value
will be interpreted as an integer. Therefore, if you ask the user “How old are you?” and
the variable you use to retrieve the value is an integer, the variable will contain what-
ever the user types in.

Okay, you now have the basics of input down. However, this input function isn’t very use-
ful so far. Who wants a program that tells them their own name? This brings me to the
next topic: conditionals.

Conditionals
Conditionals are a very important part of any program. Conditionals allow your program
to think. With them, any program can make choices and decisions. Before you can fully
understand conditionals, however, you must first learn about the BlitzPlus idea of truth
and falsehood.

Truth and Falsehood
BlitzPlus has a different idea about what is true and what is false than we humans do. To
a human, some things may be partly true, but to a computer, any expression is either true
or false. Although parts of an expression can be different than the rest, the entire expres-
sion is only evaluated as one or the other.

BlitzPlus (and computers in general) believes that zero is false and any other value (non-
zero value) is true, although the true value is usually one. This makes programming a
much easier job.

Chapter 2 ■ Getting to Know BASIC28

Table 2.3 Input$()'s Parameter

Parameter Description

prompt$ The string displayed to the user before allowing the user to enter an input value.

To determine whether something is true or false, you use the relational and logical oper-
ators. These operators check one statement against another to see whether the aspect of
their relationship that is being checked is true or false. Table 2.4 lists all of the relational
and logical operators.

Using Table 2.4 as a guide, you can see that if, say, variable A is equal to 14 and variable B
is equal to 12, A>B will return True, because 14 is a larger number than 12.

If...Then
The first conditional you will learn is the If statement. The If statement has a very basic
declaration:

If

The idea of an If statement is that it allows your program to make choices. You pass an
expression into the If statement by following the If command with the expression:

If expression is true Then
;Do something
Endif

As you can see, the If statement is followed by an expression. If the expression is true, the
code between the If and EndIf commands is executed. If not, nothing happens.

Conditionals 29

Table 2.4 Relational and Logical Operators

Operator

Relational Operators
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
= Equal to
<> Not equal to

Logical Operators
And
Or
Not

;demo02-05.bb - Tests if you are old enough to vote

;Find out how old the user is
age = Input$("How old are you? ")
;if older or equal to 18, print out confirmation that user is allowed to vote.
If age >= 18 Then

Print "You are legally allowed to vote!"
EndIf
;Wait five seconds
Delay 5000

This program simply asks how old you are, tests it against the age 18, and then prints "You
are legally allowed to vote!" if you are 18 years or older. But what if you want to tell the
user something else, even if they aren’t over 18? As you can see in Figure 2.8, this program
does nothing if the user is younger than 18. The program then waits for the user to press
a key for the program to exit.

You may not understand what the EndIf command does. The EndIf command signifies the
end of the If…Then test. When the program reaches the EndIf, it resumes normal process-
ing of commands instead of only executing the commands when the condition tested in
the If statement is met.

If...Then…Else
Perhaps you want the program to test if the user is younger than 18. You could rewrite the
program by adding another If statement to check if the user is younger than 18, but there
is another easier (and better) way: Use the Else statement.

Chapter 2 ■ Getting to Know BASIC30

Figure 2.8 The demo02-05.bb program.

;demo02-06.bb - Tests if you are old enough to vote

;Ask how old the user is
age = Input$("How old are you? ")

;if older or equal to 18 then let them vote
If age >= 18 Then

Print "You are legally allowed to vote!"

;if younger than 18, do not let them vote

Else Print "Sorry, you need To be a few years older."
EndIf

;Wait five seconds
Delay 5000

Figure 2.9 shows the output.

This time, the program tests the user’s age, but if it is less than 18, it prints out the sen-
tence under the Else statement.

There is also one other effective use of the If…Else conditional. You can combine the two
to create Else If.

Conditionals 31

Figure 2.9 The demo02-06.bb program.

;demo02-07.bb Tests if you are old enough to vote
age = Input$("How old are you? ")
If age = 18 Then

Print "You can now vote."
Else If age > 18

Print "You've been able to vote for a while."
Else If age < 18

Print "Sorry, you will have to wait a few years to vote."
EndIf
WaitKey

Figure 2.10 shows the output.

c a u t i o n

This program will only work if the user enters an integer. If the user enters a string, the variable will
always be zero. You can fix this problem using a loop or Goto, which will be explained soon.

This program tests all three user possibilities.

Sometimes, you might want to test a large number of possibilities, and using If…Then can
be awkward. A conditional statement was made to fix this problem: Select…Case.

Select…Case
Select…Case makes working with a large number of values much easier. The best way to
demonstrate is with an example.

Chapter 2 ■ Getting to Know BASIC32

Figure 2.10 The demo02-07.bb program.

;demo02-08.bb - tests the keys pressed

x = Input$("Enter 1 to say hi, or 0 to quit. ")

Select x
Case 1

Print "Hi!"
Case 0

End
Default

Print "Huh?"
End Select

;Wait five seconds
Delay 5000

In this listing, the program asks the user to enter either one or zero. It then either writes
"Hi!" or quits the program. The default case is a catch-all command; if the user enters
neither one nor zero, the default code is displayed.

n o t e

If you haven’t observed it already, notice that I have been indenting my code in a very easy to
understand and logical manner. This makes reading and understanding code much easier, and I
highly recommend that you do the same.

In this case, Select…Case isn’t very necessary. Because there are only two cases, it is just as
easy to use an If…Else. However, when the programs get more complex, Select…Case
becomes a more useful tool.

By the way, the declaration for Select…Case is

Select variable

Easy enough, huh?

Logical Operators
Logical operators are a base for expressions and conditional statements. You can view all
of the BlitzPlus logical operators in Table 2.5. It lists all of the conditions that make the
logical operators true and false.

Logical Operators 33

The AND operator is true only if both its parameters are true; the OR operator is true if
one or more of its parameters are true; and the NOT operator is true only if its parameter
is false. Here is an example of the AND operator.

;demo02-09.bb - Shows use of the And operator

;find out how old the user is
age = Input$("How old are you? ")
;find out if the user lives in america
location = Input$("Do you live in America? (1 For yes, 2 For no) ")

;Write out the proper string depending on the user's age and locations
If age >= 18 And location = 1 Then

Print "Congrats, you are eligible to vote!"
Else

Print "Sorry, you can't vote."
EndIf

;Wait five seconds
Delay 5000

The output is shown in Figure 2.11.

Chapter 2 ■ Getting to Know BASIC34

Table 2.5 Logical Operator Truth Table

P Q P AND Q P OR Q NOT P

0 0 0 0 1
0 1 0 1 1
1 1 1 1 0
1 0 0 1 0

The NOT Operator
The NOT operator is a little bit different than the other two logical operators. Instead of two
operands, it only takes one. And instead of returning a value based on the other two
operands, it only returns the opposite of the operand it is working on.

Remember that because false is zero and true is one, the only value NOT will return is one
or zero. If you write

Not 0

your answer will be one, and conversely if you write

Not 1

your answer will be zero.

The Goto Command
Before writing a full-fledged game, I want to introduce you to the concept of Goto. Goto is
a very simple command, but it can be misused very easily, so I recommend using Goto as
sparingly as possible. Almost always, if something can be done by using Goto, it can be
done in another way.

Goto works like this: you add a label somewhere in your code, and Goto jumps to that label.
(See Figure 2.12.) The best illustration of this is a sample program.

;demo02-10.bb – Demonstrates use of Goto
.label
Print "Hello"

The Goto Command 35

Figure 2.11 The demo02-09.bb program.

selection = Input("Enter 1 if you want me to repeat 'Hello' ==> ")
If (selection = 1)

Goto label
EndIf
End

The output is shown in Figure 2.13.

n o t e

Notice that I did not include WaitKey in this program. Because the program repeats and then ends
with an End command, the WaitKey is not necessary.

As you can see in Figure 2.12, calling Goto starts the program back at the top. This is
accomplished by putting .label at the top of the program. You can make Goto move any-
where by simply moving the line .label. Notice that when you define the label, you put a
period (.) before it. When you call it from Goto, however, you discard the period.

Chapter 2 ■ Getting to Know BASIC36

Figure 2.12 Using Goto.

Figure 2.13 The demo02-10.bb program.

A Text-Based Guessing Game
Now, let’s put all of what you learned in this chapter and create your first guessing game!
Basically, the users enter a number, and you will tell them if they are too high or too low.
You will allow the users to guess until they figure it out. In order to make this game work,
you will be using a loop in this game. If you cannot understand what the loop’s function
is, it is explained in the next chapter.

First you need to create an initialization section. It will look something like this.

;demo02-11.bb - Try to guess the number
Print "Welcome to the Guessing Game!"
AppTitle "Guessing Game!"
;Seed the random generator...don't worry, it will be explained later
SeedRnd MilliSecs()

;Pick a number between 1 and 100
numbertoguess = Rand(1,100)

;The num of guesses the user has used
numofguesses = 0

The first line, after Print, calls the function AppTitle. This changes the name in the head-
ing bar, so that instead of the program being named “Blitz Runtime Window,” it will be
named “Guessing Game!”.

The randomizer works like this: numbertoguess is assigned to a random number, which is
returned by Rand. Rand returns a number between what is given; here, it returns a number
between 1 and 100. This section prints out introduction text, sets up the guessing num-
ber, and declares some variables.

Next you set up the loop and the test to make sure the player guessed a number between
1 and 100.

;set the beginning of loop label
.loopbegin

;Find out the user's guess
guess = Input$("Guess a number ")

;If player guesses outside of range, tell him to guess again
If guess > 100 Or guess < 1

Print "Pick a number between 1 and 100, silly!"
;Go back to the beginning
Goto loopbegin

EndIf

A Text-Based Guessing Game 37

The first line of this code sets up a label to go back to the loop later. Next, the loop begins,
the player is asked for input, and the number is tested to see if it is within the correct
range. If not, the player is sent back to the beginning of the loop.

Now, you insert the code to test and see if the player has guessed correctly.

;Add a guess to the guess counter
numofguesses = numofguesses + 1

;If the guess is too low, go back to beginning
If guess < numbertoguess Then

Print "The number was too low."
Goto loopbegin

;If guess is too high, go back to the beginning
Else If guess > numbertoguess Then

Print "The number was too high."
Goto loopbegin
EndIf

The first line adds one to the user’s number of guesses. Then, the code is tested to see if
the user has guessed too high, too low, or just right. If the player has guessed just right, the
code just continues through to the end of the program without going back to the begin-
ning of the loop.

Finally, you enter the last section of code.

Print "You guessed the number " + numbertoguess + " in " + numofguesses + " tries!"

;Wait five seconds
Delay 5000

This program can be run off the CD. It is named demo02-11.bb. Figure 2.14 shows the
output of the complete Guessing Game.

Chapter 2 ■ Getting to Know BASIC38

Summary
This has been a tough chapter for you as well as me. I hope that you remember most of
what I have told you so far. I suggest you write a few sample programs using everything
taught in this program before you head on to the next chapter; it will help solidify the
information in your head.

This chapter covered the following concepts:

■ The Hello, World! program

■ Variables

■ Input

■ Conditionals

The next chapter discusses loops, functions, arrays, and types. I hope you’re ready!

Summary 39

Figure 2.14 The complete Guessing Game.

This page intentionally left blank

41

Loops, Functions, Arrays,
and Types

chapter 3

We are finally moving up to the tough stuff. This chapter introduces the important and
interesting subjects of loops, functions, arrays, and types. All of these are essential to any
computer game program.

In this chapter, I’m going to explain each of the processes separately, and then create a
simple game that incorporates them all. By the time you get there, you will know how to
use loops, functions, arrays, and types.

Understanding Loops
A loop is a block of code that is repeated over and over until a condition is met. For exam-
ple, the main game loop is repeated over and over until the player quits or wins the game.
We can use goto, a command that we learned in the previous chapter, as a loop. If you
remember the demo02-10.bb program, a set of commands was repeated until the user
wanted them to stop. Loops work exactly like this: a set of commands is repeated over, and
over, and over, until a condition is met—either the user wants to exit the loop or the loop
is executed a specific number of times. Figure 3.1 shows a sketch of a loop.

Loops are used for many repetitive tasks in computer programs. In a space shooter game,
for example, we have to use a loop to check
every bullet against the enemy ships. We will
also use loops to update the artificial intelli-
gence (AI) for each of the ships.

There are three types of loops, and although
they are somewhat interchangeable, each has a
specific style and it is best if they are used in the
proper situation. The three types of loops are Figure 3.1 The loop.

■ For…Next

■ While…Wend

■ Repeat…Until

For…Next
The For…Next loop steps through a block of code a set number of times. In other words,
you use it when you know how many times the loop should iterate. You might use this
loop when you want the player to move up exactly 10 spaces. Because you know the num-
ber of times you want the player to move up, you might have each iteration of the loop
move the player up one space and have the loop go through its commands ten times. This
loop also can update the info of a set of types (types are explained later in this chapter).

n o t e

Before we move on, I want to discuss the concept of iterations.As you know, a loop processes a num-
ber of commands over and over again, starting at the top, going to the bottom, and moving back to
the top again. An iteration occurs when all of the commands have been processed one full time.
When the loop finishes the last statement of the loop, but has not returned to the top of the loop, it
has completed one iteration. When it returns to the top, the second iteration begins, and so on.

For…Next loops are always used as follows:

For variable = beginning_number To ending_number [Step step_amount]
;Perform actions

Next

As you can see, a For…Next loop begins with For and ends with Next. The To command
defines how many times the loop performs its actions. Step_amount, which is optional,
defines how much is added to beginning_number each time. If you omit Step, beginning_num-
ber is incremented by 1 each time the loop is traversed.

Let’s examine a code example:

;demo03-01.bb - counts from 1 to 10
;start counter at one and loop till 10
For counter = 1 To 10

;Print whatever counter is equal to
Print counter

Next

;Delay for five seconds
Delay 5000

Figure 3.2 shows the output.

Chapter 3 ■ Loops, Functions, Arrays, and Types42

This program simply prints the numbers 1 to 10 on the screen. The first line after the
entry comment begins the For…Next loop. It declares counter and initializes it to 1. The To
command tells the compiler how many iterations the loop will go through. Here, it says it
will count from one to ten.

The next line simply prints the value of counter, which adds one to its count every itera-
tion of the loop. The final line of the loop returns the code to the beginning of the loop
and raises counter by 1.

You can change the step amount of the loop if you want. The step amount is how much
is added to the variable on each iteration of the loop. By default, the step amount is 1.

To change the step amount, simply add the command Step after the To command like this:

;demo03-02.bb - Counts backwards using step amounts
;start counter at 5 and loop till 0 by -1.2
For counter# = 5.0 To 0.0 Step -1.2

;Print value of counter
Print counter

Next

;Delay for five seconds
Delay 5000

The output is shown in Figure 3.3.

Understanding Loops 43

Figure 3.2 The demo03-01.bb program.

c a u t i o n

Make sure to double-check your loops to ensure you did not make them never-ending. If this program
had been written with the step value as 1.2 (as opposed to �1.2), the program would have looped
forever and never ended. Fortunately, Blitz Basic normally catches this error and simply skips the loop.

This program might seem a little strange, but I wrote it as such in order to make a few
points. First, the counter variable is a floating-point variable (a variable with decimal
places). The starting value is 5.0 and the ending value is 0.0. The step value is �1.2.

The step value causes the program to count down instead of counting up. On the first iter-
ation of the loop, the counter variable is 5.0. Then it decreases to 3.8, and so on.

Let’s look at the values for this loop. Table 3.1 explains the values of the counter variable,
the step amount, and the output throughout the program. As you can see, the first itera-
tion of the For…Next loop does not decrease the Step amount; instead, the Step amount
begins being subtracted beginning with the second iteration.

Chapter 3 ■ Loops, Functions, Arrays, and Types44

Figure 3.3 The demo03-02.bb program.

Table 3.1 Demo02-02.bb's Variable Values

Iteration Counter#/Output Step

1 5.0 �1.2
2 3.8 �1.2
3 2.6 �1.2
4 1.4 �1.2
5 0.2 �1.2

Now is a good time to introduce float trimming. If you look at the output of the demo03-
02.bb sample (see Figure 3.3), you will notice that there are six digits after the decimal
place. Six digits after the decimal is the default value. Because only one of the digits is sig-
nificant, why leave the extra five sitting there? Trimming in this context is removing the
trailing zeroes from a float value.

In order to trim the trailing zeroes, we have to follow two steps. First, we must convert the
floating variable (which has decimal places) into a string. Next, we remove all the unnec-
essary digits. Then, we are free to display the string.

Let’s try it:

;demo03-03.bb - Counts using step amounts
For counter# = 5.0 To 0.0 Step -1.2

Print Left$(Str counter, 3)
Next

;Delay for five seconds
Delay 5000

Figure 3.4 shows the output.

n o t e

Notice that this example uses 3 as the length variable. The reason is because the number is con-
verted to a string, and the decimal is part of it. The example keeps the number before the decimal,
the decimal, and one number after the decimal.

Understanding Loops 45

Figure 3.4 The demo03-03.bb program.

This program begins the same way as the previous program did: it creates a For…Next loop
that begins with 5.0 and decreases by 1.2 until it reaches 0.0. The next line prints the newly
trimmed version of counter’s value. Let’s examine this statement.

The Print statement writes out each float value with one digit after the decimal place. The
first thing it does is call the Left$() function. Left$() is declared as

Left$ (string$, length)

In this case, the string$ variable was

Str counter

The Str function takes an integer or float and converts it to a string. It then returns the
created string. Because the return value is a string, we can use it in place of the string$
variable. The length variable is set to 3 to include the number and only one decimal point.
Table 3.2 describes the parameters.

While…Wend
The next type of loop is the While…Wend loop. This loop is very much like the For…Next loop,
but it is normally used to test variable conditions. In other words, the While…Wend loop is
normally used when you aren’t sure when to exit the loop.

While loops are the most common main loops in games. The main loop (also known as the
game loop) is a loop that runs over and over until the game is over. Because it cannot be
determined exactly when to end a game, the While…Wend loop is a perfect choice.

;demo03-04.bb - Waits for a key and then exits
Graphics 640,480
Text 0,0, "This program is worthless."
Text 0,12,"Press escape to exit."
Flip
;Wait until user presses 1 to Escape
While Not KeyDown(1)
Wend
End

Chapter 3 ■ Loops, Functions, Arrays, and Types46

Table 3.2 Left$'s Parameters

Parameter Description

string$ The string you want to trim
length The number of letters you want to include

n o t e

You might notice some strange functions in this program, such as Flip and Graphics. To check for
KeyDown(), you have to be in graphics mode, and the Graphics command does that. You will learn
more about this in Part 2; for now, just pretend it isn’t there.

Figure 3.5 shows the output of this program.

This program simply displays some text and asks you to quit. Almost a waste of time, huh?
Well, at least it demonstrates While…Wend and it introduces a new function, KeyDown().

The While…Wend loop begins like this:

While Not KeyDown(1)

This line of code sets up a While loop that exits only when the user presses the Esc key. The
loop continues until the user presses the Esc key. KeyDown(), which is declared as

KeyDown(scancode)

determines whether Esc has been pressed.

Understanding Loops 47

Figure 3.5 The demo03-04.bb program.

Here, the number 1 is used as the scan code. A scan code is a code generated by pressing
any key on a keyboard. Each key has its own separate scan code. Esc has the scan code of
1. You can see a list of all of the scan codes in Appendix A.

KeyDown returns 1 (true) if the key has been pressed and 0 (false) if the key has not been
pressed. Because we want the While…Wend loop to continue until the key has been pressed,
we invert the return value by including NOT. Therefore, if the player does not press Esc,
the KeyDown returns 0. The NOT command inverts this to a 1, and the While…Wend loop
continues to the next iteration.

Now is a good time to introduce the basic game loop. This loop only ends when the user
presses Esc. If the user loses, a function is called that will end the program. Note that this
code will not work. It will only call functions that don’t exist (functions are introduced
later in this chapter).

;Basic Game loop
While Not KeyDown(1)

PerformLogic()
Animation()
If playerlost Then

GameOver()
EndIf

Wend

This game loop is basically the most simplified version possible. Unless the player loses or
presses Esc, the loop continues to iterate. The PerformLogic() function probably updates
the AI for the game and Animation() probably draws and animates everything onscreen. If
the playerlost variable is set to 1 (most likely by the PerformLogic() function), the
GameOver() function is called and the game is over.

You should always strive to keep your main loop as simple as possible. It should not per-
form more operations than necessary. You will learn how to delegate operations to small-
er and more efficient functions soon in this chapter.

Repeat…Until
The final Blitz Basic loop is the Repeat…Until loop. This loop is almost exactly like the
While…Wend loop, except that the condition is written after the closing statement (Until)
instead of the opening statement (Repeat).

Doesn’t seem like a big difference, huh? The only time you use this type of loop is when
you know for sure that the loop should be executed at least once. This is evident in situa-
tions that involve displaying menus and testing for keys.

Chapter 3 ■ Loops, Functions, Arrays, and Types48

;demo03-05.bb - Closes program after player presses ESC.
Graphics 640,480
Text 0,0, "Why did you open this program?"
Flip
;y is the variable that judges the location of the text
y=12
Repeat

;Print text
Text 0,y, "Press Esc to exit."
;wait a sec
Delay 1000
Flip

;Move next line of text down
y=y+12

;repeat until user hits esc
Until KeyHit(1)
Text 0,y, "Program is ending."
Flip

The output is shown in Figure 3.6.

Understanding Loops 49

Figure 3.6 The demo03-05.bb program.

This program simply writes "Press Esc to exit" to the screen until the user presses Esc. It
introduces two main functions: Delay and KeyHit().

Delay pauses the program’s execution for a set number of milliseconds. Delay is declared as

Delay milliseconds

where milliseconds is the number of milliseconds you want to delay the program for. This
program delays the execution for one second (1000 milliseconds).

The other new function introduced is KeyHit().

KeyHit(scancode)

scancode is the code for the key that might be pressed. This function determines if the key
was pressed. If the key was pressed, it returns true; if not, it returns false.

The y variable tracks the location of the Text command. Each time, the y variable is incre-
mented by 12, moving the text down one line.

The reason that the text is moved down 12 pixels is because the font size of the text is size
12. Moving the text down 12 pixels is equivalent to making a new line in the program. The
condition for exiting the Repeat…Until loop is the opposite of While…Wend and For…Next
loops. Instead of continuing to iterate the loop only as long as the condition is true, the
Repeat…Until loop continues only when the condition is false. Take extra precautions to
make sure you do not create a never-ending loop.

n o t e

You might wonder about the difference between the new function KeyHit() and the previously
introduced function KeyDown(). The fact is, there is very little difference. KeyDown() determines if
the button is down at the time of the test, whereas KeyHit() determines if it has been down since
the last KeyHit() was checked. You can see the difference in any game. If you use KeyDown(), you
can hold down a key to make it work repeatedly; if you use KeyHit(), you have to press the
button every time you use it.

Because the program used Repeat…Until, the "Press Esc to exit" line will always be shown,
even if you press Esc before the loop begins. If you ever write a program that utilizes
menus (most RPG [Role-Playing Game] games do), you should use a Repeat…Until loop.

Okay, I have now thoroughly discussed each of the loops. I hope that you are now an
expert on how, as well as when, to use all three of the types of loops. Now on to an
extremely important subject: functions.

Chapter 3 ■ Loops, Functions, Arrays, and Types50

Understanding Functions
Functions are integral to any program. Even in the programs you have been writing so far,
you have used functions such as Print and Delay, and you have even written your own
implicit main function. This section teaches you how to write your own functions that
will make understanding and writing your program much easier and simpler.

Functions are small snippets of code that usually perform a single task. All programs con-
sist of at least one function: main. Although main isn’t actually defined, it still exists within
the program.

Every line of code written so far (with the exception of the ones in Chapter 1) has been
written in the function main. This function is the starting point and ending point of every
Blitz Basic program. Figure 3.7 shows an example of the main function in action. Because
the main function is never formally declared, I always write a comment telling myself
where it begins. I suggest you do the same.

Main calls two types of programs
to do its work: user-defined and
program-defined functions.
User-defined functions are those
that are written by the pro-
grammer, such as TestAI() in
the Chapter 1 game. All of these
functions must be defined
before they are used. Program-
defined functions are defined
within the compiler, like the
function Print. All of these have
already been written; all you have to do is call them with the proper parameters.

A parameter is a piece of information sent to the function to tell it what to do. For exam-
ple, the string$ variable is a parameter to the Print function. This variable tells Print what
you want printed to the screen.

You can send parameters to your own functions as well, but make sure that you declare
the parameters in advance. If your function is called with an extra parameter, your code
will not compile.

To use any function, you first must declare it. The function declaration is usually written
directly before the function code.

Function functionname([parameter variable,…])

Understanding Functions 51

Figure 3.7 A function example.

Looks kind of complex, huh? Let’s make this easy. First type Function. This is required for
every function declaration. Now, pick a function name (make sure it describes what the
function does; for example, if it counts, call it Count). Now, add an open parenthesis. Add
as many parameter variables as you need, each separated by a comma. Finally, add an end-
ing parenthesis.

Here is an example

Function ConvertFtoC (fvalue)

This function most likely converts a Fahrenheit value to a Celsius value. You can see that
by looking at the function’s name. Make sure yours are easy to understand too.

Next, you write the actual function code.

Return (5.0/9.0 * (fvalue - 32))

Remember that the * sign means multiplication and the / sign means division. This code
returns the Celsius value of the variable sent. A return value is any number or string
returned by a called function. For example, on the KeyHit() function, either a one or a zero
is returned. Here, the returned value is the Celsius equivalent to the Fahrenheit number.

Finally, we end the function.

End Function

We now need a main function call to actually use this function.

Print "Welcome to our FtoC converter"
fvalue = Input$("What Fahrenheit value do you wish to convert?")
cvalue = ConvertFtoC(fvalue)
Print fvalue + " Fahrenheit = " + cvalue + " Celsius."

This section of code is the actual main program. It starts off by introducing the program
and receiving the Fahrenheit value to convert. Next it calls ConvertFtoC() and stores its
value in the variable cvalue. Finally it prints the results.

Let’s put all these parts together now.

;demo03-06.bb - Converts Fahrenheit to Celsius

;MAIN PROGRAM
Print "Welcome to our FtoC converter"
;get Fahrenheit and put it in fvalue
fvalue = Input$("What Fahrenheit value do you wish to convert?")

;Convert fvalue to Celsius
cvalue = ConvertFtoC(fvalue)

Chapter 3 ■ Loops, Functions, Arrays, and Types52

;print results
Print fvalue + " Fahrenheit = " + cvalue + " Celsius."

;Delay for five seconds
Delay 5000

;END OF MAIN PROGRAM

Function ConvertFtoC(fvalue)
;convert value and return it
Return 5.0/9.0 * (fvalue - 32)

End Function

Figure 3.8 shows the output of this program.

And that’s all there is to functions. Well, almost…

Scope Considerations
There are two possible scopes in Blitz Basic: global and local. Global variables are visible
throughout the program, in every function and every line of code. Local variables are valid
only in the function in which they are defined. This means that a variable defined within
one function is not valid in another.

Understanding Functions 53

Figure 3.8 The demo03-06.bb program.

Let me show you an example of scoping. Note that this code will not work. It is only used
to demonstrate scope problems.

;CallMe() - Broken
CallMe()
Print x

Function CallMe()
x = 314

End Function

The example output is shown in Figure 3.9.

As you can see, this program calls CallMe() and x is assigned to 314. Then it tries to print
x, but it ends up printing 0! What gives?

You guessed it—scope. This function calls CallMe() and has x assigned to 314. But when
it returns back to main, the 314 has been flushed from memory. Although x is equal to 314
in CallMe(), it is equal to 0 in main.

Chapter 3 ■ Loops, Functions, Arrays, and Types54

What Is Scope?

Scope is kind of hard to understand, so to help, I went to http://www.dictionary.com and looked up
scope. Here is what it said:

“The scope of an identifier is the region of a program source within which it represents a certain
thing. This usually extends from the place where it is declared to the end of the smallest enclosing
block (begin/end or procedure/function body). An inner block may contain a redeclaration of the
same identifier, in which case the scope of the outer declaration does not include (is “shadowed”
or “occluded” by) the scope of the inner.”

What? If you finished reading that (20 bucks says you gave up after “program source within which
it represents a certain thing”), you are probably as lost as you were before.

Scope is a range of operation from where variables can be referenced. The fact that there are two
kinds of scopes allows programmers to create programs that have two or more variables with the
same name. You can have one variable with the name variablex in the global scope (otherwise
known as the main program) and another variable named variablex in the function HiIAmA-
Function(). Even though every other part of the program, including other functions, will use the
global scope’s version of variablex, HiIAmAFunction() will use its separate, more specialized,
version of variablex.

By the way, Scope is also a mouthwash.

There are a few ways to fix this. One way is to have CallMe() return a value like this:

CallMe()
Print "x is equal to " + CallMe()

Function CallMe()
x = 314
Return x

End Function

In this example, CallMe() returns the x value, which is printed by main.

The other way to solve this problem is to use global variables. Global variables have glob-
al scope and are visible throughout the program. This means that the scope of x in
CallMe() will be the same as the scope of x in main.

To create a global variable, simply precede the variable with the Global command.

;demo03-07.bb – Fixed CallMe()
Global x
CallMe()
Print "x is equal to " + x

;Delay five seconds
Delay 5000

Function CallMe()
x = 314

End Function

Understanding Functions 55

Figure 3.9 The broken CallMe() program.

The example output is shown in Figure 3.10.

n o t e

Notice that I wrote Global x in the main program rather than the function CallMe(). This is because
you can only create global variables in the main program. If you want to use global scope, you must
create the variable in the main program. By the way, the act of creating a variable without actually
setting the variable is called declaring. Making the variable equal to something is called defining it.

This time, we make x global. Then, when we assign 314 to x, x is equal to 314 in every
function, and not just in CallMe().

Chapter 3 ■ Loops, Functions, Arrays, and Types56

Figure 3.10 The fixed CallMe() program.

What Is Portable Code?

Porting is an important concept, because in the long run, it can save you a lot of time. In English,
for something to be portable, it must be able to easily move around. Think of that Game Boy
Advance you saw at Wal-mart a few days ago. Portable code is easy to move around. Portable code
is independent code that doesn't rely upon global variables for information. This allows you to cut
and paste functions from one program to another. Take the demo03-06.bb, the Fahrenheit-to-Cel-
sius calculator. That is a very portable function because you can rip that program right out and use
it in another program, if the need ever arises. Because the function does not rely on any global vari-
ables, you have nothing more to set up. When the function does rely on global variables, it is
extremely hard to cut and paste code from one program to another, simply because global vari-
ables usually do not exist in two different programs.

Global variables are common in games, but you should try to use them as little as possi-
ble for a few reasons. First, because every function has access to them, it is very easy to
change the variable by accident. Second, using global variables makes functions less
portable. If a function only uses parameters and local variables, it can be ported to other
programs by just copying and pasting. If it uses global variables, you have to go through
the code and change any references to global variables that don’t exist in the new program.
Although it doesn’t seem like a big deal now, it can be a big pain to have to search through
functions when you decide to add them to a new program.

By the way, another way to create a local variable is to add the keyword Local before a
variable, such as:

Local x

If you add the Local keyword to x in the previous program

x = 314

the x variable in main will once again equal zero. This is because the local scope takes
precedence over the global scope. Therefore, the local version of x is initialized to 314,
while the global version is left unaffected.

There is no difference between

Local variable

and

variable

if there is no declared global variable. In other words, when you declare a local variable, you
can omit the Local keyword (although you might want to keep it just for clarity and style).

When to Use Functions
Functions are necessary to programming. You know that you have to use them, but when
should you do so?

Use functions whenever you have to perform a task. I know that this is a vague statement
to make, but you should have at least a few functions for anything but the most trivial of
programs.

Usually, the main function should do little, if any, work. The tasks should be handed to
functions. If the task can be subdivided into two or more tasks, be sure to create the extra
functions. You can always call functions from within another function.

Here is an example: say you are creating a spaceship game and you have a function to draw
everything onscreen. You should probably make separate functions for drawing each part

Understanding Functions 57

of the game: a separate function for drawing the ships and the bullets. It is possible to sub-
divide those even more. If you wanted to, you could create separate functions for drawing
the bullets from the player and bullets from the enemy. Two more functions would draw
the player and the enemy ships.

Basically, if you see a place where a function could be useful, write it. It takes hardly any
more code than just putting the task in the main function and it makes your code much
more portable, not to mention readable.

Understanding Arrays
One large problem in programming is the creation of a large number of variables. Think
about how long it would take to create 10 variables of the same type right now. It might
look something like this:

variable0 = 314
variable1 = 314
variable2 = 314
variable3 = 314
variable4 = 314
variable5 = 314
variable6 = 314
variable7 = 314
variable8 = 314
variable9 = 314

Seems like a waste of time, huh? But imagine if you had to create a thousand variables.
That might take forever!

As you might have guessed, Blitz Basic has a way to remedy this problem. The solution is
to use a feature called an array. Arrays are basically sets of variables with almost the same
name. An array looks like any other variable, except it appends a subscript (a number
within parentheses) to the end of the variable name.

Imagine an array as a single-column box that contains separate places to place jars (see
Figure 3.11). Each jar contains a number. In this case, each jar contains the number 314,
but you can change these numbers. You can access the number through the array counter,
which looks like variable(0) or variable(1). Basically, each jar is independent of the other
jars, but they are all packaged in the same box. In arrays, the box represents the array, the
jars are the individual array variables, and the numbers are the variable data.

Any variable that is part of an array is written something like this:

variablename(subscript#)

Chapter 3 ■ Loops, Functions, Arrays, and Types58

Here, the name of the array is variablename and the subscript#
(it is always an integer, never a string) is equal to the amount
of array variables you want to generate.

Now we actually have to create the array. Let’s use the vari-
ables from the previous example.

Dim variable(10) ;Declare array

variable(0) = 314
variable(1) = 314
variable(2) = 314
variable(3) = 314
variable(4) = 314
variable(5) = 314
variable(6) = 314
variable(7) = 314
variable(8) = 314
variable(9) = 314

Doesn’t seem any simpler, does it? That’s because I created the array in the longer way.
However, using a For…Next loop, we can condense this into a much shorter procedure.

n o t e

You might be wondering what the Dim command means. Dim literally means “dimension”, and it
simply creates memory space that will be used later. You must use the Dim command to declare
arrays before using them.

;demo03-08.bb - initializes 10 vars to 314
Dim variable(10) ;Declare array

For i=0 To 10
variable(i) = 314
Print variable(i)

Next
WaitKey

The output is shown in Figure 3.12.

This does the same thing and more (it prints out the variable as well), but it is a heck of a
lot shorter! This time, the array is declared just as in the previous example. Next, a
For...Next loop iterates through each variable and sets it equal to 314! Easy, huh?

Understanding Arrays 59

Figure 3.11
Box to array comparison.

n o t e

Make sure you notice that all of the variables begin with 0. Computers count differently than humans
because they start counting with 0 rather than 1. In other words, the 10th variable in declaration of
array(10) is array(9). In other words, when you declare an array, you are telling the computer how
many elements the array should have, plus one. However, because computers always count from 0,
you access the array elements beginning with 0 and ending with n, where n is equal to the size of
the array. For example, if you take an array declared as array(5), the array would contain the ele-
ments array(0), array(1), array(2), array(3), array(4), and array(5). So an array that had five
elements would be accessed with the numbers; 0, 1, 2, 3, 4, and 5—no more, no less. I often use less
than the maximum amount of units, however, so I use 0-4 on an array(5)declaration.

To see how the box and jar example fits in with this program, see Figure 3.13.

All right, how about one more example of functions? This program will set a series of
variables to an increasing number. From there, the user can choose to add, subtract, mul-
tiply, or divide two of the numbers. It’s sort of like a mini calculator.

;demo03-09.bb - Allows user to perform math operations of 1-100

;op1 and op2 are global so they can be accessed from all functions
;op1 contains first operand, op2 contains second
Global op1
Global op2
Dim array(100) ;0 - 100
InitializeArray()

Chapter 3 ■ Loops, Functions, Arrays, and Types60

Figure 3.12 The demo03-08.bb program.

;continue is 1 as long as program is running
continue = 1

While continue ;as long as the computer wants to play
;Get the first operand
op1 = Input("What is the first number? ")
;Get the second operand
op2 = Input("And the second? ")

; what does the user want to do?
operator$ = Input("Enter +, -, *, or / ")
;Print the answer
PrintAnswer(operator$)

;Find out if user wants to continue
continue = Input("Enter 1 to continue or 0 to quit ")

;Insert a new line
Print ""

Wend
End

This ends the initialization and the main loop sections of the calculator program. The
program begins by creating two global variables: op1 and op2. These are the two numbers
that will be added together. For example, in the expression 3 + 14, 3 represents op1 and 14
represents op2.

Next, it creates the array. The array has 101 elements, and therefore, it goes from array(0)
to array(100) (remember that arrays begin counting from 0). After the array declaration,
InitializeArray() is called.

The continue variable is then created. This variable determines whether the program is
still running. As long as continue is not equal to 0, the game loop continues to run.

The main loop begins next. First, it receives the variables op1 and op2 from the user. After
that, it asks for operator. operator gives the users a choice of what operation they want to
perform (addition, subtraction, multiplication, or division).

The loop then calls PrintAnswer() to print the answer. Finally, the loop asks the users if
they would like to go through the program again. If the user chooses yes, continue remains
as 1 and the game loop starts from the top. If not, the program exits.

This program has two user-defined functions: PrintAnswer() and InitializeArray(). Let’s
take a look at each of them.

Understanding Arrays 61

Figure 3.13
Demo03-08.bb
box and jar
example.

;This Function sets up the array
Function InitializeArray()
For i=0 To 100

array(i) = i
Next
End Function

This function simply creates the array that is used in the following calculations. Each array
element contains its respective number. Therefore, the 14th element (array(13)) is equal
to 13. After the numbers 0 through 100 have been initialized, they are all sent back to the
main loop to go through the rest of the input.

The next user-defined function is PrintAnswer().

;This function prints the answer to the expression
Function PrintAnswer(operator$)
Print op1 + " " + operator$ + " " + op2 +
" is equal to " + FindAnswer(operator$)
End Function

This function simply writes out what the user wants to do. If the user wants to add 13 and
31, this function writes out "13 + 31 is equal to 44." You might be wondering how it gets
the answer. That is accomplished by the final user-defined function: FindAnswer().

;This function performs the math based on the user input
Function FindAnswer(operator$)

Select operator
Case "+"

Return array(op1) + array(op2)
Case "-"

Return array(op1) - array(op2)
Case "*"

Return array(op1) * array(op2)
Case "/"

Return array(op1) / array(op2)

End Select
End Function

Note that if op1 or op2 is larger than 100 or less than 0, the program will not function.

The output is shown in Figure 3.14.

By the way, one thing about this program. The program will crash if op2 is set to 0 and
operator$ is division. This is because it is impossible to divide any number by 0. As you
can see, this function begins with a Select statement. The Select command chooses an

Chapter 3 ■ Loops, Functions, Arrays, and Types62

action based on which operator is being used. If the user chooses to multiply something,
the function returns op1 times op2. The return value is then printed to the screen in the
PrintAnswer() function.

n o t e

If you happen to try dividing two numbers that aren’t evenly divisible, you will get the correct num-
ber, but the decimal place will be missing. That is because this program uses integers. Try modify-
ing this program so it uses floating-point variables instead.

Figures 3.15 and 3.16 portray the array as a box and demonstrate how two numbers are
added.

Understanding Arrays 63

Figure 3.14 The demo03-09.bb calculator program.

Figure 3.15
The array box.

Figure 3.16 Adding two jars.

Multi-Dimensional Arrays
Multi-dimensional arrays are very similar to regular arrays, except that, well, they have
more than one dimension. In essence, the main difference is that a multi-dimensional
array has more than one subscript. An easy way to visualize a multi-dimensional array is
to use the box example again. However, instead of only having one column, it has two or
more, as shown in Figure 3.17.

Multi-dimensional arrays are used in situa-
tions in which you need sets of variables
within the array set. For example, you might
create an array of bullets. You could then
create an array with two dimensions, and
place the bullets shot by the player in one
dimension, and the bullets shot by the
enemy in the other. This is demonstrated in
Figure 3.18.

Okay, let’s make a multi-dimensional array.
This process is very similar to making a sin-
gle-dimensional array; you only have to add
another subscript into the declaration.

Dim bullets(2,100)

This command creates an array of bullets
with two parts. The first part determines
who shot the bullet and the second part
determines which bullet it was. Each col-
umn contains 100 bullets.

Now, to actually use the array, you only have
to add the second subscript to the variable
call like this:

bullets(0,23)

This command calls the 24th bullet from the player. Remember, because the computer
begins counting at 0, the subscript 23 is the 24th element of the array.

All right, let’s make a program. This simply draws out 25 asterisks (*) and 25 plus signs
(+). It doesn’t do much, but you will understand how you can use arrays when you learn
about types in the next section. Figure 3.19 portrays the info in a table.

Chapter 3 ■ Loops, Functions, Arrays, and Types64

Figure 3.17 Single and multi-dimensional
arrays.

Figure 3.18 The two-dimensional bullet array.

;demo03-10.bb - Draws out 25 '*'s and 25 '+'s

;create the array
Dim starsplusses$(2,24)

;initialize the array. The first dimension will
contain *'s and the second will contain +'s
For rows = 0 To 1

For columns=0 To 24
Assign either + or *, depending on

the return value of FindChar$()
starsplusses$(rows,columns) = Find-

Char$(rows)
Next

Next

This first fragment begins by creating the starsplusses$ array. Because its subscript is
(2,25), it will contain a total of 50 objects. How did I get this number? I simply multiplied
the first subscript by the second subscript: 2*25 = 50.

The next section of the code initializes the array. It runs two for loops within each other.
In multi-dimensional arrays, two for loops are commonly used. The first loop runs
throughout the first subscript and the second loop runs throughout the second subscript.
The outer loop, For i = 0 To 1, counts from 0 to 1. The second for loop counts from 0 to
24. The line

starsplusses$(rows,columns) = FindChar$(rows)

determines what each element is set equal to with the help of the FindChar$() function.

FindChar$() is a user-defined function. It looks like this:

;FUNCTION FINDCHAR$(i)
;returns * or +
Function FindChar$(i)

If i = 0
Return "*"

Else If i = 1
Return "+"

EndIf
End Function

If the initialization loop calls this function with the row number being 0, the array ele-
ment becomes an asterisk (star). If the function is called with the row being 1, the array
element is a plus sign. Therefore, the array has two rows of 25 characters—one row is
made up of stars, the other is made up of plusses.

Understanding Arrays 65

Figure 3.19 The starsplusses$ array.

Next, you have to display the array.

;display the array
For rows = 0 To 1

For columns = 0 To 24
;Write each value to the screen
Write starsplusses$(rows,columns)

Next
;write a new line after each row
Print ""

Next
;Delay five seconds
Delay 5000

Once again, this function has two for loops running within each other. The outer loop
counts by rows and the inner loop counts by columns. Every element is drawn to the
screen. When the loop gets to the end of the first row, a new line is printed so it can print
out the next row.

A new function, Write, is introduced here. Write has the same prototype as Print:

Write string$

In fact, these two functions are extremely similar. The only difference between Write and
Print is that Write, unlike Print, does not automatically print out a new line after the line
is written. This is extremely useful when trying to write out the contents of the array
because you don’t want a new line after each element. Figure 3.20 shows what demo03-
10.bb looks like when Write is substituted for Print.

Chapter 3 ■ Loops, Functions, Arrays, and Types66

Figure 3.20 Demo03-10 without Write.

Figure 3.21 shows the demo03-10.bb program.

Using Types
The entire chapter has been leading up to types, because they are a very important and
useful part of the Blitz Basic language. Types are simply a set of related data. That might
sound a lot like the definition of an array, but with types, you can have different names
for each of the variables, as well as different data types (string, integer, and floating point).

Here is an example. Imagine you have a player ship. The computer needs to know where
to put the ship. For this example, we are going to put the ship at the coordinates 100, 100
(if you don’t understand coordinates, they will be explained soon). You could do some-
thing like this:

playerx = 100
playery = 100

Seems pretty easy, eh? What if you wanted to add a hit counter? You have to create anoth-
er variable.

playerhits = 3

That’s three variables. If you wanted to make it possible for the ship to move up and down,
you would need two more variables. That’s a total of five variables!

The best way to remedy this problem is to use types. A type can take all of these unorga-
nized variables and attach them to a single type name, like in Figure 3.22. Here is the cre-
ation of a ship type:

Using Types 67

Figure 3.21 The demo03-10.bb program.

Type Ship
Field x,y ;the ship's location
Field hits ;ship's hit points

End Type

To create a new type, add the keyword Type before the name of the type. Next, create the
individual fields. Each field is a separate variable that is part of the type. Each Field vari-
able can be an integer, a floating point, or a string.

Now you have declared the type, and you have to create a variable that can hold this new
data type. The procedure to do this is a little different from defining a variable with one
of the built-in types (strings, integers, and floats are the built-in types). To create this new
variable, or instance as it is called, use the following syntax.

player.ship = New ship

Wow, that looks bizarre. Let’s break it down piece by piece. The first thing that you see is
the word player to the left of the decimal point. This word refers to the name of the vari-
able you are creating. After the decimal point, you see the word ship. This is the type you
want the variable associated with. This variable will now have all of the same fields as the
ship type, declared previously. To finish off the process, we provide the proper fields by
setting player.ship equal to New ship.

This creates the new player ship. You could create an enemy ship by simply changing the
name of player to enemy. Creation of a new type almost always uses this base:

instancename.typename = New typename

Now that we have organized all the loose variables by putting them in a type and creating
an instance of the type, we can set the field variables.

player\x = 100
player\y = 100
player\hits = 3

Chapter 3 ■ Loops, Functions, Arrays, and Types68

Figure 3.22
Unattached and attached variables.

Not too bad, huh? To access one of the variables, just use this formula.

instancename\variablename

Now you can create, define, and access types. Let’s get to an example and see how this baby
works. To write this program, I am going to use the function Text, which is declared as

Text x,y,string$,[centerx],[centery]

Refer to Table 3.3 to see what each parameter means. Text allows you to draw text on the
screen, just like Print, but it also provides the capability for the programmer to choose the
exact coordinate position that will appear.

This program uses Text to draw the players on the screen and to show their hit points. You
will also be able to decrease the player’s hit points and move them around. This is a pret-
ty basic and simple game. Also, the ship will be represented by the characters <-*->. Table
3.4 describes the keys used in this game.

Using Types 69

Table 3.3 Text's Parameters

Parameter Description

x The x coordinate of the text
y The y coordinate of the text
string$ The string you want printed
[centerx] Set to true if you want the text horizontally centered
[centery] Set to true if you want the text vertically centered

Table 3.4 Demo03-11.bb's Keys

Key Function

Left arrow Moves the ship left
Right arrow Moves the ship right
Up arrow Moves the ship up
Down arrow Moves the ship down
Spacebar Decreases the ship’s hit points by one
Esc Exits the game

;demo03-11.bb - Draw a ship which can be moved and killed

Graphics 400,300

;CONSTANTS
Const STARTHITPOINTS = 3
Const SHIP$ = "<-*->"
Const ESCKEY = 1, SPACEBAR = 57, UPKEY = 200,
LEFTKEY = 203, DOWNKEY = 208, RIGHTKEY = 205
Const STARTX = 200, STARTY = 150

This is the first part of the program. It begins by setting the graphics mode. Next, it desig-
nates which variables are constants. Constants, as you remember, are variables whose val-
ues don’t change throughout the game. If you want to make a change to any of these vari-
ables, feel free to do so. The difference will be reflected throughout the entire program. It
probably isn’t a good idea to change the key constants (such as ESCKEY, SPACEBAR, and so on)
because doing so just causes some problems—you will have to search for the correct key.

All of the constants are listed in Table 3.5.

Chapter 3 ■ Loops, Functions, Arrays, and Types70

Table 3.5 demo03-11.bb's Constants

Constant Default Value Description

STARTHITPOINTS 3 The number of times you can decrease the hit points (by
pressing spacebar) before the game ends.

SHIP$ "<-*->" The characters that make up the player. Because there are
no images, the player is simply a text string. Change this
value to change how the player looks.

ESCKEY 1 The key code for Esc.
SPACEBAR 57 The key code for the spacebar.
UPKEY 200 The key code for the up arrow.
LEFTKEY 203 The key code for the left arrow.
DOWNKEY 208 The key code for the down arrow.
RIGHTKEY 205 The key code for the right arrow.
STARTX 200 The starting x position for the ship.
STARTY 150 The starting y position for the ship.

Okay, let’s keep going.

;TYPES
Type Ship

Field x,y
Field hitpoints
Field shipstring$

End Type

This section defines all of the types used in the program. Here, only one is defined—Ship.
The Ship type groups all of the variables necessary to draw the ship on the screen. Table
3.6 lists all of the fields of the Ship type.

Next we move to the initialization of the program.

;INITIALIZATION SECTION
Global cont = 1
Global player.ship = New ship
player\x = STARTX
player\y = STARTY
player\hitpoints = STARTHITPOINTS
player\shipstring = SHIP$

The initialization section defines all of the variables that will be used in the program. It
also initializes the fields of the Ship type. The first variable, cont, is used in the game loop
as the variable that determines whether the game continues playing. As long as the user
wants to continue, cont is equal to 1.

The line

Global player.ship = New ship

creates an instance of the Ship type with the name player. Therefore, any fields that are in
the ship type can now be accessed via player. The rest of the initialization section sets up
the player type by assigning its fields to their respective constants.

Using Types 71

Table 3.6 demo03-11.bb's Types

Field Description

x The x coordinate of the ship. The field is first initialized to the x value given in STARTX.
y The y coordinate of the ship. The field is first initialized to the y value given in SSTARTY.
hitpoints The number of hit points remaining on the ship. The field is first initialized to the hit point

value given in STARTHITPOINTS.
shipstring$ The actual look of the ship. This field is first initialized to the string value SHIP$.

c a u t i o n

Be careful to not confuse the “/” operator and the “\” operator. A forward slash “/” indicates divi-
sion. A backward slash “\” indicates that you are accessing something from a type.

Next, move on to the game loop.

;Game loop
While cont = 1

Cls
Text player\x, player\y, player\shipstring$

TestInput()
DrawHUD()

Wend
;End of loop

The game loop is short, as it should be. It begins by testing the cont variable. If cont is
equal to 1, the game runs; if not, the game exits. After that, the loop clears the screen by
calling Cls. Without calling Cls, the screen would exhibit streaks, like in Figure 3.23. After
that, the player is drawn to the screen at the given position. The loop then tests the input
by calling TestInput() and draws the HUD by calling DrawHUD(). The HUD is the heads-up
display, or the area of the screen that explains some values that are being used in the game.

Chapter 3 ■ Loops, Functions, Arrays, and Types72

Figure 3.23 The main loop without Cls.

;TestInput() changes the direction or hit points of the player
Function TestInput()
;If player presses left, move him left.
If KeyHit(LEFTKEY)

player\x = player\x - 3
If player\x <= 0

player\x = 10
EndIf

EndIf

;If player presses right, move him right.
If KeyHit(RIGHTKEY)

player\x = player\x + 3

If player\x >= 385
player\x = 380

EndIf
EndIf

;If player presses up, move him up.
If KeyHit(UPKEY)

player\y = player\y - 3
If player\y <= 0

player\y = 10
EndIf

EndIf

;If player presses down, move him down.
If KeyHit(DOWNKEY)

player\y = player\y + 3
If player\y >= 285

player\y = 280
EndIf

EndIf

;If player presses spacebar, remove a hit point

If KeyHit(SPACEBAR)

Using Types 73

player\hitpoints = player\hitpoints - 1
If player\hitpoints <= 0

cont = 0
EndIf

EndIf

;If player presses Esc, set cont to 0, and exit the game
If KeyHit(ESCKEY)

cont = 0
EndIf

The TestInput() function is very long, but also very simple. It simply tests the keys that the
user has pressed and updates the variables based on the input. Starting from the top, if the
player presses the left arrow, the player moves three pixels to the left. If the player happens
to move the character too far (off the screen), the ship’s position is moved back to the
right. If the user presses the right arrow, he moves left a little. The same happens if the user
moves the ship too far up or down—the ship is repositioned back on the screen.

If the player presses the spacebar, the hit point counter decreases by one. The program
then tests the counter to determine if the player has 0 hit points. If so, cont is set to 0, and
the game is exited on the next frame.

The last test determines if the user pressed Esc. If so, cont is set to 0, and the game exits
on the next frame.

;DrawHUD() draws user's info in top Right of the screen
Function DrawHUD()

Text 260, 10, "X position: " + player\x
Text 260, 20, "Y position: " + player\y
Text 260, 30, "Hitpoints: " + player\hitpoints

End Function

The final function in the program, DrawHUD(), simply writes out the ship’s information to
the screen. The x and y coordinate positions and remaining hit points are drawn in the
top-right section of the screen.

n o t e

You might notice a major slowdown on your computer when you run this program. That is because
we are running a mini-game without using page flipping. Don’t worry, I will teach you how to fix
this problem in Part 2 of this book.

Figure 3.24 shows how the loop works and Figure 3.25 is a screenshot of the actual program.

Chapter 3 ■ Loops, Functions, Arrays, and Types74

Coordinate Systems
I’m going to leave the concept of types for
a moment to talk about coordinate points.
Coordinates explain where on the screen
something is. They are shown in the for-
mat of x, y. For example, something that is
at coordinate 314, 13 has an x position of
314 and a y position of 13.The coordinate
plane looks like Figure 3.26. The origin, or
0 value of both the x and y direction, is at
the top-left part of the screen. X increases
from the origin right, and y increases from
the origin down. When you want to get to
coordinate position 314, 13, for example,
you move from the origin 314 spaces to
the right and 13 spaces down.

Each position is a single pixel on the screen. A pixel is the smallest measurement of a com-
puter screen. Each pixel is a different color, and the pixels fitted together create an image.
To see the size of a single pixel on your machine, run demo03-12.bb (see Figure 3.27). The
tiny white dot in the center is a single pixel. Small, huh?

When you want to plot an object to the screen, you plot it to a certain pixel position.
Usually the top-left corner of the object is drawn to that pixel position. So, as in Figure
3.28, if you want to write some text to a certain position, the top left of the text is at the
selected pixel. If you write with the Text command, you can also center the text.

Using Types 75

Figure 3.24 The main game loop.

Figure 3.25 The demo03-11.bb program.

Chapter 3 ■ Loops, Functions, Arrays, and Types76

Figure 3.26 A coordinate system.

Figure 3.27 A single pixel.

For…Each…Next
Types have been specifically designed to work well with
loops. In fact, there is a new kind of loop that only
works with types. It is called the For…Each…Next loop.

The For…Each…Next loop allows you to create sets of
types and perform actions on them as a whole. For
example, using a For…Each…Next loop, you could create
a set of enemy ships from one call. Using the type:

Type ship
Field x,y
Field hitpoints

End Type

You now create a bunch of enemy ships—say, 100:

SeedRnd MilliSecs()
For enemycounter = 0 To 99 ;100 new ships

enemy.ship = New ship
enemy\x = Rand(1,640)
ememy\y = Rand (1,480)
ememy\hitpoints = 3

Next

Well, we have just created 100 different enemy ships. Now, to test all of the enemies, we
need to use the For…Each…Next loop. This loop tests every member of a certain type; this
makes it easy to create a bunch of copies of an enemy and get rid of them when you’re
done. Refer to Figure 3.29 to see how the For…Each…Next loop looks in memory. This specif-
ic loop tests each enemy’s hit points to make sure they are really alive. If not, the program
deletes the enemy.

n o t e

It might seem like we are creating the same enemy
over and over again. In actuality, we are creating a
whole bunch of enemies with the same name. Using
the For…Each…Next loop, you can quickly and easily
test and modify every enemy ship.

For enemyships.ship = Each ship
If hitpoints <= 0

Delete enemyships
EndIf

Next

Using Types 77

Figure 3.28
Drawing objects at pixel locations.

Figure 3.29 The enemyships in
memory.

Pretty easy, if I do say so myself! This code snippet tests every one of the ships and deletes
them if their hit point counter is equal to or less than 0. To see how the For…Each…Next loop
works in memory, check out Figure 3.30.

t i p

You might wonder why the program determines if the
hit point count is equal to or less than 0. Because the
ship is always deleted at 0, why test for less than 0?
The reason is, sometimes a tiny error leaks through,
and a ship could be assigned a �1 hit point count (this
might happen if the ship was hit twice in the same
frame). In cases like these, it’s better to be safe than
sorry. The moral: always test for unlikely conditions.

You can easily change this loop to interact with
the enemy ship’s x and y values. For example,
if you add an x or y direction, you can make

the enemies move randomly. You might update the type to look something like this:

Type ship
Field x,y
Field directionx, directiony
Field hitpoints

End Type

Next, inside the initialization loop, you randomize the direction values (a positive num-
ber for directionx moves the enemy right, and a positive number for directiony moves the
enemy down).

enemy\directionx = Rand(-3,3)
enemy\directiony = Rand(-3,3)

And finally, you would add code in the final loop to move the enemy around:

enemy\x = enemy\x + enemy\directionx
enemy\y = enemy\y + enemy\directiony

n o t e

If you put all this code in a program and watch the enemy ships, you might notice that the ships
leave streaks behind them. This is because their previous position was not deleted. If you want to
fix this problem, simply add the command Cls, clear screen, to the beginning of the game loop.

Congratulations, you have created animation!

Chapter 3 ■ Loops, Functions, Arrays, and Types78

Figure 3.30 The enemyships loop in
memory.

Putting It All Together: Textanoid!
Okay, now, using all we have learned, you can put it together and make a game. This game
is a simple text-based copy of Arkanoid that uses all of the processes discussed in this long
chapter.

Because we will be using text, the basic game commands are run by the Text and KeyDown
commands. Basically, the idea of the game is to get rid of all the blocks by hitting them
with the ball. The players control a paddle, which can move left or right. Player attempts
to keep the ball from hitting the bottom wall of the game board. Each time the player
clears the field of blocks, the player will reach a new level. Theoretically, you can go on to
an infinite level (because the difficulty never increases), but I’m betting the player will get
bored before then.

The full source of the game can be found on the CD under the name demo03-13.bb. This
game might be hard to understand for a beginning programmer; however, I am going to
help you through the tough parts of the code. Let’s start off with the defined types.

;TYPES
Type paddle ;the player type

Field x,y ;coordinates
End Type

Type ball
Field x,y
Field directionx, directiony

End Type

The output is shown in Figure 3.31.

These types define the player and
the ball in the game. The x and y
coordinates are simply the posi-
tion of each object on the screen,
but the directionx and directiony
variables might seem strange.

n o t e

Notice that I decided not to make a
block type. I felt that it would be
easier to create it as an array. For
an exercise, try to make and use a
block type in the program.

Putting It All Together: Textanoid! 79

Figure 3.31
How DirectionX and DirectionY work.

The direction variables define how the ball moves—the directionx defines the left and
right movement and the directiony variable defines the up and down movement.
Referring to Figure 3.31, you can see that as directionx moves the paddle left, directiony
moves the paddle up. The end result is a new position that is above and to the left of the
original position.

Next up is the constants section:

;Constants
Const BLOCKSTRING$ = "XXXXXXX"
Const PADDLESTRING$ = "---------"
Const BALLSTRING$ = "O"
Const BLOCKROWS = 3
Const BLOCKCOLUMNS = 6
Const BLOCKXGAP = 85
Const BLOCKYGAP = 32
Const BLOCKXORIGIN = 16
Const BLOCKYORIGIN = 8
Global BLOCKHEIGHT = FontHeight()
Global BLOCKWIDTH = Len(BLOCKSTRING$) * FontWidth()
Global PADDLEHEIGHT = FontHeight()
Global PADDLEWIDTH = Len(PADDLESTRING$) * FontWidth()
Global BALLHEIGHT = FontHeight()
Global BALLWIDTH = Len(BALLSTRING$) * FontWidth()
Const STARTX = 300
Const STARTY= 340
Const ESCKEY = 1, LEFTKEY = 203, RIGHTKEY = 205

Refer to Table 3.7 to see what each constant means. By the way, the function FontHeight()
(which is used in each of the height variables) returns the height in pixels of the selected font
(you will learn how to change the font later). The FontWidth() function returns the width of
one character of the selected font. The Len function returns the number of characters in a
string. Figure 3.32 shows what FontWidth() and Len would return on a sample string.

c a u t i o n

Unfortunately, due to some error in the BlitzPlus demo, FontWidth() does not work. You have to
find the width of the font manually in this case. However, FontHeight() works fine. Hopefully this
error will be fixed in a new demo. I will let you know if there is any new way to fix this error on my
Web site, http://www.maneeshsethi.com.

Chapter 3 ■ Loops, Functions, Arrays, and Types80

n o t e

You might be wondering why the HEIGHT
and WIDTH variables are global and not con-
stant. The reason is that a constant value
can never be variable. The FontHeight()
function can return a different value, and
therefore it is variable. Because I need to use
the HEIGHT and WIDTH variables throughout
the program, I made them global.

Putting It All Together: Textanoid! 81

Table 3.7 Textanoid!'s Constants

Variable Description

BLOCKSTRING Defines what each block looks like
PADDLESTRING Defines what the paddle looks like
BALLSTRING Defines what the ball looks like
BLOCKROWS The number of rows of blocks
BLOCKCOLUMNS The number of columns of blocks
BLOCKXGAP The number of pixels between each column
BLOCKYGAP The number of pixels between each row
BLOCKXORIGIN The number of pixels from the top-left corner of the window to the first column
BLOCKYORIGIN The number of pixels from the top-left corner of the window to the first row
BLOCKHEIGHT The height of each block
BLOCKWIDTH The width of each block
PADDLEHEIGHT The height of the paddle
PADDLEWIDTH The width of the paddle
BALLHEIGHT The height of the ball
BALLWIDTH The width of the ball
STARTX The starting x coordinate of the player
STARTY The starting y coordinate of the player
ESCKEY The key code for the Esc button
LEFTKEY The key code for the left arrow
RIGHTKEY The key code for the right arrow

Figure 3.32 Len and FontWidth().

Okay, next is the initialization section.

;Initialization
SeedRnd MilliSecs()
Global score = 0
Global blockhits = 0
Global level = 1
Dim blocks(BLOCKROWS, BLOCKCOLUMNS)

Global ball.ball = New ball
Global player.paddle = New paddle
NewLevel()

Let’s discuss this section. First the SeedRnd command seeds the random generator. Next,
this section creates the score, blockhits, and level variables. score is the points the player
has accumulated, blockhits tells how many times the player has hit a block, and level
shows the players what level they are on. All of these variables are used in the function
DrawHUD().

The command

Dim blocks(BLOCKROWS, BLOCKCOLUMNS)

creates a multidimensional array called blocks. If you recall, a multidimensional array is
just like a regular array but it has rows as well as columns. This fits in easily with the
block setup.

Refer to Figure 3.33 to see the block rows and columns, complete with subscripts. You can
see that the columns extend from the top to the bottom, and the rows extend from the left
to the right.

Chapter 3 ■ Loops, Functions, Arrays, and Types82

What Is SeedRnd?

You might wonder why I always use the command SeedRnd Millisecs() before using the Rand
function. The fact is no computer is random. Because it was created to do certain tasks correctly
each time, it cannot truly create random numbers. Because of this fact, using Rand by itself in a
program would cause the same number to be generated over and over. The program uses SeedRnd
to change the starting point of the random generator each time, so it does not generate the same
numbers over and over. MilliSecs() is a good function to use to seed the generator because Mil-
liSecs() is never the same twice.

The next two variables created are
ball and player. These two vari-
ables create the ball and player
from the ball and paddle types.

Finally, you initialize the level by
calling NewLevel(). This user-
defined function creates all of the
blocks and sets up the ball and pad-
dle. The function is defined as:

Function NewLevel()
For rows=0 To BLOCKROWS - 1

For cols=0 To BLOCKCOLUMNS
- 1

blocks(rows,cols) = 1
Next

Next
ResetLevel()
End Function

The first for loop counts each of the rows and the second for loop counts each of the
columns. Notice that I make the for loops count to the number of rows and columns
minus 1. This subtraction offsets the fact that the starting number in an array is 0.
Referring to Figure 3.34, you can see that this counter goes through each of the columns
in the first row before moving to the next row and starting again. Whenever you see dual
for loops to count through the blocks, all of the columns in the first row are counted
before moving to the next row. Each of the blocks is set to one, which means they will be
drawn (if they are destroyed, the blocks are set to zero).

The next line calls the function ResetLevel(). ResetLevel() is defined as this:

Function ResetLevel()
ball\x = 320
ball\y = 150
ball\directiony = 12
ball\directionx = Rand(-5,5)
player\x = STARTX
player\y = STARTY
Delay 500

End Function

Putting It All Together: Textanoid! 83

Figure 3.33 Rows and columns.

This function sets up the starting variables for the player and ball. The ball appears at the
top-center corner of the screen and the player appears at the constant starting position.
The ball is set to move toward the paddle at 12 pixels a frame and left or right randomly.
The randomness of the ball’s movement can sometimes cause a problem, however. There
is always a chance that directionx will be equal to 0, and the ball will move straight up and
down, without moving left or right at all. I left this problem in the program to illustrate a
problem with random functions, and to give you an exercise. Try to fix this problem so a
directionx of 0 can never occur!

Well, that was initialization. Next up, the game loop:

While Not KeyDown(1)
Cls

DrawHUD()
TestInput()
DrawBlocks()
DrawPaddle()
CheckBall()

Flip
Wend

Chapter 3 ■ Loops, Functions, Arrays, and Types84

Figure 3.34 The for loops.

As you can see, the loop does almost nothing other than calling other functions. If you
look at Figure 3.35, you will see the function layout for this program—which functions
call which other functions, and so on.

n o t e

You might wonder what the Flip
command does. This command
switches the background buffer with
the foreground buffer. Don’t worry
what this means—it is explained in
Chapter 5.

The first call the loop makes is to
DrawHUD(). Referring to Figure 3.36,
you can see that DrawHUD() simply
shows the players what level they are
on, what their score is, and how
many blocks they have hit.

Function DrawHUD()
Text 0,440, "Level: " + level ;write the level
Text 0,450, "Score: " + score ;write the score
Text 0,460, "Block Hits: " + blockhits ;write the block hits
End Function

Not too bad, huh? The only thing you
might want to notice are the coordinates.
The x coordinate is 0, which means it is
on the left side of the screen, and the y
coordinate is 440, 450, and 460, which is
pretty close to the bottom (the total
height of this window is 480, as seen in
the Graphics call at the beginning of the
program).

The next call from the loop is to
TestInput(). TestInput() determines if the
player moves her paddle or quits the
game.

Putting It All Together: Textanoid! 85

Figure 3.35 Textanoid!’s function outline.

Figure 3.36 The DrawHud() function.

Function TestInput()
If KeyDown(ESCKEY) ;hit Esc

End ;quit the game
ElseIf KeyDown(LEFTKEY) ;hit left arrow

player\x = player\x - 10 ;move paddle left
ElseIf KeyDown(RIGHTKEY) ;hit right arrow

player\x = player\x + 10 ;move paddle right
EndIf
End Function

Just for review, the KeyDown(scancode) function determines if the selected key was pressed.
This function tests the Esc key, the left arrow, and the right arrow. If the player pressed Esc,
the game ends. The left and right arrows move the paddle around the board.

The next function is DrawBlocks(). This function loops through each block and draws it if it
is equal to 1. If a block is set to 0 (a block is set to 0 when it is hit by the ball), it is not drawn.

Function DrawBlocks()

x = BLOCKXORIGIN
y = BLOCKYORIGIN

;This variable creates a new level if there are no blocks
newlevel = 0

;For all the rows
For rows = 0 To BLOCKROWS - 1

;reset rows position
x = BLOCKXORIGIN

For cols = 0 To BLOCKCOLUMNS - 1

;If the block exists, draw it onscreen
If (blocks(rows,cols) = 1) Then

Text x,y, BLOCKSTRING$
newlevel = newlevel + 1

EndIf
;Move over to the next block
x = x + BLOCKXGAP

Next
;Move to the next column
y = y + BLOCKYGAP

Next
If newlevel = 0

Chapter 3 ■ Loops, Functions, Arrays, and Types86

level = level + 1
NewLevel()

EndIf

End Function

This might be tough to understand, but I’m here to help! The function starts with setting
x and y to BLOCKXORIGIN and BLOCKYORIGIN. Refer to Figure 3.37 to see how the origin vari-
ables define how far from the top-left corner the first block is.

The newlevel variable deter-
mines if there are any blocks
left. Every time a block is
found, newlevel is incremented.
At the end of the function, if
newlevel equals 0, a new level is
created.

The function now creates two
for loops to iterate through the
rows and columns of blocks
(just like in NewLevel()). The
only line between the two for
loops is

x = BLOCKXORIGIN

This line resets the x value to BLOCKXORIGIN after all of the columns in one row have been
tested. This line is necessary; if it were not included, the program would believe that the
second row started offscreen. This is shown in Figure 3.38.

The next few lines test each block:

If (blocks(rows,cols) = 1) Then;If the block exists
Text x,y, BLOCKSTRING$
newlevel = newlevel + 1

EndIf

Figure 3.39 shows how each block is tested. If the current block is equal to 1, the block is
drawn; if not, it is not drawn. At least one block must be drawn to continue the level; if
no blocks are drawn, the newlevel variable never increases and stays at zero.

Putting It All Together: Textanoid! 87

Figure 3.37 The X and Y origins.

Chapter 3 ■ Loops, Functions, Arrays, and Types88

Figure 3.38 DrawBlocks() with and without resetting the x value.

Figure 3.39 The block test.

The final line before the column loop’s Next command is

x = x + BLOCKXGAP

This line advances the x variable to the next block. The BLOCKXGAP constant contains the
number of pixels between each block in a single row (otherwise known as every column).

After all the columns in the first row have been tested, the loop moves to the next row. This
is achieved by adding a gap to the y variable:

y = y + BLOCKYGAP

Just like BLOCKXGAP, BLOCKYGAP is the amount of pixels between each row. After all the boxes
in one row are tested, the y value moves down a few pixels to begin drawing a new row.

The final lines of the function test the newlevel variable to determine if any blocks were
hit. If none were (and newlevel equals 0), the level is increased and NewLevel() is called.
This call begins the next level and redraws all the blocks.

Back to the game loop, the next function called is DrawPaddle(). DrawPaddle() is very simple.

Function DrawPaddle()

Text player\x,player\y,PADDLESTRING$

End Function

The only action this function performs is drawing the players at their x and y positions.

Finally, the game loop makes its final call—CheckBall().

Function CheckBall()

UpdateBall() ;Move and draw ball
CheckBallWithPaddle()
CheckBallWithBlocks()
CheckBallWithWalls()
End Function

This function is the biggest one in the program. First off, it updates the position of the ball.

Function UpdateBall()
ball\x = ball\x + ball\directionx ;Move the ball to the left or right
ball\y = ball\y + ball\directiony ;Move the ball up or down
Text ball\x, ball\y, BALLSTRING$;Draw the ball
End Function

This function begins by moving the ball based on its directionx and directiony variables.
Then it draws the ball on the screen.

Putting It All Together: Textanoid! 89

Next, the CheckBall() function calls CheckBallWithPaddle().

Function CheckBallWithPaddle()
If ball\x >= player\x And ball\x <= player\x + PADDLEWIDTH
And ball\y + BALLHEIGHT>= player\y
And ball\y + BALLHEIGHT <= player\y + PADDLEHEIGHT
ball\directiony = -ball\directiony + Rand(-3,3)
EndIf
End Function

This function is pretty simple. The If statement determines if the ball hit the paddle. You
might have trouble understanding the If test, so I’ll explain it to you.

See Figure 3.40 to understand how the test works. The line tests the ball and determines
whether its x value falls between the left side of the paddle and the right side and whether
its y value falls between the top and the bottom of the paddle.

If the ball has collided with the paddle, the directiony variable is flipped. This makes the
direction move upward instead of downward. Also, if it hits the paddle, the speed of the
ball increases by a value between �3 and 3 (if it increases by a negative value, the ball
slows down).

Next, the CheckBall() function calls CheckBallWithBlocks(). This function tests the ball to
determine if it has hit any blocks.

Function CheckBallWithBlocks()
;y is the first row

Chapter 3 ■ Loops, Functions, Arrays, and Types90

Figure 3.40 The ball-paddle collision.

y = BLOCKYORIGIN

For rows=0 To BLOCKROWS - 1

;Reset x to first block of column
x = BLOCKXORIGIN

For every column of blocks
For cols = 0 To BLOCKCOLUMNS - 1;

;If it exists
If blocks(rows,cols)

;If the ball hit the block, delete the block
If ball\x >= x And ball\x <= x + BLOCKWIDTH

And ball\y >= y And ball\y <= y + BLOCKHEIGHT

blocks(rows,cols) = 0 ;Delete block

ball\directiony = -ball\directiony + Rand(-2,2)
;Reverse its direction and add randomizer

score = score + 75

blockhits = blockhits + 1

;It can't hit more than one block, so leave function
Return

EndIf
EndIf

;move to next column
x = x + BLOCKXGAP

Next

;move to next row
y = y + BLOCKYGAP

Next

End Function

Putting It All Together: Textanoid! 91

This function might seem tough, but it is a lot like DrawBlocks(). The first thing the func-
tion does is set up the origins. Then it begins the rows loop and resets the x value, just as
in DrawBlocks(). Now, in the column loop, the block is tested to see if it exists. If it does, the
ball is tested with the block. If the ball does hit the block, the block is deleted (by setting
it to 0) and the direction is reversed along with a random speed increase. Finally, the score
is updated, the blockhits variable is increased, and the function returns (because the ball
can’t hit two blocks in one frame).

The last action the CheckBall() function performs is to check the ball with the walls.

Function CheckBallWithWalls()
;If ball hits the left wall, reverse its direction and add randomizer
If ball\x <= 0

ball\directionx = -ball\directionx + Rand(-2,2)

;If ball hits top wall, reverse its direction and add randomizer
ElseIf ball\y <= 0

ball\directiony = -ball\directiony + Rand(-2,2)

; If it hits right wall, reverse its direction and add randomizer
ElseIf ball\x >= 640 - BALLWIDTH

ball\directionx = -ball\directionx + Rand(-2,2) ;

;If ball hits lower wall, dock points for missing ball
ElseIf ball\y >= 480

score = score - 200

;Reset the level
ResetLevel()

EndIf
End Function

If the ball hits the top, left, or right wall, it is reversed. If it hits the bottom wall (if the pad-
dle fails to hit it), 200 points are subtracted from the score, and the level is reset.

Hey, take a look at Figure 3.41. It’s the final version of Textanoid!

Chapter 3 ■ Loops, Functions, Arrays, and Types92

Summary
Well, this has been one heck of a chapter. We learned about loops, functions, arrays, and
types, and created our first animated game! This chapter is probably one of the most
important in the book. You learned the basics of any Blitz Basic program, and you are now
able to write any text-based program you can think of. I suggest you take a break now, and
try to digest and understand what you have read. You might want to reread the parts you
don’t understand, and go through the listings again. Also, read and try to understand the
full game from Chapter 1. It uses everything you have learned here with a small bit of
graphics code added. Again, you can ask help online at www.maneeshsethi.com or by e-
mailing me at maneesh@maneeshsethi.com if you have any questions.

I have an exercise for you, if you feel like expanding on your learning. When you play the
final game from this chapter, you might notice that every once in a while, the ball moves
only straight up and down, or slows to a complete stop. Try to fix this issue so the ball can-
not slow down too much or stop moving left and right. (Hint: try randomizing directionx
to make sure it does not move straight up and down.)

Summary 93

Figure 3.41 Textanoid!

This chapter covered the following concepts:

■ Loops

■ Functions

■ Arrays

■ Types

■ Creating Textanoid!

Okay, this chapter is now officially over. Get some rest and have some fun, or whatever. I’ll
be waiting for you whenever you feel like learning some more.

Chapter 3 ■ Loops, Functions, Arrays, and Types94

95

The Style Factor

chapter 4

I intend to make this chapter short and sweet, so that we can get on to the graphics stuff
as soon as possible. A question you may be asking yourself right now is “What is style?”
Well, my computer dictionary says that style is “Distinctive and stylish elegance.”

In my eyes, style is not just how something looks. Style is how something feels. I have looked
at one piece of code with contempt and another with understanding, simply because of the
way it feels. But, of course, to achieve the feeling, you have to create the look.

Style in computer programming is creating code that is understandable and readable. It is
code that you can see day after day and not detest. Style is one of the most overlooked and
underappreciated parts of computer programming. This chapter quickly introduces you
to the foundations of style, and leads you to create your own.

Another thing to note is that a lot of times, ugly code is also poorly written. It is illogical
and tough to understand, and that usually leads to unnecessary bad coding. Try to keep
the code neat and your programs will be better.

Developing Style
Everyone has his or her own style of coding; it’s an inevitable fact. No two people enjoy
their code the same way. Basically, to create a style for yourself, you just have to discover
what is right for you and stick with it. Lesson one in the style primer: Be Consistent.

Let’s start out with the most basic form of style: white space. Examples of white space are
tabs, spaces, and new lines. Under most circumstances, you can add as much white space
as you like to the beginning and end of most lines. White space can also be included
between test commands (such as < and >) and what is being tested, as in Figure 4.1.

White Space and
Indentation
The easiest way to see the use of
white space is with examples.
The first code snippet I will show
you is a block of code using
white space. This is what your
code should look like. You can
ignore what the program actual-
ly does and just see how it looks.

For x = 0 To 10
If x > 5

Print "x is greater than 50; it's equal to " + x + "."

If x > 7
Print "Wow, x is really high, it's " + x + " ."

EndIf

Else
Print "Too bad, x is less or equal to 50."

EndIf
Next

Not a bad looking format, eh? It’s pretty easy to figure out which If statement goes with
which EndIf statement, right? Well, the next example is the same code with absolutely no
white space. Try understanding it now!

For x = 0 To 10
If x > 5
Print "x is greater than 50; it's equal to " + x + "."
If x > 7
Print "Wow, x is really high, it's " + x + " ."
EndIf
Else
Print "Too bad, x is less or equal to 50."
EndIf
Next

This code is much harder to understand. If you wanted to actually comprehend its mean-
ing, you would have to look closely and try to follow through the If commands. Now,
imagine this code block was 10 or 15 times the length of the one I just showed you (pro-
grams can commonly grow that large in big games). It would be terribly difficult and a
waste of time trying to understand all that code!

Chapter 4 ■ The Style Factor96

Figure 4.1 White space.

One thing you should know: adding white space does not affect the output of the program
at all. There will be neither extra spaces nor new lines anywhere in the output of your
program. See Figures 4.2 and 4.3 to see the outputs of both programs: white space and no
white space.

Comments
I may have talked a little about comments previously, but I am going to explain them in
depth now. Comments, as you know, are simply statements you write within your
program to explain what you are doing. In a program, comments look like this:

Print "This is a statement." ;this is a comment

Comments 97

Figure 4.2 and Figure 4.3 Output of programs with white space (above) and
without white space (below).

Make sure you notice the semicolon before the comment. The semicolon is required for
every comment; in fact, it is how a comment is identified to the compiler. Comments are
used to explain how a part of a program works: it may define what a single statement does,
or it may tell what a whole block of statements does. I use almost one comment every
other line in my programs; it helps because I often forget what I was trying to do after I
finish a program. When I come back a few days or weeks later, the comments are still there
to help guide me through my code.

Comments aren’t only used to offer help for a single statement. I usually create a block of
comments at the beginning of my programs to tell me what the program does. I often use
a large box to draw my eyes toward it like this (the full listing for this program is named
demo04-01.bb on the CD):

;;;
; HelloWorld.bb;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; By Maneesh Sethi;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; This program prints "Hello World to the screen.;;;;;
; There are no input variables required;;;;;;;;;;;;;;
;;;

As you can see, this box of comments is the intro to a HelloWorld program. I put a box
like this at the top of most programs. It tells the reader four things: what the filename
is, who the author is, what the purpose of the program is, and any extra info the user
needs to use it.

There are some extra rows of information that you can add to the box. Maybe you want
to tell the reader what version of the program this is, and you might want to reference oth-
ers who helped you with it. Perhaps you have some special restrictions on the program
(“this program does not run on Windows XP”), or something of that nature.

The next part of the program is that actual code. With comments, it might look something
like this:

n o t e

This program is way more complex than it needs to be. There isn’t much sense in using functions
and variables in a simple Hello World program. The only reason I used functions and variables in
this program is to demonstrate the use of comments.

;VARIABLES
;The hello string to be printed on the screen
hellostr$ = "Hello World!";END VARIABLES

;MAIN PROGRAM
;Pass "hellostr$" to PrintString function

Chapter 4 ■ The Style Factor98

PrintString(hellostr$)

;Wait for five seconds before closing
Delay 5000
;END MAIN PROGRAM

;FUNCTIONS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;Function PrintString(strng$);;;;;;;;;;;
;This function prints the variable strng$
;Parameters: strng$ - the string to be printed
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
Function PrintString(strng$)
;Print str$ on screen
Print strng$
End Function
;END FUNCTIONS

And there you have it! A fully commented version of Hello World, as in Figure 4.4. Let’s
take a look at some of these comments.

Pre-Program Comments
Before the actual main program, I create a
few commented sections that I call the pre-
program comments. This usually includes
local variables, global variables, constants,
array dimensions, and anything else that
you declare before the program starts. For
each section, I write a line of code that
explains what is following. For example, in
demo04-01.bb, I created a section for vari-
ables. At the end of the declarations, I add
a line of code that tells the reader that it is
the end of the section (END VARIABLES in the
Hello World example).

I also comment each variable individually to explain what they do specifically. Adding
these simple lines of code makes it much easier to find out what a variable is named and
what its value is simply by searching the top of a program.

Comments 99

Figure 4.4 Hello World!

Main Program Comments
I add some simple comments to the beginning of and inside the actual main program. At
the beginning, I add a comment detailing the starting point of the actual program. I also
add comments after statements, just as in the rest of the program.

Main program comments also tell where the main game loop begins and ends. I add
those comments at the top and bottom of the While…Wend loop. Comments are usually
included near function calls, such as the call to PrintScreen(strng$) in demo04-01.bb.
The comments detail which function it calls and what the function does.

Function Comments
The function comments are written at the beginning of each and every function. I usual-
ly begin the function definitions after the end of the main program; consequently, I com-
ment the ;FUNCTION header directly after ;END OF MAIN PROGRAM.

Before I define any functions, I always create a box that explains the function. On
demo04-01.bb the PrintString(strng$) function is commented like this:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;Function PrintString(strng$);;;;;;;;;;;
;This function prints the variable strng$
;Parameters: strng$ - the string to be printed
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Chapter 4 ■ The Style Factor100

Refresher: The Difference between a Declaration and a Definition

I use the terms definition and declaration a lot in this chapter, and now is as good a time as any to
go over the difference again. A declaration simply refers to or states a function or variable, and a
definition actually defines it. For example, the declaration of PrintString is PrintString(strng$).
The actual definition, however, is

Function PrintString(str$)
Print str$;Print str$ on screen
End Function

In summary, when I refer to the declaration of a function, I am talking about the call to it in code
or the title of the function. When I refer to the definition of a function, I am talking about the actual
code inside the function.

As you can see, this block states the name of the function, its purpose, and its parameters.
Make sure you add a block like this to the beginning of every function—it makes under-
standing them a heck of a lot easier.

Function and Variable Names
Naming your variables correctly can help solve a lot of problems in programs. Every once
in a while you might come across the problem of not knowing what a variable does. You
will have to backtrack and follow your program from the beginning. A way to solve this
problem, however, is to name your variables a very easy-to-understand name. This can
help reduce, if not eliminate, later forgetfulness.

Names
When declaring and defining variables, make sure you come up with a name that easily
describes what the variable does. For example, when writing the Hello World program, I
could have easily named the variable anything. I could have chosen names like

i$

row$

howareyou$

_123$

hellostr$

but there is a reason I didn’t. For most of them, they don’t make sense. For example, what
does howareyou have to do with a string? (Unless of course, I am asking how the user is feel-
ing.) You may be wondering, though, why I didn’t pick hellostr$. In this program, it would
have been fine; however, in most programs, the contents of a variable changes. Because
they usually do change, creating a variable that tells exactly what is inside the variable
rather than what kind of data it contains can create the exact same problem it is supposed
to fix. If you changed the program so that hellostr$ was equivalent to “Today is my birth-
day," the hellostr$ no longer makes sense in the context, and you might have to change
all of the variable names in the program.

Naming Format
The format of your variable names is largely up to you. There are no rules set in stone as
to how to name your functions and variables. The only thing that is required is that your
format stays consistent throughout the program.

Here are some different ways to format the same variable.

Function and Variable Names 101

hellostr$

Hello_Str$

helloStr$

HelloStr$

Hellostr$

As you can see, these variables are all the same. However, each name is slightly changed.

The first variable is my choice for regular variables. I keep it simple: both words are in low-
ercase. Some people use two words separated by an underscore (an underscore is a key
achieved by pressing Shift+Dash). Others use the two words in different capitalization
patterns.

Functions can also be named in similar ways. For example:

PrintString

printstring

Print_String

printString

PrintString

Printstring

I usually choose the first method for functions: two joined words that are both capitalized.
Once again, feel free to pick whichever you like, but make sure you stick with it.

Some other naming formats you might like to vary are constants, global variables, and
array names.

I usually keep all the letters in a constant uppercase, like this:

Const CONSTANT = 1

My global variables are usually the same as regular variables, like this:

globalvar = 10

A lot of people prefer to add a g_ to the beginning of global variables. I choose not to, but
feel free to try it.

For arrays, I keep it simple. I use one word if possible, and I keep it lowercase.

Dim array(numofelements)

Chapter 4 ■ The Style Factor102

Summary
Well, I hope you enjoyed this chapter. I tried to give the best explanation of style that I
could, and hopefully I did a good job. I wrote this chapter because I believe style and clar-
ity are important to every program, and also because it is tough to find any style primers
out there.

Once again, nothing in the chapter must be followed exactly. Style is an individual thing;
what may appeal to one person may not appeal to the next. Try out all of the given styles
and see which one fits you. The only thing I request of you is that you make your program
simple and easy to understand. There is no need to use complex commands if you can get
away with using a simpler block of code, even if it is a bit longer.

Try to get your programs to read like an essay—keep it organized and straightforward.
Make sure you have your pre-program section listed, and try to comment any line of code
that requires it. Make sure your style is consistent; if one function has an underscore
between two words, make sure the next one does, too. Other than that, keep experiment-
ing, and eventually you will develop your own style.

This chapter covered the following concepts:

■ Developing style

■ Comments

■ Function and variable names

Hey, we just finished Part One. Take a break if you feel like it, or jump straight into Part
Two. We are finally getting into graphics; I guarantee it’ll be more fun than you’ve ever had.

Summary 103

This page intentionally left blank

Getting
Graphical

Chapter 5
Beginning Graphics .107

Chapter 6
Page Flipping and Pixel Plotting .133

Chapter 7
Basic Image Programming . 181

Chapter 8
Animation .227

Chapter 9
Collision Detection . 249

PART II

This page intentionally left blank

107

Beginning Graphics

chapter 5

Hey, welcome back! Today, we're gonna start using graphics in our program. This
chapter will be a huge jump for you; it teaches you how to initialize the graphical
window and how to perform image loads. It also shows you how to display and move
your images on the screen.

Anyway, get ready. This chapter is simple, but it's packed with some serious stuff.

Creating the Graphics Window
A graphics window is a little bit different from the text windows we have been using thus
far. Unlike the programs we have been running to this point, which could only display
text, graphical windows can also display graphics, such as images and pictures. They can
also change colors of text.

Every BlitzPlus graphical program contains a line of code that initializes the window. This
process basically sets up the window for later use. To set up a graphical window, call the
function Graphics. Graphics is declared as follows:

Graphics width, height, color depth, [mode]

Table 5.1 details each parameter.

Width and Height
Let's discuss each parameter in depth. Take a look at width and height—they affect your
program in a huge way, but only a few modes are commonly used. These modes are shown
in the following list. You might be wondering why we only use these modes, and there cer-
tainly is a reason.

■ 640�480

■ 800�600

■ 1024�768

■ 1280�1024

■ 1600�1200

If you were to take a ruler to your computer monitor and measure the height and width,
you would always come out with a bigger width than height. But the cool part is, the num-
bers you come up with are always proportional to one another. For example, my monitor
is 14.66 inches wide and 11 inches tall. If you divide 14.66 by 11, you get 1.33. This means
that my computer monitor's width is 1.33 times its height. This proportion works for all
monitors and most televisions as well. Try it out!

Because the monitor's width is longer than its height, all of the pixel values on the moni-
tor must change. If you were to draw a box that was an exact square, it would end up look-
ing like a rectangle on the monitor (its width would be longer than its height). To combat

Chapter 5 ■ Beginning Graphics108

Table 5.1 Graphics Parameters

Parameter Meaning

width The width of the window in pixels
height The height of the window in pixels
color depth The colors per pixel (in bits)
[mode] The mode of the window: 0 = auto, 1 = full-screen mode, 2 = windowed mode,

3 = scaled-window mode

What Is Initialization?

I use the term initialization a lot in this chapter, and you might wonder what it means. To initialize
a window is to set the window up, so, when you initialize the graphics in BlitzPlus, you are setting
it up. After initialization, you will be able to use graphics in the program.

this problem, resolutions make the height pixels larger than the width pixels. The pixels
are stretched out a bit, and the square actually looks like a square. Refer to Figure 5.1 to
see the monitor's proportion.

Color Depth

n o t e

Take note that setting the color
depth only makes a difference in
full-screen mode. In windowed
mode, the color depth of your game
is limited to the color depth of the
player's desktop; in full-screen
mode, the color depth can be set to
any one of the color depths from
Table 5.2. To see your desktop's
color depth, right-click on your
desktop and select Properties. Then
find the Settings tab. Your color
depth is under Color Quality.

The next variable is color depth. The color depth is actually the number of colors that each
pixel can be, and is numbered in bits. See Table 5.2 for the common color depths and their
respective color counts.

n o t e

To determine how many colors each color
depth provides, simply raise 2 to the power
of the color depth. For example, if you want
to find out how many colors a color depth of
8 gives, multiply 2 by itself 8 times (2 � 2 �
2 � 2 � 2 � 2 � 2 � 2) or find 2 to the
8th power (2^8).

n o t e

Although these are the only color depths used commonly today, other depths have been used in the
past. For example, some very old games might have run in a color depth mode of 1, which provides
only two colors—black and white.

Creating the Graphics Window 109

Figure 5.1 The monitor's proportion.

Table 5.2 Color Depth

Color Depth (Bits) Colors

8 256
16 65536
24 16,777,216
32 4,294,967,296

c a u t i o n

Make sure you know which bit depth you should be using before you select it. If you use a color
depth of 8, for example, but the colors in your game need at least a color depth of 16, the colors
in your game won't show up.

If you aren't quite sure which color depth to select, BlitzPlus can automatically select the
best color depth for you. To have Blitz do this, just omit the color depth or set it to 0.
Basically, what this means is, if you know what color depth you need, pick it yourself; if
not, let BlitzPlus pick for you.

[Mode]
The final variable in the Graphics
function is the [mode] variable.
[Mode] can be one of four choic-
es—0, 1, 2, or 3. The [mode] vari-
able determines how the pro-
gram window behaves.

0 is [mode]'s default value; if you
leave [mode] blank, it is automat-
ically set to 0. When your pro-
gram runs in auto mode, it runs
windowed in debug mode and
full screen otherwise. Figure 5.2
shows the difference in full-
screen and windowed modes.

Chapter 5 ■ Beginning Graphics110

Figure 5.2 Full-screen and windowed modes.

Table 5.3 details each of [mode]'s possible values. Selecting 1 for the [mode] variable caus-
es your game to run full screen. A game in full-screen mode takes up the entire screen;
there are no other windows or programs on the screen. Of course, the other programs are

Creating the Graphics Window 111

What Is Debug Mode?

I refer to debug mode a lot, and you might want to know what it means. When writing a game,
you often come across hidden bugs that are extremely hard to find. Debugging allows you to step
through a program line-by-line to discover where your program goes wrong. Debugging offers
another reason for using functions—discovering bugs in a program where most of the code is
located in functions separate from the main code is much easier than finding bugs in a program
where all the code is thrown together in the main function.

When you are planning on debugging a game, you work in debug mode. This allows you to see the
line you are debugging and find out what value each variable contains. When you have finished
your game, you turn debug off and distribute the actual game. To turn debug mode on and off,
check or uncheck Program>Debug Enabled. See Figure 5.3 to see how to enable Debug Mode.

Figure 5.3 Debug mode.

running, they are just hidden under the game. Full-screen mode tends to make the game
run faster, but it takes over most of the player's computer screen. Figure 5.4 is a screen-
shot of a full-screen game.

Chapter 5 ■ Beginning Graphics112

Table 5.3 [mode]'s Values

Value Mode Name Meaning

0 auto Runs in windowed mode when in debug mode and full screen
when not.

1 full screen Game takes up the full screen—no other programs can be seen.
2 windowed Game runs as a regular windows program.
3 scaled windowed Game runs as a regular windows program but also allows

resizing, minimizing, and so on.

Figure 5.4 KONG in full-screen mode.

Setting [mode] to 2 forces your game to run like a normal windows program. This means
that your program has a toolbar and can be moved around just like a normal program, as
in Figure 5.5. However, you cannot resize your window.

If [mode] is set to 3, your program acts just like it would if it were set to 2, but you are able
to resize, minimize, and maximize the window to your liking. However, this advantage
comes at a price—a drastic decrease in speed often occurs as a result of scaled window
mode. See Figure 5.6 for an example of what a scaled window could look like.

Creating the Graphics Window 113

Figure 5.5 KONG in windowed mode.

Images
Whew, that was one big graphics call! Let's get into more specialized graphics stuff. This
section explains how to load an image, how to draw it onscreen, and the like. Are you ready?

LoadImage
The first call we will be using is LoadImage. This function loads the image of your choice
into your program's memory. You must load an image before you can display it or manip-
ulate it in your program. LoadImage is defined as this:

LoadImage(filename$)

Table 5.4 examines each parameter. To load an image, just substitute the file name of the
image for filename$ (make sure the file name is in quotes), and assign it to a variable,
like this:

Global playerimage = LoadImage("playerimage.bmp")

Chapter 5 ■ Beginning Graphics114

Figure 5.6 KONG in scaled windowed mode.

n o t e

Check out what I set the file name variable to. Making the file name just the name of the file (with-
out adding any path info) works only if the image is in the same directory as the game. If not, you
might need to include your drive information. It might look something like this:

Playerimage = LoadImage("c:\windows\desktop\playerimage.bmp")

Even so, I suggest you keep all of your images in the same folder as the game because if you ever
decide to distribute your game, the game won't work on other computers unless the user puts the
images in the exact same folder as yours.

I usually name my image variables in such a way that I can easily see that they are images.
This means I begin my image names with its actual job (player in playerimage.bmp) and
suffix it with image.

The name that you assign to the loaded image is called a handle. Basically, a handle is just
an identifier that refers to an image in memory, like in Figure 5.7.

LoadImage(), by default, searches
directly in the same folder as the
location of the BlitzBasic file. If
you want to load an image from
another directory, you must pro-
vide the full path to the image.

Okay, now that we've got this
LoadImage stuff down, its time to
actually draw it!

Images 115

Table 5.4 LoadImage's Parameter

Parameter Description

filename$ The path of the image

Why .bmp?

Unfortunately, the demo version of BlitzPlus only allows you to use bitmap files for image pro-
cessing. This means that you can't just open some image off your computer and use it, unless it
has a .bmp extension. However, there is a simple way around this problem. Just take the jpeg, gif,
or png file, and open it in Microsoft Paint or in Paint Shop Pro (which is included on the CD). Then
choose Save As and convert the image to a bitmap!

Figure 5.7 A handle to an image in memory.

DrawImage
It is pretty easy to guess what this function does: it draws images! Table 5.5 examines each
parameter. Let's start with the declaration.

DrawImage handle,x,y,[frame]

DrawImage has a couple of parameters, so let's move on to a discussion of the handle variables.

Handle

This is a pretty easy-to-understand parameter. Remember when you loaded an image
like this?

playerimage = LoadImage("player.bmp")

Well, the handle is playerimage. So, when you're sending parameters to DrawImage, use the
same image handle that you loaded earlier as the DrawImage handle parameter.

X and Y

The x and y parameters work just like most x and y coordinates in BlitzPlus. Using
DrawImage, your selected image is drawn at the x and y coordinates, as shown in Figure 5.8.
Its top-left corner is located at the given x and y values. However, there is a way to center
the image so that the image's center is located at x,y.

Very often, you will want to center the
image. This is most useful when rotating
images because rotating images around
the top-left corner looks bad (not to men-
tion trippy) due to the fact that you
would expect images to rotate around
their centers. Check out demo05-01.bb to
see how an image looks when it is rotated
around the top-left corner.

Chapter 5 ■ Beginning Graphics116

Table 5.5 DrawImage's Parameters

Name Description

handle The variable that holds the image
x The drawn image's x coordinate
y The drawn image's y coordinate
[frame] Advanced, leave as 0

Figure 5.8 The image at x,y.

Although actual rotation is a more advanced technique and is explained in a later chap-
ter, I am using it to illustrate the use of placing the x and y values in the center of the
image. The actual function is called AutoMidHandle and is declared like this:

AutoMidHandle true|false

n o t e

What does "|" mean? | means or. When I say AutoMidHandle true|false, I mean AutoMidHandle
can use either true or false.

To use this function and place the x and y values in the center of the image, call
AutoMidHandle with the parameter true, like this:

AutoMidHandle true

Easy, huh? And to set the x and y location back to the top left, just call AutoMidHandle, like
this:

AutoMidHandle false

It is a good idea to use AutoMidHandle because it helps you understand exactly where the
images are located. Because your access point is directly in the center of the image, you
won’t need to worry about the image’s width and height as much as if the access point was
in the top left.

Table 5.6 details the parameters, and Figure 5.9 shows how demo05-02.bb, which uses
AutoMidHandle true, works. Look at the difference in Figures 5.8 and 5.9. In Figure 5.8, you
can see how the x and y coordinates are located at the top-left corner of the image. In
Figure 5.9, the x and y coordinates are in the center of the image. Try running demo05-
02.bb and watch how it rotates from the center instead of from the left corner, as in
demo05-01.bb.

Images 117

Table 5.6 AutoMidHandle's Parameters

Name Description

true Places the x and y coordinates in the center of the image.
false Places the coordinates at the top left of the image.

Make absolutely sure that you
place AutoMidHandle True before you
load the image, otherwise the func-
tion won't work.

By the way, there is another func-
tion called MidHandle that is a lot
like AutoMidHandle, except that it
doesn't set the x and y coordinates
to the center of all of the images. It
only sets the x and y coordinates to
the center of an image you choose.
It is declared like this:

MidHandle image

The image handle you pass it will be reset to the center of the image. Use this if you only
want one image handle to be in the center of the image, rather than all of them.

[Frame]

Okay, this command is very advanced. [Frame] allows you to draw images that are ani-
mated. It is too advanced right now, but we will be going over using animated images very
soon!

CreateImage
This function is pretty cool. It allows you to create an image that looks like whatever you
want, and use it just like a loaded image. For example, say you wanted to create an image
with 100 dots on it. First, call the CreateImage function, which has a declaration like this:

CreateImage(width, height, [frames])

Width and height explain how big the image is; [frame] is used with animated images and
should be set to 0 for now. To create the image, call CreateImage like this:

dotfieldimage = CreateImage(100,100,0)

Okay, you now have the handle to the image. Now, you have to populate the field with
dots. The following is the full source for the program, which can also be found on the CD
as demo05-03.bb:

Chapter 5 ■ Beginning Graphics118

Figure 5.9 The image at x,y with AutoMidHandle
set to true.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; demo05-03.bb;;;;;;;;;;;;;;;;;;;;;
; By Maneesh Sethi;;;;;;;;;;;;;;;;;
; Creates an image and displays it!
; No input parameters required;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;INITIALIZATION

;Set up the graphics
Graphics 800,600

;Seed the Random Generator
SeedRnd MilliSecs()

;CONSTANTS
;The length of each block
Const LENGTH = 100

;The height of each block
Const HEIGHT = 100

;The amount of dots in each block
Const DOTS = 100
;END CONSTANTS

;IMAGES
;Create the dotfield image
dotfieldimage = CreateImage(LENGTH,HEIGHT)
;END IMAGES

;For each dot, draw a random dot at a random location
For loop = 0 To DOTS ;For every star
;draw only on created image
SetBuffer ImageBuffer(dotfieldimage)

;Plot the dot
Plot Rnd(LENGTH), Rnd(HEIGHT)

Next

Images 119

;Set buffer back to normal
SetBuffer BackBuffer()
;END INITIALIZATION

;MAIN LOOP

;Tile the image until the user quits (presses ESC)

Cls
TileImage dotfieldimage
Flip

WaitKey

;END MAIN LOOP

Figure 5.10 shows the dot field.

Chapter 5 ■ Beginning Graphics120

Figure 5.10 The dot field.

There are a few new functions introduced in this program, and I'll go over them now. The
first new function is ImageBuffer().

ImageBuffer() acts a lot like BackBuffer(). You will learn how BackBuffer() allows you to
draw on the back buffer instead of the front buffer, so that you can flip the buffers and
create animation. Well, ImageBuffer() is just like BackBuffer(), but instead of drawing on a
buffer, you are drawing on an image. ImageBuffer() is declared as this:

ImageBuffer(handle, [frame])

where handle is the handle of the selected image and [frame] is the chosen frame to draw
on (leave as 0 for now). Drawing on an image buffer is a lot like Figure 5.11. As you can see,
calling SetBuffer ImageBuffer(dotfieldimage) allows you to extract the image from the pro-
gram and only draw on that. Then, when you finish, you call the SetBuffer function again.
In this program, I used SetBuffer FrontBuffer(), only because there is no page flipping; how-
ever, in most games use SetBuffer BackBuffer(). Table 5.7 details ImageBuffer's parameters.

Images 121

Figure 5.11 SetBuffer ImageBuffer().

Table 5.7 ImageBuffer's Parameters

Name Description

handle The handle of the selected image
[frame] The chosen frame to draw on; leave as 0 for now

The next function introduced is TileImage(). TileImage() is declared like this:

TileImage handle, [x], [y], [frame]

TileImage works like this: it takes an image you give it and it places copies of it all across
the programming board. Think of it like a chess board—there are only two images on a
chessboard, black and white. But these two images are tiled over and over until the entire
board is filled with black and white tiles. See Figure 5.12 for a visual aid to tiling, and Table
5.8 for a list of each parameter.

To tile an image, call TileImage with the handle of an image you wish to tile. BlitzPlus will
take care of the rest. By the way, in later chapters, you will learn how to move the tiled field
up and down to simulate movement.

The last part of the program calls the function WaitKey. This function simply pauses the
program until a key is pressed.

MaskImage
All right, the next function I want to go over is called MaskImage(). MaskImage() is defined
like this.

Chapter 5 ■ Beginning Graphics122

Figure 5.12 The TileImage function.

Table 5.8 TileImage's Parameters

Name Description

handle The image you wish to tile
[x] The starting x coordinate of the tiled image; 0 by default
[y] The starting y coordinate of the tiled image; 0 by default
[frame] The chosen frame to tile; 0 by default

MaskImage handle, red, green, blue

MaskImage() allows you to define a color of your image as transparent. What does that
mean? Let me show you.

When you draw or create an image, you always have a
border that is not part of the image. See Figure 5.13
for a description of the border. As you can see, the
outer part of the image is not used, and should be dis-
carded. You don't want the border to be shown, like in
Figure 5.14, do you?

n o t e

Because black is automatically masked by default, the image in Figure 5.14 does not have a purely
black border. I added a tiny amount of blue to the image so that the background wouldn't be
masked. The RGB value of this image's background is 0,0,10.

Images 123

Figure 5.13 An unmasked image.

Figure 5.14 A drawn image with a border.

Calling MaskImage() can get rid of that border for you. Table 5.9 explains each parameter.
Because the RGB value of this background is 0,0,10, call the MaskImage() function with the
correct parameters.

The full program is detailed next:

;;;;;;;;;;;;;;;;;;;;;;
;demo05-05.bb
;By Maneesh Sethi
;Demonstrates the use of masking
;No Input Parameters required
;;;;;;;;;;;;;;;;;;;;;;
;Initialize graphics
Graphics 640,480

;Load Background
lilliesimage = LoadImage("lillies.bmp")
;Draw background
DrawImage lilliesimage,0,0

;Load the frog
frogimage = LoadImage("frog.bmp")
;Center the frog
MidHandle frogimage
;Mask the Frog Image
MaskImage frogimage,0,0,10
;Draw it in the center
DrawImage frogimage,320,240

Flip
;Wait for user to press a button
WaitKey

Chapter 5 ■ Beginning Graphics124

Table 5.9 MaskImage Parameters

Name Description

handle The image you wish to mask
red The red value of the mask
green The green value of the mask
blue The blue value of the mask

Figure 5.15 is a picture of this program. Beautiful, isn't it? It looks as if the frog is actual-
ly part of the image! On the CD, demo05-04.bb is a program without masking, and
demo05-05.bb is the same program with masking.

One thing to note: an RGB value of 0,0,0 is the default. 0,0,0 is the color of black. This
means that if your image is drawn with a black border, it will automatically be masked. In
other words, try to make all your images have a black background so you don't need to
worry about masking images.

You might have noticed the command Flip at the end of the program. By default,
BlitzPlus draws its information on the back buffer. By using Flip, you move the informa-
tion from the buffer to the screen. We will learn more about this in later chapters.

Colors
Before I end this chapter, I want to teach you how to work with color. Of course, color is
an integral part of any program. When using page flipping (which is explained in the next
chapter), color takes on an even greater importance.

You need to know some functions before you move on to the next chapter. These func-
tions are Color, Cls, and ClsColor. You also need to understand RGB values.

Colors 125

Figure 5.15 An image drawn with a mask.

RGB
When working with color, you will often encounter RGB (red, green, blue) values. These
numbers allow you to pick any one of 16 million different colors. That's a lot, huh?

When color is used in functions, there are usually three fields for you to enter your choic-
es—red, green, and blue. For each field, you can pick a number between 0 and 255 (256
choices total). The higher the number, the more of that color there will be. For example,
if you set the red value to 255 and the green and blue values to zero (255,0,0), you will
have a perfectly red color. 0,0,0 is black, and 255,255,255 is white.

Now, you may be wondering how you are supposed to find the exact values for the color
you want. Well, there are two ways. You can use guess and check (by putting in guesses for
the red, green, and blue fields) or you can use a program, such as Microsoft Paint.

Open Microsoft Paint by going to Start Menu>All Programs>Accessories>Paint. See
Figure 5.16 for a visual image of Microsoft Paint and how to open it (the background is
Paint, the foreground is the Start menu [your menu will probably be a little different]).
Now choose Colors>Edit Colors. A window will pop up. Click where it says Define
Custom Colors. Figure 5.17 shows you the custom colors box.

Chapter 5 ■ Beginning Graphics126

Why 16 Million?

When you are using RGB values, you usually pick a number between 0 and 255 for each color.What
does this have to do with the amount of colors? Well, if you multiply 256 by itself three times
because there are three colors (256 � 256 � 256), you get 16.7 million. This means that you have
all 16.7 million values to choose from.

Now choose your color, and it should
tell you the RGB value on the bot-
tom. If it doesn't work at first, move
the scrollbar on the far right, and
then proceed to pick your color.

That's pretty much all there is to
RGB. You're ready to use color in
your programs now.

Colors 127

Figure 5.16 Opening Microsoft Paint.

Figure 5.17 Defining custom colors.

Color
Color is kind of a fun function. It defines what the default color of the program is. When
you draw something, be it lines, shapes, or text (not images), it will be drawn with the
defined color.

What can you do with Color? If you want to make the text anything other than white, just
use this. Or maybe you want to draw a green triangle. Just set the color to green and draw
it! You can change the color at any time.

n o t e

The default color of any BlitzPlus program (before you call Color) is white (RGB 255,255,255).

You can start with the function declaration.

Color red, green, blue

See Table 5.10 for the parameters. You will most likely just put in the red, green, and blue
values to get your color.

Now let's write a program that
uses this function. This program
will draw a bunch of ellipses with
random sizes and colors.

;;;;;;;;;;;;;;;;;;;;;;
;demo05-06.bb
;By Maneesh Sethi
;Demonstrates the Color function, draws ellipses
;No Input Parameters required
;;;;;;;;;;;;;;;;;;;;;;
Graphics 800,600

;Seed random generator
SeedRnd (MilliSecs())

;Max width of ellipse
Const MAXWIDTH = 200
;Max Height of ellipse

Chapter 5 ■ Beginning Graphics128

Table 5.10 Color's Parameters

Name Description

red The color's red value
green The color's green value
blue The color's blue value

Const MAXHEIGHT = 200

;Main Loop
While Not KeyDown(1)

;Clear the screen
Cls

;Set the color to a random value
Color Rand(0,255), Rand(0,255), Rand(0,255)

;Draw a random oval
Oval Rand(0,800),Rand(0,600),Rand(0,MAXWIDTH),Rand(0,MAXHEIGHT), Rand(0,1)

;Slow down!
Delay 50
Flip
Wend

Pretty cool, huh? Figure 5.18 shows a screenshot from the program. Let's look a little clos-
er. The program first sets the graphics mode and seeds the random generator. Then it
defines the maximum width and height of each ellipse. Feel free to change the values.

Next, the game enters the main loop. It first sets the color to a random value, using the line

Color Rand(0,255), Rand(0,255), Rand(0,255)

This allows the next line to draw an ellipse with the random color. The ellipse function
(notice that it is actually called Oval—I just like the word ellipse) is defined like this:

Oval x,y,width,height[,solid]

Take a look at Table 5.11 for each parameter.

Colors 129

Table 5.11 Oval's Parameters

Parameter Description

x The x coordinate of the ellipse
y The y coordinate of the ellipse
width The width in pixels of the ellipse
height The height in pixels of the ellipse
[solid] Default value is 0; set to 1 if you prefer the ellipse to be filled. Otherwise, the inner

region will be transparent.

Well, that's pretty much it for the Color function. Next up—the Cls and the ClsColor
functions.

Cls and ClsColor
We are almost done with this chapter! Before I send you packing, though, I want you to
have a bit of basis for the next chapter.

The function Cls's action is pretty simple. All it does is clear the screen. The next chapter
goes over it in more depth. The ClsColor function works with Cls to allow you to change
the background of your program.

ClsColor is defined like this:

ClsColor red,green,blue

See Table 5.12 for a description of each parameter.

Chapter 5 ■ Beginning Graphics130

Figure 5.18 The demo05-06.bb program.

ClsColor's job is to change the background color. This means that you can leave the default
black behind and make the background anything you want it to be. To use this function,
call ClsColor with the red, green, and blue values you want, and then call Cls to actually
clear the screen with the background color.

Let's try a program. Demo05-07.bb makes a bunch of colors appear on the screen (along
with some advice you should follow). Try it out!

Summary
Okay, you now have a working knowledge of graphics in video games. In this chapter, we
learned about a lot of functions: Graphics, LoadImage(), DrawImage(), CreateImage(),
ImageBuffer(), and MaskImage(). Believe me, you will find many uses for all of these func-
tions in your games.

This chapter studied the topics of:

■ Creating a graphics window

■ Loading, drawing, and using images

■ Using colors

Next up, we learn about page flipping and basic input. The following chapter is important
because you learn about basic animation.

Summary 131

Table 5.12 ClsColor's Parameters

Name Description

red The color's red value
green The color's green value
blue The color's blue value

This page intentionally left blank

133

Page Flipping and Pixel
Plotting

chapter 6

This chapter explains animation and pixel plotting. Animation is created through a process
called page flipping, and it takes each frame of your game and seamlessly ties them together.
Pixel plotting allows you to draw pixels, which are small dots, directly to the screen.

You have already been introduced to page flipping. Page flipping was discussed briefly in
some of the earlier chapters. Page flipping is integral to most high-end games; it is the
process that actually produces animation. So, why wait? Let’s get started!

Page Flipping
Page flipping is named for its
similarities to a flipbook.
Remember those? They were
the small books that, when
flipped through quickly,
seemed to make an image
move. In a video game, a similar
process is used. A picture is
drawn on an off-screen image
called a buffer. The buffer is the
page after the one you are cur-
rently looking at in the flip-
book. When the pages are
flipped, the off-screen image is
flipped with the front screen
image. It looks like Figure 6.1. Figure 6.1 Page flipping.

Now, you might wonder how this would create animation. Well, this process happens at
least 30 times a second. That means that in one second, at least 30 different frames are
drawn on the screen. In a flipbook, a single page is the equivalent of a frame. It is impos-
sible to see each individual page when the book is flipped, and the page-flipping proce-
dure is no different. The frames flip quickly so to create smooth animation: it is impossi-
ble to tell the difference between the individual frames.

Page flipping has been used in a lot of games in this book so far, but I really haven’t
explained how it works. Let’s start with a sample of what a game looks like without page
flipping. This file can be run from the CD; it is called demo06-01.bb:

;demo06-01.bb - A not-so-greatly animated ship
;Initialize the Graphics
Graphics 800,600

;load the ship image
shipimage = LoadImage("ship.bmp")

;Seed the random generator
SeedRnd(MilliSecs())

;create a ship type
Type ship

Field x,y ;the x and y coords
End Type

;create the ship
ship.ship = New ship

;position the ship randomly
ship\x = Rand(0,800)

Chapter 6 ■ Page Flipping and Pixel Plotting134

What Is a Frame?

From what you have learned so far in this book, you should know that a frame is basically one
scene of animation that is tied with other scenes so quickly that it creates an illusion of smooth
animation. Essentially, a frame is a single iteration of the main loop. (In case you forgot, to iterate
through a loop is to go through it once—in other words, to perform the instructions of the loop
one time.) In a game, you iterate through the loop until the user quits the game. When a frame
goes through the loop once, the game has achieved one frame of animation. This loop continues
to iterate until the game is over.

ship\y = Rand(0,600)

While Not KeyDown(1)
;Clear the screen
Cls
;move ship left and right
ship\x = ship\x + Rand(-8,8)
;Move ship up And down
ship\y = ship\y + Rand(-8,8)

;If ship goes offscreen, move it back on
If ship\x < 0

ship\x = 15
ElseIf ship\x > 800

ship\x = 790
ElseIf ship\y < 0

ship\y = 10
ElseIf ship\y >600

ship\y = 590
EndIf

;Draw the ship
DrawImage(shipimage,ship\x,ship\y)

Wend

Figure 6.2 shows three frames from demo06-01.bb. Do you see how the ship flashes on and
off as it moves? This is because there is no page flipping involved, hence, no animation.

When you run this program, you will probably see nothing on the screen. Try clicking
another program and clicking back on the game, and you will start to see the ship. I will
explain why this occurs later in the chapter.

By the way, clicking a different program is called changing the focus of your computer.

Page Flipping 135

Figure 6.2 A game without page flipping.

Page flipping works because the next frame is drawn onto a back buffer so that the back
buffer is flipped with the front buffer quickly and seamlessly. In this example, however,
there is no back buffer, so the frame is drawn as the ship is moved. There is no way the
computer can draw the image fast enough to provide smooth animation.

Let’s get started!

Buffers
I know I’ve probably gone over this a hundred times, but I think it might be easier to cre-
ate a section that explains what a general buffer is for future reference. Maybe it will also
help you understand the idea.

A buffer is an image. Each frame of your game is drawn onto a buffer; hence, each frame
of your game is an image (frame = buffer, buffer = image, frame = image). Now, to create
smooth animation (in other words, to make the game actually run), you usually need at
least two buffers, although three buffers are used in many modern games.

The two buffers are known as the front buffer and the back buffer. The difference is that the
front buffer is displayed on the screen, and the back buffer is drawn offscreen. Think of it
like this: the front buffer is drawn on the top of a pad of paper, and the back buffer is
drawn a sheet below, like in Figure 6.3.

By the way, there is
another type of
buffer called an
image buffer. An
image buffer is just
like any other buffer,
but it usually holds
an image that you
want to draw to man-
ually. So, for exam-
ple, assume you
wanted to have a
buffer where you
want to draw two rec-
tangles. Well, you can use the image buffer to create two drawn rectangles, and then move
the image buffer into the actual game at anytime. The cool thing about image buffers is that
they can be any size, whereas the front and back buffers must be as large as the screen.

Buffers are commonly used in page flipping. Because I have already explained the process,
I’ll go over it very quickly with respect to buffers. Basically, you have two buffers, buffer A
and buffer B. Buffer A is the front buffer and buffer B is the back buffer. While you are in

Chapter 6 ■ Page Flipping and Pixel Plotting136

Figure 6.3 A buffer as a pad of paper.

the game, the image is drawn to buffer B. At the end of the frame, buffer A is swapped with
buffer B, so the old frame, A, is now being drawn in the offscreen. Buffer B is now being
displayed. See Figure 6.4 for a visual aid. Notice that the back buffer and front buffer never
actually change locations.

This example brings up an interesting
point: If the buffers are swapped each
frame, shouldn’t you have to alternate
between drawing on the front buffer
and drawing on the back buffer? The
answer is no. Only the data is swapped
between the two buffers, not the actual
buffers themselves. This means that you
only draw on the back buffer when pro-
ducing animation.

SetBuffer
This function is very important, and it
is integral to a page-flipping applica-
tion. Usually, the SetBuffer function
appears just after the Graphics call in
any game. The SetBuffer command is
defined like this:

SetBuffer buffer

See Table 6.1 for a description of
SetBuffer’s parameter.

Basically, if you plan to use page flipping, you will probably draw to the BackBuffer(). After
you initialize the graphics, you will not need to set up the BackBuffer() because it is auto-
matically set, but you can explicitly set it like this:

SetBuffer BackBuffer()

Page Flipping 137

Figure 6.4 Buffers A and B.

Table 6.1 SetBuffer’s Parameter

Parameter Meaning

buffer Used to designate which surface will be drawn on: can be FrontBuffer(),
BackBuffer(), or ImageBuffer(). Default is BackBuffer().

Pretty simple, huh? Well, before we go any further, you need to know more about the three
types of buffers:

■ FrontBuffer()

■ BackBuffer()

■ ImageBuffer()

FrontBuffer()

FrontBuffer() and BackBuffer() are pretty self-explanatory, but it is still imperative that we
go over them. As stated before, when drawing on the screen, you draw to a buffer. In most
gaming situations, you usually draw to the BackBuffer(). The reason is speed: when draw-
ing the FrontBuffer(), your game can slow down tremendously.

This FrontBuffer() slowdown problem occurred a lot in the old version of BlitzPlus (called
Blitz Basic), so as a remedy, they removed the capability of drawing directly to the front
buffer. Now, setting the FrontBuffer() doesn’t do anything because FrontBuffer() is just a
name for BlitzPlus’s BackBuffer().

The reason for the slowdown is easily defined. Think of a cat walking by a bush. Every
time the cat moves a little (every frame), the background must be erased, and redrawn
with different parts of the bush covered by the cat. This breaks down animation. Using
BackBuffer(), the bush and cat are drawn hidden from the player, and simply displayed on
the screen. You may be wondering why you would ever want to draw to the FrontBuffer(),
and the reason is that sometimes you just want to draw straight to the screen. In the old
Blitz Basic, you would just draw directly to the FrontBuffer() because you don’t really care
about double buffering; you just want straight-up drawing. This is useful when writing a
program like demo06-02.bb. However, in BlitzPlus, you must use double buffering, so this
program won’t work correctly. When you run this program, you draw directly on the
BackBuffer(), so changes don’t show to the screen unless you change the focus of the screen
to another program and then change it back again. This program draws a bunch of lines
to the screen.

;demo06-02.bb - Draws a bunch of random lines to screen.

;Initialize Graphics
Graphics 800,600,0,2

;Draw only to the front buffer
SeedRnd(MilliSecs())

While (Not KeyDown(1))
;Set a random color
Color Rand(0,255),Rand(0,255),Rand(0,255)

Chapter 6 ■ Page Flipping and Pixel Plotting138

;Draw a random line
Line Rand(0,800), Rand(0,600), Rand(0,800), Rand(0,600)

;Slow it down
Delay(25)

Wend

Figure 6.5 shows the output of this program after switching the focus.

n o t e

Because BackBuffer() is default, omitting the line

SetBuffer BackBuffer()

changes nothing—the program still draws on the back buffer.

Page Flipping 139

Figure 6.5 The demo06-02.bb program.

BackBuffer()

Using BackBuffer() is a little different. When you have SetBuffer set to BackBuffer(), every-
thing you draw is offscreen. This means that whatever you just drew (in this example, the
random line) will be invisible. This is the basis of page flipping; now, all you have to do is
get that buffer to flip with the front buffer. To do this, use the Flip command. Flip looks
like this: Flip. This statement is very powerful—it exchanges all the data in the back
buffer with all of the data in the front buffer.

c a u t i o n

Be careful where you place the Flip command. Flip should always be placed near the end of the
main loop of your program. In the following example, you can see that Flip is located just after
the DrawImage function. The reason for this is that if you add the Flip statement before drawing
the image, your program will always flip the blank animation onto the screen. Because Cls is used
at the beginning of every loop, your frame will delete the spaceship image from the previous frame
and have nothing in the back buffer when the next Flip command arises. Of course, you can eas-
ily solve this problem by placing the DrawImage command near the top of your loop.

Now, let’s go back to demo06-01.bb in this chapter—the program with the badly animat-
ed ship. This program runs poorly because there is no page flipping; hence, no smooth
animation. To fix this problem, we will first put in the Flip command near the bottom of
the loop. The new, fixed version of the game is named demo06-03.bb, and it is located on
the CD. Following is the game loop from the game.

While Not KeyDown(1)
;Clear the screen
Cls

;move ship left and right
ship\x = ship\x + Rand(-8,8)

;Move ship up And down
ship\y = ship\y + Rand(-8,8)

;If ship goes offscreen, move it back on
If ship\x < 0

ship\x = 15
ElseIf ship\x > 800

ship\x = 790
ElseIf ship\y < 0

ship\y = 10
ElseIf ship\y >600

ship\y = 590

Chapter 6 ■ Page Flipping and Pixel Plotting140

EndIf

;Draw the ship
DrawImage(shipimage,ship\x,ship\y)
Flip

Wend

Wow, looks pretty cool, huh? Figure 6.6 shows a screenshot from the program. Let’s go
through the loop and see how everything works.

The first line after the opening test is:

Cls ;Clear the screen

This is a very important part of a page-flipping program. Basically, it just clears the screen
of anything that was drawn on it in previous frames. It might seem unnecessary, but if you
don’t include it, the game will look like Figure 6.7.

Page Flipping 141

Figure 6.6 The demo06-03.bb program.

As you can see, without Cls, trails of the spaceship are very obvious. The Cls forces all of
these trails to be deleted at the beginning of every frame, so it looks like the spaceship is
actually moving. Figure 6.7 shows how the previous program would look without Cls.

Just for kicks, you might want to change the color of the background. You can do that
using the command ClsColor, from the previous chapter.

So, that’s a basic overview of page flipping. Now, let’s move onto working with image
buffers.

Image Buffers

Image buffers are really cool to use, but kind of hard to understand. Say that you have a
painting somewhere in your game and you want your player to be able to paint on the
painting. Well, using image buffers, you can simply have the player draw on the painting,
and the image will show up! Because the painting needs no flipping, the image buffer is
just drawn on top of the entire image. It’s kind of like a separate layer—the front buffer is
drawn underneath it. See Figure 6.8 for an example.

Chapter 6 ■ Page Flipping and Pixel Plotting142

Figure 6.7 Demo06-03.bb without Cls.

You might also use an image buffer in a
space simulator. On many space simula-
tors, you have a mini map in the HUD.
A mini map is just a small version of the
entire playing field that shows where the
enemies and power-ups are. Using an
image buffer is a good way to draw the
mini map and plaster it on top of the
HUD display.

There are two ways to use an image
buffer. The first way is to take an image
you already have and load it into the
image buffer using LoadImage(). This
allows you to draw on top of a pre-made
image. The other way to do this is to cre-
ate a blank image. Let’s start with that.

CreateImage
When you create an image, you are just
making a blank image. The created
image can be any size; it is not con-
strained to the size of the back buffer.

The declaration of CreateImage is:

CreateImage(width,height,[frames])

Page Flipping 143

Figure 6.8 Image buffers as layers.

Why Do We Use Parentheses?

You might have noticed that some functions use parentheses and others don’t. There is a pretty
simple reason for this. Parentheses are required when the function returns a value. When the func-
tion does not return a value, the parentheses are optional. For example, LoadImage() requires
parentheses because it returns the address of the loaded image like this:

image = LoadImage("image.bmp")

whereas Text doesn’t require parentheses at all:

Text 0,0, "No parentheses!"

When you write functions, it is always good practice to include parentheses, even if they aren’t
required.

See Table 6.2 for an explanation of the parameters. The CreateImage() function returns the
created image, so it must be set equal to an image handle. It might look something like this:

wallimg = CreateImage(200,200)

Okay, you now have a blank image. Right now, it is just pure black. So, let’s put something
in it.

The first thing we have to do is switch the buffer to the image buffer. How do we do this?
Simple! Just use SetBuffer.

SetBuffer ImageBuffer(wallimg)

We have now selected the image. Let’s draw a white square in it (RGB 255,255,255).

Color 255,255,255
Rect 0,0,200,200,1

Look closely at the call to Rect. Rect, if you recall, draws a rectangle using the coordinates
you feed it. The top-left corner of the rectangle is located at the coordinate position given
by the first two parameters, and the bottom-right corner of the rectangle is located at the
coordinate position given by the third and fourth parameters. The final parameters define
whether the rectangle is solid or unfilled. Because the call in the previous snippet draws a
rectangle from (0,0) to (200,200), you probably expect it to draw a white box from the top
left of the program to (200,200), that is, the top-left corner of the screen. However, the
image buffer is selected into memory because of the preceding call to SetBuffer
ImageBuffer() instead of the front buffer. What actually happens is that the image buffer,

Chapter 6 ■ Page Flipping and Pixel Plotting144

Refresher: Optional Parameters

Recall that an optional parameter is surrounded by brackets in the function definition and is not
required.This means that you do not need to include any values with it in your program—it already
has a default value. For example, in CreateImage(), the default value for [frames] is 0. You can
change it if you want, but you aren’t required to do so.

Table 6.2 CreateImage()’s Parameters

Parameter Description

width The width in pixels of the created image
height The height in pixels of the created image
[frames] Optional; the number of frames in the created image; leave this blank for now

instead of the front buffer, is drawn on. Therefore, the rectangle is drawn onto the image
buffer, which is offscreen. The size of the image buffer is 200 pixels � 200 pixels. (We
chose this size when we called CreateImage().) Because it is 200�200, the entire square will
be filled. If you don’t quite understand what is going on, take a look at Figure 6.9.

If you remember from the pre-
vious section, to draw in a dif-
ferent color, you must first use
the Color function. Here, the
Color function sets the default
color to white and the Rect
function draws in that color.

Next, we must set the program’s
selected buffer back to the main
buffer (the back buffer). This
is easily accomplished using
SetBuffer.

SetBuffer BackBuffer()
Flip

Remember, the three choices
for SetBuffer are FrontBuffer(),
BackBuffer(), and ImageBuffer().
Also remember that setting the
buffer to FrontBuffer() does
nothing—in most cases, just
leave it as the default and do not
change the buffer. The Flip
command flips the image
onscreen.

n o t e

You might be wondering why we switched back to the back buffer. The fact is that if we didn’t
switch back, we would continue drawing on the image buffer. Any new text or shapes are confined
to the small 200�200 pixel box allocated for the image buffer. And guess what happens when we
try to draw an image buffer on to itself? You guessed it—absolutely nothing!

All right, now we are back into the front buffer. To finish the program, we have to draw
the image buffer onto the main program. For this, we use the function DrawImage. If you
remember, DrawImage is defined like this:

Page Flipping 145

Figure 6.9 Image buffers in memory.

DrawImage handle,x,y,[frame]

See Table 5.5 from the preceding chapter for a description of the parameters. Here, all you
have to do is plug in the handle (wallimg) and the x and y values. It looks like this:

DrawImage wallimg, 400,300

Pretty simple, huh? Take a look at the entire program (with comments). It’s also on the
CD as demo06-04.bb:

;;;;;;;;;;;;;;;;;;
;demo06-04.bb
;By Maneesh Sethi
;Demonstrates CreateImage
;No Input Parameters Required
;;;;;;;;;;;;;;;;;;

;Set up graphics mode
Graphics 800,600

;Set automidhandle to true
AutoMidHandle True

;create the blank image
wallimg = CreateImage(200,200)

;set the buffer to the image
SetBuffer ImageBuffer(wallimg)

;make the color white
Color 255,255,255

;draw a rectangle from topleft to bottomright of buffer
Rect 0,0,200,200

;switch back to back buffer
SetBuffer BackBuffer()

;Flip the image onscreen
Flip

Chapter 6 ■ Page Flipping and Pixel Plotting146

;draw the image buffer
DrawImage wallimg,400,300

;wait for user To press a key Before exiting
WaitKey

t i p

Remember to comment your code often. It really helps you and others understand what you are try-
ing to do. When you forget to comment your code, you will often forget what you were writing
about. Refer back to Chapter 4, “The Style Factor,” for more tips on comments and style.

Looks pretty cool, huh? Figure 6.10 is a screenshot from the program. Let’s go over a few
things. First start with the graphics initialization. Next, you call AutoMidHandle with the
parameter true. If you remember, AutoMidHandle moves the image’s handle to the center of
the image, so you don’t have to do it manually. Think about it—if it weren’t for
AutoMidHandle, you would have to manually find the centering points! For a good exercise,
try to find an equation that will help you find those centering points.

Page Flipping 147

Figure 6.10 The demo06-04.bb program.

Next up, we call SetBuffer and start drawing on the image buffer. We set the color to white
and draw a rectangle. Then we switch back to the front buffer. Finally, we draw the image
on the back buffer so everyone can see it. To show the image, we flip it on the screen.
WaitKey waits for the users to press a button so they can see the beauty that is a white box
before the program closes.

Some of this stuff might be getting tough to understand. See Figure 6.11 for a visual picture.
As you can see, there are three checkpoints—before the first SetBuffer, before the second
SetBuffer, and at the end of the program. At the first point, the back buffer is selected and
the blank image buffer is not visible. At the second point, the image buffer is selected and
filled with the white rectangle and the back buffer is deselected. At the final checkpoint, the
image buffer has been drawn onto the selected back buffer and flipped onscreen.

Whew, that was a big section on image buffers, and we ain’t done yet. The next chapter
teaches you how to use image buffers in an even cooler fashion. (I’ll give you a hint: it
shows you parallaxing. When a word sounds like that, it must be cool.)

Before you move on, let’s do some other stuff with these buffers.

Chapter 6 ■ Page Flipping and Pixel Plotting148

Figure 6.11 A diagram of demo06-04.bb.

SaveBuffer

Ever heard of screenshots? Well, screenshots are snapshots taken of a game during run-
time. In other words, you are able to save a photo of what the game is displaying.
SaveBuffer() was made for this—call it and it takes and saves a photo of whatever is going
on onscreen.

The definition of SaveBuffer() is pretty much what you would expect:

SaveBuffer (buffer,filename$)

Table 6.3 has a description of each of the parameters. Basically, buffer is the buffer that
you want saved and filename$ is the file name of the saved image. Filename$ is usually a
.bmp file.

Your choice of inputs for buffer are limited—you can only select FrontBuffer(),
BackBuffer(), or ImageBuffer(buffer, [frame]). This allows you to pick which image you
want saved, so, if you had an image buffer as a painting on a wall, the player can save just
the painting rather than the whole wall. Cool, huh? For example, try this: Add the line

SaveBuffer (FrontBuffer(), "screenshot1.bmp")

before the DrawImage command and the line

SaveBuffer (FrontBuffer(), "screenshot2.bmp")

after the DrawImage command in demo06-04.bb. See Figures 6.12 and 6.13. Notice the dif-
ference? Because the buffer is still blank before DrawImage, screenshot1.bmp is just blank.
However, in the second screenshot, the white box has been drawn. Therefore, you see the
white box inside the black background.

n o t e

Note that I am using FrontBuffer() instead of BackBuffer() here. Actually, the word Front-
Buffer() is just an alias for the BackBuffer(), so they actually mean the same thing. However,
using FrontBuffer() here helps emphasize that you are saving what is on the screen, so it helps
understanding.

Page Flipping 149

Table 6.3 SaveBuffer()’s Parameters

Parameter Description

buffer The buffer you want saved to the hard drive
filename$ The file name of the bitmap file

Chapter 6 ■ Page Flipping and Pixel Plotting150

Figure 6.12 SaveBuffer() before DrawImage.

Figure 6.13 SaveBuffer() after DrawImage.

Try messing around with the parameters of SaveBuffer() to see how the buffers look at dif-
ferent points in the program.

Okay, so let’s use this function in a program. This is on the CD as demo06-05.bb. Let’s take
a program that draws random squares on the page. Pressing the F10 button will take a
screenshot. Ready?

;demo06-05.bb - Demonstrates the usage of SaveBuffer()
Graphics 800,600

;Seed the Random Generator
SeedRnd (MilliSecs())

;68 is keycode for f10
Const f10key = 68

;Screenshot number, begin at one (it is an integer)
snnum = "1"

While Not KeyDown(1)

;Set up random color
Color Rand(0,255),Rand(0,255),Rand(0,255)

;Draw a random rectangle
Rect Rand(0,800),Rand(0,600),Rand(0,200),Rand(0,200),Rand(0,1)

;Wait a little while
Delay 45

;If user presses f10, take a screenshot
If KeyHit(f10key)

SaveBuffer(FrontBuffer(), "screenshot" + snnum + ".bmp")

snnum = snnum + 1 ;Add 1 to the end of the filename
EndIf

Wend

Page Flipping 151

c a u t i o n

If you try to run this program off the CD, you will get an error when you take a screenshot. This is
because it is impossible to write to a CD, so you can’t save a screenshot to it. If you want to try out
this program, make sure you save it to your hard drive first. If you need to, you can download the
source at www.maneeshsethi.com.

Figure 6.14 is a screenshot from the program. Let’s quickly review it.

We first start with an initialization. The constant f10key is set to the key code for the F10
key. We then set the variable snnum to 1 to symbolize the screenshot.

Inside the loop, we call Color and Rect to draw a random rectangle with a random color.
The screenshot code appears next, following the If statement. The If statement deter-
mines whether the F10 key has been pressed. If so, it takes a screenshot.

The first line in the If control loop is SaveImage(). As you can see, this line takes a screen-
shot of the front buffer. The string command works easily also: it creates the file name

Chapter 6 ■ Page Flipping and Pixel Plotting152

Figure 6.14 The demo06-05.bb program.

screenshotnumber.bmp, where number is the only part that changes. The next line adds on 1
to the end of the string, snnum$.

Well, there you have it! Screenshots are really fun to use, and they are good tools for
debugging. Say you are not sure what one of your image buffers looks like at one point in
your program. Using SaveBuffer(), you can easily save the image and see what it looks like
at that specific point in time!

Now we are going to move on to the exact opposite of SaveBuffer()—LoadBuffer().

LoadBuffer()

LoadBuffer() has a multitude of uses. With LoadBuffer(), you can load a previously saved
image back onto your program. Of course, the image can be anything; it doesn’t have to
have been saved by the same program.

LoadBuffer() is a lot like LoadImage(), except for one difference. With LoadImage, you load the
image into a handle that you can assign around in the program, but with LoadBuffer(), you
load the image directly onto a buffer. Because of this fact, LoadBuffer() is normally used
to load a title screen. However, you can also use it to make a slideshow projector, or some-
thing like that.

LoadBuffer() is defined like this:

LoadBuffer (buffer, filename$)

Where buffer is the buffer you want the image loaded upon and filename$ is the name of
the file you want opened. Table 6.4 also has a handy quick reference of the parameters.

Let’s write a program that opens all the screenshots provided by the previous listing (the
SaveBuffer() example with the random rectangles), given that the files are in the same
directory.

Start with the initialization section from demo06-06.bb on the CD.

Page Flipping 153

Table 6.4 LoadBuffer’s Parameters

Parameter Description

buffer The buffer on to which you will load the image
filename$ The name of the file that will be loaded

n o t e

While running this program, you might notice that the files load a bit slowly. This is because it has
to read the image buffers off the disk. A good exercise is to read these buffers off the disk before
beginning the slideshow in order to reduce time between slides. Try it!

;demo06-06.bb - A slideshow of images
;Set up graphics
Graphics 800,600

;Set up counter for loading images
snnum = 1

;Grab images from center
AutoMidHandle True

This just creates the variable snnum with 1 and sets up initialization mode. It also sets
AutoMidHandle to be true.

Next, we enter the main loop. This part gets kind of tough, so let’s take it slow.

;As long as another image exists, load it and display it
;Since we are loading it to the front buffer, it will be automatically displayed
While (LoadBuffer(FrontBuffer(),"screenshot" + snnum + ".bmp") <>0)

;Write out the name of it
Text 400,300,"Image screenshot" + snnum + ".bmp"

;Move to next image
snnum = snnum + 1
WaitKey

;Flip image onscreen
Flip

Wend

The test may look weird, but it’s not that difficult. Remember that LoadBuffer() (and most
other image functions) returns 0 if the image is illegal, and returns 1 if the image is legal.
So, in this line, we are testing to see whether this LoadBuffer() statement is legal. The first
time through, it tries to load screenshot1.bmp to the screen. If that works, the loop does
not equal zero and continues through the loop so it can be displayed on the screen. If
screenshot1.bmp is illegal, the program skips the loop and runs the ending procedure.

Chapter 6 ■ Page Flipping and Pixel Plotting154

The rest of the loop is pretty standard. It first displays some text stating the name of the
image, and then the file name is updated. Finally, WaitKey is called so the user can choose
when to switch to the next slide.

We have one last function to go over. Here we go!

FreeImage

FreeImage releases any image from memory. Simply put, whenever you load an image into
your program, you are removing its value as a variable name. For example, you may load
an image called skeletonimage. Well, say the game uses levels, and after you get to the sec-
ond level, the skeletons look different. You can free skeletonimage and use that variable
name for the new skeletons.

The declaration of FreeImage is:

FreeImage handle

See Table 6.5 for a description of its parameter. FreeImage releases the memory that is used
for the image. This can add speed and memory to your game.

Using FreeImage is very easy; just call it after you are done with an image. I’ll show you the
basics of it next.

Say you have a bunch of images loaded, like this.

image1 = LoadImage ("image1.bmp")
image2 = LoadImage ("image2.bmp")
image3 = LoadImage ("image3.bmp)

Well, when you finish with them, throw them away. So, say image1 is a title screen. You
might do something like this:

;Display Title screen
DrawImage 0,0,image1
FreeImage image1

Seems easy. Now if image2 and image3 are used until the end of the program, don’t forget
to free them.

Page Flipping 155

Table 6.5 FreeImage’s Parameter

Parameter Description

handle The variable name of the image you want to free

While Not KeyDown(1)
...
Wend
FreeImage image3
FreeImage image2

So, even though it is the end of the program, I still release the final two images. Notice that
I released them in the reverse order that I loaded them. This is just a personal taste on my
part; it doesn’t really make a difference what order you release images.

By the way, you should probably note that it isn’t always necessary to use this function. If
you never need to use the variable name, and you aren’t worried too much about the
speed and memory of your game, you might not need to use it. However, using it is very
good style, and it is always good to brush up on your housekeeping skills. You never know
when this function might keep your program running!

Locking and Unlocking Buffers
This chapter is going to exhaust all the possibilities of what we can do with buffers. We’ve
pretty much gotten to it all, except for locking and unlocking buffers. Locking a buffer
refers to a function that makes the buffer unavailable for use to other parts of a program.
It might seem bad to restrict access to a buffer, but locking has a big benefit—it allows you
to use the following special functions:

■ ReadPixel()

■ WritePixel

■ ReadPixelFast()

■ WritePixelFast

■ CopyPixelFast

■ CopyPixel

Using these functions, you can edit and copy any pixels in your buffers. So, let’s get start-
ed.

Lock/Unlock
Lock and Unlock are declared like this:

LockBuffer buffer
UnlockBuffer buffer

Both Lock and Unlock’s parameters are summarized in Table 6.6.

Chapter 6 ■ Page Flipping and Pixel Plotting156

Well, using these functions makes the buffers unavailable for most uses. The operations it
opens up, though, are high-speed pixel operations that allow copying and editing of pix-
els throughout your buffers. Using LockBuffer and UnlockBuffer often looks like this.

;Time to Lock buffer
LockBuffer BackBuffer()

;Perform Pixel operations

UnlockBuffer BackBuffer()

n o t e

Did you notice that I used BackBuffer() for the locked buffer? You might wonder why I chose to
lock the back buffer instead of the front buffer. If I were to choose the front buffer, there would be
a huge slowdown while producing the pixel effects (not that there were any in the previous exam-
ple). Also, actually including BackBuffer() is not really necessary. If you omit the buffer variable,
the locked buffer is set to the default buffer, designated by the SetBuffer command (not shown,
but assumed to be SetBuffer BackBuffer()).

Okay, that’s pretty much it on how to lock and unlock buffers. Let’s move in to the actual
commands.

ReadPixel()/ReadPixelFast()
ReadPixel() and ReadPixelFast() are the first functions that you need to know to work with
pixel editing. These functions read in the color values for individual pixels. Usually, you
will use an array to keep track of these values.

Locking and Unlocking Buffers 157

Table 6.6 Lock/Unlock’s Parameter

Parameter Description

buffer The name of the buffer you want to lock or unlock in order to perform high-speed
pixel operations

Chapter 6 ■ Page Flipping and Pixel Plotting158

Refresher: Arrays

Remember arrays? Arrays allow you to hold massive amounts of similar data in only one variable.
Single-dimensional arrays can be declared like this:

Dim sdarray(100) ;Create an array with 100 values

Or, multidimensional arrays can be declared like this:

Dim mdarray(100,3) ;Create an array with 100 rows, 3 columns

Figures 6.15 and 6.16 show the difference between the two. One other point—while in a For…Next
loop, you can easily loop through a multidimensional array like this:

For columns = 0 To 3
For rows = 0 To 100
mdarray(rows, columns) = 314 ;set it to whatever you want
Next
Next

When you take a look at Figures 6.15 and 6.16, notice how the array index has nothing to do with
the value of the array. The index on Figure 6.16 is on the right of the array, and is the row and col-
umn value put together (in such a way that row 2 column 3 is index (2,3)). The value inside the
array is x, which literally means that it can be any value, any number, or even a string.

Figure 6.15 A single-dimensional array.

Figure 6.16 A multidimensional array.

n o t e

Yeah, these two functions sound very similar, don’t they? Well, there is a small and subtle difference
between them. For one, the ReadPixelFast()function is faster than the ReadPixel() function. Why?
Because “fast” is appended to it? That may be a reason, but another is that ReadPixel() doesn’t
truly require the buffers to be locked to perform actions; however, ReadPixelFast() does.This allows
it to be more tuned toward locked buffers, and therefore, a bit faster. In other words, it is usually a
good idea to lock your buffer and use ReadPixelFast() rather than leave it unlocked and use Read-
Pixel. This goes for all the other Pixel and PixelFast functions also.

c a u t i o n

Watch out! If you decide to use one of the PixelWrite functions without locking the buffer, you
are making a huge mistake. This command will only work on a locked buffer. If the buffer is not
locked, your computer might crash while running this program. Also, watch for the coordinates of
the read in pixels. If they are located offscreen, you will only get garbage values.

ReadPixel() and ReadPixelFast() are defined like this:

ReadPixel (x,y,[buffer])
ReadPixelFast (x,y,[buffer])

c a u t i o n

Make sure you include the parentheses when you use this command. Recall that when you set a
variable to the return value of a function, you must include parentheses around the parameters.

See Table 6.7 for an explanation of the parameters.

Well, we really can’t do anything so far, so I’ll show you quickly how to use it. This code
sample assumes that you are reading the pixels from a bitmap in the top-left corner.

Locking and Unlocking Buffers 159

Table 6.7 ReadPixel() and ReadPixelFast()’s Parameters

Parameter Description

x The x coordinate of the read-in pixel
y The y coordinate of the read-in pixel
[buffer] The buffer you want to read in from (BackBuffer(), FrontBuffer(), or ImageBuffer())

Dim pixelarray(GraphicsWidth(),GraphicsHeight())

LockBuffer BackBuffer() ;Buffer MUST BE LOCKED
For cols = 0 To GraphicsHeight()

For rows= 0 To GraphicsWidth()
pixelarray(rows,cols) = ReadPixelFast (rows,cols)

Next
Next

Pretty cool, huh? This code saves the pixels of the entire screen into pixelarray. The for
loops work so that each pixel of one column is read before the next line is read. Figure 6.17
shows a visual example of this. Well, using only ReadPixel()/ReadPixelFast(), you can’t real-
ly do much with it yet, so let’s go on to WritePixel/WritePixelFast!

Chapter 6 ■ Page Flipping and Pixel Plotting160

GraphicsWidth() and GraphicsHeight()

Did you notice the two new functions, GraphicsHeight() and GraphicsWidth()? These two func-
tions are very useful and pretty simple: they return the height and width of the screen. So, for
example, if you initialize the graphics at the beginning of your program like this:

Graphics 800,600

then

x = GraphicsWidth()

will set x to 800 and

y = GraphicsHeight()

will set y to 600. You might wonder why you should use GraphicsHeight()and GraphicsWidth()
instead of plugging in the numbers 800 and 600. The reason for this is that you might change the
resolution while you’re testing your program. If you change the resolution without changing the
800 and 600, your program will become corrupt and could easily crash your computer! Just remem-
ber, it’s better to make your code as general and portable as possible.

WritePixel/
WritePixelFast
WritePixel and WritePixelFast
are just the opposite of
ReadPixel()/ReadPixelFast().
Both of these functions are nor-
mally used together to copy and
paste pixels from the screen.

WritePixel and WritePixelFast
are defined like this:

WritePixel x,y,rgb,[buffer]
WritePixelFast x,y,rgb,[buffer]

n o t e

You will notice that you never retrieve the return value of the WritePixel functions, unlike the
ReadPixel() functions which do have variables that retain those variables. For this reason, paren-
theses are not necessary around the parameters of WritePixel/WritePixelFast when they are
called, although they are allowed.

See Table 6.8 for a description of each parameter. The only parameter I want to examine
is rgb. As you know, when you used ReadPixel()/ReadPixelFast(), we stored all of the pixels
in an array. The array index of the individual pixel you want to draw should be input for
this parameter. In other words, use the pixelarray array for the rgb parameter.

Using WritePixel/WritePixelFast is very simple. You just include the parameters! Here is an
example:

Locking and Unlocking Buffers 161

Figure 6.17 The reading process of the for loops.

Table 6.8 WritePixel/WritePixelFast’s Parameters

Parameter Description

x The x coordinate of the plotted pixel
y The y coordinate of the plotted pixel
rgb The color of the plotted pixel (often stored in an array)
[buffer] The optional buffer you want to plot to

WritePixelFast 0,0,pixelarray(0,0)

This line will draw, at the top-left corner of the screen, the pixel that was stored at 0,0
when ReadPixel()/ReadPixelFast() was called.

Okay, now let’s get into an actual sample program. This program is fully commented on
the CD as demo06-07.bb:

; demo06-07.bb - A ReadPixelFast/WritePixelFast Example

Graphics 350,350,0,2

Text 0,0, "Press any key to use ReadPixel"

;Flip text onscreen
Flip

;wait for user to do something
WaitKey

;load rectangle image
image =LoadImage("rectangle.bmp")

;Draw the intro screen
DrawImage image,0,0
DrawImage image,100,100

;Flip image on screen
Flip

;Hold up a second
Delay (1000)

;Create a pixel array that will hold the entire screen
Dim pixelarray(GraphicsWidth(),GraphicsHeight())

;lock the buffer REQUIRED
LockBuffer

;Copy all of the pixels of the screen to the array
For rows=0 To GraphicsWidth()

Chapter 6 ■ Page Flipping and Pixel Plotting162

For cols=0 To GraphicsHeight()

;Copy the current pixel
pixelarray(rows,cols)=ReadPixelFast(rows,cols)

Next
Next

;Unlock the buffer
UnlockBuffer

Cls

Text 0,0, "Press another key to copy pixels backwards"

;Flip text onscreen
Flip

;Wait for key press
WaitKey

;Lock the buffer to allow WritePixelFast
LockBuffer

;Use WritePixelFast to redraw the screen
;using the color information we got earlier
For rows=0 To GraphicsWidth()

For cols=0 To GraphicsHeight()
;Draw the current pixels
WritePixelFast rows,cols,pixelarray(GraphicsWidth()-rows,cols)

Next
Next

;Flip image onscreen
Flip

; Unlock buffer after using WritePixelFast
UnlockBuffer

Text 0,0, "Press a key to exit"

;Flip text on screen

Locking and Unlocking Buffers 163

Flip
WaitKey

Figure 6.18 shows a screenshot taken from the program.

This program is probably pretty tough to understand, so let’s go over it. The program
begins by initializing the graphics and loading the images. After it loads the images, it
delays the program so that the user can see what will be copied. After this, it calls
LockBuffer and uses ReadPixel()/ReadPixelFast(), like this:

LockBuffer
For rows=0 To GraphicsWidth()

For cols=0 To GraphicsHeight()
pixelarray(rows,cols)=ReadPixelFast(rows,cols)

Next
Next
UnlockBuffer

Chapter 6 ■ Page Flipping and Pixel Plotting164

Figure 6.18 The demo06-07.bb program.

Remember, LockBuffer must be called before using ReadPixelFast(). Just like all of the other
pixel-plotting functions, ReadPixelFast() requires a locked buffer; otherwise, the program
will not act correctly and might crash. ReadPixelFast() works in the same way as the exam-
ple a few sections ago: it copies all of the pixels in a row before moving to the next row.
Each of these pixel values is stored in an array. Now, because you are finished with
ReadPixelFast(), you must call UnlockBuffer so that you can use other functions.

Now you are finally to the WritePixelFast section.

LockBuffer
For rows=0 To GraphicsWidth()

For cols=0 To GraphicsHeight()
WritePixelFast rows,cols,pixelarray(GraphicsWidth()-rows,cols)

Next
Next
UnlockBuffer

This snippet of code works just like ReadPixelFast(). It first locks the buffer, and then it
begins a couple of for loops that count from each column in a row before moving to the
next one. The WritePixelFast command is where the cool part of the program is, though.

WritePixelFast rows,cols,pixelarray(GraphicsWidth()-rows,cols)

I did something very wrong in this function call. Can you guess what it is? The problem is,
I used the rows and cols variable in the x and y coordinate parameters. This is a bad idea,
but I wanted to make a point. In this case, it works, but this is a rare case. Usually, you won’t
be copying the entire screen, but only a small part of it. You need to use another for loop
to get the correct x and y values, or you can increment the x and y values inside the existing
for loops.

The first few parameters of this function are simple: it draws the pixel at the given x,y
position. (The x,y position is held in rows,cols and is determined by the For…Next loop.)
The parameters in the array are not as simple, however. This program draws the pixels in
the array backwards on the left side, so you use the array value

pixelarray(GraphicsWidth()-rows,cols)

to draw each pixel backwards flipped from the left to the right but still the same from top
to bottom. If you wanted to make the image flip vertically, you would call WritePixelFast
with this pixelarray:

pixelarray(rows, GraphicsHeight()-cols)

Pretty cool, huh! You are now done with the WritePixel/WritePixelFast and
ReadPixel/ReadPixelFast functions, although there is another if you would like to research
it. It is called CopyPixel/CopyPixelFast and is defined like this:

Locking and Unlocking Buffers 165

CopyPixel src_x,src_y,src_buffer,dest_x,dest_y,[dest_buffer]
CopyPixelFast src_x,src_y,src_buffer,dest_x,dest_y,[dest_buffer]

If you want to use this function, try to use this definition and make a few sample pro-
grams!

Using Buffers: A Paint Program
You have learned a lot about buffers in this chapter. You’ll now put all of your knowledge
together and write a full program. The program that is demonstrated is a paint program.
It allows the player to draw content in the main part of the screen, and the picture can be
saved. This program is on the CD—demo06-08.bb. I recommend that you have this pro-
gram open on your computer while reading this section, because it will be much easier to
understand if you have the full source directly in front of you.

Let’s brainstorm for a bit on what we will need in this program. In this case, let’s think
about how we will accomplish our goal—to create a program that allows the user to draw.
First, for this program, I gave the user the option to draw in five colors: green, red, blue,
black, and white. The user can change the selected color by clicking each color’s corre-
sponding number. The color choice menu will look something like Figure 6.19.

We will definitely need to add some text that tells the user what he chose as his selected
color. Also, just for kicks, we will add a position indicator that informs the users where the
mouse is located.

Chapter 6 ■ Page Flipping and Pixel Plotting166

Figure 6.19 A prospective color menu.

Why Do We Draw Outlines?

You have probably noticed that the last figure was a drawing instead of a screenshot. I am trying
to simulate the actual creation process of a program or game. Before writing the first line of code,
you should know exactly what you are writing. A good way to do this is to draw an outline of your
program. Pictures are best, but words are good also. Try to illustrate what will happen when the
user performs an action. Also, show how the characters or images in the game will look.

n o t e

Mouse? What the heck is that? The mouse (most likely) is the thing in your right hand that you are
using to pinpoint objects on the screen. For this program, I was forced to use a mouse to make it
user-friendly. Because you do not know how to use the mouse in programs, don’t worry about it.
You will be educated on using input via the mouse in a later chapter.

Let’s put the position and selection indicator next to the color choice menu. This will be
our HUD, which stands for heads-up display. The outline for the full HUD is shown in
Figure 6.20.

Using Buffers: A Paint Program 167

Figure 6.20 A full HUD outline.

What Is a HUD?

A HUD, otherwise known as a heads-up display (a phrase taken from the cockpits of fighter jets),
is the control panel for most programs. The word “HUD” is normally used in the context of video
games, but it carries over to other programs, such as this one. The lower-left corner of Figure 6.21
shows an example HUD, which tells the user’s statistics. In essence, the HUD is the section of the
screen that is devoted to information, rather than game play.

Well, because the top part of the window is reserved for the HUD, let’s have the rest of the
window reserved for painting. Now we need to get into actually writing the program.

Initialization
As always, we begin with a properly marked initialization section. The initialization sec-
tion begins with the Graphics call.

;Set up Windowed Graphics Mode
Graphics 640,480,0,2

You might have forgotten what all four parameters mean. The first two refer to the width
and height of the program, respectively; the third parameter deals with the amount of col-
ors in the program; and the fourth parameter selects the mode. In this program, the win-
dow is created with a 640�480 resolution, with the default amount of colors, and it is set
up as windowed mode (2 indicates windowed mode).

After the Graphics call, set up the back buffer. Next, we define the constants:

;Backbuffer
SetBuffer BackBuffer()

;Constant the keyboard keys

Chapter 6 ■ Page Flipping and Pixel Plotting168

Figure 6.20 A full HUD outline.

Const ESCKEY = 1, ONEKEY = 2,TWOKEY = 3,
THREEKEY = 4, FOURKEY = 5, FIVEKEY = 6, F10KEY = 68

;Tweak these numbers
Const BUFFERHEIGHT = 480, BUFFERWIDTH = 640

You can change the height and width of the buffer if you want. Tweaking these values will
change the amount of space you have to draw on (Note: the drawing space cannot be
more that 640�480).

Next, we must load all the images that will be in our program. In this case, the user can
choose between five colors: green, red, blue, black, and white. Thus, we will need to load
five images of those colors. When the users decide to draw one of the colors, they will in
actuality be drawing an image of the color on the screen.

;Global Images
Global greenimage = LoadImage("greencolor.bmp")
Global redimage = LoadImage("redcolor.bmp")
Global blueimage = LoadImage("bluecolor.bmp")
Global blackimage = LoadImage("blackcolor.bmp")
Global whiteimage = LoadImage("whitecolor.bmp")

Figure 6.22 shows how big each color image is (8 pixels by 8 pixels).

We also need to load the mouse cursor image. This image will show
the user where his mouse is located (as opposed to the mouse x and
y indicator, which tells the user where the mouse is).

Global mouseimage = LoadImage("mousearrow.bmp")

The final image is the most important. This image is the canvas on which the actual draw-
ing takes place—I call it a picture buffer. The picture buffer is not loaded; instead, it is cre-
ated. It is produced in this call:

; Create a blank image that will be used to draw on
Global picturebuffer = CreateImage(BUFFERWIDTH,BUFFERHEIGHT)

Now that the picture buffer is loaded, all we need is a call to ImageBuffer with picturebuffer
as a parameter to make the screen capable of drawing to. This call will occur in a later
function.

We now move to the variables section of our code. There is only one defined variable:
selectedcolor.

This line of code automatically makes green the default color.

;Automatically select green as the color
Global selectedcolor = 1

Using Buffers: A Paint Program 169

Figure 6.22
A single color image.

The five color choices are

1. Green

2. Red

3. Blue

4. Black

5. White

The final section of the initialization part of the code is a section called masks. If you
remember, a mask allows the program to change the color that is made transparent on the
images. In this program, there are two masks.

MaskImage mouseimage,255,255,255 ;Mask the white around icon
MaskImage blackimage,255,255,255 ;change mask so black is visible

The first mask is in the mouse image. The background of the mouse image is white, so we
need to mask it to get rid of the white block that normally would exist behind the cursor.
See Figure 6.23; it shows the mouse cursor and the mask. The second mask is a little bit
different. Because the black image is pure black, and the default mask color is black, I
changed the mask so none of it would be deemed invisible. If I had left this off, drawing
with black would have made no difference.

Well, that’s the end of the
initialization section. Next,
we are in the main loop.

Main Loop
Usually I try to make the main loop as short as possible; this program is no exception. The
main loop only makes a few calls to other functions. It also draws the picture buffer on
the screen. See Figure 6.24 for an outline.

Chapter 6 ■ Page Flipping and Pixel Plotting170

Figure 6.23 The masked mouse cursor.

;MAIN LOOP
While Not KeyDown(ESCKEY)

;Clears the screen
Cls
;Draws everything text
related
DrawAllText()

;Draws the mouse cursor
DrawMouse()

;Test what keyboard buttons
were pressed
TestKeyboardInput()

;Test to see if user pressed any mouse buttons
TestMouseInput()

;draw the picture
DrawImage picturebuffer,0,100

;flip the buffers
Flip
Wend
;END MAIN LOOP

As you can see, the main loop itself does almost nothing; rather, the radiating functions
do the work. Table 6.9 details all of the functions and what they do.

Using Buffers: A Paint Program 171

Figure 6.24 The main loop.

Table 6.9 Demo06-08.bb’s Function List

Function Description

DrawAllText() This function calls all of the functions that relate to the text panel. This is the
same as drawing the HUD.

DrawMouse() This function draws the mouse cursor wherever the user positions the mouse.
TestKeyboardInput() This function tests all of the keyboard input. It is normally used when the

user wants to take a screenshot or change the selected color.
TestMouseInput() This function tests where the users move the mouse and if they press the left

mouse button (in order to draw).

Along with the function list, this main loop also includes some of the intrinsic calls to
most video game programs. Cls clears the screen and Flip flips the front and back buffers.
The program also draws the picture buffer on the screen:

;draw the picture
DrawImage picturebuffer,0,100

The picture is drawn at 0,100, so that it doesn’t mess with the HUD.

Well, that is the end of the main loop! The final part of the program is the function list.

Functions
Functions, functions, functions. There are a lot of them.

The first called function is named DrawAllText(). This function calls the other functions
that draw the HUD. DrawAllText() is defined as this:

;;;;;;;;;;;;;;;;;;
;Function DrawAllText()
;Calls functions that draw HUD of program
;No Parameters
;;;;;;;;;;;;;;;;;;

Function DrawAllText()

;Draws the color choices
DrawTextInfo()
;Draws the selected color
ColorText()

;Draws the location of the text
MouseText()
End Function

Of course, this doesn’t make any sense without seeing DrawTextInfo(), ColorText(), and
MouseText(). DrawTextInfo() looks like this:

;;;;;;;;;;;;;;;;;;
;Function DrawTextInfo()
;Displays the user’s color choices
;No Parameters
;;;;;;;;;;;;;;;;;;
Function DrawTextInfo()
;Display color choice
Text 0,0, "Press the number of the color you wish to draw"

Chapter 6 ■ Page Flipping and Pixel Plotting172

Text 0,12, "Colors:"
Text 0,24, "1. Green"
Text 0,36,"2. Red"
Text 0,48,"3. Blue"
Text 0,60,"4. Black"
Text 0,72,"5. White"
Text 0,84,"Press F10 to save image (text WILL NOT be saved)"
End Function
;END FUNCTIONS

ColorText() is defined like this:

;;;;;;;;;;;;;;;;;;
;Function ColorText()
;Chooses the selected color and writes it on the scren
;No Parameters
;;;;;;;;;;;;;;;;;;
Function ColorText()

;Assign the name of the color to selectedcolortext$
Select (selectedcolor)

Case 1
selectedcolortext$ = "Green"

Case 2
selectedcolortext$ = "Red"

Case 3
selectedcolortext$ = "Blue"

Case 4
selectedcolortext$ = "Black"

Case 5
selectedcolortext$ = "White"

End Select

;Write out the selected color
Text 240, 20, "Selected Color: " + selectedcolortext$
End Function

And last, MouseText() looks like this:

;;;;;;;;;;;;;;;;;;
;Function MouseText()
;Writes the mouse’s location on the screen
;No Parameters
;;;;;;;;;;;;;;;;;;

Using Buffers: A Paint Program 173

Function MouseText()
mousextext$ = "Mouse X: " + MouseX()
mouseytext$ = "Mouse Y: " + MouseY()
Text 540,20,mousextext$
Text 540,40,mouseytext$
End Function

These functions look long, right? Actually, they ain’t too difficult. Let’s get into each one.

First off, we have DrawTextInfo(). This function tells the user what his color choices are.
It also explains how to save the picture. Figure 6.25 is the output of the DrawTextInfo()
function.

n o t e

Compare Figure 6.25 with Figure 6.19, the outline
that we made earlier. Notice that both are very sim-
ilar, but there are a few minor changes.This is impor-
tant: although an outline should always be drawn,
they are rarely definite. You can always change it a
little, but try to keep the infrastructure intact.

The writing is in 12 point font (the default in BlitzPlus), so each item is 12 pixels down
from the one above it.

The next function is ColorText(). This function draws the selected color on the screen. As
you know, the user changes the selected color by pressing 1, 2, 3, 4, or 5. Because you want
to indicate which color the user picked, rather than just report a number, we use a switch
statement. This statement assigns a variable, selectedcolortext$, to the selected color
based on what the selection number is. After the select statement, the chosen color is
drawn on the screen.

The final function is MouseText(). You don’t know anything about mice yet, so in essence,
this function finds the mouse’s x and y values and writes them to the screen. Figure 6.26
shows the entire HUD. Compare it with Figure 6.20 and see how it has changed.

Chapter 6 ■ Page Flipping and Pixel Plotting174

Figure 6.25 Output of DrawTextInfo().

Figure 6.26 The complete HUD.

All right, one function down, and just a few more to go. The next function we will look at is
TestKeyboardInput(). This function reads in whatever the users press and reacts accordingly.

n o t e

You might have noticed that I skipped a function, DrawMouse(). I decided not to include an expla-
nation for it because we haven’t learned mouse input yet. However, it is pretty simple to under-
stand, so if you want to read it, just boot up the CD and open demo06-08.bb.

This program has only a few input possibilities: a color change or a screenshot. There are
five color changes, so we need to test for those.

;;;;;;;;;;;;;;;;;;
;Function TestKeyboardInput()
;Tests if the keyboard wants to change the selected color or take a screenshot
;No Parameters
;;;;;;;;;;;;;;;;;;

Function TestKeyboardInput()

;If user presses a number, select the corresponding color
If KeyDown(ONEKEY)

selectedcolor = 1
ElseIf KeyDown(TWOKEY)

selectedcolor = 2
ElseIf KeyDown(THREEKEY)

selectedcolor = 3
ElseIf KeyDown(FOURKEY)

selectedcolor = 4
ElseIf KeyDown(FIVEKEY)

selectedcolor = 5
EndIf

;If user presses F10, take a screenshot
If KeyDown(F10KEY)

;Save the picture buffer as screenshot.bmp
SaveBuffer ImageBuffer(picturebuffer), "screenshot.bmp"

EndIf

End Function

Using Buffers: A Paint Program 175

n o t e

If you try to name ONEKEY “1key,” the program will not work. Why is that? When defining variables,
you must begin the name with a character or an underscore “_”. You cannot begin with a number
or a symbol (#,$, and so on).

This block of code tests each of the color selection keys to determine whether they were
pressed. ONEKEY, TWOKEY, THREEKEY, FOURKEY, and FIVEKEY are all defined in the constant section
of the initialization of the code. Each key name corresponds to same key number. (ONEKEY
is the same as “1”, TWOKEY is the same as “2”, and so on.)

The final line of this function takes a screenshot of the drawn picture.

;If user presses F10, take a screenshot
If KeyDown(F10KEY)

;Save the picture buffer as screenshot.bmp
SaveBuffer ImageBuffer(picturebuffer), "screenshot.bmp"

EndIf

First off, this block of code tests the F10 key (located at the top of your keyboard). F10KEY
is the key code for F10, and it is defined in the constant section. When the user presses
F10, this action is performed:

SaveBuffer ImageBuffer(picturebuffer), "screenshot.bmp"

If you remember, SaveBuffer() saves a buffer (the first parameter) to a specified filename
(the second parameter). Because we specified ImageBuffer(picturebuffer) to be saved, the
text of the image will not be included in the saved file. See Figure 6.27 for an illustration
of what is happening.

c a u t i o n

Do not try to save the image if you are running this program off the CD. Because the current direc-
tory is on the CD, and the CD cannot be written to, the saving operation will fail. To fix this prob-
lem, simply copy the program off the CD and onto your computer.

Chapter 6 ■ Page Flipping and Pixel Plotting176

Figure 6.27 Using SaveBuffer.

After the picture is readied, the image buffer is saved to screenshot.bmp. You can find this
saved file in the same directory as the sample program. Make sure that if you run this pro-
gram, you copy it off the CD onto your computer. The operation will fail if you try to save
the buffer while the executable is still on the CD.

The last function remaining in the program is TestMouseInput(). This function determines
whether the user has pressed any mouse buttons. If the user has pressed a mouse button,
the program draws the selected color.

TestMouseInput() looks like this:
;;;;;;;;;;;;;;;;;;
;Function TestMouseInput()
;If player presses on mouse, draw the color
;No Parameters
;;;;;;;;;;;;;;;;;;
Function TestMouseInput()

;If player presses the left mouse button, draw the selected color
If MouseDown(1)

;Begin drawing only on image
SetBuffer(ImageBuffer(picturebuffer))

; draw the selected color at the mouse location
Select (selectedcolor)
Case 1

DrawImage(greenimage,MouseX(),MouseY()-100)
Case 2

DrawImage(redimage,MouseX(),MouseY()-100)
Case 3

DrawImage(blueimage,MouseX(),MouseY()-100)

Case 4
DrawImage(blackimage,MouseX(),MouseY()-100)

Case 5
DrawImage(whiteimage,MouseX(),MouseY()-100)

End Select
End If

Using Buffers: A Paint Program 177

;reset the buffer back to the back buffer
SetBuffer BackBuffer()

End Function

The first action this function performs is a test to determine whether the left mouse key
was pressed. If so, the program sets the default buffer to ImageBuffer(picturebuffer). Thus,
the player can draw only on the image surface, and not the rest of the program. The Select
block determines the default color, and depending on what that color is, a certain block
of color is drawn. The DrawImage command:

DrawImage(*image,MouseX(),MouseY()-100)

draws the specific image at the x and y position, although the y position is set to be 100
pixels higher because the image buffer is drawn 100 pixels below the top of the screen.
Take out the “-100” and see what happens!

n o t e

In the example of DrawImage, I made the image handle “*image.” In this case, the “*” symbol can
mean one of five things: green, red, blue, black, or white.

Well, that’s it for the sample program. Figure 6.28 shows a sample image in the program,
and Figure 6.29 shows how the saved image looks. Notice that the title bar is gone. Once
again, the reason for this is that only the ImageBuffer(picturebuffer) is saved.

Here is an idea for a good exercise: change the program so that a different screenshot is
created each time. This way, the user can save more than one image. Also, try to change
the program so the users can determine where the file is saved.

Chapter 6 ■ Page Flipping and Pixel Plotting178

Using Buffers: A Paint Program 179

Figure 6.28 The full demo06-08.bb program.

Figure 6.29 The saved picture from demo06-08.bb.

Summary
Whew, that was one long chapter. Hopefully, you’ve grasped all the topics we have covered
so far. In this chapter, we learned:

■ The different types of buffers

■ How buffers are used in page flipping

■ How to load and save buffers

■ How to unlock and lock buffers

■ How to quickly write and read pixel information

■ How to write a full program based on buffers

I hope all of this information makes sense to you. This is an important chapter to under-
stand, so if you don’t “get” something, make sure you reread the section before progress-
ing to the next chapter.

Now, strap on your seatbelt because the next chapter moves ahead to the crazy world of
image programming!

Chapter 6 ■ Page Flipping and Pixel Plotting180

181

Basic Image Programming

chapter 7

Welcome to Chapter 7! In this chapter, you learn how to use special effects on your images.
These include rotation, scaling, and translations. You also learn the art of image tiling and
parallaxing (which are both really cool). You probably don’t understand what I’m talking
about right now, but don’t worry, these terms are explained thoroughly in the chapter.

Anyway, get ready, because here we go!

Transformations
Transformations are very important in game programming. They are used everywhere
that you have movement; they change an image’s position or direction. There are three
types of transformations: translating, scaling, and rotating. Let’s begin with translating.

Translating
When you hear the word translation, you probably think of languages. Well, translating
images is completely different! When using translations in game programming, you take
an image at its current position and then “translate” it to another position, so translate is
just a fancy way of saying move!

Translation is moving an image from one coordinate to another. When complete, transla-
tion looks something like Figure 7.1.

Translation is really simple. You are basically draw-
ing an image at a different position. For example,
say you have an enemy ship that moves from the
top-left corner of the screen to the bottom-right
corner of the screen, and you want the ship to move
at five pixels a second. You might have an initializa-
tion section that looks like this:

shipx = 0
shipy = 0

Chapter 7 ■ Basic Image Programming182

Figure 7.1 Translations.

Refresher: Coordinate Position

Everybody forgets things after a while, huh? You might have forgotten how coordinate positions
work, and because they are extremely important in this chapter, it might be a good idea to go
over them.

The coordinate system has two axes: the x-axis and the y-axis. An axis is a named number line. The
two axes on a computer screen look like Figure 7.2. (As you probably noticed, there are dash marks
with numbers next to them. Of course, these dashes are not visible on the computer screen.) As
you can see, the 0 point of both the x- and the y-axes is in the top-left point of the screen. If you
travel farther across or down the monitor, the x- and y-axes are incremented. If you increment both,
you can put the point anywhere you want on the screen. Figure 7.3 demonstrates a point that is
10 pixels to the right (on the x-axis) and 16 places down (on the y-axis).

Obviously, there must be a better way to explain this point than “10 pixels to the right (on the x-
axis) and 16 pixels down (on the y-axis).” This way is inside parentheses; put the x coordinate first,
and then a comma, and then the y coordinate. Thus, the point in Figure 7.3 is 10,16. The “10”
means 10 pixels on the x-axis, and the “16” means 16 pixels on the y-axis.

This just places the position of the ship
at the top-left corner of the screen. You
now begin the game loop. Because we
are moving the ship diagonally down at
five pixels a second, we will have to
update the ship with some code like this:

While Not KeyDown(1)
Cls
DrawImage shipimage, shipx, shipy
shipx = shipx + 7
shipy = shipy + 5
Flip
Wend

Let’s go through this. We start off with
a loop, just like any other game. We first
clear the screen, so that we can use page
flipping. Then, we draw the ship image.
Note that you have a choice where to
put your DrawImage command. I chose to
put it at the beginning of the loop so
that you can see the ship image at 0,0,
but you can put it at the end of the loop.
The DrawImage command draws the ship
image at the set x and y coordinates.
When the loop runs through the first
time, the ship x and ship y are both set
equal to 0, but this changes with the
next line of code. This line adds 7 to
shipx and 5 to shipy. Because the addi-
tions occur each frame, the ship moves
seven pixels to the right and five pixels
down each frame. Figure 7.4 might help
clear up the coordinate positions for
you—it is a table of the values and the frame number. The equation, written next to the
table in the figure, allows you to determine the position of x and y by plugging in a frame
number. Of course, once the x and y values are off the screen, the image can’t be seen any-
more, but the image’s coordinates are still updated.

Transformations 183

Figure 7.2 The coordinate system.

Figure 7.3 A point on the coordinate system.

The rest of the main loop is a Flip
command that works with page
flipping. Please see Chapter 6 for
a review if you don’t understand
what Flip does. By the way, the
full program is available on the
CD as demo07-01.bb. Figure 7.5
is a screenshot of the program.

Let’s quickly come up with an equation for translation. This formula is very simple, but
hey, so is translation!

x[1] = x + dx
y[1] = y + dy

Chapter 7 ■ Basic Image Programming184

Figure 7.4 A table of coordinate values.

Figure 7.5 The demo07-01.bb program.

n o t e

The d in dx and dy is there for a reason; it isn’t just a random letter. In Greek, the letter delta,
which is symbolized as a triangle (�) means “change in”. If you “read” the variable, you can see
that dx and dy mean, “the change in x” and “the change in y.”

What does this mean? Well, if you input the proper coordinates (in this case, the x and/or
y values) and add a number you would like to translate by (this number, dx or dy, can be
negative or positive), you will get the new coordinate position for the variable. For exam-
ple, in the lines of code:

shipx = shipx + 7
shipy = shipy + 5

shipx and shipy are x[1] and y[1], respectively. Shipx and shipy are x and y, and 7 is dx and
5 is dy. All of these variables are taking the place of the constants in the previous equation.
Note that the x[1] and y[1] variables are the same as the x and y variables. This doesn’t
matter because you are updating them in order to move the image.

Are you ready to write a Translate function? Translate() translates any point you send it.
Let’s begin with a function declaration.

We are going to need an input coordinate and a transformation (“d”) variable. So, the
function might look something like this.

Function Translate(x,dx)

Easy, eh? And of course, the body of the function will be just as simple:

Return x + dx

Cool, huh? Table 7.1 describes each of the parameters for this function.

Let’s rewrite the main loop with the new function.

While Not KeyDown(1)
Cls
DrawImage shipimage,shipx,shipy
shipx = Translate(shipx,7)

Transformations 185

Table 7.1 Translate()’s Parameters

Parameter Description

x The coordinate you want to translate
dx The factor by which the x variable is translated

shipy = Translate(shipy,5)
Flip
Wend

Function Translate(x,dx)
Return x+dx
End Function

And there we are! We now have a working translation function. Although it might seem
trivial, it is probably a lot easier to understand the line

shipx = Translate(shipx,5)

rather than

shipx = shipx + 5

Don’t you agree? Notice that the Translate() function does not use global variables, which
makes this function extremely portable, because it can now be used in any other program.
Copy the code and you can use Translate() as much as you want. By the way, the program
using the Translate() function, is available on the CD as demo07-02.bb. If you need help
understanding the main loop, see Figure 7.6.

Okay, now that we’ve learned about translation,
let’s pump it up: next, we do scaling.

Scaling
When you scale an object, you make the object
bigger or smaller (or the same size, if you really
want to). Scaling means making something a
smaller or larger size but usually keeping the
same proportions. Proportionality, though, is not
required. Unlike translation, you cannot scale a
point. This is because a point is a point is a
point—you cannot make a point a different size.

Let’s start off by learning what a proportion is and how it is used.

Proportion? What the Heck Is That?

A proportion is a ratio or a fraction. For example, the ratio of an object to another object
that is two times bigger is 1:2 or 1/2. If the other object were three times as big, the ratio
would be 1:3 (and the fraction would be 1/3). If you take a look at the fraction, you will
notice that 1/3 is the same as 1 divided by 3. This is sort of interesting: the smaller object
(the “1” in 1:3) is exactly 1/3 the size of the bigger object. If you flip the top and bottom

Chapter 7 ■ Basic Image Programming186

Figure 7.6 The main loop.

on the fraction, you get 3/1, which is the size of the larger object compared to the smaller
object (the bigger object is three times the size of the smaller one). Take a look at Figure
7.7. In this figure, you can see the picture of a regular sized man on the left. The picture
on the right is the same man, but he is scaled. He is 1/5 the size of the original man (the
big man to small man ratio is 5:1).

You can also use ratios and fractions
when an object becomes smaller. Say
you have object A and object B. Object
B is five times smaller than object A.
The ratio in this example is 5:1, and the
fraction is 5/1 (or just 5: any number
divided by 1 is that number). As you
can see, object A, which is the “5” in
5:1, is five times bigger than object B. If
you flip the fraction 5/1, you get 1/5,
which is the size of object B in compar-
ison to object A.

A proportion can be thought of as a
ratio or a fraction. You can also use
percentages. When using BlitzPlus, you
typically use percentages. In other
words, when you want to scale the size
of an object, you multiply by a percent-
age number. For example, say you want
to make something four times as large
as it is. Just multiply each coordinate by
4. Referring to Figure 7.8, you can see a
box with coordinates 0,0, 0,5, 5,0, and
5,5. By multiplying each coordinate by 4 such that 0,0 remains 0,0; 0,5 becomes 0,20; 5,0
becomes 20,0; and 5,5 becomes 20,20, the box becomes four times as large. However, what
if you want to make the object something like 5/8 as large? All you have to do is bust out
a calculator and divide 5 by 8. Because 5/8 = .625, the multiplication factor will be .625.

So, now we have a basic outline for our scaling equation. The scaled equation looks a lot
like the translation equation:

x[1] = x * sx
y[1] = y * sy

Notice the differences between translations and scaling. When translating, you add the d
variable to the current x; however, when scaling, you multiply the s variable by the cur-
rent x to scale it.

Transformations 187

Figure 7.7 A man and his 1/5 scaled counterpart.

t i p

When scaling an object, you must use decimal percentages. If you want to make one object scaled
to 50% of the previous one, don’t multiply by 50. Your new object will be 50 times as large as the
older one! Instead, think of it as a fraction. You want to make the new object 1/2 as large as the pre-
vious one. If you divide 1 by 2, you get .5. Multiply the object by .5 and your object is scaled to 50%.

Scaling Shapes

Shape scaling is relatively simple. Just multiply the ending coordinate by the scaling fac-
tor, and you’re done! The next step is to scale different kinds of shapes, such as rectangles
and triangles. Ready to move?

Scaling Rectangles

Let’s write a few programs that utilize scaling within shapes. The first draws a rectangle,
waits for the user to choose a ratio, and draws a new rectangle with a new size. On the CD,
this file is named demo07-03.bb.

We begin with a graphics call. After that, we initialize the variables:

;demo 07-03.bb - Demonstrates Scaling

Graphics 800,600,0,2

Chapter 7 ■ Basic Image Programming188

Figure 7.8 A scaled rectangle.

;VARIABLES
;Create the variables that define the rectangle
rectbeginx = 25 ;The x coordinate of the top-left corner
rectbeginy = 25 ;The y coordinate of the top-left corner
rectwidth = 256 ;The x coordinate of the bottom-right coordinate
rectheight = 256 ;The y coordinate of the bottom-right coordinate

All that has happened so far is the creation of a few variables. I offset the box from 0,0 so
that you can see the scaling more clearly. If you feel like it, change any of these variables.

Next, we move to the main section of the code. The first part deals with the first rectangle.

;MAIN SECTION
;Make sure the text goes near the bottom of the screen
Text 0,700, "This is our first rectangle."

;Draw the first rectangle, and make it not filled
Rect rectbeginx,rectbeginy,rectwidth,rectheight,0

;Show old rectangle
Flip

We first start off with a call to Text. This forces the text, “This is our first rectangle” to
appear near the bottom of the screen, so it doesn’t interfere with the rectangles. Next, we
call the Rect function. This function, which is compiler defined, draws a rectangle from
the starting coordinates (rectbeginx and rectbeginy) to the ending coordinates (rectwidth
and rectheight). See Table 7.2 to see the Rect’s parameters. The 0 at the end leaves the rec-
tangle unfilled (you can set it equal to 1 if you want the rectangle filled, but it looks kind
of ugly if you do so).

So, why did I put a Flip command in there? Remember, in BlitzPlus, everything is drawn
on the BackBuffer(). Because we want to be able to see the rectangle that we just drew, we
must use the Flip command to show it on screen.

Transformations 189

Table 7.2 Rect’s Parameters

Parameter Description

x The x coordinate of the top left of the rectangle
y The y coordinate of the top left of the rectangle
width The width in pixels of the rectangle
height The height in pixels of the rectangle
solid If set to 0, the rectangle is not filled; if it is set to 1, the rectangle is filled

Next up: finding the scaling factor.

;Ask the user what the scaling factor is
sxy# = Input ("What would you like the scaling factor to be? (Ex: 50% = .5)? ==> ")

This statement asks the users what they would like to scale the x and y coordinates by. For
this program, both x and y are scaled by the same amount. If you feel like it, rewrite this
program so the users can scale both x and y by different amounts.

n o t e

When using the Input() function, a window will pop up asking for information. It does not ask for
the information directly on the screen, but rather in an external window. Because of this, when
using the Input() function, you should not use a maximized window. Use a small, desktop-sized
window instead.

n o t e

We haven’t touched on variable types for a long time. In case you have forgotten, when # is
appended to the end of a variable name, the variable is a floating-point variable. If a variable is
floating point, it can hold decimal places. In other words, xyx can be 314, whereas xyx# can be
314.13. If you try to make a non-floating-point variable (an integer) include a decimal, the decimal
portion will be truncated (removed). For example, the number 1.9 will become 1 because the .9 has
been truncated or deleted. Be careful when doing this because if you truncate decimal numbers,
you will lose information. And unless you intended to do this, it could be really bad. For example, if
you were computing tax with the number 0.08 and got rid of the decimal part, you would end up
with a tax rate of 0! In this program, the user can multiply the variable by any number, such as 1.5,
.3, and so on. It would not be very good if the decimal was truncated, because the new variable
would (most likely) end up being either 1 or 0. What a boring program it would be if the new rec-
tangle was either deleted or kept the same size!

The scaling factor is stored in the variable sxy#. This variable is used in the next section of
code.

;Multiply the width and height by the scaling factor
rectwidth = rectwidth * sxy#
rectheight = rectheight * sxy#

;Show new input
Flip

To scale the new object, you must multiply each coordinate by the scaling factor. The scal-
ing factor was determined, via user input, in the previous section of code. Here, both the
x and y values are multiplied by the scaling factor to make the rectangle as big as the user
wants it to be.

Chapter 7 ■ Basic Image Programming190

The final section of the code draws the second rectangle and exits the program.

;Draw the new rectangle
Rect rectbeginx,rectbeginy,rectwidth,rectheight,0

Print "Press any key to exit."

;Wait for the user to press a key before exiting.
WaitKey

Note that the WaitKey function will work only when the actual rectangle drawing program
has focus, not when the input window has focus.

The first line here draws a new rectangle with the scaled coordinates. Because the begin-
ning x and y values remain the same, the rectangle is drawn over the old one.

The final two lines ask the user to press any key. Once the user presses a key, the program
is over. Figure 7.9 shows a screenshot from the program.

Transformations 191

Figure 7.9 The demo07-03.bb program.

This program teaches a lot of important ideas. Try this out: change the code to work with
ellipses (using the Oval function).

You might have noticed something strange when using a scaling factor. When scaled by 2,
as in Figure 7.10, the original rectangle is only 1/4 of the size of the new rectangle, even
though you might expect it to be 1/2. The reason is that each coordinate is scaled by 2, not
the rectangle as a whole. Therefore, the new rectangle is actually four times the size of the
original rectangle.

Scaling Triangles

We can now move on to something a bit more challenging: scaling a triangle. Unlike the
rectangle, triangles don’t have a function. We have to draw each line manually.

Before we can begin discussing how to scale a triangle, we need to understand the differ-
ence between local and global coordinates.

There is a huge difference between global and local coordinates. A local coordinate, much
like a local variable, is only visible from the object that is being drawn. Global coordinates,
on the other hand, are the same for all objects.

Chapter 7 ■ Basic Image Programming192

Figure 7.10 Demo07-03.bb with a scaling factor of 2.

Maybe an analogy will help to understand the difference. Take a human; for instance, let’s
take you. You are a person. There are many people. But you are the center of everything
that you can see. To you, everything revolves around you. Therefore, your local coordi-
nates stem from the top of you to the bottom of you. However, remember that this holds
true for everyone else as well. Each person has his or her own local coordinates.

Now, imagine a spaceship watching Earth from the sky. To the aliens, people are every-
where. Each person is not central to the spaceship; instead, the Earth as a whole is. So, to
the aliens, the Earth is a coordinate plane (it isn’t actually a plane, but never mind that).
Where you are now is located at some coordinate position (maybe 13,14), but that will
change when you take a step to another area. Latitude and longitude perform the same
actions as global coordinates—you can pinpoint a certain position anywhere in the world
by indicating the latitude and longitude coordinates.

Look at Figure 7.11, which shows a map of the world with two people, Person A and
Person B. Person A and Person B each believe they are the center of the world; that is, they
think of themselves as located at 0,0. However, the spaceship that is watching them (you
are the spaceship for now) sees them in two very different coordinate positions, shown by
their latitude and longitude values.

When you move around, your global coordinates change. However, your local coordinates
remain the same. Your viewpoint does not change, and therefore, your local coordinates
stay with you no matter where you go.

Transformations 193

Figure 7.11 The spaceship and the world.

With objects in BlitzPlus, this analogy works extremely well. To the triangle we are using
in the following program, the center begins at coordinates 0,0. The object’s global coordi-
nates begin wherever it is displayed on the screen. Referring to Figure 7.12, you can see
that the local coordinates of an object begin at the top-left corner and end at the bottom-
right corner.

Now that we understand local and
global coordinates, let’s get into
this program. We first set up the
graphics mode.

Graphics 800,600,0,2

Now we are going to create a type
called point. Point will contain two
fields: its x and y coordinates.

Type point
Field x,y

End Type

We need to have three points for
this triangle: one for each vertex. A

vertex (plural vertices) is a point where a line changes direction—in the case of a triangle,
there are three vertices, one at each corner.

point1.point = New point
point2.point = New point
point3.point = New point

point1, point2, and point3 are the three dif-
ferent vertices on the triangle. Referring to
Figure 7.13, you can see that point1 begins
at the apex, or top, of the triangle, and
point2 and point3 follow in a clockwise
manner. The line that begins at point1
extends to point2, the line from point2
extends to point3, and the line from point3
extends to point1.

Next, we have to define the local coordi-
nates for our first triangle. In demo07-
04.bb, the vertices are defined like this:

Chapter 7 ■ Basic Image Programming194

Figure 7.12 Global and local coordinates.

Figure 7.13 point1, point2, and point3.

;These variables define each vertex and are in local coordinates
point1\x= 0
point1\y= -100
point2\x= 100
point2\y= 100
point3\x= -100
point3\y = 100

These points are centered around 0,0. Note that all of these coordinates are local: obvi-
ously, you can never have negative values for global coordinates. Figure 7.14 shows the
coordinates of each point on the triangle. As you can see, the origin point, 0,0, is in the
exact center of the triangle.

As stated earlier, to obtain global coor-
dinates, we will add a constant value to
each local coordinate of the triangle.
The constant section of this program
has two variables.

;CONSTANTS
;The global indicators that are added
to each local coordinate
;to place it on screen
Const xs = 400
Const ys = 300

I chose these two numbers because they
center the triangle onscreen. Note that
the program is 800 pixels by 600 pixels
(these numbers are defined in the
Graphics call), and 800 / 2 = 400 and 600
/ 2 = 300. To achieve the correct global coordinates, the xs variable is added to each x
coordinate and ys is added to each y coordinate.

Now that we have all of our initialization values defined and variables created, let’s move
on to the actual program. The program begins with these two lines:

Locate 0,700
Print "This is our first triangle."

As you probably know, the Locate command places all of the Print commands near the bot-
tom of the screen. The Print statement then writes,“This is our first triangle,” on the screen.

Next, we draw the first triangle. This is accomplished with the Line function, which draws
a line from one coordinate position to another. Line is declared like this

Transformations 195

Figure 7.14 Local coordinates.

Line x,y,x1,y1

Table 7.3 explains each parameter individually.

In essence, the Line function draws a straight line from coordinates x,y to coordinates x1,
y1. For this program, there are three Line calls for each triangle.

;Draw out first triangle
Line point1\x + xs, point1\y + ys, point2\x + xs, point2\y + ys
Line point2\x + xs, point2\y + ys, point3\x + xs, point3\y + ys
Line point3\x + xs, point3\y + ys, point1\x + xs, point1\y + ys

As you can see, each Line call draws a line from one of the vertices to another of the ver-
tices. If you look closely, you can see that xs is added to each x coordinate and ys is added
to each y coordinate. These numbers are added to the triangle’s local coordinates in order
to move the triangle onscreen so they can be seen in the program. Figure 7.15 demon-
strates the triangles local and global coordinates.

Okay, now that we have drawn the original triangle, let’s find out what the user wants the
scaling factor to be. This is accomplished with a call to Input.

Flip
;Find scaling factor from user
sxy# = Input ("What would you like the scaling factor to be? (Ex: 50% = .5)? ==> ")
Flip

The user now has a chance to input a scaling factor, which is stored in sxy#. Note that this
variable is a float, as signified by the # symbol.

n o t e

In general, whenever using the Input() function, you want to put a Flip command before and
after the Input() call.

After the user has chosen a scaling factor, we scale each point. The following lines perform
the scaling actions.

Chapter 7 ■ Basic Image Programming196

Table 7.3 Line’s Parameters

Parameter Description

x The x position of the starting coordinate
y The y position of the starting coordinate
x1 The x position of the ending coordinate
y1 The y position of the ending coordinate

;Multiply all the coordinates by the scaling factor
point1\x = point1\x * sxy#
point1\y = point1\y * sxy#
point2\x = point2\x * sxy#
point2\y = point2\y * sxy#
point3\x = point3\x * sxy#
point3\y = point3\y * sxy#

Pretty easy, eh? All this block of code did was multiply each vertex’s x and y position by
sxy#.

Okay, now we must get ready to draw out the new triangle. Since we want the new object
to be easily seen, you need to change the color of the lines. This is easily accomplished
using the Color function.

;Change the default color to green
Color 0,255,0

This makes all following Line commands green.

Now, all we have to do is draw the new triangle. This is accomplished by calling Line for
each point, as we did for the original triangle.

Transformations 197

Figure 7.15 Local and global coordinates of the sample triangle.

;Draw final triangle (with scaled coordinates) in green
Line point1\x + xs, point1\y + ys, point2\x + xs, point2\y + ys
Line point2\x + xs, point2\y + ys, point3\x + xs, point3\y + ys
Line point3\x + xs, point3\y + ys, point1\x + xs, point1\y + ys

Excellent! The program has now printed lines connecting each vertex, and therefore,
drawn a new triangle.

Now all we do is finish the program.

Print "Press any key to exit."

;Wait for user to press a key before exiting
WaitKey

These lines of code tell the user to press any key, and the program then waits for the user
to press a key before exiting.

That’s the complete program. Figures 7.16 and 7.17 demonstrate the program with scaling
factors of 2 and .5. You won’t be able to see that the new lines are drawn in green in the fig-
ures, but you can look at the program on the CD to see the new triangles drawn in green.
If you notice, the new triangle is centered in respect to the original triangle. But, what if you
don’t want to keep it centered? All you have to do is change the local coordinates.

Chapter 7 ■ Basic Image Programming198

Figure 7.16 Demo07-04.bb with a scaling factor of 2.

t i p

Wanna see something cool? When you are asked to input sxy#, enter a negative number. The new
triangle is flipped. Check out Figure 7.18; it shows the program with an sxy# value of �1.

Figure 7.19 shows demo07-05.bb. As you can see, the triangle grows downward, but it
does not remain centered. Demo07-05.bb is almost exactly the same as demo07-04.bb,
except the beginning variables have been changed. The variables are now initialized with
different values.

;VARIABLES
;These variables define each vertex and are in local coordinates
point1\x= 0
point1\y= 0
point2\x= 100
point2\y= 100
point3\x= -100
point3\y = 100

Transformations 199

Figure 7.17 Demo07-04.bb with a scaling factor of .5.

Chapter 7 ■ Basic Image Programming200

Figure 7.18 Demo07-04.bb with a scaling factor of �1.

Figure 7.19 The demo07-05.bb program.

The big difference here is that point1\y has been changed to 0 from its value in demo07-
04.bb. Because any number multiplied by 0 equals 0, when sxy# is multiplied in the line:

point1\x = point1\x * sxy#

point1\x will always equal 0. Because the variable does not change, point1 will remain the
same position throughout the program. Thus, the triangle will grow from the top down-
ward.

It comes out pretty nicely, don’t you think? By the way, if you want it to grow upward,
change the bottom points’ y values to 0. Demo07-06.bb shows the triangle growing
upward.

The variables have been changed slightly; now they are

;VARIABLES
;These variables define each vertex and are in local coordinates
point1\x= 0
point1\y= -100
point2\x= 100
point2\y= 0
point3\x= -100
point3\y = 0

As you can see, the two lower points are equivalent to 0. Now, when it is scaled by 2, it
grows upward, as in Figure 7.20.

One thing you should know about the previous program: because changing the y values
for the bottom two points moves the figure up a little, I changed the ys variable a little.
The constants section now reads:

;CONSTANTS
;The global indicators that is added to each local coordinate
;to place it onscreen
Const xs = 400
Const ys = 400

The ys variable in demo07-06.bb was changed from 300 to 400 to offset the 100-pixel dif-
ference between the original triangle in demo07-04.bb and the new triangle in demo07-
06.bb.

Now let’s create a scale function.

Function Scale(x,sx)
Return x*sx
End Function

Transformations 201

Table 7.4 examines each parameter. If you wanted to scale the x coordinate of point1, just
call it like this:

Scale(point1\x,sxy#)

assuming that sxy# is the scaling factor.

Scaling Images

BlitzPlus makes scaling images
extremely easy by providing the func-
tion ScaleImage. ScaleImage is defined
like this:

ScaleImage image,xscale#,yscale#

Table 7.5 explains each parameter. Basically, just include the image handle and the x and
y scaling values in the call to ScaleImage.

Chapter 7 ■ Basic Image Programming202

Figure 7.20 The demo07-06.bb program.

Table 7.4 Scale()’s Parameters

Parameter Description

x The value you want to scale
sx The scaling factor

As an example, we will scale an image of a spaceship. The original spaceship looks like
Figure 7.21.

Demo07-07.bb is pretty short, so I am just going to show the entire program and explain
it at the end.

;demo07-07.bb - Demonstrates the use of ScaleImage
Graphics 800,600,0,2

;Set automidhandle to true
AutoMidHandle True

;IMAGES
;Load the spaceship that will be drawn onscreen
spaceshipimage = LoadImage("spaceship.bmp")

;Draw the spaceship directly in the center of the screen
DrawImage spaceshipimage, 400,300

Flip
;Find out what the player wants the x and y scaling factors to be
xs# = Input("What would you like the x scaling value to be? ")
ys# = Input("What would you like the y scaling value to be? ")
Flip

;Prepare the screen for the scaled spaceship by clearing it
Cls
;Scale the image
ScaleImage spaceshipimage, xs#,ys#

Transformations 203

Table 7.5 ScaleImage’s Parameters

Parameter Description

image The image handle of the image you want to scale
xscale# The amount you want to scale the x-axis by (1.0 = 100%)
yscale# The amount you want to scale the y axis by (1.0 = 100%)

Figure 7.21
The original spaceship image.

;Draw the new scaled spaceship
DrawImage spaceshipimage, 400,300

Print "This is your updated image"
Print "Press any key to exit"

;Wait for user to press a key before exiting
WaitKey

Figure 7.22 is a screenshot from the program. The first thing the program does is initial-
ize the graphics and set AutoMidHandle to true, so that the images are centered. It then loads
the spaceship and draws it onscreen.

Using the Input functions, the program finds out what the scaling factors are. It then clears
the screen in preparation for the new image.

Chapter 7 ■ Basic Image Programming204

Figure 7.22 The demo07-07.bb program.

;Scale the image
ScaleImage spaceshipimage, xs#,ys#

;Draw the new scaled spaceship
DrawImage spaceshipimage, 400,300

The newly scaled spaceship is drawn directly in the center of the screen, after being scaled
by the ScaleImage function, which uses the scaling factors provided by the user earlier in
the program.

These two lines scale and draw the new image. The program finishes off its tour by asking
the users to press a key. Once they do, the program exits.

Note that if you size the image to greater than 100 percent, the image looks a little blurry.
The reason is that the scaling function stretches the image and makes each of its pixels a
little bit larger.

We can use ScaleImage with polygons such as triangles, also. We just need to make a few
calls to CreateImage() and ImageBuffer(). Let’s rewrite demo07-04.bb using ScaleImage.

Obviously, we first initialize the graphics. We then set AutoMidHandle to true so that the
images will be centered in the program. We can then initialize the program’s variables,
such as the starting coordinates and the point type. Now is when we change the program
a little bit.

We must make a call to CreateImage() to get a handle for an image that we can scale. This
call should do the trick:

image = CreateImage((point2\x – point3\x),(point2\y-point1\y))

Because we know that point3 is the farthest vertex to the left, point2 is the farthest down
and right, and point1 is the highest, we subtract the high and low values to get the width
and height of our image.

Now we need to call SetBuffer to set the active buffer to the image handle so we can draw
straight to it.

SetBuffer ImageBuffer(image)

Now we continue with the Line commands. We then must revert back to the FrontBuffer()
by calling SetBuffer again.

SetBuffer FrontBuffer()

We then use the DrawImage() function to display the original triangle.

DrawImage image, 400,300

Using Input, we get the scaling factor, and we call ScaleImage like this:

Transformations 205

ScaleImage image,sxy#,sxy#

We then call

DrawImage image, 400,300

And the program is done! Figure 7.23 shows the demo07-08.bb.

Following is the entire source for this program. We will review at the end.

;demo07-08.bb - Demonstrates Scaling with ScaleImage
Graphics 800,600,0,2

;Make sure AutoMidHandle is true
AutoMidHandle True

Chapter 7 ■ Basic Image Programming206

Figure 7.23 The demo07-08.bb program.

;STRUCTURES
;The point structure defines one coordinate point
Type point

Field x,y
End Type

;Create the three vertices
point1.point = New point
point2.point = New point
point3.point = New point

;VARIABLES
;These variables are in local coordinates and define
;the positions of the vertices
point1\x= 100
point1\y= 0
point2\x= 200
point2\y= 200
point3\x= 0
point3\y = 200

;Create a buffer with the proper height and width
image = CreateImage((point2\x - point3\x) + 1, (point2\y - point1\y) + 1)

;MAIN SECTION

Print "This is our first triangle."

;Set default buffer to the image we created so that
;we can draw the triangle directly to it
SetBuffer ImageBuffer(image)

;Draw the triangle on the new buffer
Line point1\x, point1\y, point2\x, point2\y
Line point2\x, point2\y, point3\x, point3\y
Line point3\x, point3\y, point1\x, point1\y

SetBuffer BackBuffer()

Transformations 207

;Draw the image centered onscreen
DrawImage image,400,300

Flip
;Find the scaling factor
sxy# = Input ("What would you like the scaling factor to be? (Ex: 50% = .5)? ==> ")
;What is the scaling factor
Flip

;Scale the image by its scaling factors
ScaleImage image,sxy#,sxy#

;Draw the new image
DrawImage image,400,300

Print "Press any key to exit."
;Wait for a key before exiting
WaitKey

I want you to notice a few things in this program. First, I removed the xs and ys constants.
Because this triangle is drawn onto an image buffer and the image is drawn in the center,
there is no need to convert local to global coordinates.

Second, notice that I added 100 to each of the point\x and point\y variables. This is nec-
essary to remove the negative coordinates. Negative coordinates will be drawn off the
buffer, and we need to move everything on, so we simply get rid of the negative values.

Third, notice that I added 1 to the size of the buffer in the call to CreateImage(). This addi-
tion was made to allow the entire image to be drawn on the buffer. It is usually a good idea
to give a little leeway (here, 1 pixel) to make sure that everything appears on the image.

Last, you will notice that the scaled bitmap is blurry. This happens when bitmaps are
scaled, because a bitmap has only a finite amount of information, and when you try to
stretch it, the computer has to make up the information to fill in the blanks to make it big-
ger. The computer does this by averaging pixels in the bitmap and then computing what
would be between them. The results of this are blurry images because the computer has
to guess what the new and larger image should look like.

Well, that’s pretty much it for scaling. We can now move on to a really cool subject: rotation.

Chapter 7 ■ Basic Image Programming208

Rotation
So far, you have learned two of the three types of transformations. Rotation is the final
one that you will learn. Rotation is usually extremely hard to pull off, but BlitzPlus makes
it much easier.

Like scaling, BlitzPlus provides a function for rotation—RotateImage. RotateImage is
defined as this:

RotateImage image, value#

Table 7.6 examines the individual parameters. As you can see, value# rotates the given
image in a clockwise manner.

Take a look at Figures 7.24 and 7.25. They demonstrate clockwise and counterclockwise
directions, respectively. Oh yeah, a clock turns clockwise.

Value# might be equal to any number between 0 and 360. There are 360 degrees in a cir-
cle. Refer to Figure 7.26 to see the degrees in a circle.

Transformations 209

Table 7.6 RotateImage’s Parameters

Parameter Description

image The handle of the image you want to rotate
value# The amount of degrees (between 0 and 360) you want to rotate image in a

clockwise fashion

Figure 7.24 Clockwise. Figure 7.25 Counterclockwise.

As you can see, rotating an image is
pretty simple. Rotating shapes is
extremely difficult and requires com-
plex mathematics, so it is often a
good idea to use CreateImage() and
ImageBuffer(), as done with scaling in
demo07-08.bb. Using CreateImage()
allows you to turn your shape into an
image, which makes rotation algo-
rithms easier to perform.

Let’s write a program that rotates a
shape. This program loads an image
from the hard drive, asks the users
how many degrees they want to
rotate it, and performs the action.

Following is the rotation section of
the code in demo07-09.bb.

;Draw the beginning image
DrawImage shipimage,400,300

Flip
;Find out what the rotation value is
rotationvalue# = Input ("How many degrees would you like to rotate the image? ")
Flip

;Rotate the Image
RotateImage shipimage, rotationvalue#

Print "Your new image is now drawn on the screen"

;Draw the new and rotated image on the screen
DrawImage shipimage, 440,300

This section draws the shipimage (which was loaded earlier in the program) at the center
of the screen. The program then retrieves rotationvalue# from the user, and rotates the
image using the command

RotateImage shipimage, rotationvalue#

This line rotates the shipimage the amount of degrees entered in rotationvalue#. The pro-

Chapter 7 ■ Basic Image Programming210

Figure 7.26 Degrees in a circle.

gram then draws the new image to the right of the old image.

That’s demo07-09.bb. Figure 7.27 shows a screenshot from the program.

Asking a user for a rotation value is nice, but what about real-time rotation? Real-time
rotation allows you to rotate an image at the spur of the moment. This effect is used in
games such as Asteroids, where a spaceship is rotated onscreen.

Real-time rendering is as simple as waiting for the user to press a button and calling
RotateImage, right? Wrong. If you do this, your program will run extremely slowly. You
need to preload your images to allow the program to run at full speed. Before we get into
preloading, though, take a look at what a rotation program will look like without it.

Following is the main loop of demo07-10.bb. Read through it and try to understand. An
explanation follows.

Transformations 211

Figure 7.27 The demo07-09.bb program.

;MAIN LOOP
While Not KeyDown(1)
;Clear the Screen
Cls

;Add Text
Text 10,0, "Press Left to rotate counter-clockwise and right to rotate clockwise,"
Text 10,20,"Press Esc to exit."

;If the player presses left, rotate four degrees left,
;if he presses right, rotate four degrees right
If KeyDown (203)

RotateImage shipimage, -4
ElseIf KeyDown (205)

RotateImage shipimage,4
EndIf

;Draw the ship
DrawImage shipimage, 400,300
Flip
Wend
;END OF MAIN LOOP

As you can see from the Flip and the Cls commands, this program uses page flipping. The
rest of the program is pretty self-explanatory. If the user presses left (key code 203), the
ship is rotated counter-clockwise four degrees. If the user presses right (key code 205), the
ship is rotated four degrees clockwise.

This program should work correctly, huh? Unfortunately, it doesn’t. Because rotating
takes a lot of processor-power, the program runs slowly. To fix this problem, we use a tech-
nique called preloading,

Preloading is sort of hard to understand, but let me walk you through it. The first thing
you want to do is decide how many frames you want. With a lot of frames, you get a little
bit better animation. Because the image has a larger number of rotations, there is a small-
er difference in degrees of each separate frame. However, with more frames, your program
takes up more space in the memory. The program might also run a bit slower.

I usually choose a frame count of 16—it provides decent results but does not take up a
lot of memory like higher frame amounts. Figure 7.28 shows each of the 16 rotations of
the ship.

Chapter 7 ■ Basic Image Programming212

Anyway, let’s get to the preloading. The first thing we do is
create a constant that will hold the amount of rotations
(frames) we want to have for our image. It might look some-
thing like this.

Const rotations = 16

Next, we create an array that holds all of our frames.

Dim imagearray(rotations)

As you can see, this array will hold 16 images: one for each
rotation. (It will actually hold 17, but we give it one extra space for a buffer). Don’t forget
that each array begins with 0, so 16 frames will have rotations from 0 to 15.

Now comes the semi-hard part. We have to load the frames into the array. This can be
accomplished through a For…Next loop.

For frame = 0 To rotations - 1
imagearray(frame) = CopyImage (shipimage)
RotateImage imagearray(frame), frame*360/rotations

Next

What? Let’s go through this loop line by line. This particular loop runs 16 times. It begins
with 0 and counts to rotations – 1. Here, rotations – 1 is equal to 15 (16-1 = 15). Now

Transformations 213

What Is Preloading?

Preloading is often a tough concept for beginning programmers to understand. The basic concept
behind preloading is that displaying an image that has been changed and saved once in the pro-
gram is faster than changing the image each time a change is necessary. Preloading does just this:
at the beginning of the program, you create the images you will need later in the program and save
it to an array that can be called at any time. When you need to display the saved images later, you
just draw the necessary image from the array that you created earlier. Think of it like doing your
homework. It will make the process a lot easier if you pull out all of your school supplies right when
you begin, rather than getting a book only when you need it and getting your pencil when it is nec-
essary. Your homework gets done either way. But it can get done quicker if you have “preloaded”
all of your supplies. Of course this analogy works only if you actually do your homework. (Learn
more about how to get away with not doing your homework in my other book, How To Succeed
As A Lazy Student. Check it out at www.maneeshsethi.com.)

In the following rotation program, I rotate the image as many times as I want frames. When the
user presses left or right, the next frame is displayed. By the way, when I use frame in this section,
I am referring to frames of an image—not iterations of the main loop.

Figure 7.28
The ship’s 16 rotations.

we get into the actual copying. Each frame of the array has shipimage, the image of the
actual image, copied into it. This is accomplished by CopyImage(). The following line does
the rotating of each frame, and it looks like this:

RotateImage imagearray(frame), frame*360/rotations

If you remember, RotateImage’s first parameter explains what will be rotated and the sec-
ond parameter determines how much it should be rotated. Here, imagearray(frame) is
rotated. This frame is the one that was just copied into the array. The rotation amount is
a bit harder to understand. The frame number is multiplied by the amount of degrees in
a circle (360) and then divided by the total number of rotations. Table 7.7 shows values
for an image with 16 rotations.

n o t e

Notice that the image is never rotated 360 degrees. Rotating an image 360 degrees is the same as
rotating it 0 degrees (the rotations come to a full circle). Therefore, the final frame rotates the image
a tiny bit less than a full 360 degrees.

Let me display the full source for the rotation program now. We will go over the main loop
right after.

Chapter 7 ■ Basic Image Programming214

Table 7.7 Rotation Angle in Degrees with 16 Rotations for a Full Circle

Frame Subscript Number Degrees Rotated

1 0 0
2 1 22.5
3 2 45
4 3 67.5
5 4 90
6 5 112.5
7 6 135
8 7 157.5
9 8 180
10 9 202.5
11 10 225
12 11 247.5
13 12 270
14 13 292.5
15 14 315
16 15 337.5

;demo07-11.bb - Demonstrates preloading and real-time rotation

Graphics 800,600
;Set up AutoMidHandle and BackBuffer()
AutoMidHandle True
SetBuffer BackBuffer()

;IMAGES
;Load the spaceship image that will be rotated
shipimage = LoadImage ("spaceship.bmp")

;CONSTANTS
;How many rotations do you want total?
Const rotations = 16

;Create the rotation array
Dim imagearray(rotations)

;For all of the rotations you want, copy the spaceship image
;and rotate it the correct amount of degrees
For frame = 0 To rotations - 1

imagearray(frame) = CopyImage (shipimage)
RotateImage imagearray(frame), frame*360/rotations

Next

;Begin at frame 0 (facing upwards)
frame = 0

;MAIN LOOP
While Not KeyDown(1)

;Clear the screen
Cls

;Add Text
Print "Press Left to rotate counter-clockwise and right to rotate clockwise,"
Print "Press Esc to exit."

;Rotate the ship left if user presses left
If KeyDown (203)

Transformations 215

;Decrement frame by 1 (thus rotating it left)
frame = frame - 1

;If the frame count is less than 0, put it back at the max value of the array
If frame <= 0

frame = rotations - 1
EndIf

;Rotate the ship right if user presses right
ElseIf KeyDown (205)

;Increment frame by 1 (thus rotating it right)
frame = frame + 1

;If frame gets too big, set it to the first frame (0)
If frame >= rotations

frame = 0
EndIf

EndIf

;Draw the current frame
DrawImage imagearray(frame), 400,300

Flip

;Wait for a while
Delay 50
Wend

A beauty, huh? Figure 7.29 is a screenshot from the program. As usual, the beginning of
the program sets up the graphics and initializes the rotation array. It then prints the intro-
ductory text to the user and resets frame to 0 (so that the ship faces upward).

The main loop tests for two keys—left and right. If the user presses the left key, the frame
amount decreases by one, and if the right key is pressed, the frame amount increases by
one. If frame is 0 and the left key is pressed, frame becomes rotations– 1, and if frame is the
max number of rotations and the right key is pressed, frame becomes 0.

Chapter 7 ■ Basic Image Programming216

Make sure you understand rotations and preloading by now. If you’re still a bit uneasy
with the material, please read through the section again. The chapter is now moving onto
the subject of parallaxing. Think about it, with a word as cool as parallaxing, how can it
not be fun?

Parallaxing
Parallaxing is a very interesting topic, and we are going to jump right into it. Using paral-
laxing, you can create the effect of movement through 3D space from a fixed viewpoint.
You could think of parallaxing as scrolling, if you want; in essence, you are scrolling two
or more backgrounds at the same time to simulate movement.

Parallaxing 217

Figure 7.29 The demo07-11.bb program.

Before we can actually begin parallaxing, we need to go over two BlitzPlus commands:
TileBlock and TileImage.

TileBlock and TileImage
Because parallaxing effects begin in the background, we must first learn how to create
backgrounds. Easier said than done, huh? Fortunately, BlitzPlus provides two functions
for tiling backgrounds: TileBlock and TileImage.

n o t e

You should probably know what tiling is, because both TileBlock and TileImage do it. Tiling takes
a single image and plasters it all over your program’s background in a tiled pattern. Just like kitchen
tiles: each tile is exactly the same as the next one.

Both TileBlock and TileImage have the same definition.

TileBlock image, [x,y,frames]
TileImage image, [x,y,frames]

Table 7.8 lists each parameter. As you can see, the only required parameter is image (the
image you want to be tiled). x and y move the starting point of the tiles to a location other
than the default 0,0. Frames is used with animation, which will be discussed in the next
chapter.

Chapter 7 ■ Basic Image Programming218

What Is Parallaxing?

Remember the last time you were in a car on the freeway? When you looked outside (assuming
you weren’t playing a videogame), did you notice that the objects that were closer to you moved
faster than the objects that were farther away? The road markers that lined the road shot by you
while the trees on the mountains far away moved much slower. Parallaxing creates this effect in
games: one part of the background moves faster than the other part, based on distance from the
player’s viewpoint.

Table 7.8 TileBlock and TileImage’s Parameters

Parameter Description

image The handle of the image you want tiled
[x] Optional; the beginning x coordinate of the tiling procedure
[y] Optional; the beginning y coordinate of the tiling procedure
[frames] Optional; allows you to use frames in animation

There is a small difference between TileBlock and TileImage. When using TileBlock, all
transparency and masking on your image is ignored. Therefore, you cannot draw over-
lapping backgrounds using TileBlock. Of course, because it ignores transparency, TileBlock
is a little bit faster. For the most part, however, we will be using TileImage.

Using TileBlock and TileImage is really easy. Call the function you want to use with the image
you want to tile. For our next demo program, we will be using the image in Figure 7.30.

The following program is called demo07-12.bb. It only has
four calls—one that initializes the graphics, one that loads the
background image, and one that tiles the image using
TileBlock. The program’s last call is to WaitKey so that the user
can see the program before it closes. Figure 7.31 shows a
sample screenshot of the program.

Parallaxing 219

Figure 7.30
The tiled image.

Figure 7.31 The demo07-12.bb program.

The call to TileBlock is very simple.

;Tile the image
TileBlock backgroundimage

As you can probably guess, backgroundimage was previously loaded.

Now that you have tiled the image, we need to figure out how to scroll it up and down.
Scrolling causes the game to appear in motion; therefore, it will seem like you are actual-
ly flying in space. The following program is located on the CD as demo07-13.bb.

The program begins as it usually does, with graphics initialization and whatnot (I don’t
think I have ever said whatnot before, ever). The initialization also creates the variable
scrolly, which is used in the TileImage command. We then load the background, which is
the same as the image in Figure 7.27. Now we enter the main loop.

;MAIN LOOP
While Not KeyDown(1)

;Tile the background at the y position of scrolly
TileBlock backgroundimage,0,scrolly

;Scroll the background a bit by incrementing scrolly
scrolly=scrolly+1

;If scrolly gets too big, reset it to zero
If scrolly >= ImageHeight(backgroundimage)

scrolly = 0
EndIf

Flip
Wend
;END OF MAIN LOOP

The loop begins as you probably expect. The first line inside the loop is a TileImage
command. This line tiles the background image, but it includes the optional parameter
scrolly for y. Because scrolly is incremented each frame in the next line of code, the image
is tiled a little bit higher each frame. This tiling effect creates a scrolling effect. The last
important line in the main loop, the If statement, resets scrolly when the program has
scrolled the image one full time. In other words, if backgroundimage is 64 pixels high, every
64th frame will be identical.

Chapter 7 ■ Basic Image Programming220

Just in case you want to know, ImageHeight returns the height of the given image in pixels.

n o t e

Notice that there is no Cls command in the main loop. Because you are tiling a background, clear-
ing the screen is worthless, because the TileBlock command writes over everything under it. If you
use TileImage, which retains the image’s transparency, you will need to use Cls.

Figure 7.32 shows three screenshots of demo07-13.bb at three five-frame intervals. As you
can see, each one has changed very slightly.

The last thing we have to do is scroll two images at once. Two images will create the effect
of distance, because some stars will appear closer (by scrolling them faster) and others will
appear farther away (by scrolling them slower). In addition, the closer stars are brighter.
Figure 7.33 shows both star images.

Following is the full program demo07-14.bb. As you can see, we loaded two images and
scrolled them.

Parallaxing 221

Figure 7.32 The background at five-frame intervals.

;demo07-14.bb - A Parallaxing Program
Graphics 800,600

;Set AutoMidhandle to true and draw everything to back buffer
AutoMidHandle True
SetBuffer BackBuffer()

;IMAGES
;The close and quickly scrolled background
backgroundimageclose = LoadImage("stars.bmp")

;The farther and slowly scrolled background
backgroundimagefar = LoadImage("starsfarther.bmp")

;Create scrolling tracker variable
scrolly = 0

;MAIN LOOP
While Not KeyDown(1)

;Clear the screen
Cls

;Tile both backgrounds at proper speed
TileImage backgroundimagefar,0,scrolly
TileImage backgroundimageclose,0,scrolly*2

Chapter 7 ■ Basic Image Programming222

Figure 7.33 The closer (left) and distant (right) stars.

;Increment scrolly
scrolly=scrolly+1

;Reset tracker variable if it gets too large
If scrolly >= ImageHeight(backgroundimageclose)

scrolly = 0
EndIf

Flip
Wend
;END OF MAIN LOOP

The major difference when comparing this program to the previous one is the loading and
tiling. Instead of loading one image, this program loads two: backgroundimageclose and
backgroundimagefar. The TileImage command tiles both images, but the second image is set
to scroll twice as fast. Therefore, it gives the impression of being farther away. Figure 7.34
shows a screenshot of this program.

Parallaxing 223

Figure 7.34 The demo07-14.bb program.

n o t e

Notice that I drew the closer stars after drawing the distant stars. This is kind of important—if I
drew the closer ones first, they would appear to be under the distant ones. This would ruin the
effect of parallaxing.

Well, that’s it for image parallaxing. If you want to have some fun, try adding another
image to the mix. Can you do it?

For the final program of the chapter, demo07-15.bb, I simply took the KONG program
from Chapter 1 and added a parallaxing star field on the background. It’s the same as reg-
ular KONG, but now it’s in space. Figure 7.35 shows the new KONG running.

Chapter 7 ■ Basic Image Programming224

Figure 7.35 The demo07-15.bb program.

Summary
Whew, we are finally done with image programming. Cool, huh? Here’s a list of the main
points covered in this chapter:

■ Translating

■ Scaling

■ Proportions

■ Scaling images

■ Scaling shapes

■ Rotation

■ Parallaxing

This chapter is a stepping stone to the next chapter: Animation. Get ready, because you are
going to learn how to load and display multiple images to animate an object, making it
move, walk, run, jump, explode—anything you want!

Summary 225

This page intentionally left blank

227

Animation

chapter 8

Do you remember all those parameters named [frame] that we left set to 0? Well, those
parameters are very useful once you understand what they are there for, and that is what
you will learn from this chapter. You are going to learn the sweet skill of animation.

As you know, each iteration of the main loop produces one image frame of the actual
game. When the image frames are drawn in rapid succession, it seems as if the images on
screen are moving fluidly. With the type of animation introduced in this chapter, you will
learn how to simulate movement onscreen; for example, you will be able to animate a
character and make it appear as if it is walking.

Let's get straight into the meat of the chapter. First things first, we need to review bitmaps
again. "Again!" you might say, but this time we are using bitmaps in a different way.

Using Bitmaps in Animation
We have used single bitmaps extensively throughout the book so far. A single bitmap
contains only one frame of one static image. However, an image that supports frames
contains numerous images—images that are usually related to one another.

Take, for example, Figure 8.1. As you can see, this is a single image.

Now, let's put this boy into a program.

;demo08-01.bb - A moving static image

Graphics 800,600

;Make back buffer default and set automidhandle to true
SetBuffer BackBuffer()

Figure 8.1
A single static image.

AutoMidHandle True

;IMAGES
;Load the image that will be drawn on screen
playerimage = LoadImage("staticboy.bmp")

;TYPES
;This type defines the coordinate position of the player
Type player

Field x,y
End Type

;Create the player
player.player = New player

;Set up beginning values for player
player\x = 400
player\y = 300

;MAIN LOOP
While Not KeyDown(1) ;While user does not press Esc

;Clear the screen
Cls

;Print text
Text 0,0, "X Coordinate: " + player\x
Text 0,12, "Y Coordinate: " + player\y

;If player presses left, move bitmap left
If KeyDown (203)

player\x = player\x - 5
EndIf

;If player presses left, move bitmap right
If KeyDown(205)

player\x = player\x + 5
EndIf

;If player presses up, move bitmap up
If KeyDown (200)

Chapter 8 ■ Animation228

player\y = player\y -5
EndIf

;If player presses down, move bitmap down
If KeyDown (208)

player\y = player\y + 5
EndIf

;Draw the player on screen
DrawImage playerimage, player\x,player\y

Flip

;Slow it down a little
Delay 50

Wend
;END OF MAIN LOOP

This program loads an image and displays it on the screen. The coordinates are changed
based on the key presses of the players: if they press up, down, left, or right, the boy moves
accordingly. Figure 8.2 is a screenshot taken from the program.

Even though this program runs smoothly, it's very boring. All that you see is a moving
image—the boy doesn't even move his leg. The image almost looks as if it is floating.

To fix this problem, we are going to make the image appear to walk. To do this, we will use
an image with eight frames. Figure 8.3 shows the image.

As you can see, each frame is slightly different from the previous frame. When we put
these frames together, as we did with the main loop, we will create the effect of animation.

Some important parts of the program must change. First off, we have to load the image.
Loading an animated image is not quite the same as loading a static image. The most obvi-
ous change is that we use the function LoadAnimImage() instead of LoadImage().

LoadImage() is defined like this:

LoadAnimImage (filename$, width, height, first, count)

There are a few more parameters than LoadImage(). The first parameter, filename$, acts just
as the parameter with the same name in LoadImage(). Filename$ is just the file name of the
image you want to load. The next two parameters, width and height, are the measurements
of the width and height of each of the frames. For example, in Figure 8.3, the measure-
ment of each frame is 71�95 pixels.

Using Bitmaps in Animation 229

n o t e

Notice that the width and height values of each frame are exactly the same in the previous exam-
ple. Make sure you remember that all of the frames of an image must be the same; otherwise, your
program will not run.

The parameter first tells which frame you want to begin loading. You almost always want
to begin with the first frame, so you will set this value to 0, because, in computer languages,
counting begins with 0. Rarely, you might want to load the images starting with a later
frame than the first one. If this is the case, you will use a different value for first. The final
parameter, count, informs LoadAnimImage() how many total frames you are loading.

Chapter 8 ■ Animation230

Figure 8.2 The demo8-01.bb program.

Figure 8.3 The frames of the walking image.

Table 8.1 summarizes each of LoadAnimImage()'s parameters. Now, we can load our animat-
ed image using the function

playerimage = LoadAnimImage("animatedboy.bmp", 95,71,0,8)

All right, loading now looks good. In the following program, demo08-02.bb, we will be
creating a type with the player's x and y coordinates. We are also going to need to add
another variable to the type, frame. Frame tells the program which frame should be drawn
at that specific time. Following is the entire initialization section of the new program,
demo08-02.bb.

;demo08-02.bb - A moving animated image

Graphics 800,600

;Set up BackBuffer() and AutoMidHandle
SetBuffer BackBuffer()
AutoMidHandle True

;IMAGES
;Load the animated image of the boy
playerimage = LoadAnimImage("animatedboy.bmp",95,71,0,8)

;TYPES
;Load the player type
Type player

Field x,y ;The x and y coordinate position
Field frame ;The frame that should be drawn

End Type

;Create the player
player.player = New player

Using Bitmaps in Animation 231

Table 8.1 LoadAnimImage()'s Parameters

Parameter Description

filename$ The file name of the image you want to load
width The width in pixels of each frame
height The height in pixels of each frame
first The number of the frame that you want to begin with (usually 0)
count The total number of frames you want to load

;Give the player its starting values
player\x = 400
player\y = 300
player\frame = 0

We have changed the loading call to make it load the animated image. Also, the player type
now includes a field frame, which is initialized to 0.

Now we enter the main loop. In order to make the image move, we must increment the
frame whenever a key is pressed. Therefore, we add the line

player\frame = player\frame + 1

under the key tests that move the player up and right, and we add

player\frame = player\frame - 1

to the tests that move the player down and left. In other words, whenever the player press-
es a button, the image moves to the next frame, and in doing so, the boy seems to walk.

Of course, because there are only eight frames, we need to make sure that player\frame
never goes above 7 (remember that frame begins at 0). We also must make sure that if the
user goes below frame 0, the frame is reset to 7, so that the animated image resets itself
and continues to animate. This is accomplished with this block of code:

If player\frame > 7
player\frame = 0

ElseIf player\frame < 0
player\frame = 7

EndIf

Following is the full source for the main loop.

;MAIN LOOP
While Not KeyDown(1)

;Clear the screen
Cls

;Position text at the top left corner of the screen
Text 0,0, "X Coordinate: " + player\x
Text 0,0, "Y Coordinate: " + player\y

;If player presses left, move him left and decrement the frame number
If KeyDown (203)

player\x = player\x - 5
player\frame = player\frame - 1

Chapter 8 ■ Animation232

EndIf

;If player presses right, move him right and increment the frame number
If KeyDown(205)

player\x = player\x + 5
player\frame = player\frame + 1

EndIf

;If player presses up, move him up and increment the frame number
If KeyDown (200)

player\y = player\y -5
player\frame = player\frame + 1

EndIf

;If player presses down, move him down and decrement the frame number
If KeyDown (208)

player\y = player\y + 5
player\frame = player\frame - 1

EndIf

;If the frame gets too high, reset it back to zero.
If player\frame > 7

player\frame = 0

;If the frame gets too low, reset it to 3
ElseIf player\frame < 0

player\frame = 7
EndIf

;Draw the player at the correct position and the correct frame
DrawImage playerimage, player\x,player\y, player\frame

;Wait a while
Delay 100
Flip
Wend
;END OF MAIN LOOP

And there we have it. Figure 8.4 is a screenshot from this program. There is one thing I
want you to notice in the loop. See the DrawImage command? There is an extra parameter
that we haven't seen before.

Using Bitmaps in Animation 233

If you remember from long ago, the declaration of DrawImage is as follows:

DrawImage handle, x, y, [frame]

We have not used the final optional parameter until now. The [frame] parameter allows
you to change which frame of an animated image is drawn, as we did in the previous pro-
gram. Cool, huh?

Making Bitmaps
Now that we know how to load bitmaps, you probably want to know how to create them.
First off, decide what the animated image will look like. Usually, each frame will look
almost the same, with only one or two small changes.

Take a look at Figure 8.5. This image, as you can see, is a rectangle. Say we wanted to ani-
mate this rectangle.

Now, we want to animate this image. Let's rotate it 45 degrees (1/8th of a complete turn). It
looks like Figure 8.6.

Chapter 8 ■ Animation234

Figure 8.4 The demo08-02.bb program.

As you can see, this rectangle has been turned a little sideways. Now, to put these togeth-
er in a bitmap, we need to use our favorite paint program (I use Paint Shop Pro, which is
included on the CD). I created both images, and put them together in one single image.
The final image is shown in Figure 8.7.

n o t e

Make sure that you put the
frames back to back, with
absolutely no space in between.
If you happen to add space, the
frames will become distorted
and you will end up with a Not
enough frames in image error. If
your frames overlap, the pro-
gram will display some of frame
two in frame one, some of frame
three in frame two, and so on.

Now here is the trick: the width and height of each frame must be the width and height of
the largest frame. In Figure 8.6, each frame is 250 pixels by 250 pixels, but only because
the larger frame (frame 2) requires that size. Take a look—see the first frame? There is a
lot of black space around it. The first frame is closer to 200�200, but it ends up larger
because of the next rotated frame.

Now that we have this image ready to go, we need to write a program around it. The fol-
lowing listing is from demo08-03.bb. Begin with the initialization.

;demo08-03.bb - Demonstrates rotation a rectangle
Graphics 800,600

Using Bitmaps in Animation 235

Figure 8.5 A soon-to-be
animated rectangle.

Figure 8.6 The second frame
of the animated rectangle.

Figure 8.7 The double-framed image.

;Handle images from the center
AutoMidHandle True

;Load the animated rectangles
rectanglesimage = LoadAnimImage("rectangles.bmp",250,250,0,2)

;Create variable that counts how many rotations occurred
rotationcount = 0

Obviously, this section just sets up the graphics and loads the image. Make sure you notice
that the LoadAnimImage() command states that rectanglesimage has two frames, each being
250�250 pixels. Also, the variable rotationcount is created to count how many times the
rotation occurs.

Now move to the important part of this program.

;MAIN LOOP
While Not KeyDown(1)
;Clear the screen
Cls

;Print the number of rotations
Text 0,0, "Number of Rotations: " + rotationcount

;Draw the rectangle image with the proper frame
DrawImage rectanglesimage,400,300,rotationcount Mod 2

;Increment the rotation count variable
rotationcount = rotationcount + 1

;Wait a while
Delay 100

Flip

Wend
;END OF MAIN LOOP

Figure 8.8 shows a screenshot from the program.

Chapter 8 ■ Animation236

Okay, let's start from the top. As usual, the Cls clears the screen, so the rotation does not leave
streaks. Figure 8.9 shows what the program will look like if you remove the Cls command.

The Text command displays how many rotations have occurred in the program using the
rotationcount function.

The program then draws the actual image. The parameters here are pretty clear, except for
the final one. As you know, the last frame is the [frame] parameter. We want the program
to alternate between 1 and 2 for [frame], and to do this, we use the Mod operator.

If you remember from long ago, the Mod operator returns the remainder of the first operand
divided by the second. In other words, 1 Mod 2 returns 1, because 1 divided by 2 leaves a
remainder of 1, and 2 Mod 2 returns 0, because 2 divided by 2 leaves a remainder of 0.

Table 8.2 shows the return value of Mod for 1-10 Moded by 2.

In other words, depending on the value of rotationcounter (if it is even or odd), it will dis-
play the first or second frame. If you wanted to expand the image to three frames, you
would make the [frame] parameter equal to rotationcount Mod 3.

Using Bitmaps in Animation 237

Figure 8.8 The demo08-03.bb program.

Chapter 8 ■ Animation238

Figure 8.9 Removing Cls from demo08-03.bb.

Table 8.2 Results of Mod

First Operand Second Operand Result

1 2 1
2 2 0
3 2 1
4 2 0
5 2 1
6 2 0
7 2 1
8 2 0
9 2 1
10 2 0

The next two lines of the code update the value of rotation count and delay the program
by 100 milliseconds, respectively. If you remove the Delay command, the program runs so
fast you can't see the frame changes!

All right, that's how you make a bitmap. Let's go on to something else now—movement.

Displaying Movement
If you remember the previous chapter, you learned how to have Blitz Basic create all of
our rotations for us. However, this does not always work. Sometimes, you will decide to
put brightness or lighting on one area of the image, but you won't want that lighting
rotated. Other times, you might want to have an image walk in numerous directions.

The first thing we need to do is to create the bitmap. This example starts with the image
in Figure 8.10.

Okay, now that we have the base, we also need to have the anima-
tions. Because this is not going to be rotated, but rather turned
around, Blitz Basic cannot do the work for us. Figure 8.11 shows
some of the frames of the image.

Excellent, huh? Now we are going to put the images
together into one bitmap that will be used in the
program, Figure 8.12. Notice that the bitmap is
split into four sections: one section contains the
animation for moving left, another for moving up,
one more for moving right, and the last for moving down.

Okay, now that we have the image ready, we need to get into the
program. We first begin with the actual coding for demo08-04.bb. As
usual, create the back buffer and set the graphics first.

;demo08-04.bb - Demonstrates sprite movement

Graphics 800,600
;Set up backbuffer and automidhandle
SetBuffer BackBuffer()
AutoMidHandle True

After this, we write in the constants that will be used in the program.

;CONSTANTS
;These constants define the direction that is begin faced
Const DIRECTIONLEFT = 1 ;When direction is left
Const DIRECTIONUP = 2 ;When direction is up
Const DIRECTIONRIGHT = 3 ;When direction is right

Using Bitmaps in Animation 239

Figure 8.10
The about-to-be
moved image.

Figure 8.11 The frames of movement.

Figure 8.12
The loaded player
image.

Const DIRECTIONDOWN = 4 ;When direction is down

;These constants define how many pixels are moved per frame
Const MOVEX = 5 ;How many pixels moved left/right per frame?
Const MOVEY = 5 ;How many pixels moved up.down per frame?

;These are key code constants
Const LEFTKEY = 203, UPKEY = 200, RIGHTKEY = 205, DOWNKEY = 208

These constants are used throughout the program, and are very useful. Basically, the
DIRECTION* constants allow the players to have a different direction value based on which
direction they are going. For example, if the users are heading up, their direction will be
2, if they are heading right, their direction will be 3.

The MOVE* parameters define the number of pixels the player will be moved per frame. Feel
free to change them if you want.

Finally, the *KEY parameters give the key codes for Left, Up, Right, and Down. Table 8.3
summarizes each of these parameters.

Alright, next we move on to the player type.

;TYPES
;The player type is used for the character on the screen
Type player

Field x,y ;The coordinate position
Field direction ;The direction that is being faced (one of the DIRECTIONXXX

constants)

Chapter 8 ■ Animation240

Table 8.3 Demo08-04.bb's Constants

Constant Value Description

DIRECTIONLEFT 1 The direction value for the player heading left.
DIRECTIONUP 2 The direction value for the player heading up.
DIRECTIONRIGHT 3 The direction value for the player heading right.
DIRECTIONDOWN 4 The direction value for the player heading down.
MOVEX 5 The number of pixels the player can move left or right per frame.
MOVEY 5 The number of pixels the player can move up or down per frame.
LEFTKEY 203 The key code for Left.
UPKEY 200 The key code for Up.
RIGHTKEY 205 The key code for Right.
DOWNKEY 208 The key code for Down.

Field frame ;The frame that should be drawn
Field image ;The image that should be drawn

End Type

x and y indicate the coordinate position of the player, direction identifies which direction
the player is facing, and frame chooses which frame of the player image is drawn. Image
tells the program which image is loaded and animated.

Table 8.4 explains each parameter.

Now we need to set up the player type.

;Create the player
player.player = New player

;Give the player starting variables
player\x = 400
player\y = 300
player\direction = DIRECTIONLEFT
player\frame = 0
;Load the player's image
player\image = LoadAnimImage("monkeyanim.bmp",48,40,0,8)

As usual, when creating a type, you must create an instance of the type by calling the New
command. Here, we create player, based upon the player type. We then get into the actu-
al fields.

The player begins existence directly in the center of the screen (400,300). I then decided
to begin the player heading left, so player\direction is set to DIRECTIONLEFT. The frame is
then set to 0, so that the player will begin facing the correct direction with the correct
starting point.

Note that we set AutoMidHandle to true earlier in the program. This allows the object to be
centered and displayed correctly. Notice that I did this right before the following

Using Bitmaps in Animation 241

Table 8.4 Demo08-04.bb's Type Fields

Field Description

x The x coordinate of the player.
y The y coordinate of the player.
direction The direction the player is facing, based upon the DIRECTION* constants.
frame The frame of the player image which is to be drawn.
image The image which will be loaded and animated.

LoadAnimImage() command. LoadAnimImage() loads the player picture with the proper para-
meters: each frame is 48�40, and there are eight frames (beginning with 0 and ending
with 7).

Okay, now that that is over with, we move on to the actual loop. At this point, the player
is facing left, and is displaying frame 0. In the game loop, we want the player to be able to
move the image around.

First off, begin the loop with some setup.

;MAIN LOOP
While Not KeyDown(1)

;Clear the screen
Cls

;Print player info
Text 0,0, "Player X: " + player\x
Text 0,12, "Player Y: " + player\y
Text 0,24, "Player Direction: " + player\direction
Text 0,36, "Frame: " + player\frame

These lines display the values of all of the fields of the player type (besides image, of
course).

Now, I want to stop you for a moment. The next part of the code is going to be hard to
comprehend, so I'm going to only show you one part of it and explain it to you before
showing you the rest.

We now have to allow the player to change the direction of the character on the screen. To
do this, we first test to see what has been pressed.

If KeyDown(LEFTKEY)

Therefore, the following lines of code will occur only when the user presses left. Now you
actually need to move the user left, by changing his x coordinate.

player\x = player\x – MOVEX

As you might expect, this pushes the user a bit left. Next, we change the direction the user
is facing.

player\direction = DIRECTIONLEFT

This just tells the computer that the player is facing left.

The next line is probably the most difficult to understand. It computes the frame that's
displayed based on the direction that the player is facing.

Chapter 8 ■ Animation242

player\frame = (player\frame + 1)Mod (2) + (2 * (player\direction)-2)

Whew! That's a big math problem. Let me show you what happens.

1. player\frame is incremented by 1. In this example, player\frame, which began the
program as 0, is now equal to 1.

2. player\frame is divided by 2, and the remainder is returned using the Mod func-
tion. In this example, player\frame, which is equal to 1, is divided by 2. Because 1 /
2 leaves a remainder of 1, (player\frame + 1)Mod (2) returns 1.

3. 2 multiplied by the direction of the player, and � 2 is added to the frame value.
This expression gives the appropriate value of the frame depending on the direc-
tion of the player. In this example, 2 * player\direction (which is equal to 1) � 2
= 0, which is added to player\frame (which, according to step 2, is equal to 1).
Thus, player\frame is equal to 1.

Hopefully, most of this isn't that hard to comprehend, except for the expression 2 * play-
er\direction � 2. Basically, think of this equation as analogous to global and local coor-
dinates. If you remember, with global and local coordinates, you find the position of
something at its own local space and add it to the position of the screen. The same thing
is occurring here; you are determining the difference in the frame (either 0 or 1, the local
coordinates), and adding it to the 2 * player\direction � 2 (between 0 and 7, the global
coordinates). Table 8.5 lists all the possible values for player\frame, complete with the value
of 2 * player\direction � 2 for that frame.

n o t e

Make sure you understand that the expression 2 * player\direction � 2 only works because there
are two frames for each direction. If there were three frames for each animation (for a total of 12
frames, if there are still only four directions), the equation would be 3 * player\direction � 3. If
there were five frames per direction, the expression would be 5 * player\direction � 5, and so on.

Using Bitmaps in Animation 243

Table 8.5 Each Frame's Values

Frame Number Direction 2 * player\direction � 2

0 1 0
1 1 1
2 2 2
3 2 3
4 3 4
5 3 5
6 4 6
7 4 7

Now that you (hopefully) understand how we find the frame of the player, at least for
when he moves left, let me show you the entire game loop.

;MAIN LOOP
While Not KeyDown(1)

;Clear the screen
Cls

;Place the text in top left hand corner
Locate 0,0

;Print player info
Print "Player X: " + player\x
Print "Player Y: " + player\y
Print "Player Direction: " + player\direction
Print "Frame: " + player\frame

;If player hits left, move him left, and find the correct direction and frame
If KeyDown(LEFTKEY)

player\x = player\x - MOVEX ;Move him left
player\direction = DIRECTIONLEFT ;face him left
player\frame = (player\frame + 1)Mod (2) + (2 * (player\direction)-2)

;find frame

;If player hits up, move him up, and find the correct direction and frame
ElseIf KeyDown(UPKEY)

player\y = player\y - MOVEY ;Move him up
player\direction = DIRECTIONUP ;face him up
player\frame = (player\frame + 1)Mod (2) + (2 * (player\direction)-2)

;find frame

;If player hits right, move him right, and find the correct direction and frame
ElseIf KeyDown(RIGHTKEY)

player\x = player\x + MOVEX ;move him right
player\direction = DIRECTIONRIGHT ;face him right
player\frame = (player\frame + 1)Mod (2) + (2 * (player\direction)-2)

;find frame

;If player hits down, move him down, and find the correct direction and frame
ElseIf KeyDown(DOWNKEY)

player\y = player\y + MOVEY ;Move him down
player\direction = DIRECTIONDOWN ;face him down

Chapter 8 ■ Animation244

player\frame = (player\frame + 1)Mod (2) + (2 * (player\direction)-2)
;find frame
EndIf

;Draw the player at correct position and frame
DrawImage player\image,player\x,player\y, player\frame

;wait a (fraction of a) sec
Delay 50

Flip
Wend
;END OF MAIN LOOP

Cool, huh? Figure 8.13 shows a screenshot of this program.

Using Bitmaps in Animation 245

Figure 8.13 The demo08-04.bb program.

The final parts of the program react just as you would expect them to. When you press
Right, the player moves five pixels to the right, as shown by the following line of code.

player\x = player\x + MOVEX

The same thing, only with y values, occurs when the user presses Up or Down.

At the end of the program, the image is drawn onscreen with the DrawImage command.

DrawImage player\image,player\x,player\y, player\frame

This draws the selected frame (player\frame) of the player's image (player\image) and the
player's x and y coordinates (player\x,player\y).

The program ends by delaying for 50 milliseconds. Without the delay, the animation
occurs very quickly—sometimes so quickly, it is almost hard to see the actual movement!

Well, that's it for demo08-04.bb. Just for fun, I wrote demo08-05.bb. The
program is exactly the same as demo08-04.bb, but this time the player is
walking on grass instead of nothing. Figure 8.14 shows the grass that is tiled.

Figure 8.15 shows a screenshot from demo08-05.bb.

This chapter is nearly complete, so let's review some of the most impor-
tant things to remember when creating bitmaps.

■ Make sure each frame of your bitmap is the same size.

■ Make sure that all of the bitmaps are lined up directly next to one another.

Also, remember that it is easier to understand animations when you make the bitmaps
line up. For example, on demo08-04.bb (and also demo08-05.bb), I created four sets of
two animations. The same would be done for other rotations. For example, say you were
rotating a ship 12 times. Put the first four rotations (from facing up to facing right) in one
row, the next four rotations (facing right to facing down) in another row, and so on.

Chapter 8 ■ Animation246

Figure 8.14
The tiled grass.

Summary
Alright, we did it! That's the end of this chapter. In this chapter, you learned the following
concepts.

■ Using bitmaps in animation

■ Making bitmaps

■ Displaying movement

Are you ready for the next chapter? We are moving up to collision detection. Whoopee!

Summary 247

Figure 8.15 The demo08-05.bb program.

This page intentionally left blank

249

Collision Detection

chapter 9

You are nearing the end of Part 2. This chapter explains the art of collision detection.
Collision detection allows your program to determine whether an object on your screen
has been hit by another object, and performs actions based on the check. For example, if
you made a space shooter, and you wanted to determine whether a missile hit an enemy
ship, you would use collision detection. If the ship had been hit, you might decrease its hit
points or destroy it all together.

There are a few ways to check for collision detection, and we are going to go through them
now. We can use bounding boxes, both rectangular and circular, and pixel-perfect
collisions. Let’s start off checking collision with a single pixel.

Basic Collisions
Before we learn how to check for collisions of objects (images, shapes, and so on), let’s go
over basic pixel collisions. To determine if a pixel collision has occurred, you just check
the pixel you are tracking and make sure that its x and y values are not the same as the
object you are testing it against. See Figure 9.1 for an example.

For the following program,
demo09-01.bb, we will allow
the player to control a single
pixel that can be moved up,
down, left, or right. If the
pixel hits a wall (the wall
being the edge of the screen),
the pixel position will be
reset and the collision
counter will be updated.

Figure 9.1 Difference between a collision and no collision.

Following is the source for demo09-01.bb:

;demo09-01.bb - Demonstrates Pixel Collisions
Graphics 400,300

;create variables that define coordinate position of pixel
Global x = 200
Global y = 150

Cls

;This variable contains the amount of times a collision has occurred
collisions = 0

;CONSTANTS
;These are the key code constants
Const UPKEY = 200, DOWNKEY = 208, LEFTKEY = 203, RIGHTKEY = 205

;MAIN LOOP
While Not KeyDown (1)

;Print intro
Text 0,0, "Press the arrow keys to move the pixel around."

;Print the number of collisions
Text 0,12, "Collisions: " + collisions

;Move player around depending on the key he pressed
If KeyDown(UPKEY)

y = y - 5
ElseIf KeyDown(DOWNKEY)

y = y + 5
ElseIf KeyDown(LEFTKEY)

x = x - 5
ElseIf KeyDown(RIGHTKEY)

x = x + 5
EndIf

;Call the CheckForCollisions function and determine if a collision occurred
collisions = CheckForCollisions(collisions)

;Draw the pixel on the screen

Chapter 9 ■ Collision Detection250

Plot x,y

;wait a (fraction of a)sec
;Delay 100

Flip

Wend
;END OF MAIN LOOP

;FUNCTIONS

;Function CheckForCollisions(collisions) - Returns number of total collisions, tests for
new ones
;collisions: the number of collisions at the time of calling the function
Function CheckForCollisions(collisions)

;If the pixel is offscreen, report a collision
If x <= 0 Or x >= 400 Or y <= 0 Or y >= 300

collisions = collisions + 1 ;increment collisions
Cls ;clear the screen
Text 100,150,"A Collision Has Occurred"
Flip
Delay 1000 ;wait a sec
Cls ;clear screen again
Flip
Cls

x = 200 ;reset x
y = 150 ;reset y

EndIf

;return the amount of collisions
Return collisions
Cls
End Function

This program works pretty much as you would expect it to. It begins by setting the graph-
ics and creating the variables x,y, and collisions. It then enters the main loop.

Basic Collisions 251

n o t e

Notice that while x and y are global variables, collisions is not. This fact will be important later
in the program.

Inside the main loop, the program determines whether any arrow keys have been pressed.
If so, it increments the x and y variables accordingly. The program also displays the
number of collisions at the top of the screen.

Near the end of the loop, the program calls the function CheckForCollisions(). It includes
collisions as a parameter. It also sets collisions equal to the return value of the function.
Table 9.1 details the parameter.

Consider the CheckForCollisions() function further. The first and hardest part of the func-
tion to understand is the test. The test looks like this:

If x <= 0 Or x >= 400 Or y <= 0 Or y >= 300

This test determines if the point has gone offscreen. Referring to Figure 9.2, you see that
the x tests pertain to the right and left walls of the screen and the y tests pertain to the
upper and lower walls.

Now, if the program finds that the
point has hit one of the walls, it begins
its reset procedure. First, it adds 1 to
collisions, which increases the collision
counter by 1. It then displays “A
Collision Has Occurred” on the screen.
The x and y coordinates are then reset.

Whether or not a collision occurs, the
function returns the value of collisions
to the main loop. If there was no colli-
sion, collisions will remain the same; if
there was a collision, collisions
increases by one.

Chapter 9 ■ Collision Detection252

Table 9.1 CheckForCollisions()'s Parameter

Parameter Description

collisions The number of collisions that have occurred thus far in the program. The number
of collisions is also returned by the function.

Figure 9.2 The wall tests.

The rest of the main loop draws the pixel on the screen and delays the program for 1/10
of a second.

That’s it for demo09-01.bb. Figure 9.3 is a screenshot from the program.

Bounding Circles
Now that we know how to check single
pixels for collision, we need to learn how to
check for collision of objects. Objects are
shapes, images, and the like. There are a
few ways to check shapes for collisions.

Bounding circles is the first method.
Basically, it involves placing invisible cir-
cles around the objects we are testing. If
the circles overlap, a collision has occurred.
See Figure 9.4 for an example.

If you look carefully at Figure 9.4, you will
notice that the objects didn’t actually collide—only
their bounding circles did. This usually isn’t a big
deal; because the objects are so close to one anoth-
er that it appears as if there was a collision.

Before I can show you how this works, you need to
understand two concepts: one about distance
between points, and one about the radius of a circle.

Distance between Points
When we use bounding circles, we will have to
compare the distances of points. To find the dis-
tance of two points, we can use a mathematical
equation. Following is the equation.

distance = sqrt((x2-x1)^2 + (y2-y1)^2))

n o t e

Have you ever seen the ^ symbol? It means “to the power of.” In this case, ^2 means you raise the
number by a power of two, or you square it. To square a value means to multiply a value by itself.
In other words, 10^2 is read as “10 squared,” and is equal to 10 � 10, or 100.

Bounding Circles 253

Figure 9.3 The demo09-01.bb program.

Figure 9.4 Overlapping circles.

How do you read this? To find the distance between two points, you take the second x
coordinate minus the first x coordinate and the second y coordinate minus the first y
coordinate. You then square (multiply each of the values by itself) each number and add
their results together. Finally, you take the square root of the final number. Figure 9.5
shows how you might compare the distance between two different points.

Difficult to understand, huh? Well, don’t
worry about it. I wrote the following
function, Distance(), just for you.

Function Distance(x1,y1,x2,y2)
dx = x2 - x1
dy = y2 - y1
Return sqr((dx*dx) + (dy*dy))

End Function

n o t e

Remember in Chapter 7, “Basic Image Pro-
gramming,” when we read about the
change in values? If you do, you might also
remember that we referred to the change in
numbers as delta.That is what the “d” in the
dx and dy variables stands for in the Dis-
tance() function. Delta means “the change
in”—here, it is the change in x and y.

There’s a new concept or two introduced here. Let’s go over them.

First, notice that I computed what x2-x1 and y2-y1 were equal to before actually finding
the distance. This makes reading the code much easier. If I had neglected to pre-compute
those numbers, the function’s return statement would look something like this.

Return sqr(((x2-x1)*(x2-x1)) + ((y2-y1)*(y2-y1)))

Much uglier, huh? Finding out the values made my code much easier to read and com-
prehend.

Also, notice the function sqr(). This function returns the square root of the number that
it is provided. The square root is a number that when multiplied by itself gives the given
number. Huh? Basically, if you multiply the square root of a number by itself, you achieve
the number. For example, the square root of 4 is 2. You can prove this by multiplying
2 by itself. Because 2 � 2 = 4, 2 is the square root of 4 (so is -2, but that is a different
matter altogether).

Chapter 9 ■ Collision Detection254

Figure 9.5 Testing distance.

To find the square root by hand is an incredibly complex procedure. That is why BlitzPlus
provides the sqr() function for you. Following is the declaration for sqr().

Sqr (value#)

Table 9.2 lists the parameter for sqr().

Well that’s just about it for finding
the distance between two points.
Just for reference, following is the
declaration for the Distance()
function.

Distance(x1,y1,x2,y2)

Table 9.3 lists each of Distance()’s parameters.

Okay, now we move onto finding the radius of a circle.

Radii
Is your brain hurting from the distance section? Well don’t worry, this part is much easi-
er. First off, the radius (plural radii, a very cool word) of a circle is equal to 1/2 of the
diameter of the circle.

In a circle, there is one point directly in the center. From here on, I will call this point the
“center of the circle.” Well, anyway, the diameter of a circle is the distance from any point
on a circle to another point on a circle, provided it crosses through the “center of the cir-
cle.” What do I mean? Check out Figure 9.6.

Notice that the diameter shown in Figure 9.6 is just one of many. In fact, can you guess
how many diameters there are in a circle? If you guessed 1, you are wrong. 360? Nope,
wrong again. There are actually infinite diameters in a circle. That’s right; there are an infi-
nite number of diameters in a circle. However, all of them must extend from side to side
and through the center of the circle, thus their lengths are all the same.

Bounding Circles 255

Table 9.2 Sqr()'s Parameter

Parameter Description

value# The value you want to square root.

Table 9.3 Distance()'s Parameters

Parameter Description

x1 The x coordinate for the first point you want to compare.
y1 The y coordinate for the first point you want to compare.
x2 The x coordinate for the second point you want to compare.
y2 The y coordinate for the second point you want to compare.

Anyway, getting back to radii, the radius of a cir-
cle is 1/2 the diameter. You might be thinking,
isn’t that the same as the distance from the “cen-
ter of the circle” to the actual circle? You are
absolutely correct! Figure 9.7 shows the radius of
a circle.

Make sure you understand that any point on the
circle is exactly the same distance from the “cen-
ter of the circle” as any other point on the circle.
Ready for another cool word? Each point on the
circle is equidistant from the “center of the circle.”

Okay, we are now good to go. How can we find
the radius of an object? It’s a big problem, so let’s
figure out how to do it.

We are going to use code to figure this out. First
we load an object—say, an image.

imagehandle = LoadImage("image.bmp")

Not too terribly difficult, eh? Now we have to
find the radius. Before we can do that, we need to
go over two very basic functions. These functions
are ImageWidth() and ImageHeight().

These two functions return the width and height
in pixels of the image whose handle you provide.
Following are their declarations.

ImageWidth(imagehandle)
ImageHeight(imagehandle)

Tables 9.4 and 9.5 list their parameters.

Chapter 9 ■ Collision Detection256

Figure 9.6 The diameter of a circle.

Figure 9.7 The radius of a circle.

Table 9.4 ImageWidth()'s Parameter

Parameter Description

imagehandle The handle to the image whose width in pixels is returned by the function.

Anyway, getting back to the actual coding, we now need to find the radius of our image.
Let’s define the radius of the image as the distance from the center of the image to the
outer parts of the image. Make sure you understand that every bitmap is rectangular and
not circular in nature. Therefore, the radius collision test will not be perfectly accurate.

You might be thinking that we can just take the result of either ImageHeight() or
ImageWidth() and divide it by two to get a radius. However, this isn’t a good idea. Because
the images are not square, but rather rectangular, taking only the width or only the height
into account can give you an inaccurate radius. What we are going to do is take the aver-
age of one-half of the height and width of the image. Let’s write such a function,
FindRadius().

Function FindRadius(imagehandle)
Return ((ImageWidth(imagehandle)/2) + (ImageHeight(imagehandle)/2) / 2)

End Function

This function returns the approximate radius of the image it is given. Table 9.6 lists the
parameters.

Okay, now we need to know how to test the image from FindRadius() with another object
for collision. All that we do is test the point to determine whether its distance from the
image is less than the distance of the radius. The following program, demo09-02.bb,
demonstrates how to do this. It’s a long one, so I don’t want to list it all out in the book.
Let me show you some cool parts, though.

We haven’t read about using the Each keyword in for loops lately. Let’s review how they
work.

First of all, we have to create a type. In this program, we used a type for every point. The
type is defined like this.

Bounding Circles 257

Table 9.5 ImageHeight()'s Parameter

Parameter Description

imagehandle The handle to the image whose height in pixels is returned by the function.

Table 9.6 FindRadius()'s Parameter

Parameter Description

imagehandle The handle to the image whose approximate radius is returned by the function.

;the point type defines each object that can be hit by the ship
Type point

Field x,y ;the x and y coordinate of the ship

End Type

Now, we want to create a lot of these points. This is accomplished through the For…Each loop.

;Create NUMBEROFOBJECTS new points with random x and y coords
For counter = 0 To NUMBEROFOBJECTS

point.point = New point
point\x = Rand (0,800)
point\y = Rand (0,600)

Next

This loop creates NUMBEROFOBJECTS points and gives them all random x and y values.

If you are wondering what the constant NUMBEROFOBJECTS means, check out Table 9.7.

Sound good? Good. Now that we have created each of the objects, we also need to know
how to delete all of the objects. We delete the objects when the level is reset.

;Delete every point onscreen
For point.point = Each point

Delete point
Next

This deletes all of the points that have been created previously.

By the way, if you don’t remember how the For…Each loop works, check out Chapter 3,
“Loops, Functions, Arrays, and Types,” for a review.

Okay, the next thing I want to go over is TestCollisions(). This function tests all of the
objects on the screen to determine whether the ship hit them.

Chapter 9 ■ Collision Detection258

Table 9.7 demo09-02.bb's Constants

Constant Value Description

NUMBEROFOBJECTS 50 The amount of points that can be hit by the player's ship.
LEFTKEY 203 The key code for Left.
UPKEY 200 The key code for Up.
RIGHTKEY 205 The key code for Right.
DOWNKEY 208 The key code for Down.
MOVEX 5 The amount of pixels the player can move left or right per frame.
MOVEY 5 The amount of pixels the player can move up or down per frame.

;FUNCTION TestCollisions() - Tests the objects and the ship for collisions
;No input parameters
;Returns 1 if there was a collision, 0 if there was none
Function TestCollisions()

;Check every object to see if it is within
player’s radius. If it is, return that
there was a collision.

For point.point = Each point
If Distance(player\x,player\y,point\x,point\y) < player\radius

Return 1
EndIf

Next

;If there was no collision, return 0
Return 0 ;There was no collision

End Function

Not too bad, huh? It checks each point to determine whether the point is within the radius
of the ship. If so, 1 is returned. In the main loop, if there was a collision, the level is reset
and the amount of collisions is incremented by one.

There are quite a few functions defined in this program, so Table 9.8 lists them all.

All right, that’s just about it for this section of the code. Next, we move on to bounding
boxes. By the way, Figure 9.8 shows a screenshot from the program.

Bounding Circles 259

Table 9.8 demo09-02.bb's Functions

Function Description

ResetLevel() Deletes and renews all the objects; resets the player's starting coordinates.
TestCollisions() Tests all objects to see whether they have collided with the spaceship, and

returns 1 if a collision took place.
TestKeys() Tests the keyboard to see whether any keys have been pressed.
Distance() Finds the distance between two points.
FindRadius() Finds the radius of an image.

Bounding Boxes
Okay, now that we have learned how to use bounding circles, let’s learn how to use bound-
ing boxes. Bounding boxes are just like bounding circles, except that instead of compar-
ing overlapping circles, it compares overlapping rectangles. Check out Figure 9.9 for an
example of a bounding rectangle.

If you check out Figure 9.10, you will
notice that a collision does not always
occur even though a collision is
reported. This is usually not a big
deal, though, because the collision is
pretty close.

Unlike using bounding circles,
BlitzPlus provides a way to test for col-
lisions using bounding boxes. You’ll
read about this in a minute, after I
show you how to do it manually.

Chapter 9 ■ Collision Detection260

Figure 9.8 The demo09-02.bb program.

Figure 9.9 A bounding rectangle.

We have to use ImageHeight() and
ImageWidth() again, but this time in a dif-
ferent way. The bounding box for the rec-
tangle is going to be the outer edge of the
image. See Figure 9.11 for an example.

Now, how are we going to go about find-
ing this bounding box? First of all,
remember that when we use images, the
handling point is directly in the center
of the image. This is defined by
AutoMidHandle. Because it is in the center,
we need to determine the upper-left and
lower-right corners to find the bound-
ing box.

If the mid handle had been set to the
top-left corner of the image, this would
be an easy problem to fix. We would
begin with the mid handle for the upper
corner. The mid handle’s x coordinate plus ImageWidth() would be
the lower-right corner’s x coordinate, and the lower-right corner’s y
coordinate would be the mid handle’s y coordinate plus
ImageHeight(). Check out Figure 9.12 for an example of how this
works with an image that is 32 pixels wide by 32 pixels high.

Well, now, here’s the thing. Because the mid handle isn’t at the top-
left corner, we need to use another formula. Basically, the bounding
box will have an upper-left corner of:

�1/2 * ImageWidth(), �1/2 * ImageHeight()

And a lower-right corner of:

1/2 * ImageWidth(), 1/2 * ImageHeight().

Figure 9.13 illustrates this.

How does this work? Well, AutoMidHandle sets up the handling point directly in the center
of the image rectangle. We need to move the handling point to the top-left corner of the
image so that we can draw a rectangle around the bitmap. Because the handling point is
directly in the center, we need to move the handling point 1/2 of the height of the rectan-
gle up, and 1/2 of the width of the rectangle left. This allows you to grab the rectangle by
the top-left corner.

Bounding Boxes 261

Figure 9.10 An imperfect collision.

Figure 9.11
A bounding box.

Chapter 9 ■ Collision Detection262

Figure 9.12 A bounding box with the mid handle at the upper-left corner.

Figure 9.13 A bounding box with mid handle at the center.

Okay, now, before we write our collision detection program, let’s write a program that
demonstrates the bounding box technique. The following program, demo09-03.bb, draws
a rectangle around the bounding box of a spaceship.

;demo09-03.bb - Draws a bounding box

Graphics 800,600

;Set default backbuffer and automidhandle to true
SetBuffer BackBuffer()
AutoMidHandle True

;IMAGES
;Load the ship image
Global shipimage = LoadImage("ship.bmp")

;Give the ship default parameters
Global x = 400
Global y = 300

;CONSTANTS
;The key code constants
Const UPKEY = 200, DOWNKEY = 208, LEFTKEY = 203, RIGHTKEY = 205

;These constants define how many pixels are moved per frame
Const MOVEX = 5
Const MOVEY = 5

;MAIN LOOP
While Not KeyDown(1)
;Clear the screen
Cls

;Find out if any important keys on the keyboard have been pressed
TestKeys()

;Draw the bounding box around the player
DrawPlayerRect()

;Draw the image of the ship
DrawImage shipimage,x,y

Bounding Boxes 263

Flip

;Slow it down
Delay 20

Wend
;END OF MAIN LOOP

;FUNCTION DrawPlayerRect() - Draws a bounding rectangle
Function DrawPlayerRect()

;find the width of the image
iw = ImageWidth(shipimage)

;Find the upper-left coordinates
x1# = ((-ImageWidth(shipimage)/2) +x)
y1# = ((-ImageHeight(shipimage)/2) + y)

;Draw the entire bounding box
Rect x1#,y1#,ImageWidth(shipimage),ImageHeight(shipimage), 0

End Function

;FUNCTION TestKeys() - Tests all of the keys to see if they were hit
Function TestKeys()

;If up is hit, move player up
If KeyDown(UPKEY)

y = y - MOVEY
EndIf

;If down is hit, move player down
If KeyDown(DOWNKEY) ;If down was hit

y = y + MOVEY
EndIf

;If left is hit, move player left
If KeyDown(LEFTKEY)

x = x - MOVEX
EndIf

Chapter 9 ■ Collision Detection264

;If right is hit, move player right
If KeyDown(RIGHTKEY)

x = x + MOVEX
EndIf

End Function

To me, the most difficult thing to understand is the function DrawPlayerRect().

DrawPlayerRect() draws the bounding box around the player’s image. If you remember cor-
rectly, I said that the bounding box extends from �1/2 * ImageWidth(),�1/2 * ImageHeight()
to 1/2 * ImageWidth(), 1/2 * ImageHeight(). However, the DrawPlayerRect() function seems to
make the bounding box look a lot different.

;FUNCTION DrawPlayerRect() - Draws a bounding rectangle
Function DrawPlayerRect()

;find the width of the image
iw = ImageWidth(shipimage)

;Find the upper-left coordinates
x1# = ((-ImageWidth(shipimage)/2) +x)
y1# = ((-ImageHeight(shipimage)/2) + y)

;Draw the entire bounding box
Rect x1#,y1#,ImageWidth(shipimage),ImageHeight(shipimage), 0

End Function

First of all, take the variable x1#. As you can see, instead of being set to 1/2 * ImageWidth(),
it is set to ImageWidth()/2. However, 1/2 * ImageWidth() and ImageWidth()/2 are equivalent.
Multiplying something by 1/2 is the same as dividing something by 2. Therefore, 1/2 *
ImageWidth() is the same as ImageWidth()/2.

Also, notice that I added the x coordinate to the rectangle when finding x1#.This places the
bounding box into the actual player space—if I forgot to add it, the rectangle would begin
at the top-left corner of the screen. This is the same as global and local coordinates. Finding
the bounding box is finding the local coordinates, but by adding the proper x value, you
move it to the correct global coordinates. We do the same thing with the y1# variable.

Last, the Rect call might be a little confusing. Let me help you understand it by detailing
the declaration of Rect.

Rect x, y, width, height, solid

Bounding Boxes 265

Remember that? Anyway, as you know, the rectangle begins at x,y. We already figured out
what x and y are in the previous two variables, x1# and y1#. We then need to determine
the width and height of the rectangle. The rectangle’s width and height are the width and
height of the image. This is achieved by using ImageWidth() and ImageHeight().

Of course, we don’t want the rectangle to be filled—it’ll make the ship look ugly! So we
set solid to 0, which leaves it unfilled. Figure 9.14 shows a screenshot from the program.

By the way, there is a much easier way to grab the image by the top-left corner than using
ImageHeight() and ImageWidth(). BlitzPlus provides a function named HandleImage
that lets you choose where on the image you want your handle (grabbing point) to be
located. HandleImage is declared like this.

HandleImage image, x, y

To set the grabbing point to the top-left corner, you would just call HandleImage as follows.

HandleImage shipimage, 0, 0.

Chapter 9 ■ Collision Detection266

Figure 9.14 The demo09-03.bb program.

All right, we are now ready to determine if an object has collided with the spaceship using
bounding boxes. This program, demo09-04.bb, is the same as the one in demo09-02.bb,
except it does not use bounding circles.

Let’s go over the changes in the program. First of all, the player type has changed from this:

;The player type is the spaceship on the screen
Type player

Field x,y ;the x and y coordinate of the player
Field collisions ;the number of collisions that have occurred
Field radius ;the radius of the player image
Field image ;the actual image of the player

End Type

to this:

;This type contains the player
Type player

Field x,y ;the x and y coordinate of the player
Field collisions ;the number of collisions that have occurred
Field image ;the actual image of the player

End Type

Yeah, that’s right. We got rid of the radius field! Anyway, getting back to the program, we
changed the TestCollisions function quite a bit.

;FUNCTION TestCollisions() - Tests the objects and the ship for collisions
;No input parameters
;Returns 1 if there was a collision, 0 if there was none
Function TestCollisions()

;Test each point to see if it is within the player’s radius
For point.point = Each point

;Find player’s bounding box
x1 = -ImageWidth(player\image)/2 + player\x
x2 = ImageWidth(player\image)/2 + player\x
y1 = -ImageHeight(player\image)/2 + player\y
y2 = ImageHeight(player\image)/2 + player\y

;If the point is within collision radius, return 1
If (point\x > x1) And (point\x < x2) And (point\y > y1) And (point\y < y2)

Return 1

Bounding Boxes 267

EndIf
Next ;Move on to next point

;There were no collisions if the function makes it here, so return 0
Return 0
End Function
;END TestCollisions()

As you can see, the function begins by finding the size of the rectangle. Recall that the
bounding rectangle extends from �ImageWidth()/2 + x, �ImageHeight()/2 + y to
ImageWidth()/2 + x, ImageHeight()/2. The If statement determines whether any of the points
are within the bounding box, and if so, a collision is reported.

Also, one last major change. The FindRadius() and the Distance() function have been
changed to this:

Yep! Those functions are no longer necessary, so they have been deleted.

Pixel-Imperfect Collisions
One thing you might have noticed is that these programs test the ship only against single
pixels. What if we want to test an image against another image? Say, a bullet against a ship,
or a missile crash? BlitzPlus provides an excellent way to do this.

n o t e

Notice that this section is called “Pixel-Imperfect Collisions”. In other words, there might not be a
perfect collision, because it is imperfect. The next section covers pixel-perfect collisions.

There is a function provided by BlitzPlus called ImagesOverlap(). It is defined like this:

ImagesOverlap (image1,x1,y1,image2,x2,y2)

Table 9.9 explains all the parameters.

Chapter 9 ■ Collision Detection268

Now, let’s write a program that uses this function. The following, demo09-05.bb, allows
you to control a ship. If you hit the randomly moving ship that is also onscreen, a colli-
sion occurs.

The program is pretty easy to follow, so I am just going to list some important parts.
Following are the types from the program, and the initial values for these types.

;TYPES
;The enemy ship is a randomly moving object on the screen
Type enemyship

Field x,y ;the x and y coordinates
Field xv,yv ;The velocity
Field image ;the image

End Type

;The playership type defines the player
Type playership

Field x,y ;The x and y coordinate position
Field collisions ;How many collisions have occurred
Field image ;The player’s image

End Type

;Create the enemy and assign it default variables
Global enemy.enemyship = New enemyship
enemy\x = 400
enemy\y = 200
enemy\xv = Rand(-5,5)
enemy\yv = Rand(-5,5)
enemy\image = LoadImage("enemyship.bmp")

Pixel-Imperfect Collisions 269

Table 9.9 ImagesOverlap()'s Parameters

Parameter Description

image1 The handle to the first image you want to test for collision.
x1 The x coordinate of the first image.
y1 The y coordinate of the first image.
image2 The handle to the second image you want to test for collision.
x2 The x coordinate of the second image.
y2 The y coordinate of the second image.

;Create player and assign it default and random variables
Global player.playership = New playership
player\x = 400
player\y = 400
player\collisions = 0
player\image = LoadImage("ship.bmp")

The only major difference between the player and the enemy is that the player has veloc-
ity fields, xv and yv. These velocity values are added to the x and y coordinates of the
enemy each frame and serve as movement values.

Following is the main loop. Notice how little it actually does.

;MAIN LOOP
While Not KeyDown(1)
;Clear the screen
Cls

;Make sure all text appears in top-left corner
Text 0,0, "Collisions: " + player\collisions

;Find out if enemy hit a wall
TestEnemyCollisions()

;Test keyboard
TestKeys()

;If player and enemy overlap, increment collisions and reset player and enemy
If (ImagesOverlap(player\image,player\x,player\y,enemy\image,enemy\x,enemy\y))

player\collisions = player\collisions + 1
player\x = 400
player\y = 400
enemy\x = 400
enemy\y = 200

enemy\xv = Rand(-5,5)
enemy\yv = Rand(-5,5)
EndIf

;Move the enemy
enemy\x = enemy\x + enemy\xv
enemy\y = enemy\y + enemy\yv

;Draw the player and the enemy
DrawImage enemy\image,enemy\x,enemy\y

Chapter 9 ■ Collision Detection270

DrawImage player\image,player\x,player\y

Flip

;Slow it down
Delay 20

Wend
;END OF MAIN LOOP

The main loop does this: it prints out how many collisions have occurred, it calls
TestEnemyKeys() and TestKeys(), it determines whether any collisions have occurred, it
moves the enemy, and it draws the two ships. The only major line of interest is the test.

If (ImagesOverlap(player\image,player\x,player\y,enemy\image,enemy\x,enemy\y))

This determines whether the player’s image and the enemy’s image have overlapped.
Figure 9.15 shows a screenshot from the program.

Pixel-Imperfect Collisions 271

Figure 9.15 The demo09-05.bb program.

That’s just about it for pixel-imperfect collisions. Next, you’ll learn how to find out if col-
lisions have actually occurred using pixel-perfect collisions.

Pixel-Perfect Collisions
So far, we have been doing all of our collision tests with pixel-imperfect calculations. Do
you understand the difference between pixel-imperfect collisions and pixel-perfect colli-
sions? Let me help you understand.

When using pixel-imperfect collisions, every collision that occurs is approximate. This
means that while the collision might not actually occur, usually it is so close that it seems
like it did. This creates a problem, sometimes, when the collision obviously should not
have happened. Referring to Figure 9.16, you can see how a bounding box collision can be
extremely incorrect. In this figure, the bounding boxes have slightly overlapped, yet the
actual objects are still very far apart from one another.

However, BlitzPlus provides a very easy way to fix this problem. Simply use the function
ImagesCollide() instead of ImagesOverlap().

ImagesCollide() is declared like this:

ImagesCollide (image1,x1,y1,frame1,image2,x2,y2,frame2)

Table 9.10 summarizes ImagesCollide’s parameters.

ImagesCollide() checks every nontransparent pixel of the first image to determine whether
it is overlapping with a nontransparent pixel of the second pixel. If so, a collision is report-
ed. However, this checking means that your program will run a bit slower when using
ImagesCollide() than when using ImagesOverlap().

When using ImagesCollide(), collisions will look more like those in Figure 9.17.

Chapter 9 ■ Collision Detection272

Table 9.10 ImagesCollide()'s Parameters

Parameter Description

image1 The handle to the first image you want to test for collision.
x1 The x coordinate of the first image.
y1 The y coordinate of the first image.
frame1 The frame of the first image you want to check—unless you are using animation,

set this to 0.
image2 The handle to the second image you want to test for collision.
x2 The x coordinate of the second image.
y2 The y coordinate of the second image.
image2 The frame of the second image you want to check—unless you are using

animation, set this to 0.

I rewrote demo09-05.bb to make demo09-06.bb. The only change I made was in the main
loop. I changed

;If player and enemy overlap, increment collisions and reset player and enemy
If (ImagesOverlap(player\image,player\x,player\y,enemy\image,enemy\x,enemy\y))

player\collisions = player\collisions + 1
player\x = 400
player\y = 400
enemy\x = 400
enemy\y = 200

EndIf

to

;If player and enemy collide, increment collisions and reset player and enemy
If (ImagesCollide(player\image,player\x,player\y,enemy\image,enemy\x,enemy\y))

player\collisions = player\collisions + 1
player\x = 400
player\y = 400
enemy\x = 400
enemy\y = 200

EndIf

Play through and see if you notice the differences. Figure 9.18 shows a screenshot from the
program.

Before we finish this chapter, I just want to warn you about overusing ImagesCollide().
When using ImagesCollide() a lot, your program can experience a drastic slowdown.
Unless you are sure it is necessary, a lot of times it is better to stick with ImagesOverlap().

Pixel-Perfect Collisions 273

Figure 9.17 Using ImagesCollide().Figure 9.16 The problems with pixel-imperfect collisions.

Summary
Whoohoo! We have now reached the end of Chapter 9, and also, the end of Part Two. In
this chapter, you learned how to use several types of collision-detection methods. Don’t
forget them, because they will be useful in your programs!

In this chapter we covered these concepts:

■ Basic collisions

■ Bounding circles

■ Distance between points

■ Bounding boxes

■ Pixel-imperfect collisions

■ Pixel-perfect collisions

Starting with the next chapter, we are going to learn more topics of BlitzPlus, and we will
progress toward our own final game. Cool, huh?

Chapter 9 ■ Collision Detection274

Figure 9.18 The demo09-06.bb program.

Completing
the Puzzle

Chapter 10
Handling Input .277

Chapter 11
Sounds and Music .313

Chapter 12
Artificial Intelligence . 337

Chapter 13
The Final Frontier: Invaderz!!! . 359

PART III

This page intentionally left blank

277

Handling Input

chapter 10

We are finally on the last part of the book! When you’re finished with this part, you will
know everything you need in order to make games. So, let’s get started with making deci-
sions based on user input. Of course, every game requires handling of input. Otherwise,
it isn’t a game; instead, it’s a movie. Sometimes you might want to include movies and
other sections of game that don’t accept user input in your game—cinematics, for
instance, are bits of a game that explain the storyline without any actual game play. The
main part of your game, however, will rely on input from the user.

Although there are a number of ways that the player can interact with the game (using
game pads, racing wheels, and so on), BlitzPlus simplifies all of the choices to three input
sources: the mouse, the keyboard, and the joystick. This chapter covers the first two and
introduces the third. First up: the keyboard!

Handling the Keyboard
You use the keyboard every time you use your computer; heck, I am using it to type these
words right now. So, of course, the keyboard is probably going to be a common source of
input for most games you make. We better get crackin’ if we want to figure out what the
player wants to do.

We have read about the keyboard’s role in a very limited way thus far: basically, you know
how to determine whether the users have pressed the Esc key and a few select other keys.
The following sections review what we know and then teach you a bit more. So, let’s begin
by reviewing the functions KeyDown() and KeyHit().

KeyDown()
We have been using this function throughout the book, so you most likely already know
what it does. First off, let’s go over the declaration of KeyDown().

KeyDown (scancode)

Memories, huh? Anyway, KeyDown() tests the keyboard to determine if the scan code has
been pressed. If you don’t remember, let me redefine scan code for you. A scan code is a
code that represents a certain key. Each key on your keyboard is represented by a certain
scan code. By the way, I might use the word “key code” every once in a while. Key code is
just a synonym for scan code—they mean exactly the same thing.

If the key has been pressed, KeyDown() returns 1. If a key was not pressed, KeyDown() returns 0.

Table 10.1 explains the parameters of KeyDown().

There are numerous scan codes that are built into BlitzPlus, and all of them are listed in
Appendix A. However, I decided to list a few of them right here, in Table 10.2.

As you probably noticed, the letters on the
keyboard were not mentioned in the table.
Unfortunately, BlitzPlus has the scan codes
for the letters a bit scattered around, and
because there are 26 letters, the table might
get a bit too long. Anyway, just flip to
Appendix A, and you will find a list of all the
scan codes you could ever use.

So how do we use this information? Well,
usually we test KeyDown() with an If state-
ment. For example, if we wanted to deter-
mine whether the user pressed the spacebar,
we would write something like this.

If KeyDown(28)
;Do Something

Endif

Chapter 10 ■ Handling Input278

Table 10.1 KeyDown()'s Parameters

Parameter Description

scancode Tests if the key represented by scan code has been pressed.

Table 10.2 Relevant Scan Codes

Key Scan Code

Esc 1
#'s 1-9 2-10
0 11
Enter 28
Left Control 29
Left Shift 42
Spacebar 57
F10 68
Up 200
Left 203
Right 205
Down 208

Let’s go through this code in depth. As you know, the If statement performs the follow-
ing actions if what it tests amounts to true. If you remember, in computer speak, 1 is equal
to true, and 0 is equal to false. KeyDown() returns 1 if the key specified by its scan code is
pressed on the keyboard. Therefore, the statements inside the If…Endif block are executed
if and only if the user pressed the spacebar.

Let’s write a program around this. The following program, demo10-01.bb, moves an outer
space background when the user presses the up, down, left, and right keys.

;demo10-01.bb - Demonstrates usage of KeyDown()

;Initialize Graphics
Graphics 800,600

;Load the background image
backgroundimage = LoadImage("stars.bmp")

;CONSTANTS
;The following constants are used for testing key presses
Const ESCKEY = 1, UPKEY = 200, LEFTKEY = 203, RIGHTKEY = 205, DOWNKEY = 208

;scrollx and scrolly define how much the image should be moved
scrollx = 0
scrolly = 0

;MAIN LOOP
While Not KeyDown(ESCKEY)

;If the player hits up, we will scroll the background up
If KeyDown(UPKEY)

scrolly = scrolly - 5 ;scroll background 5 pixels up
EndIf ;End of UPKEY test

;If the player hits left, we will scroll the background left
If KeyDown(LEFTKEY)

scrollx = scrollx - 5 ;scroll background 5 pixels left
EndIf ;End LEFTKEY test

;If player hits right, we will scroll the background right
If KeyDown(RIGHTKEY)

scrollx = scrollx + 5 ;scroll background 5 pixels right
EndIf ;End RIGHTKEY test

Handling the Keyboard 279

;If player hits down, we will scroll the background down
If KeyDown(DOWNKEY)

scrolly = scrolly + 5 ;Scroll background 5 pixels down
EndIf ;End of DOWNKEY test

;Tile the background image on the screen so it looks like actual outer space
TileBlock backgroundimage,scrollx,scrolly

;Wait a fraction of a second.
Delay 35
Flip

Wend ;END OF MAIN LOOP

This program demonstrates the concepts of KeyDown() quite well. Let’s begin at the top. I
created a section of constants that define the keys that will be used throughout the pro-
gram. Constants, as you probably remember, are variables whose values cannot be
changed; thus, they are perfectly suited to hold the scan code numbers. Because the scan
codes of each key never change, you should always create constants for your keys. Believe
me; they will help you in many ways. For one, you will know, just by looking at your con-
stants section, which keys are used throughout your program. For two, the following code:

If KeyDown(DOWNKEY)
;Move Player Down

Endif

is a lot easier to understand than this

If KeyDown(208)
;Move Player Down

Endif

Also, you won’t have to memorize the scan codes for each key used in your program.
Listen carefully: a good statement to live by is that if there is a way to make something eas-
ier, do it. Work is hard, and memorization is work. Using constants allows you to forget
about the individual code and just remember the key that you are testing.

Anyway, back to the code. We move on to the main loop. As you can see, the main loop
only functions as long as the Esc key is not pressed, as seen by this line of code.

While Not KeyDown(ESCKEY)

Like the If statement, While only functions as long as the following statements are true,
or equal to 1. Because KeyDown() returns 0 unless the key is pressed, and Not flips 0 into 1
and 1 into 0, Not KeyDown(ESCKEY) is 1 (true) as long as the key is not being pressed.
Therefore, the main loop executes only as long as the Esc key is not pressed.

Chapter 10 ■ Handling Input280

The program then moves into the actual key tests. Following is the test for the up key.

;If the player hits up, we will scroll the background up
If KeyDown(UPKEY)

scrolly = scrolly - 5 ;scroll background 5 pixels up
EndIf ;End of UPKEY test

Here, the statements execute as long as UPKEY is pressed. The statements change the value
of the scrolly variable, and the background scrolls up a little.

The previous test is repeated three more times to test all four arrow keys: up, down, left,
and right. Figure 10.1 is a screenshot taken from the program.

Notice that when the map scrolls left, it seems like you are moving right, and vice versa.
The same happens when you scroll up. It’s a cool effect, don’t you think?

Okay, I think you get the gist of that. However, I want to go over one problem with using
KeyDown(). Sometimes when you type something on your keyboard, KeyDown() believes that
you held the key down for longer than one frame. This happens because the game loop

Handling the Keyboard 281

Figure 10.1 The demo10-01.bb program.

iterates extremely fast, and you might be holding the key down for more than one frame
at a time. Of course, this is what you want to happen on some games, especially with
movement. When you are performing an action like moving a spaceship around the
screen, you want the player to be able to simply hold down the key to move the character
around. However, every once in a while, you will have a case where you don’t want the
users to be able to hold down the keys for more than one frame.

Take this, for example: when you are creating a game, you usually want the player to be
able to quit the game by pressing Esc. Now, maybe you want to show something on the
screen before the game actually closes, so you print “Press any key to exit” on the screen.
The program then waits for a keypress by using the function WaitKey, which pauses the
program until a key is pressed. WaitKey has no parameters; it just stops a program’s exe-
cution. Here is the problem, though: when the player presses Esc, the key is carried over
to the WaitKey statement and the program exits immediately.

You have to find a way to halt the program from retrieving the key immediately. There is
one easy way to do this.

What we need to do is clear the computer’s memory of what keys have been pressed. This
will cause the computer to forget about any previously held down keys. To perform this
action, we use the function FlushKeys. FlushKeys’s declaration is extremely simple:

FlushKeys

There are no parameters—just call the function by itself. Anyway, by calling FlushKeys, you
clear the key input memory. Thus, any key that was held down previously is deleted.

Let’s see the difference in a sample program. The following demo, demo10-02.bb, demon-
strates what will happen when you don’t use FlushKeys.

;demo10-02.bb - Demonstrates problem with not using FlushKeys

Graphics 800,600

;Create the background image that will be scrolled
backgroundimage = LoadImage ("stars.bmp")

;Create variable that determines how much background has scrolled
scrolly = 0

;MAIN LOOP
While Not KeyDown(1)

;Scroll background a bit by incrementing scrolly
scrolly = scrolly + 1

Chapter 10 ■ Handling Input282

;Tile the background
TileBlock backgroundimage,0,scrolly

;Reset scrolly if the number grows too large
If scrolly > ImageHeight(backgroundimage)

scrolly = 0
EndIf

;Print necessary text
Locate 0,0 ;Locate text to top left corner of the screen
Print "When you want to quit, press Esc."
Print "Hopefully, a message stating ’Quitting’ will appear after you hit Esc."

;Delay the program for a fraction of a second
Delay 25
Flip

Wend ;END OF MAIN LOOP

Text 0,24,"Quitting..."
Flip
Delay 1000
Flip

Figure 10.2 is a screenshot taken from the program.

n o t e

If you decide to open the program code in your BlitzPlus compiler and go to Program>Run Program,
you will notice something weird. Unlike what we have been talking about here, the statement “Press
any key to exit” will be shown onscreen. This only happens because of the dialog box that pops up
when you run the program out of your compiler. If you want to see what would happen if you com-
piled the program using the full version of BlitzPlus, add the command End directly after WaitKey.

Looks good, huh? However, try running the executable file, demo10-02.exe, from the CD.

Demo10-03.bb is the same program with a ship drawn in the center of the screen. You
can’t move the ship, but it sure looks nice! Figure 10.3 shows a screenshot.

Let’s move on to the next keyboard input function: KeyHit().

Handling the Keyboard 283

Chapter 10 ■ Handling Input284

Figure 10.2 The demo10-02.bb program.

Figure 10.3 The demo10-03.bb program.

KeyHit()
This is the last function that we will be going over for keyboard input. KeyHit() acts an awful
lot like KeyDown(), except for a small but important difference. Whereas KeyDown() allows the
player to hold down a key, KeyHit() only lets the player press the keyboard once. Thus, you
can only read which key the player pressed one time. Take, for example, demo10-04.bb. This
program draws a spaceship on a tiled space background. It allows the player to move the
spaceship using KeyHit(). Figure 10.4 is a screenshot taken from this program.

In demo10-04.bb, you will find the KeyHit() command nested in If statements. Following
is the source from the program that uses KeyHit().

;If the player hits up, move player up
If KeyHit(UPKEY)

y = y - 5 ;move player 5 pixels up
EndIf

;If the player hits left, move player left

Handling the Keyboard 285

Figure 10.4 The demo10-04.bb program.

If KeyHit(LEFTKEY)
x = x - 5 ;move player 5 pixels left

EndIf

;If player hits right, move player right
If KeyHit(RIGHTKEY)

x = x + 5 ;move player 5 pixels right
EndIf

;If player hits down, move player down
If KeyHit(DOWNKEY)

y = y + 5 ;move player 5 pixels down
EndIf

By the way, KeyHit()’s declaration is exactly the same as KeyDown’s declaration.

KeyHit (scancode)

Table 10.3 examines the parameter.

If you run the program, you will notice that you can only move the player by pressing the
arrow keys multiple times. Usually, you would rather allow the player to move around by
holding down the arrow keys, but sometimes you might prefer to only let the player do
something by pressing the key over and over again.

Let’s take a space-simulation game, for example. We want to allow the player to be able to
move around the screen and fire bullets. To do this, we will allow the players to hold down
the arrow keys for movement, but they have to press the spacebar to produce a bullet.

Following is the initialization section from demo10-05.bb.

;demo10-05.bb - A Space Simulation with KeyHit()

Graphics 800,600

;Set automidhandle to true
AutoMidHandle True
;Set up Backbuffer
SetBuffer BackBuffer()

Chapter 10 ■ Handling Input286

Table 10.3 KeyHit()'s Parameters

Parameter Description

scancode The scan code of the key you want to test for input.

;TYPES

;Bullet type = hold the information for each bullet
Type bullet

Field x,y ;the coordinates of the bullet
End Type

;Player type - holds the actual player
Type player

Field x,y ;the coordinates of the player
End Type

;Create player and initialize field
Global player.player = New player
player\x = 400
player\y = 500

;CONSTANTS
;The following constants are used for testing key presses
Const ESCKEY = 1, UPKEY = 200, LEFTKEY = 203, RIGHTKEY = 205, DOWNKEY = 208, SPACEBAR =
57

;IMAGES
playerimage = LoadImage("ship.bmp")
Global bulletimage = LoadImage("bullet.bmp")
backgroundimage = LoadImage("stars.bmp")

;Create a scrolling indicator variable
scrolly = 0

The initialization section acts pretty much how you would expect it to. It begins by set-
ting the graphics mode and setting AutoMidHandle to true. After that, it sets the starting
buffer to be the back buffer. Next, it creates the types that are used in the program.

The first type is the bullet type. Every bullet that is to be created uses this type. The next
type is the player type. Both bullet and player have the same fields: x and y. As you prob-
ably have guessed, x and y define the coordinates for the bullet and player’s positions.

Handling the Keyboard 287

After creating the types, the program initializes the player type. Of course, there is only one
player, so a single player is created. The player’s beginning x and y coordinates are defined
at 400,500, which starts the player roughly in the middle of the screen near the bottom.

The next two sections define the constants and the images. The constants are the scan
codes for each of the keys that are used in the game. The program loads three images:
playerimage, bulletimage, and backgroundimage. Notice that bulletimage is global, implying
that it is used in other functions, not just the main function.

The final section of the initialization creates scrolly. This indicator variable defines how
far the background should scroll at any instant.

Next up, consider the main loop.

;MAIN LOOP
While Not KeyDown(ESCKEY)

;Increment scrolling variable
scrolly = scrolly + 1

;Tile the background
TileBlock backgroundimage,0,scrolly

;Reset the scrolling variable when it grows too large
If scrolly > ImageHeight(backgroundimage)

scrolly = 0
EndIf

;Test input keys
TestKeys()

;Update (move) each bullet
UpdateBullets()

;Draw the player
DrawImage playerimage, player\x, player\y

;Flip the front and back buffers
Flip

Wend ;END OF MAIN LOOP

The main loop begins by tiling the background. It increments the indicator variable,
scrolly, and then tiles the background. When scrolly grows too large, its value is reset to

Chapter 10 ■ Handling Input288

0. Following that, the program calls two user-defined functions: TestKeys() and
UpdateBullets(). The first function tests the keyboard to determine if any input has
occurred, and the second function moves and updates each bullet on the screen.

The main loop ends by drawing the player’s ship and his or her current position. It then
flips the front and back buffers using the command Flip.

The rest of the program lists the two user-defined functions: TestKeys() and
UpdateBullets(). Following is the source for TestKeys().

;FUNCTIONS
;Function TestKeys() - Tests which buttons have been pressed by player
Function TestKeys()

;If the player hits up, we move him 5 pixels up
If KeyDown(UPKEY)

player\y = player\y - 5 ;move player 5 pixels up
EndIf

;If the player hits left, we move him 5 pixels left
If KeyDown(LEFTKEY)

player\x = player\x - 5 ;move player 5 pixels left
EndIf

;If player hits right, we move him 5 pixels right
If KeyDown(RIGHTKEY)

player\x = player\x + 5 ;move player 5 pixels right
EndIf

;If player hits down, we move him 5 pixels down
If KeyDown(DOWNKEY)

player\y = player\y + 5 ;move player 5 pixels down
EndIf

;If player presses the spacebar, we will create a
;new bullet at the player’s current position
If KeyHit(SPACEBAR)

bullet.bullet = New bullet
bullet\x = player\x
bullet\y = player\y

EndIf

End Function

Handling the Keyboard 289

The TestKeys() function, although not short, is pretty easy to comprehend. The function
tests each key to determine if it has been pressed, and if so, it changes something in the
program. Table 10.4 explains what each key does when pressed.

As you can see, the arrow keys do pretty much what you expect them to do. The only new
key is the spacebar.

When the player presses the spacebar, a new bullet is created. The code that performs this
action follows.

If KeyHit(SPACEBAR)
bullet.bullet = New bullet

Notice that the function uses KeyHit() instead of KeyDown() for the creation of new bullets.
This prevents the player from holding down the spacebar and creating hundreds of bul-
lets quickly. Figure 10.5 shows what happens if you exchange KeyDown() with KeyHit().

By creating a new bullet, the program adds a new bullet to the bullet type. If you remem-
ber, when creating multiple members of the same type, the most recent one becomes
active. Thus, the following lines

bullet\x = player\x
bullet\y = player\y

only relate to the most recent bullet (the one that was just created a few milliseconds ear-
lier). The new bullet is created at the player’s current position.

Okay, the next and final function updates each bullet. Following is the source for
UpdateBullets().

;Function UpdateBullets() - Moves each bullet onscreen
Function UpdateBullets()

;For every bullet, move it up 5 pixels.
;If it goes offscreen, delete it, otherwise, draw it

Chapter 10 ■ Handling Input290

Table 10.4 Demo10-05.bb's Keys

Key Function

Up arrow Moves the player five pixels up.
Left arrow Moves the player five pixels left.
Right arrow Moves the player five pixels right.
Down arrow Moves the player five pixels down.
Spacebar Creates a new bullet to be drawn onscreen.

For bullet.bullet = Each bullet
bullet\y = bullet\y - 5 ;Move bullet up

;If bullet moves offscreen, delete it, otherwise, draw it onscreen
If bullet\y < 0

Delete bullet
Else

DrawImage bulletimage, bullet\x, bullet\y ;Draw the bullet
EndIf

Next ;move to next bullet

End Function

The function begins with a For…Each loop that tests every created bullet. The function
moves each existing bullet five pixels up. The program then determines if the bullet is off-
screen. If so, the bullet is deleted. If not, the bullet is drawn onscreen.

Handling the Keyboard 291

Figure 10.5 Exchanging KeyDown() with KeyHit().

The function ends by moving on to the next bullet, and returning to the main function
after every bullet has been processed.

Well, that is it for demo10-05.bb. The following screenshot, Figure 10.6, was taken from
that program.

By the way, try changing KeyHit() into KeyDown() on the TestKeys() function. Seriously, it
can provide hours of fun—especially for those who like shiny and fast moving objects
(like me!).

Before you move on to mouse input, I want to explain one thing about KeyHit(). KeyHit()
does provide a return value. The function returns the number of times the user pressed a
key since the previous KeyHit() call (or since the beginning of the program if there are no
earlier KeyHit() calls). The following demo, demo10-06.bb, demonstrates what it can do.

;demo10-06.bb - Demonstrates the return value of KeyHit()

;Set up graphics so that you can read all of the text, make it windowed

Chapter 10 ■ Handling Input292

Figure 10.6 The demo10-05.bb program.

Graphics 800,600,0,2

;Begin introductory text
Text 0,0, "You know what’s cool? Game Programming."
Text 0,12,"Although Maneesh ain’t that uncool, either."

Flip

;Continue text
Text 0,36, "Anyway, press Esc as many times as you can in the Next 5 seconds."
Text 0,48, "At the end of the program, the number of times will be printed."

Flip

numberofhits=0

;Allow the player 5 seconds to hit esc as many times as possible
timerbegin=MilliSecs()

While timerbegin>MilliSecs()-5000
If KeyHit(1)

numberofhits = numberofhits + 1
EndIf

Wend

;Print the number of times Esc was hit
Text 0,60, "Esc was hit " + numberofhits + " times."
Text 0,72, "You gotta love KeyHit(), huh?"

Flip

;Hold on a sec so the player can see the final text
Delay 5000

The main part of the program sets numberofhits to KeyHit(1) and adds the value of the
function to numberofhits—it adds one to numberofhits everytime the user pressed Esc since
the beginning of the program. Figure 10.7 is a screenshot taken from demo10-06.bb.

Well, that is all for keyboard input. Now we move on to mouse input.

Handling the Keyboard 293

Mapping the Mouse to the Screen
Handling the mouse is a lot easier than handling the keyboard. Just look at them: com-
pared to the 105 keys on your keyboard, there are only two or three buttons on your
mouse (well, maybe more, depending on the make). Thus, you only have to test the input
of three keys maximum. However, when using the mouse, you also have to test the coor-
dinate position on the screen.

Unlike a keyboard, which is ever-present, the mouse only exists onscreen at a certain loca-
tion. By moving the mouse, you move the mouse cursor on your screen (usually desig-
nated by an arrow), and you change where your mouse points. This pointer technology
allows you to select or choose anything onscreen by moving your mouse to the location
and clicking.

Unfortunately, BlitzPlus does not provide a mouse cursor that allows you to see where
your mouse is at the current time. There is an easy way to circumvent this problem, and
we take it head-on in the next section.

Chapter 10 ■ Handling Input294

Figure 10.7 The demo10-06.bb program.

Displaying the Mouse Cursor
Most of the time, while on your computer, you use the mouse to perform whatever actions
you want… err… performed. The following figure, Figure 10.8, shows an example of a
standard mouse cursor.

BlitzPlus does not have support for displaying mouse cursors. Obviously, we do need a mouse
cursor to function; otherwise, any program that utilizes the mouse will act something like the
program from demo10-07.bb. Figure 10.9 shows a screenshot from that program.

n o t e

If you happen to run your program in windowed mode (by calling Graphics xxx,yyy,zzz,2), the
default mouse cursor, the one you see when using your computer, will appear.

Pretty stupid, huh? You have no idea where the mouse is, so the program is pretty much
worthless. What we need to do is figure out a way to draw the mouse cursor.

What we are going to do is draw an image containing the mouse cursor image at the
mouse’s x and y coordinates. How do we begin this? First off, we make an image that we
want to be used for the mouse cursor. This example uses the cursor shown in Figure 10.10.

Mapping the Mouse to the Screen 295

Figure 10.8
A mouse cursor.

Figure 10.9 The demo10-07.bb program.

I made the cursor white so that it can be seen against the black back-
grounds often used in games. I made the cursor white inside Paint Shop
Pro, which you can find on the CD.

Now that we have a mouse image, all we need to do is draw the image at
the mouse’s position. Before we can do that, we need to know how to
find the mouse’s current position. But before we can do that, we need to
know one thing.

When using mouse images, it is important that you never set the mid handle to the cen-
ter; instead, the handle should be at the top-left corner of the image. This is because you
want the user to select something from the tip of the mouse cursor, not the center.
Keeping the handle might be difficult when using the function AutoMidHandle, as it sets
every handle to the center automatically. The trick here is to use the function HandleImage
and give it the coordinates 0,0. For example, if you have a mouse image named mouseim-
age, you would call HandleImage like this.

HandleImage mouseimage,0,0

By the way, in case you didn’t know, HandleImage sets the handle of the image to the posi-
tion you give it via x and y coordinates.

Okay, now that we have that down, we need to determine the mouse’s coordinate position.
Fortunately, BlitzPlus provides two functions for this purpose.

These two functions are called MouseX() and MouseY(). Their declarations follow.

MouseX()
MouseY()

What could possibly be easier? Anyway, each function returns the position of the mouse’s
coordinate position: MouseX() returns the mouse’s x coordinate, and MouseY() returns the
mouse’s y coordinate.

Okay, now let’s put all of this into a program. Following is the listing for demo10-08.bb.
In addition to checking the mouse, I added a scrolling background, because scrolling
backgrounds are cool.

;demo10-08.bb - Demonstrates drawing a mouse cursor
Graphics 640,480
;Set default drawing surface to back buffer
SetBuffer BackBuffer()

;IMAGES
;Load the background and the mouse cursor
backgroundimage = LoadImage("stars.bmp")

Chapter 10 ■ Handling Input296

Figure 10.10
The example
mouse cursor.

mouseimage = LoadImage("mouseimage.bmp")

;Set handle to top left for mouseimage
HandleImage mouseimage,0,0

;Create an indicator variable for scrolling background
scrolly = 0

;MAIN LOOP
While Not KeyDown(1)

;Scroll background a bit by incrementing scrolly
scrolly = scrolly + 1

;Tile the background
TileBlock backgroundimage,0,scrolly

;Reset scrolly if the number grows too large
If scrolly > ImageHeight(backgroundimage)

scrolly = 0
EndIf

;Print out text
Text 0,0,"Mouse is easier to find now, huh"

;Print X and Y coordinates
Text 0,12, "MouseX: " + MouseX()
Text 0,24, "MouseY: " + MouseY()

;Draw the mouse image
DrawImage mouseimage,MouseX(),MouseY()

;Slow it down
Delay 20

;Flip front and back buffers
Flip

Wend ;End of Main loop

Not too terribly difficult, eh? The DrawImage line of code draws the mouse at the mouse’s
current position, which is given by MouseX() and MouseY(). Figure 10.11 is a screenshot
taken from the program.

Mapping the Mouse to the Screen 297

We are making excellent progress! Now we know how to track and draw an object to repre-
sent the position of the mouse cursor. The two important functions to determine the posi-
tion of the mouse were MouseX() and MouseY(). We also learned how to change the mouse
image with HandleImage. Next up, we’re going to learn how to detect mouse key presses.

What Was That? Handling Mouse Key Presses
Like a keyboard, a mouse also has keys that you can click on the screen. You might use the
mouse for many actions throughout your games. For example, say you have a side-scroller
game, like Super Mario Brothers. You might allow the user to move onscreen by clicking

with the left mouse button, and allow the player to
jump by using the right mouse button.

Figure 10.12 shows an average mouse. Notice that it
has a mouse wheel. Many mice have mouse wheels,
and we will learn how to use the mouse wheel as well
as the other two mouse buttons.

Anyway, on to the functions.

Chapter 10 ■ Handling Input298

Figure 10.11 The demo10-08.bb program.

Figure 10.12 A common mouse.

MouseDown()

BlitzPlus offers mouse-input functions that are similar to the keyboard-input functions.
The function that we will learn about in this section, MouseDown(), acts just like its keyboard
counterpart KeyDown().

MouseDown() has the declaration as follows.

MouseDown (button)

Button is the button that you are checking for: the left mouse button, the right mouse but-
ton, or the middle mouse button. Table 10.5 lists all the possibilities for button.

Easy, huh? How can we use
MouseDown()? Well, for example,
to determine if the user clicked
the left mouse button, you
would do something like this.

If MouseDown(1)
;perform actions

Endif

Whatever you want to happen when the left mouse button is clicked is placed between the
If and the Endif statements.

MouseDown() returns true (1) if the mouse key was clicked, and false (0) if it was not clicked.

I’m neglecting to write a sample program for MouseDown() right now; instead, I will use it
in a sample program with the next function: MouseHit().

MouseHit()

I bet you can guess the difference between this function and MouseDown(), huh? Whereas
you can hold down MouseDown(), you must click the mouse button over and over when
using MouseHit() to initiate the action.

This difference is the same as is in KeyDown() versus KeyHit(), the keyboard-input functions.
Just like KeyHit(), MouseHit() also records the number of times you click the button.

MouseHit() is declared like this:

MouseHit (button)

Button can be any of those listed in Table 10.5.

Anyway, let’s rewrite demo10-05.bb to use mouse input. Instead of using keys to move the
player’s ship, the ship is located at the coordinates of the mouse. For this program, we do
not need a mouse cursor, because the ship serves as a sign of the mouse’s position.

Mapping the Mouse to the Screen 299

Table 10.5 MouseDown()'s Button Possibilities

Button Key Code

Left mouse button 1
Right mouse button 2
Middle mouse button 3

Also, the mouse buttons have been changed. Although pressing the left mouse button still
creates a bullet, holding down the right mouse button creates a laser. Let’s try it.

Most of the program has changed, so I am going to copy the source section by section. It
begins with the initialization section of demo10-09.bb.

;demo10-09.bb - A Space Simulation with MouseDown() and KeyDown()

Graphics 800,600

;Set automidhandle to true
AutoMidHandle True
;Set up Backbuffer
SetBuffer BackBuffer()

;TYPES

;Bullet type = hold the information for each bullet
Type bullet

Field x,y ;the coordinates of the bullet
Field bullettype ;LASER or NORMALBULLET (see constants)

End Type

;Player type - holds the actual player
Type player

Field x,y ;the coordinates of the player
End Type

;Create player and initialize field
Global player.player = New player
player\x = 400
player\y = 500

;CONSTANTS
;The following constants are used for testing key presses (mouse and keyboard)
Const ESCKEY = 1, LEFTMOUSEBUTTON = 1, RIGHTMOUSEBUTTON = 2
;The following constants are used for the bullets,
;BULLET is a regular bullet, LASER is a laser
Const NORMALBULLET = 1, LASER = 2

Chapter 10 ■ Handling Input300

;IMAGES
playerimage = LoadImage("ship.bmp")
Global bulletimage = LoadImage("bullet.bmp")
Global laserimage = LoadImage("laser.bmp")
backgroundimage = LoadImage("stars.bmp")

HandleImage laserimage, ImageWidth(laserimage)/2, ImageHeight(laserimage)

;VARIABLES
;Create a scrolling indicator variable
scrolly = 0

;Number of times left and mouse buttons were hit
Global leftmouseclicks = 0
Global rightmouseclicks = 0

Okay, let’s go through this section. The program begins just as it did in demo10-09.bb
with the setting of the graphics mode, the creation of the back buffer, and setting
AutoMidHandle to true. In the next part, the types have changed a bit.

The bullet type looked like this in demo10-05.bb:

Type bullet
Field x,y ;the coordinates of the bullet

End Type

Notice the new field: bullettype. This type defines whether the bullet is a normal bullet or
laser. We assign this field at the time of the bullet’s creation, depending on whether the
player clicks the left mouse button or the right mouse button.

The next major change in the program takes place in the constants section. As you can see,
we have deleted all of the key code constants besides Esc. Esc remains because we use it to
determine if the program should exit in the main loop.

In the key codes place, we created a set of new constants. The first two new constants are
LEFTMOUSEBUTTON and RIGHTMOUSEBUTTON. These two constants are used in the MouseHit() and
MouseDown() tests later in the program—they tell the program which mouse buttons were
clicked. The other two constants, NORMALBULLET and LASER, are used in the bullettype field
of the bullet type. If bullettype is equal to NORMALBULLET, the bullets are regular run-of-the-
mill bullets. If bullettype is LASER, the bullet is a laser.

We loaded a new image, laserimage, which is the image of each laser bullet shot by click-
ing the right mouse button. Figure 10.13 shows what the laser looks like. It is the straight
line down the middle.

Mapping the Mouse to the Screen 301

The laser is very long because it extends from one side of the screen to the other. Thus, the
height of the laser is the height of the screen.

We then set the handle to the bottom-center of the image with the line

HandleImage laserimage, ImageWidth(laserimage)/2, ImageHeight(laserimage)

This line might be a little difficult to understand, so let’s go over it. First off, we have to
know what HandleImage does.

HandleImage allows you to choose where the handling point of an image is. AutoMidHandle
automatically assigns the handling point of any image to the direct center. What
does the handling point do? Well, when you move the image around, it moves by
its handling point. Imagine picking up a playing card. If you pick it up in the exact
center, you will notice that the card extends in all directions from your finger. This
is what AutoMidHandle does. See Figure 10.14 for an example.

As you can see in Figure 10.14, the handling point, which is where your finger is, is
directly in the center of the card. The card’s points extend in all directions from the
center point. When you move your hand around, the card is still grasped from the
center, and thus, the edges of the card always extend from 0,0.

When using the laser image, however, we want the image to be grasped from the
bottom. We will be making the laser extend from the front of the player’s spaceship
to the upper wall of the screen, and because it must begin right on the player, we
have to set the handle to the bottom edge of the laser. Figure 10.15 shows what it
would look like to set the handle to the bottom of the playing card.

HandleImage allows you to set the handle of the laser image to the coordinates you
want. In the line

HandleImage laserimage, ImageWidth(laserimage)/2, ImageHeight(laserimage)

Chapter 10 ■ Handling Input302

Figure 10.13
The laser image.

Figure 10.14
AutoMidHandle on a playing card.

Figure 10.15
The lower handle on a playing card.

the handle is set to ImageWidth(laserimage)/2, ImageHeight(laserimage). What does this mean?
The x coordinate of the handle is located at ImageWidth(laserimage)/2. This is half of the
width of the image, which is in the center of the image. The y coordinate, ImageHeight(laser-
image), puts the handle at the bottom of the image. See Figure 10.16 for help.

Okay, hopefully we understand the laser
image’s handle now. Moving on in the
initialization section of the program, we
get to two new variables, leftmouseclicks
and rightmouseclicks. These two vari-
ables record how many times each of
their respective buttons were clicked.

Next up is the main loop. Check it out.

;MAIN LOOP
While Not KeyDown(ESCKEY)

;Increment scrolling variable
scrolly = scrolly + 1

;Tile the background
TileBlock backgroundimage,0,scrolly

;Set up text
Text 0,0, "Player X: " + MouseX()
Text 0,12, "Player Y: " + MouseY()
Text 0,24, "Number of times left mouse button was hit: " + leftmouseclicks
Text 0,36 "Number of times right mouse button was hit: " + rightmouseclicks

;Reset the scrolling variable when it grows too large
If scrolly > ImageHeight(backgroundimage)

scrolly = 0
EndIf

;Test mouse buttons
TestMouse()

;Update (move) each bullet
UpdateBullets()

;Draw the player

Mapping the Mouse to the Screen 303

Figure 10.16 The handle on the laser image.

DrawImage playerimage, player\x, player\y

;Flip the front and back buffers
Flip

Wend ;END OF MAIN LOOP

This loop is almost exactly the same as the one in demo10-05.bb, except for two changes.
We added some text to the screen that tells the users their position and how many times
they have clicked the left and right mouse buttons. The second change is a change in
name: TestKeys() has been changed to TestMouse(), which is the function we examine next.

;FUNCTIONS
;Function TestMouse() - Tests which mouse buttons have been pressed and where
player is located

Function TestMouse()

;Set the player at the position of the mouse
player\x = MouseX()
player\y = MouseY()

;If the player hits left mouse button, create a bullet
If MouseHit(LEFTMOUSEBUTTON)

bullet.bullet = New bullet ;create bullet
bullet\x = player\x ;place bullet at player’s x coordinate
bullet\y = player\y ;place bullet at player’s y coordinate
bullet\bullettype = NORMALBULLET ;make it a normal bullet

;increment left mouse clicks
leftmouseclicks = leftmouseclicks + 1

EndIf

;If the player hits left, we will scroll the background left
If MouseDown(RIGHTMOUSEBUTTON)

bullet.bullet = New bullet ;create bullet
bullet\x = player\x ;place bullet at player’s x coordinate
bullet\y = player\y ;place bullet at player’s y coordinate
bullet\bullettype = LASER ;make it a laser

;add amount of right mouse clicks since last frame
rightmouseclicks = rightmouseclicks + MouseHit(RIGHTMOUSEBUTTON)

EndIf
End Function

Chapter 10 ■ Handling Input304

Whew, big difference, huh? This function had a massive overhaul, because you are no
longer using the keyboard. The function begins by assigning the coordinates of the ship
to the coordinates of the mouse using the functions MouseX() and MouseY(). If you remem-
ber, MouseX() and MouseY() return the coordinates of the mouse at the given time.

After this, we determine if the player has clicked any mouse buttons. If so, the program
creates a bullet. The tests for the left and the right mouse button begin in the same way: a
new bullet is created with the coordinates of the player. This creates the bullet directly
under the player, giving the illusion that the player’s ship actually fired the bullet. The next
line marks a difference between the left mouse test and the right mouse test. If the player
clicked the left mouse button, the bullet type of the bullet is set to NORMALBULLET, whereas,
if the player clicked the right mouse button, the bullet type is set to LASER.

The last section of each of the tests increments either the left mouse-click counter or the
right mouse-click counter, depending on which button was clicked. You can see that the
actions taken to increment the counter are different in each test, and if you need help
understanding why, see the accompanying note.

n o t e

Look at the end of each of the mouse input tests for both the left mouse button and the right mouse
button: do you notice how each line is different? Both lines increment their respective counters that
detail how many times a laser or bullet has been fired, but they do so in a different way. The first
test, MouseHit(LEFTMOUSEBUTTON), adds 1 directly to the left mouse-click counter, whereas the sec-
ond test, MouseDown(RIGHTMOUSEBUTTON) adds the return value of a MouseHit(RIGHTMOUSEBUTTON)
to its counter. Why can’t we just add one to the right mouse-button counter?? Well, in the first test,
we used MouseHit() to determine if the left mouse button was clicked. If you remember, Mouse-
Hit() always returns 1 when the key (here, the left mouse key) is clicked once. Because we are call-
ing MouseHit(), we know for a fact that the key was clicked once, so we add one to the counter.
On the other hand, we use MouseDown() for the right mouse button test. MouseDown() returns 1 as
long as the button is being held down, not only if the button is being pressed (like MouseHit()
does). In other words, a new bullet can be created even though the key was not released and then
pressed again—the new bullet is created just because the key is being held down. Because of this
fact, we add KeyHit(RIGHTMOUSEBUTTON) to the counter, which will add one if the right key is
released and then pressed again, and zero if it is simply held down.

Anyway, we can now move on to the final function: UpdateBullets().

;Function UpdateBullets() - Moves each bullet onscreen
Function UpdateBullets()

;For every bullet, move it up 5 pixels.
;If it goes offscreen, delete it, otherwise, draw it
For bullet.bullet = Each bullet

;If bullet moves offscreen, delete it, otherwise, draw it onscreen.

Mapping the Mouse to the Screen 305

;Draw laserimage if it is a laser, bulletimage if it is a bullet
If bullet\y < 0

Delete bullet
ElseIf bullet\bullettype = NORMALBULLET

bullet\y = bullet\y - 5 ;Move bullet up
DrawImage bulletimage, bullet\x, bullet\y ;Draw the bullet

ElseIf bullet\bullettype = LASER
If player\x <> bullet\x

Delete bullet
Else

DrawImage laserimage, bullet\x, bullet\y
;Draw the laser

EndIf
EndIf

Next ;Move to next bullet

End Function

This function begins by moving each bullet upward five pixels. The function then deter-
mines if the bullet is on the screen or if it has moved offscreen. If the bullet’s y coordinate
is less than 0, the bullet is offscreen. When this happens, the bullet is deleted using the
Delete function. If the bullet wasn’t deleted, the function tests to see what type the bullet
is, using bullet\bullettype. If the bullet is a normal bullet, the program draws the bullet at
the proper coordinates. If the bullet is a laser, the program must do a few more tests.

Because the laser follows the player around, and it stretches to the end of the screen, we
do not want the player’s x coordinate to be any different from the laser’s x coordinate.
Therefore, we test the player’s x against the bullet’s x using the Not Equal To operator <>.
If player\x and bullet\x are not equal to one another, the laser is deleted. If the player’s x
and the bullet’s x are equal to one another, the laser is drawn on the screen.

That is it for demo10-09.bb. Figure 10.17 is a screenshot taken from the program.

All right, I hope you understand basic mouse input now. Before we move on to joystick
input, I want to go over the middle mouse wheel.

The Middle Mouse Wheel
As you know, many mice have a middle mouse button in addition to the normal right and
left mouse buttons. Often, the middle mouse button is a scrolling wheel, which can be
used in programs such as Internet Explorer to scroll up and down. BlitzPlus provides sup-
port for the middle mouse wheel, both in clicking and in scrolling.

Chapter 10 ■ Handling Input306

You already know how to determine if the middle mouse button was clicked. To do this, just
call MouseDown() with 3 as its parameter.You would write something like this in your program:

If MouseHit(3)
;perform actions

EndIf

Not that difficult, eh? Determining if the mouse was scrolled is almost as easy.

Remember at the beginning of the mouse input section, where we used the two functions
MouseX() and MouseY()? If you remember, MouseX() and MouseY() gave the coordinate posi-
tion of the mouse. BlitzPlus provides the function MouseZ() that tests the mouse wheel to
determine if it has scrolled.

c a u t i o n

The BlitzPlus program on the CD does not allow the function MouseZ() to be used. This is very
unfortunate, because you cannot determine if the mouse wheel has been scrolled on your demo
program. The full version of BlitzPlus does allow the function MouseZ() to be used, however. You
can buy the full version at http://www.blitzbasic.com.

Mapping the Mouse to the Screen 307

Figure 10.17 The demo10-09.bb program.

The demo10-10.bb program will not work if you try to compile it from the BlitzPlus pro-
gram. You will get a “Function not Found” error. The executable file however, does work,
so just use that. This program shows you how you can use MouseZ() if and when you pur-
chase the full version of BlitzPlus.

MouseZ() begins at 0 when your program begins. As you scroll the mouse wheel away from
you (upward), MouseZ() increases. As you scroll the mouse wheel toward you (downward),
MouseZ() increases. See Figure 10.18; it might help illustrate what scrolling the mouse
“upward” and “downward” means.

Anyway, to test for what MouseZ() is, you simply call the function. There are no parame-
ters or anything to look for. So, let’s try a sample program, demo10-10.bb. This program
scrolls the background 20 pixels as you scroll the mouse wheel.

;demo10-10.bb - Demonstrates use of MouseZ()

;Set up graphics and backbuffer
Graphics 800,600
SetBuffer BackBuffer()
;Load images
backgroundimage = LoadImage("stars.bmp")
shipimage = LoadImage("ship.bmp")

;MAIN LOOP
While Not KeyDown(1)

;Scroll the background 20 pixels with each mouse wheel scroll
scrolly = MouseZ() * 20

;Tile the background

Chapter 10 ■ Handling Input308

Figure 10.18 Scrolling a mouse wheel.

TileBlock backgroundimage,0,scrolly

;Draw the player
DrawImage shipimage, MouseX(), MouseY()

Flip
Wend
;END OF MAIN LOOP

n o t e

Take note that, unfortunately, the demo does not support MouseZ(), probably because of some error
in the coding. The actual program does support MouseZ(), however. If you try to compile this code
with the demo version of BlitzPlus, it will not work correctly, but it will work with the full version.

As you can see, the program sets scrolly to MouseZ() * 20. Multiplying MouseZ() by 20
forces the scrolling variable to change by 20 pixels with each change in the mouse wheel.
This means that the background will scroll faster and easier. Try changing 20 to a differ-
ent number and see what happens. If you set 20 to a smaller number, you will notice that
the background scrolls much slower, whereas making it larger makes the background
scroll faster.

The following figure, Figure 10.19, is a screenshot directly from demo10-10.bb.

Okay, before we move on to the next section, there are a few miscellaneous mouse func-
tions that you should know. Like FlushKeys(), BlitzPlus provides the function FlushMouse().
This function clears the computer’s memory of keys that have been pressed on the mouse.

WaitKeys() is another function that has a keyboard counterpart, WaitKeys(). This function
waits for the player to press a button on the mouse before resuming the program’s execution.

GetMouse() can be used when you want to get a key that the player pressed, but do not know
what it will be. GetMouse() has no parameters, but if a button is pressed, it returns the
number of the pressed button. Therefore, if the left mouse button was pressed, 1 is
returned; if the right mouse button was pressed, 2 is returned; and if the mouse wheel was
pressed, 3 is returned.

Last, BlitzPlus provides the function MoveMouse(). This function has the declaration

MoveMouse x,y

This function moves the mouse to the coordinates you feed it. Therefore, if you type
MoveMouse(0,0), the mouse moves to the top-left corner of the screen.

All right, that is it for mouse input. Next up: joystick input.

Mapping the Mouse to the Screen 309

Handling Joystick Input
As you know, mice and keyboards are the most common input devices for games.
However, there are many other devices that are used, just not as commonly. Game pads
and joysticks are used for many flying and racing video games.

BlitzPlus provides support for joysticks, much like its support for keyboards and mice.
However, I do not want to go over joysticks entirely, because the subject is large and infre-
quently used. However, if you want to learn about joysticks, I have compiled a list (see
Table 10.6) of the most useful functions, their parameters, and their return values.

Chapter 10 ■ Handling Input310

Figure 10.19 The demo10-10.bb program.

You probably noticed that only two parameters are used in all of the functions. The para-
meter [port] is used only when there is more than one joystick connected to the comput-
er. A port is a number that refers to the place on your computer where the joystick is
plugged in. Almost always, just leave [port] blank.

The parameter button refers to the buttons on your joystick. The first mouse button begins
at one, and the last button depends on the make of the controller. Usually, there are at least
three buttons total.

You can call JoyX# (and also JoyY#, Z#, U#, and V#) like this:

returnvalue = JoyX#()

Returnvalue will now contain a value between �1 and 1.

Handling Joystick Input 311

Table 10.6 Joystick Functions

Function Description

JoyType ([port]) This function determines if a joystick is currently connected to the
given port. The function returns 0 if there is no joystick, 1 if the
joystick is digital, and 2 if the joystick is analog.

JoyDown (button,[port]) This function returns 1 if the specified button is being held down.
JoyHit (button, [port]) This function returns the number of times the specified joystick button

has been pressed.
GetJoy ([port]) This function returns the number of the button that was pressed.
WaitJoy ([port]) This function stops the program's execution until a joystick button is

pressed.
JoyX# ([port]) This function returns the x coordinate of the joystick. The return value

can range from �1 (far left) to 1 (far right), with 0 being directly in
the center.

JoyY# ([port]) This function returns the y coordinate of the joystick. The return value
can range from �1 (far up) to 1 (far down), with 0 being directly in
the center.

JoyZ# ([port]) This function returns the z-axis of the joystick. Usually, the z-axis is a
button. The value can range from 0 to 1 (none to max).

JoyU# ([port]) Depending on the joystick, this function can be used to detect a slider,
a throttle, or a button; this is referred to as the u-axis. This function
returns a value between �1 and 1.

JoyV# ([port]) Depending on the joystick, this function can be used to detect a slider,
a throttle, or a button that is different than the one in JoyU#; this is
referred to as the v-axis. This function returns a value between �1 and 1.

FlushJoy This function flushes all of the commands in the joystick's queue,
much like FJoyType FlushKeys().

Summary
Whew, that was a long chapter. Hopefully, you now understand the basis of input. Mouse,
keyboard, and joystick input are used in all games, and it is of the utmost importance that
you have a firm grasp of these concepts. This chapter covered the following concepts:

■ Receiving keyboard input with KeyDown() and KeyHit()

■ Displaying a mouse cursor

■ Handling mouse key presses with MouseDown() and MouseHit()

■ Using the middle mouse wheel

■ Handling joystick input

Even though BlitzPlus provides you with a large number of functions (I didn’t even go
over them all), only a few are absolutely necessary. You will almost definitely be using
either KeyDown() or MouseDown() in your programs. Other functions, such as FlushKeys(),
only occasionally.

Anyway, get ready for the next lesson. We are moving on to something really fun: sound.
You will learn how to use sound in your games to give the effect of action!

Chapter 10 ■ Handling Input312

313

Sounds and Music

chapter 11

If you’ve played any games lately, you know the difference that sound can make. Sound
not only makes you feel like you are part of the game, but it can also provide clues about
what’s around the corner. Many newer games even support multi-channel sound, which
allows you to hear sound in more than one direction. In multi-channel sound, you have
more than two speakers (many systems have as many as five, and sometimes even more
located around the player). All of these speakers, or channels, can play different sounds at
the same time. You can hear someone approaching from behind you (from the speakers
that are located to your back), yet when you turn around to face him, the footsteps are
emitted from your front speakers!

BlitzPlus provides a lot of support for both sound and music, and this chapter teaches you
how to use both. First up, sound!

Sound
In the introduction, I said that we will learn about both sound and music in this chapter,
and you might be thinking that they are the same. Nope! BlitzPlus refers to sounds and
music as two different entities. Unlike music, sound is played dynamically. What does this
mean? The game does not play sound files over and over. Instead, the sound is only played
at specific times. Take, for example, a gun. You don’t want a gunshot to ring over and over;
you want it to make a sound only when the gun actually shoots.

For this book, we will be using the .WAV file format for the sound files. What is the .WAV
file format, you might ask? It is a file format that represents a sound on the computer. This
sound format does not have any quality loss like some other file formats (which we will
discuss later), so the sound from a .WAV file is “cleaner.” I have included a number of roy-
alty-free sound files on the CD, most in .WAV format, that you can use in your programs.
By the way, WAV stands for “Windows Audio Volume.”

Anyway, let’s get started. First off, we need to know how to load sounds.

Loading Sounds
Remember images? It was extremely easy to load them, right? We just used the LoadImage()
function. Well, BlitzPlus makes loading sounds just as easy: we use the LoadSound() func-
tion. LoadSound() is declared as follows:

LoadSound (filename$)

Table 11.1 describes the parameter for LoadSound().

You load sounds just like you load images.

soundfile = LoadSound ("soundfile.wav")

Change soundfile and soundfile.wav to the name of the variable and file of the sound you
want to load into your program.

n o t e

From this point on, I use a certain style for my sound files. Whenever I load them, I call the variable
that holds the file, xxxxxsound.wav, where xxxxx describes the sound. For example, to load the
sound of a laser, I would call the sound lasersound, and I would load it as follows: lasersound =
LoadSound (laser.wav).

By the way, there is something else you might want to know. The name of the variable that
contains the sound (in the previous example, soundfile) is called a handle. Why is it called
a handle? Well, basically, you use the handle variable as an address or reference to the
object. So a “handle” helps you refer to something—in this case a sound file. When you
want to manipulate a sound file, you need a handle to access it; it’s like a key to a lock.

Okay, I hope you understand loading sounds thus far. Before I move on, I want to detail
one little function. This function is FreeSound. FreeSound deletes a sound from the memo-
ry. After freeing the sound, you can use LoadSound() and load another sound file with the
same handle name. Following is the function declaration for FreeSound.

FreeSound sound_variable

Chapter 11 ■ Sounds and Music314

Table 11.1 LoadSound()'s Parameter

Parameter Description

filename$ The file name of the sound file you want to load.

And, as you probably guessed, Table 11.2 explains the parameter.

You might use this function in a game with numerous levels, perhaps because you use dif-
ferent sounds from one level to the next. By freeing the sound, you are free to load anoth-
er sound with the same handle that can then be used in place of the old sound.

Let’s consider one more example of when you might use FreeSound. Say you were writing
a game that uses a handgun. Maybe you named the sound that is played when the player’s
gun is fired playergunsound. Now, imagine that the player receives a silencer that can be
placed on the gun. The gun with the silencer, of course, sounds much different than the
gun without the silencer. The easiest way to do this is to delete the old non-silenced sound
from memory and load the silenced sound into the same handle name. That way, the
game will continue to play the sound that is loaded in playergunsound, even though the
sound file has changed. Take a look at Figure 11.1. In the first frame, playergunsound con-
tains gunshot.wav. This sound file is just the sound of a regular gunshot. In frame two,
FreeSound has been called and playergunsound doesn’t contain anything. In the third and
final frame, LoadSound() was called again and playergunsound now contains silencer.wav.

Let’s try this in code. Your program might look something like this.

;Load the beginning sound for regular gunshot
Global playergunsound = LoadSound ("gunshot.wav")

;Begin MAIN LOOP
While Not KeyDown(1)

Sound 315

Table 11.2 FreeSound's Parameter

Parameter Description

sound_variable The handle to the sound file you want to delete from memory.

Figure 11.1 Playergunsound.

If GunshotOccurred()
PlayGunshotSound()

Endif

If SilencerAttached()
SwitchSoundFiles()

Endif

Wend ;END OF MAIN LOOP

;Function SwitchSoundFiles() switches regular gunshot sound file
;with silenced gunshot sound
Function SwitchSoundFiles()
FreeSound playergunsound
playergunsound = loadsound("silencer.wav")
End Function

This code sample, of course, will not work if you copy it straight into BlitzPlus. Most of
the functions used are user-created functions that we haven’t made, but you can probably
figure out what they do. GunShotOccurred() would return True if a gunshot occurred;
PlayGunshotSound() would play the playergunsound file; SilencerAttached() returns True if a
silencer is attached to the gun; and SwitchSoundFiles() (which is also user-defined) deletes
the old gun sound and attaches the new silenced gun sound.

With this technique, you can change sound files without disturbing the main section of
your game.

All right, I hope you understand this. Let’s move on to the next section, which teaches you
how to actually play the sounds.

Listen Closely—Playing Sounds
You’ve gotten this far into the chapter, and you probably want to learn how to actually lis-
ten to those beautiful sounds that you just learned to load. BlitzPlus provides us with an
easy way to play sounds.

This function is called PlaySound. (Predictable, huh?) It is declared as follows.

PlaySound sound_variable

Take a wild guess what sound_variable is. Yep, you got it: sound_variable is the handle of the
sound file you loaded using LoadSound(). In other words, you can load a sound clip like this:

explosionsound = LoadSound("explosion.wav")

Then you play it like this:

Chapter 11 ■ Sounds and Music316

PlaySound explosionsound

Crazy difficult, huh? Anyway, Table 11.3 summarizes PlaySound’s parameter.

Okay, let’s use this function in a sample program. Let’s begin with a scrolling background.
(Why? Because it is easy and always fun to do.) Then we can add the nice-looking space-
ship we use way too often. Then, and listen closely because this is the fun part, we allow the
player to fire a bullet using the spacebar. The firing of a bullet creates a bullet-firing sound.

Let’s also add an enemy spaceship to the mix. This enemy is like me: he moves in a ran-
dom fashion, is never predictable, and has no self-defense capabilities whatsoever.
Anyway, when the bullet hits this crazy mini-me, an explosion sound is played, and the
enemy is destroyed. His ship is then reset.

Hey, I wanted to make this program a little weird, so I used a picture of myself for the
enemy ship. Well, just watch.

Anyway, Table 11.4 explains the keys for the program.

I was going to show the entire
source for the program, but I
realized it takes up about five
pages. I am in the mood to save
some trees, so I will just display
the important parts. The first
code block I will show you is
taken from the initialization
section of demo11-01.bb.

;SOUNDS
;Load the sound that is played when the player fires a bullet
Global bulletsound = LoadSound("zing.wav")

;Load the sound that is played when the player destroys the enemy
Global explosionsound = LoadSound ("explode.wav")

Sound 317

Table 11.3 PlaySound's Parameter

Parameter Description

sound_variable The handle to the sound file (loaded with LoadSound()) you want to play.

Table 11.4 Demo11-01.bb's Keys

Key Action

Esc Exits the game
Up arrow Moves ship up
Down arrow Moves ship down
Right arrow Moves ship right
Left arrow Moves ship left
Spacebar Fires bullet

I bet you can guess what this does! This code loads both of the sounds that are used in the
program.

Let’s move on to using those loaded sounds. The following source is the UpdateBullets()
function.

;Function UpdateBullets() - Moves and tests each bullet for collision
Function UpdateBullets()

;Loop through every bullet
For bullets.bullet = Each bullet

;Update the bullet’s position by moving 5 pixels up
bullets\y = bullets\y - 5

;Draw the bullet at its proper coordinates
DrawImage bullets\image, bullets\x, bullets\y

;If the bullet hit the enemy, play the explosion and reset the level
If ImagesOverlap(enemy\image,enemy\x,enemy\y,

bullets\image,bullets\x,bullets\y)
PlaySound explosionsound ;Play the explosion
Cls
Text 260,300, "You destroyed the enemy! How could you?"
Flip
Delay 4000
ResetLevel() ;Reset all variables of the level
Return ;Go back to main loop

EndIf

;If the bullet goes offscreen, delete it
If bullets\y < 0

Delete bullets
EndIf

Next ;Move on to next bullet
End Function

As you probably guessed, this function updates all of the bullets onscreen. It begins by mov-
ing each bullet up five pixels, and then draws the bullet. The bullet then tests for a collision.

Chapter 11 ■ Sounds and Music318

The collision test uses the function ImagesOverlap(). As you might remember,
ImagesOverlap() tests two images, here enemy\x and bullets\x, to see whether they have
overlapped one another. If they have, the explosion sound is played using the command
PlaySound.

PlaySound explosionsound ;Play the explosion

The rest of the function clears the screen and displays some text. It then resets the level,
and, using the Return command, returns back to the main loop.

c a u t i o n

You might be wondering why I used the Return command to go back to the main loop instead of
just letting the function finish going through its instructions. Here is the reason why: Within the
function ResetLevel() (which is called directly before the Return command), all of the bullets are
deleted. This includes the bullet that was just being processed. Because the bullet no longer exists,
how could we perform the actions of the next line, which tests to see whether the bullet has gone
offscreen? There is no way, so in order to fix this situation, we just return back to the main loop and
start from scratch.

The last part of the function just tests to see whether the bullet is offscreen. If it is, the bul-
let is deleted.

The PlaySound function is used once more in the program. The following block is ripped
from the TestKeys() function.

;Create a new bullet if spacebar is hit
If KeyHit(SPACEBAR)

bullets.bullet = New bullet ;Create the bullet
bullets\x = player\x ;Assign bullet to player’s x
bullets\y = player\y ;Assign bullet to player’s y
bullets\image = LoadImage("bullet.bmp") ;Load the bullet image

;Play the bullet sound
PlaySound bulletsound

EndIf

What does this do? Well, it begins by testing to see whether the player has pressed the
spacebar. If he has, the program then creates a new bullet. The program then assigns the
bullet’s starting coordinates to the player’s starting coordinates. The bullet’s image is then
loaded.

The block ends by playing bulletsound. This sound is created every time a new bullet is
created.

Sound 319

That’s it for this crazy program. Figure 11.2 shows the program in its full glory. Wow, I
look so bad in that photo. (You try finding a good picture of me in the last few years!)

Okay, so we now know how to play a sound. We’re not done yet, folks! BlitzPlus provides
some really cool tools that make sounds a lot more fun to use.

BlitzPlus gives us three functions: SoundPitch, SoundVolume, and SoundPan. These three func-
tions can be used in conjunction with each of your sound files to produce some absolute-
ly sweet effects. Let’s go over each of them in order, beginning with SoundPitch.

SoundPitch: Am I a Devil or a Chipmunk?

What is pitch? In essence, the pitch of a sound determines how high or low the frequency
of the sound is. Take the guy at your school who has been held back six or seven years. He
probably has a very deep voice. This guy’s voice has a very low pitch. Now take that other
kid who seems like he is still six years old. That kid has the voice of a chipmunk! His voice
has a very high pitch.

Chapter 11 ■ Sounds and Music320

Figure 11.2 The demo11-01.bb program.

Pitch is measured on a scale called hertz. The scale of hertz goes from 0 to infinity, but for
humans, 44,000Hz is about the absolute max you could ever hear. (Actually, 22,000Hz is the
max, but in computers, we have to use two times the max to be able to sample the sound
properly.) That’s a large scale, huh? The lower the number, the deeper the sound. Usually, the
sound is slower as the pitch becomes lower, and the sound is faster as the pitch increases.

How might you use this in a program? Well, using hertz values in BlitzPlus is a lot differ-
ent than using hertz values in real life. The values that I give are attributed to sounds in
BlitzPlus, and not to sounds in reality.

Think of someone with a really deep, gruff voice. They would have an average hertz value
of around 8,000Hz. Now take the should-be-in-third-grade-how-is-he-in-my-class boy
with the high-pitched voice. He probably has an average pitch of 44,000Hz.

When you load a sound into your programs, you don’t know what the hertz value is. To
change the hertz value to a value of your choice, you use the SoundPitch function.
SoundPitch is declared like this:

SoundPitch sound_variable, hertz

Table 11.5 details all of the parameters of SoundPitch.

Anyway, let’s write a program. This program allows you to create an explosion. If you press
the spacebar, the explosion sound is played, and by pressing up or down, you change the
hertz value by 1,000. We will also set the hertz of the variable to 22,000 to begin with (so
we have a starting point for the tests).

Following is the source from demo11-02.bb.

;demo11-02.bb - Demonstrates SoundPitch

Graphics 800,600

;Make sure backbuffer is drawn on and automidhandle is true
SetBuffer BackBuffer()
AutoMidHandle True

Sound 321

Table 11.5 SoundPitch's Parameters

Parameter Description

sound_variable The handle to the sound file you want to change.
hertz The hertz value you want to change sound_variable to (between 0 and 44000).

;IMAGES
;load the player’s ship image
playerimage = LoadImage ("spaceship.bmp")

;SOUNDS
;Load the bullet sound
explosionsound = LoadSound ("explode.wav")

;CONSTANTS
;The following constants are used for key codes
Const ESCKEY = 1,SPACEBAR = 57, UPKEY = 200, DOWNKEY = 208

;create hertz variable
hertz = 22000

;Make sure bullet has hertz value of hertz variable to begin with
SoundPitch explosionsound, hertz

;MAIN LOOP
While Not KeyDown(1)
;Clear the screen
Cls

;Make sure text is drawn in top left hand corner
Locate 0,0
Print "Current Hertz Value: " + hertz

;Play explosion sound if player hits spacebar
If KeyHit(SPACEBAR)

PlaySound explosionsound
EndIf

;If up is hit, increment hertz variable
If KeyHit (UPKEY)

hertz = hertz + 1000
EndIf

;If down is hit, decrement hertz variable
If KeyHit(DOWNKEY)

Chapter 11 ■ Sounds and Music322

hertz = hertz - 1000
EndIf

;Make the explosion have the same pitch as the hertz variable
SoundPitch explosionsound, hertz

;Draw the player
DrawImage playerimage, MouseX(), MouseY()

Flip
Wend
;END OF MAIN LOOP

Cool, huh? The program lets the player change the hertz by pressing up or down, and it also
synchronizes the explosion sound with the hertz value by using the SoundPitch function.

SoundPitch explosionsound, hertz

Figure 11.3 is a screenshot from demo11-02.bb.

Sound 323

Figure 11.3 The demo11-02.bb program.

All right, that’s it for pitch. Let’s learn how to use SoundVolume now.

SoundVolume

I bet you can guess what SoundVolume does. Simply put, changing the volume of a sound
adjusts how loud or quiet the sound is.

SoundVolume is used a lot like SoundPitch. Here is the declaration:

SoundVolume sound_variable, volume#

sound_variable is the handle to the sound that you want to change the volume of. Volume#
is a floating-point variable between 0 and 1.000. The closer to 1 volume# is, the louder the
sound is. Table 11.6 summarizes the parameters.

Cool? Let’s make a program. Demo11-03.bb draws a randomly moving spaceship, and plays
a laser sound every time you press the spacebar. The farther away the enemy ship is from
your ship, the quieter the sound. If the ship is really close, the sound is played loudly.

This program is a long one, so I am just going to show two parts of it. The first is ripped
from the user-defined function FindCurrentVolume().

;Function FindCorrectVolume - Sets volume# to the correct value
;depending on distance from player to enemy
Function FindCorrectVolume()

;Find distance between player and enemy
dist = Distance(player\x,player\y,enemy\x,enemy\y)

;Assign the volume number to volume# depending on how far the
;distance is. The farther the distance, the quieter the sound
If dist < 100

volume# = 1.000
ElseIf dist < 200

volume# = .700
ElseIf dist < 300

volume# = .400

Chapter 11 ■ Sounds and Music324

Table 11.6 SoundVolume's Parameters

Parameter Description

sound_variable The handle to the sound file you want to work with.
volume# The volume you want to set sound_variable to. Can be between 0 and 1.000.

ElseIf dist < 400
volume# = .1000

Else
volume# = 0.000

EndIf

The first thing this function does is find the distance between the enemy and the player
using the Distance() function we wrote in Chapter 9, “Collision Detection.” (I copied the
source from the Distance() function into this program.) It then assigns volume# to a num-
ber depending on how high dist is. If dist is higher, the spaceship is farther away; there-
fore, the sound should be quieter. The block of If…ElseIf…Else statements determines how
loud the volume should be.

The next and last part of demo11-03.bb actually uses the SoundVolume function.

;Create a new bullet if spacebar is hit
If KeyHit(SPACEBAR)

;Find what volume# should be
FindCorrectVolume()

;Assign bulletsound to volume#
SoundVolume bulletsound, volume#

;Play the bullet
PlaySound bulletsound

EndIf

This code is executed when you press the spacebar. It calls FindCorrectVolume(), which
assigns volume# to its correct value. The code then adjusts the volume of bulletsound
depending on the volume# variable. The block finally plays the sound clip of the bullet.

Figure 11.4 is a screenshot taken from demo11-03.bb.

All right, that’s it for SoundVolume. We only have one more function to learn about before
we move on to playing music!

Sound 325

SoundPan

Good things always come in threes, huh? There are three major video game consoles, three
months of summer, and three Pepsis on my desk that keep me up late. Well, there are also
three sound-editing functions. We have already discussed two of them (SoundPitch() and
SoundVolume()). SoundPan is the third and last one.

SoundPan offers a very cool effect: it allows you to create the illusion of moving sound by
letting you pick which speaker the sound plays out of. You can have the program play
sound out of the left speaker, the right speaker, or both. This allows you to make the play-
ers feel like the sounds are actually moving around them.

SoundPan is declared like this:

SoundPan sound_variable, pan#

Now this is the cool part: because pan# is a floating-point variable, you can have the sound
panned a little to the left but still playing slightly on the right. What do I mean? Well, if
you set pan# to �0.75, the sound would play 75% out of the left speaker and 25% out of
the right speaker.

Chapter 11 ■ Sounds and Music326

Figure 11.4 The demo11-03.bb program.

Sound_variable, as you probably know, is the handle to the sound you want to edit. Pan#
contains the amount you want to pan the sound. Pan# can be between �1.000 and 1.000—
if the number is negative, it will play predominantly out of the left speaker, and if it is pos-
itive, it will play mostly out of the right speaker.

Table 11.7 summarizes all of SoundPan’s parameters.

Cool? Let’s write a program. This thing is going to be easy: an enemy ship moves left and
right. When the player presses the spacebar, the sound is played. If the enemy is to the left
of the player, the sound is played completely out of the left speaker. If the enemy is to the
right of the player, the sound is played out of the right speaker. If the enemy is directly in
front of the player, the sound is played out of both speakers. The following is the main
loop that is taken from demo11-04.bb.

;MAIN LOOP
While Not KeyDown(ESCKEY)

;Tile the background
TileBlock backgroundimage, 0, scrolly
;increment the scrolling variable
scrolly = scrolly + 1

If scrolly > ImageHeight(backgroundimage)
scrolly = 0

EndIf

;Print all text at top-left corner
Locate 0,0
Print "Panning variable: " + pan#

;set up player coordinates
player\x = MouseX()
player\y = MouseY()

;if enemy is to the left of player, make sound come out of left speaker

Sound 327

Table 11.7 SoundPan's Parameters

Parameter Description

sound_variable The handle to the sound you want to pan.
pan# The amount between �1.000 and 1.000 you want to pan the sound.

If enemy\x < player\x
pan# = -1.000
;If enemy is to right of player, make sound come out of right speaker

ElseIf enemy\x > player\x
pan# = 1.000
;If enemy is in front of player

Else
pan# = 0

EndIf

;Pan the sound
SoundPan bulletsound, pan#

;If player presses spacebar, play the sound
If KeyHit (SPACEBAR)

PlaySound bulletsound
EndIf

;Move the enemy according to his velocity
enemy\x = enemy\x + enemy\xv

;If the enemy goes offscreen, reflect his velocity
If enemy\x < 0 Or enemy\x > 800

enemy\xv = - enemy\xv
EndIf

;Draw the player and the enemy
DrawImage player\image,player\x,player\y
DrawImage enemy\image,enemy\x,enemy\y

Flip

Wend

Not that bad, eh? The main part is finding what the pan# variable should be. Pan# is used
as a parameter for SoundPan, and it determines how far to the left or right the sound should
pan. To find what pan# should be, we use the following code block.

;if enemy is to the left of player, make sound come out of left speaker
If enemy\x < player\x

pan# = -1.000

Chapter 11 ■ Sounds and Music328

;If enemy is to right of player, make sound come out of right speaker
ElseIf enemy\x > player\x

pan# = 1.000
;If enemy is in front of player

Else
pan# = 0

EndIf

This code sets pan# to �1 (left speaker) if the enemy is to the left of the player, 1 if the
player is to the right, and 0 if he is directly in front of the player. The last part of the main
loop I want to show you actually uses the SoundPan function.

;Pan the sound
SoundPan bulletsound, pan#

Pretty cool, huh? This function synchronizes the bullet sound with the pan# variable.

Figure 11.5 is a screenshot taken from the program. By the way, this program does not
work on everyone’s speakers, so if it doesn’t seem to pan out correctly, it might just be
your speaker hardware.

Whew! That’s it for sounds! Now we get to move on to using music in our games.

Sound 329

Figure 11.5 The demo11-04.bb program.

Music
You’ve gotten this far, but you might not quite understand the difference between music
and sound, at least on a computer. Here’s the thing, you have used sound so far to pro-
duce gunfire and explosion sounds. You can see that these sounds are played only at the
time of the actual explosion or at the time when the bullet is actually fired. Music, how-
ever, is played in the background while your game is running. Therefore, it is much easi-
er to use, because you can rig it up to play at the beginning of the game, and not worry
about the music from then on.

For the music examples in this book, I use the .MP3 format. BlitzPlus also allows you to
use the .WAV, .OGG, the .XMS, and the .MID formats for your games, but I won’t be cov-
ering them to keep things simple. These are all special formats that are like the .WAV for-
mat, but have small differences that won’t be explained. There’s a lot of information out
there if you want to learn about the other formats. Special thanks to Thomas Stenbäck and
every one else at Interim Nation for letting me use their music on the CD. You can visit
Interim Nation, the composers for the music on the CD, at http://www.interimnation.cin.

To begin understanding music in BlitzPlus, we first need to discuss channels.

Channels and PlayMusic()
What is a channel? Well, imagine you have a sibling who is talking to you. At that point,
the only thing you can hear is your sibling. Now, imagine that a phone located near you
begins to ring. Suddenly, you can hear two things at once, right? Well, at this moment,
there are two channels playing: the sibling channel and the telephone-ringing channel.

Now, the cool thing about channels is that you can edit each channel independently. What
does this mean? Well, for instance, say your sibling, who is currently on the sibling chan-
nel, begins to whisper to you. The volume of this voice has decreased. Using channels, you
can change the volume of one channel while leaving another the same. If you take a look
at Figure 11.6, you can see an example of how channels might work. There are two boxes,
both emitting sounds. One is on the right and one is on the left; thus, using the magic of
channels, the one on the left is panned far to the left and the one on the right is panned
to the right.

All we need now is to learn how to get control of a channel. Unlike handles, which you
retrieve by loading sounds, you must play a sound in order get access to a channel.

The most common way to get a channel is to use the function PlayMusic(). This function
is declared as follows:

PlayMusic(filename$)

Chapter 11 ■ Sounds and Music330

When playing music, you don’t
need to load the sound first. You
just call PlayMusic() with the prop-
er file name, and your sound is
good to go!

Say you wanted to load a techno
song named technosong.mp3.
This is what you would do:

technosong = PlayMusic("technosong.mp3")

As you can see, the function uses the PlayMusic() function and assigns the song to a chan-
nel variable. This variable can be used later for sound editing.

Notice that this line of code actually plays the music. That means that at the time of using
this line of code, technosong.mp3 will begin to play. If you want to load the sound before
using the sound file in the program, use the LoadSound()/PlaySound() functions. By the way,
PlaySound() also returns a channel variable, which you can use just as you can with chan-
nel variables from music files.

Okay, now that we know how to load a music file, let’s find out what we can do with those
channels. By the way, Table 11.8 lists PlayMusic()’s parameter.

Messing With ’Da Channels
The last section taught you how to play music files and load channels, and this section
teaches you how to use them. Following is a list of all the functions and their declarations
that can be used with channels.

■ StopChannel channel_handle

■ PauseChannel channel_handle

■ ResumeChannel channel_handle

■ ChannelVolume channel_handle, volume#

■ ChannelPan channel_handle, pan#

■ ChannelPitch channel_handle, hertz

Music 331

Figure 11.6 Channels and panning.

Table 11.8 PlayMusic()'s Parameter

Parameter Description

filename$ The full path and file name of the file you want to play.

That’s quite a few, but they are very easy to understand. Most of them don’t even require
parameters beyond the obligatory channel variable, and those that do aren’t tough.
Anyway, let me help you understand what these functions do.

The first half of the list (Stop, Pause, and ResumeChannel) can be separated into one group,
and the second half (ChannelVolume, Pan, and Pitch) can be separated into another group.
All of the functions within each group are related. The first group’s functions work much
like the Stop, Pause, and Resume buttons on a CD player. The StopChannel function stops
a song immediately. The song is shut down and can only be restarted from the beginning.
PauseChannel and ResumeChannel, however, allow you to pause and begin playing a music file
anywhere within the song. PauseChannel pauses the song and ResumeChannel picks up the
song from the same point that was left off.

You can use these functions in numerous situations. Say you have a game with a monster
alien at the end. The music plays in the background, and when you get to the monster, you
want the music to stop playing while the monster says or does something. What you do is
call PauseChannel right when the monster appears onscreen, and after he finishes his speech
or video or whatever, you call ResumeChannel to begin the music right from the starting point.

Anyway, Table 11.9 explains the parameters in the StopChannel, PauseChannel, and
ResumeChannel functions.

All right, cool. Next up is the second group, which consists of the functions ChannelVolume,
ChannelPan, and ChannelPitch.

Do you remember the SoundVolume, SoundPan, and the SoundPitch functions? Well these work
in the same way. ChannelVolume adjusts the volume of the music playing from the given
channel. The volume# variable can be anywhere between 0 and 1.000, with 0 being the soft-
est and 1.000 the loudest.

ChannelPan allows you to adjust the direction the sound is coming from. The value of the
sound can be anywhere from �1.00 to 1.00. �1.00 is from the far left and 1.00 is on the
far right, and of course, 0.00 is directly in the center.

The last function that can be used with music is ChannelPitch. ChannelPitch uses a hertz
value between 0 and 44,000, with 44,000 being the highest-pitched sound and 0 being the
lowest-pitched sound. (Actually 0 means no sound!)

Chapter 11 ■ Sounds and Music332

Table 11.9 Stop/Pause/Resume Channel's Parameters

Parameter Description

channel_handle The channel you want to stop/pause/resume.

The cool thing about these functions is that every change you make to them happens in
real-time—you do not have to replay the music files every time you want to hear the
changes. For example, if you had a program with music playing from the right and music
playing from the left, and the player turns his character around 180 degrees, all you have
to do is call ChannelPan and you’re done, rather than playing the sound again.

Table 11.10 lists the parameters for ChannelVolume, ChannelPan, and ChannelPitch.

Okay, I included a program, demo11-05.bb, that allows you to play with a music file. You
can change its volume, pan it, and change its pitch. You can also pause, stop, and resume
the song. Table 11.11 details all of the keys for demo11-05.bb.

The source for demo11-05.bb is
very long, so it’s not included in
the book. Feel free to check it out
on the CD. By the way, listen to
the song included in the demo—
it’s very cool.

Figure 11.7 is a screenshot from
demo11-05.bb.

There are a few more channels
that you might want to know a
bit more about. The first func-
tion, ChannelPlaying(), tests to see

whether a channel is currently playing. If the music file is playing, ChannelPlaying() will
return 1; if it is not playing, ChannelPlaying() returns 0.

You would use this function when you want your background music to play more than
once, back to back. This is called looping, which is the action of playing the same music
file over and over without a break in the middle. How would you do it? Maybe like this:

Music 333

Table 11.10 ChannelVolume/Pan/Pitch's Parameters

Parameter Description

channel_handle The channel that contains the sound you want to edit.
volume# The volume (between 0 and 1.00) you want to assign to the channel.
pan# The panning value (between �1.00 and 1.00) you want to assign to the channel.
hertz The hertz value (between 0 and 44,000) you want to assign to the channel.

Table 11.11 Demo11-05.bb's Keys

Key Action

Up Arrow Increases pitch by 100 hertz
Down Arrow Decreases pitch by 100 hertz
Left Arrow Pans music to left by �.1
Right Arrow Pans music to right by .1
'A' key Increases volume by .1
'Z' key Decreases volume by .1
'P' key Pauses sound
'R' key Resumes sound
'S' key Stops sound

coolsong = PlayMusic("song.mp3")
;MAIN LOOP
While Not KeyDown(1)
If Not ChannelPlaying(coolsong)

coolsong = PlayMusic ("song.mp3")
Endif

Sound files are easier to loop. BlitzPlus provides a function, LoopSound, which you can use
to play a sound file over and over again. LoopSound is declared like this:

LoopSound sound_variable

All you do is pass the handle to the sound file to this function. After you do that, call
PlaySound with the handle of the sound, and the file will play over and over.

Chapter 11 ■ Sounds and Music334

Figure 11.7 The demo11-05.bb program.

Summary
BlitzPlus really makes it easy to use sound and music within games, and sound and music
really make a difference in a game. They provide a nice tone and setting for the game.
Using background music, you can give the player the feeling of a frenetic action mission
or a slow searching mission.

To review, the main topics that we covered are:

■ Loading sounds

■ Playing sounds

■ Using PlayMusic() and channels

■ Editing channels

By the way, there are a lot of sounds and music files on the CD. Thomas Stenbäck pro-
vided all the music files, and they sound great.

In the next chapter, we are going to cover artificial intelligence. You will learn how to make
computers think and act—well sorta!

Summary 335

This page intentionally left blank

337

Artificial Intelligence

chapter 12

As we near the end of this book, we get more to the heart of computer game program-
ming. Unlike any other program that you will find on computers, games need to be able
to actually make the computer think! Well, maybe not think, but at least appear as if it
were thinking :). In games that have enemies that are not human-controlled, the comput-
er has to take over and play against the player. This chapter provides you with the tools to
make any enemy appear to act as a human would.

The art of artificial intelligence can be extremely complicated and tough to follow; there-
fore, this chapter is a very quick primer to some easier parts of artificial intelligence. There
are many more interesting topics above and beyond what I’ll teach you, and if you want
to learn about some of them, I suggest you seek out other books on the topic.

I’m sure you’re itchin’ to get started, so I’m going to conclude the introduction right now.
I mean, now. Seriously, the intro is over. I’m not joking.

Random Numbers
The first part of artificial intelligence we’re going to learn is how to use random variables
in programs. Using random variables in programs isn’t really intelligent, but it’s a first
step, right?

In order to generate random numbers, we need to call two functions. The first one we call
is named SeedRnd.

SeedRnd is declared like this:

SeedRnd seed

What is a seed? Well, SeedRnd works like this: it feeds the computer a number that will be
used later to create pseudo-random numbers. We need to make seed equal to a number
that changes every time the game is played; otherwise, the “random” numbers will always
be the same every time the game is played.

The function MilliSecs() is a function that changes every time the program runs. This
function returns the number of milliseconds in the system timer (since the computer last
started up). Because the time on the system timer changes continuously, MilliSecs() is a
good choice for a value to feed SeedRnd.

At the beginning of a program that uses random variables, we call SeedRnd as follows:

SeedRnd MilliSecs()

Pretty cool, huh? After doing that, we can continue to use random numbers. Note that
SeedRnd doesn’t actually perform any noticeable functions in a program; it simply sets up
the program to use random variables later in the program.

Now that we have set up the random generator (by calling SeedRnd), we are able to actual-
ly find those random numbers. There are two functions that are provided by Blitz Basic.
These functions are Rnd and Rand.

Both of these functions have similar declarations.

Rand ([start], end)
Rnd (start#, end#)

Chapter 12 ■ Artificial Intelligence338

Random Variables: Really Random?

Here is an interesting bit of information about random numbers in computers: finding a true ran-
dom number is almost impossible. Computers only take input, process it, and produce output—
they are not built to produce random numbers, for the most part. Therefore, computers can only
produce pseudo-random numbers. What is a pseudo-random number? It is a number that, even
though it might appear to be random, isn’t truly random. For example, if you print out ten million
random numbers, you shouldn’t be able to detect any patterns, and there should be an equal dis-
tribution between the numbers. However, if you try this on a computer, you will see patterns and
you will see slight unevenness in the numbers. For the purposes here, though, the pseudo-random
numbers are close enough to random!

As you can see, they are almost the same. First of all, let me help you understand what
those parameters are.

The parameter names for both Rand() and Rnd() are the same. The start|start# parame-
ter is the smallest possible value for the random number, and end|end# is the largest pos-
sible value for the random number. That was probably a little hard to comprehend, so let
me explain it better. When using one of the random functions, you will usually feed it two
parameters. For example, you might do something like this:

randomvalue = Rand (100,200)

Because you handed Rand() the parameters 100 and 200, randomvalue will now contain a
number between 100 and 200. You can change the parameters slightly to see what I mean.
If you changed the 100 to 50 in the previous call, randomvalue would contain a number
between 50 and 100.

Also, one other thing. You might have noticed that the [start] parameter in Rand() is
optional (as signified by the brackets). Because it is optional, you are only required to pro-
vide Rand with one parameter. If you neglect to include [start], Blitz Basic will assume that
you want the [start] parameter to equal to 1. Therefore, calling Rand() as follows

Rand (205)

returns a random number between 1 and 205.

Both Rand() and Rnd() have the same parameters, except Rand()’s are integers and Rnd()’s
are floating points. Remember, an integer is a number without a decimal point (for exam-
ple, 314), whereas a floating-point variable has a decimal attached (for example, 314.13,
where “.13” is the decimal).

The fact that Rnd() allows you to provide it with floating-point parameters means that you
can make your random variables contain numbers with decimal points. If you call Rnd()
like this:

Rnd (1.000,14.000)

the function will return a number between 1.000 and 14.000. It could end up being a
number such as 3.133 or something like that.

If you decided to call Rand() in the same way, the number would end up being only an
integer, such as 4 or 9. Take a look at Figure 12.1 to see what happens when you call the
Rand() function with floating parameters. As you can see, even if you provide Rand() with
floating-point numbers as parameters, it will still return an integer. It does this by finding
the random number and deleting the decimal point.

Random Numbers 339

All right, excellent. Hopefully you understand how to determine random numbers. Now,
let’s put this into a program.

Following is the source to demo12-01.bb.

;demo12-01.bb - Demonstrates random variables
Graphics 800,600

;Set up automidhandle and backbuffer
AutoMidHandle True
SetBuffer BackBuffer()

;Make sure we seed the random generator
SeedRnd MilliSecs()

;Now we load the image that we will use.
flyimage = LoadAnimImage ("fly.bmp",64,64,0,4)
;create a starting frame value
frame = 0

;create the x and y values for the fly
flyx = 400
flyy = 300

;MAIN LOOP
While Not KeyDown (1)

;Clear the screen
Cls

Chapter 12 ■ Artificial Intelligence340

Figure 12.1 Using Rand() with floating-point parameters.

Text 0,0,"Fly X: " + flyx
Text 0,20,"Fly Y: " + flyy

;move the fly a random amount
flyx = flyx + Rand(-15,15)
flyy = flyy + Rand(-15,15)

;Draw the fly onscreen
DrawImage flyimage,flyx,flyy,frame

;increment the frame
frame = frame + 1

;If frame gets too large or small, reset it
If frame > 3

frame = 0
ElseIf frame < 0

frame = 3
EndIf

;Flip the buffers
Flip

;Wait a little bit
Delay 25

Wend ;END OF MAIN LOOP

Figure 12.2 is a screenshot taken from demo12-01.bb.

All right, the program is nice and all, but it’s not smooth, is it? The fly is extremely jerky
and looks terrible when drawn on the screen. The reason for this is that the fly’s x and y
variables are updated every single frame, which means his position changes drastically
more than 30 times a second (because usually about 30 frames per second occur during
games such as these).

Let’s redo this program, but instead of changing the fly’s coordinates 30 times every sec-
ond, we will do it only once every few seconds. How are we going to do this? Well, first of
all, we need to learn the art of making a timer using the MilliSecs() function.

Random Numbers 341

Creating a MilliSecs() Timer
You have probably noticed the frequent use of MilliSecs()—we use it to seed our random
generator with the SeedRnd command. If you remember, the reason we use milliseconds to
seed the random generator is because MilliSecs() is never the same twice. So, if it is never
the same twice, how can we use this to create a timer?

MilliSecs()’s value increases every millisecond that the computer is running. For example,
if MilliSecs() is equal to 100123 right now, in exactly one millisecond, it will be equal to
100124. A millisecond is equal to one one-thousandth of a second (in other words, there
are 1000 milliseconds in a second), so 101123 occurs exactly one second later than 100123.
Now, we need to use MilliSecs() to create a timer. Even though MilliSecs() will never be
called at the exact same time, this isn’t a big problem. What we are going to do is create a
variable that holds MilliSecs() at the starting time. We then check MilliSecs() every frame
until its value is equal to or greater than the starting variable we created at the beginning
plus the amount of time we want the timer to last.

So, let’s put a timer into code. The following snippet shows how a three-second timer
would work.

Chapter 12 ■ Artificial Intelligence342

Figure 12.2 The demo12-01.bb program.

;Create timerbegin which holds the value of the starting timer
timerbegin = MilliSecs()

;We would begin the main loop here

;test if the current number of MilliSecs() is equal to the timerbegin + 3 secs
If MilliSecs() >= timerbegin + 3000

;Do Something
EndIf

c a u t i o n

If you happened to cut and paste this code into a program, it would not work correctly. The timer
would never run out! The reason is that the timer would reset every frame because of the timer-
begin = MilliSecs() line, and the If MilliSecs() >= timerbegin + 3000 would never stray more
than a few milliseconds from timerbegin. In order for the program to work, we need to separate
the initialization of the timer and the timer test. If you need to use the timer only once, you can just
place the initialization at the beginning of the program and insert the test in the main loop.

Let’s go through this line by line. First of all, we created the timer.

;Create timerbegin which holds the value of the starting timer
timerbegin = MilliSecs()

This creates a timer with a value equal to the amount of MilliSecs() at the time of the cre-
ation of the timer.

Next, we need to test the timer to determine whether it has been in existence long enough.

;test if the current number of MilliSecs() is equal to the timerbegin + 3 secs
If MilliSecs() >= timerbegin + 3000

How does this work? Well, the function tests the current value of MilliSecs() against
timerbegin plus three seconds (3000 milliseconds). If you remember, timerbegin is equal to
the value of MilliSecs() at the time of creation of the timer. Because MilliSecs() increas-
es every millisecond that the computer is running, the test will return true three seconds
after the timer was created.

Pretty sweet, if I do say so myself. The following is the full source to demo 12-02.bb.

;demo12-01.bb - Demonstrates random variables
Graphics 800,600

;Set up automidhandle and backbuffer
AutoMidHandle True
SetBuffer BackBuffer()

Random Numbers 343

;Make sure we seed the random generator
SeedRnd MilliSecs()

;CONSTANT
;this constant regulates how long it takes before the fly changes directions
Const CHANGEDIRECTIONS = 1500 ;the fly changes every 1.5 seconds

;The fly type
Type fly

Field x,y ;the coordinate position
Field xv,yv ;the fly’s velocity
Field image ;The fly’s image

End Type

;let’s create the fly
fly.fly = New fly

;Start the fly in the center of the screen
fly\x = 400
fly\y = 300

;Give the fly a random velocity
fly\xv = Rand(-15,15)
fly\yv = Rand(-15,15)

;Now we load the fly image
fly\image = LoadAnimImage ("fly.bmp",64,64,0,4)

;create a starting frame value
frame = 0

;Create starting timer
timerbegin = MilliSecs()

;Create a variable that says the timer does not need to be reset
timeractive = 1

;MAIN LOOP
While Not KeyDown (1)

Chapter 12 ■ Artificial Intelligence344

;Clear the screen
Cls

Text 0,0,"Fly X: " + flyx
Text 0,20,"Fly Y: " + flyy
Text 0,40, "Current time remaining on timer: " + (CHANGEDIRECTIONS - MilliSecs() +
timerbegin)

;If the counter has run through, update the fly’s velocities
If MilliSecs() >= timerbegin + CHANGEDIRECTIONS

;move the fly a random amount
fly\xv = fly\xv + Rand(-10,10)
fly\yv = fly\yv + Rand(-10,10)

;make sure timer is reset
timeractive = 0

EndIf

;If the timer is inactive, reset the timer
If timeractive = 0

timerbegin = MilliSecs()
timeractive = 1

EndIf

;Move the fly
fly\x = fly\x + fly\xv
fly\y = fly\y + fly\yv

;Test if fly hit any walls
If fly\x <= 0 Or fly\x > 800

fly\xv = -fly\xv
EndIf

If fly\y <= 0 Or fly\y >= 600
fly\yv = - fly\yv

EndIf

Random Numbers 345

;Draw the fly onscreen
DrawImage fly\image,fly\x,fly\y,frame

;increment the frame
frame = frame + 1

;If frame gets too large or small, reset it
If frame > 3

frame = 0
ElseIf frame < 0

frame = 3
EndIf

;Flip the buffers
Flip

;Wait a little bit
Delay 75

Wend ;END OF MAIN LOOP

I only made a few small changes from the demo12-01.bb program, which I will address
now.

First of all, I created a constant that determines how long the pause is between the changes
in speed and direction for the ship. This constant is named CHANGEDIRECTIONS.

The next part of the program that I changed was the fly itself. I created a type around the
fly and set up its starting variables. Following is the code from the source that creates and
initializes the fly.

;The fly type
Type fly

Field x,y ;the coordinate position
Field xv,yv ;the fly’s velocity
Field image ;The fly’s image

End Type

;let’s create the fly
fly.fly = New fly

;Start the fly in the center of the screen
fly\x = 400

Chapter 12 ■ Artificial Intelligence346

fly\y = 300

;Give the fly a random velocity
fly\xv = Rand(-15,15)
fly\yv = Rand(-15,15)

;Now we load the fly image
fly\image = LoadAnimImage ("fly.bmp",64,64,0,4)

As you can see, the fly type makes it a lot easier to identify all of the variables that per-
tain to the fly. We start the fly in the center of the map, give him random coordinates, and
load his image in the previous section.

The next thing I changed was directly before the main loop. I added a section that creates
the timer.

;Create starting timer
timerbegin = MilliSecs()

;Create a variable that says the timer does not need to be reset
timeractive = 1

You already know what timerbegin does, but you might be wondering what timeractive is
there for. Timeractive is equal to 1 when the timer is working correctly, but when the timer
completes, timeractive is set to 0. The timer then resets, and timeractive is set to 1 again.

Next we move on to the main loop. We go through the usual process of clearing the back-
ground and drawing out the pertinent info on the screen. In this program, the x and y
coordinates, as well as the time remaining on the timer, are written on the screen.

The following If…EndIf statement does the grunt work for the timer.

;If the counter has run through, update the fly’s velocities
If MilliSecs() >= timerbegin + CHANGEDIRECTIONS

;move the fly a random amount
fly\xv = fly\xv + Rand(-5,5)
fly\yv = fly\yv + Rand(-5,5)

;make sure timer is reset
timeractive = 0

EndIf

Random Numbers 347

This block begins with a test to determine if the timer has finished. It does this by testing
the current value of MilliSecs() against the value of MilliSecs() when the timer began
(timerbegin), plus the length of the counter (CHANGEDIRECTIONS). If the test returns true, the
timer has run through. That means that the commands within the block are executed.

When the timer runs out, the fly gets new random x and y velocities, which move the fly
in a different direction at a different speed. The timeractive variable is then set to 0, which
means that the timer is unusable and needs to be reset. The code that resets the timer
occurs directly after the previous code. It looks something like this:

;If the timer is inactive, reset the timer
If timeractive = 0

timerbegin = MilliSecs()
timeractive = 1

EndIf

This section of the code resets the starting point of the timer to the current value of
MilliSecs(). Because the timer no longer needs to be reset (at least until the new timer has
completed), timeractive is set to 1.

There are two other changes from the first program to the second program of this chap-
ter. The first is the addition of code that determines whether the fly has hit any walls. The
code looks like this.

;Test if fly hit any walls
If fly\x <= 0 Or fly\x > 800

fly\xv = -fly\xv
EndIf

If fly\y <= 0 Or fly\y >= 600
fly\yv = - fly\yv

EndIf

This code tests if the fly has moved offscreen, and if it has, it reverses the direction the fly
is traveling.

The other change was the addition of velocity values in the program. In the first program,
we only changed the x and y coordinates of the fly, and in this program we used x and y
coordinates along with x and y velocities. Figure 12.3 shows what the new demo looks like.

All right, that’s the end of the first part of this chapter. The next section introduces you to
some of the easiest things you will ever learn: chasing and evading.

Chapter 12 ■ Artificial Intelligence348

Chasing and Evading
Well, now that we know how to use random variables and timers, we now need to learn
how to create artificial intelligence that actually works for a reason. Chasing and evading
are very good ways to demonstrate this. Both are easy and interesting: chasing makes one
object follow another and evading makes one object run away from another.

Without further ado, chasing!

Chasing
Chasing entails finding the coordinates of one object and moving another based on where
the first one is located. That might be a complex explanation, so let’s break it down.

Let’s say you have a spaceship following another spaceship; in fact, we will be writing a
program that does this in a few minutes. Well, the program starts with the two ships
onscreen in such a manner that ship A is following ship B. When ship B is to the left of

Chasing and Evading 349

Figure 12.3 The demo12-02.bb program.

ship A, ship A begins to move left. When ship B is to the right of ship A, ship A moves
right. The same thing happens when ship B is above or below ship A: when above, ship A
moves up; when below, ship A moves down. Figure 12.4 demonstrates chasing.

So, because everything we do in this book uses spaceships, let’s make a chasing game in
Blitz Basic.

;demo12-03.bb - Demonstrates chasing algorithms
Graphics 800,600

;Set up backbuffer and automidhandle
SetBuffer BackBuffer()
AutoMidHandle True

;IMAGES
;player and enemies ships
playership = LoadImage ("spaceship.bmp")
enemyship = LoadImage ("enemyship.bmp")

;Load background
backgroundimage = LoadImage ("stars.bmp")

Chapter 12 ■ Artificial Intelligence350

Figure 12.4 Following, chasing, tracking, or stalking?
You be the judge.

;CONSTANTS
;The following constants are used for testing key presses
Const ESCKEY = 1, UPKEY = 200, LEFTKEY = 203, RIGHTKEY = 205, DOWNKEY = 208

;the following constants define how fast the player and the enemy move
Const PLAYERSPEED = 10
Const ENEMYSPEED = 5

;position player on bottom center of screen
playerx = 400
playery = 400

;position enemy on upper center of screen
enemyx = 400
enemyy = 200

;set up scrolling variable
scrolly = 0

;MAIN LOOP
While Not KeyDown(ESCKEY)

;tile the background image
TileBlock backgroundimage, 0, scrolly

;move the background up a little
scrolly = scrolly + 1

;If scrolly gets too big, reset it
If scrolly > ImageHeight(backgroundimage)

scrolly = 0
EndIf

;Test the keypresses of the player
;If the player hits up, we move him up
If KeyDown(UPKEY)

playery = playery - PLAYERSPEED
EndIf

Chasing and Evading 351

;If the player hits left, we move him left
If KeyDown(LEFTKEY)

playerx = playerx - PLAYERSPEED
EndIf

;If player hits right, we move him right
If KeyDown(RIGHTKEY)

playerx = playerx + PLAYERSPEED
EndIf

;If player hits down, we move him down
If KeyDown(DOWNKEY)

playery = playery + PLAYERSPEED
EndIf

;Now, we move the enemy depending on where the player is
;If the player is above the enemy, move the enemy up
If playery > enemyy

enemyy = enemyy + ENEMYSPEED
EndIf

;If the player is to the left of the enemy, move the enemy left
If playerx < enemyx

enemyx = enemyx - ENEMYSPEED
EndIf

;If the player is to the right of the enemy, move the enemy right
If playerx > enemyx

enemyx = enemyx + ENEMYSPEED
EndIf

;if the player is below the enemy, move the enemy down
If playery < enemyy

enemyy = enemyy - ENEMYSPEED
EndIf

;draw the player and the enemy on the screen
DrawImage playership, playerx, playery
DrawImage enemyship, enemyx, enemyy
;delay for a bit

Chapter 12 ■ Artificial Intelligence352

Delay 25

;Flip the front and back buffer
Flip

Wend
;END OF MAIN LOOP

As you can see, this program is a lot of fun to watch when it runs on the screen. No mat-
ter where you go, that tenacious spaceship won’t go away! Check out Figure 12.5 for a
screenshot from the program.

There is only one section of the program I want to discuss: the tracking section. The track-

ing code looks like this:

;Now, we move the enemy depending on where the player is

Chasing and Evading 353

Figure 12.5 The demo12-03.bb program.

;If the player is above the enemy, move the enemy up
If playery > enemyy

enemyy = enemyy + ENEMYSPEED
EndIf

;If the player is to the left of the enemy, move the enemy left
If playerx < enemyx

enemyx = enemyx - ENEMYSPEED
EndIf

;If the player is to the right of the enemy, move the enemy right
If playerx > enemyx

enemyx = enemyx + ENEMYSPEED
EndIf

;if the player is below the enemy, move the enemy down
If playery < enemyy

enemyy = enemyy - ENEMYSPEED
EndIf

Let’s start off with the first line, If playery > enemyy. What does this do? Well, this just
checks the y coordinate of the player against the y coordinate of the enemy. Because the
higher on the screen the object is, the lower the y coordinate is (remember that the top of
the screen is y = 0), when playery is greater than enemyy (this is tested in the first If…EndIf
statement), the player is below the enemy. Therefore, the enemy moves down a little bit.

The same thing happens in the following If…EndIf statements. When playerx is less than
enemyx, the player is to the left of the enemy, and the enemy moves left. When playerx is
more than enemyx, the player is to the right of the enemy, and the enemy moves right.
Finally, when playery < enemyy, the enemy moves down.

Well, that’s it for tracking. All that’s left in this chapter is the extremely difficult concept
of evasion.

Evading
A lot of times, when I tell a joke, my friends comment that they can’t determine whether
the statement I said was true or if I was simply kidding them. The final sentence of the last
section would be an example of that. Just to let you know, evading isn’t the “extremely”
difficult concept I made it out to be. But you probably already knew that, right?

Either way, I’m sure you want to know all the ins and outs of evasion. Actually, you already
do. Evasion is the opposite of chasing, because the enemy is running away from you.
Check out Figure 12.6 to see how evasion works, with the player being the ship marked

Chapter 12 ■ Artificial Intelligence354

“A.” As you can see, the ship always moves away from the player.

Anyway, take a guess as to how
you would use evasion. If you
guessed that all you do is take the
tracking algorithm and change
the pluses to minuses and the
minuses to pluses, you are right!

Demo12-04.bb shows evasion,
and it is almost exactly the same
as its predecessor, demo12-03.bb.
In fact, I only made two changes.
Here is the first one.

;Now, we move the enemy depending
on where the player is
;If the player is above the enemy, move the enemy down
If playery > enemyy

enemyy = enemyy - ENEMYSPEED
EndIf

;If the player is to the left of the enemy, move the enemy right
If playerx < enemyx

enemyx = enemyx + ENEMYSPEED
EndIf

;If the player is to the right of the enemy, move the enemy left
If playerx > enemyx

enemyx = enemyx - ENEMYSPEED
EndIf

Chasing and Evading 355

Figure 12.6 Evasion.

;if the player is below the enemy, move the enemy up
If playery < enemyy

enemyy = enemyy + ENEMYSPEED
EndIf

Does this look familiar? As I said, it is exactly the same as demo12-03.bb, but the pluses
and minuses have been flipped. Now, when the enemy is to the right of the player, it con-
tinues to move right. When the enemy is to the left, the player moves even farther left.
When the player is above the enemy, the player moves up, and when the player is below
the enemy, the player moves down.

I also added one new section to the program. This section makes sure that the enemy ship
doesn’t run offscreen, as you would expect it to because it is fleeing the player.

;if enemy goes offscreen, move him back onscreen
If enemyx <= 0

enemyx = 0
ElseIf enemyx >= 800

enemyx = 800
EndIf
If enemyy <= 0

enemyy = 0
ElseIf enemyy >= 600

enemyy = 600
EndIf

This code checks the enemy’s coordinates to see if he is onscreen or offscreen. If he is off-
screen, the code makes sure he cannot move any farther in that direction and keeps him
onscreen.

Summary
Beautiful, ain’t it? One more chapter and we will have created a real game.

In this chapter we lightly touched on the concepts of Artificial Intelligence. There are a lot
(I mean A LOT) of other things that can be done with artificial intelligence, some of which
are really interesting and exciting. Some programmers are coming up with ways to model
the human genome (Genetic algorithms) and even the human brain (neural networks)!

Keep practicing artificial intelligence, and you will likely stumble upon some concepts of
your own. Just keep in mind; it is impossible to actually make a computer think. Your job,
as a programmer, is to make the computer appear to be thinking. If it seems to be doing
the expected, that is all that is required.

Chapter 12 ■ Artificial Intelligence356

In this chapter, we went over the following topics:

■ Random variables

■ Timers

■ Chasing

■ Evasion

Hopefully you will be able to put these topics to use in your upcoming games and pro-
grams! If you would like to learn more about artificial intelligence, check out AI
Techniques by Mat Buckland (published by Premier Press, ISBN: 1-931841-08-X).

Summary 357

This page intentionally left blank

359

The Final Frontier:
Invaderz!!!

chapter 13

Are you ready to finish this? Well guess what! It’s the final game—the last demo!

When I wrote Invaderz!!!, I planned on copying and pasting the entire source into the
book, and then I was going to explain all of the code to you step by step. Unfortunately, the
code is 17 pages long. That’s right, 17 pages! In other words, the full source is on the CD!

What we can do is go over the most important sections and algorithms of the code. I won’t
be explaining the easy sections, just the tough ones. The good thing though, is the code is
heavily commented, and you can probably figure out most of what you want to just by
reading through the source.

n o t e

I’m going to make a recommendation right now.As you read this chapter, please, please, PLEASE keep
a copy of the source code open! It’s named invaderz.bb, and it’s on the CD. It will be a heck of a lot
easier to view the entire source from the file, and you will understand the major points a lot better.

Let’s Bust It: Planning the Game
So, I knew I wanted to make a game for the final program in the book. What kind of
game do you think I chose to make? You guessed it: a space shooter. I decided I wanted
the game to be like Space Invaders (if you have ever played it before, you know what I am
talking about). The point of the game is, as the player, to fire bullets at the enemy UFOs
as they appear on the screen. The player is a human ship, and the enemy is alien ships.
Now, I’ll give you a little history on how I created it, and then we’ll walk through the
specifics together.

First of all, I planned out what the game would look like. I designed it so that the enemy
UFOs appear from the top of the screen, and the player is on the bottom of the screen. As
the enemies appear onscreen, the player shoots at the enemies, and they explode on contact.

My sketch for the game setup is shown in Figure 13.1. Well, actually my sketch was done
in pencil, but I had it redrawn for this book.

I then had a basis for how the game would look and feel. Notice that in the sketch, I cre-
ated a HUD that displays the health and the shots fired/enemies hit totals. This allowed
me to spend my time on the actual game, instead of thinking about how the HUD should
look later when writing the game. Now that I had the game plan ready, I created the
images I would be using for the game. The most important ones, of course, were the play-
er and the enemy images. The enemy bitmap looks like Figure 13.2.

And the player looks like Figure 13.3.

These images are used in the game. As you can see, they are animated; however, they are
animated in different ways.

The enemy bitmap has a rather straightforward animation style—it just loops from the
first frame to the last frame. What I mean is that when the enemy ship moves around, it

Chapter 13 ■ The Final Frontier: Invaderz!!!360

Figure 13.1 A sketch of the final game’s playing field.

plays each frame in the bitmap consecutively. The first frame of the game loop is the first
frame of the spaceship, the second frame of the game loop is the second frame of the space-
ship, and so on, until you reach the final frame of the enemy spaceship (the 10th frame).
The 11th frame of the game loop is then the first frame of the bitmap again, and so on.

The player bitmap reacts a little bit differently. We want the game to make the player tilt
left when the spaceship is moving left and tilt right when the spaceship is moving right. It
will remain flat when not moving at all.

We have to use some interesting code to get this to work. First of all, load the bitmap in,
as you might expect, with the command LoadAnimImage().

Global playerimage = LoadAnimImage("player.bmp",35,32,0,13)

This assumes that each frame of the player bitmap is 35�32 pixels (and so it is), and that
there are 13 frames (and so there are). Well, as you can see, the first frame is not a flat posi-
tion, but instead a view of the spaceship tilting left. We want the player spaceship to rest on
the seventh frame, and have the frames increase (move toward tilting right) when the play-
er presses right, and, conversely, have the frames decrease (move toward tilting left) when
the player presses left. Set the frame to rest on frame 7 when no key is pressed, like this:

player\frame = 7

Then, when the player presses right, the code will do this:

;tilt player right
player\frame = player\frame + 1

;don’t let frame get too high
If player\frame >= 12

player\frame = 12
Endif

Can you see what is happening here? Note that this code occurs within the right key testing
block, meaning this code is tested only when the right key is pressed. What is happening is
that the frame is being incremented each frame, but only as long as the right key is pressed.

Let’s Bust It: Planning the Game 361

Figure 13.2 The enemy bitmap.

Figure 13.3 The player bitmap.

(The right-key testing code occurs around the previous code, and is not visible in the book.)
The code limits how high player\frame can get, however, because there are only 13 frames
in the player spaceship image.

Why does it check to see if the frame variable is greater than or equal to 12, instead of 13?
Remember that frame counts begin at 0, therefore, the final frame is 13 � 1, or 12.

Okay, it’s time to wrap up the planning section. There are a lot of other things you need
to do, such as decide how to choose where the enemies come from, how many enemies are
on each level, and the like. If you want to see how I did it, open up the invaderz.bb pro-
gram from the CD. It contains the source, and the comments will help you understand
what I was thinking when I wrote the game.

By the way, I chose the name Invaderz!!! for the name of my game. Why? It’s a cool name.
And you can tell it’s important because there are not one, not two, but three exclamation
points after the word!

Constants, Functions, and Types in Invaderz!!!
Let’s take the time to go over each of the variables, constants, functions, and types used in
Invaderz!!! First off, let’s check out all of the constants.

There are only a few constants, but they are very important. Table 13.1 lists all of the con-
stants and their descriptions.

I am sure you understand how the first four key codes work (in case you need a refresh-
er, they are used with KeyDown() and KeyHit()), but you might not know what CHANGEENEMY-
DIRECTION and TIMEBETWEENENEMYBULLETS do. Well, let’s go over both of them.

In this program, the enemies’ movement is random. We need to move those UFOs in a
random direction at the beginning. We don’t want it to appear random, however, so we
need to adjust their direction variables every once in a while to make it appear that they

Chapter 13 ■ The Final Frontier: Invaderz!!!362

Table 13.1 Constants in Invaderz!!!

Constant Value Description

ESCKEY 1 The key code for the Esc key.
SPACEBAR 57 The key code for the spacebar.
LEFTKEY 203 The key code for the left arrow.
RIGHTKEY 205 The key code for the right arrow.
CHANGEENEMYDIRECTION 700 The time (in milliseconds) between velocity changes for

enemy UFOs.
TIMEBETWEENENEMYBULLETS 1200 The time (in milliseconds) between enemy bullet fire.

are moving. CHANGEENEMYDIRECTION determines the time between those direction changes.
Each UFO changes direction every 700 milliseconds (or every 7/10 of a second).

TIMEBETWEENENEMYBULLETS does the same sort of thing. This constant determines how long a
break there is between the bullet shots by the enemy. Instead of 700 milliseconds like the
CHANGEENEMYDIRECTION constant, this constant has the enemies fire bullets every 1,200 mil-
liseconds (1 and 1/5 of a second, or every 1.2 seconds).

Cool? Let’s examine the functions. There are a lot of them!

Table 13.2 lists each function in Invaderz!!!

Not all of these functions are called by the main loop, so I drew a function outline that
explains how the functions interact with one another (see Figure 13.4).

That’s all for functions. Last, we have the types used in Invaderz!!!

There are four types used in Invaderz!!! They are

■ The ship type

■ The user type

■ The bullet type

■ The explosion type

The ship type refers to all of the enemies that are created during the game, the user type
is the player spaceship that is onscreen, the bullet type describes each bullet that is fired
during the game (both enemy and player bullets), and the explosion type refers to explo-
sions that occur after a ship dies for either enemy or player.

Constants, Functions, and Types in Invaderz!!! 363

Table 13.2 Functions in Invaderz!!!

Function Description

InitializeLevel() Resets the level with the proper amount of enemies and resets all the starting
variables.

DrawHUD() Draws the health points remaining and the bullets fired/hit displays in the top
of the window.

CreateNewEnemy() Creates a new enemy ship onscreen.
DrawShips() Draws the enemy and player spaceships.
EnemyAI() Updates the directions and bullet fires of the enemy spaceships.
CreateBullet() Creates a new bullet onscreen.
UpdateBullets() Moves bullets and checks to see if they collided against any opposing ships.
CreateExplosion() Creates an explosion after a ship collision.
UpdateExplosions() Rotates explosions through its frames and deletes the explosion when it is over.
GameOver() Prepares the game for exit and quits to desktop.

I am going to list tables with all of the types’ fields, in order to give you a feel for the
Invaderz!!! program.

Table 13.3 lists the ship type’s fields.

Table 13.4 lists the user type’s fields, which are used to make the player.

Chapter 13 ■ The Final Frontier: Invaderz!!!364

Figure 13.4 The function outline for Invaderz!!!

Table 13.3 The Ship Type’s Fields

Field Description

x The x coordinate of the ship.
y The y coordinate of the ship.
hits The hit points remaining on the ship.
xv The x direction variable that governs how far left and right the ship moves per frame.
yv The y direction variable that governs how far up and down the ship moves per frame.
frame The frame of the animated image that will be drawn. (See Figure 13.2.)

Notice, if you will, that the ship and user types are very similar to one another. This is
because they are both spaceships, and although they are opposing forces, both of them
have to move in the same way. Their similarities remind me of comic book heroes and
super villains: the super villains are almost exactly the same as the hero, and in fact, they
are often friends growing up.

Table 13.5 lists the bullet type’s fields.

And last but not least, Table 13.6 lists the explosion type’s fields.

Woo hoo! Now, let’s move on to actually playing the game.

Constants, Functions, and Types in Invaderz!!! 365

Table 13.4 The User Type’s Fields

Field Description

x The x coordinate of the user.
y The y coordinate of the user.
hits The remaining hit points on the user.
frame The frame of the animated image that will be drawn. (See Figure 13.3.)
draw Determines whether the user should be drawn on the screen or not. The user

should be drawn if set to 1 and should not be drawn if set to 0.

Table 13.5 The Bullet Type’s Fields

Field Description

x The x coordinate of the bullet.
y The y coordinate of the bullet.
draw Determines whether the bullet should be drawn on the screen or not. The bullet

should be drawn if set to 1 and should not be drawn if set to 0.
from Determines who fired the bullet. This is set to 1 if it was fired by the user and set

to 2 if it was fired by an enemy.
c The frame of the animated image that will be drawn.

Table 13.6 The Explosion Type’s Fields

Field Description

x The x coordinate of the explosion.
y The y coordinate of the explosion.
from Determines who is exploding. This is set to 1 if the user exploded and set to 2 if

the enemy exploded.
from The frame of the animated image that will be drawn.

Playing Invaderz!!!
We’ve gone through the motions of creating the game (or at least getting a feel for the
game) and now we get to the fun part: playing the game!

Invaderz!!! is a very simple game to play. There are two ways to open it, but both require
you to navigate to the Chapter 13 folder on the CD. Put the CD in your CD-ROM drive
and find the Source folder, and then double-click Chapter 13. Once you have done this,
you will see a bunch of files that relate to the Invaderz!!! game. To play the game directly,
double-click the icon that looks like a rocket ship. This file is named invaderz.exe.

The other way to load Invaderz!!! is to run it from within the Blitz Basic compiler and
compile the code straight away. Do this by finding the file named invaderz.bb and dou-
ble-clicking it. It should load in the Blitz Basic compiler within a few seconds. Look near
the top of the screen and you will find a toolbar with a number of menus starting with
File. Select the menu named Program and click Run Program. Another way to do this is
to press the F5 key on your keyboard (after you load the program in Blitz Basic).

n o t e

If you want to run the game within the Blitz Basic compiler, you will need to have Blitz Basic installed
on your machine. You probably already installed this program earlier in the book, but just in case you
didn’t, now is the time to do so. See Chapter 1 for instructions on installing the compiler.

You have just opened the game! You can now play it to your heart’s content. There are only
three functioning keys within the program, and Table 13.7 explains all of them.

Let me give you some
tips for Invaderz!!! Note,
by the way, that you can’t
“beat” the game. The
game continually gets
harder and harder until
the player dies.

■ Try to stay in one place and fire bullets as quickly as you can. When one of the
enemies fires a bullet at you, however, get out of the way.

■ Remember, the bullets not only hurt the enemy if it hits him head on, but also if
the enemy runs into it.

■ Try to judge how fast the enemy is moving when firing a bullet. Oftentimes, you
can fire a bullet directly into the enemy’s path simply by watching.

Chapter 13 ■ The Final Frontier: Invaderz!!!366

Table 13.7 The Keys Used in Invaderz!!!

Key Description

Left Arrow Moves the player ship left.
Right Arrow Moves the player ship right.
Spacebar Fires a bullet.

■ On the contrary to the previous tip, remember that the velocities of each ship
change every 7/10 of a second. If they are moving to the left quickly, their route
might modify to move them up slightly. If they are moving right very slowly, they
might reverse directions completely!

And that’s it for the Invaderz!!! game. Take a look at the screenshots from the game,
Figures 13.5 and 13.6.

Playing Invaderz!!! 367

Figure 13.5 The Invaderz!!! title screen.

Epilogue
The game is over and the book is done. I’ve had a lot of fun traveling down this path with
you, and I hope that what I have taught you will help you reach new limits in game pro-
gramming and in life. I know this sounds clichéd, but really, I want you to use your new
knowledge to make some new games!

Let’s talk about the future of game programming—namely, yours. If you enjoyed what we
have done with this book, you should know that there is a heck of a lot more out there to
learn. Take a look at some of the sites listed in Appendix B to see what else you can learn.
Play around with the compiler and the Blitz Basic language and create your own games.
Believe me, the best way to get better is to practice.

Blitz Basic is an excellent language for learning programming. Now that you have the nec-
essary skills of programming, you will understand a lot more if you choose to move on to
other languages. Some concepts, such as loops and functions, have been hammered into
your head in this book, and it won’t be nearly as hard to understand them when doing the
same in a different language.

Once you have reached the limits of Blitz Basic, there are two paths you might consider.
The first is to move on to three-dimensional game programming using Blitz3d. This lan-
guage is made by the same people who brought you Blitz Basic. It’s a tough language, but
the things you can do with Blitz3d are simply amazing. You can create entire game worlds
with people and houses and the like. Amazing.

Chapter 13 ■ The Final Frontier: Invaderz!!!368

Figure 13.6 The Invaderz!!! game.

The other choice is to leave the Blitz language all together. There is a language called C
(and its successor, C++) that is the most common language for producing and actually
publishing games. The reason C is used over Blitz is because C is a much more powerful
language; it can reach into the hardware to perform functions, and it is faster as well. You
might think about picking up a book on C or C++ and studying the language (C was the
first language I ever taught myself).

As you well know, life is simply a maze of paths, and each choice you make leads you down
a path you have to follow. Choose to continue programming, choose to continue making
games, choose to enjoy what you are doing, or don’t. It’s that simple.

Anyway, my tirade is over. I want to hear from you, however! I will gladly help with any
games or programs that you make and want me to see or help you with. Simply e-mail me
the program at:

maneesh@maneeshsethi.com

I want you to go to my Web site and join the community! You can find forums that talk
about this book also.

http://www.maneeshsethi.com

Lastly, if you liked this book, make sure you review it on amazon.com! It really helps sales!
(Tell your friends also.)

I will be organizing a contest on my Web site in the near future. Submit your best game,
and you could win a free book or, if you are really lucky, a signed photo of me.☺

Oh yeah, one more thing. Make sure you check out my other books. Web Design for Teens
teaches you how to make Web sites and How to Succeed As A Lazy Student will help you
learn how to beat school without doing any work. Keep your eye out for other things I will
be putting out.

I would love to hear from you, so don’t hesitate to e-mail me. Heck, just e-mail me and
say hi, if you want.

“The greatest trick the devil ever pulled was convincing the world he didn’t exist. And like
that, *whoosh*, he’s gone.”

That’s it from me. Maneesh Sethi, signing out.

Epilogue 369

This page intentionally left blank

Appendixes

Appendix A
Scan Code Reference .373

Appendix B
Useful Links .379

Appendix C
What's on the CD . 381

PART IV

This page intentionally left blank

This appendix contains a list of all the scan codes you can use for input in your programs.
Scan codes are used in functions such as KeyHit() or KeyDown() like this:

KeyDown(scancode)

Input the scan code for the key you want to test for, and this function will return 1 if the
key was pressed.

Many of the following keys won’t appear on your keyboard; some of them are interna-
tional keys (like the symbol for the Yen) and some of them only exist on advanced key-
boards that have extra keys (like the Calculator key). Anyway, you can find any key that
you would ever think of using on this list, shown in Table A.1.

373

Scan Code Reference

Appendix A

Table A.1 The Scan Code Reference

Keyboard Key Scan Code Comments
ESCAPE 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
0 11 continued

Appendix A 374

Keyboard Key Scan Code Comments
Minus (2) 12 On main keyboard
Equals sign (=) 13
Backspace 14 Backspace key
Tab 15
Q 16
W 17
E 18
R 19
T 20
Y 21
U 22
I 23
O 24
P 25
Left bracket ([) 26
Right bracket (]) 27
Return/Enter 28 Return/Enter on main keyboard
Left control 29
A 30
S 31
D 32
F 33
G 34
H 35
J 36
K 37
L 38
Semicolon (;) 39
Apostrophe (') 40
Grave 41 Accent grave
Left shift 42
Backslash (\) 43
Z 44
X 45
C 46
V 47
B 48
N 49
M 50
Comma (,) 51

Scan Code Reference 375

Keyboard Key Scan Code Comments
Period (.) 52 On main keyboard
Slash (/) 53 On main keyboard
Right shift 54
Multiply (*) 55 On numeric keypad
Left Alt/menu 56
Space 57
Capitol 58
F1 59
F2 60
F3 61
F4 62
F5 63
F6 64
F7 65
F8 66
F9 67
F10 68
NumLock 69
Scroll Lock 70
NumPad 7 71
NumPad 8 72
NumPad 9 73
Subtract (�) 74 On numeric keypad
NumPad 4 75
NumPad 5 76
NumPad 6 77
Add (+) 78 On numeric keypad
NumPad 1 79
NumPad 2 80
NumPad 3 81
NumPad 0 82
Decimal (.) 86 On numeric keypad
OEM_102 87 On UK/Germany keyboards
F11 87
F12 88
F13 100 (NEC PC98)
F14 101 (NEC PC98)
F15 102 (NEC PC98)
Kana 112 On Japanese keyboard

continued

Appendix A 376

Keyboard Key Scan Code Comments
ABNT_C1 115 /? On Portuguese (Brazilian) keyboards
Convert 121 On Japanese keyboard
NoConvert 123 On Japanese keyboard
Yen 125 On Japanese keyboard
ABNT_C2 126 Numpad on Portuguese (Brazilian) keyboards
Equals 141 Equals (=) on the numeric keypad (NEC PC98)
PrevTrack 144 Previous Track (DIK_CIRCUMFLEX) on Japanese keyboard
AT 145 (NEX PC98)
Colon (:) 146 (NEC PC98)
Underline 147 (NEC PC98)
Kanji 148 On Japanese keyboard
Stop 149 (NEC PC98)
AX 150 Japan AX
Unlabeled 151 (J3100)
Next track 153 Next Track
Enter 156 Enter on numeric keypad
Right control 157
Mute 160 Mute
Calculator 161 Calculator
Play/Pause 162 Play/pause
Media stop 164 Media stop
Volume down 174 Volume �
Volume up 176 Volume +
Web home 178 Web home
Comma (,) 179 On numeric keypad (NEX PC98)
Divide (/) 181 On numeric keypad
SysReq 183
Right Alt/menu 184 Right Alt
Pause 197 Pause
Home 199 Home on Arrow keypad
Up 200 Up Arrow on Arrow keypad
Page Up/Prior 201 Page Up on Arrow keypad
Left 203 Left Arrow on Arrow keypad
Right 205 Right Arrow on Arrow keypad
End 207 End Key on Arrow keypad
Down 208 Down Arrow on Arrow keypad
Next 209 Next Key on Arrow keypad
Insert 210 Insert Key on Arrow keypad
Delete 211 Delete Key on Arrow keypad
Left Windows 219 Left Windows key

Scan Code Reference 377

Keyboard Key Scan Code Comments
Right Windows 220 Right Windows key
Apps 221 Apps Menu key
Power 222 System power
Sleep 223 System sleep
Wake 227 System wake
Web search 229
Web favorites 230
Web refresh 231
Web stop 232
Web forward 233
Web back 234
My Computer 235
Mail 236
Media select 237

This page intentionally left blank

379

Useful Links

Appendix B

This appendix lists some links where you might be able to learn more about Blitz Basic
game programming.

Blitz Basic Links
There are some extremely good sites for learning Blitz Basic programming. Check out the
forums on each: they are active and helpful.

www.maneeshsethi.com is the official site for this book. You will find updates to this book
and tutorials/programs on this site. You can also contact me directly from this site.

www.BlitzBasic.com is the official site of the BlitzPlus program. You can find the actual
BlitzPlus program to download (this program is also included on the CD) along with
some tutorials. The most updated version of the command reference is on this Web site.
To get to the command reference, go to www.blitzbasic.com, click Community, and click
Blitz3D Docs directly below. From there, you can choose to see the 2D command refer-
ence.

www.BlitzCoder.com is an excellent site run by John “Krylar” Logsdon. This site has
numerous articles and tutorials about Blitz Basic and Blitz3D, along with a very active
community. If you have any problems with Blitz, leave a message on the forums and you
will get a response quickly. I promise.

General Game Programming Links
Although the number of Blitz Basic programming sites is limited, there are plenty more
Web sites on general game programming. Following is one very useful one.

www.GameDev.net is one of the most widely known and most visited game programming
sites on the Internet. The site boasts literally hundreds of articles and tutorials on game
coding. This site can help introduce you to other languages, as well as provide theories and
concepts that you can use in Blitz Basic programming.

http://www-cs-students.stanford.edu/~amitp/gameprog.html is the site of Amit’s Game
Programming Information site. This site is an introduction to game programming. It has
answers to some questions you might have about furthering your game programming
knowledge.

Appendix B380

381

What’s on the CD

Appendix C

The CD that is in the back of the book comes with a lot of useful programs and demos.
Let me explain to you everything that you will find when you boot this baby up.

Check out the readme files in every directory! They will have instructions and updates to
everything on the CD.

The directory structure for this CD should be pretty easy to follow. You will find every-
thing arranged like this:

Source\

Chapter01\

Chapter02\

…

Chapter13\

BlitzMax Source\

Art\

Book Art\

Spritelib_Gpl\

Sounds\

Sound\

Music\

Games\

Programs\

Following is an explanation for all of these categories.

Source
On the CD, you will find all of the source code from the examples in the book. I recom-
mend that you copy all of the code to your hard drive before playing around with it. You
will be unable to compile the source if it is left on the CD, but moving it to the hard drive
fixes the compilation errors. Also, executable files for each and every demo program are
included.

The BlitzMax source directory is the ported source for Blitz’s new program, BlitzMax. If
you have a Macintosh, you can use the BlitzMax demo, which is included on the CD.
Thanks Nicolas de Jaeghere for porting this code. Everything is ported except the final
Invaderz!!! game.

Art
I have included a section that contains all of the art I have used in the book, along with a
few other art libraries I have found. The main folder contains the art created by Edgar L.
Ibarra for the book, and the subfolder named Spritelib_Gpl is a library of images made by
Ari Feldman. The Spritelib_Gpl folder contains numerous subdirectories, each which con-
tain different images. Special thanks to Edgar and Ari for the art.

Sounds
This section contains two subdirectories: Sound and Music. Inside the sound directory,
you will find numerous sound effects that can be used in your programs, royalty free. The
Music subdirectory has a few MP3 files and some MIDI music files that can be used in
your programs also. If you want to use the MP3 files for anything other than personal use
(if you decide to sell your game, for example), please contact Thomas Stenbäck of Interim
Nation for licensing info. You can contact Thomas at interimnation@hotmail.com.

Games
This folder contains demos of a few games that were written in Blitz Basic. Have fun with
them and try to learn from them. Special thanks to Jason Brasier, Edgar Ibarra, and
Marcus "Eikon" Smith for these games.

Appendix C382

Programs
This section contains a few programs that you can use to help you in your conquest of the
gaming world. Included are the demo files for the following programs.

■ BlitzPlus—The actual program that you will be writing and compiling the source
of the book from. Make sure you install this program first.

■ Blitz3D—The 3D version of BlitzPlus. Check it out, you may like the 3D capabilities.

■ Blitz Basic 2D—This is the demo for the original 2D version of the program.
Some files might work better with this version.

■ BlitzMax—This is a modified version of BlitzPlus that works with Macintosh
computers.

■ Jasc Paint Shop Pro—An art program, much like Microsoft Paint, but much more
robust.

■ MilkShape 3D—A 3D modeler for more advanced techniques.

■ CoolEdit Pro—A sound-editing program.

Okay, that’s about it for the CD. Have fun with everything that is included!

What’s on the CD 383

INDEX

Symbols
+ (addition operator), 25–26
^ (carat symbol), 253
+ (concatenation operator), 25
/ (division operator), 52
$ (dollar sign), 24
= (equal to operator), 29
> (greater than operator), 29
>= (greater than or equal to operator), 29
< (less than operator), 29
<= (less than or equal to operator), 29
* (multiplication operator), 52
<> (not equal to operator), 29
() (parentheses), 25–26
% (percent sign), 24
. (period), 36
(pound sign), 24
" (quotes), 22
; (semicolon), 20, 98
[] (square brackets), 22

A
addition operator (+), 25–26
AI (artificial intelligence)

chasing, 349–354
evasion, 354–356
loops and, 41
random numbers, 337–341
tracking, 353–354

AI Techniques (Mat Buckland), 357
Allen, Paul, 3
Amit's Game Programming Information Web site,

380
AND operator, 34

animation
Animation() function, 48
bitmaps in, 227–234
LoadAnimImage() function, 229, 231
movement, 239–246
walking image frames, 230

AppTitle() function, 37
arrays

box demonstration, 63
counters, 58
declarations, 59
defined, 58
initialization, 65
InitializeArray() function, 61
multi-dimensional, 64–66, 158
single-dimensional, 158
variables, 59–60

artificial intelligence (AI)
chasing, 349–354
evasion, 354–356
loops and, 41
random numbers, 337–341
tracking, 353–354

artwork, CD components, 382

B
back buffers, 136
Back icon (BlitzPlus toolbar), 6
BackBuffer() function, 121, 140–142
ball direction code, Kong game example, 15
ball movement, Textanoid! game example, 84
BASIC (Beginner's All Purpose Symbolic Instruc-

tion Code), 2–3
bitmaps, in animation, 227–234

blank workspaces, 19
Blitz Basic 2D program, 383
Blitz3D program, 383
BlitzBasic Web site, 379
BlitzCoder Web site, 379
BlitzMax program, 382–383
BlitzPlus program, 383

demo, 4
development of, 3
discussed, 2
documentation window, 4–5
File menu (New command), 4–5
Funcs button, 6
IDE, 4–5
installing, 4
Labels button, 6
menus, 7
panels, 5–6
toolbars, 6
Types button, 6
windows, 5–6

bounding boxes, collision detection, 260–268
bounding circles, collision detection, 253
Brasier, Jason, 382
Buckland, Mat (AI Techniques), 357
buffers

back, 136
BackBuffer() function, 140–142
defined, 136
front, 136
FrontBuffer() function, 138–139
image, 136, 142–143
LoadBuffer() function, 153–155
LockBuffer() function, 156–157
SaveBuffer() function, 149–153
SetBuffer() function, 137–138
UnlockBuffer() function, 156–157

bullet type fields, Invaderz!! game, 365
buttons, BlitzPlus program, 6

C
capitalization patterns, variable names, 102
carat symbol (^), 253
case-sensitivity, functions and variables, 102
CD directory structure, 381–383
CHANGEDIRECTIONS constant, 346

Index 385

ChannelPan() function, 332–333
ChannelPitch() function, 332
ChannelPlaying() function, 333
channels, music, 331–334
ChannelVolume() function, 332
chasing, artificial intelligence, 349–354
CheckForCollisions() function, 252
clockwise direction, rotation, 209
Close icon (BlitzPlus toolbar), 6
Cls() function, 130
ClsColor() function, 130–131
code, portable, 56

collision detection
basic collisions, 249–253
bounding boxes, 260–268
bounding circles, 253
CheckForCollisions() function, 252
distances between points, 253, 255–256
Images Collide() function, 272
pixel-imperfect, 267–272
pixel-perfect, 272–273
radii, 255–259
ResetLevel() function, 259
TestCollisions() function, 258–259
TestKeys() function, 259

colors
Cls() function, 130
ClsColor() function, 130–131
color depth, graphical window creation,

108–109
Color() function, 128–130
RGB value

images, 126–127
MaskImage() function, 124–125

commands
Dim, 59
Flip, 85, 140, 189
Goto, 35–36
New command, File menu (BlitzPlus program),

4–5
Text, 50

comments
defined, 20–21
function, 100–101
inside compiler example, 21
main program, 100

pre-program, 99
; (semicolons), 98
style development, 97–101

compilation
Hello, World! program, 19
Kong game, 7, 16–17

compiler-defined functions, 23
concatenation operator (+), 25
conditionals

defined, 28
If...Then, 29–30
If...Then...Else, 30–32
Select...Case, 32–33
true and false relationships, 28–29

consistency, style development, 95
constants

CHANGEDIRECTIONS, 346
defined, 70
in Invaderz!! game, 362
Textanoid! game example, 81
types, 71

Continue icon (BlitzPlus toolbar), 6
CoolEdit Pro program, 383
coordinate systems

global coordinates, 192–193
pixels, 75
translation, 182–183
types and, 75–76

Copy icon (BlitzPlus toolbar), 6
CopyImage() function, 214
counterclockwise direction, rotation, 209
counters, arrays, 58
CreateImage() function, 118–122, 143–148
Cut icon (BlitzPlus toolbar), 6

D
debug mode, graphical window creation, 110–111
declarations

arrays, 59
definitions versus, 100
functions, 22, 51–52
Kong game example, 8–9
types, 68
variables, 23–24

definitions versus declarations, 100
Delay function, 23
demos

BlitzPlus program, 4

games, 382
Dim command, 59
direction variables, 80, 89
Disk Operating System (DOS), 3
Distance() function, 255, 268, 325
distances between points, collision detection, 253,

255–256
division operator (/), 52
documentation window, BlitzPlus program, 4–5
dollar sign ($), 24
DOS (Disk Operating System), 3
DrawAllText() function, 172
DrawBlocks() function, 86, 88
DrawHUD() function, 72, 74, 85
DrawImage() function, 116–118
DrawPlayerRect() function, 265
DrawTextInfo() function, 174
dx parameter, Translate() function, 185

E
Edit menu (BlitzPlus program), 7
ellipse function, 129
Else statement, 30–31
End Home icon (BlitzPlus toolbar), 6
EndIf statement, 29–30
enemy bitmaps, Invaderz!! game example,

360–361
equals to operator (=), 29
evasion, artificial intelligence, 354–356
explosion type fields, Invaderz!! game, 365

F
false relationships, conditionals, 28–29
Feldman, Ari, 382
fields, types, 68–69
File menu commands (BlitzPlus program), 4–5, 7
Find icon (BlitzPlus toolbar), 6
FindChar$() function, 65
FindCorrectVolume() function, 325
FindCurrentVolume() function, 324
FindRadius() function, 257, 268
Flip command, 85, 140, 189
float trimming, 45
floating point variables, 23–24
FlushJoy() function, 311
FlushKeys() function, 282
FlushMouse() function, 309

Index386

FontBuffer() function, 121
FontHeight() function, 80
FontWidth() function, 80
For...Each loop, 291
For...Each...Next loop, 77–78
For...Next loop, 42–46
Forward icon (BlitzPlus toolbar), 6
frames

defined, 10
frame counts, page flipping, 134

FreeImage() function, 155–156
FreeSound() function, 314–315
front buffers, 136
FrontBuffer() function, 138–139
Funcs button (BlitzPlus program), 6
function comments, 100–101
functions

Animation(), 48
AppTitle(), 37
BackBuffer(), 121, 140–142
ChannelPan(), 332–333
ChannelPitch(), 332
ChannelPlaying(), 333
ChannelVolume(), 332
CheckForCollisions(), 252
Cls(), 130
ClsColor(), 130–131
Color(), 128–130
compiler-defined, 23
CopyImage(), 214
CreateImage(), 118–122, 143–148
declarations, 22, 51–52
defined, 11, 51
Delay(), 23
Distance(), 255, 268, 325
DrawAllText(), 172
DrawBlocks(), 86, 88
DrawHUD(), 72, 74, 85
DrawImage(), 116–118
DrawPlayerRect(), 265
DrawTextInfo(), 174
ellipse, 129
FindChar$(), 65
FindCorrectVolume(), 325
FindCurrentVolume(), 324
FindRadius(), 257, 268
FlushJoy(), 311
FlushKeys(), 282

Index 387

FlushMouse(), 309
FontHeight(), 80
FontWidth(), 80
FreeImage(), 155–156
FreeSound(), 314–315
FrontBuffer(), 121, 138–139
GameOver(), 48
GetMouse(), 309
GraphicsHeight(), 160
GraphicsWidth(), 160
ImageBuffer(), 121
ImageHeight(), 257
ImagesCollide(), 272–273
ImagesOverlap(), 268, 272–273, 319
ImageWidth(), 256
InitializeArray(), 61
InitializeLevel(), 11
Input$, 27–28
Input(), 190
in Invaderz!! game, 363
KeyDown(), 47, 50, 86, 278–283
KeyHit(), 50, 285–293
Left$(), 46
Len(), 80
Line(), 195–197
LoadAnimImage(), 229, 231
LoadBuffer(), 153–155
LoadImage(), 114–115
LoadSound(), 314–316
LockBuffer(), 156–157
LoopSound(), 334
main, 51
MaskImage(), 122–125
MilliSecs(), 338, 342–348
MouseDown(), 299
MouseHit(), 299–306
MouseX(), 296–297
MouseY(), 296–297
MouseZ(), 308
naming, 52, 102
NewLevel(), 83
Oval(), 129
parameters and, 51
PauseChannel(), 332
PerformLogic(), 48
PlayMusic(), 330–331
PlaySound(), 316–320
Point(), 194

Print(), 66
PrintAnswer(), 61
program-defined, 51
Rand(), 338–339
ReadPixel(), 157–160
ReadPixelFast(), 157–160
ResetLevel(), 83, 259
ResumeChannel(), 332
Rnd(), 338–339
SaveBuffer(), 149–153
ScaleImage(), 202, 205
scope considerations, 53–54, 56–57
SeedRnd(), 82, 338
SetBuffer(), 121, 137–138
SoundPan(), 326–329
SoundPitch(), 320–321, 323–324
SoundVolume(), 324–325
sqr(), 255
StopChannel(), 332
Str(), 46
SwitchSoundFiles(), 316
TestAI(), 13–15, 51
TestCollisions(), 258–259
TestEnemyKeys(), 271
TestInput(), 72, 74
TestKeys(), 259, 271, 289
TestMouse(), 304
TestMouseInput(), 177
TileBlock(), 218–220
TileImage(), 122, 218–219
UnlockBuffer(), 156–157
user-defined, 23, 51
WaitKeys(), 309
when to use, 57–58
Write(), 66
WritePixel(), 161–165
WritePixelFast(), 161–165

G
GameDev Web site, 380
GameOver() function, 48
games

demos, CD components, 382
guessing, 37–38
Invaderz!!

bullet type fields, 365
constants in, 362
enemy bitmaps, 360–361

explosion type fields, 365
functions in, 363
game play, 366–367
keys used in, 366
planning phase, 359–362
player bitmaps, 361
playing field, 360
ship fields in, 364
title screen, 367
user type fields, 365

Kong
ball direction code, 15
compilation, 7, 16–17
declaration code, 8–9
function definition code, 11
initialization, 9, 17
key press code, 12–13
keys used in, 8
main loop, 10
main screen, 16
scoring code, 11–12
shutdown sequence, 17–18
TestAI() function, 13–15
title screen, 16

Space Invaders, 359
Super Mario Brothers, 298
Textanoid!

ball movement, 84
CheckBall() function, 90
CheckBallWithBlocks() function, 90
constants, 81
direction variables, 80, 89
DrawBlocks() function, 86, 88, 92
NewLevel() function, 83
random number generation, 82
types, 79

Gates, Bill, 3
GetMouse() function, 309
global coordinates, 192–193
global variables, 53, 55, 57
Goto command, 35–36
graphics

graphical window creation
color depth, 108–109
discussed, 107
initialization, 108
mode variables, 14, 110–113
width and height, 108–109

Index388

images
Cls() function, 130
ClsColor() function, 130–131
Color() function, 128–130
CreateImage() function, 118–122
DrawImage() function, 116–118
ImageBuffer() function, 121
LoadImage() function, 114–115
MaskImage() function, 122–125
RGB values, 126–127
TileImage() function, 122
transparent, 123

GraphicsHeight() function, 160
GraphicsWidth() function, 160
greater than operator (>), 29
greater than or equal to operator (>=), 29
guessing games, 37–38

H
handle parameter

DrawImage() function, 116–117
FreeImage() function, 155
MaskImage() function, 124

heads-up display (HUD), 72
height

CreateImage() function, 144
graphical window creation, 108–109
LoadAnimImage() function, 231
Oval() function, 129
Rect() function, 189

Hello, World! program
blank workspaces, 19
comments, 20–21
compilation, 19
Delay function, 23
function declarations, 22
quotes in, 22
strings, 22

Help menu (BlitzPlus program), 7
hertz parameter, SoundPitch() function, 321
HUD (heads-up display), 72

I
Ibarra, Edgar L., 382
IDE, BlitzPlus program, 4–5
If statement, 29–30
If...ElseIf...Else statement, 325

Index 389

If...EndIf statement, 347, 354
If...Then conditional, 29–30
If...Then...Else conditional, 30–32
image buffers, 136, 142–143
ImageBuffer() function, 121
ImageHeight() function, 257
images

Cls() function, 130
ClsColor() function, 130–131
Color() function, 128–130
CreateImage() function, 118–122
DrawImage() function, 116–118
ImageBuffer() function, 121
LoadImage() function, 114–115
MaskImage() function, 122–125
RGB value, 126–127
scaling, 24, 202–203, 205–208
TileImage() function, 122
transparent, 123

ImagesCollide() function, 272–273
ImagesOverlap() function, 268, 272–273, 319
ImageWidth() function, 256
indentation, white space and, 96–97
initialization

arrays, 65
graphical windows, 108
Kong game example, 9, 17
Paint program example, 168–170

InitializeArray() function, 61
InitializeLevel() function, 11
input

joystick, 310–311
keyboard

FlushKeys() function, 282
KeyDown() function, 278–283
KeyHit() function, 285–293
overview, 277
TestKeys() function, 289

mouse
FlushMouse() function, 309
GetMouse() function, 309
key presses, 298
LEFTMOUSEBUTTON constant, 301
leftmouseclicks variable, 303
middle mouse wheel, 306–309
mouse cursor, displaying, 295–298
MouseDown() function, 299
MouseHit() function, 299–306

MouseX() function, 296–297
MouseY() function, 296–297
MouseZ() function, 308
RIGHTMOUSEBUTTON constant, 301
rightmouseclicks variable, 303
TestMouse() function, 304
WaitKeys() function, 309

Input$ function, 27–28
Input() function, 190
input operations, 26–28
installing BlitzPlus program, 4
instances, types, 68
integer variables, 23–24
Invaderz!! game example

bullet type fields, 365
constants in, 362
enemy bitmaps, 360–361
explosion type fields, 365
functions in, 363
game play, 366–367
keys used in, 366
planning phase, 359–362
player bitmaps, 361
playing field, 360
ship fields in, 364
title screen, 367
user type fields, 365

iterations, 17, 42

J
Jasc Paint Shop Pro program, 383
joystick input, 310–311

K
Kemeny, J., 3
key presses

input operations, 26–27
key press code, Kong game example, 12–13
mouse input, 298

keyboard input
FlushKeys() function, 282
KeyDown() function, 278–283
KeyHit() function, 285–293
overview, 277
TestKeys() function, 289

KeyDown() function, 47, 50, 86, 278–283
KeyHit() function, 50, 285–293

keys
in Invaderz!! game, 366
in Kong game, 8

Kong game
ball direction code, 15
compilation, 7, 16–17
declaration code, 8–9
function definition code, 11
initialization, 9, 17
key press code, 12–13
keys used in, 8
main loop code, 10
main screen, 16
scoring code, 11–12
shutdown sequence, 17–18
TestAI() function, 13–15
title screen, 16

Kurtz, T., 3

L
Labels button (BlitzPlus program), 6
layers, image buffers as, 143
Left$() function, 46
LEFTMOUSEBUTTON constant, 301
leftmouseclicks variable, 303
Len() function, 80
less than operator (<), 29
less than or equal to operator (<=), 29
line breaks, 16
Line() function, 195–197
LoadAnimImage() function, 229, 231
LoadBuffer() function, 153–155
LoadImage() function, 114–115
loading

images, 114–115
sounds, 314–316

LoadSound() function, 314–316
local variables, 53, 57
LockBuffer() function, 156–157
logical operators, 29, 33–35
Logsdon, John “Krylar,” 379
looping, playing music, 333–334
loops

defined, 41
For...Each, 291
For...Each...Next, 77–78
For...Next, 42–46

Index390

never-ending, 44
Repeat...Until, 48–50
repetitive tasks, 41
While...Wend, 46–48

LoopSound() function, 334

M
main function, 51
main loop

Kong game example, 10
Paint program example, 170–172

main program comments, 100
main screen, Kong game example, 16
masked mouse cursor, 170
MaskImage() function, 122–125
menus, BlitzPlus program, 7
middle mouse wheel, 306–309
MilkShape 3D program, 383
MilliSecs() function, 338, 342–348
mode variables, graphical window creation, 14,

110–113
mouse input

FlushMouse() function, 309
GetMouse() function, 309
key presses, 298
LEFTMOUSEBUTTON constant, 301
leftmouseclicks variable, 303
middle mouse wheel, 306–309
mouse cursor, displaying, 295–298
MouseDown() function, 299
MouseHit() function, 299–306
MouseX() function, 296–297
MouseY() function, 296–297
MouseZ() function, 308
RIGHTMOUSEBUTTON constant, 301
rightmouseclicks variable, 303
TestMouse() function, 304
WaitKeys() function, 309

MouseDown() function, 299
MouseHit() function, 299–306
MouseX() function, 296–297
MouseY() function, 296–297
MouseZ() function, 308
movement, animation, 239–246
multi-dimensional arrays, 64–66, 158
multiplication operator (*), 52
music. See also sounds

CD components, 382

Index 391

ChannelPan() function, 332–333
ChannelPitch() function, 332
ChannelPlaying() function, 333
channels, list of, 331
ChannelVolume() function, 332
looping, 333–334
PauseChannel() function, 332
PlayMusic() function, 330–331
ResumeChannel() function, 332
StopChannel() function, 332

N
naming

functions, 52, 102
variables, 101–102

New command (File menu), BlitzPlus program,
4–5

New icon (BlitzPlus toolbar), 6
NewLevel() function, 83
not equal to operator (<>), 29
NOT operator, 35

O
Open icon (BlitzPlus toolbar), 6
operators

+ (addition operator), 25–26
AND, 34
+ (concatenation operator), 25
/ (division), 52
logical, 29, 33–35
* (multiplication), 52
NOT, 35
OR, 34
relational, 29

OR operator, 34
outlines, 166
Oval() function, 129

P
page flipping

buffers
back, 136
BackBuffer() function, 140–142
defined, 136
front, 136
FrontBuffer() function, 138–139
image, 136, 142–143

LoadBuffer() function, 153–155
SaveBuffer() function, 149–153
SetBuffer() function, 137–138

CreateImage() function, 143–148
Flip command, 140
frame counts, 134
FreeImage() function, 155–156
games without, 135
overview, 133
rotation, 212

Paint program example
function definitions, 172–178
initialization, 168–170
main loop, 170–172
overview, 166

panels, BlitzPlus program, 5–6
panning

ChannelPan() function, 332–333
SoundPan() function, 326–329

parallaxing, 148, 217–218, 223
parameters

dx, Translate() function, 185
functions and, 51
handle

DrawImage() function, 116–117
FreeImage() function, 155
MaskImage() function, 124

hertz, SoundPitch() function, 321
scancode

KeyDown() function, 278
KeyHit() function, 286

x
Line() function, 196
Oval() function, 129
ReadPixel() function, 159
ReadPixelFast() function, 159
Rect() function, 189
TileImage() function, 122
Translate() function, 185
WritePixel() function, 161
WritePixelFast() function, 161

y
Line() function, 196
Oval() function, 129
Rect() function, 189
TileImage() function, 122
WritePixel() function, 161
WritePixelFast() function, 161

parentheses (), 25–26
Paste icon (BlitzPlus toolbar), 6
Pause icon (BlitzPlus toolbar), 6
PauseChannel() function, 332
percent sign (%), 24
PerformLogic() function, 48
period (.), 36
pitch

ChannelPitch() function, 332
SoundPitch() function, 320–324

pixel-imperfect collisions, 267–272
pixel-perfect collisions, 272–273
pixels

defined, 75
ReadPixel() function, 157–160
ReadPixelFast() function, 157–160
WritePixel() function, 161–165
WritePixelFast() function, 161–165

planning phase, Invaderz!! game, 359–362
player bitmaps, Invaderz!! game, 361
playing

music, 330–333
playing field, Invaderz!! game, 360
sounds, 316–320

PlayMusic() function, 330–331
PlaySound() function, 316–320
Point() function, 194
points, distances between, collision detection, 253,

255–256
portable code, 56
pound sign (#), 24
pre-program comments, 99
preloading, rotation and, 212–213
Print() function, 66
Print parameters, 23
Print statement, 46
PrintAnswer() function, 61
program-defined functions, 51
Program menu (BlitzPlus program), 7
programs, CD components, 383
proportion, scaling, 186–187
pseudocode, 13

Q
quotes (“), 22

Index392

R
radii, collision detection, 255–259
Rand() function, 338–339
random numbers

AI (artificial intelligence), 337–341
guessing games, 37–38
MilliSecs() function, 338, 342–348
Rand() function, 338–339
Rnd() function, 338–339
SeedRnd() function, 338
Textanoid! game example, 82

ReadPixel() function, 157–160
ReadPixelFast() function, 157–160
real-time rotation, 211
rectangles, scaling, 188–192
relational operators, 29
Repeat...Until loop, 48–50
repetitive tasks, loops, 41
ResetLevel() function, 83, 259
ResumeChannel() function, 332
RGB value

images, 126–127
MaskImage() function, 124–125

RIGHTMOUSEBUTTON constant, 301
rightmouseclicks variable, 303
Rnd() function, 338–339
rotation

clockwise and counterclockwise direction,
209–210

degrees rotated, 214
frame amounts, 216
page flipping, 212
preloading, 212–213
real-time, 211

Run icon (BlitzPlus toolbar), 6

S
Save icon (BlitzPlus toolbar), 6
SaveBuffer() function, 149–153
ScaleImage() function, 202, 205
scaling

images, 24, 202–203, 205–208
proportion, 186–187
rectangles, 188–192
triangles, 192–202

scan code
references, 373–377

Index 393

scancode parameter
KeyDown() function, 278
KeyHit() function, 286

scope considerations, functions and, 53–54, 56–57
scoring code, Kong game example, 11–12
SeedRnd() function, 82, 338
Select statement, 62
Select...Case conditional, 32–33
semicolon (;), 20, 98
SetBuffer() function, 121, 137–138
Sethi, Maneesh, 369, 379
ship fields, Invaderz!! game, 364
shutdown sequence, 17–18
Sibly, Mark, 3
single-dimensional arrays, 158
Smith, Marcus “Eikon,” 382
SoundPan() function, 326–329
SoundPitch() function, 320–324
sounds. See also music

CD components, 382
FreeSound() function, 314–315
LoadSound() function, 314–316
LoopSound() function, 334
PlaySound() function, 316–320
SoundPan() function, 326–329
SoundPitch() function, 320–321, 323–324
SoundVolume() function, 324–325
SwitchSoundFiles() function, 316
.WAV file formats, 313–314

SoundVolume() function, 324–325
source code, CD components, 382
Space Invaders, 359
sqr() function, 255
square brackets ([]), 22
statements

Else, 30–31
EndIf, 29–30
If, 29–30
If...ElseIf...Else, 325
If...EndIf, 347, 354
Print, 46
Select, 62

Stenback, Thomas, 382
Step Into icon (BlitzPlus toolbar), 6
Step Out icon (BlitzPlus toolbar), 6
Step Over icon (BlitzPlus toolbar), 6
StopChannel() function, 332
Str() function, 46

strings
defined, 22
string variables, 23–26

style
comments, 97–101
consistency, 95
indentation, 96–97
white space, 95–97

Super Mario Brothers, 298
SwitchSoundFiles() function, 316

T
TestAI() function, 13–15, 51
TestCollisions() function, 258–259
TestEnemyKeys() function, 271
TestInput() function, 72, 74
TestKeys() function, 259, 271, 289
TestMouse() function, 304
TestMouseInput() function, 177
Text command, 50
Textanoid! game example

ball movement, 84
CheckBall() function, 90
CheckBallWithBlocks() function, 90
constants, 81
direction variables, 80, 89
DrawBlocks() function, 86, 92
NewLevel() function, 83
random number generation, 82
ResetLevel() function, 83
types, 79

TileBlock() function, 218–220
TileImage() function, 122, 218–219
tiling images, 122
title screen

Invaderz!! game, 367
Kong game example, 16

toolbars, BlitzPlus program, 6
tracking, artificial intelligence, 353–354
transformations

parallaxing, 217–218
rotation, 209–217

clockwise and counterclockwise direction,
209–210
degrees rotated, 214
frame amounts, 216
page flipping, 212

preloading, 212–213
real-time, 211

scaling
images, 24, 202–203, 205–208
proportion, 186–187
rectangles, 188–192
triangles, 192–202

translation, 181–186
translation, transformations, 181–186
transparent images, 123
triangles, scaling, 192–202
true and false relationships, conditionals, 28–29
types

constants, 70–71
coordinate systems, 75–76
creating new, 68
declarations, 68
defined, 67
fields, 68–69
HUD (heads-up display), 72
instances, 68
Textanoid! game example, 79
unorganized variables, 67–68

Types button (BlitzPlus program), 6

U
UnlockBuffer() function, 156–157
user-defined functions, 23, 51
user type fields, Invaderz!! game, 365

V
variables

arrays, 59–60
declaring, 23–24
floating point, 23–24
global, 53, 55, 57
integer, 23–24
local, 53, 57
naming, 101–102
string, 23–25

volume
ChannelVolume() function, 332
Distance() function, 325
FindCorrectVolume() function, 325
FindCurrentVolume() function, 324
SoundVolume() function, 324–325

Index394

W
WaitKeys() function, 309
walking images, animation, 230
.WAV file formats, 313–314
Web Design For Teens (Maneesh Sethi), 369
Web sites

Amit's Game Programming Information, 380
BlitzBasic, 379
BlitzCoder, 379
GameDev, 380
Maneesh Sethi, 369, 379

While...Wend loop, 46–48
white space, style development, 95–97
width

CreateImage() function, 144
graphical window creation, 108–109
LoadAnimImage() function, 231
Oval() function, 129
Rect() function, 189

windows
BlitzPlus program, 5–6
graphical window creation

color depth, 108–109
discussed, 107
initialization, 108
mode variables, 14, 110–113
width and height, 108–109

Index 395

Write() function, 66
WritePixel() function, 161–165
WritePixelFast() function, 161–165

X
x parameter

DrawImage() function, 116–117
Line() function, 196
Oval() function, 129
ReadPixel() function, 159
ReadPixelFast() function, 159
Rect() function, 189
TileImage() function, 122
Translate() function, 185
WritePixel() function, 161
WritePixelFast() function, 161

Y
y parameter

DrawImage() function, 116–117
Line() function, 196
Oval() function, 129
Rect() function, 189
TileImage() function, 122
WritePixel() function, 161
WritePixelFast() function, 161

Call 1.800.354.9706 to order
Order online at www.courseptr.com

The Dark Side of Game Texturing
ISBN: 1-59200-350-8 ■ $39.99

Get ready to analyze—and re-create—the textures and graphics used in your
favorite 3D first-person shooter games. Not a born artist? That’s okay. You’ll
learn how to let Photoshop do most of the work. Begin with texturing basics,
including pixel sizes, color modes, and alpha channels. Then jump right into
hearty texture tutorials as you create everything from sci-fi backgrounds and
molten lava to medieval castle walls and dragon skin.

Beginning Game Graphics
ISBN: 1-59200-430-X ■ $29.99

This step-by-step guide begins with the most basic modeling techniques and
wraps up with advanced workflows used by professional game artists. It
provides powerful and easy-to-use tools to get you started, and it covers many
of the methods, philosophies, and proven techniques that can improve your
game demos and help separate you from the crowd in the rapidly growing
interactive entertainment industry.

Shaders for Game Programmers and Artists
ISBN: 1-59200-092-4 ■ $39.99

Master the fine points of shader creation by using ATI’s RenderMonkey platform.
This easy-to-use framework allows you to focus your energy on shader
development as you cover simple techniques, from the basics of color filters to
more advanced topics, such as depth of field, heat shimmer, and high-dynamic
range rendering. Extensive exercises at the end of each chapter allow you to
test your skills by expanding upon the shader you’ve just developed.

Character Development
and Storytelling for Games

ISBN: 1-59200-353-2 ■ $39.99
This is a book of ideas and of choices. Knowing which choices to make is not
teachable. It’s part of that creative instinct we call talent whose secret voice
guides us every time we sit down at the keyboard. All stories are not identical.
They are shaped by all those unique facets of the human beings who write
them. [This book] is meant to inform, to instruct, and maybe even inspire. [It] has
been designed as a quest. We are all of us on a journey toward a destination
for which there is no single road.—Lee Sheldon, Author

CREATE AMAZING GRAPHICS
AND COMPELLING STORYLINES

FOR YOUR GAMES!

GOT GAME?

Call 1.800.354.9706 to order
Order online at www.courseptr.comA division of Course Technology

™

Game Testing All in One

1-59200-373-7 ■ $49.99

Game Design, Second Edition

1-59200-493-8 ■ $39.99

Game Interface Design

1-59200-593-4 ■ $39.99

3D Game Programming
All in One

1-59200-136-X ■ $49.99

Call 1.800.354.9706 to order
Order online at www.courseptr.com

Game Art for Teens
ISBN: 1-59200-307-9 ■ $29.99

Blogging for Teens
ISBN: 1-59200-476-8 ■ $19.99

Digital Music Making for Teens
ISBN: 1-59200-508-X ■ $24.99

Game Programming for Teens,
Second Edition

ISBN: 1-59200-834-8 ■ $29.99

Digital Filmmaking for Teens
ISBN: 1-59200-603-5 ■ $24.99

Microsoft Visual Basic
Game Programming for Teens

ISBN: 1-59200-587-X ■ $29.99

Game Design for Teens
ISBN: 1-59200-496-2 ■ $29.99

Web Design for Teens
ISBN: 1-59200-607-8 ■ $19.99

Let it Out!

You’ve Got a Great Imagination…

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of limited
warranty, you cannot agree to the terms and conditions set forth, return the unused
book with unopened disc to the place where you purchased it for a refund.

License:
The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright hold-
er(s). You may transfer the enclosed disc only together with this license, and only if you
destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:
The enclosed disc is warranted by Thomson Course Technology PTR to be free of physical
defects in materials and workmanship for a period of sixty (60) days from end user’s pur-
chase of the book/disc combination. During the sixty-day term of the limited warranty,
Thomson Course Technology PTR will provide a replacement disc upon the return of a
defective disc.

Limited Liability:
THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST
ENTIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL THOM-
SON COURSE TECHNOLOGY PTR OR THE AUTHOR BE LIABLE FOR ANY OTHER
DAMAGES, INCLUDING LOSS OR CORRUPTION OF DATA, CHANGES IN THE FUNC-
TIONAL CHARACTERISTICS OF THE HARDWARE OR OPERATING SYSTEM, DELETE-
RIOUS INTERACTION WITH OTHER SOFTWARE, OR ANY OTHER SPECIAL, INCIDEN-
TAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE, EVEN IF THOMSON COURSE
TECHNOLOGY PTR AND/OR THE AUTHOR HAS PREVIOUSLY BEEN NOTIFIED THAT
THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:
THOMSON COURSE TECHNOLOGY PTR AND THE AUTHOR SPECIFICALLY DISCLAIM
ANY AND ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OF MERCHANTABILITY, SUITABILITY TO A PARTICULAR TASK OR PUR-
POSE, OR FREEDOM FROM ERRORS. SOME STATES DO NOT ALLOW FOR EXCLU-
SION OF IMPLIED WARRANTIES OR LIMITATION OF INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT APPLY TO YOU.

Other:
This Agreement is governed by the laws of the State of Massachusetts without regard to
choice of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement between
you and Thomson Course Technology PTR regarding use of the software.

