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PREFACE

The following material is addressed to readers who are already familiar with applied mathematics
at the advanced undergraduate level or preferably higher; and with some field, such as physics,
chemistry, biology, geology, medicine, economics, sociology, engineering, operations research, etc.,
where inference is needed.” A previous acquaintance with probability and statistics is not necessarys;
indeed, a certain amount of innocence in this area may be desirable, because there will be less to
unlearn.

We are concerned with probability theory and all of its conventional mathematics, but now
viewed in a wider context than that of the standard textbooks. Every Chapter after the first has
“new” (i.e., not previously published) results that we think will be found interesting and useful.
Many of our applications lie outside the scope of conventional probability theory as currently
taught. But we think that the results will speak for themselves, and that something like the theory
expounded here will become the conventional probability theory of the future.

History: The present form of this work is the result of an evolutionary growth over many years. My
interest in probability theory was stimulated first by reading the work of Harold Jeffreys (1939) and
realizing that his viewpoint makes all the problems of theoretical physics appear in a very different
light. But then in quick succession discovery of the work of R. T. Cox (1946), C. E. Shannon (1948)
and G. Pélya (1954) opened up new worlds of thought, whose exploration has occupied my mind
for some forty years. In this much larger and permanent world of rational thinking in general, the
current problems of theoretical physics appeared as only details of temporary interest.

The actual writing started as notes for a series of lectures given at Stanford University in 1956,
expounding the then new and exciting work of George Pélya on “Mathematics and Plausible Rea-
soning”. He dissected our intuitive “common sense” into a set of elementary qualitative desiderata
and showed that mathematicians had been using them all along to guide the early stages of discov-
ery, which necessarily precede the finding of a rigorous proof. The results were much like those of
James Bernoulli’s “Art of Conjecture” (1713), developed analytically by Laplace in the late 18’th
Century; but Pélya thought the resemblance to be only qualitative.

However, Pélya demonstrated this qualitative agreement in such complete, exhaustive detail
as to suggest that there must be more to it. Fortunately, the consistency theorems of R. T. Cox
were enough to clinch matters; when one added Pdlya’s qualitative conditions to them the result
was a proof that, if degrees of plausibility are represented by real numbers, then there is a uniquely
determined set of quantitative rules for conducting inference. That is, any other rules whose results
conflict with them will necessarily violate an elementary — and nearly inescapable — desideratum of
rationality or consistency.

But the final result was just the standard rules of probability theory, given already by Bernoulli
and Laplace; so why all the fuss? The important new feature was that these rules were now seen as
uniquely valid principles of logic in general, making no reference to “chance” or “random variables”;
so their range of application is vastly greater than had been supposed in the conventional probability
theory that was developed in the early twentieth Century. As a result, the imaginary distinction
between “probability theory” and “statistical inference” disappears, and the field achieves not only
logical unity and simplicity, but far greater technical power and flexibility in applications.

In the writer’s lectures, the emphasis was therefore on the quantitative formulation of Pdlya’s
viewpoint, so it could be used for general problems of scientific inference, almost all of which

t By “inference” we mean simply: deductive reasoning whenever enough information is at hand to permit
it; inductive or plausible reasoning when — as is almost invariably the case in real problems — the necessary
information is not available. But if a problem can be solved by deductive reasoning, probability theory is
not needed for it; thus our topic is the optimal processing of incomplete information.
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arise out of incomplete information rather than “randomness”. Some personal reminiscences about
George Pélya and this start of the work are in Chapter 5.

But once the development of applications started, the work of Harold Jeffreys, who had seen
so much of it intuitively and seemed to anticipate every problem I would encounter, became again
the central focus of attention. My debt to him is only partially indicated by the dedication of this
book to his memory. Further comments about his work and its influence on mine are scattered
about in several Chapters.

In the years 1957-1970 the lectures were repeated, with steadily increasing content, at many
other Universities and research laboratories.t In this growth it became clear gradually that the
outstanding difficulties of conventional “statistical inference” are easily understood and overcome.
But the rules which now took their place were quite subtle conceptually, and it required some
deep thinking to see how to apply them correctly. Past difficulties which had led to rejection of
Laplace’s work, were seen finally as only misapplications, arising usually from failure to define the
problem unambiguously or to appreciate the cogency of seemingly trivial side information, and easy
to correct once this is recognized. The various relations between our “extended logic” approach
and the usual “random variable” one appear in almost every Chapter, in many different forms.

Eventually, the material grew to far more than could be presented in a short series of lec-
tures, and the work evolved out of the pedagogical phase; with the clearing up of old difficulties
accomplished, we found ourselves in possession of a powerful tool for dealing with new problems.
Since about 1970 the accretion has continued at the same pace, but fed instead by the research
activity of the writer and his colleagues. We hope that the final result has retained enough of its
hybrid origins to be usable either as a textbook or as a reference work; indeed, several generations
of students have carried away earlier versions of our notes, and in turn taught it to their students.

In view of the above, we repeat the sentence that Charles Darwin wrote in the Introduction to
his Origin of Species: “I hope that I may be excused for entering on these personal details, as I give
them to show that I have not been hasty in coming to a decision.” But it might be thought that
work done thirty years ago would be obsolete today. Fortunately, the work of Jeffreys, Pélya and
Cox was of a fundamental, timeless character whose truth does not change and whose importance
grows with time. Their perception about the nature of inference, which was merely curious thirty
years ago, is very important in a half-dozen different areas of science today; and it will be crucially
important in all areas 100 years hence.

Foundations: From thirty years of experience with its applications in hundreds of real problems,
our views on the foundations of probability theory have evolved into something quite complex,
which cannot be described in any such simplistic terms as “pro—this” or “anti—that”. For example
our system of probability could hardly, in style, philosophy, and purpose, be more different from
that of Kolmogorov. What we consider to be fully half of probability theory as it is needed in
current applications — the principles for assigning probabilities by logical analysis of incomplete
information — is not present at all in the Kolmogorov system.

Yet when all is said and done we find ourselves, to our own surprise, in agreement with Kol-
mogorov and in disagreement with his critics, on nearly all technical issues. As noted in Appendix A,
each of his axioms turns out to be, for all practical purposes, derivable from the Pélya—Cox desider-
ata of rationality and consistency. In short, we regard our system of probability as not contradicting
Kolmogorov’s; but rather seeking a deeper logical foundation that permits its extension in the di-
rections that are needed for modern applications. In this endeavor, many problems have been
solved, and those still unsolved appear where we should naturally expect them: in breaking into
new ground.

T Some of the material in the early Chapters was issued in 1958 by the Socony-Mobil Oil Company as
Number 4 in their series “Colloquium Lectures in Pure and Applied Science”.
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As another example, it appears at first glance to everyone that we are in very close agreement
with the de Finetti system of probability. Indeed, the writer believed this for some time. Yet
when all is said and done we find, to our own surprise, that little more than a loose philosophical
agreement remains; on many technical issues we disagree strongly with de Finetti. It appears to
us that his way of treating infinite sets has opened up a Pandora’s box of useless and unnecessary
paradoxes; nonconglomerability and finite additivity are examples discussed in Chapter 15.

Infinite set paradoxing has become a morbid infection that is today spreading in a way that
threatens the very life of probability theory, and requires immediate surgical removal. In our
system, after this surgery, such paradoxes are avoided automatically; they cannot arise from correct
application of our basic rules, because those rules admit only finite sets and infinite sets that arise
as well-defined and well-behaved limits of finite sets. The paradoxing was caused by (1) jumping
directly into an infinite set without specifying any limiting process to define its properties; and
then (2) asking questions whose answers depend on how the limit was approached.

For example, the question: “What is the probability that an integer is even?” can have any
answer we please in (0, 1), depending on what limiting process is to define the “set of all inte-
gers” (just as a conditionally convergent series can be made to converge to any number we please,
depending on the order in which we arrange the terms).

In our view, an infinite set cannot be said to possess any “existence” and mathematical prop-
erties at all — at least, in probability theory — until we have specified the limiting process that is
to generate it from a finite set. In other words, we sail under the banner of Gauss, Kronecker, and
Poincaré rather than Cantor, Hilbert, and Bourbaki. We hope that readers who are shocked by
this will study the indictment of Bourbakism by the mathematician Morris Kline (1980), and then
bear with us long enough to see the advantages of our approach. Examples appear in almost every
Chapter.

Comparisons: For many years there has been controversy over “frequentist” versus “Bayesian”
methods of inference, in which the writer has been an outspoken partisan on the Bayesian side.
The record of this up to 1981 is given in an earlier book (Jaynes, 1983). In these old works there
was a strong tendency, on both sides, to argue on the level of philosophy or ideology. We can
now hold ourselves somewhat aloof from this because, thanks to recent work, there is no longer
any need to appeal to such arguments. We are now in possession of proven theorems and masses
of worked—out numerical examples. As a result, the superiority of Bayesian methods is now a
thoroughly demonstrated fact in a hundred different areas. One can argue with a philosophy; it
is not so easy to argue with a computer printout, which says to us: “Independently of all your
philosophy, here are the facts of actual performance.” We point this out in some detail whenever
there is a substantial difference in the final results. Thus we continue to argue vigorously for the
Bayesian methods; but we ask the reader to note that our arguments now proceed by citing facts
rather than proclaiming a philosophical or ideological position.

However, neither the Bayesian nor the frequentist approach is universally applicable, so in
the present more general work we take a broader view of things. Our theme is simply: Probability
Theory as Extended Logic. The “new” perception amounts to the recognition that the mathematical
rules of probability theory are not merely rules for calculating frequencies of “random variables”;
they are also the unique consistent rules for conducting inference (i.e. plausible reasoning) of any
kind, and we shall apply them in full generality to that end.

It is true that all “Bayesian” calculations are included automatically as particular cases of our
rules; but so are all “frequentist” calculations. Nevertheless, our basic rules are broader than either
of these, and in many applications our calculations do not fit into either category.

To explain the situation as we see it presently: The traditional “frequentist” methods which use
only sampling distributions are usable and useful in many particularly simple, idealized problems;
but they represent the most proscribed special cases of probability theory, because they presuppose



xii PREFACE xii

conditions (independent repetitions of a “random experiment” but no relevant prior information)
that are hardly ever met in real problems. This approach is quite inadequate for the current needs
of science.

In addition, frequentist methods provide no technical means to eliminate nuisance parameters
or to take prior information into account, no way even to use all the information in the data when
sufficient or ancillary statistics do not exist. Lacking the necessary theoretical principles, they force
one to “choose a statistic” from intuition rather than from probability theory, and then to invent
ad hoc devices (such as unbiased estimators, confidence intervals, tail-area significance tests) not
contained in the rules of probability theory. Each of these is usable within a small domain for
which it was invented but, as Cox’s theorems guarantee, such arbitrary devices always generate
inconsistencies or absurd results when applied to extreme cases; we shall see dozens of examples.

All of these defects are corrected by use of Bayesian methods, which are adequate for what
we might call “well-developed” problems of inference. As Harold Jeffreys demonstrated, they
have a superb analytical apparatus, able to deal effortlessly with the technical problems on which
frequentist methods fail. They determine the optimal estimators and algorithms automatically
while taking into account prior information and making proper allowance for nuisance parameters;
and they do not break down — but continue to yield reasonable results — in extreme cases. Therefore
they enable us to solve problems of far greater complexity than can be discussed at all in frequentist
terms. One of our main purposes is to show how all this capability was contained already in the
simple product and sum rules of probability theory interpreted as extended logic, with no need
for — indeed, no room for — any ad hoc devices.

But before Bayesian methods can be used, a problem must be developed beyond the “ex-
ploratory phase” to the point where it has enough structure to determine all the needed apparatus
(a model, sample space, hypothesis space, prior probabilities, sampling distribution). Almost all
scientific problems pass through an initial exploratory phase in which we have need for inference,
but the frequentist assumptions are invalid and the Bayesian apparatus is not yet available. In-
deed, some of them never evolve out of the exploratory phase. Problems at this level call for more
primitive means of assigning probabilities directly out of our incomplete information.

For this purpose, the Principle of Maximum Entropy has at present the clearest theoretical
justification and is the most highly developed computationally, with an analytical apparatus as
powerful and versatile as the Bayesian one. To apply it we must define a sample space, but do not
need any model or sampling distribution. In effect, entropy maximization creates a model for us
out of our data, which proves to be optimal by so many different criteria* that it is hard to imagine
circumstances where one would not want to use it in a problem where we have a sample space but
no model.

Bayesian and maximum entropy methods differ in another respect. Both procedures yield
the optimal inferences from the information that went into them, but we may choose a model for
Bayesian analysis; this amounts to expressing some prior knowledge — or some working hypothesis —
about the phenomenon being observed. Usually such hypotheses extend beyond what is directly
observable in the data, and in that sense we might say that Bayesian methods are — or at least may

* These concern efficient information handling; for example, (1) The model created is the simplest one
that captures all the information in the constraints (Chapter 11); (2) Tt is the unique model for which
the constraints would have been sufficient statistics (Chapter 8); (3) If viewed as constructing a sampling
distribution for subsequent Bayesian inference from new data I), the only property of the measurement
errors in [ that are used in that subsequent inference are the ones about which that sampling distribution
contained some definite prior information (Chapter 7). Thus the formalism automatically takes into account
all the information we have, but avoids assuming information that we do not have. This contrasts sharply
with orthodox methods, where one does not think in terms of information at all, and in general violates
both of these desiderata.



xiii PREFACE xiii

be — speculative. If the extra hypotheses are true, then we expect that the Bayesian results will
improve on maximum entropy; if they are false, the Bayesian inferences will likely be worse.

On the other hand, maximum entropy is a nonspeculative procedure, in the sense that it
invokes no hypotheses beyond the sample space and the evidence that is in the available data.
Thus it predicts only observable facts (functions of future or past observations) rather than values
of parameters which may exist only in our imagination. It is just for that reason that maximum
entropy is the appropriate (safest) tool when we have very little knowledge beyond the raw data;
it protects us against drawing conclusions not warranted by the data. But when the information is
extremely vague it may be difficult to define any appropriate sample space, and one may wonder
whether still more primitive principles than Maximum Entropy can be found. There is room for
much new creative thought here.

For the present, there are many important and highly nontrivial applications where Maximum
Entropy is the only tool we need. The planned second volume of this work is to consider them
in detail; usually, they require more technical knowledge of the subject-matter area than do the
more general applications studied in this volume. All of presently known statistical mechanics, for
example, is included in this, as are the highly successful maximum entropy spectrum analysis and
image reconstruction algorithms in current use. However, we think that in the future the latter two
applications will evolve on into the Bayesian phase, as we become more aware of the appropriate
models and hypothesis spaces, which enable us to incorporate more prior information.

Mental Activity: As one would expect already from Poélya’s examples, probability theory as
extended logic reproduces many aspects of human mental activity, sometimes in surprising and
even disturbing detail. In Chapter 5 we find our equations exhibiting the phenomenon of a person
who tells the truth and is not believed, even though the disbelievers are reasoning consistently. The
theory explains why and under what circumstances this will happen.

The equations also reproduce a more complicated phenomenon, divergence of opinions. One
might expect that open discussion of public issues would tend to bring about a general concensus.
On the contrary, we observe repeatedly that when some controversial issue has been discussed
vigorously for a few years, society becomes polarized into two opposite extreme camps; it is almost
impossible to find anyone who retains a moderate view. Probability theory as logic shows how two
persons, given the same information, may have their opinions driven in opposite directions by it,
and what must be done to avoid this.

In such respects, it is clear that probability theory is telling us something about the way our
own minds operate when we form intuitive judgments, of which we may not have been consciously
aware. Some may feel uncomfortable at these revelations; others may see in them useful tools for
psychological, sociological, or legal research.

What is ‘safe’? We are not concerned here only with abstract issues of mathematics and logic.
One of the main practical messages of this work is the great effect of prior information on the
conclusions that one should draw from a given data set. Currently much discussed issues such
as environmental hazards or the toxicity of a food additive, cannot be judged rationally if one
looks only at the current data and ignores the prior information that scientists have about the
phenomenon. As we demonstrate, this can lead us to greatly overestimate or underestimate the
danger.

A common error, when judging the effects of radioactivity or the toxicity of some substance,
is to assume a linear response model without threshold (that is, a dose rate below which there is
no ill effect). Presumably there is no threshold effect for cumulative poisons like heavy metal ions
(mercury, lead), which are eliminated only very slowly if at all. But for virtually every organic
substance (such as saccharin or cyclamates), the existence of a finite metabolic rate means that
there must exist a finite threshold dose rate, below which the substance is decomposed, eliminated,
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or chemically altered so rapidly that it has no ill effects. If this were not true, the human race
could never have survived to the present time, in view of all the things we have been eating.

Indeed, every mouthful of food you and I have ever taken contained many billions of kinds of
complex molecules whose structure and physiological effects have never been determined — and many
millions of which would be toxic or fatal in large doses. We cannot doubt that we are daily ingesting
thousands of substances that are far more dangerous than saccharin — but in amounts that are safe,
because they are far below the various thresholds of toxicity. There is an obvious resemblance to
the process of vaccination, in which an extremely small “microdose” of some potentially dangerous
substance causes the body to build up defenses against it, making it harmless. But at present there
is hardly any substance except some common drugs, for which we actually know the threshold.

Therefore, the goal of inference in this field should be to estimate not only the slope of the
response curve, but far more importantly, to decide whether there is evidence for a threshold;
and if so, to estimate its magnitude (the “maximum safe dose”). For example, to tell us that a
sugar substitute is dangerous in doses a thousand times greater than would ever be encountered in
practice, is hardly an argument against using the substitute; indeed, the fact that it is necessary
to go to kilodoses in order to detect any ill effects at all, is rather conclusive evidence, not of
the danger, but of the safety, of a tested substance. A similar overdose of sugar would be far
more dangerous, leading not to barely detectable harmful effects, but to sure, immediate death by
diabetic coma; yet nobody has proposed to ban the use of sugar in food.

Kilodose effects are irrelevant because we do not take kilodoses; in the case of a sugar substitute
the important question is: What are the threshold doses for toxicity of a sugar substitute and for
sugar, compared to the normal doses? If that of a sugar substitute is higher, then the rational
conclusion would be that the substitute is actually safer than sugar, as a food ingredient. To
analyze one’s data in terms of a model which does not allow even the possibility of a threshold
effect, is to prejudge the issue in a way that can lead to false conclusions however good the data. If
we hope to detect any phenomenon, we must use a model that at least allows the possibility that
it may exist.

We emphasize this in the Preface because false conclusions of just this kind are now not only
causing major economic waste, but also creating unnecessary dangers to public health and safety.
Society has only finite resources to deal with such problems, so any effort expended on imaginary
dangers means that real dangers are going unattended. Even worse, the error is incorrectible by
current data analysis procedures; a false premise built into a model which is never questioned,
cannot be removed by any amount of new data. Use of models which correctly represent the prior
information that scientists have about the mechanism at work can prevent such folly in the future.

But such considerations are not the only reasons why prior information is essential in inference;
the progress of science itself is at stake. To see this, note a corollary to the last paragraph; that
new data that we insist on analyzing in terms of old ideas (that is, old models which are not
questioned) cannot lead us out of the old ideas. However many data we record and analyze, we
may just keep repeating the same old errors, and missing the same crucially important things that
the experiment was competent to find. That is what ignoring prior information can do to us; no
amount of analyzing coin tossing data by a stochastic model could have led us to discovery of
Newtonian mechanics, which alone determines those data.

But old data, when seen in the light of new ideas, can give us an entirely new insight into
a phenomenon; we have an impressive recent example of this in the Bayesian spectrum analysis
of nuclear magnetic resonance data, which enables us to make accurate quantitative determina-
tions of phenomena which were not accessible to observation at all with the previously used data
analysis by fourier transforms. When a data set is mutilated (or, to use the common euphemism,
“filtered’) by processing according to false assumptions, important information in it may be de-
stroyed irreversibly. As some have recognized, this is happening constantly from orthodox methods
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of detrending or seasonal adjustment in Econometrics. But old data sets, if preserved unmutilated
by old assumptions, may have a new lease on life when our prior information advances.

Style of Presentation: In part A, expounding principles and elementary applications, most
Chapters start with several pages of verbal discussion of the nature of the problem. Here we
try to explain the constructive ways of looking at it, and the logical pitfalls responsible for past
errors. Only then do we turn to the mathematics, solving a few of the problems of the genre to the
point where the reader may carry it on by straightforward mathematical generalization. In part B,
expounding more advanced applications, we can concentrate from the start on the mathematics.

The writer has learned from much experience that this primary emphasis on the logic of the
problem, rather than the mathematics, is necessary in the early stages. For modern students, the
mathematics is the easy part; once a problem has been reduced to a definite mathematical exercise,
most students can solve it effortlessly and extend it endlessly, without further help from any book or
teacher. It is in the conceptual matters (how to make the initial connection between the real-world
problem and the abstract mathematics) that they are perplexed and unsure how to proceed.

Recent history demonstrates that anyone foolhardy enough to describe his own work as “rig-
orous” is headed for a fall. Therefore, we shall claim only that we do not knowingly give erroneous
arguments. We are conscious also of writing for a large and varied audience, for most of whom
clarity of meaning is more important than “rigor” in the narrow mathematical sense.

There are two more, even stronger reasons for placing our primary emphasis on logic and
clarity. Firstly, no argument is stronger than the premises that go into it, and as Harold Jeffreys
noted, those who lay the greatest stress on mathematical rigor are just the ones who, lacking a sure
sense of the real world, tie their arguments to unrealistic premises and thus destroy their relevance.
Jeffreys likened this to trying to strengthen a building by anchoring steel beams into plaster. An
argument which makes it clear intuitively why a result is correct, is actually more trustworthy
and more likely of a permanent place in science, than is one that makes a great overt show of
mathematical rigor unaccompanied by understanding.

Secondly, we have to recognize that there are no really trustworthy standards of rigor in a
mathematics that has embraced the theory of infinite sets. Morris Kline (1980, p. 351) came close
to the Jeffreys simile: “Should one design a bridge using theory involving infinite sets or the axiom
of choice? Might not the bridge collapse?” The only real rigor we have today is in the operations
of elementary arithmetic on finite sets of finite integers, and our own bridge will be safest from
collapse if we keep this in mind.

Of course, it is essential that we follow this “finite sets” policy whenever it matters for our
results; but we do not propose to become fanatical about it. In particular, the arts of computation
and approximation are on a different level than that of basic principle; and so once a result is
derived from strict application of the rules, we allow ourselves to use any convenient analytical
methods for evaluation or approximation (such as replacing a sum by an integral) without feeling
obliged to show how to generate an uncountable set as the limit of a finite one.

But we impose on ourselves a far stricter adherence to the mathematical rules of probability
theory than was ever exhibited in the “orthodox” statistical literature, in which authors repeatedly
invoke the aforementioned intuitive ad hoc devices to do, arbitrarily and imperfectly, what the
rules of probability theory as logic would have done for them uniquely and optimally. It is just this
strict adherence that enables us to avoid the artificial paradoxes and contradictions of orthodox
statistics, as described in Chapters 15 and 17.

Equally important, this policy often simplifies the computations in two ways: (A) The problem
of determining the sampling distribution of a “statistic” is eliminated; the evidence of the data is
displayed fully in the likelihood function, which can be written down immediately. (B) One can
eliminate nuisance parameters at the beginning of a calculation, thus reducing the dimensionality
of a search algorithm. This can mean orders of magnitude reduction in computation over what
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would be needed with a least squares or maximum likelihood algorithm. The Bayesian computer
programs of Bretthorst (1988) demonstrate these advantages impressively, leading in some cases to
major improvements in the ability to extract information from data, over previously used methods.
But this has barely scratched the surface of what can be done with sophisticated Bayesian models.
We expect a great proliferation of this field in the near future.

A scientist who has learned how to use probability theory directly as extended logic, has a great
advantage in power and versatility over one who has learned only a collection of unrelated ad-hoc
devices. As the complexity of our problems increases, so does this relative advantage. Therefore
we think that in the future, workers in all the quantitative sciences will be obliged, as a matter of
practical necessity, to use probability theory in the manner expounded here. This trend is already
well under way in several fields, ranging from econometrics to astronomy to magnetic resonance
spectroscopy; but to make progress in a new area it is necessary to develop a healthy disrespect for
tradition and authority, which have retarded progress throughout the 20’th Century.

Finally, some readers should be warned not to look for hidden subtleties of meaning which are
not present. We shall, of course, explain and use all the standard technical jargon of probability
and statistics — because that is our topic. But although our concern with the nature of logical
inference leads us to discuss many of the same issues, our language differs greatly from the stilted
jargon of logicians and philosophers. There are no linguistic tricks and there is no “meta—language”
gobbledygook; only plain English. We think that this will convey our message clearly enough to
anyone who seriously wants to understand it. In any event, we feel sure that no further clarity
would be achieved by taking the first few steps down that infinite regress that starts with: “What
do you mean by ‘exists’?”
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Elliott Montroll, Paul Meier, Dennis Lindley, David Lane, Mark Kac, Harold Jeffreys, Bruce Hill,
Stephen Gull, Jack Good, Seymour Geisser, Anthony Garrett, Willy Feller, Anthony Edwards,
Morrie de Groot, Phil Dawid, Jerome Cornfield, John Parker Burg, David Blackwell, and George
Barnard. While I have not agreed with all of the great variety of things they told me, it has all
been taken into account in one way or another in the following pages. Even when we ended in
disagreement on some issue, I believe that our frank private discussions have enabled me to avoid
misrepresenting their positions, while clarifying my own thinking; I thank them for their patience.
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CHAPTER 1

PLAUSIBLE REASONING

“The actual science of logic is conversant at present only with things either certain,
impossible, or entirely doubtful, none of which (fortunately) we have to reason on.
Therefore the true logic for this world is the calculus of Probabilities, which takes
account of the magnitude of the probability which is, or ought to be, in a reasonable
man’s mind.” — James Clerk Maxwell (1850)

Suppose some dark night a policeman walks down a street, apparently deserted; but suddenly he
hears a burglar alarm, looks across the street, and sees a jewelry store with a broken window. Then
a gentleman wearing a mask comes crawling out through the broken window, carrying a bag which
turns out to be full of expensive jewelry. The policeman doesn’t hesitate at all in deciding that this
gentleman is dishonest. But by what reasoning process does he arrive at this conclusion? Let us
first take a leisurely look at the general nature of such problems.

Deductive and Plausible Reasoning

A moment’s thought makes it clear that our policeman’s conclusion was not a logical deduction
from the evidence; for there may have been a perfectly innocent explanation for everything. It
might be, for example, that this gentleman was the owner of the jewelry store and he was coming
home from a masquerade party, and didn’t have the key with him. But just as he walked by
his store a passing truck threw a stone through the window; and he was only protecting his own
property.

Now while the policeman’s reasoning process was not logical deduction, we will grant that it
had a certain degree of validity. The evidence did not make the gentleman’s dishonesty certain,
but it did make it extremely plausible. This is an example of a kind of reasoning in which we have
all become more or less proficient, necessarily, long before studying mathematical theories. We are
hardly able to get through one waking hour without facing some situation (i.e., will it rain or won’t
it?) where we do not have enough information to permit deductive reasoning; but still we must
decide immediately what to do.

But in spite of its familiarity, the formation of plausible conclusions is a very subtle process.
Although history records discussions of it extending over 24 Centuries, probably nobody has ever
produced an analysis of the process which anyone else finds completely satisfactory. But in this work
we will be able to report some useful and encouraging new progress on them, in which conflicting
intuitive judgments are replaced by definite theorems, and ad hoc procedures are replaced by
rules that are determined uniquely by some very elementary — and nearly inescapable — criteria of
rationality.

All discussions of these questions start by giving examples of the contrast between deduc-
tive reasoning and plausible reasoning. As was recognized already in the Organon of Aristotle
(4’th Century B.C.), deductive reasoning (apodeizis) can be analyzed ultimately into the repeated
application of two strong syllogisms:

If Ais true, then B is true
A is true (1-1)

Therefore, B is true

and its inverse:
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If Ais true, then B is true
B is false (1-2)

Therefore, A is false

This is the kind of reasoning we would like to use all the time; but as noted, in almost all the
situations confronting us we do not have the right kind of information to allow this kind of reasoning.
We fall back on weaker syllogisms (epagoge):

If Ais true, then B is true
B is true (1-3)

Therefore, A becomes more plausible

The evidence does not prove that A is true, but verification of one of its consequences does give us
more confidence in A. For example, let

A = “It will start to rain by 10 AM at the latest.”
B = “The sky will become cloudy before 10 AM.”

Observing clouds at 9:45 AM does not give us a logical certainty that the rain will follow; nev-
ertheless our common sense, obeying the weak syllogism, may induce us to change our plans and
behave as if we believed that it will, if those clouds are sufficiently dark.

This example shows also that the major premise, “If A then B” expresses B only as a logical
consequence of A; and not necessarily a causal physical consequence, which could be effective only
at a later time. The rain at 10 AM is not the physical cause of the clouds at 9:45 AM. Nevertheless,
the proper logical connection is not in the uncertain causal direction (clouds) = (rain), but rather
(rain) = (clouds) which is certain, although noncausal.

We emphasize at the outset that we are concerned here with logical connections, because some
discussions and applications of inference have fallen into serious error through failure to see the
distinction between logical implication and physical causation. The distinction is analyzed in some
depth by H. A. Simon and N. Rescher (1966), who note that all attempts to interpret implication
as expressing physical causation founder on the lack of contraposition expressed by the second
syllogism (1-2). That is, if we tried to interpret the major premise as “A is the physical cause
of B”, then we would hardly be able to accept that “not—B is the physical cause of not—A”. In
Chapter 3 we shall see that attempts to interpret plausible inferences in terms of physical causation
fare no better.

Another weak syllogism, still using the same major premise, is

If Ais true, then B is true
A is false (1-4)

Therefore, B becomes less plausible

In this case, the evidence does not prove that B is false; but one of the possible reasons for its
being true has been eliminated, and so we feel less confident about B. The reasoning of a scientist,
by which he accepts or rejects his theories, consists almost entirely of syllogisms of the second and

third kind.

Now the reasoning of our policeman was not even of the above types. It is best described by
a still weaker syllogism:



103 Chap. 1: PLAUSIBLE REASONING 103

If Ais true, then B becomes more plausible
B is true (1-5)

Therefore, A becomes more plausible

But in spite of the apparent weakness of this argument, when stated abstractly in terms of A and
B, we recognize that the policeman’s conclusion has a very strong convincing power. There is
something which makes us believe that in this particular case, his argument had almost the power
of deductive reasoning.

These examples show that the brain, in doing plausible reasoning, not only decides whether
something becomes more plausible or less plausible, but it evaluates the degree of plausibility in
some way. The plausibility of rain by 10 depends very much on the darkness of those clouds.
And the brain also makes use of old information as well as the specific new data of the problem;
in deciding what to do we try to recall our past experience with clouds and rain, and what the
weather—-man predicted last night.

To illustrate that the policeman was also making use of the past experience of policemen in
general, we have only to change that experience. Suppose that events like these happened several
times every night to every policeman—and in every case the gentleman turned out to be completely
innocent. Very soon, policemen would learn to ignore such trivial things.

Thus, in our reasoning we depend very much on prior information to help us in evaluating
the degree of plausibility in a new problem. This reasoning process goes on unconsciously, almost
instantaneously, and we conceal how complicated it really is by calling it common sense.

The mathematician George Pélya (1945, 1954) wrote three books about plausible reasoning,
pointing out a wealth of interesting examples and showing that there are definite rules by which
we do plausible reasoning (although in his work they remain in qualitative form). The above weak
syllogisms appear in his third volume. The reader is strongly urged to consult Pélya’s exposition,
which was the original source of many of the ideas underlying the present work. We show below
how Pdlya’s principles may be made quantitative, with resulting useful applications.

Evidently, the deductive reasoning described above has the property that we can go through
long chains of reasoning of the type (1-1) and (1-2) and the conclusions have just as much certainty
as the premises. With the other kinds of reasoning, (1-3) — (1-5), the reliability of the conclusion
attenuates if we go through several stages. But in their quantitative form we shall find that in many
cases our conclusions can still approach the certainty of deductive reasoning (as the example of the
policeman leads us to expect). Pdlya showed that even a pure mathematician actually uses these
weaker forms of reasoning most of the time. Of course, when he publishes a new theorem, he will
try very hard to invent an argument which uses only the first kind; but the reasoning process which
led him to the theorem in the first place almost always involves one of the weaker forms (based,
for example, on following up conjectures suggested by analogies). The same idea is expressed in
a remark of S. Banach (quoted by S. Ulam, 1957): “Good mathematicians see analogies between
theorems; great mathematicians see analogies between analogies.”

As a first orientation, then, let us note some very suggestive analogies to another field-which
is itself based, in the last analysis, on plausible reasoning.

Analogies with Physical Theories

In physics, we learn quickly that the world is too complicated for us to analyze it all at once. We
can make progress only if we dissect it into little pieces and study them separately. Sometimes,
we can invent a mathematical model which reproduces several features of one of these pieces, and
whenever this happens we feel that progress has been made. These models are called physical
theories. As knowledge advances, we are able to invent better and better models, which reproduce
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more and more features of the real world, more and more accurately. Nobody knows whether there
is some natural end to this process, or whether it will go on indefinitely.

In trying to understand common sense, we shall take a similar course. We won’t try to
understand it all at once, but we shall feel that progress has been made if we are able to construct
idealized mathematical models which reproduce a few of its features. We expect that any model
we are now able to construct will be replaced by more complete ones in the future, and we do not
know whether there is any natural end to this process.

The analogy with physical theories is deeper than a mere analogy of method. Often, the things
which are most familiar to us turn out to be the hardest to understand. Phenomena whose very
existence is unknown to the vast majority of the human race (such as the difference in ultraviolet
spectra of Iron and Nickel) can be explained in exhaustive mathematical detail—but all of modern
science is practically helpless when faced with the complications of such a commonplace fact as
growth of a blade of grass. Accordingly, we must not expect too much of our models; we must be
prepared to find that some of the most familiar features of mental activity may be ones for which
we have the greatest difficulty in constructing any adequate model.

There are many more analogies. In physics we are accustomed to find that any advance in
knowledge leads to consequences of great practical value, but of an unpredictable nature. Roent-
gen’s discovery of x—rays led to important new possibilities of medical diagnosis; Maxwell’s discovery
of one more term in the equation for curl H led to practically instantaneous communication all over
the earth.

Our mathematical models for common sense also exhibit this feature of practical usefulness.
Any successful model, even though it may reproduce only a few features of common sense, will
prove to be a powerful extension of common sense in some field of application. Within this field, it
enables us to solve problems of inference which are so involved in complicated detail that we would
never attempt to solve them without its help.

The Thinking Computer

Models have practical uses of a quite different type. Many people are fond of saying, “They will
never make a machine to replace the human mind—it does many things which no machine could
ever do.” A beautiful answer to this was given by J. von Neumann in a talk on computers given
in Princeton in 1948, which the writer was privileged to attend. In reply to the canonical question
from the audience [“But of course, a mere machine can’t really think, can it?”], he said: “You insist
that there is something a machine cannot do. If you will tell me precisely what it is that a machine
cannot do, then I can always make a machine which will do just that!”

In principle, the only operations which a machine cannot perform for us are those which we
cannot describe in detail, or which could not be completed in a finite number of steps. Of course,
some will conjure up images of Goédel incompleteness, undecidability, Turing machines which never
stop, etc. But to answer all such doubts we need only point to the existence of the human brain,
which does it. Just as von Neumann indicated, the only real limitations on making “machines
which think” are our own limitations in not knowing exactly what “thinking” consists of.

But in our study of common sense we shall be led to some very explicit ideas about the
mechanism of thinking. Every time we can construct a mathematical model which reproduces a
part of common sense by prescribing a definite set of operations, this shows us how to “build a
machine” (i.e., write a computer program) which operates on incomplete data and, by applying
quantitative versions of the above weak syllogisms, does plausible reasoning instead of deductive
reasoning.

Indeed, the development of such computer software for certain specialized problems of inference
is one of the most active and useful current trends in this field. One kind of problem thus dealt with
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might be: given a mass of data, comprising 10,000 separate observations, determine in the light
of these data and whatever prior information is at hand, the relative plausibilities of 100 different
possible hypotheses about the causes at work.

Our unaided common sense might be adequate for deciding between two hypotheses whose
consequences are very different; but for dealing with 100 hypotheses which are not very different,
we would be helpless without a computer and a well-developed mathematical theory that shows
us how to program it. That is, what determines, in the policeman’s syllogism (1-5), whether the
plausibility of A increases by a large amount, raising it almost to certainty; or only a negligibly
small amount, making the data B almost irrelevant? The object of the present work is to develop
the mathematical theory which answers such questions, in the greatest depth and generality now
possible.

While we expect a mathematical theory to be useful in programming computers, the idea of a
thinking computer is also helpful psychologically in developing the mathematical theory. The ques-
tion of the reasoning process used by actual human brains is charged with emotion and grotesque
misunderstandings. It is hardly possible to say anything about this without becoming involved
in debates over issues that are not only undecidable in our present state of knowledge, but are
irrelevant to our purpose here.

Obviously, the operation of real human brains is so complicated that we can make no pretense
of explaining its mysteries; and in any event we are not trying to explain, much less reproduce, all
the abberations and inconsistencies of human brains. That is an interesting and important subject;
but it is not the subject we are studying here. Qur topic is the normative principles of logic; and
not the principles of psychology or neurophysiology.

To emphasize this, instead of asking, “How can we build a mathematical model of human
common sense?” let us ask, “How could we build a machine which would carry out useful plausible
reasoning, following clearly defined principles expressing an idealized common sense?”

Introducing the Robot

In order to direct attention to constructive things and away from controversial irrelevancies, we
shall invent an imaginary being. Its brain is to be designed by us, so that it reasons according to
certain definite rules. These rules will be deduced from simple desiderata which, it appears to us,
would be desirable in human brains; i.e., we think that a rational person, should he discover that
he was violating one of these desiderata, would wish to revise his thinking.

In principle, we are free to adopt any rules we please; that is our way of defining which robot
we shall study. Comparing its reasoning with yours, if you find no resemblance you are in turn free
to reject our robot and design a different one more to your liking. But if you find a very strong
resemblance, and decide that you want and trust this robot to help you in your own problems of
inference, then that will be an accomplishment of the theory, not a premise.

Our robot is going to reason about propositions. As already indicated above, we shall denote
various propositions by italicized capital letters, {A, B, C, etc.}, and for the time being we must
require that any proposition used must have, to the robot, an unambiguous meaning and must be
of the simple, definite logical type that must be either true or false. That is, until otherwise stated
we shall be concerned only with two—valued logic, or Aristotelian logic. We do not require that the
truth or falsity of such an “Aristotelian proposition” be ascertainable by any feasible investigation;
indeed, our inability to do this is usually just the reason why we need the robot’s help.

For example, the writer personally considers both of the following propositions to be true:
A = “Beethoven and Berlioz never met.”

B = “Beethoven’s music has a better sustained quality than that of
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Berlioz, although Berlioz at his best is the equal of anybody.”

But proposition B is not a permissible one for our robot to think about at present, while proposition
A is, although it is unlikely that its truth or falsity could be definitely established today (their
meeting is a chronological possibility, since their lives overlapped by 24 years; my reason for doubting
it is the failure of Berlioz to mention any such meeting in his memoirs—on the other hand, neither
does he come out and say definitely that they did not meet). After our theory is developed, it will
be of interest to see whether the present restriction to Aristotelian propositions such as A can be
relaxed, so that the robot might help us also with more vague propositions like B (see Chapter 18
on the A,—distribution)."

Boolean Algebra

To state these ideas more formally, we introduce some notation of the usual symbolic logic, or
Boolean algebra, so called because George Boole (1854) introduced a notation similar to the fol-
lowing. Of course, the principles of deductive logic itself were well understood centuries before
Boole, and as we shall see presently, all the results that follow from Boolean algebra were contained
already as special cases in the rules of plausible inference given by Laplace (1812). The symbol

AB

called the logical product or the conjunction, denotes the proposition “both A and B are true.”
Obviously, the order in which we state them does not matter; A B and B A say the same thing.
The expression

A+ B

called the logical sum or disjunction, stands for “at least one of the propositions A, B is true” and
has the same meaning as B + A. These symbols are only a shorthand way of writing propositions;
and do not stand for numerical values.

Given two propositions A, B, it may happen that one is true if and only if the other is true;
we then say that they have the same truth value. This may be only a simple tautology (i.e., 4
and B are verbal statements which obviously say the same thing), or it may be that only after
immense mathematical labors is it finally proved that A is the necessary and sufficient condition
for B. From the standpoint of logic it does not matter; once it is established, by any means, that
A and B have the same truth value, then they are logically equivalent propositions, in the sense
that any evidence concerning the truth of one pertains equally well to the truth of the other, and
they have the same implications for any further reasoning.

Evidently, then, it must be the most primitive axiom of plausible reasoning that two propo-
sitions with the same truth—value are equally plausible. This might appear almost too trivial to
mention, were it not for the fact that Boole himself (loc. cit. p. 286) fell into error on this point,
by mistakenly identifying two propositions which were in fact different—and then failing to see any
contradiction in their different plausibilities. Three years later (Boole, 1857) he gave a revised the-
ory which supersedes that in his book; for further comments on this incident, see Keynes (1921),
pp. 167-168; Jaynes (1976), pp. 240-242.

In Boolean algebra, the equals sign is used to denote, not equal numerical value, but equal
truth-value: A = B, and the “equations” of Boolean algebra thus consist of assertions that the

T The question how one is to make a machine in some sense ‘cognizant’ of the conceptual meaning that a
proposition like A has to humans, might seem very difficult, and much of Artificial Intelligence is devoted
to inventing ad hoc devices to deal with this problem. However, we shall find in Chapter 4 that for us the
problem is almost nonexistent; our rules for plausible reasoning automatically provide the means to do the
mathematical equivalent of this.
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proposition on the left—-hand side has the same truth—value as the one on the right—hand side. The

symbol “=” means, as usual, “equals by definition.”

In denoting complicated propositions we use parentheses in the same way as in ordinary algebra,
to indicate the order in which propositions are to be combined (at times we shall use them also
merely for clarity of expression although they are not strictly necessary). In their absence we
observe the rules of algebraic hierarchy, familiar to those who use hand calculators: thus A B+ C

denotes (A B) 4 C; and not A(B + C').

The denial of a proposition is indicated by a bar:
A=“Ais false.” (1-6)
The relation between A, A is a reciprocal one:

A= “Ais false.”

and it does not matter which proposition we denote by the barred, which by the unbarred, letter.
Note that some care is needed in the unambiguous use of the bar. For example, according to the
above conventions,

AB = “AB is false.”

A B = “Both A and B are false.”

These are quite different propositions; in fact, AB is not the logical product A B, but the logical
sum: AB= A + B.

With these understandings, Boolean algebra is characterized by some rather trivial and obvious
basic identities, which express the properties of:

AA=A
Idempotence : A+ A=A
AB = BA
Commutativity : A+B=B+A
| o A(BC)=(AB)C = ABC
ssoctativity : A+ (B4+C)=(A+B)+C=A44+B+C (1-7)
S (B—I—C) AB+ AC
Dastributivity : +(BC)=(A+ B)(A+ C)
' If C = AB, then C=A+B
Duality : Y

If D=A+DB, then D=AB

but by their application one can prove any number of further relations, some highly nontrivial. For
example, we shall presently have use for the rather elementary “theorem:”

If B=AD then AB =18 and BA = A. (1-8)

Implication. The proposition
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A= B (1-9)

to be read: “A implies B”, does not assert that either A or B is true; it means only that A B is
false, or what is the same thing, (A + B) is true. This can be written also as the logical equation
A = AB. That is, given (1-9), if A is true then B must be true; or, if B is false then A must be
false. This is just what is stated in the strong syllogisms (1-1) and (1-2).

On the other hand, if A is false, (1-9) says nothing about B: and if B is true, (1-9) says
nothing about A. But these are just the cases in which our weak syllogisms (1-3), (1-4) do say
something. In one respect, then, the term “weak syllogism” is misleading. The theory of plausible
reasoning based on them is not a “weakened” form of logic; it is an extension of logic with new
content not present at all in conventional deductive logic. It will become clear in the next Chapter
[Eqs. (2-51), (2-52)] that our rules include deductive logic as a special case.

A Tricky Point: Note carefully that in ordinary language one would take “A implies B” to
mean that B is logically deducible from A. But in formal logic, “A implies B” means only that the
propositions A and AB have the same truth value. In general, whether B is logically deducible from
A does not depend only on the propositions A and B; it depends on the totality of propositions
(A, A", A", ---) that we accept as true and which are therefore available to use in the deduction.
Devinatz (1968, p. 3) and Hamilton (1988, p. 5) give the truth table for the implication as a binary
operation, illustrating that A = B is false only if A is true and B is false; in all other cases A = B
is true!

This may seem startling at first glance; but note that indeed, if A and B are both true, then
A = AB and so A = B is true; in formal logic every true statement implies every other true
statement. On the other hand, if A is false, then A = AB and A = AB are both true, so A = B
and A = B are both true; a false proposition implies all propositions. If we tried to interpret this
as logical deducibility (i.e., both B and B are deducible from A), it would follow that every false
proposition is logically contradictory. Yet the proposition: “Beethoven outlived Berlioz” is false
but hardly logically contradictory (for Beethoven did outlive many people who were the same age
as Berlioz).

Obviously, merely knowing that propositions A and B are both true does not provide enough
information to decide whether either is logically deducible from the other, plus some unspecified
“toolbox” of other propositions. The question of logical deducibility of one proposition from a set
of others arises in a crucial way in the Gédel theorem discussed at the end of Chapter 2. This
great difference in the meaning of the word “implies” in ordinary language and in formal logic is
a tricky point that can lead to serious error if it is not properly understood; it appears to us that
“implication” is an unfortunate choice of word and this is not sufficiently emphasized in conventional
expositions of logic.

Adequate Sets of Operations

We note some features of deductive logic which will be needed in the design of our robot. We have
defined four operations, or “connectives,” by which, starting from two propositions A, B, other
propositions may be defined: the logical product, or conjunction A B, the logical sum or disjunction
A+ B, the implication A = B, and the negation A. By combining these operations repeatedly in
every possible way, one can generate any number of new propositions, such as

C=(A+B) A+ AB)+ AB(A+ B). (1-10)

Many questions then occur to us: How large is the class of new propositions thus generated? Is it
infinite, or is there a finite set that is closed under these operations? Can every proposition defined
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from A, B, be thus represented, or does this require further connectives beyond the above four? Or
are these four already overcomplete so that some might be dispensed with? What is the smallest
set of operations that is adequate to generate all such “logic functions” of A and B? If instead of
two starting propositions A, B we have an arbitrary number {Ay,..., A}, is this set of operations
still adequate to generate all possible logic functions of {Ay,..., A, }?

All these questions are answered easily, with results useful for logic, probability theory, and
computer design. Broadly speaking, we are asking whether, starting from our present vantage
point, we can (1) increase the number of functions, (2) decrease the number of operations. The
first query is simplified by noting that two propositions, although they may appear entirely different
when written out in the manner (1-10), are not different propositions from the standpoint of logic
if they have the same truth value. For example, it is left for the reader to verify that C in (1-10)
is logically the same statement as the implication C' = (B = A).

Since we are, at this stage, restricting our attention to Aristotelian propositions, any logic
function C' = f(A, B) such as (1-10) has only two possible “values,” true and false; and likewise
the “independent variables” A and B can take on only those two values.

At this point a logician might object to our notation, saying that the symbol A has been
defined as standing for some fixed proposition, whose truth cannot change; so if we wish to consider
logic functions, then instead of writing C' = f(A, B) we should introduce new symbols and write
z = f(x,y) where z,y,z are “statement variables” for which various specific statements A, B, C
may be substituted. But if A stands for some fixed but unspecified proposition, then it can still
be either true or false. We achieve the same flexibility merely by the understanding that equations
like (1-10) which define logic functions are to be true for all ways of defining A, B; i.e., instead of
a statement variable we use a variable statement.

In relations of the form C' = f( A, B), we are concerned with logic functions defined on a discrete
“space” S consisting of only 2% = 4 points; namely those at which A and B take on the “values”
{TT,TF,FT,FF} respectively; and at each point the function f(A, B) can take on independently
either of two values {T,F}. There are, therefore, exactly 2* = 16 different logic functions f(A, B);
and no more. An expression B = f(Aq,...,A,) involving n propositions is a logic function on a
space S of M = 2" points; and there are exactly 2M such functions.

In the case n = 1, there are four logic functions {fi(A),..., fa(A)}, which we can define by
enumeration: listing all their possible values in a “truth—table:”

A T F
Fi(A) T T
F(A) T F
F3(A) F T
Fu(A) F F

But it is obvious by inspection that these are just:

A
A

A
A

1
_'_
e

D>D>|D>D>

(
(
(
(

NN NI NI

A

so we prove by enumeration that the three operations: conjunction, disjunction, and negation are
adequate to generate all logic functions of a single proposition.
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For the case of general n, consider first the special functions each of which is true at one and
only one point of S. For n = 2 there are 2" = 4 such functions:

A, B TT TF FT FF
f1(A,B) T F F F
f2(A, B) F T F F
f3(A, B) F F T F
fi(A, B) F F F T

It is clear by inspection that these are just the four basic conjunctions:

fi(A,B)=AB
f(A,B)=AB (1-11)
f5(A,BY=4B
f1(A,By=AB

Consider now any logic function which is true on certain specified points of S; for example, f5(A4, B)

and fs(A, B) defined by

A, B TT | TF | FT | FF
f5(A, B) F T F T
fo(A,B) | T F T T

We assert that each of these functions is the logical sum of the conjunctions (1-11) that are true
on the same points (this is not trivial; the reader should verify it in detail); thus

fa(A, B)

and likewise,

Je(A,B) = fi(A, B) + f3(A, B) + fa(A, B)
=AB+AB+AB
=B+AB
=A+B
That is, fs(A, B) is the implication fs(A,B) = (A = B), with the truth table discussed above.
Any logic function f(A, B) that is true on at least one point of S can be constructed in this way

as a logical sum of the basic conjunctions (1-11). There are 2* — 1 = 15 such functions. For the
remaining function, which is always false, it suffices to take the contradiction, fig(A, B) = A A.

This method (called “reduction to disjunctive normal form” in logic textbooks) will work for
any n. For example, in the case n = 5 there are 2° = 32 basic conjunctions
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and 23% = 4,294, 967,296 different logic functions f;(A, B,C, D, E), 4,294, 967,295 of which can be
written as logical sums of the basic conjunctions, leaving only the contradiction

f4294967296(A7 B, C7 DvE) =AA.
Thus one can verify by “construction in thought” that the three operations
{conjunction, disjunction, negation}; i.e., {AND, OR, NOT}

suffice to generate all possible logic functions; or more concisely, they form an adequate set.

But the duality property (1-7) shows that a smaller set will suffice; for disjunction of A, B is
the same as denying that they are both false:

A+ B=(AB) (1-12)

Therefore, the two operations (AND, NOT) already constitute an adequate set for deductive logic.t
This fact will be essential in determining when we have an adequate set of rules for plausible
reasoning, in the next Chapter.

It is clear that we cannot now strike out either of these operations, leaving only the other; i.e.,
the operation “AND” cannot be reduced to negations; and negation cannot be accomplished by
any number of “AND” operations. But this still leaves open the possibility that both conjunction
and negation might be reducible to some third operation, not yet introduced; so that a single logic
operation would constitute an adequate set.

It comes as a pleasant surprise to find that there is not only one, but two such operations. The
operation “NAND?” is defined as the negation of “AND”:

ATB=AB=A+1B (1-13)
which we can read as “A NAND B”. But then we have once,

A=AT A
AB=(A]B)1(A]B) (1-14)
A+B= (A]A)|(B]B)

Therefore, every logic function can be constructed with NAND alone. Likewise, the operation NOR

defined by
A|B=A+B=AB (1-15)
is also powerful enough to generate all logic functions:

A=A A
A+B=(A|B)|(A]B). (1-16)
AB=(A|A)|(B]B)

One can take advantage of this in designing computer and logic circuits. A “logic gate” is a circuit
having, besides a common ground, two input terminals and one output. The voltage relative to

t For you to ponder: does it follow that these two commands are the only ones needed to write any
computer program?
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ground at any of these terminals can take on only two values; say 43 volts, or “up” representing
“true”; and zero volts or “down,” representing “false.” A NAND gate is thus one whose output is
up if and only if at least one of the inputs is down; or what is the same thing, down if and only if
both inputs are up; while for a NOR gate the output is up if and only if both inputs are down.

One of the standard components of logic circuits is the “quad NAND gate,” an integrated
circuit containing four independent NAND gates on one semiconductor chip. Given a sufficient
number of these and no other circuit components, it is possible to generate any required logic
function by interconnecting them in various ways.

This short excursion into deductive logic is as far as we need go for our purposes. Further
developments are given in many textbooks; for example, a modern treatment of Aristotelian logic
is given by I. M. Copi (1978). For non—Aristotelian forms with special emphasis on Gédel incom-
pleteness, computability, decidability, Turing machines, etc., see A. G. Hamilton (1988).

We turn now to our extension of logic, which is to follow from the conditions discussed next.
We call them “desiderata” rather than “axioms” because they do not assert that anything is
“true” but only state what appear to be desirable goals. Whether these goals are attainable
without contradictions and whether they determine any unique extension of logic, are matters of
mathematical analysis, given in Chapter 2.

The Basic Desiderata

To each proposition about which it reasons, our robot must assign some degree of plausibility,
based on the evidence we have given it; and whenever it receives new evidence it must revise these
assignments to take that new evidence into account. In order that these plausibility assignments
can be stored and modified in the circuits of its brain, they must be associated with some definite
physical quantity, such as voltage or pulse duration or a binary coded number, etc. — however our
engineers want to design the details. For present purposes this means that there will have to be
some kind of association between degrees of plausibility and real numbers:

(D) Degrees of Plausibility are represented by real numbers. (1-17)

Desideratum (1) is practically forced on us by the requirement that the robot’s brain must operate
by the carrying out of some definite physical process. However, it will appear (Appendix A) that
it is also required theoretically; we do not see the possibility of any consistent theory without a
property that is equivalent functionally to Desideratum (I).

We adopt a natural but nonessential convention; that a greater plausibility shall correspond
to a greater number. It will be convenient to assume also a continuity property, which is hard to
state precisely at this stage; but to say it intuitively: an infinitesimally greater plausibility ought
to correspond only to an infinitesimally greater number.

The plausibility that the robot assigns to some proposition A will, in general, depend on
whether we told it that some other proposition B is true. Following the notation of Keynes (1921)
and Cox (1961) we indicate this by the symbol

A|B (1-18)

which we may call “the conditional plausibility that A is true, given that B is true” or just, “A
given B.” It stands for some real number. Thus, for example,

A|BC
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(which we may read: “A given B (”) represents the plausibility that A is true, given that both B
and C are true. Or,

A+ B|CD

represents the plausibility that at least one of the propositions A and B is true, given that both
(' and D are true; and so on. We have decided to represent a greater plausibility by a greater
number, so

(AlB) > (C[B) (1-19)

says that, given B, A is more plausible than C'. In this notation, while the symbol for plausibility is
just of the form A|B without parentheses, we often add parentheses for clarity of expression. Thus
(1-19) says the same thing as

AlB > C|B,

but its meaning is clearer to the eye.

In the interest of avoiding impossible problems, we are not going to ask our robot to undergo the
agony of reasoning from impossible or mutually contradictory premises; there could be no “correct”
answer. Thus, we make no attempt to define A|BC when B and C are mutually contradictory.
Whenever such a symbol appears, it is understood that B and €' are compatible propositions.

Also, we do not want this robot to think in a way that is directly opposed to the way you and
I think. So we shall design it to reason in a way that is at least qualitatively like the way humans
try to reason, as described by the above weak syllogisms and a number of other similar ones.

Thus, if it has old information €' which gets updated to ' in such a way that the plausibility
of A is increased:

(AlC") > (A|C)
but the plausibility of B given A is not changed:
(B|AC") = (B|AC)

this can, of course, produce only an increase, never a decrease, in the plausibility that both A and
B are true:

(AB|C") > (AB|C) (1-20)

and it must produce a decrease in the plausibility that A is false:
(A|C"y < (A]C). (1-21)
This qualitative requirement simply gives the “sense of direction: in which the robot’s reasoning is to
go; it says nothing about how much the plausibilities change, except that our continuity assumption
(which is also a condition for qualitative correspondence with common sense) now requires that if
A|C changes only infinitesimally, it can induce only an infinitesimal change in AB|C and A|C. The
specific ways in which we use these qualitative requirements will be given in the next Chapter, at

the point where it is seen why we need them. For the present we summarize them simply as:

(II) Qualitative Correspondence with common sense. (1-22)



114 1: COMMENTS 114

Finally, we want to give our robot another desirable property for which honest people strive without
always attaining; that it always reasons consistently. By this we mean just the three common
colloquial meanings of the word “consistent”:

If a conclusion can be reasoned out in more than one way, then

(IIa) ) (1-23a)
every possible way must lead to the same result.

The robot always takes into account all of the evidence it has

relevant to a question. It does not arbitrarily ignore some of

(ITIb) a V8 (1-23b)

the information, basing its conclusions only on what remains.

In other words, the robot is completely non — ideological.

The robot always represents equivalent states of knowledge by

equivalent plausibility assignments. That is, if in two problems
(ITIc) the robot's state of knowledge is the same (except perhaps (1-23c)
for the labelling of the propositions), then it must assign the

same plausibilities in both.

Desiderata (I), (II), (IIla) are the basic “structural” requirements on the inner workings of our
robot’s brain, while (IIIb), (IIlc) are “interface” conditions which show how the robot’s behavior
should relate to the outer world.

At this point, most students are surprised to learn that our search for desiderata is at an end.
The above conditions, it turns out, uniquely determine the rules by which our robot must reason;
i.€., there is only one set of mathematical operations for manipulating plausibilities which has all
these properties. These rules are deduced in the next Chapter.

[At the end of most Chapters, we insert a Section of informal Comments in which are collected
various side remarks, background material, etc. The reader may skip them without losing the main
thread of the argument.]

COMMENTS

As politicians, advertisers, salesmen, and propagandists for various political, economic, moral,
religious, psychic, environmental, dietary, and artistic doctrinaire positions know only too well,
fallible human minds are easily tricked, by clever verbiage, into committing violations of the above
desiderata. We shall try to ensure that they do not succeed with our robot.

We emphasize another contrast between the robot and a human brain. By Desideratum I,
the robot’s mental state about any proposition is to be represented by a real number. Now it
is clear that our attitude toward any given proposition may have more than one “coordinate.”
You and I form simultaneous judgments not only as to whether it is plausible, but also whether
it is desirable, whether it is important, whether it is useful, whether it is interesting, whether it
is amusing, whether it is morally right, etc. If we assume that each of these judgments might be
represented by a number, then a fully adequate description of a human state of mind would be
represented by a vector in a space of a rather large number of dimensions.

Not all propositions require this. For example, the proposition, “The refractive index of water
is less than 1.3” generates no emotions; consequently the state of mind which it produces has very
few coordinates. On the other hand, the proposition, “Your mother—in—law just wrecked your new
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car” generates a state of mind with many coordinates. A moment’s introspection will show that,
quite generally, the situations of everyday life are those involving many coordinates. It is just for
this reason, we suggest, that the most familiar examples of mental activity are often the most
difficult to reproduce by a model.

We might speculate further. Perhaps we have here the reason why science and mathematics are
the most successful of human activities; they deal with propositions which produce the simplest of
all mental states. Such states would be the ones least perturbed by a given amount of imperfection
in the human mind.

Of course, for many purposes we would not want our robot to adopt any of these more “human”
features arising from the other coordinates. It is just the fact that computers do not get confused by
emotional factors, do not get bored with a lengthy problem, do not pursue hidden motives opposed
to ours, that makes them safer agents than men for carrying out certain tasks.

These remarks are interjected to point out that there is a large unexplored area of possible
generalizations and extensions of the theory to be developed here; perhaps this may inspire others
to try their hand at developing “multi-dimensional theories” of mental activity, which would more
and more resemble the behavior of actual human brains — not all of which is undesirable. Such a
theory, if successful, might have an importance beyond our present ability to imagine.T

For the present, however, we shall have to be content with a much more modest undertaking.
Is it possible to develop a consistent “one-dimensional” model of plausible reasoning? Fvidently,
our problem will be simplest if we can manage to represent a degree of plausibility uniquely by a
single real number, and ignore the other “coordinates” just mentioned.

We stress that we are in no way asserting that degrees of plausibility in actual human minds
have a unique numerical measure. Qur job is not to postulate — or indeed to conjecture about — any
such thing; it is to investigate whether it is possible, in our robot, to set up such a correspondence
without contradictions.

But to some it may appear that we have already assumed more than is necessary, thereby
putting gratuitous restrictions on the generality of our theory. Why must we represent degrees of
plausibility by real numbers? Would not a “comparative” theory based on a system of qualitative
ordering relations like (A|C') > (B|C') suffice? This point is discussed further in Appendix A, where
we describe other approaches to probability theory and note that some attempts have been made
to develop comparative theories which it was thought would be logically simpler, or more general.
But this turned out not to be the case; so although it is quite possible to develop the foundations
in other ways than ours, the final results will not be different.

Common Language vs. Formal Logic

We should note the distinction between the statements of formal logic and those of ordinary lan-
guage. [t might be thought that the latter is only a less precise form of expression; but on exami-
nation of details the relation appears different. It appears to us that ordinary language, carefully
used, need not be less precise than formal logic; but ordinary language is more complicated in its
rules and has consequently richer possibilities of expression than we allow ourselves in formal logic.

In particular, common language, being in constant use for other purposes than logic, has
developed subtle nuances — means of implying something without actually stating it — that are lost

t Indeed, some psychologists think that as few as five dimensions might suffice to characterize a human
personality; that is that we all differ only in having different mixes of five basic personality traits which may
be genetically determined. But it seems to us that this must be grossly oversimplified; identifiable chemical
factors continuously varying in both space and time (such as the distribution of glucose metabolism in the
brain) affect mental activity but cannot be represented faithfully in a space of only five dimensions. Yet it
may be that such a representation can capture enough of the truth to be useful for many purposes.
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on formal logic. Mr. A, to affirm his objectivity, says, “I believe what I see.” Mr. B retorts: “He
doesn’t see what he doesn’t believe.” From the standpoint of formal logic, it appears that they have
said the same thing; yet from the standpoint of common language, those statements had the intent
and effect of conveying opposite meanings.

Here is a less trivial example, taken from a mathematics textbook. Let L be a straight line
in a plane, and S an infinite set of points in that plane, each of which is projected onto L. Now
consider the statements:

(I) The projection of the limit is the limit of the projections.
(IT) The limit of the projections is the projection of the limit.

These have the grammatical structures: “A is B” and “B is A”, and so they might appear logically
equivalent. Yet in that textbook, (I) was held to be true, and (II) not true in general, on the
grounds that the limit of the projections may exist when the limit of the set does not.

As we see from this, in common language — even in mathematics textbooks — we have learned
to read subtle nuances of meaning into the exact phrasing, probably without realizing it until an
example like this is pointed out. We interpret “A is B” as asserting first of all, as a kind of major
premise, that A “exists”; and the rest of the statement is understood to be conditional on that
premise. Put differently, in common grammar the verb “is” implies a distinction between subject

and object, which the symbol “=" does not have in formal logic or in conventional mathematics.
[But in computer languages we encounter such statements as “J = J + 1”7 which everybody seems
to understand, but in which the “=" sign has now acquired that implied distinction after all.]

Another amusing example is the old adage: “Knowledge is Power”, which is a very cogent
truth, both in human relations and in thermodynamics. An ad writer for a chemical trade journal’
fouled this up into: “Power is Knowledge”, an absurd — indeed, obscene — falsity.

These examples remind us that the verb “is” has, like any other verb, a subject and a predicate;
but it is seldom noted that this verb has two entirely different meanings. A person whose native
language is English may require some effort to see the different meanings in the statements: “The
room is noisy” and “There is noise in the room.” But in Turkish these meanings are rendered by
different words, which makes the distinction so clear that a visitor who uses the wrong word will not
be understood. The latter statement is ontological, asserting the physical existence of something,
while the former is epistemological, expressing only the speaker’s personal perception.

Common language — or at least, the English language — has an almost universal tendency to
disguise epistemological statements by putting them into a grammatical form which suggests to the
unwary an ontological statement. A major source of error in current probability theory arises from
an unthinking failure to perceive this. To interpret the first kind of statement in the ontological
sense is to assert that one’s own private thoughts and sensations are realities existing externally in
Nature. We call this the “Mind Projection Fallacy”, and note the trouble it causes many times in
what follows. But this trouble is hardly confined to probability theory; as soon as it is pointed out,
it becomes evident that much of the discourse of philosophers and Gestalt psychologists, and the
attempts of physicists to explain quantum theory, are reduced to nonsense by the author falling
repeatedly into the Mind Projection Fallacy.

These examples illustrate the care that is needed when we try to translate the complex state-
ments of common language into the simpler statements of formal logic. Of course, common language
is often less precise than we should want in formal logic. But everybody expects this and is on the
lookout for it, so it is less dangerous.

T LC-CG magazine, March 1988, p. 211
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It is too much to expect that our robot will grasp all the subtle nuances of common language,
which a human spends perhaps twenty years acquiring. In this respect, our robot will remain like
a small child — it interprets all statements literally and blurts out the truth without thought of
whom this may offend.

It is unclear to the writer how difficult — and even less clear how desirable — it would be to
design a newer model robot with the ability to recognize these finer shades of meaning. Of course,
the question of principle is disposed of at once by the existence of the human brain which does this.
But in practice von Neumann’s principle applies; a robot designed by us cannot do it until someone
develops a theory of “nuance recognition” which reduces the process to a definitely prescribed set
of operations. This we gladly leave to others.

In any event, our present model robot is quite literally real, because today it is almost univer-
sally true that any nontrivial probability evaluation is performed by a computer. The person who
programmed that computer was necessarily, whether or not he thought of it that way, designing
part of the brain of a robot according to some preconceived notion of how the robot should behave.
But very few of the computer programs now in use satisfy all our desiderata; indeed, most are
intuitive ad hoc procedures that were not chosen with any well-defined desiderata at all in mind.

Any such adhockery is presumably useful within some special area of application — that was the
criterion for choosing it — but as the proofs of Chapter 2 will show, any adhockery which conflicts
with the rules of probability theory, must generate demonstrable inconsistencies when we try to
apply it beyond some restricted area. Our aim is to avoid this by developing the general principles
of inference once and for all, directly from the requirement of consistency, and in a form applicable
to any problem of plausible inference that is formulated in a sufficiently unambiguous way.

Nitpicking

The set of rules and symbols that we have called “Boolean Algebra” is sometimes called “The
Propositional Calculus”. The term seems to be used only for the purpose of adding that we need
also another set of rules and symbols called “The Predicate Calculus”. However, these new symbols
prove to be only abbreviations for short and familiar phrases. The “Universal Quantifier” is only
an abbreviation for “for all”’; the “existential quantifier” is an abbreviation for “there is a”. If
we merely write our statements in plain English, we are using automatically all of the predicate
calculus that we need for our purposes, and doing it more intelligibly.

The validity of second strong syllogism (two-valued logic) is sometimes questioned. However,
it appears that in current mathematics it is still considered valid reasoning to say that a supposed
theorem is disproved by exhibiting a counter—example, that a set of statements is considered in-
consistent if we can derive a contradiction from them, and that a proposition can be established
by Reductio ad Absurdum; deriving a contradiction from its denial. This is enough for us; we are
quite content to follow this long tradition.

Our feeling of security in this stance comes from the conviction that, while logic may move
forward in the future, it can hardly move backward. A new logic might lead to new results about
which Aristotelian logic has nothing to say; indeed, that is just what we are trying to create here.
But surely, if a new logic was found to conflict with Aristotelian logic in an area where Aristotelian
logic is applicable, we would consider that a fatal objection to the new logic.

Therefore, to those who feel confined by two—valued deductive logic we can say only: “By all
means, investigate other possibilities if you wish to; and please let us know about it as soon as
you have found a new result that was not contained in two-valued logic or our extension of it,
and is useful in scientific inference.” Actually, there are many different and mutually inconsistent
multiple—valued logics already in the literature. But in Appendix A we adduce arguments which
suggest that they can have no useful content that is not already in two—valued logic; that is, that an
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n—valued logic applied to one set of propositions is either equivalent to a two—valued logic applied
to an enlarged set, or else it contains internal inconsistencies.

Our experience is consistent with this conjecture; in practice, multiple-valued logics seem to
be used, not to find new useful results, but rather in attempts to remove supposed difficulties
with two—valued logic, particularly in quantum theory, fuzzy sets, and Artificial Intelligence. But
on closer study, all such difficulties known to us have proved to be only examples of the Mind
Projection Fallacy, calling for direct revision of the concepts rather than a new logic.
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CHAPTER 2

THE QUANTITATIVE RULES

“Probability theory is nothing but common sense reduced to calculation.”
— Laplace, 1819

We have now formulated our problem, and it is a matter of straightforward mathematics to work
out the consequences of our desiderata: stated broadly,
I. Representation of degrees of plausibility by real numbers

II. Qualitative Correspondence with common sense

III. Consistency.
The present Chapter is devoted entirely to deduction of the quantitative rules for inference which
follow from these. The resulting rules have a long, complicated, and astonishing history, full of
lessons for scientific methodology in general (see Comments at the end of several Chapters).

The Product Rule

We first seek a consistent rule relating the plausibility of the logical product AB to the plausibilities
of A and B separately. In particular, let us find AB|C. Since the reasoning is somewhat subtle,
we examine this from different viewpoints.

As a first orientation, note that the process of deciding that AB is true can be broken down
into elementary decisions about A and B separately. The robot can

(1) Decide that B is true. (B|C)
(2) Having accepted B as true, decide that A is true. (A|BC)

Or, equally well,

(17) Decide that A is true. (A|C)
(2’) Having accepted A as true, decide that B is true. (B|AC)

In each case we indicate above the plausibility corresponding to that step.

Now let us describe the first procedure in words. In order for AB to be a true proposition, it
is necessary that B is true. Thus the plausibility B|C should be involved. In addition, if B is true,
it is further necessary that A should be true; so the plausibility A|BC is also needed. But if B is
false, then of course AB is false independently of whatever one knows about A, as expressed by
A|B Cj if the robot reasons first about B, then the plausibility of A will be relevant only if B is
true. Thus, if the robot has B|C and A|BC' it will not need A|C. That would tell it nothing about
AB that it did not have already.

Similarly, A|B and B|A are not needed; whatever plausibility A or B might have in the absence
of information ' could not be relevant to judgments of a case in which the robot knows that
is true. For example, if the robot learns that the earth is round, then in judging questions about
cosmology today, it does not need to take into account the opinions it might have (i.e., the extra
possibilities that it would need to take into account) if it did not know that the earth is round.

Of course, since the logical product is commutative, AB = BA, we could interchange A and B
in the above statements; i.e., knowledge of A|C and B|AC would serve equally well to determine
AB|C = BA|C. That the robot must obtain the same value for AB|C from either procedure, is
one of our conditions of consistency, Desideratum (I1la).
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We can state this in a more definite form. (AB|C') will be some function of B|C' and A|BC"
(AB|C) = F[(B|C), (A[BC)] (2-1)

Now if the reasoning we went through here is not completely obvious, let us examine some alter-
natives. We might suppose, for example, that

(AB|C) = F[(A|C), (B|C)]

might be a permissible form. But we can show easily that no relation of this form could satisfy
our qualitative conditions of Desideratum II. Proposition A might be very plausible given C', and
B might be very plausible given C'; but AB could still be very plausible or very implausible.

For example, it is quite plausible that the next person you meet has blue eyes and also quite
plausible that this person’s hair is black; and it is reasonably plausible that both are true. On the
other hand it is quite plausible that the left eye is blue, and quite plausible that the right eye is
brown; but extremely implausible that both of those are true. We would have no way of taking
such influences into account if we tried to use a formula of this kind. Our robot could not reason
the way humans do, even qualitatively, with that kind of functional relation.

But other possibilities occur to us. The method of trying out all possibilities — a kind of “proof
by exhaustion” — can be organized as follows. Introduce the real numbers

w=(AB|C), wv=(A|C), w=(BJAC), x=(B|C), y=(A|BO)

If u is to be expressed as a function of two or more of v, w, z, y, there are eleven possibilities. You
can write out each of them, and subject each one to various extreme conditions, as in the brown and
blue eyes (which was the abstract statement: A implies that B is false). Other extreme conditions
are A= B, A=C, C = A, etc. Carrying out this somewhat tedious analysis, Tribus (1969) shows
that all but two of the possibilities can exhibit qualitative violations of common sense in some
extreme case. The two which survive are v = F(z,y) and v = F(w,v), just the two functional
forms already suggested by our previous reasoning.

We now apply the qualitative requirement discussed in Chapter 1; given any change in the
prior information €' — C’ such that B becomes more plausible but A does not change:

B|C'" > B|C,
A|BC" = A|BC
common sense demands that AB could only become more plausible, not less:
AB|C" > AB|C

with equality if and only if A|BC' corresponds to impossibility. Likewise, given prior information

C" such that

B|C" = B|C
A|BC" > A|BC
we require that
AB|C" > AB|C

in which the equality can hold only if B is impossible, given C' (for then AB might still be impossible
given C'" although A|BC' is not defined). Furthermore, the function F(z,y) must be continuous;
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for otherwise an arbitrarily small increase in one of the plausibilities on the right-hand side of (2-1)
could result in the same large increase in AB|C'.

In summary, F(z,y) must be a continuous monotonic increasing function of both  and y. If
we assume it differentiable [this is not necessary; see the discussion following (2-4)], then we have

aF
Fi(z,y) = N >0 (2-2a)

with equality if and only if y represents impossibility; and also

or

Fy(z,y) = s >0 (2-2b)

with equality permitted only if x represents impossibility. Note for later purposes that in this
notation, F; denotes differentiation with respect to the ¢’th argument of F, whatever it may be.

Next we impose the Desideratum III(a) of “structural” consistency. Suppose we try to find
the plausibility (ABC|D) that three propositions would be true simultaneously. Because of the
fact that Boolean algebra is associative: ABC' = (AB)C' = A(BC'), we can do this in two different
ways. If the rule is to be consistent, we must get the same result for either order of carrying out
the operations. We can say first that BC' will be considered a single proposition, and then apply
(2-1):

(ABC|D) = FI(BC|D), (A|BCD)

and then in the plausibility (BC|D) we can again apply (2-1) to give
(ABCID) = F{FI(C|D). (BICD)], (A|[BCD)} (2-3a)

But we could equally well have said that AB shall be considered a single proposition at first. From
this we can reason out in the other order to obtain a different expression:

(ABCID) = F[(C|D), (AB|CD)] = F{(C|D), FI(B|CD),(A[BCD)]} (2-3b)

If this rule is to represent a consistent way of reasoning, the two expressions (2-3a), (2-3b) must
always be the same. A necessary condition that our robot will reason consistently in this case
therefore takes the form of a functional equation,

FlF(z,y),2] = Flz, F(y,2)] . (2-4)

This equation has a long history in mathematics, starting from a work of N. H. Abel in 1826.
Aczél (1966), in his monumental work on functional equations, calls it, very appropriately, “The
Associativity Equation,” and lists a total of 98 references to works that discuss it or use it. Aczél
derives the general solution [Eq. (2-17) below] without assuming differentiability; unfortunately,
the proof fills eleven pages (256-267) of his book. We give here the shorter proof by R. T. Cox
(1961), which assumes differentiability.

It is evident that (2-4) has a trivial solution, F'(z,y) =const. But that violates our monotonic-
ity requirement (2-2) and is in any event useless for our purposes. Unless (2-4) has a nontrivial
solution, this approach will fail; so we seek the most general nontrivial solution. Using the abbre-
viations
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uw=F(x,y), v=Fy,z) (2-5)
but still considering (z,y, z) the independent variables, the functional equation to be solved is
Fz,v) = F(u,z). (2-6)
Differentiating with respect to # and y we obtain, in the notation of (2-2),

Fi(z,v) = Fi(u,2) Fi(2,y)

2-7
Fu(e.0) Fn.2) = F(u2) Be.y) )
Elimination of Fi(u,z) from these equations yields
G($,?J) Fl(yvz) = G($,y) (278)

where we use the notation G(z,y) = Fy(x,y)/Fi(z,y). Evidently, the left-hand side of (2-8) must
be independent of z. Now (2-8) can be written equally well as

G(z,v) Fa(y,z) = G(z,y) Gy, 2) (2-9)

and, denoting the left-hand sides of (2-8), (2-9) by U, V respectively we verify that 0V /dy = 0U/0z.

Thus, G(x,y)G(y,z) must be independent of y. The most general function G(z,y) with this

property is

@)
H{(y)

Gla.y) = (2-10)

where r is a constant, and the function H(z)is arbitrary. In the present case, ¢ > 0 by monotonicity
of F', and so we require that » > 0, and H () may not change sign in the region of interest.

Using (2-10), (2-8) and (2-9) become
Fily,z) = H(v)/H(y) (2-11)
Fy(y,z)=r H(v)/H(z) (2-12)

and the relation dv = dF(y,z) = Fidy + Fyd=z takes the form

dv  dy . dz 3
) ~ AW AR 1)
or, on integration,
w[F(y,z)] = wv) = w(y) w'(2) (2-14)

where

w(z) = exp [/%} : (2-15)

the absence of a lower limit on the integral signifying an arbitrary multiplicative factor in w. But
taking the function w(-) of (2-6) and applying (2-14), we obtain w(z)w"(v) = w(u)w"(2); applying
(2-14) again, our functional equation now reduces to
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2

w(@)w'(y)[w(z)]" = wz)w"(y)w(z)

Thus we obtain a nontrivial solution only if r = 1, and our final result can be expressed in either
of the two forms:

wlF(z,y)] = w(z) w(y) (2-16)
F(z,y) = v [w(@)w(y)] . (2-17)

Associativity and commutativity of the logical product thus require that the relation sought must
take the functional form

w(AB|C) = w(A|BC) w(B|C) = w(B|AC) w(A|C) (2-18)

which we shall call henceforth the product rule. By its construction (2-15), w(2) must be a positive
continuous monotonic function, increasing or decreasing according to the sign of H(z); at this stage
it is otherwise arbitrary.

The result (2-18) has been derived as a necessary condition for consistency in the sense of
Desideratum ITI(a). Conversely, it is evident that (2-18) is also sufficient to ensure this consistency
for any number of joint propositions. For example, there are an enormous number of different ways
in which (ABCDEFG|H) could be expanded by successive partitions in the manner of (2-3); but
if (2-18) is satisfied, they will all yield the same result.

The requirements of qualitative correspondence with common sense impose further conditions
on the function w(z). For example, in the first given form of (2-18) suppose that A is certain, given
(. Then in the “logical environment” produced by knowledge of C', the propositions AB and B are
the same, in the sense that one is true if and only if the other is true. By our most primitive axiom
of all, discussed in Chapter 1, propositions with the same truth value must have equal plausibility:

AB|C = B|C

and also we will have

A|BC = A|C

because if A is already certain given C' (i.e., C implies A), then given any other information B
which does not contradict C', it is still certain. In this case, (2-18) reduces to

w(B|C) = w(A|C) w(B|C) (2-19)

and this must hold no matter how plausible or implausible B is to the robot. So our function w(z)
must have the property that

Certainty is represented by w(A|C)=1.

Now suppose that A is impossible, given C'. Then the proposition AB is also impossible given ("
AB|C = A|C

and if A is already impossible given C' (i.e., C' implies A), then given any further information B
which does not contradict €', A would still be impossible:

A|BC = AlC .

In this case, equation (2-18) reduces to
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w(A|C) = w(A|C) w(B|C) (2-20)

and again this equation must hold no matter what plausibility B might have. There are only two
possible values of w(A|C') that could satisfy this condition; it could be 0 or +oo (the choice —oo is
ruled out because then by continuity w(B|C') would have to be capable of negative values; (2-20)
would then be a contradiction).

In summary, qualitative correspondence with common sense requires that w(z) be a positive
continuous monotonic function. It may be either increasing or decreasing. If it is increasing, it
must range from zero for impossibility up to one for certainty. If it is decreasing, it must range
from oo for impossibility down to one for certainty. Thus far, our conditions say nothing at all
about how it varies between these limits.

However, these two possibilities of representation are not different in content. Given any func-
tion wi(x) which is acceptable by the above criteria and represents impossibility by oo, we can
define a new function wy(z) = 1/wy(z), which will be equally acceptable and represents impossibil-
ity by zero. Therefore, there will be no loss of generality if we now adopt the choice 0 < w(z) <1
as a convention; that is, as far as content is concerned, all possibilities consistent with our desider-
ata are included in this form. [As the reader may check, we could just as well have chosen the
opposite convention; and the entire development of the theory from this point on, including all its
applications, would go through equally well, with equations of a less familiar form but exactly the
same content.]

The Sum Rule

Since the propositions now being considered are of the Aristotelian logical type which must be
either true or false, the logical product AA is always false, the logical sum A 4+ A always true. The
plausibility that A is false must depend in some way on the plausibility that it is true. If we define
u = w(A|B), v=w(A|B), there must exist some functional relation

v = S(u) . (2-21)

Evidently, qualitative correspondence with common sense requires that S(u) be a continuous mono-
tonic decreasing function in 0 < u < 1, with extreme values S(0) = 1, S(1) = 0. But it cannot
be just any function with these properties, for it must be consistent with the fact that the product
rule can be written for either AB or AB:

w(AB|C) = w(A|C) w(B|AC) (2-22)
w(AB|C) = w(A|C) w(B|AC). (2-23)

Thus, using (2-21) and (2-23), Eq. (2-22) becomes

(2-24)

w(AB|C) = w(A|C) S[w(B|AC)] = w(A|C) S [M] .

w(A|C)

Again, we invoke commutativity: w(AB|C') is symmetric in A, B, and so consistency requires that

(2-25)

ooy 52T

wiaey | = P03 [w(BmC)]

w(B[C)

This must hold for all propositions A, B, C; in particular, (2-25) must hold when
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B = AD (2-26)

where D is any new proposition. But then we have the truth-values noted before in (1-8):

AB = B, BA = A, (2-27)
and in (2-25) we may write
w(ABIC) = w(BIC) = S[u(BIC)] o)
w(BAIC) = w(AC) = S[w(AIC)
Therefore, using now the abbreviations
r = w(A|C), y=w(B|C) (2-29)
Eq. (2-25) becomes a functional equation
0< 8(y) <z,
ps[M0] <y s[RI e (2-30)
x Y 0<z< 1

which expresses a scaling property that S(z) must have in order to be consistent with the product
rule. In the special case y = 1, this reduces to

S[5(z)] == (2-31)

which states that S(z) is a self-reciprocal function; S(z) = S~!(z). Thus, from (2-21) it follows
also that u = S(v). But this expresses only the evident fact that the relation between A, A is a
reciprocal one; it does not matter which proposition we denote by the simple letter, which by the
barred letter. We noted this before in (1-6); if it had not been obvious before, we should be obliged
to recognize it at this point.

The domain of validity given in (2-30) is found as follows. The proposition D is arbitrary, and
so by various choices of D we can achieve all values of w(D|AC) in

0 < w(D|AC) < 1 . (2-32)

But S(y) = w(AD|C) = w(A|C)w(D|AC), and so (2-32) is just (0 < S(y) < 2), as stated in
(2-30). This domain is symmetric in z,y; it can be written equally well with them interchanged.
Geometrically, it consists of all points in the  — y plane lying in the unit square (0 < z,y < 1) and
on or above the curve y = 5(z).

Indeed, the shape of that curve is determined already by what (2-30) says for points lying
infinitesimally above it. For if we set y = S(2) + ¢, then as € — 0+ two terms in (2-30) tend to
S(1) =0, but at different rates. Therefore everything depends on the exact way in which S(1 —6)
tends to zero as § — 0. To investigate this, we define a new variable ¢(z,y) by

S(x)
y

=1 - et (2-33)
Then we may choose § = ¢4, define the function J(q) by

S(1-8) = S — %) = exp[-J(q)] . (2-34)
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and find the asymptotic form of J(q) as ¢ — <.
Considering now z, ¢ as the independent variables, we have from (2-33)

S(y) = S[S(@)] +e 2 5(x) S'[S(2)] + O(e™27) .
Using (2-31) and its derivative S'[S(z)] S'(z) = 1, this reduces to

Si@/) — 1 — et L o) (2-35)
where
a(z) = log [%ﬁch) > 0. (2-36)

With these substitutions our functional equation (2-30) becomes

J(g+ o) — J(q) = log [ﬁ] + log(l — e7%) + O(e™*7), gizijo (2-37)

As g — oo the last two terms go to zero exponentially fast, so .J(¢) must be asymptotically linear

J(q) ~a+bg+ O(e™?), (2-38)

with positive slope

b=a"! log [ (2-39)

z
S(@)]
In (2-38) there is no periodic term with period a, because (2-37) must hold for a continuum of
different values of z, and therefore for a continuum of values of a(z).

But by definition, J is a function of ¢ only, so the right-hand side of (2-39) must be independent
of z. This gives, using (2-36),

v [-x8(2) ’ - 3
S(w)_[ 5(z) ] , 0<b< (2-40)

or rearranging, S(z) must satisfy the differential equation
§m=1ds + 2™ e = 0 . (2-41)
where m = 1/b is some positive constant. The only solution of this satisfying 5(0) =1 is

0<2<1

S(e) = (L™, 0 <m < o

(2-42)

and conversely, we verify at once that (2-42) is a solution of (2-30).

The result (2-42) was first derived by R. T. Cox (1946) by a different argument which assumed
S(z) twice differentiable. Again, Aczél (1966) derives the same result without assuming differentia-
bility. [But to assume differentiability in the present application seems to us a very innocuous step,
for if the functional equations had led us to non—differentiable functions, we would have rejected
this whole theory as a qualitative violation of common sense]. In any event, (2-42) is the most
general function satisfying the functional equation (2-30) and the left boundary condition 5(0) = 1;
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whereupon we are encouraged to find that it automatically satisfies the right boundary condition
S(1)=0.
Since our derivation of the functional equation (2-30) used the special choice (2-26) for B,

we have shown thus far only that (2-42) is a necessary condition to satisfy the general consistency
requirement (2-25). To check its sufficiency, substitute (2-42) into (2-25). We obtain

w™(A|C) — w™(AB|C) = w™(B|C) — w™(BA|C),

a trivial identity by virtue of (2-18) and (2-23). Therefore, (2-42) is the necessary and sufficient
condition on S(x) for consistency in the sense (2-25).

Our results up to this point can be summarized as follows. Associativity of the logical product
requires that some monotonic function w(x) of the plausibility « = A|B must obey the product
rule (2-18). Our result (2-42) states that this same function must also obey a sum rule:

w™(A|B) + w™(A|B) = 1 (2-43)
for some positive m. Of course, the product rule itself can be written equally well as
wm(AB|C) = w™(A|C) wT(B|AC) = w™(B|C) w™(A|BC) (2-44)

but then we see that the value of m is actually irrelevant; for whatever value is chosen, we can
define a new function

pa) = w(a) (2-45)
and our rules take the form

P(AB|C) = p(A|C) p(B|AC) = p(B|C) p(A|BC) (2-46)

AIB) + p(AB) = 1. (2-47)

In fact, this entails no loss of generality, for the only requirement we have imposed on the function
w(z) is that it is a continuous monotonic increasing function ranging from w = 0 for impossibility
to w = 1 for certainty. But if w(z) satisfies this, then so also does w™(z), 0 < m < oco. Therefore,
to say that we could use different values of m does not give us any freedom that we did not
have already in the arbitrariness of w(a). All possibilities allowed by our desiderata are contained
in (2-46), (2-47) in which p(z) is any continuous monotonic increasing function with the range
0<p(z)<1.

Are further relations needed to yield a complete set of rules for plausible inference, adequate
to determine the plausibility of any logic function f(Aq,...,A,) from those of {41,...,4,}7 We
have, in the product rule (2-46) and sum rule (2-47), formulas for the plausibility of the conjunction
AB and the negation A. But we noted, in the discussion following Eq. (1-12), that conjunction
and negation are an adequate set of operations, from which all logic functions can be constructed.

Therefore, one would conjecture that our search for basic rules should be finished; it ought to
be possible, by repeated applications of the product rule and sum rule, to arrive at the plausibility
of any proposition in the Boolean algebra generated by {Ay,..., A,}.

To verify this, we seek first a formula for the logical sum A + B. Applying the product rule
and sum rule repeatedly, we have
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p(A+ BIC) = 1 - p(A B|C)= 1 — p(A|C) p(BJAC)
= 1 = p(A|O)[1 = p(BJAC)] = p(A|C) + p(AB|C)
= p(A|C) + p(BIC) p(A|BC) = p(A|C) + p(BIC)[1 - p(A|BC)]
and finally,
p(A+ BIC) = p(A|C) + p(B|C) — p(AB|C) . (2-48)

This generalized sum rule is one of the most useful in applications. Evidently, the primitive sum
rule (2-47) is a special case of (2-48), with the choice B = A.

Exercise 2.1 Is it possible to find a general formula for p(C'|A + B), analogous to (2-48), from
the product and sum rules? If so, derive it; if not, explain why this cannot be done.

Exercise 2.2 Now suppose we have a set of propositions {Ay,---, A,} which on information
X are mutually exclusive: p(A4;A4;|X) = p(A;|X) é;;. Show that p(C|(A; + Ay + -+ A,)X) is
a weighted average of the separate plausibilities p(C|A4;X):

> p(Ai| X) p(ClAX)

PCH AL+ + Ap)X) = p(ClALX + A X + -+ A X)) = S p(AX)

(2-49)

To extend the result (2-48), we noted following (1-11) that any logic function other than the trivial
contradiction can be expressed in disjunctive normal form, as a logical sum of the basic conjunctions
such as (1-11). Now the plausibility of any one of the basic conjunctions {Q;, 1 < ¢ < 27} is
determined by repeated applications of the product rule; and then repeated application of (2-48)
will yield the plausibility of any logical sum of the ¢);. In fact, these conjunctions are mutually
exclusive, so we shall find [Eq. (2-64) below] that this reduces to a simple sum Y;p(Q;|C') of at
most (2" — 1) terms.

So, just as conjunction and negation are an adequate set for deductive logic, the above product
and sum rules are an adequate set for plausible inference, in the following sense. Whenever the
background information is enough to determine the plausibilities of the basic conjunctions, our rules
are adequate to determine the plausibility of every proposition in the Boolean algebra generated
by {A1,--+,A,}. Thus, in the case n = 4 we need the plausibilities of 2* = 16 basic conjunctions,
whereupon our rules will determine the plausibility of each of the 2!¢ = 65,536 propositions in the
Boolean algebra.

But this is almost always more than we need in a real application; if the background information
is enough to determine the plausibility of a few of the basic conjunctions, this may be adequate for
the small part of the Boolean algebra that is of concern to us.

Qualitative Properties

Now let us check to see how the theory based on (2-46) and (2-47) is related to the theory of
deductive logic and the various qualitative syllogisms from which we started in Chapter 1. In the
first place it is obvious that in the limit as p(A|B) — 0 or p(A|B) — 1, the sum rule (2-47)
expresses the primitive postulate of Aristotelian logic: if A is true, then A must be false, etc.

Indeed, all of that logic consists of the two strong syllogisms (1-1), (1-2) and all that follows
from them; using now the implication sign (1-9) to state the major premise:
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A= B A=DB
A true B false (2-50)
B true A false
and the endless stream of their consequences. If we let ' stand for their major premise:
C = “A= R (2-51)
then these syllogisms correspond to our product rule (2-46) in the forms
pBlaC) = B2 MABC) = % (2-52)

respectively. But from (2-50) we have p(AB|C') = p(A|C) and p(AB|C) = 0, and so (2-52) reduces
to

p(BJ|AC) = 1, p(A|BC) = 0

as stated in the syllogisms (2-50). Thus the relation is simply: Aristotelian deductive logic is the
limiting form of our rules for plausible reasoning, as the robot becomes more and more certain of
its conclusions.

But our rules have also what is not contained in deductive logic: a quantitative form of the
weak syllogisms (1-3), (1-4). To show that those original qualitative statements always follow from
the present rules, note that the first weak syllogism

A= B
B is true (2-53)

Therefore, A becomes more plausible

corresponds to the product rule (2-46) in the form

p(BJAC)
p(A|BC) = p(A|C) ———= 2-54
(A[BC) (AlC) W(BIC) (2-54)
But from (2-50), p(B|AC) = 1, and since p(B|C') < 1, (2-54) gives
WAIBC) > p(AlC) (2-55)
as stated in the syllogism. Likewise, the syllogism (1-4)
A= B
A is false (2-56)
Therefore, B becomes less plausible
corresponds to the product rule in the form
= p(A]BC)
p(AlC)
But from (2-55) it follows that p(A|BC) < p(A|C); and so (2-57) gives
WBIAC) < p(BIC) (2-5%)

as stated in the syllogism.

Finally, the policeman’s syllogism (1-5), which seemed very weak when stated abstractly, is
also contained in our product rule, stated in the form (2-54). Letting now C' stand for background
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information [not noted explicitly in (1-5) because the need for it was not yet apparent], the major
premise, “If A is true, then B becomes more plausible,” now takes the form

P(BJAC) > p(B|C) (2-59)
and (2-54) gives at once

P(A[BC) > p(A[C) (2-60)
as stated in the syllogism.

But now we have more than the mere qualitative statement (2-60). In Chapter 1 we wondered,
without answering: What determines whether the evidence B elevates A almost to certainty, or
has a negligible effect on its plausibility? The answer from (2-54) is that, since p(B|AC) cannot
be greater than unity, a large increase in the plausibility of A can occur only when p(B|C) is very
small. Observing the gentleman’s behavior (B) makes his guilt (A) seem virtually certain, because
that behavior is otherwise so very unlikely on the background information; no policeman has ever
seen an innocent person behaving that way. On the other hand, if knowing that A is true can

make only a negligible increase in the plausibility of B, then observing B can in turn make only a
negligible increase in the plausibility of A.

We could give many more comparisons of this type; indeed, the complete qualitative corre-
spondence of these rules with common sense has been noted and demonstrated by many writers,
including Keynes (1921), Jeffreys (1939), Pélya (1945, 1954), Cox (1961), Tribus (1969), de Finetti
(1974), and Rosenkrantz (1977). The treatment of Pélya was described briefly in our Preface and
Chapter 1, and we have just recounted that of Cox more fully. However, our aim now is to push
ahead to quantitative applications; so we return to the basic development of the theory.

Numerical Values

We have found so far the most general consistent rules by which our robot can manipulate plau-
sibilities, granted that it must associate them with real numbers, so that its brain can operate by
the carrying out of some definite physical process. While we are encouraged by the familiar formal
appearance of these rules and their qualitative properties just noted, two evident circumstances
show that our job of designing the robot’s brain is not yet finished.

In the first place, while the rules (2-46), (2-47) place some limitations on how plausibilities of
different propositions must be related to each other, it would appear that we have not yet found
any unique rules, but rather an infinite number of possible rules by which our robot can do plausible
reasoning. Corresponding to every different choice of a monotonic function p(x), there seems to be
a different set of rules, with different content.

Secondly, nothing given so far tells us what actual numerical values of plausibility should be
assigned at the beginning of a problem, so that the robot can get started on its calculations. How
is the robot to make its initial encoding of the background information, into definite numerical
values of plausibilities? For this we must invoke the “interface” desiderata IIIb, Illc of (1-23), not
yet used.

The following analysis answers both of these questions, in a way both interesting and unex-
pected. Let us ask for the plausibility (A; + A2 + As|B) that at least one of three propositions
{41, Az, A3} is true. We can find this by two applications of the extended sum rule (2-48), as
follows. The first application gives

p(AL + As + A3|B) = p(Ar+ A3|B) 4+ p(As|B) — p(A1As 4+ Ay A3|B)

where we first considered (A; + Az) as a single proposition, and used the logical relation

(A1 4+ Ag)As = A1As + ArAs .
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Applying (2-48) again, we obtain seven terms which can be grouped as follows:

p(Ar + Ay + A3|B) = p(A1|B) + p(Az|B) + p(As|B)
— p(A1A3|B) — p(AyA3|B) — p(AsAq|B) (2-61)
+ p(A1A2A3|B)

Now suppose these propositions are mutually exclusive; i.e., the evidence B implies that no two of
them can be true simultaneously:

P(AA;B) = p(AilB)bi; . (2-62)
Then the last four terms of (2-61) vanish, and we have

Adding more propositions Ay, As, etc., it is easy to show by induction that if we have n mutually
exclusive propositions {4y --- A, }, (2-63) generalizes to

m

pALE o+ AnlB) =) p(AilB) . 1<m<n (2-64)

i=1

a rule which we will be using constantly from now on.

In conventional expositions, Eq. (2-64) is usually introduced first as the basic but, as far as
one can see, arbitrary axiom of the theory. The present approach shows that this rule is deducible
from simple qualitative conditions of consistency. The viewpoint which sees (2-64) as the primitive,

fundamental relation is one which we are particularly anxious to avoid (see Comments at the end
of this Chapter).

Now suppose that the propositions {A;...A,} are not only mutually exclusive but also ex-
haustive; i.e., the background information B stipulates that one and only one of them must be
true. In that case the sum (2-64) for m = n must be unity:

n
S p(AlB) = 1. (2-65)
=1
This alone is not enough to determine the individual numerical values p(A;|B). Depending on
further details of the information B, many different choices might be appropriate, and in general
finding the p(A;|B) by logical analysis of B can be a difficult problem. It is, in fact, an open—ended
problem, since there is no end to the variety of complicated information that might be contained in
B; and therefore no end to the complicated mathematical problems of translating that information
into numerical values of p(A;|B). As we shall see, this is one of the most important current research
problems; every new principle we can discover for translating information B into numerical values
of p(A4;|B) will open up a new class of useful applications of this theory.

There is, however, one case in which the answer is particularly simple, requiring only direct
application of principles already given. But we are entering now into a very delicate area, a
cause of confusion and controversy for over a Century. In the early stages of this theory, as in
elementary geometry, our intuition runs so far ahead of logical analysis that the point of the logical
analysis is often missed. The trouble is that intuition leads us to the same final conclusions far
more quickly; but without any correct appreciation of their range of validity. The result has been
that the development of this theory has been retarded for some 150 years because various workers
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have insisted on debating these issues on the basis, not of demonstrative arguments, but of their
conflicting intuitions.

At this point, therefore, we must ask the reader to suppress all intuitive feelings you may have,
and allow yourself to be guided solely by the following logical analysis. The point we are about to
make cannot be developed too carefully; and unless it is clearly understood, we will be faced with
tremendous conceptual difficulties from here on.

Consider two different problems. Problem I is the one just formulated; we have a given set
of mutually exclusive and exhaustive propositions {A;...A4,} and we seek to evaluate p(A;|B);.
Problem II differs in that the labels Ay, Ay of the first two propositions have been interchanged.
These labels are, of course, entirely arbitrary; it makes no difference which proposition we choose
to call Ay and which A,. In Problem II, therefore, we also have a set of mutually exclusive and
exhaustive propositions {A] ... Al }, given by

All = A2
Al Aq (2-66)
Al = Ay, 3<k<n

and we seek to evaluate the quantities p(A!|B)rr, ¢ =1,2,...,n.

In interchanging the labels we have generated a different but closely related problem. It is clear
that, whatever state of knowledge the robot had about Ay in Problem I, it must have the same state
of knowledge about A in Problem II, for they are the same proposition, the given information B
is the same in both problems, and it is contemplating the same totality of propositions {A; ... A, }
in both problems. Therefore we must have

p(Ai]B)r = p(A3|B)i1 (2-67)
and similarly

p(A2|B)r = p(AB)ir . (2-68)

We will call these the transformation equations. They describe only how the two problems are
related to each other, and therefore they must hold whatever the information B might be; in
particular, however plausible or implausible the propositions Ay, A; might seem to the robot in
Problem I.

But now suppose that information B is indifferent between propositions Ay and As; i.e., if it
says something about one, it says the same thing about the other, and so it contains nothing that
would give the robot any reason to prefer either one over the other. In this case, Problems I and
II are not merely related, but entirely equivalent; i.e., the robot is in exactly the same state of
knowledge about the set of propositions {A] ... Al } in Problem II, including their labeling, as it is
about the set {A;...A,} in Problem I.

Now we invoke our Desideratum of Consistency in the sense Illc in (1-23). This stated that
equivalent states of knowledge must be represented by equivalent plausibility assignments. In
equations, this statement is

p(A”B)IIp(AHB)[[, i:l,?,...,n (2*69)

which we shall call the symmetry equations. But now, combining equations (2-67), (2-68), (2-69)
we obtain

p(A1|B)r = p(As|B)r . (2-70)

In other words, propositions A; and A; must be assigned equal plausibilities in Problem I (and, of
course, also in Problem II).
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At this point, depending on your personality and background in this subject, you will be
either greatly impressed or greatly disappointed by the result (2-70). The argument we have just
given is the first “baby” version of the group invariance principle for assigning plausibilities; it
will be extended greatly in a later Chapter, when we consider the general problem of assigning
“noninformative priors”.

More generally, let {A} ... A”} be any permutation of {A;...A,} and let Problem III be that
of determining the p(AY|B). If the permutation is such that A} = A;, there will be n transformation
equations of the form

(A B)r = p(AR|B)1r (2-71)

which show how Problems I and III are related to each other; and these relations will hold whatever
the given information B.

But if information B is now indifferent between all the propositions A;, then the robot is in
exactly the same state of knowledge about the set of propositions {AY ... A’} in Problem III as
it was about the set {A;...A4,} in Problem I; and again our desideratum of consistency demands
that it assign equivalent plausibilities in equivalent states of knowledge, leading to the n symmetry
conditions

p(Ak|B)[Ip(AIkI|B)[[[, kI 1,2,...,n (2*72)

From (2-71) and (2-72) we obtain n equations of the form

p(Ai|B)r = p(Ax|B)1 (2-73)

Now these relations must hold whatever the particular permutation we used to define Problem III.
There are n! such permutations, and so there are actually n! equivalent problems in which, for given
i, the index k will range over all of the (n — 1) others in (2-73). Therefore, the only possibility
is that all of the p(A;|B)r be equal (indeed, this is required already by consideration of a single
permutation if it is cyclic of order n). Since the {4y ... A, } are exhaustive, Eq. (2-65) will hold,
and the only possibility is therefore

(A B)r = % (1<i<n) (2.74)

and we have finally arrived at a set of definite numerical values! Following Keynes (1921), we shall
call this result the Principle of Indifference.

Perhaps, in spite of our admonitions, the reader’s intuition had already led to just this conclu-
sion, without any need for the rather tortuous reasoning we have just been through. If so, then at
least that intuition is consistent with our desiderata. But merely writing down (2-74) intuitively
gives one no appreciation of the importance and uniqueness of this result. To see the uniqueness,
note that if the robot were to assign any values different from (2-74), then by a mere permutation
of labels we could exhibit a second problem in which the robot’s state of knowledge is the same,
but in which it is assigning different plausibilities.

To see the importance, note that (2-74) actually answers both of the questions posed at the
beginning of this Section. It shows — in one particular case which can be greatly generalized — how
the information given the robot can lead to definite numerical values, so that a calculation can get
started. But it also shows something even more important because it is not at all obvious intuitively;
the information given the robot determines the numerical values of the quantities p(z) = p(A4;|B),
and not the numerical values of the plausibilities © = A;|B from which we started. This, also, will
be found to be true in general.
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Recognizing this gives us a beautiful answer to the first question posed at the beginning of this
Section; after having found the product and sum rules, it still appeared that we had not found any
unique rules of reasoning, because every different choice of a monotonic function p(z) would lead
to a different set of rules (i.e., a set with different content). But now we see that no matter what
function p(z) we choose, we shall be led to the same result (2-74), and the same numerical value of
p. Furthermore, the robot’s reasoning processes can be carried out entirely by manipulation of the
quantities p, as the product and sum rules show; and the robot’s final conclusions can be stated
equally well in terms of the p’s instead of the z’s.

So, we now see that different choices of the function p(z) correspond only to different ways
we could design the robot’s internal memory circuits. For each proposition A; about which it is
to reason, it will need a memory address in which it stores some number representing the degree
of plausibility of A;, on the basis of all the data it has been given. Of course, instead of storing
the number p; it could equally well store any strict monotonic function of p;. But no matter what
function it used internally, the externally observable behavior of the robot would be just the same.

As soon as we recognize this it is clear that, instead of saying that p(z ) is an arbitrary monotonic
function of z, it is much more to the point to turn this around and say that:

The plausibility x = A|B is an arbitrary monotonic function of p, defined in (0 < p < 1).
It is p that is rigidly fixed by the data of a problem, not z.

The question of uniqueness is therefore disposed of automatically by the result (2-74); in spite
of first appearances, there is actually only one consistent set of rules by which our robot can do
plausible reasoning, and for all practical purposes, the plausibilities 2 = A|B from which we started
have faded entirely out of the picture! We will just have no further use for them.

Having seen that our theory of plausible reasoning can be carried out entirely in terms of the
quantities p, we finally introduce their technical names; from now on, we will call these quantities
probabilities. The word “probability” has been studiously avoided up to this point, because while
the word does have a colloquial meaning to the proverbial “man on the street,” it is for us a
technical term, which ought to have a precise meaning. But until it had been demonstrated that
these quantities are uniquely determined by the data of a problem, we had no grounds for supposing
that the quantities p were possessed of any precise meaning.

We now see that they define a particular scale on which degrees of plausibility can be measured.
Out of all possible monotonic functions which could in principle serve this purpose equally well,
we choose this particular one, not because it is more “correct,” but because it is more convenient;
i.e., it is the quantities p that obey the simplest rules of combination, the product and sum rules.
Because of this, numerical values of p are directly determined by our information.

This situation is analogous to that in thermodynamics, where out of all possible empirical
temperature scales ¢, which are monotonic functions of each other, we finally decide to use the
Kelvin scale T'; not because it is more “correct” than others but because it is more convenient; 7.e.,
the laws of thermodynamics take their simplest form [dU = TdS — PdV, dG = —SdT + VdP,
etc.] in terms of this particular scale. Because of this, numerical values of Kelvin temperatures
are “rigidly fixed” in the sense of being directly measurable in experiments, independently of the
properties of any particular substance like water or mercury.

Another rule, equally appealing to our intuition, follows at once from (2-74). Consider the
traditional “Bernoulli Urn” of probability theory; ours is known to contain ten balls of identical
size and weight, labelled {1,2,...,10}. Three balls (numbers 4, 6, 7) are black, the other seven are
white. We are to shake the Urn and draw one ball blindfolded. The background information B in
(2-74) consists of the statements in the last two sentences. What is the probability that we draw
a black one?
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Define the propositions: A; = “The ¢’th ball is drawn” , 1 < ¢ < 10. Since the background
information is indifferent to these ten possibilities, (2-74) applies and the robot assigns

1

PALB) = o

1<e <10
The statement that we draw a black ball is that we draw number 4, 6, or 7;

p(Black|B) = p(As + As + A7|B)

But these are mutually exclusive propositions (i.e., they assert mutually exclusive events) so (2-64)
applies and the robot’s conclusion is

p(Black|B) = — (2-75)

as intuition had told us already. More generally, if there are N such balls, and the proposition A is
defined to be true on any specified subset of M of them, (0 < M < N), false on the rest, we have

pAlB) = 2 (2-76)

This was the original mathematical definition of probability, as given by James Bernoulli (1713)
and used by most writers for the next 150 years. For example, Laplace’s great Théorie analytique
des probabilités (1812) opens with this sentence: “The Probability of an event is the ratio of the
number of cases favorable to it, to the number of all cases possible when nothing leads us to expect

that any one of these cases should occur more than any other, which renders them, for us, equally
possible.”

Exercise 2.3. Limits on Probability Values. As soon as we have the numerical values a =
P(A|C) and b = P(B|C), the product and sum rules place some limits on the possible numerical
values for their conjunction and disjunction. Supposing that ¢ < b, show that the probability of
the conjunction cannot exceed that of the least probable proposition: 0 < P(AB|C') < a, and
the probability of the disjunction cannot be less than that of the most probable proposition:
b < P(A+4 B|C) < 1. Then show that, if @« + b > 1, there is a stronger inequality for the
conjunction; and if a+b < 1 there is a stronger one for the disjunction. These necessary general
inequalities are helpful in detecting errors in calculations.

Notation and Finite Sets Policy

Now we can introduce the notation to be used in the remainder of this work (discussed more fully
in Appendix B). Henceforth, our formal probability symbols will use the capital P:

P(A|B)

which signifies that the arguments are propositions. Probabilities whose arguments are numerical
values are generally denoted by other functional symbols such as

f(rn,p)

which denote ordinary mathematical functions. The reason for making this distinction is to avoid
ambiguity in the meaning of our symbols, which has been a recent problem in this field.
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However, in agreement with the customary loose notation in the existing literature, we some-
times relax our standards enough to allow the probability symbols with small p: p(z|y) or p(A|B)
or p(z|B) to have arguments which can be either propositions or numerical values, in any mix.
Thus the meaning of expressions with small p can be judged only from the surrounding context.

It is very important to note that our consistency theorems have been established only for
probabilities assigned on finite sets of propositions. In principle, every problem must start with
such finite set probabilities; extension to infinite sets is permitted only when this is the result
of a well-defined and well-behaved limiting process from a finite set. More generally, in any
mathematical operations involving infinite sets the safe procedure is the finite sets policy:

Apply the ordinary processes of arithmetic and analysis only to expressions with a finite
number of terms. Then after the calculation is done, observe how the resulting finite
expressions behave as the number of terms increases indefinitely.

In laying down this rule of conduct, we are only following the policy that mathematicians from
Archimedes to Gauss have considered clearly necessary for nonsense avoidance in all of mathematics.
But more recently, the popularity of infinite set theory and measure theory have led some to
disregard it and seek short—cuts which purport to use measure theory directly. Note, however,
that this rule of conduct is consistent with the original Lebesgue definition of measure, and when
a well-behaved limit exists it leads us automatically to correct “measure theoretic” results. Indeed,
this is how Lebesgue found his first results.

The danger is that the present measure theory notation presupposes the infinite limit already
accomplished, but contains no symbol indicating which limiting process was used. Yet as noted
in our Preface, different limiting processes — equally well-behaved — lead in general to different
results. When there is no well-behaved limit, any attempt to go directly to the limit can result in
nonsense, the cause of which cannot be seen as long as one looks only at the limit, and not at the
limiting process.

This little Sermon is an introduction to Chapter 15 on Infinite Set Paradoxes, where we shall
see some of the results that have been produced by those who ignored this rule of conduct, and
tried to calculate probabilities directly on an infinite set without considering any limit from a finite
set. The results are at best ambiguous, at worst nonsensical.

COMMENTS

It has taken us two Chapters of close reasoning to get back to the point (2-76) from which Laplace
started some 180 years ago. We shall try to understand the intervening period, as a weird episode
of history, throughout the rest of the present work. The story is so complicated that we can unfold
it only gradually, over the next ten Chapters. To make a start on this, let us consider some of the
questions often raised about the use of probability theory as an extension of logic.

‘Subjective” vs “Objective” These words are abused so much in probability theory that we try
to clarify our use of them. In the theory we are developing, any probability assignment is necessarily
“subjective” in the sense that it describes only a state of knowledge, and not anything that could
be measured in a physical experiment. Inevitably, someone will demand to know: “Whose state of
knowledge?” The answer is always: “The robot — or anyone else who is given the same information
and reasons according to the desiderata used in our derivations in this Chapter.”

Anyone who has the same information but comes to a different conclusion than our robot,
is necessarily violating one of those desiderata. While nobody has the authority to forbid such
violations, it appears to us that a rational person, should he discover that he was violating one of
them, would wish to revise his thinking (in any event, he would surely have difficulty in persuading
anyone else, who was aware of that violation, to accept his conclusions).
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Now it was just the function of our interface desiderata (IIIb), (IIlc) to make these probability
assignments completely “objective” in the sense that they are independent of the personality of
the user. They are a means of describing (or what is the same thing, of encoding) the information
given in the statement of a problem, independently of whatever personal feelings (hopes, fears,
value judgments, etc.) you or I might have about the propositions involved. It is “objectivity” in
this sense that is needed for a scientifically respectable theory of inference.

Godel’s Theorem. To answer another inevitable question, we recapitulate just what has and
what has not been proved in this Chapter. The main constructive requirement which determined
our product and sum rules was the desideratum (IIla) of “structural consistency.” Of course, this
does not mean that our rules have been proved consistent; it means only that any other rules which
represent degrees of plausibility by real numbers, but which differ in content from ours, will lead
necessarily either to inconsistencies or violations of our other desiderata.

A famous theorem of Kurt Gédel (1931) states that no mathematical system can provide a
proof of its own consistency. Does this prevent us from ever proving the consistency of probability
theory as logic? We are not prepared to answer this fully, but perhaps we can clarify the situation
a little.

First, let us be sure that “inconsistency” means the same thing to us and to a logician. What we
had in mind was that if our rules were inconsistent, then it would be possible to derive contradictory
results from valid application of them; for example, by applying the rules in two equally valid ways,
one might be able to derive both P(A|BC') = 1/3 and P(A|BC') = 2/3. Cox’s functional equations
sought to guard against this. Now when a logician says that a system of axioms {Ay, Ay,..., A,}
is inconsistent, he means that a contradiction can be deduced from them; i.e., some proposition ()
and its denial @ are both deducible. Indeed, this is not really different from our meaning.

To understand the above Godel result, the essential point is the principle of elementary logic
that a contradiction A A implies all propositions, true and false. [For, given any two propositions
A and B, we have A = (A + B), therefore AA = A(A+ B) = AA+ AB = B.] Then let
A= Ay Ay --- A, be the system of axioms underlying a mathematical theory and T’ any proposition,
or theorem, deducible from them:?

A=T.

Now whatever T may assert, the fact that T' can be deduced from the axioms cannot prove that
there is no contradiction in them, since if there were a contradiction, T' could certainly be deduced
from them!

This is the essence of the Gddel theorem, as it pertains to our problems. As noted by R. A.
Fisher (1956), it shows us the intuitive reason why Godel’s result is true. We do not suppose that
any logician would accept Fisher’s simple argument as a proof of the full Gédel theorem; yet for
most of us it is more convincing than Gédel’s long and complicated proof.}

L Chapter 1 we noted the tricky distinction between the weak property of formal implication and the
strong one of logical deducibility; by ‘implication of a proposition (" we really mean ‘logically deducible
from €' and the totality of other background information’. Conventional expositions of Aristotelian logic
are, in our view, flawed by their failure to make explicit mention of background information, which is usually
essential to our reasoning, whether inductive or deductive. But in the present argument, we can understand
A as including all the propositions that constitute that background information; then ‘implication’ and
‘logical deducibility’ are the same thing.

! The 1957 Edition of Harold Jeffreys’ Scientific Inference has a short summary of Godel’s original rea-
soning which is far clearer and easier to read than any other ‘explanation’ we have seen. The full theorem
refers to other matters of concern in 1931, but of no interest to us right now; the above discussion has
abstracted the part of it that we need to understand for our present purposes.
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Now suppose that the axioms contain an inconsistency. Then the opposite of T" and therefore
the contradiction T'T" can also be deduced from them:

A=T.

So if there is an inconsistency, its existence can be proved by exhibiting any proposition 7" and its
opposite T that are both deducible from the axioms. However, in practice it may not be easy to
find a T for which one sees how to prove both T and 7.

Evidently, we could prove the consistency of a set of axioms if we could find a feasible procedure
which is guaranteed to locate an inconsistency if one exists; so Godel’s theorem seems to imply that
no such procedure exists. Actually, it says only that no such procedure derivable from the axioms
of the system being tested exists.

Yet we shall find that probability theory comes close to this; it is a powerful analytical tool
which can search out a set of propositions and detect a contradiction in them if one exists. The
principle is that probabilities conditional on contradictory premises do not exist. Therefore, put
our robot to work; i.e., write a computer program to calculate probabilities p( B|F) conditional on a
set of propositions £ = (Fy Fs ... F,). Even though no contradiction is apparent from inspection,
if there is a contradiction hidden in F. the computer program will crash.

We discovered this “empirically”, and after some thought realized that it is not a reason for
dismay, but rather a valuable diagnostic tool that warns us of unforeseen special cases in which
our formulation of a problem can break down. It will be used for this purpose later, particularly
in Chapter 21.

If the computer program does not crash, but prints out valid numbers, then we know that the
conditioning propositions F; are mutually consistent, and we have accomplished what one might
have thought to be impossible in view of Godel’s theorem. But of course our use of probability
theory appeals to principles not derivable from the propositions being tested, so there is no difficulty;
it is important to understand what Godel’s theorem does and does not prove.

When Gédel’s theorem first appeared, with its more general conclusion that a mathematical
system may contain certain propositions that are undecidable within that system, it seems to have
been a great psychological blow to logicians, who saw it at first as a devastating obstacle to what
they were trying to achieve.

Yet a moment’s thought shows us that many quite simple questions are undecidable by de-
ductive logic. There are situations in which one can prove that a certain property must exist in
a finite set, even though it is impossible to exhibit any member of the set that has that property.
For example, two persons are the sole witnesses to an event; they give opposite testimony about it
and then both die. Then we know that one of them was lying, but it is impossible to determine
which one.

In this example, the undecidability is not an inherent property of the proposition or the event;
it signifies only the incompleteness of our own information. But this is equally true of abstract
mathematical systems; when a proposition is undecidable in such a system, that means only that
its axioms do not provide enough information to decide it. But new axioms, external to the original
set, might supply the missing information and make the proposition decidable after all.

In the future, as science becomes more and more oriented to thinking in terms of information
content, Godel’s result will come to seem more of a platitude than a paradox. Indeed, from our
viewpoint “undecidability” merely signifies that a problem is one that calls for inference rather
than deduction. Probability theory as extended logic is designed specifically for such problems.

These considerations seem to open up the possibility that, by going into a still wider field by
invoking principles external to probability theory, one might be able to prove the consistency of
our rules. At the moment, this appears to us to be an open question.
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Needless to say, no inconsistency has ever been found from correct application of our rules,
although some of our calculations will put them to a severe test. Apparent inconsistencies have
always proved, on closer examination, to be misapplications of the rules. On the other hand,
guided by Cox’s theorems which tell us where to look, we have never had the slightest difficulty
in exhibiting the inconsistencies in the ad hoc rules which abound in the literature, which differ in
content from ours and whose sole basis is the intuitive judgment of their inventors. Examples are
found throughout the sequel, but particularly in Chapters 5, 15, 17.

Venn Diagrams. Doubtless, some readers will ask, “After the rather long and seemingly un-
motivated derivation of the extended sum rule (2-48), which in our new notation now takes the
form:

P(A + B|C) = P(A|C) + P(B|C) — P(AB|C) (2-48)

why did we not illustrate it by the Venn diagram? That makes its meaning so much clearer.” [Here
we draw two circles labelled A and B, with intersection labelled AB, all within a circle C'.]

The Venn diagram is indeed a useful device, illustrating —in one special case — why the negative
term appears in (2-48). But it can also mislead, because it suggests to our intuition more than the
actual content of (2-48). Looking at the Venn diagram, we are encouraged to ask, “What do the
points in the diagram mean?” If the diagram is intended to illustrate (2-48), then the probability
of A is, presumably, represented by the area of circle A; for then the total area covered by circles
A, B is the sum of their separate areas, minus the area of overlap, corresponding exactly to (2-48).

Now the circle A can be broken down into non—overlapping subregions in many different ways;
what do these subregions mean? Since their areas are additive, if the Venn diagram is to remain
applicable they must represent a refinement of A into the disjunction of some mutually exclusive
sub—propositions. We can — if we have no mathematical scruples about approaching infinite limits —
imagine this subdivision carried down to the individual points in the diagram. Therefore these
points must represent some ultimate elementary propositions w; into which A can be resolved. Of
course, consistency then requires us to suppose that B and C can also be resolved into these same
propositions w;.

Already, we have jumped to the conclusion that the propositions to which we assign probabil-
ities correspond to sets of points in some space, that the logical disjunction A + B stands for the
union of the sets, the conjunction AB for their intersection, that the probabilities are an additive
measure over those sets. But the general theory we are developing has no such structure; all these
things are properties only of the Venn diagram.

In developing our theory of inference we have taken special pains to avoid restrictive assump-
tions which would limit its scope; it is to apply, in principle, to any propositions with unambiguous
meaning. In the special case where those propositions happen to be statements about sets, the
Venn diagram is an appropriate illustration of (2-48). But most of the propositions about which
we reason, for example,

A = “It will rain today,”
B = “The roof will leak,”

are simply declarative statements of fact, which may or may not be resolvable into more elementary
propositions within the context of our problem.

Of course, one can always force such a resolution by introducing irrelevancies; for example,
even though the above—defined B has nothing to do with penguins, we could still resolve it into the
disjunction:

B=BC1+BCy;+BCs+4+---4+ BCy
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where Cy = “The number of penguins in Antarctica is £.” By choosing N sufficiently large, we
will surely be making a valid statement of Boolean algebra; but this is idle and it cannot help us
to reason about a leaky roof.

Even if a meaningful resolution exists in our problem, it may not be of any use to us. For
example, the proposition “Rain Today” could be resolved into an enumeration of every conceivable
trajectory of each individual raindrop; but we do not see how this could help a meteorologist trying
to forecast rain. In real problems, there is a natural end to this resolving, beyond which it serves no
purpose and degenerates into an empty formal exercise. We shall give an explicit demonstration of
this later (Chapter 8), in the scenario of Sam’s Broken Thermometer: does the exact way in which
it broke matter for the conclusions that Sam should draw from his corrupted data?

But in some cases there is a resolution so relevant to the context of the problem that it becomes
a useful calculational device; Eq. (2-75) was a trivial example. We shall be glad to take advantage
of this whenever we can, but we cannot expect it in general.

Even when both A and B can be resolved in a way meaningful and useful in our problem,
it would seldom be the case that they are resolvable into the same set of elementary propositions
w;. And we always reserve the right to enlarge our context by introducing more propositions
D,FE,F,...into the discussion; and we could hardly ever expect that all of them would continue
to be expressible as disjunctions of the same original set of elementary propositions w;. To assume
this would be to place a quite unnecessary restriction on the generality of our theory.

Therefore, the conjunction AB should be regarded simply as the statement that both A and
B are true; it is a mistake to try to read any more detailed meaning, such as an intersection of sets,
into it in every problem. Then p(AB|C) should also be regarded as an elementary quantity in its
own right, not necessarily resolvable into a sum of still more elementary ones (although if it is so
resolvable this may be a good way of calculating it).

We have adhered to the original notation A + B, AB of Boole, instead of the more common
AV B, ANB,or AU B, AN B which everyone associates with a set—theory context, in order to
head off this confusion as much as possible.

So, rather than saying that the Venn diagram justifies or explains (2-48), we prefer to say that
(2-48) explains and justifies the Venn diagram, in one special case. But the Venn diagram has
played a major role in the history of probability theory, as we note next.

The “Kolmogorov Axioms” In 1933, A. N. Kolmogorov presented an approach to probability
theory phrased in the language of set theory and measure theory. This language was just then
becoming so fashionable that today many mathematical results are named, not for the discoverer,
but for the one who first restated them in that language. For example, in group theory the term
“Hurwitz invariant integral” disappeared, to be replaced by “Haar measure”. Because of this
custom, some modern works — particularly by mathematicians — can give one the impression that
probability theory started with Kolmogorov.

Kolmogorov formalized and axiomatized the picture suggested by the Venn diagram, which
we have just described. At first glance, this system appears so totally different from ours that
some discussion is needed to see the close relation between them. In Appendix A we describe
the Kolmogorov system and show that, for all practical purposes the four axioms concerning his
probability measure, first stated arbitrarily (for which Kolmogorov has been criticized) have all
been derived in this Chapter as necessary to meet our consistency requirements. As a result, we
shall find ourselves defending Kolmogorov against his critics on many technical points. The reader
who first learned probability theory on the Kolmogorov basis is urged to read Appendix A at this
point.

However, our system of probability differs conceptually from that of Kolmogorov in that we do
not interpret propositions in terms of sets. Partly as a result, our system has analytical resources not
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present at all in the Kolmogorov system. This enables us to formulate and solve many problems —
particularly the so—called “ill posed” problems and “generalized inverse” problems — that would
be considered outside the scope of probability theory according to the Kolmogorov system. These
problems are just the ones of greatest interest in current applications.
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CHAPTER 3

ELEMENTARY SAMPLING THEORY

At this point, the mathematical material we have available consists of the basic product and sum
rules

P(AB|C) = P(A|BC) P(B|C) = P(B|AC) P(A|C) (3-1)

P(A|B)+ P(A|B) =1 (3-2)

from which we derived the extended sum rule

P(A + B|C) = P(A|C) + P(B|C) — P(AB|C) (3-3)

and with the desideratum (Ill.c) of consistency, the principle of indifference: if on background
information B the hypotheses (Hy --- Hy) are mutually exclusive and exhaustive, and B does not
favor any one of them over any other, then

1
P(H|B)= &, 1<i<N. (3-4)

From (3-3) and (3-4) we then derived the Bernoulli urn rule; if B specifies that A is true on some
subset of M of the H;, false on the remaining (N — M), then

M
P(A|B) = v (3-5)
It is important to realize how much of probability theory can be derived from no more than this.

In fact, essentially all of conventional probability theory as currently taught, plus many impor-
tant results that are often thought to lie beyond the domain of probability theory, can be derived
from the above foundation. We devote the next several Chapters to demonstrating this in some
detail, and then in Chapter 11 resume the basic development of our robot’s brain, with a better
understanding of what additional principles are needed for advanced applications.

The first applications of the theory given in this Chapter are, to be sure, rather simple and
naive compared to the serious scientific inference that we hope to achieve later. Nevertheless, our
reason for considering them in close detail is not mere pedagogical form. Failure to understand
the logic of these simplest applications has been one of the major factors retarding the progress
of scientific inference — and therefore of science itself — for many decades. Therefore we urge the
reader, even one who considers himself already familiar with elementary sampling theory, to digest
the contents of this Chapter carefully before proceeding to more complicated problems.

Sampling Without Replacement.

Let us make the Bernoulli Urn scenario a little more specific by defining the propositions:

B = “An urn contains N balls, identical in every respect except that they carry num-
bers (1,2...N) and M of them are colored red, the remaining (N — M) white,
0 < M < N. Wedraw a ball from the urn blindfolded, observe and record its
color, lay it aside, and repeat the process until n balls have been drawn, 0 < n < N.”

= “Red ball on the i’th draw.”

W, = “White ball on the i’th draw,”

=
I
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Since according to B only red or white can be drawn, we have
P(Ri|B) + P(W;|B) = 1, 1<i<N (3-6)

which amounts to saying that, in the “logical environment” created by knowledge of B, the propo-
sitions are related by negation:

Ry = W;, W; =R, (3-7)
and for the first draw, (3-5) becomes
M
p(r By = 2L (38)
M
PWi|B) =1~ +, (3-9)

Let us understand clearly what this means. The probability assignments (3-8), (3-9) are not
assertions of any physical property of the urn or its contents; they are a description of the state of
knowledge of the robot prior to the drawing. Indeed, were the robot’s state of knowledge different
from B as just defined (for example, if it knew the actual positions of the red and white balls in
the urn, or if it did not know the true values of N and M), then its probability assignments for R,
and Wy would be different; but the real properties of the urn would be just the same.

It is therefore illogical to speak of “verifying” (3-8) by performing experiments with the urn;
that would be like trying to verify a boy’s love for his dog by performing experiments on the dog.
At this stage, we are concerned with the logic of consistent reasoning from incomplete information;
not with assertions of physical fact about what will be drawn from the urn (which are in any event
impossible just because of the incompleteness of the information B).

Eventually, our robot will be able to make some very confident physical predictions which can
approach, but (except in degenerate cases) not actually reach, the certainty of logical deduction;
but the theory needs to be developed further before we are in a position to say what quantities
can be well predicted, and what kind of information is needed for this. Put differently, relations
between probabilities assigned by the robot in various states of knowledge, and observable facts in
experiments, may not be assumed arbitrarily; we are justified in using only those relations that can
be deduced from the rules of probability theory, as we now seek to do.

Changes in the robot’s state of knowledge appear already when we ask for probabilities referring
to the second draw. For example, what is the robot’s probability for red on the first two draws?
From the product rule, this is

P(R\Ry|B) = P(Ry|B) P(Ry|R\B).

In the last factor, the robot must take into account that one red ball has been removed at the first
draw, so there remain (N — 1) balls of which (M — 1) are red. Therefore

M M-1

r B) = — -1
(RiBalB) = S N (3-10)
Continuing in this way, the probability of red on the first » consecutive draws is
M(M-1)---(M—-r+1)
P .-+ R,|B) =
(By--- RrlB) N(N—1)--(N—7r+1)
(3-11)
MUN — )
= ( T) r < M
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The restriction » < M is not necessary if we understand that we define factorials by the gamma
function relation n! = I'(n + 1), for then the factorial of a negative integer is infinite, and (3-11) is
zero automatically when r» > M.

The probability of white on the first w draws is similar but for the interchange of M and
(N — M):

(N - M) (N —w)

HW“WWWPTN—M—M! i

(3-12)

Then, the probability of white on draws (r+ 1, 74+ 2,..., r + w) given that we got red on the first
r draws, is given by (3-12) taking into account that N and M have been reduced to (N — r) and
(M —r):

(N = M)(N —r—w)!
(N -M—w)(N-r)!

P(Wyp1 ... Wypw|Ry...R,B) = (3-13)

and so, by the product rule, the probability of obtaining r red followed by w = n — r white in n
draws is from (3-11), (3-13),

MI(N = M) (N = n)!

(M =) (N—-M —w)! N!

(3-14)

a term (N — r)! having cancelled out.

Although this result was derived for a particular order of drawing red and white balls, the
probability of drawing exactly r red balls in any specified order in n draws is the same. To see this,
write out the expression (3-14) more fully, in the manner

M!

— = M(M-1)--- (M — 1
T = MOI-D (1=t
and similarly for the other ratios of factorials in (3—-14). The right-hand side becomes

MM ~1)-- (M —r+1) (N M)N—-M—1)--(N-M—w+1)
NN—1)--(N—-n+1)

(3-15)

Now suppose that r red and (n — ) = w white are drawn, in any other order. The probability of
this is the product of n factors; every time red is drawn there is a factor (number of red balls in
urn)/(total number of balls), and similarly for drawing a white one. The number of balls in the
urn decreases by one at each draw; therefore for the k'th draw a factor (N — &k + 1) appears in the
denominator, whatever the colors of the previous draws.

Just before the k’th red ball is drawn, whether this occurs at the k'th draw or any later one,
there are (M — k4 1) red balls in the urn; so drawing the &’'th one places a factor (M —k+1) in the
numerator. Just before the k'th white ball is drawn, there are (N — M — k + 1) white balls in the
urn, and so drawing the k'th white one places a factor (N — M —k +1) in the numerator, regardless
of whether this occurs at the k’th draw or any later one. Therefore, by the time all n balls have
been drawn, of which r were red, we have accumulated exactly the same factors in numerator and
denominator as in (3-15); different orders of drawing them only permute the order of the factors
in the numerator. The probability of drawing exactly r balls in any specified order in n draws, is
therefore given by (3-14).

Note carefully that in this result the product rule was expanded in a particular way that showed
us how to organize the calculation into a product of factors, each of which is a probability at one
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specified draw, given the results of all the previous draws. But the product rule could have been
expanded in many other ways, which would give factors conditional on other information than the
previous draws; the fact that all these calculations must lead to the same final result is a nontrivial
consistency property, which the derivations of Chapter 2 sought to ensure.

Next, we ask: what is the robot’s probability for drawing exactly r red balls in n draws,
regardless of order? Different orders of appearance of red and white balls are mutually exclusive
possibilities, so we must sum over all of them; but since each term is equal to (3-14), we merely

multiply it by the binomial coefficient
n n!
= — -1
(7‘) rl(n—r)! (3-16)

which represents the number of possible orders of drawing r red balls in » draws or as we shall call
it, the multiplicity of the event r. For example, to get 3 red in 3 draws can happen in only

(-

way, namely Ry RsRs; the event » = 3 has a multiplicity of 1. But to get 2 red in 3 draws can

happen in
3
=3
()

ways, namely R1R.Ws3, RiWyRs, Wi Ry R3, so the event r = 2 has a multiplicity of 3.

Exercise 3.1. Why isn’t the multiplicity factor (3-16) just n!? After all, we started this
discussion by stipulating that the balls, in addition to having colors, also carry labels (1---N),
so that different permutations of the red balls among themselves, which give the r! in the
denominator of (3-16), are distinguishable arrangements. Hint: in (3-14) we are not specifying
which red balls and which white ones are to be drawn.

Then taking the product of (3-14) and (3-16), the many factorials can be reorganized into three

binomial coefficients. Defining A = “Exactly r red balls in n draws, in any order” and the function
h(r|N,M,n) = P(A|B) (3-17)
we have
M N-M
r n—r
h(r|N,M,n) = (3-18)

N
()
which we shall usually abbreviate to h(r). By the convention ! = I'(z+1) it vanishes automatically
when 7 > M, or r > n,or (n—7r)> (N — M), as it should.

We are here doing a little notational acrobatics for reasons explained in Appendix B. The
point is that in our formal probability symbols P(A|B) with the capital P, the arguments A, B
always stand for propositions, which can be quite complicated verbal statements. If we wish to use
ordinary numbers for arguments, then for consistency we should define new functional symbols such

as h(r|N, M,n). To try to use a notation like P(r|N, M, n), thereby losing sight of the qualitative
stipulations contained in A and B, has led to serious errors from misinterpretation of the equations
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(such as the marginalization paradox discussed later). However, as already indicated in Chapter 2,
we follow the custom of most contemporary works by using probability symbols of the form p(A|B),
or p(r|n) with small p, in which we permit the arguments to be either propositions or algebraic
variables; in this case, the meaning must be judged from the context.

The fundamental result (3-18) is called the hypergeometric distribution because it is related to
the coeflicients in the power series representation of the Gauss hypergeometric function

L T(a+ r)I(b+ r)(c) t*
Fla,b,¢e;t) = ; (r(;r)r)(bgr(tﬁrg ) 5 (3-19)

If either @ or b is a negative integer, the series terminates and this is a polynomial. It is easily
verified that the generating function

G(t)y= > h(r|N,M,n)t" (3-20)
r=0
is equal to
F(=M,—n,c;t
Gy = LM mn el (3-21)

F(=M,-n,e;1)

with ¢ = N — M — n + 1. The evident relation G/(1) = 1 is from (3-20) just the statement that
the hypergeometric distribution is correctly normalized. In consequence of (3-21), G(t) satisfies
the second—order hypergeometric differential equation and has many other properties useful in
calculations. Further details about generating functions are in Appendix D.

Although the hypergeometric distribution h(r) appears complicated, it has some surprisingly
simple properties. The most probable value of r is found to within one unit by setting h(r') =
h(r" — 1) and solving for r'. We find

DO
N +2

(3-22)

If ' is an integer, then ' and r’ — 1 are jointly the most probable values. If 7/ is not an integer,
then there is a unique most probable value

P =INT(r') (3-23)

that is, the next integer below r’. Thus the most probable fraction f = r/n of red balls in the
sample drawn is nearly equal to the fraction F' = M /N originally in the urn, as one would expect
intuitively. This is our first crude example of a physical prediction: a relation between a quantity
F specified in our information, and a quantity f measurable in a physical experiment, derived from
the theory.

The width of the distribution h(r) gives an indication of the accuracy with which the robot can
predict r. Many such questions are answered by calculating the cumulative probability distribution,
which is the probability of finding R or fewer red balls. If R is an integer, that is

HR)=>" h(r) , (3-24)

but for later formal reasons we define H(z) to be a staircase function for all real z; thus H(z) =
H(R), where R = INT(z) is the greatest integer < z.

The median of a probability distribution such as h(r) is defined to be a number m such that
equal probabilities are assigned to the propositions (r < m) and (r > m). Strictly speaking,
according to this definition a discrete distribution has in general no median. If there is an integer
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R for which H(R—1)=1— H(R) and H(R) > H(R— 1), then R is the unique median. If there is
an integer R for which H(R) = 1/2, then any r in (R < r < R') is a median, where R’ is the next
higher jump point of H(x); otherwise there is none.

But for most purposes we may take a more relaxed attitude and approximate the strict defini-
tion. If n is reasonably large, then it makes reasonably good sense to call that value of R for which
H(R) is closest to 1/2, the “median”. In the same relaxed spirit, the values of R for which H(R)
is closest to 1/4, 3/4 may be called the “lower quartile” and “upper quartile”, and if n >> 10 we
may call the value of R for which H(R) is closest to k/10 the “k’th decile”, and so on. As n — oo
these loose definitions come into conformity with the strict one.

Usually, the fine details of H(R) are unimportant and for our purposes it is sufficient to know
the median and the quartiles. Then the (median) £ (interquartile distance) will provide a good
enough idea of the robot’s prediction and its probable accuracy. That is, on the information given
to the robot, the true value of r is about as likely to lie in this interval as outside it. Likewise, the
robot assigns a probability of (5/6) —(1/6) = 2/3 (in other words, odds of 2 : 1) that r lies between
the first and fifth hexile, odds of 8 : 2 = 4 : 1 that it is bracketed by the first and ninth decile; and
SO on.

Although one can develop rather messy approximate formulas for these distributions which
were much used in the past, it is easier today to calculate the exact distribution by computer.
In Appendix I we give a short program HYPERGEO.BAS which will run on almost any micro-
computer, and which prints out h(r) and H(R) for N up to 130. Beyond that, the binomial
approximation given below will be accurate enough.

For example, Tables 3.1 and 3.2 give the HYPERGEO printouts for ¥ = 100, M = 50, n = 10
and N = 100, M = 10, n = 50. In the latter case, it is not possible to draw more than 10 red balls,
so the entries for r > 10 are all A(r) = 0, H(r) = 1 and are not tabulated. One is struck immediately
by the fact that the entries for positive h(r) are identical; the hypergeometric distribution has the
symmetry property

h(r|N,M,n) = h(r|N,n, M) (3-25)
under interchange of M and n. Whether we draw 10 balls from an urn containing 50 red ones, or 50
from an urn containing 10 red ones, the probability of finding r red ones in the sample drawn is the

same. This is readily verified by closer inspection of (3-18), and it is evident from the symmetry
in a,b of the hypergeometric function (3-19).

T h(r) H(r) T h(r) H(r)
0 0.000593 0.000593 0 0.000593 0.000593
1 0.007237 0.007830 1 0.007237 0.007830
2 0.037993 0.045824 2 0.037993 0.045824
3 0.113096 0.158920 3 0.113096 0.158920
4 0.211413 0.370333 4 0.211413 0.370333
5 0.259334 0.629667 5 0.259334 0.629667
6 0.211413 0.841080 6 0.211413 0.841080
7 0.113096 0.954177 7 0.113096 0.954177
8 0.037993 0.992170 8 0.037993 0.992170
9 0.007237 0.999407 9 0.007237 0.999407
10 0.000593 1.000000 10 0.000593 1.000000
Table 3.1: N, M,n = 100,10, 50. Table 3.2: N, M,n = 100,50, 10

Another symmetry evident from the printout is the symmetry of the distribution about its
peak: h(r|100,50,10) = h(10 — r|100,50,10). However, this is not so in general; changing N to 99
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results in a slightly unsymmetrical peak as we see from Table 3.3. The symmetric peak in Table 3.1

arises as follows: if we interchange M and (N — M) and at the same time interchange r and (n—r)
we have in effect only interchanged the words “red” and “white”, so the distribution is unchanged:

h(n—r|N,N—M,n)="h(r|N,M,n) (3-26)
But when M = N/2, this reduces to the symmetry
h(n —r|N,M,n)= h(r|N,M,n)

observed in Table 3.1. By (3-25) the peak must be symmetric also when n = N /2.

T h(r) H(r)

0 0.000527 0.000527
1 0.006594 0.007121
2 0.035460 0.042581
3 0.108070 0.150651
4 0.206715 0.357367
5 0.259334 0.616700
6 0.216111 0.832812
7 0.118123 0.950934
8 0.040526 0.991461
9 0.007880 0.999341
10 0.000659 1.000000

Table 3.3: Hypergeometric Distribution, N, M, n = 99, 50, 10.

The hypergeometric distribution has two more symmetries not at all obvious intuitively or
even visible in (3-18). Let us ask the robot for its probability P(R3|B) of red on the second draw.
This is not the same calculation as (3-8), because the robot knows that, just prior to the second
draw, there are only (N — 1) balls in the urn, not N. But it does not know what color of ball was
removed on the first draw, so it does not know whether the number of red balls now in the urn is
M or (M —1). Then the basis for the Bernoulli urn result (3-5) is lost, and it might appear that
the problem is indeterminate.

Yet it is quite determinate after all; the following is our first example of one of the useful
techniques in probability calculations, which derives from the resolution of a proposition into dis-
junctions of simpler ones, as discussed in Chapters 1 and 2. The robot does know that either Ry
or Wy is true, therefore a relation of Boolean algebra is

Ry=(R1+W1)Ry = RiRy + Wi Ry . (3-27)
So we apply the sum rule and the product rule to get

P(Ry|B) = P(R1R3|B) + P(WyR,|B)

(3-28)
But
M -1 M

and so
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=

M N-M M

M-1
+

PalB) = vty _1 % =W

(3-30)

The complications cancel out, and we have the same probability of red on the first and second
draws. Let us see whether this continues. For the third draw we have

Ry = (R +Wi)(Ra+ Wy)Rs = RiRyRs + RiWyR3 + Wi Ry Ry + Wi W, R (3-31)
and so
MM-1M-2 MN-MM-1
PUBsIB = T N2t N N1 3
N-M M M-1 N-MN-M-1 M
+ + (3-32)
N N—-1 N-2 N N -1 N -2
_M
=5

Again all the complications cancel out. The robot’s probability of red at any draw, if it does not
know the result of any other draw, is always the same as the Bernoulli urn result (3-5). This is the
first non—obvious symmetry. We shall not prove this in generality here, because it is contained as
a special case of a more general result, Eq. (3-105) below.

The method of calculation illustrated by (3-28) and (3-31) is: resolve the quantity whose
probability is wanted into mutually exclusive sub-propositions, then apply the sum rule and the
product rule. If the sub-propositions are well chosen (i.e., if they have some simple meaning in
the context of the problem), their probabilities are often calculable. If they are not well chosen
(as in the example of the penguins in the Comments at the end of Chapter 2), then of course this
procedure cannot help us.

Logic Versus Propensity.

This suggests a new question. In finding the probability of red at the £’th draw, knowledge of
what color was found at some earlier draw is clearly relevant because an earlier draw affects the
number My, of red balls in the urn for the k’th draw. Would knowledge of the color for a later
draw be relevant? At first glance it seems that it could not be, because the result of a later draw
cannot influence the value of M. For example, a well-known exposition of statistical mechanics
(Penrose, 1979) takes it as a fundamental axiom that probabilities referring to the present time can
depend only on what happened earlier, not on what happens later. The author considers this to
be a necessary physical condition of “causality”.

Therefore we stress again, as we did in Chapter 1, that inference is concerned with logical
connections, which may or may not correspond to causal physical influences. To show why knowl-
edge of later events is relevant to the probabilities of earlier ones, consider an urn which is known
(background information B) to contain only one red and one white ball: N =2, M = 1. Given
only this information, the probability of red on the first draw is P(R1|B) = 1/2. But then if the
robot learns that red occurs on the second draw, it becomes certain that it did not occur on the
first:

P(Ry|RyB) =0 . (3-33)

More generally, the product rule gives us
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P(R;Ry|B) = P(R;|RB) P(Rg|B) = P(R¢|R;B) P(R;|B)

But we have just seen that P(R;|B) = P(Ry|B) = M/N for all j,k, so
P(R;|RyB) = P(Ry|R;B) all j,k . (3-34)

Probability theory tells us that the results of later draws have precisely the same relevance as do
the results of earlier ones! Even though performing the later draw does not physically affect the
number M, of red balls in the urn at the k’th draw, information about the result of a later draw
has the same effect on our state of knowledge about what could have been taken on the k’th draw,
as does information about an earlier one. This is our second non—obvious symmetry.

This result will be quite disconcerting to some schools of thought about the “meaning of
probability”. Although it is generally recognized that logical implication is not the same as physical
causation, nevertheless there is a strong inclination to cling to the idea anyway, by trying to interpret
a probability P(A|B) as expressing some kind of partial causal influence of B on A. This is evident
not only in the aforementioned work of Penrose, but more strikingly in the “propensity” theory of
probability expounded by the philosopher Karl Popper.T

It appears to us that such a relation as (3-34) would be quite inexplicable from a propensity
viewpoint, although the simple example (3-33) makes its logical necessity obvious. In any event,
the theory of logical inference that we are developing here differs fundamentally, in outlook and in
results, from the theory of physical causation envisaged by Penrose and Popper. It is evident that
logical inference can be applied in many problems where assumptions of physical causation would
not make sense.

This does not mean that we are forbidden to introduce the notion of “propensity” or physical
causation; the point is rather that logical inference is applicable and useful whether or not a
propensity exists. If such a notion (i.e., that some such propensity exists) is formulated as a well-
defined hypothesis, then our form of probability theory can analyze its implications. We shall do
this in “Correction for Correlations” below. Also, we can test that hypothesis against alternatives
in the light of the evidence, just as we can test any well-defined hypothesis. Indeed, one of the most
common and important applications of probability theory is to decide whether there is evidence
for a causal influence: is a new medicine more effective, or a new engineering design more reliable?
Our study of hypothesis testing starts in Chapter 4.

T In his presentation at the Ninth Colston Symposium, Popper (1957) describes his propensity interpre-
tation as ‘purely objective’ but avoids the expression ‘physical influence’. Instead he would say that the
probability of a particular face in tossing a die is not a physical property of the die [as Cramér (1946) in-
sisted] but rather is an objective property of the whole experimental arrangement, the die plus the method
of tossing. Of course, that the result of the experiment depends on the entire arrangement and procedure
is only a truism, and presumably no scientist from Galileo on has ever doubted it. However, unless Popper
really meant ‘physical influence’; his interpretation would seem to be supernatural rather than objective.
In alater article (Popper, 1959) he defines the propensity interpretation more completely; now a propensity
is held to be ”"objective” and ”physically real” even when applied to the individual trial. In the follow-
ing we see by mathematical demonstration some of the logical difficulties that result from a propensity
“...an objective purely
statistical interpretation and a subjective interpretation in terms of our incomplete knowledge” and thinks
that the latter is reprehensible and the propensity interpretation avoids any need for it. In Chapter 9 and
the Comments at the end of Chapter 17 we answer this in detail at the conceptual level; In Chapter 10 we
consider the detailed physics of coin tossing and see just how the method of tossing affects the results by
direct physical influence.

interpretation. Popper complains that in quantum theory one oscillates between
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In all the sciences, logical inference is more generally applicable. We agree that physical
influences can propagate only forward in time; but logical inferences propagate equally well in either
direction. An archaeologist uncovers an artifact that changes his knowledge of events thousands
of years ago; were it otherwise, archaeology, geology, and paleontology would be impossible. The
reasoning of Sherlock Holmes is also directed to inferring, from presently existing evidence, what
events must have transpired in the past. The sounds reaching your ears from a marching band
600 meters distant change your state of knowledge about what the band was playing two seconds
earlier.

As this suggests, and as we shall verify later, a fully adequate theory of nonequilibrium phe-
nomena such as sound propagation, also requires that backward logical inferences be recognized
and used, although they do not express physical causes. The point is that the best inferences we
can make about any phenomenon — whether in physics, biology, economics, or any other field —
must take into account all the relevant information we have, regardless of whether that information
refers to times earlier or later than the phenomenon itself; this ought to be considered a platitude,
not a paradox. At the end of this Chapter [Exercise (3.6)] the reader will have an opportunity to
demonstrate this directly, by calculating a backward inference that takes into account a forward
causal influence.

More generally, consider a probability distribution p(zy...2,|B), where z; denotes the result
of the i’th trial, and could take on, not just two values (red or white) but, say, the values z; =
(1,2,...,k) labelling & different colors. If the probability is invariant under any permutation of the
z;, then it depends only on the sample numbers (ny...ny) denoting how many times the result
x; = 1 occurs, how many times z; = 2 occurs, etc. Such a distribution is called exzchangeable; as
we shall find later, exchangeable distributions have many interesting mathematical properties and
important applications.

Returning to our Urn problem, it is clear already from the fact that the hypergeometric dis-
tribution is exchangeable, that every draw must have just the same relevance to every other draw
regardless of their time order and regardless of whether they are near or far apart in the sequence.
But this is not limited to the hypergeometric distribution; it is true of any exchangeable distribu-
tion (i.e., whenever the probability of a sequence of events is independent of their order). So with
a little more thought these symmetries, so inexplicable from the standpoint of physical causation,
become obvious after all as propositions of logic.

Let us calculate this effect quantitatively. Supposing j < k, the proposition R;Rj (red at both
draws j and k) is in Boolean algebra the same as

RiRy = (Ri+Wi)- (Rjor + W) Ry (Rjpr + Wiga) - (Rg—1 + Wiy )Ry (3-35)

which we could expand in the manner of (3-31) into a logical sum of

9i=1 . ok=j=1 _ 9k=2
propositions, each specifying a full sequence, such as

WiR W3- R;--- Ry, (3-36)
of k results. The probability P(R;Ry|B) is the sum of all their probabilities. But we know that,
given B, the probability of any one sequence is independent of the order in which red and white

appear. Therefore we can permute each sequence, moving R; to the first position, and R to the
second. That is, replace the sequence (Wy---R;---) by (Ry---W;--.), etc. Recombining them, we
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have (R1R3) followed by every possible result for draws (3,4 ...k). In other words, the probability
of R;Ry is the same as that of

RiRy(Rs+ W3)---(Rp+ Wy) = R1 Ry (3-37)
and we have
_ _ MM -1)
P(R;Ry|B) = P(R1R3|B) = m (3-38)
and likewise
' B B (N —M)M B
P(W;Ry|B) = P(W1R:|B) = NN—1) (3-39)

Therefore by the product rule
P(R;Ri|B) M -1
P B) = - = —4
(R i B) P(Rj|B) ~ N -1 (3-40)

and
P(W;Ry|B) M
P ‘B) = J = —41
(Ri|W;B) POVIB) = N 1 (3-41)

for all j < k. By (3-34), the results (3-40), (3-41) are true for all j # k.

Since as noted this conclusion appears astonishing to many people, we shall belabor the point
by explaining it still another time in different words. The robot knows that the urn contained
originally M red balls and (N — M) white ones. Then learning that an earlier draw gave red, it
knows that one less red ball is available for the later draws. The problem becomes the same as if
we had started with an urn of (N — 1) balls, of which (M — 1) are red; (3-40) corresponds just to
the solution (3-32) adapted to this different problem.

But why is knowing the result of a later draw equally cogent? Because if the robot knows
that red will be drawn at any later time, then in effect one of the red balls in the urn must be “set
aside” to make this possible. The number of red balls which could have been taken in earlier draws
is reduced by one, as a result of having this information. The above example (3-33) is an extreme
special case of this, where the conclusion is particularly obvious.

Reasoning from Less Precise Information

Now let us try to apply this understanding to a more complicated problem. Suppose the robot
learns that red will be found at least once in later draws, but not at which draw or draws this will
occur. That is, the new information is, as a proposition of Boolean algebra,

Rigter = Rigy1+ Rgpa+-+ Ry . (3-42)

This information reduces the number of red available for the k’th draw by at least one, but it is
not obvious whether Rj,s.. has exactly the same implications as does R,,. To investigate this we
appeal again to the symmetry of the product rule:

P(RleateT|B) = P(Rk|Rlate7’B) P(RlateT|B) = P(RlateT|RkB) P(Rk|B) (3743)

which gives us
P(RlateT|RkB)

(3-44)
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and all quantities on the right-hand side are easily calculated.

Seeing (3-42) one might be tempted to reason as follows:

P(Riater| B) = Y P(Ry|B)
j=k+1

but this is not correct because, unless M = 1, the events R; are not mutually exclusive, and as
we see from (2-61), many more terms would be needed. This method of calculation would be very
tedious.

To organize the calculation better, note that the denial of R ¢, is the statement that white
occurs at all the later draws:

Elater = Wk-l—l Wk-|—2 e Wn . (3*45)

So P(Riaser|B) is the probability of white at all the later draws, regardless of what happens at the
earlier ones (i.e., when the robot does not know what happens at the earlier ones). By exchange-
ability this is the same as the probability of white at the first (n — k) draws, regardless of what
happens at the later ones; from (3-12),

_ N — M) (N —n+ k)! N-—M N\t
P(RlateT|B):(N!(N—)](\/[—n—l-—l_k)!) - (n—k)(n—k) ' (3-46)

Likewise P(Rjuter|RiB) is the same result for the case of (N — 1) balls, (M — 1) of which are red:

- C(N=M)! (N—n+k-1)!  (N-M\[(N-1\""
PlRuacer | BiB) = S e N C =g k) (n—k ) (n—k) (3-47)
Now (3-44) becomes
P(Rk|Rlate7’B) = N —]\i—l-k ) <<n]:7k)) : <<]\77%__]\li[)) (3748)

As a check, note that if n = k£ + 1, this reduces to (M — 1)/(N — 1), as it should.

At the moment, however, our interest in (3-48) is not so much in the numerical values, but in
understanding the logic of the result. So let us specialize it to the simplest case that is not entirely
trivial. Suppose we draw n = 3 times from an urn containing N = 4 balls, M = 2 of which are

white, and ask how knowledge that red occurs at least once on the second and third draws, affects
the probability of red at the first draw. This is given by (3-48) with N =4, M =2, n=3, k= 1:

1—
1—

6—2 2
P(Ra|(By + B3)B) = 15— = = =

W=

(3-49)

N | —
=

The last form corresponding to (3-44). Compare this to the previously calculated probabilities:

1 1
P(Ri|B)= 5, P(RiR:B)= P(Ro|RaB) = 5 .

What seems surprising is that

P(Ri|Riater B) > P(R1|R2B) . (3-50)
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Most people guess at first that the inequality should go the other way; i.e., knowing that red
occurs at least once on the later draws ought to decrease the chances of red at the first draw more
than does the information R,. But in this case the numbers are so small that we can check the
calculation (3-44) directly. To find P(R4¢er|B) by the extended sum rule (2-61) now requires only
one extra term:

P(Ryater|B) = P(Ry|B) + P(Rs|B) — P(RyRs|B)
1 11 5 (3-51)

We could equally well resolve Rj4¢., into mutually exclusive propositions and calculate

P(Rigter|B) = P(RyWs|B) + P(W3R3|B) + P(R2Rs3|B)
12 12 11 5 (3-52)
“3'3T3'373°37§5 "

The denominator (1—1/6) in (3-49) has now been calculated in three different ways, with the same
result. If the three results were not the same, we would have found an inconsistency in our rules,
of the kind we sought to prevent by Cox’s functional equation arguments in Chapter 2. This is a
good example of what “consistency” means in practice, and it shows the trouble we would be in if
our rules did not have it.

Likewise, we can check the numerator of (3-44) by an independent calculation:

P(Rigter|R1B) = P(Ry|R1B)+ P(R3|R1B) — P(R:R3|R1B)
1 1 1 2 (3-53)
— -4+ _-.0==
3 3 3 3
and the result (3-49) is confirmed. So we have no choice but to accept the inequality (3-50) and try
to understand it intuitively. Let us reason as follows: The information R, reduces the number of

red balls available for the first draw by one, and it reduces the number of balls in the urn available

for the first draw by one, giving P(R{|R:B) = (M - 1)/(N - 1) = % The information Rygier
reduces the “effective number of red balls” available for the first draw by more than one, but it
reduces the number of balls in the urn available for the first draw by 2 (because it assures the
robot that there are two later draws in which two balls are removed). So let us try tentatively to

interpret the result (3-49) as

M),
P(Ry|RigyerB) = % (3-54)

although we are not quite sure what this means. Given Rj,i.r, it is certain that at least one red
ball is removed, and the probability that two are removed is by the product rule:

P(RyR3Rig1er|B)  P(RyRs|B)

P(RZRB |Rlate7’B) =

P(RlateT|B) B P(RlateT|B)
(3-55)
1.1 1
_ 2 3 _ -
= = =
3 )

because Ry R3 implies Riqer; i.€., arelation of Boolean algebrais (R2 RsRigier = R2R3). Intuitively,
given Ry, there is probability 1/5 that two red balls are removed, so the effective number removed
is 14+(1/5) = 6/5. The ‘effective’ number remaining for draw 1is 4/5. Indeed, (3-54) then becomes
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4/5 2
P(Ri{|RiaterB) = % = (3-56)

in agreement with our better motivated but less intuitive calculation (3-49).

Expectations.

Another way of looking at this result appeals more strongly to our intuition and generalizes far
beyond the present problem. We can hardly suppose that the reader is not already familiar with
the idea of expectation, but this is the first time it has appeared in the present work, so we pause
to define it. If a variable quantity X can take on the particular values (z1,z2---2,) in n mutually
exclusive and exhaustive situations and the robot assigns corresponding probabilities (p1,p2---pn)
to them, then the quantity

(X)=E(X)= Zpixi (3-57)

is called the expectation (in the older literature, mathematical expectation or expectation value)
of X. It is a weighted average of the possible values, weighted according to their probabilities.
Statisticians and mathematicians generally use the notation E(X); but physicists, having already
pre-empted F to stand for energy and electric field, use the bracket notation (X). We shall use
both notations here; they have the same meaning but sometimes one is easier to read than the
other.

Like most of the standard terms that arose out of the distant past, the term “expectation”
seems singularly inappropriate to us; for it is almost never a value that anyone “expects” to find.
Indeed, it is often known to be an impossible value. But we adhere to it because of centuries of
precedent.

Given Rj,¢e-, what is the expectation of the number of red balls in the urn for draw #17 There
are three mutually exclusive possibilities compatible with Rj,zer:

R2W37 W2R37 R2R3
for which M is (1,1, 0) respectively, and for which the probabilities are as in (3-55), (3-56):

PRl ) — PUEIIB) (1/2)-2/3) 2

P(Rigter|B) (5/6) 5
2
P(W2R3|Rlate7’B) = g (3*58)
1
P(R2R3|Rlate7’B) = g
So
2 2 1 4
My=1-24+1-240-2=— -
(M) phlz+0-2=+ (3-59)

Thus what we called intuitively the “effective” value of M in (3-54) is really the expectation of M.

We can now state (3-54) in a more cogent way: when the fraction ' = M/N of red balls is
known, then the Bernoulli urn rule applies and P(R1|B) = F. When F'is unknown, the probability
of red is the expectation of F":

P(R|B) = (F) = E(F) . (3-60)
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If M and N are both unknown, the expectation is over the joint probability distribution for M and
N.

That a probability is numerically equal to the expectation of a fraction will prove to be a
general rule that holds as well in thousands of far more complicated situations, providing one of
the most useful and common rules for physical prediction. We leave it as an exercise for the reader
to show that the more general result (3-48) can also be calculated in the way suggested by (3-60).

Other Forms and Extensions.

The hypergeometric distribution (3-18) can be written in various ways. The nine factorials can be
organized into binomial coefficients also as follows:

n N-—-n
() (=)
h(r; N,M,n) = (3-61)
N
(i)

But the symmetry under exchange of M and n is still not evident; to see it one must write out

(3-18) or (3-61) in full, displaying all the individual factorials.
We may also rewrite (3-18), as an aid to memory, in a more symmetric form: the probability
of drawing exactly r red balls and w white ones in n = r + w draws from an urn containing R red

and W white, is
R\ (W
r w

Mr) = —2—~ 2 3-62
(r) T (3-62)
r4+w
and in this form it is easily generalized. Suppose that instead of only two colors, there are k

different colors of balls, in the urn, vy of color 1, Ny of color 2,..., NV, of color k. The probability
of drawing 71 balls of color 1, r5 of color 2... ., ry of color k£ in n = Xr; draws is, as the reader may

verify, the generalized hypergeometric distribution:
Ny Ny
1 Tk

YN
27‘2‘

Probability as a Mathematical Tool.

From the result (3-63) one may obtain a number of identities obeyed by the binomial coefficients.
For example, we may decide not to distinguish between colors 1 and 2; i.e., a ball of either color
is declared to have color “a”. Then from (3-63) we must have on the one hand,

()G - 6)

h(ra,r3---ri|NoNg - Ny) = (3-64)
(ENZ)
with g

NaIN1—|-N2, TaIT1—|-7‘2. (3*65)
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But the event r, can occur for any values of 1,7y satisfying (3-65), and so we must have also, on
the other hand,

h(rg, 73+ T|NoN3--- Ni) = Z h(ri,7q — 71,75 TE|N1 -+ Ni) . (3-66)

T1 =0

Then, comparing (3-64) and (3-66) we have the identity

(-2 000" o

Continuing in this way, we can derive a multitude of more complicated identities obeyed by the
binomial coefficients. For example,

()RR e

r1=07r=0

In many cases, probabilistic reasoning is a powerful tool for deriving purely mathematical results;
more examples of this are given by Feller (1951, Chapters 2, 3) and in later Chapters of the present
work.

The Binomial Distribution.

Although somewhat complicated mathematically, the hypergeometric distribution arises from a
problem that is very clear and simple conceptually; there are only a finite number of possibilities
and all the above results are exact for the problems as stated. As an introduction to a mathe-
matically simpler, but conceptually far more difficult problem, we examine a limiting form of the
hypergeometric distribution.

The complication of the hypergeometric distribution arises because it is taking into account
the changing contents of the urn; knowing the result of any draw changes the probability of red
for any other draw. But if the number N of balls in the urn is very large compared to the number
drawn (N >> n), then this probability changes very little, and in the limit N — oo we should have
a simpler result, free of such dependences. To verify this, we write the hypergeometric distribution

(3-18) as

h(r; N,M,n) = . 3-69
( ) WE (3-69)
N\ n
The first factor is
1 (M _l% % 1 % 2 % r—1 (3-70)
N'\r) P NA\N N N N N N
and in the limit N — oo, M — o0, M/N — f we have
1 (M fr
—71
NT(T) ! (3-71)

Likewise



317 Chap. 3: ELEMENTARY SAMPLING THEORY 317

1 (M— 1) a=-nr (3-72)

Nn=7\ p—r (n—r)!

1 (N 1
W(n)ﬁﬁ (3-73)

In principle we should, of course, take the limit of the product in (3-69), not the product of the
limits. But in (3-69) we have defined the factors so that each has its own independent limit, so the
result is the same; the hypergeometric distribution goes into

h(ri N, M,n) — b(r|n, f) = (’;) Fr(1— (3-74)

called the binomial distribution, because evaluation of the generating function (3-20) now reduces
to

n

G(t) = b(rln, /)t"= (1= f+ f1)", (3-75)

r=0

an example of Newton’s binomial theorem. The program BINOMIAL.BAS in Appendix I calculates
b(r|n, f) for most values of n, f likely to be of interest in applications.

Fig. 3.1 compares three hypergeometric distributions calculated by HYPERGEO.BAS with
N =15,30,100and M/N = 0.4, n = 10 to the binomial distribution with n = 10, f = 0.4 calculated
by BINOMIAL.BAS. All have their peak at r = 4, and all distributions have the same first moment
(ry = E(r) =4, but the binomial distribution is broader.

The N = 15 hypergeometric distribution is zero for r = 0 and r > 6, since on drawing 10
balls from an urn containing only 6 red and 9 white, it is not possible to get fewer than one or
more than 6 red balls. When N > 100 the hypergeometric distribution agrees so closely with the
binomial that for most purposes it would not matter which one we used. Analytical properties of
the binomial distribution are collected in Appendix E.

We can carry out a similar limiting process on the generalized hypergeometric distribution
(3-63). It is left as an exercise to show that in the limit where all N; — oo in such a way that the
fractions

N;
= 3-76
iz o (3.76)
tend to constants, (3-63) goes into the multinomial distribution
r! 1 Tk
m(T1"-7‘k|f1---fk)=m IR /A (3-77)

where r = ¥r;. And, as in (3-75) we can define a generating function of (k — 1) variables, from
which we can prove that (3-77) is correctly normalized, and derive many other useful results.
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Exercise 3.2. Probability of a Full Set. Suppose an urn contains N = > N; balls, Ny of
color 1, Ny of color 2, --- Nj of color k. We draw m balls without replacement; what is the
probability that we have at least one of each color? Supposing k = 5, all N; = 10, how many do
we need to draw in order to have at least a 90% probability of getting a full set?

Exercise 3.3. Reasoning Backwards. Suppose that in the previous exercise k is initially
unknown, but we know that the urn contains exactly 50 balls. Drawing out 20 of them, we find
3 different colors; now what do we know about k7 We know from deductive reasoning (i.e.,
with certainty) that 3 < k < 33; but can you set narrower limits k1 < k < ky within which
it is highly likely to be? [Hint: this question goes beyond the sampling theory of this Chapter
because, like most real scientific problems, the answer depends to some degree on our common
sense judgments; nevertheless our rules of probability theory are quite capable of dealing with
it, and persons with reasonable common sense cannot differ appreciably in their conclusions].

Exercise 3.4. Matching. The M urns are now numbered 1 to M, and M balls, also numbered
1 to M, are thrown into them, one in each urn. If the numbers of a ball and its urn are the
same, we have a match. Show that the probability of at least one match is

M
P =) (=1 k!
k=1

As M — oo, this converges to 1 —1/e = 0.632. The result is surprising to many, because however
large M is, there remains an appreciable probability of no match at all.

Exercise 3.5. Occupancy. N balls are tossed into M urns; there are evidently M ways this
can be done. If the robot considers them all equally likely, what is its probability that each urn
receives at least one ball?

Sampling With Replacement

Up to now, we have considered only the case where we sample without replacement; and that is
evidently appropriate for many real situations. For example, in a quality control application, what
we have called simply “drawing a ball” might consist really of taking a manufactured item such as
an electric light bulb from a carton of them and testing it to destruction. In a chemistry experiment
it might consist of weighing out a sample of an unknown protein, then dissolving it in hot sulfuric
acid to measure its nitrogen content. In either case, there can be no thought of “drawing that same
ball” again.

But suppose now that, being less destructive, we sample balls from the urn and, after recording
the “color” (i.e., the relevant property) of each, we replace it in the urn before drawing the next ball.
This case, of sampling with replacement, is enormously more complicated conceptually, but with
some assumptions usually made, ends up being simpler mathematically, than sampling without
replacement. For, let us go back to the probability of drawing two red balls in succession. Denoting
by B’ the same background information as before except for the added stipulation that the balls
are to be replaced, we still have an equation like (3-9):

P(R1R;|B") = P(Ry|B") P(Ry|R1B') (3-78)

and the first factor is still, evidently, (M/N); but what is the second one?
Answering this would be, in general, a very difficult problem requiring much additional analysis
if the background information B’ includes some simple but highly relevant common-sense informa-
tion that we all have. What happens to that red ball that we put back in the urn? If we merely
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dropped it into the urn, and immediately drew another ball, then it was left lying on the top of
the other balls, (or in the top layer of balls); and so it is more likely to be drawn again than any
other specified ball, whose location in the urn is unknown. But this upsets the whole basis of our
calculation, because the probability of drawing any particular (¢’th) ball is no longer given by the

Bernoulli Urn Rule which led to (3-10).

Digression: A Sermon on Reality vs. Models

The difficulty we face here is that many things which were irrelevant from symmetry as long as
the robot’s state of knowledge was invariant under any permutation of the balls, suddenly become
relevant, and by one of our desiderata of rationality, the robot must take into account all the
relevant information it has. But the probability of drawing any particular ball now depends on
such details as the exact size and shape of the urn, the size of the balls, the exact way in which
the first one was tossed back in, the elastic properties of balls and urn, the coefficients of friction
between balls and between ball and urn, the exact way you reach in to draw the second ball, etc.
In a symmetric situation, all of these details are irrelevant.

But even if all these relevant data were at hand, we do not think that a team of the world’s
best scientists and mathematicians, backed up by all the world’s computing facilities, would be
able to solve the problem; or would even know how to get started on it. Still, it would not be quite
right to say that the problem is unsolvable in principle; only so complicated that it is not worth
anybody’s time to think about it. So what do we do?

In probability theory there is a very clever trick for handling a problem that becomes too
difficult. We just solve it anyway by:

(1) Making it still harder;
(2) Redefining what we mean by “solving” it, so that it becomes something we can do;

(3) Inventing a dignified and technical-sounding word to describe this procedure, which
has the psychological effect of concealing the real nature of what we have done, and
making it appear respectable.

In the case of sampling with replacement, we apply this strategy by

(1) Supposing that after tossing the ball in, we shake up the urn. However complicated
the problem was initially, it now becomes many orders of magnitude more compli-
cated, because the solution now depends on every detail of the precise way we shake
it, in addition to all the factors mentioned above;

2) Asserting that the shaking has somehow made all these details irrelevant, so that the
g g
problem reverts back to the simple one where the Bernoulli Urn Rule applies;

(3) Inventing the dignified—sounding word randomization to describe what we have done.
This term is, evidently, a euphemism whose real meaning is: deliberately throwing
away relevant information when it becomes too complicated for us to handle.

We have described this procedure in laconic terms, because an antidote is needed for the impression
created by some writers on probability theory, who attach a kind of mystical significance to it. For
some, declaring a problem to be “randomized” is an incantation with the same purpose and effect as
those uttered by an exorcist to drive out evil spirits; i.e., it cleanses their subsequent calculations
and renders them immune to criticism. We agnostics often envy the True Believer, who thus
acquires so easily that sense of security which is forever denied to us.

However, in defense of this procedure, we have to admit that it often leads to a useful approxi-
mation to the correct solution; i.e., the complicated details, while undeniably relevant in principle,
might nevertheless have little numerical effect on the answers to certain particularly simple ques-
tions, such as the probability of drawing r red balls in n trials when n is sufficiently small. But
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from the standpoint of principle, an element of vagueness necessarily enters at this point; for while
we may feel intuitively that this leads to a good approximation, we have no proof of this, much less
a reliable estimate of the accuracy of the approximation, which presumably improves with more

shaking.

The vagueness is evident particularly in the fact that different people have widely divergent
views about how much shaking is required to justify step (2). Witness the minor furor surrounding
a Government—sponsored and nationally televised game of chance some years ago, when someone
objected that the procedure for drawing numbers from a fish bowl to determine the order of call-up
of young men for Military Service was “unfair” because the bowl hadn’t been shaken enough to
make the drawing “truly random,” whatever that means. Yet if anyone had asked the objector:
“To whom is it unfair?” he could not have given any answer except, “To those whose numbers are
on top; I don’t know who they are.” But after any amount of further shaking, this will still be true!
So what does the shaking accomplish?

Shaking does not make the result “random”, because that term is basically meaningless as an
attribute of the real world; it has no clear definition applicable in the real world. The belief that
“randomness” is some kind of real property existing in Nature is a form of the Mind Projection
Fallacy which says, in effect, “I don’t know the detailed causes — therefore — Nature does not know
them.” What shaking accomplishes is very different. It does not affect Nature’s workings in any
way; it only ensures that no human is able to exert any wilful influence on the result. Therefore
nobody can be charged with “fixing” the outcome.

At this point, you may accuse us of nit—picking, because you know that after all this sermoniz-
ing, we are just going to go ahead and use the randomized solution like everybody else does. Note,
however, that our objection is not to the procedure itself, provided that we acknowledge honestly
what we are doing; i.e., instead of solving the real problem, we are making a practical compromise
and being, of necessity, content with an approximate solution. That is something we have to do
in all areas of applied mathematics, and there is no reason to expect probability theory to be any
different.

Our objection is to this belief that by randomization we somehow make our subsequent equa-
tions exact; so exact that we can then subject our solution to all kinds of extreme conditions and
believe the results, applied to the real world. The most serious and most common error resulting
from this belief is in the derivation of limit theorems (i.e., when sampling with replacement, noth-
ing prevents us from passing to the limit n — oo and obtaining the usual “laws of large numbers”).
If we do not recognize the approximate nature of our starting equations, we delude ourselves into
believing that we have proved things (such as the identity of probability and limiting frequency)
that are just not true in real repetitive experiments.

The danger here is particularly great because mathematicians generally regard these limit
theorems as the most important and sophisticated fruits of probability theory, and have a tendency
to use language which implies that they are proving properties of the real world. Our point is
that these theorems are valid properties of the abstract mathematical model that was defined and
analyzed. The issue is: to what extent does that model resemble the real world? It is probably safe
to say that no limit theorem is directly applicable in the real world, simply because no mathematical
model captures every circumstance that is relevant in the real world. The person who believes that
he is proving things about the real world, is a victim of the Mind Projection Fallacy.

Back to the Problem. Returning to the equations, what answer can we now give to the question
posed after Eq. (3-78)7 The probability P(R3|R1B') of drawing a red ball on the second draw,
clearly depends not only on N and M, but also on the fact that a red one has already been
drawn and replaced. But this latter dependence is so complicated that we can’t, in real life, take
it into account; so we shake the urn to “randomize” the problem, and then declare Ry to be
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irrelevant: P(R;|R1B') = P(R:|B') = M/N. After drawing and replacing the second ball, we
again shake the urn, declare it “randomized”, and set P(R3|RyR1B') = P(R3|B') = M/N, etc. In
this approximation, the probability of drawing a red one at any trial, is (M/N).

But this is not just a repetition of what we learned in (3-32); what is new here is that the
result now holds whatever information the robot may have about what happened in the other trials.
This leads us to write the probability of drawing exactly r red balls in n trials regardless of order,

() (3 (5

which is just the binomial distribution (3-74). Randomized sampling with replacement from an
urn with finite NV has approximately the same effect as passage to the limit N — oo without
replacement.

Evidently, for small n, this approximation will be quite good; but for large n these small errors
can accumulate (depending on exactly how we shake the urn, etc.) to the point where (3-79) is
misleading. Let us demonstrate this by a simple, but realistic, extension of the problem.

Correction for Correlations

Suppose that, from an intricate logical analysis, drawing and replacing a red ball increases the
probability of a red one at the next draw by some small amount ¢ > 0, while drawing and replacing
a white one decreases the probability of a red one at the next draw by a (possibly equal) small
quantity 6 > 0; and that the influence of earlier draws than the last one is negligible compared to
€ or 6. You may call this effect a small “propensity” if you like; at least it expresses a physical
causation that operates only forward in time. Then, letting ' stand for all the above background
information including the statements just made about correlations, and the information that we
draw n balls, we have

P(Ri|Ryp—1,C)=p+e, P(Rp|Wy_1,C)=p—9¢
(3*80)
P(Wk|Rk_1,C)Il—p—€, P(Wk|Wk_1,C)Il—p—|—5

where p = M/N. From this, the probability of drawing r red, (n — r) white balls in any specified
order, is easily seen to be:

+

P+ (=6 (1—p+8)“(1—p-e® (3-81)

if the first draw is red, while if the first is white, the first factor in (3-81) should be (1 — p). Here
c is the number of red draws preceded by red ones, ¢’ the number of red preceded by white, w the
number of white draws preceded by white, and w’ the number of white preceded by red. Evidently,

;o r—1 ;o n-—r B
c+c = ) w4 w = (3-82)
r n—r—1

the upper case and lower cases holding when the first draw is red or white, respectively.

When r and (n — r) are small, the presence of ¢ and 6 in (3-81) makes little difference, and it
reduces for all practical purposes to
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p(1=p)"" (3-83)

as in the binomial distribution (3-79). But as these numbers increase, we can use relations of the

form
e\’ ec
(1 + —) ~ exp (—) (3-84)
p p

and (3-81) goes into

(3-85)

. S ec— 8 bw— ew
pr(1—=p)" "exp +
P IL-p
The probability of drawing r red, (n — r) white balls now depends on the order in which red
and white appear, and for a given ¢, when the numbers ¢, ¢/, w, w’ become sufficiently large, the
probability can become arbitrarily large (or small) compared to (3-79).

We see this effect most clearly if we suppose that N = 2M, p = 1/2, in which case we will
surely have ¢ = §. The exponential factor in (3-85) then reduces to:

exp{2¢[(c — ¢) + (w — w')]} (3-86)

This shows that (1) as the number n of draws tends to infinity, the probability of results contain-
ing “long runs”; i.e., long strings of red (or white) balls in succession, becomes arbitrarily large
compared to the value given by the “randomized” approximation; (2) this effect becomes appre-
ciable when the numbers (ec), etc., become of order unity. Thus, if ¢ = 1072, the randomized
approximation can be trusted reasonably well as long as n < 100; beyond that, we might delude
ourselves by using it. Indeed, it is notorious that in real repetitive experiments where conditions
appear to be the same at each trial, such runs — although extremely improbable on the randomized
approximation — are nevertheless observed to happen.

Now let us note how the correlations expressed by (3-80) affect some of our previous calcula-
tions. The probabilities for the first draw are of course the same as (3-8); now use the notation

M N-M

:P(R1|C):F7 ¢g=1—-p=PW4|C)= v (3-87)
But for the second trial we have instead of (3-30)
P(Ry|C) = P(RyR1|C) + P(RW4|C)
= P(Ry|R,1C) P(Ba|C) + P(Ry|[W1C) P(WA|C) (3-88)
=(p+ep+(p-9d)y

=p+(pe—qd)
and continuing for the third trial,

P(R3|C) = P(R3|RoC) P(Rs|C) + P(R3|WoC') P(Wa|C)
=(p+e)(p+pe—qd)+(p—96)(q—pe+qd) (3-89)
=p+ (L4 et é)(pe—qb).
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We see that P(R|C') is no longer independent of k; the correlated probability distribution is no
longer exchangeable. But does P(Ry|C') approach some limit as k — 0o?

It would be almost impossible to guess the general P(R;|C') by induction, following the method
(3-88), (3-89) a few steps further. For this calculation we need a more powerful method. If we
write the probabilities for the k’th trial as a vector

_ [ P(R|C)
Vi, = (P(WkIC)) (3-90)

then Equation (3-80) can be expressed in matrix form:

Vi=MVi_y , (3-91)
with
M:((p+€) (p—é)) | (3-92)
(¢—¢) (g+9)

This defines a Markov chain of probabilities, and M is called the transition matriz. Now the slow
induction of (3-88), (3-89) proceeds instantly to any distance we please:

Vie=M*"""Vv; . (3-93)

So to have the general solution, we need only to find the eigenvectors and eigenvalues of M. The
characteristic polynomial is

C(/\)Edet(Mij—/\(si]')I A2 —/\(1—|-€—|-(5)—|-(€—|-(5) (3*94)
so the roots of C'(A) = 0 are the eigenvalues

Ar=1
A2:€‘|‘6.

M = (Z Z) (3-96)

with an eigenvalue A, the corresponding (non-normalized) right eigenvector is

=(,0) @)

for which we have at once Mz = Az. Therefore, our eigenvectors are

xlz(z:i) : x2:(_11) . (3-98)

These are not orthogonal, since M is not a symmetric matrix. Nevertheless, if we use (3-98) to

define the transformation matrix
- 1
s=(578 1) ow

(3-95)

Now for any 2 X 2 matrix
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we find its inverse to be

a1 1 1 B
S ((q—G) —(p—é)) (3-100)

and we can verify by direct matrix multiplication that

I & VI -
S MS_A_(O A2) (3-101)

where A is the diagonalized matrix. Then we have for any r, positive, negative, or even complex:

M" = SA"SH (3-102)
[V ((P—5)+(€+5)T(q—€) (p—0)1—(e+6)7] ) (3-103)
L—e=8 \ (g=-all=(e+8)7 (4= +(c+8)(p-20)
and since

v, = (p) (3-104)
the general solution (3-93) sought is

(p—8) = (e+6)(pe - ¢b)
1—ec—6 )

P(Ry|C) = (3-105)

We can check that this agrees with (3-87), (3-88), (3-89). From examining (3-105) it is clear why
it would have been almost impossible to guess the general formula by induction. When ¢ = é = 0,
this reduces to P(R|C') = p, supplying the proof promised after Eq. (3-32).

Although we started this discussion by supposing that ¢ and 6 were small and positive, we
have not actually used that assumption and so, whatever their values, the solution (3-105) is exact
for the abstract model that we have defined. This enables us to include two interesting extreme
cases. If not small, € and 6 must be at least bounded, because all quantities in (3-80) must be
probabilities (that is, in [0, 1]). This requires that

—p<e<q, —q<6<p (3-106)
or

1<e46<1 . (3-107)

But from (3-106), e+ ¢ = 1 if and only if € = ¢, 6 = p, in which case the transition matrix reduces

to the unit matrix
1 0
M = (0 1) (3-108)

and there are no “transitions”. This is a degenerate case in which the positive correlations are so
strong that whatever color happens to be drawn on the first trial, is certain to be drawn also on
all succeeding ones:

P(RCY=p , allk . (3-109)
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Likewise, if € + 6 = —1, then the transition matrix must be

M = ((1) (1)) (3-110)

and we have nothing but transitions; i.e., the negative correlations are so strong that the colors
are certain to alternate after the first draw:

P(R;|C) = { (3-111)

P, k odd
q, k even

This case is unrealistic because intuition tells us rather strongly that ¢ and é should be positive
quantities; surely, whatever the logical analysis used to assign the numerical value of ¢, leaving a
red ball in the top layer must increase, not decrease, the probability of red on the next draw. But if
¢ and 6 must not be negative, then the lower bound in (3-107) is really zero, which is achieved only
when ¢ = ¢ = 0. Then M in (3-92) becomes singular, and we revert to the binomial distribution

case already discussed.
In the intermediate and realistic cases where 0 < |e+6| < 1, the last term of (3-105) attenuates
exponentially with k, and in the limit
-6
P(Ry|C) — 2

_— . —112
1l—e—4¢ (3 )

But although these single—trial probabilities settle down to steady values as in an exchangeable
distribution, the underlying correlations are still at work and the limiting distribution is not ex-
changeable. To see this, let us consider the conditional probabilities P(Ry|R;C'). These are found
by noting that the Markov chain relation (3-91) holds whatever the vector Vi_1; i.e., whether or
not it is the vector generated from V; as in (3-93). Therefore, if we are given that red occurred on
the j’th trial, then

and we have from (3-91)
Vi= MEI i<k (3-113)

from which, using (3-102),

(P=8)+(c+8) " (g—¢)

P(Ry|R;C) = T ;

j<k . (3-114)

which approaches the same limit (3-112). The forward inferences are about what we might expect;
the steady value (3-112) plus a term that decays exponentially with distance. But the backward
inferences are different; note that the general product rule holds, as always:

P(RR;|C) = P(R|R;C) P(R;|C) = P(R;|RC') P(R;|C) . (3-115)
Therefore, since we have seen that P(R|C) # P(R;|C), it follows that
P(R;|R:C) # P(R|R;C) . (3-116)

The backward inference is still possible, but it is no longer the same formula as the forward inference
as it would be in an exchangeable sequence.
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As we shall see later, this example is the simplest possible ‘baby’ version of a very common
and important physical problem; an irreversible process in the ‘Markovian approximation’. Another
common technical language would call it an autoregressive model of first order. It can be generalized
greatly to the case of matrices of arbitrary dimension and many—step or continuous, rather than
single-step, memory influences. But for reasons noted earlier (confusion of inference and causality
in the literature of statistical mechanics) the backward inference part of the solution is almost
always missed. Some try to do backward inference by extrapolating the forward solution backward
in time, with quite bizarre and unphysical results. Therefore the reader is, in effect, conducting
new research in doing the following exercise.

Exercise (3.6) Find the explicit formula P(R;|R;C') for the backward inference corresponding
to the result (3-114) by using (3-105) and (3-115). Then (a) Explain the reason for the difference
between forward and backward inferences in simple intuitive terms. (b) In what way does the
backward inference differ from the forward inference extrapolated backward? Which is more
reasonable intuitively? (c) Do backward inferences also decay to steady values? If so, is a
property somewhat like exchangeability restored for events sufliciently separated? For example,
if we consider only every tenth draw or every hundredth draw, do we approach an exchangeable
distribution on this subset?

Simplification

The above formulas (3-87) — (3-118) hold for any ¢, ¢ satisfying the inequalities (3-106). But
surveying them, we note that a remarkable simplification occurs if they satisfy

pe = qb . (3-117)
For then we have

p—c q—96

€
T_c_s P> q, €+6=-— (3-118)

l—e—6 q

and our main results (3-105), (3-114) collapse to

P(Re|C)=p , allk (3-119)

|k—7l
PRARC) = PRIRC) =pra(S) Lt (3-120)

The distribution is still not exchangeable, since the conditional probabilities (3-120) still depend on
the separation |k — j| of the trials; but the symmetry of forward and backward inferences is restored
even though the causal influences €, § operate only forward. Indeed, we see from our derivation of
(3-34) that this forward — backward symmetry is a necessary consequence of (3-119) whether or
not the distribution is exchangeable.

What is the meaning of this magic condition (3-117)? It does not make the matrix M assume
any particularly simple form, and it does not turn off the effect of the correlations. What it does
is to make the solution (3-119) invariant; that is, the initial vector (3-104) is then equal but for
normalization to the eigenvector 21 in (3-98), so the initial vector remains unchanged by the matrix
(3-92).

In general, of course, there is no reason why this simplifying condition should hold. Yet in the
case of our urn, we can see a kind of rationale for it. Suppose that when the urn has initially N
balls, they are in L layers. Then after withdrawing one ball, there are about n = (N —1)/L of
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them in the top layer, of which we expect about np to be red, ng = n(1 — p) white. Now we toss
the drawn ball back in. If it was red, the probability of getting red at the next draw if we do not
shake the urn, is about

np+ 1
n+1

11— 1
TS 3121)
n n
and if it is white, the probability of getting white at the next draw is about

n(l-p)+1 P 1 B
= o(s) (3-122)
Comparing with (3-80) we see that we could estimate ¢ and é by

e~q/n, 6~p/n (3-123)

whereupon our magic condition (3-117) is satisfied. Of course, the argument just given is too crude
to be called a derivation, but at least it indicates that there is nothing inherently unreasonable
about (3-117). We leave it for the reader to speculate about what significance and use this curious
fact might have, and whether it generalizes beyond the Markoffian approximation.

We have now had a first glimpse of some of the principles and pitfalls of standard sampling
theory. All the results we have found will generalize greatly, and will be useful parts of our “toolbox”
for the applications to follow.

COMMENTS

In most real physical experiments we are not, literally, drawing from any “urn”. Nevertheless,
the idea has turned out to be a useful conceptual device, and in the 250 years since Bernoulli’s
Ars Conjectandi it has appeared to scientists that many physical measurements are very much like
“drawing from Nature’s urn”. But to some the word “urn” has gruesome connotations and in much
of the literature one finds such expressions as “drawing from a population”.

In a few cases, such as recording counts from a radioactive source, survey sampling, and
industrial quality control testing, one is quite literally drawing from a real, finite population, and
the urn analogy is particular apt. Then the probability distributions just found, and their limiting
forms and generalizations noted in Appendix E, will be appropriate and useful. In some cases, such
as agricultural experiments or testing the effectiveness of a new medical procedure, our credulity
can be strained to the point where we see a vague resemblance to the urn problem.

But in other cases, such as flipping a coin, making repeated measurements of the temperature
and wind velocity, the position of a planet, the weight of a baby, or the price of a commodity, the
urn analogy seems so far—fetched as to be dangerously misleading. Yet in much of the literature
one still uses urn distributions to represent the data probabilities, and tries to justify that choice by
visualizing the experiment as drawing from some “hypothetical infinite population” which is entirely
a figment of our imagination. Functionally, the main consequence of this is strict independence of
successive draws, regardless of all other circumstances. Obviously, this is not sound reasoning, and
a price must be paid eventually in erroneous conclusions.

This kind of conceptualizing often leads one to suppose that these distributions represent not
just our prior state of knowledge about the data, but the actual long—run variability of the data
in such experiments. Clearly, such a belief cannot be justified; anyone who claims to know in
advance the long—run results in an experiment that has not been performed, is drawing on a vivid
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imagination, not on any fund of actual knowledge of the phenomenon. Indeed, if that infinite
population is only imagined, then it seems that we are free to imagine any population we please.

But from a mere act of the imagination we cannot learn anything about the real world. To
suppose that the resulting probability assignments have any real physical meaning is just another
form of the Mind Projection Fallacy. In practice this diverts our attention to irrelevancies and away
from the things that really matter (such as information about the real world that is not expressible
in terms of any sampling distribution, or does not fit into the urn picture; but which is nevertheless
highly cogent for the inferences we want to make). Usually, the price paid for this folly is missed
opportunities; had we recognized that information, more accurate and/or more reliable inferences
could have been made.

Urn — type conceptualizing is capable of dealing with only the most primitive kind of infor-
mation, and really sophisticated applications require us to develop principles that go far beyond
the idea of urns. But the situation is quite subtle, because as we stressed before in connection
with Godel’s theorem, an erroneous argument does not necessarily lead to a wrong conclusion. In
fact, as we shall find in Chapter 9, highly sophisticated calculations sometimes lead us back to
urn — type distributions, for purely mathematical reasons that have nothing to do conceptually
with urns or populations. The hypergeometric and binomial distributions found in this Chapter
will continue to reappear, because they have a fundamental mathematical status quite independent
of arguments that we used to find them here. In a similar way, exponential functions appear in all
parts of analysis because of their fundamental mathematical properties, although their conceptual
basis varies widely.

On the other hand, we could imagine a different problem in which we would have full confidence
in urn — type reasoning leading to the binomial distribution, although it probably never arises in the
real world. If we had a large supply {U; ---U,} of urns known to have identical contents and those
contents known with certainty in advance — and then we used a fresh new urn for each draw — then
we would assign P(A) = M/N for every draw, strictly independently of what we know about any
other draw. Such prior information would take precedence over any amount of data. If we did not
know the contents (M, N) of the urns — but we knew they all had identical contents — this strict
independence would be lost, because then every draw from one urn would tell us something about
the contents of the other urns, although it does not physically influence them.

From this we see once again that logical dependence is in general very different from causal
physical dependence. We belabor this point so much because it is not recognized at all in most
expositions of probability theory, and this has led to errors, as is suggested by Exercise (3.6). In
Chapter 4 we shall see a more serious error of this kind [discussion following (4-27)]. But even when
one manages to avoid actual error, to restrict probability theory to problems of physical causation
is to lose its most important applications. The extent of this restriction — and the magnitude of
the missed opportunity — does not seem to be realized by those who are victims of this fallacy.

Indeed, most of the problems we have solved in this Chapter are not considered to be within the
scope of probability theory —and do not appear at all —in those expositions which regard probability
as a physical phenomenon. Such a view restricts one to a small subclass of the problems which
can be dealt with usefully by probability theory as logic. For example, in the ‘physical probability’
theory it is not even considered legitimate to speak of the probability of an outcome at a specified
trial; yet that is exactly the kind of thing about which it is necessary to reason in conducting
scientific inference. The calculations of this Chapter have illustrated this many times.

In summary: in each of the applications to follow, one must consider whether the experiment is
really “like” drawing from an urn; if it is not, then we must go back to first principles and apply the
basic product and sum rules in the new context. This may or may not yield the urn distributions.
A Look Ahead. The probability distributions found in this Chapter are called sampling distribu-
tions, or direct probabilities, which names indicate that they are of the form; given some hypothesis
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H about the phenomenon being observed (in the case just studied, the contents (M, N') of the urn),
what is the probability that we shall obtain some specified data D (in this case, some sequence
of red and white balls)? Historically, the term “direct probability” has long had the additional
connotation of reasoning from a supposed physical cause to an observable effect. But we have
seen that not all sampling distributions can be so interpreted. In the present work we shall not
use this term, but use ‘sampling distribution’ in the general sense of reasoning from some specified
hypothesis to potentially observable data, whether the link between hypothesis and data is logical
or causal.

Sampling distributions make predictions, such as the hypergeometric distribution (3-18), about
potential observations (for example, the possible values and relative probabilities of different values
of 7). If the correct hypothesis is indeed known, then we expect the predictions to agree closely with
the observations. If our hypothesis is not correct, they may be very different; then the nature of
the discrepancy gives us a clue toward finding a better hypothesis. This is, very broadly stated, the
basis for scientific inference. Just how wide the disagreement between prediction and observation
must be in order to justify our rejecting the present hypothesis and seeking a new one, is the subject
of significance tests. It was the need for such tests in astronomy that led Laplace and Gauss to
study probability theory in the 18’th and 19’th Centuries.

Although sampling theory plays a dominant role in conventional pedagogy, in the real world
such problems are an almost negligible minority. In virtually all real problems of scientific inference
we are in just the opposite situation; the data D are known but the correct hypothesis H is not.
Then the problem facing the scientist is of the inverse type; given the data D, what is the probability
that some specified hypothesis H is true? Exercise (3.3) above was a simple introduction to this
kind of problem. Indeed, the scientists’ motivation for collecting data is usually to enable him to
learn something about the phenomenon, in this way.

Therefore, in the present work our attention will be directed almost exclusively to the methods
for solving the inverse problem. This does not mean that we do not calculate sampling distributions;
we need to do this constantly and it may be a major part of our computational job. But it does
mean that for us the finding of a sampling distribution is almost never an end in itself.

Although the basic rules of probability theory solve such inverse problems just as readily as
sampling problems, they have appeared quite different conceptually to many writers. A new feature
seems present, because it is obvious that the question: “What do you know about the hypothesis H
after seeing the data D?” cannot have any defensible answer unless we take into account: “What
did you know about H before seeing D?” But this matter of previous knowledge did not figure
in any of our sampling theory calculations. When we asked: “What do you know about the data
given the contents (M, N) of the urn?” we did not seem to consider: “What did you know about
the data before you knew (M, N)?”

This apparent dissymmetry, it will turn out, is more apparent than real; it arises mostly from
some habits of notation that we have slipped into, which obscure the basic unity of all inference.
But we shall need to understand this very well before we can use probability theory effectively for
hypothesis tests and their special cases, significance tests. In the next Chapter we turn to this
problem.
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CHAPTER 4

ELEMENTARY HYPOTHESIS TESTING

“I conceive the mind as a moving thing, and arguments as
the motive forces driving it in one direction or the other.”

— John Craig (1699)

John Craig was a Scottish mathematician, and one of the first scholars to recognize the merit in
Isaac Newton’s new invention of “the calculus”. The above sentence, written some 300 years ago
in one of the early attempts to create a mathematical model of reasoning, requires changing only
one word in order to describe our present attitude. We would like to think that our minds are
swayed not by arguments, but by evidence. And if fallible humans do not always achieve this
objectivity, our desiderata were chosen with the aim of achieving it in our robot. Therefore to see
how our robot’s mind is “driven in one direction or the other” by new evidence, we examine some
applications that, although simple mathematically, have proved to have practical importance in
several different fields.

As is clear from the basic desiderata listed in Chapter 1, the fundamental principle underlying
all probabilistic inference is:

To form a judgment about the likely truth or falsity of any proposition A,
the correct procedure is to calculate the probability that A is true:

P(A|Ey By .. (4-1)

conditional on all the evidence at hand.

In a sampling context (i.e. when A stands for some data set), this principle has seemed obvious to
everybody from the start. We used it implicitly throughout Chapter 3 without feeling any need to
state it explicitly. But when we turn to a more general context the principle needs to be stressed
because it has not been obvious to all workers (as we shall see repeatedly in later Chapters).

The essence of “honesty” or “objectivity” demands that we take into account all the evidence
we have, not just some arbitrarily chosen subset of it. Any such choice would amount either to
ignoring evidence that we have, or presuming evidence that we do not have. This leads us to
recognize at the outset that some information is always available to the robot.

Prior Probabilities

Generally, when we give the robot its current problem, we will give it also some new information or
“data” D pertaining to the specific matter at hand. But almost always the robot will have other
information which we denote, for the time being, by X. This includes, at the very least, all its past
experience, from the time it left the factory to the time it received its current problem. That is
always part of the information available, and our desiderata do not allow the robot to ignore it. If
we humans threw away what we knew yesterday in reasoning about our problems today, we would
be below the level of wild animals; we could never know more than we can learn in one day, and
education and civilization would be impossible.

So to our robot there is no such thing as an “absolute” probability; all probabilities are
necessarily conditional on X at least. In solving a problem, its inferences should, according to the
principle (4-1), take the form of calculating probabilities of the form P(A|DX). Usually, part of X
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is irrelevant to the current problem, in which case its presence is unnecessary but harmless; if it is
irrelevant, it will cancel out mathematically. Indeed, that is what we really mean by “irrelevant”.

Any probability P(A|X) that is conditional on X alone is called a prior probability. But
we caution that the term “prior” is another of those terms from the distant past that can be
inappropriate and misleading today. In the first place, it does not necessarily mean “earlier in time.”
Indeed, the very concept of time is not in our general theory (although we may of course introduce
it in a particular problem). The distinction is a purely logical one; any additional information
beyond the immediate data D of the current problem is by definition “prior information”.

For example, it has happened more than once that a scientist has gathered a mass of data,
but before getting around to the data analysis he receives some surprising new information that
completely changes his ideas of how the data should be analyzed. That surprising new information
is, logically, “prior information” because it is not part of the data. Indeed, the separation of the
totality of the evidence into two components called “data” and “prior information” is an arbitrary
choice made by us, only for our convenience in organizing a chain of inferences. Although all such
organizations must lead to the same final results if they succeed at all, some may lead to much
easier calculations than others. Therefore, we do need to consider the order in which different pieces
of information shall be taken into account in our calculations.

Because of some strange things that have been thought about prior probabilities in the past,
we point out also that it would be a big mistake to think of X as standing for some hidden major
premise, or some universally valid proposition about Nature. Old misconceptions about the origin,
nature, and proper functional use of prior probabilities are still common among those who continue
to use the archaic term “a—priori probabilities”. The term “a-priori” was introduced by Immanuel
Kant to denote a proposition whose truth can be known independently of experience; which is most
emphatically what we do not mean here. X denotes simply whatever additional information the
robot has beyond what we have chosen to call “the data”. Those who are actively familiar with the
use of prior probabilities in current real problems usually abbreviate further, and instead of saying
“the prior probability” or “the prior probability distribution”, they say simply, “the prior”.

There is no single universal rule for assigning priors — the conversion of verbal prior informa-
tion into numerical prior probabilities is an open—ended problem of logical analysis, to which we
shall return many times. At present, four fairly general principles are known — group invariance,
maximum entropy, marginalization, and coding theory — which have led to successful solutions of
many different kinds of problems. Undoubtedly, more principles are waiting to be discovered, which
will open up new areas of application.

In conventional sampling theory, the only scenario considered is essentially that of “drawing
from an urn”, and the only probabilities that arise are those that presuppose the contents of the
“urn” or the “population” already known, and seek to predict what “data” we are likely to get as
a result. Problems of this type can become arbitrarily complicated in the details, and there is a
highly developed mathematical literature dealing with them. For example, the massive two—volume
work of Feller (1951, 1971) and the weighty compendium of Kendall and Stuart (1977; Vol. 1) are
restricted entirely to the calculation of sampling distributions. These works contain hundreds of
nontrivial solutions that are useful in all parts of probability theory, and every worker in the field
should be familiar with what is available in them.

However, as noted in the last Chapter, almost all real problems of scientific inference involve us
in the opposite situation; we already know the data D, and want probability theory to help us decide
on the likely contents of the “urn”. Stated more generally, we want probability theory to indicate
which of a given set of hypotheses {Hy, Ho,...} is most likely to be true in the light of the data
and any other evidence at hand. For example, the hypotheses may be various suppositions about
the physical mechanism that is generating the data. But fundamentally, as in the last Chapter,
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physical causation is not an essential ingredient of the problem; what is essential is only that there
be some kind of logical connection between the hypotheses and the data.

To solve this problem does not require any new principles beyond the product rule (3-1) that
we used to find conditional sampling distributions; we need only to make a different choice of the
propositions. Let us now use the notation

X = Prior information
H = Some hypothesis to be tested
D = the data

and write the product rule in the form
P(DH|X) = P(D|HX) P(H|X) = P(H|DX) P(D|X). (4-2)

We recognize P(D|H X)) as the sampling distribution which we studied in Chapter 3, but now
written in a more flexible notation. In Chapter 3 we did not need to take any particular note of
the prior information X, because all probabilities were conditional on H, and so we could suppose
implicitly that the general verbal prior information defining the problem was included in H. This
is the habit of notation that we have slipped into, which has obscured the unified nature of all
inference. Throughout all of sampling theory one can get away with this, and as a result the very
term “prior information” is absent from the literature of sampling theory.

But now we are advancing to probabilities that are not conditional on H, but are still condi-
tional on X, so we need separate notations for them. We see from (4-2) that to judge the likely
truth of H in the light of the data, we need not only the sampling probability P(D|H X') but also
the prior probabilities for D and H:

P(D|HX)

P(H|DX)= P(H|X) PDIE)

(4-3)

Although the derivation (4-2) — (4-3) is only the same mathematical result as (3-43) — (3-44), it
has appeared to many workers to have a different logical status. From the start it has seemed clear
how one determines numerical values of sampling probabilities, but not what determines the prior
probabilities. In the present work we shall see that this was only an artifact of an unsymmetrical way
of formulating problems, which left them ill-posed. One could see clearly how to assign sampling
probabilities because the hypothesis H was stated very specifically; had the prior information X
been specified equally well, it would have been equally clear how to assign prior probabilities.

When we look at these problems on a sufficiently fundamental level and realize how careful one
must be to specify the prior information before we have a well-posed problem, it becomes evident
that there is in fact no logical difference between (3-44) and (4-3); exactly the same principles
are needed to assign either sampling probabilities or prior probabilities, and one man’s sampling
probability is another man’s prior probability.

The left-hand side of (4-3), P(H|DX), is generally called a “posterior probability”, with the
same caveal that this means only “logically later in the particular chain of inference being made”,
and not necessarily “later in time”. And again the distinction is conventional, not fundamental;
one man’s prior probability is another man’s posterior probability. There is really only one kind of
probability; our different names for them refer only to a particular way of organizing a calculation.

The last factor in (4-3) also needs a name, and it is called the likelihood L(H ). To explain
current usage, we may consider a fixed hypothesis and its implications for different data sets; as we
have noted before, the term P(D|H X ), in its dependence on D for fixed H, is called the “sampling
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distribution”. But we may consider a fixed data set in the light of various different hypotheses
{H, H',---}; in its dependence on H for fixed D, P(D|H X ) is called the “likelihood”.

A likelihood L(H) is not itself a probability for H; it is a factor which when multiplied by a
prior probability and a normalization factor may become a probability. Because of this, constant
factors are irrelevant, and may be struck out. Thus the quantity L(H;) = y(D)P(D|H;X) is
equally deserving to be called the likelihood, where y is any positive number which may depend on
D but is independent of the hypotheses {H;}.

Equation (4-3) is then the fundamental principle underlying a wide class of scientific inferences
in which we try to draw conclusions from data. Whether we are trying to learn the character of a
chemical bond from nuclear magnetic resonance data, the effectiveness of a medicine from clinical
data, the structure of the earth’s interior from seismic data, the elasticity of a demand from economic
data, or the structure of a distant galaxy from telescopic data, (4-3) indicates what probabilities
we need to find in order to see what conclusions are justified by the totality of our evidence. If
P(H|DX) is very close to one (zero), then we may conclude that H is very likely to be true (false)
and act accordingly. But if P(H|DX) is not far from I, then the robot is warning us that the
available evidence is not sufficient to justify any very confident conclusion, and we need to get more
and better evidence.

Testing Binary Hypotheses with Binary Data

The simplest nontrivial problem of hypothesis testing is the one where we have only two hypotheses
to test and only two possible data values. Surprisingly, this turns out to be a realistic and valuable
model of many important inference and decision problems. First, let us adapt (4-3) to this binary
case. It gives us the probability that H is true, but we could have written it equally well for the
probability that H is false:

P(D|HX)

P(H|DX)= P(H|X 4-4
(@D = PIX) 5 (4-4)

and if we take the ratio of the two equations:
PH|DX)  P(H|X) P(D|H X) (4-5)

P(H|DX)  P(H|X) P(D|HX)

the term P(D|X ) will drop out. This may not look like any particular advantage, but the quantity
that we have here, the ratio of the probability that H is true to the probability that it’s false, has a
technical name. We call it the “odds” on the proposition H. So if we write the “odds on H, given
D and X,” as the symbol

o xy= LUID X) (4-6)
P(H|DX)
then we can combine (4-3) and (4-4) into the following form:
P(DIHX
OH|D X)=0(H|X) (DIIX) (4-7)

P(DIHX) "
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The posterior odds on H is (are?) equal to the prior odds multiplied by a dimensionless factor which
is also called a likelihood ratio. The odds are (is?) a strict monotonic function of the probability,
so we could equally well calculate this quantity.

In many applications it is convenient to take the logarithm of the odds because of the fact
that we can then add up terms. Now we could take logarithms to any base we please, and this cost
the writer some trouble. Our analytical expressions always look neater in terms of natural (base )
logarithms. But back in the 1940’s and 1950’s when this theory was first developed, we used base
10 logarithms because they were easier to find numerically; the four—figure tables would fit on a
single page. Finding a natural logarithm was a tedious process, requiring leafing through enormous
old volumes of tables.

Today, thanks to hand calculators, all such tables are obsolete and anyone can find a ten digit
natural logarithm just as easily as a base 10 logarithm, in one second. Therefore we started happily
to rewrite this section in terms of the aesthetically prettier natural logarithms. But the result
taught us that there is another, even stronger, reason for using base 10 logarithms. Our minds are
thoroughly conditioned to the base 10 number system, and base 10 logarithms have an immediate,
clear intuitive meaning to all of us. But we just don’t know what to make of a conclusion that is
stated in terms of natural logarithms, until it is translated back into base 10 terms. Therefore, we
re-re—wrote this discussion, reluctantly, back into the old, ugly base 10 convention.

We define a new function which we will call the evidence for H given D and X:
e(H|D X)=10 log,, O(H|DX). (4-8)
This is still a monotonic function of the probability. By using the base 10 and putting the factor
10 in front, we are now measuring evidence in decibels (hereafter abbreviated to db). The evidence

for H, given D, is equal to the prior evidence plus the number of db provided by working out the
log likelihood in the last term below:

(4-9)

e(H|DX)=e(H|X)+ 10 logy, [P(D|HX)]

P(D|HX)
Now suppose that this new information D actually consisted of several different propositions:

D=DyDyDs -

Then we could expand the likelihood ratio by successive applications of the product rule:

P(Dy|H X)
P(Dy|HX)

(4-10)

e(H|DX) = e(H|X)+ 10 logyq [ P(Ds|Dy X)] .

+10 1 [ —
] %810 | 5D, Dy TX)

But in many cases, the probability of getting D5 is not influenced by knowledge of Dj:

P(Dy|DyHX) = P(Dy|HX)

T Our uncertain phrasing here indicates that “odds” is a grammatically slippery word. We are inclined
to agree with purists who say that it is, like “mathematics” and “physics”, a singular noun in spite of
appearances. Yet the urge to follow the vernacular and treat it as plural is sometimes irresistible, and so
we shall be knowingly inconsistent and use it both ways, judging what seems euphonious in each case.
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One then says conventionally that Dy and Dy are independent. Of course, we should really say
that the probabilities which the robot assigns to them are independent. It is a semantic confusion
to attribute the property of “independence” to propositions or events; for that implies, in common
language, physical causal independence. We are concerned here with the very different quality of
logical independence.

To emphasize this, note that neither kind of independence implies the other. Two events
may be in fact causally dependent (i.e., one influences the other); but for a scientist who has not
yet discovered this, the probabilities representing his state of knowledge — which determine the
only inferences he is able to make — might be independent. On the other hand, two events may
be causally independent in the sense that neither exerts any causal influence on the other (for
example, the apple crop and the peach crop); yet we perceive a logical connection between them,
so that new information about one changes our state of knowledge about the other. Then for us
their probabilities are not independent.

Quite generally, as the robot’s state of knowledge represented by H and X changes, probabil-
ities conditional on them may change from independent to dependent or wvice versa; yet the real
properties of the events remain the same. Then one who attributed the property of dependence or
independence to the events would be, in effect, claiming for the robot the power of psychokinesis.
We must be vigilant against this confusion between reality and a state of knowledge about reality,
which we have called the “Mind Projection Fallacy”.

The point we are making is not just pedantic nit-picking; we shall see presently [Eq. (4-
27)] that it has very real, substantive consequences. In Chapter 3 we have discussed some of
the conditions under which these probabilities might be independent, in connection with sampling
from a very large known population, and sampling with replacement. In the closing Comments we
noted that whether urn probabilities do or do not factor can depend on whether we do or do not
know that the contents of several urns are the same. In our present problem, as in Chapter 3, to
interpret causal independence as logical independence, or to interpret logical dependence as causal
dependence, has led some to nonsensical conclusions in fields ranging from psychology to quantum
theory.

In case these several pieces of data are logically independent given (H X ) and also given (H X ),
the above equation becomes:

(4-11)

HIDX) = eCH1X) +10 5 oy [ ]

P(D:|AX)

where the sum is over all the extra pieces of information that we get.

To get some feeling for numerical values here, let us construct a table. We have three different
scales on which we can measure degrees of plausibility; evidence, odds, or probability; they’re all
monotonic functions of each other. Zero db of evidence corresponds to odds of 1 or to a probability
of 1/2. Now every physicist or electrical engineer knows that 3 db means a factor of 2 (nearly) and
10 db is a factor of 10 (exactly); and so if we go in steps of 3 db, or 10, we can construct this table
very easily:
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e 0 D

0 11 1/2

3 2:1 2/3

6 4:1 4/5
10 10:1 10/11
20 100:1 100/101
30 1000:1 999
40 10%:1 9999
—e 1/0 1—p

Table 4.1 Evidence, Odds, and Probability

You see here why it is very cogent to give evidence in db. When probabilities get very close to
one or very close to zero, our intuition doesn’t work very well. Does the difference between the
probability of 0.999 and 0.9999 mean a great deal to you? It certainly doesn’t to the writer. But
after living with this for only a short while, the difference between evidence of plus 30 db and plus
40 db does have a clear meaning to us. It’s now in a scale which our minds comprehend naturally.
This is just another example of the Weber—Fechner law; intuitive human sensations tend to be
logarithmic functions of the stimulus.

Even the factor of 10 in (4-8) is appropriate. In the original acoustical applications, it was
introduced so that a 1 db change in sound intensity would be, psychologically, about the smallest
change perceptible to our ears. With a little familiarity and a little introspection, we think that the
reader will agree that a 1 db change in evidence is about the smallest increment of plausibility that
is perceptible to our intuition. Nobody claims that the Weber—Fechner law is a precise rule for all
human sensations, but its general usefulness and appropriateness is clear; almost always it is not
the absolute change, but more nearly the relative change, in some stimulus that we perceive. For
an interesting account of the life and work of Gustav Theodor Fechner (1801 — 1887), see Stigler
(1986).

Now let’s apply (4-11) to a specific calculation, which we shall describe as a problem of
industrial quality control (although it could be phrased equally well as a problem of cryptography,
chemical analysis, interpretation of a physics experiment, judging two economic theories, etc).
Following the example of 1. J. Good (1950) we assume numbers which are not very realistic, in
order to bring out some points of principle better. Let the prior information X consist of the
following statements:

X = “We have eleven automatic machines turning out widgets, which pour out of a machine
loosely into a box. This example corresponds to a very early stage in the development
of widgets, because ten of the machines produce one in six defective. The eleventh
machine is even worse; it makes one in three defective. The output of each machine
has been collected in an unlabelled box and stored in the warehouse.”

We choose one of the boxes and test a few of the widgets, classifying them as “good” or “bad”.
Our job is to decide whether we got a box from the bad machine or not; that is, whether we’re
going to accept this batch or reject it.

Let us turn this job over to our robot and see how it performs. First it must find the prior
evidence for the various propositions of interest. Let
A = “We got a bad batch (1/3 defective)”
= “We got a good batch (1/6 defective)”
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The qualitative part of our prior information X told us that there are only two possibilities; so in
the “logical environment” generated by X, these propositions are related by negation: given X, we
can say that

A=B, B=A. (4-12)

The only quantitative prior information is that there are eleven machines and we don’t know which
one made our batch, so by the principle of indifference P(A|X) = 1/11, and

PAIX) log WD g g (4-13)

e(A[X) = 10 logy, P(AIX) 19 (10/11)

whereupon we have necessarily e(B|X) = +10 db.

Evidently, in this problem the only properties of X that will be relevant for the calculation are
just these numbers, £10 db. Any other kind of prior information which led to the same numbers
would give us just the same mathematical problem from this point on. So, it is not necessary to
say that we’re talking only about a problem where there are eleven machines, and so on. There
might be only one machine, and the prior information consists of our previous experience with it.

Our reason for stating the problem in terms of eleven machines was that we have, thus far,
only one principle, indifference, by which we can convert raw information into numerical probability
assignments. We interject this remark because of a famous statement by Feller (1951) about a single
machine, which we consider in Chapter 17 after accumulating some more evidence pertaining to
the issue he raised. To our robot, it makes no difference how many machines there are; the only
thing that matters is the prior probability of a bad batch, however arrived at.T

Now from this box we take out a widget and test it to see whether it is defective. If we pull
out a bad one, what will that do to the evidence for a bad batch? That will add to it

P(badlA X)

101 il
%810 D had[AX)

(4-14)

where P(bad|AX ) represents the probability of getting a bad widget, given A, etc.; these are
sampling probabilities, and we have already seen how to calculate them. Our procedure is very
much “like” drawing from an urn and as in Chapter 3, on one draw our datum D now consists only
of a binary choice: (good/bad). The sampling distribution P(D|H X') reduces to

P(bad|AX)=>,  P(good|AX)= =, (4-15)

D= W
| O Wl N

P(bad|BX)= -,  P(good|BX)= (4-16)

Thus, if we find a bad widget on the first draw, this will increase the evidence for A by

1/3

(1/6)

T Notice that in this observation we have the answer to a point raised in Chapter 1: how does one make a
machine ‘cognizant’ of the meanings of the various propositions that it is being called upon to deal with?
The answer is that the robot does not need to be ‘cognizant’ of anything. If we give it, in addition to the
model and the data, a coded list of the propositions to be considered, with their prior probabilities, this
conveys all the ‘meaning’ needed to define the mathematical problem.
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What happens now if we draw a second bad one? We are sampling without replacement, so as we
noted in (3-10) , the factor (1/3) in (4-17) should be updated to

(N/3)-1 1 2 (4-18)

1
N—-1 ~— 3 3(N-1)

where N is the number of widgets in the batch. But to avoid this complication, we suppose that NV
is very much larger than any number that we contemplate testing; i.e., we are going to test such
a negligible fraction of the batch that the proportion of bad and good ones in it is not changed
appreciably by the drawing. Then the limiting form of the hypergeometric distribution (3-18) will
apply, namely the binomial distribution (3-74). Thus we shall consider that, given A or B, the
probability of drawing a bad one is the same at every draw regardless of what has been drawn
previously; so every bad one we draw will provide +3 db of evidence in favor of hypothesis A.

Now suppose we find a good widget. Using (4-12), we'll get evidence for A of

P(good|AX) 2/3
10 1 ———— =101 —— = —0.97db . 4-1
0 logy, Pleood|BY) 0 logy, 5/6 0.97 (4-19)

but let’s call it —1 db. Again, this will hold for any draw, if the number in the batch is sufficiently
large. If we have inspected n widgets, of which we found n; bad ones and n, good ones, the evidence
that we have the bad batch will be

e(A|DX) = e(A|X)+ 3np, — ny (4-20)

You see how easy this is to do once we’ve set up the logarithmic machinery. The robot’s mind is
“driven in one direction or the other” in a very simple, direct way.

Perhaps this result gives us a deeper insight into why the Weber—Fechner law applies to intuitive
plausible inference. Our “evidence” function is related to the data that we have observed in about
the most natural way imaginable; a given increment of evidence corresponds to a given increment
of data. For example, if the first twelve we test yield five bad ones, then

e(A|DX)=-10+3-5-7=—-2db (4-21)

or, the probability of a bad batch is raised by the data from (1/11) = .09 to P(A|DX) ~ 0.4.

In order to get at least 20 db of evidence for proposition A, how many bad ones would we have
to find in a certain sequence of n = ny + n, tests? This requires

3ny — ng=4ny, — n=n4f, — 1)>20 (4-22)

so if the fraction f, = ny/n of bad ones remains greater than 1/4, then we shall accumulate
eventually 20 db, or any other positive amount, of evidence for A. It appears that f, = 1/4 is the
threshold value at which the test can provide no evidence for either A or B over the other; but
note that the +3 and —1 in (4-20) are only approximate. The exact threshold fraction of bad ones
is, from (4-17) and (4-19),

log(%)

fi= log(2) + log(%)

= 0.2435292 , (4-23)
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in which the base of the logarithms does not matter. Sampling fractions greater (less) than this
give evidence for A over B (B over A); but if the observed fraction is close to the threshold, it will
require many tests to accumulate very much evidence.

Now all we have here is the probability or odds or evidence, whatever you wish to call it, of
the proposition that we got the bad batch. Eventually, we have to make a decision. We’re going
to accept it or we're going to reject it. How are we going to do that? Well, we might decide
beforehand: if the probability of proposition A reaches a certain level then we’ll decide that A is
true. If it gets down to a certain value, then we’ll decide that A is false.

There is nothing in probability theory per se which can tell us where to put these critical
levels at which we make our decision. This has to be based on value judgments: what are the
consequences of making wrong decisions, and what are the costs of making further tests? This
takes into the realm of Decision Theory, considered in Chapters 13 and 14. But for now it is clear
that making one kind of error (accepting a bad batch) might be more serious than making the
other kind of error (rejecting a good batch). That would have an obvious effect on where we place
our critical levels.

So we could give the robot some instructions such as “If the evidence for 4 gets greater than
+0 db, then reject this batch (it is more likely to be bad than good). If it goes as low as —13, then
accept it (there is at least a 95% probability that it is good). Otherwise, continue testing.” We
start doing the tests, and every time we find a bad widget the evidence for the bad batch goes up
3 db; every time we find a good one, it goes down 1 db. The tests terminate as soon as we get into
either the accept or reject region for the first time.

This is the way our robot would do it if we told it to reject or accept on the basis that
the posterior probability of proposition A reaches a certain level. This very useful and powerful
procedure is called “Sequential Inference” in the statistical literature, the term signifying that the
number of tests is not determined in advance, but depends on the sequence of data values that we
find; at each step in the sequence we make one of three choices: (a) stop with acceptance; (b) stop
with rejection; (c¢) make another test. The term should not be confused with what has come to
be called “Sequential Analysis with Non-optional Stopping”, which is a serious misapplication of
probability theory; see the discussions of optional stopping in Chapters 6 and 17.

Non—Extensibility Beyond the Binary Case

This binary hypothesis testing problem turned out to have such a beautifully simple solution that
we might like to extend it to the case of more than two hypotheses. Unfortunately, the convenient
independent additivity over data sets in (4-11) and the linearity in (4-20) do not generalize. By
“independent additivity” we mean that the increment of evidence from a given datum D; depends
only on D; and H; not on what other data have been observed. As (4-10) shows, we always have
additivity, but not independent additivity unless the probabilities are independent.

We state the reason for this non—extensibility in the form of an exercise for the reader; to
prepare for it, suppose that we have n hypotheses {Hy ... H,} which on prior information X are
mutually exclusive and exhaustive:

P(H:H,|X) = P(H|X) 6, i P(H|X)=1. (4-24)

Also, we have acquired m data sets {D; ...D,,}, and as a result the probabilities of the H; become
updated in odds form by (4-7) , which now becomes

P(Dy...D,,|H;X)
P(Dy...D,|HX)

O(H:|Dy...DyX) = O(H;|X) (4-25)
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It is common that the numerator will factor because of the logical independence of the D;, given
Hi:

P(Dy...Dy|HX) =[] P(D;|H:X), 1<i< n. (4-26)
J
If the denominator should also factor:
P(Dy...Dy|H:X) =[] P(D;IHX), 1<i<n (4-27)
J

then (4-25) would split into a product of the updatings produced by each D; separately, and the
log-odds formula (4-9) would again take a form independently additive over the D; as in (4-11).

Exercise 4.1. Show that there is no such nontrivial extension of the binary case. More
specifically, prove that if (4-26) and (4-27) hold with n > 2, then at most one of the factors

P(Dy|H; X) P(D,|H; X)
P(Dy|H; X) P(D,|H; X)

is different from unity, therefore at most one of the data sets D; can produce any updating of
the probability of H;.

This has been a controversial issue in the literature of Artificial Intelligence (Glymour, 1985;
Johnson, 1985). Those who fail to distinguish between logical independence and causal indepen-
dence would suppose that (4-27) is always valid, provided only that no D; exerts a physical influence
on any other D;. But we have already noted the folly of such reasoning; this is a place where the
semantic confusion can lead to serious numerical errors. When n = 2, (4-27) follows from (4-26).
But when n > 2, (4-27) is such a strong condition that it would reduce the whole problem to a
triviality not worth considering; we have left it as the above exercise for the reader to examine the
equations to see why this is so. Because of Cox’s theorems expounded in Chapter 2, the verdict of
probability theory is that our conclusion about nonextensibility can be evaded only at the price of
committing demonstrable inconsistencies in our reasoning.

To head off a possible misunderstanding of what is being said here, let us add the following.
However many hypotheses we have in mind, it is of course always possible to pick out two of them
and compare them only against each other. This reverts to the binary choice case already analyzed,
and the independent additive property holds within that smaller problem (find the status of an
hypothesis relative to a single alternative).

We can organize this by choosing A; as the standard “null hypothesis” and comparing each
of the others to it by solving n — 1 binary problems; whereupon the relative status of any two
propositions is determined. For example, if A5 and A7 are favored over Ay by 22.3 db and 31.9 db
respectively, then Az is favored over As by 31.9—22.3 = 9.6 db. If such binary comparisons provide
all the information one wants, there is no need to consider multiple hypothesis testing at all.

But that would not solve our present problem; given the solutions of all these binary problems,
it would still require a calculation as big as the one we are about to do, to convert that information
into the absolute status of any given hypothesis relative to the entire class of n hypotheses. Here
we are going after the solution of the larger problem directly.

In any event, we need not base our stance merely on claims of authoritarian finality for an
abstract theorem; more constructively, we now show that probability theory does lead us to a
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definite, useful procedure for multiple hypothesis testing, which gives us a much deeper insight and
makes it clear why the independent additivity cannot, and should not, hold when n > 2. It would
then ignore some very cogent information; that is the demonstrable inconsistency.

Multiple Hypothesis Testing

Suppose that something very remarkable happens in the sequential test just discussed; we tested
fifty widgets and every one turned out to be bad. According to (4-20), that would give us 150
db of evidence for the proposition that we had the bad batch. e(A|E) would end up at +140 db,
which is a probability which differs from 1 by one part in 10'*. Now our common sense rejects this
conclusion; some kind of innate skepticism rises in us. If you test 50 of them and you find that all
50 are bad, you are not willing to believe that you have a batch in which only 1 in 3 are really bad.
So what went wrong here? Why doesn’t our robot work in this case?

We have to recognize that our robot is immature; it reasons like a 4-year-old child does. The
remarkable thing about small children is that you can tell them the most ridiculous things and they
will accept it all with wide open eyes, open mouth, and it never occurs to them to question you.
They will believe anything you tell them.

Adults learn to make mental allowance for the reliability of the source when told something
hard to believe. One might think that, ideally, the information which our robot should have put
into its memory was not that we had either 1/3 bad or 1/6 bad; the information it should have put
in was that some unreliable human said that we had either 1/3 bad or 1/6 bad.

More generally, it might be useful in many problems if the robot could take into account the
fact that the information it has been given may not be perfectly reliable to begin with. There is
always a small chance that the prior information or data that we fed to the robot was wrong. In a
real problem there are always hundreds of possibilities, and if you start out the robot with dogmatic
initial statements which say that there are only two possibilities, then of course you mustn’t expect
its conclusions to make sense in every case.

To accomplish this skeptically mature behavior automatically in a robot is something that we
can do, when we come to consider significance tests; but fortunately, after further reflection we
realize that for most problems the present immature robot is what we want after all, because we
have better control over it.

We do want the robot to believe whatever we tell it; it would be dangerous to have a robot
who suddenly became skeptical in a way not under our control when we tried to tell it some true
but startling — and therefore highly important — new fact. But then the onus is on us to be aware
of this situation, and when there is a good chance that skepticism will be needed, it is up to us to
give the robot a hint about how to be skeptical for that particular problem.

In the present problem we can give the hint which makes the robot skeptical about A when it
sees “too many” bad widgets, by providing it with one more possible hypothesis, which notes that
possibility and therefore, in effect, puts the robot on the lookout for it. As before, let proposition
A mean that we have a box with 1/3 defective, and proposition B is the statement that we have
a box with 1/6 bad. We add a third proposition C', that something went entirely wrong with the
machine that made our widgets, and it’s turning out 99 per cent defective.

Now we have to adjust our prior probabilities to take this new possibility into account. But
we do not want this to be a major change in the nature of the problem; so let hypothesis C'
have a very low prior probability P(C|X) of 107% (=60 db). We could write out X as a verbal
statement which would imply this, but we can state what proposition X is, with no ambiguity at
all for purposes of this problem, simply by giving the probabilities conditional on X, of all the
propositions that we’re going to use in this problem. In that way we don’t state everything about
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X that is important conceptually; but we state everything about X that is relevant to our current
mathematical problem.

So suppose we start out with these initial probabilities:

P(A|X) = %(1 _107%)
P(BIX) = %(1 _107%) (4-28)
P(C|X)=10"°

where
A means “We have a box with 1/3 defective”
B means “We have a box with 1/6 defective”
C means “We have a box with 99/100 defective.”

The factors (1 — 107%) are practically negligible, and for all practical purposes, we will start out
with the initial values of evidence:

—10 db for A
+10 db for B
—60 db for C .
The data proposition D stands for the statement that “m widgets were tested and every one was

defective.” Now, from (4-9) the posterior evidence for proposition C' is equal to the prior evidence
plus 10 times the logarithm of this probability ratio:

P(D|ICX)
e(C|DX)=¢e(C|X)+ 10 lo —_— 4-29
(CIDX) = (C1X) +10 logyy s (4-29)
Our discussion of sampling with and without replacement in Chapter 3 shows that
99 \ "
P D X = —_— 4—
lex) = () (1-30)

is the probability that the first m are all bad, given that 99 per cent of the machine’s output is
bad, under our assumption that the total number in the box is large compared to the number m
tested.

We also need the probability P(D|CX), which we can evaluate by two applications of the
product rule (4-3):

— P(C|DX
P(D|ICX)=P(D|X) y (4-31)
P(C1X)
But in this problem the prior information states dogmatically that there are only three possibilities,
and so the statement €' = “C is false” implies that either A or B must be true:
P(C|DX)= P(A+ B|DX) = P(A|DX)+ P(B|DX) (4-32)

where we used the general sum rule (2-48), the negative term dropping out because A and B are
mutually exclusive. Similarly,
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P(C|X)= P(A|X)+ P(B|X). (4-33)
Now if we substitute (4-32) into (4-31), the product rule will be applicable again in the form

P(AD|X) = P(D|X) P(A|DX) = P(A|X) P(D|AX)

(4-34)
P(BD|X) = P(D|X) P(B|DX) = P(B|X) P(D|BX)
and so (4-31) becomes
P(DITX) = P(D|AX) P(A|X)+ P(D|BX) P(B|X) (4-35)

P(A|X) + P(B|X)
in which all probabilities are known from the statement of the problem.

Digression on Another Derivation: Although we have the desired result (4-35), let us note
that there is another way of deriving it, which is often easier than direct application of (4-3). The
principle was introduced in our derivation of (3-28): resolve the proposition whose probability
is desired (in this case D) into mutually exclusive propositions, and calculate the sum of their
probabilities. We can carry out this resolution in many different ways by “introducing into the
conversation” any set of mutually exclusive and exhaustive propositions {P, @, R,---} and using
the rule of Boolean algebra:

D=DP+Q+R+---)=DP+DQ+DR+---

But the success of the method depends on our cleverness at choosing a particular set for which
we can complete the calculation. This means that the propositions introduced must have a known
kind of relevance to the question being asked; the example of penguins at the end of Chapter 2 will
not be helpful if that question has nothing to do with penguins.

In the present case, for evaluation of P(D|C' X), it appears that propositions A and B have
this kind of relevance. Again, we note that proposition C' implies (A 4+ B); and so

P(D|CX) = P(D(A+ B)|CX)=P(DA+ DB|CX)

_ _ (4-36)
= P(DA|CX )+ P(DB|CX) .
These probabilities can be factored by the product rule:
P(D|CX)= P(DIACX) P(A|CX)+ P(D|BCX) P(B|CX). (4-37)

But we can abbreviate: P(D|ACX) = P(D|AX) and P(D|BCX) = P(D|BX), because in the
way we set up this problem, the statement that either A or B is true implies that ¢’ must be false.
For this same reason, P(C|AX) =1, and so by the product rule,

PAJCX) = = (4-38)

and similarly for P(B|C' X ). Substituting these results into (4-37) and using (4-33), we again arrive
at (4-35). This agreement provides another illustration — and test — of the consistency of our rules
for extended logic.
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Back to the Problem: Returning to (4-35), we have the numerical value
- " (1 1™ 10
PDICX)=1{=] | — o 4
o= 5) () () ()

and everything in (4-29) is now at hand. If we put all these things together, we find that the
evidence for proposition C is:

99 \m
e(C|DX) = —604 10 log,, [ — (7500)10 5 m] : (4-40)
w(3)" + 11(s)
If m is larger than 5, a good approximation is
e(Cl1DX )~ —49.6 +4.73 m , m > 5 (4-41)
and if m is less than 3, a crude approximation is
e(Cl1DX)~ —60+7.73m, m <3 (4-42)

Proposition €' starts out at minus 60 db, and the first few bad ones we find will each give about
7.73 db of evidence in favor of C, so the graph of e(C|DX) vs. m will start upward at a slope
of 7.73. But then the slope drops, when m > 5, to 4.73. The evidence for C reaches 0 db when
m =~ 49.6/4.73 = 10.5. So, ten consecutive bad widgets would be enough to raise this initially very
improbable hypothesis up 58 db, to the place where the robot is ready to consider it very seriously;
and eleven consecutive bad ones would take it over the threshold, to where the robot considers it
more likely to be true than false.

In the meantime, what is happening to our propositions A and B? As before, A starts off at
—10, B starts off at 410, and the plausibility of A starts going up 3 db per defective widget. But
after we’ve found too many bad ones, that skepticism would set in, and you and I would begin to
doubt whether the evidence really supports proposition A after all; proposition €' is becoming a
much easier way to explain what is observed. Has the robot also learned to be skeptical?

After m widgets have been tested, and all proved to be bad, the evidence for propositions A
and B, and the approximate forms, are as follows:

(3)" ]
ADX)= —10+ 10 1
AAIDX) 10 T [(é)m F I 10-5(Z)m

100
(4743)
—10+3m form < 7
| +496-473m  form > 8
e(B|IDX)=410+ 10 + logy, [ T (é)m — 35 ]
(4-44)

~

10 — 3m for m < 10
59.6 — 7.33m form > 11
The exact results, printed out by the program SEQUENT.BAS, are tabulated in Appendix I, and

summarized in Fig. 4.1. We can learn quite a lot about multiple hypothesis testing from studying
this diagram. The initial straight line part of the A and B curves represents the solution as we
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found it before we introduced proposition C'; the change in plausibility of propositions A and B
starts off just the same as in the previous problem. The effect of proposition €' does not appear
until we have reached the place where C' crosses B. At this point, suddenly the character of the A
curve changes; instead of going on up, at m = 7 it has reached its highest value of 10 db. Then it
turns around and comes back down; the robot has indeed learned how to become skeptical. But
the B curve does not change at this point; it continues on linearly until it reaches the place where
A and C have the same plausibility, and at this point it has a change in slope. From then on, it
falls off more rapidly.

Figure 4.1. A Surprising Multiple Sequential Test
Wherein a Dead Hypothesis (C) is Resurrected.

Most people find all this surprising and mysterious at first glance; but then a little meditation
is enough to make us perceive what is happening and why. The change in plausibility of A due to
one more test arises from the fact that we are now testing hypothesis A against two alternatives:
B and C'. But initially B is so much more plausible than (', that for all practical purposes we
are simply testing A against B, and reproducing our previous solution (4-20). But after enough
evidence has accumulated to bring the plausibility of C' up to the same level as B, then from that
point on A is essentially being tested against €' instead of B, which is a very different situation.

All of these changes in slope can be interpreted in this way. Once we see this principle, it is
clear that the same thing is going to be true more generally. As long as we have a discrete set of
hypotheses, a change in plausibility of any one of them will be approximately the result of a test of
this hypothesis against a single alternative — the single alternative being that one of the remaining
hypotheses which is most plausible at that time. As the relative plausibilities of the alternatives
change, the slope of the A curve must also change; this is the cogent information that would be lost
if we tried to retain the independent additive form (4-11) when n > 2.

But whenever the hypotheses are separated by about 10 db or more, then multiple hypothesis
testing reduces approximately to testing each hypothesis against a single alternative. So, seeing
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this, you can construct curves of the sort shown in Fig. 4.1 very rapidly without even writing down
the equations, because what would happen in the two—hypothesis case is easily seen once and for
all. The diagram has a number of other interesting geometrical properties, suggested by drawing
the six asymptotes and noting their vertical alignment (dotted lines), which we leave for the reader
to explore.

All the information needed to construct fairly accurate charts resulting from any sequence of
good and bad tests is contained in the “plausibility flow diagrams” of Fig. 4.2, which summarize
the solutions of all those binary problems; every possible way to test one proposition against a
single alternative. It indicates, for example, that finding a good one raises the evidence for B by 1
db if B is being tested against A, and by 19.22 db if it is being tested against €. Similarly, finding
a bad one raises the evidence for A by 3 db if A is being tested against B, but lowers it by 4.73 db
if it is being tested against C':

GOOD: A =10—=B [—19.22— C |— 1824 —| A

BAD: A [«~30—~ B | =773 = C [«—4.73 A

Figure 4.2 Plausibility Flow Diagrams

Likewise, we see that finding a single good one lowers the evidence for ' by an amount that cannot
be recovered by two bad ones; so there is a “threshold of skepticism”. C' will never attain an
appreciable probability; i.e., the robot will never become skeptical about propositions A and B, as
long as the observed fraction f of bad ones remains less than 2/3.

More precisely, define a threshold fraction f; thus: as the number of tests m — oo with
f=mp/m — const., e(C|DX) tends to +oo if f > fi, and to —oo if f < f;. The exact threshold
turns out to be greater than 2/3: f; = 0.793951 (Exercise 4.2). If the observed fraction bad remains
above this value, the robot will be led eventually to prefer proposition € over A and B.

Exercise 4.2. Calculate the exact threshold of skepticism f;(z,y), supposing that proposition
C has instead of 107° an arbitrary prior probability P(C|X) = =z and specifies instead of
(99/100) an arbitrary fraction y of bad widgets. Then discuss how the dependence on z and y
corresponds — or fails to correspond — to human common sense. [In problems like this, always try
first to get an analytic solution in closed form. If you are unable to do this, then you must write
a short computer program like SEQUENT.BAS in Appendix I, which will display the correct
numerical values in tables or graphs.]

Exercise 4.3. Show how to make the robot skeptical about both unexpectedly high and
unexpectedly low numbers of bad widgets in the observed sample. Give the full equations.
Note particularly the following: if A is true, then we would expect, according to the binomial
distribution (3-74), that the observed fraction of bad ones would tend to about 1/3 with many
tests, while if B is true it should tend to 1/6. Suppose that it is found to tend to the threshold
value (4-22), close to 1/4. On sufficiently large m, you and I would then become skeptical about
A and Bj; but intuition tells us that this would require a much larger m than 10, which was
enough to make us and the robot skeptical when we find them all bad. Do the equations agree
with our intuition here, if a new hypothesis /' is introduced which specifies P(bad|F'X) ~ 1/47
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In summary, the role of our new hypothesis ' was only to be held in abeyance until needed,
like a fire extinguisher. In a normal testing situation it is “dead”, playing no part in the inference
because its probability is and remains far below that of the other hypotheses. But a dead hypothesis
can be resurrected to life by very unexpected data. Exercises (4.2) and (4.3) ask the reader to
explore the phenomenon of resurrection of dead hypotheses in more detail than we do in this
Chapter, but we return to the subject in Chapter 5.

Figure 4.1 shows an interesting thing. Suppose we had decided to stop the test and accept
hypothesis A if the evidence for it reached plus 6 db. You see, it would overshoot that value at the
sixth trial. If we stopped the testing at that point, then we would never see the rest of this curve
and see that it really goes down again. If we had continued the testing beyond this point, then we
would have changed our minds again.

At first glance this seems disconcerting, but notice that it is inherent in all problems of hy-
pothesis testing. If you stop the test at any finite number of trials, then you can never be absolutely
sure that you have made the right decision. It is always possible that still more tests would have led
you to change your decision. But note also that probability theory as logic has automatic built—in
safety devices that can protect the user against unpleasant surprises. Although it is always possible
that your decision is wrong, this is extremely improbable if your critical level for decision requires
e(A|DX) to be large and positive. For example, if e(A|DX) > 20 db, then P(A|DX) > 0.99,
and the total probability of all the alternatives is less than 0.01; then few would hesitate to decide
confidently in favor of A.

In a real problem we may not have enough data to give such good evidence, and one might
suppose that one could decide safely if the most likely hypothesis A is well separated from the
alternatives, even though e(A|DX) is itself not large. Indeed, if there are 1000 alternatives but
the separation of A from the most likely alternative is more than 20 db, then the odds favor A by
more than 100:1 over any one of the alternatives, and if we were obliged to make a definite choice
of one hypothesis here and now, there could still be no hesitation in choosing A; it is clearly the
best we can do with the information we have. Yet we cannot do it so confidently, for it is now
very plausible that the decision is wrong, because the class of alternatives as a whole is about as
probable as A. But probability theory warns us, by the numerical value of e(A|DX ), that this is
the case; we need not be surprised by it.

In scientific inference our job is always to do the best we can with whatever information we
have; there is no advance guarantee that our information will be sufficient to lead us to the truth.
But many of the supposed difficulties arise from an inexperienced user’s failure to recognize and
use the safety devices that probability theory as logic always provides. Unfortunately, the current
literature offers no help here because its viewpoint, concentrated exclusively on sampling theory
aspects, directs attention to other things such as assumed sampling frequencies, as the following
exercises illustrate.

Exercise 4.4. Suppose that B is in fact true; estimate how many tests it will probably
require in order to accumulate an additional 20 db of evidence (above the prior 10 db) in favor
of B. Show that the sampling probability that we could ever obtain 20 db of evidence for A
is negligibly small, even if we sample millions of times. In other words it is, for all practical
purposes, impossible for a doctrinaire zealot to sample to a foregone false conclusion merely by
continuing until he finally gets the evidence he wants. Note: The calculations called for here
are called “random walk” problems; they are sampling theory exercises. Of course, the results
are not wrong, only incomplete. Some essential aspects of inference in the real world are not
recognized by sampling theory.
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Exercise 4.5. The estimate asked for in Exercise 4.4 is called the “Average Sample Number”
(ASN), and the original rationale for the sequential procedure (Wald, 1947) was not our deriva-
tion from probability theory as logic, but Wald’s conjecture (unproven at the time) that the
sequential probability-ratio tests such as (4-17) and (4-19) minimize the ASN for a given reli-
ability of conclusion. Discuss the validity of this conjecture; can one define the term “reliability
of conclusion” in such a way that the conjecture can be proved true?

Evidently, we could extend this example in many different directions. Introducing more “dis-
crete” hypotheses would be perfectly straightforward, as we have seen. More interesting would be
the introduction of a continuous range of hypotheses, such as:

H¢ = “The machine is putting out a fraction f bad.”

Then instead of a discrete prior probability distribution, our robot would have a continuous distri-
bution in 0 < f < 1, and it would calculate the posterior probabilities for various values of f on
the basis of the observed samples, from which various decisions could be made. In fact, although
we have not yet given a formal discussion of continuous probability distributions, the extension is
so easy that we can give it as an introduction to this example.

Continuous Probability Distribution Functions (pdf’s)

Our rules for inference were derived in Chapter 2 only for the case of finite sets of discrete propo-
sitions (A, B,...). But this is all we ever need in practice; for suppose that f is any continuously
variable real parameter of interest. Then the propositions

Fr=(f<q)
F'=(f>q)

are discrete, mutually exclusive, and exhaustive; so our rules will surely apply to them. Given some
information Y, the probability of F’ will in general depend on ¢, defining a function

Glq) = PFIY) (4-15)
which is evidently monotonic increasing. Then what is the probability that f lies in any specified

interval (@ < f < b)? The answer is probably obvious intuitively, but it is worth noting that it is
determined uniquely by the sum rule of probability theory, as follows. Define the propositions

A=(f<a), B=(f<b), W=(a<f<h)

Then a relation of Boolean algebra is B = A+ W, and since A and W are mutually exclusive, the
sum rule reduces to

P(B|Y) = P(AlY)+ P(W|Y) (4-46)
But P(B|Y) = G(b), and P(A|Y) = G(a), so we have the result:
Pla< f<b|Y)=PWI|Y)=0G(0) - G(a). (4-47)

In the present case G/(q) is continuous and differentiable, so we may write also

b

Pla<s<sy)= [ o (4-48)

a
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where g(f) = G'(f) > 0 is the derivative of G, generally called the probability distribution function,
or the probability density function for f, given Y'; either reading is consistent with the abbreviation
“pdf” which we use henceforth, following the example of Zellner (1971). Its integral G/(f) may be
called the cumulative distribution function (CDF) for f.

Thus limiting our basic theory to finite sets of propositions has not in any way hindered our
ability to deal with continuous probability distributions; we have applied the basic product and sum
rules only to discrete propositions in finite sets. As long as continuous distributions are defined
as above [Equations (4-47), (4-48)] from a basis of finite sets of propositions, we are protected
safely from inconsistencies by Cox’s theorems. But if one becomes overconfident and tries to
operate directly on infinite sets without considering how they are to be generated from finite sets,
this protection is lost and one stands at the mercy of all the paradoxes of infinite set theory, as
discussed in Chapter 15; one can then derive sense and nonsense with equal ease.

We must warn the reader about another semantic confusion which has caused error and contro-
versy in probability theory for many decades. It would be quite wrong and misleading to call ¢(f)
the “posterior distribution of f”, because that verbiage would imply to the unwary that f itself
is varying and is “distributed” in some way. This would be another form of the Mind Projection
Fallacy, confusing reality with a state of knowledge about reality. In the problem we are discussing,
f is simply an unknown constant parameter; what is “distributed” is not the parameter, but the
probability. Use of the terminology “probability distribution for f” will be followed, in order to
emphasize this constantly.

Of course, nothing in probability theory forbids us to consider the possibility that f might vary
with time or with circumstance; indeed, probability theory enables us to analyze that case fully,
as we shall see later. But then we should recognize that we are considering a different problem
than the one just discussed; it involves different quantities with different states of knowledge about
them, and requires a different calculation. Confusion of these two problems is perhaps the major
occupational disease of those who fool themselves by using the above misleading terminology. The
pragmatic consequence is that one is led to quite wrong conclusions about the accuracy and range
of validity of the results.

Questions about what happens when G/(q) is discontinuous at a point gy are discussed further
in Appendix B; for the present it suffices to note that, of course, approaching a discontinuous G(q)
as the limit of a sequence of continuous functions leads us to the correct results. As Gauss stressed
long ago, any kind of singular mathematics acquires a meaning only as a limiting form of some kind
of well-behaved mathematics, and it is ambiguous until we specify exactly what limiting process we
propose to use. In this sense, singular mathematics has necessarily a kind of “anthropomorphic”
character; the question is not “What is it?”, but rather “How shall we define it so that it is in some
way useful to us?”

In the present case, we approach the limit in such a way that the density function develops a
sharper and sharper peak, going in the limit into a delta function pg 6(¢ — qo) signifying a discrete
hypothesis Hg, and enclosing a limiting area equal to the probability py of that hypothesis. Eq.
(4-55) below is an example. There is no difficulty except for those who are determined to make
difficulties.

But in fact, if we become pragmatic we note that f is not really a continuously variable
parameter. In its working lifetime, a machine will produce only a finite number of widgets; if it is so
well built that it makes 10% of them, then the possible values of f are a finite set of integer multiples
of 1078, Then our finite set theory will apply, and consideration of a continuously variable f is only
an approximation to the exact discrete theory. There is never any need to consider infinite sets or
measure theory in the real, exact problem. Likewise, any data set that can actually be recorded and
analyzed is digitized into multiples of some smallest element. Most cases of allegedly continuously
variable quantities are like this when one takes note of the actual, real-world situation.
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Testing an Infinite Number of Hypotheses

In spite of the pragmatic argument just given, thinking of continuously variable parameters is
often a natural and convenient approximation to a real problem (only we should not take it so
seriously that we get bogged down in the irrelevancies for the real world that infinite sets and
measure theory generate). So suppose that we are now testing simultaneously an uncountably
infinite number of hypotheses about the machine. As often happens in mathematics, this actually
makes things simpler because analytical methods become available. However, the logarithmic form
of the previous equations is now awkward, and so we will go back to the original probability form

(4-3):

P(D|AX)

PAIDX) = P(AIX) e

Letting A now stand for the proposition “The fraction of bad ones is in the range (f, f+df)”, there
is a prior pdf

PAIX) = g(fI1X) df (4-49)

which gives the probability that the fraction of bad ones is in the range df; and let D stand for the
result thus far of our experiment:

D = “N widgets were tested and we found the results GGBGBBG - - - |
containing in all n bad ones and (N — n) good ones.”

Then the posterior pdf for f is given by

P(D|A, X)

PAIDX) = PAIX) =55

= g(fIDX)df,
so the prior and posterior pdf’s are related by

P(D|AX)

9U1DX) = o(1X) prpres (4-50)

The denominator is just a normalizing constant, which we could calculate directly; but usually
it is easier to determine (if it is needed at all) from requiring that the posterior pdf satisfy the
normalization condition

PO <7 <1Dx)= [ gtDx) =1, (1-51)
0

which we should think of as an extremely good approximation to the exact formula, which has a
sum over an enormous number of discrete values of f, instead of an integral.

The evidence of the data thus lies entirely in the f dependence of P(D|AX). At this point,
let us be very careful, in view of some errors that have trapped the unwary. In this probability,
the conditioning statement A specifies an interval df, not a point value of f. Are we justified in
taking an implied limit df — 0 and replacing P(D|AX) with P(D|H¢X)? Most writers have not
hesitated to do this.

Mathematically, the correct procedure would be to evaluate P(D]|AX ) exactly for positive df,
and pass to the limit df — 0 only afterward. But a tricky point is that if the problem contains
another parameter # in addition to f, then this procedure is ambiguous until we take the warning
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of Gauss very seriously, and specify exactly how the limit is to be approached (does df tend to zero
at the same rate for all values of §7). For example, if we set df = €h(f) and pass to the limit € — 0,
our final conclusions may depend on which function h(#) was used. Those who fail to notice this
fall into the famous Borel-Kolmogorov Paradox, in which a seemingly well-posed problem appears
to have many different correct solutions. We shall discuss this in more detail later (Chapter 15)
and show that the paradox is averted by strict adherence to our Chapter 2 rules.

In the present relatively simple problem, f is the only parameter present and P(D|H;X) is
a continuous function of f; this is surely enough to guarantee that the limit is well-behaved and
uneventful. But just to be sure, let us take the trouble to demonstrate this by direct application
of our Chapter 2 rules, keeping in mind that this continuum treatment is really an approximation
to an exact discrete one. Then with df > 0, we can resolve A into a disjunction of a finite number
of discrete propositions:

A=A+ A +...+4,

where A; = Hy (f being one of the possible discrete values) and the A; specify the discrete values
of f in the interval (f, f + df). They are mutually exclusive, so as we noted in Chapter 2, Eq.
(2-49), application of the product rule and the sum rule gives the general result

_ 2 P(AYX) P(D]AX)
a Ez P(Ai|X)

P(D|AX) = P(D|(Ay + Ay + ...+ A)X) (4-52)

which is a weighted average of the separate probabilities P(D|A;X ). This may be regarded also as
a generalization of (4-35).

Then if all the P(D|A; X ) were equal, (4-52) would become independent of their prior proba-
bilities P(A;|X ) and equal to P(D|A1X) = P(D|H ;X ); the fact that the conditioning statement
in the left-hand side of (4-52) is a logical sum makes no difference, and P(D|AX) would be rigor-
ously equal to P(D|H¢X). Even if the P(D|A;X) are not equal, as df — 0, we have n — 1 and
eventually A = Ay, with the same result.

It may appear that we have gone to extraordinary lengths to argue for an almost trivially
simple conclusion. But the story of the schoolboy who made a mistake in his sums and concluded
that the rules of arithmetic are all wrong, is not fanciful. There is a long history of workers who
did seemingly obvious things in probability theory without bothering to derive them by strict
application of the basic rules, obtained nonsensical results — and concluded that probability theory
as logic was at fault. The greatest, most respected mathematicians and logicians have fallen into
this trap momentarily, and some philosophers spend their entire lives mired in it; we shall see some
examples in the next Chapter.

Such a simple operation as passing to the limit df — 0 may produce results that seem to us
obvious and trivial; or it may generate a Borel-Kolmogorov paradox. We have learned from much
experience that this care is needed whenever we venture into a new area of applications; we must
go back to the beginning and derive everything directly from first principles applied to finite sets.
If we obey the Chapter 2 rules prescribed by Cox’s theorems, we are rewarded by finding beautiful
and useful results, free of contradictions.

Now if we were given that f is the correct fraction of bad ones, then the probability of getting
a bad one at each trial would be f, and the probability of getting a good one would be (1 — f). The
probabilities at different trials are, by hypothesis (i.e., one of the many statements hidden there in
X), logically independent given f, and so, as in our derivation of the binomial distribution (3-74),

P(DH;X) = f"(1= f)¥" (4-53)
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(note that the experimental data D told us not only how many good and bad ones were found, but
also the order in which they appeared). Therefore, we have the posterior pdf

=DV U)o
Jo (1= [)N=m g(fIX) df

g(fIDX) = (4-54)

You may be startled to realize that all of our previous discussion in this Chapter is contained in
this simple looking equation, as special cases. For example, the multiple hypothesis test starting
with (4-38) and including the final results (4-40) — (4-44) is all contained in (4-54) corresponding
to the particular choice of prior pdf :

GUIX) = 301 107)8(F = )+ (1= 1078/ = )+ 1076/ — 00) (4-55)

This is a case where the cumulative pdf, G(f) is discontinuous. The three delta—functions corre-
spond to the three discrete hypotheses B, A, C' respectively, of that example. They appear in the
prior pdf (4-55) with coefficients which are the prior probabilities (4-28); and in the posterior pdf
(4-54) with altered coefficients which are just the posterior probabilities (4-40), (4-43), (4-44).

Readers who have been taught to mistrust delta—functions as “nonrigorous” are urged to read
Appendix B at this point. The issue has nothing to do with mathematical rigor; it is simply one of
notation appropriate to the problem. It would be difficult and awkward to express the information
conveyed in (4-55) by a single equation in Lebesgue-Stieltjes type notation. Indeed, failure to use
delta—functions where they are clearly called for has led mathematicians into elementary errors, as
noted in Appendix B.

Suppose that at the start of this test our robot was fresh from the factory; it had no prior
knowledge about the machines at all, except for our assurance that it is possible for a machine to
make a good one, and also possible for it to make a bad one. In this state of ignorance, what prior
pdf g(f|X) should it assign? If we have definite prior knowledge about f, this is the place to put
it in; but we have not yet seen the principles needed to assign such priors. Even the problem of
assigning priors to represent “ignorance” will need much discussion later; but for a simple result
now it may seem to the reader, as it did to Laplace 200 years ago, that in the present case the
robot has no basis for assigning to any particular interval df a higher probability than to any other
interval of the same size; so the only honest way it can describe what it knows is to assign a uniform
prior probability density, g(f|X) = const. This will receive a better theoretical justification later;
to normalize it correctly as in (4-51) we must take

ofIX)=1, 0<f<L (4-56)

The integral in (4-54) is then the well-known Eulerian integral of the first kind, today more
commonly called the complete Beta—function; and (4-54) reduces to

ngj(VN—l_—l?)z!)! fra-pe (s

g(fIDX) =
[Historical Digression: It appears that this result was first found by an amateur mathematician,
the Rev. Thomas Bayes (1763). For this reason, the kind of calculations we are doing are often
called “Bayesian”. The general result (4-3) is usually called “Bayes’ theorem”, although Bayes
never wrote it. This terminology is misleading in several respects; firstly, (4-3) is nothing but the
product rule of probability theory which was recognized by other writers, such as Bernoulli and



424 4: Testing an Infinite Number of Hypotheses 424

de Moivre, long before the work of Bayes. It was not Bayes, but Laplace (1774) who first saw the
result in generality and showed how to use it in real problems of hypothesis testing. Finally, the
calculations we are doing — the direct application of probability theory as logic — are more general
than mere application of Bayes’ theorem; that is only one of several items in our toolbox.]

The right-hand side of (4-57) has a single peak in (0 < f < 1), located by differentiation at

f=7

==

: (4-58)

just the observed proportion, or relative frequency, of bad ones. To find the sharpness of the peak,
write

L(f)y=logg(fIDX)=nlogf+ (N —n)log(l— f)+ const. (4-59)

and expand L(f) in a Taylor series about f The first terms are

= uh) - (4-60)
where
. _ J(=)
ol = = (4-61)

and so, to this approximation, (4-57) is a gaussian, or normal, distribution:

g(fIDX)~ K exp {— M} (4-62)

202

and K is a normalizing constant. As explained in Appendix E, (4-62) is actually an excellent
approximation to (4-57)in the entire interval (0 < f < 1), provided that n >> 1 and (N —n) >> 1.
Properties of the gaussian distribution are discussed in depth in Chapter 7.

Thus after observing n bad ones in N trials, the robot’s state of knowledge about f can be
described reasonably well by saying that it considers the most likely value of f to be just the
observed fraction of bad ones, and it considers the accuracy of this estimate to be such that the
interval f:l: o is reasonably likely to contain the true value. The parameter o is called the standard
deviation and o the variance of the pdf (4-62). More precisely, from numerical analysis of (4-62)
the robot assigns:

50% probability that the true value of f is contained in the interval f:l: 0.68 o,
90% probability that it is contained in f 4 1.650,
99% probability that it is contained in f 4 2.57 0.

As the number N of tests increases, these intervals shrink, according to (4-61), proportional to
N2 a common rule that arises repeatedly in probability theory.

In this way, we see that the robot starts in a state of “complete ignorance” about f; but as
it accumulates information from the tests, it acquires more and more definite opinions about f,
which correspond very nicely to common sense. Two cautions; (1) all this applies only to the case
where, although the numerical value of f is initially unknown, it was one of the conditions defining
the problem that f is known not to be changing with time, and (2) again we must warn against
the error of calling o the “variance of f”, which would imply that f is varying, and that o is a
real (i.e., measurable) physical property of f. That is one of the most common forms of the Mind
Projection Fallacy.
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It is really necessary to belabor this point: ¢ is not a real property of f, but only a property of
the probability distribution that the robot assigns to represent its state of knowledge about f. Two
robots with different information would, naturally and properly, assign different pdf’s for the same
unknown quantity f, and the one which is better informed will probably — and deservedly — be able
to estimate f more accurately; that is, to use a smaller o.

But as noted, we may consider a different problem in which f is variable if we wish to do so.
Then the mean—square variation s? of f over some class of cases will become a “real” property, in
principle measurable, and the question of its relation, if any, to the o of the robot’s pdf for that
problem can be investigated mathematically, as we shall do later in connection with time series.
The relation will prove to be: if we know ¢ but have as yet no data and no other prior information
about s, then the best prediction of s that we can make is essentially equal to ¢; and if we do have
the data but do not know ¢ and have no other prior information about o, then the best estimate of
o that we can make is nearly equal to s. These relations are mathematically derivable consequences
of probability theory as logic.

Indeed, it would be interesting, and more realistic for some quality—control situations, to
introduce the possibility that f might vary with time, and the robot’s job is to make the best
possible inferences about whether a machine is drifting slowly out of adjustment, with the hope of
correcting trouble before it became serious. Many other extensions of our problem occur to one:
a simple classification of widgets as good and bad is not too realistic; there is likely a continuous
gradation of quality, and by taking that into account we could refine these methods. There might
be several important properties instead of just “badness” and “goodness” (for example, if our
widgets are semiconductor diodes, forward resistance, noise temperature, rf impedance, low—level
rectification efficiency, etc.), and we might also have to control the quality with respect to all of
these. There might be a great many different machine characteristics, instead of just Hy, about
which we need plausible inference.

You see that we could spend years and write volumes on all the further ramifications of this
problem, and there is already a huge literature on it. But although there is no end to the complicated
details that can be generated, there is in principle no difficulty in making whatever generalization
you need. It requires no new principles beyond what we have given.

In the problem of detecting a drift in machine characteristics, you would want to compare
our robot’s procedure with the ones proposed long ago by Shewhart (1931). You would find that
Shewhart’s methods are intuitive approximations to what our robot would do; in some of the cases
involving a normal distribution they are the same (but for the fact that Shewhart was not thinking
sequentially; he considered the number of tests determined in advance). These are, incidentally,
the only cases where Shewhart felt that his proposed methods were fully satisfactory.

This is really the same problem as that of detecting a signal in noise, which we shall study in
more detail later on.

Simple and Compound (or Composite) Hypotheses

The hypotheses (A, B, C, H) that we have considered thus far refer to a single parameter f = M /N,
the unknown fraction of bad widgets in our box, and specify a sharply defined value for f (in Hy,
it can be any prescribed number in 0 < f < 1). Such hypotheses are called simple, because if we
formalize this a bit more by defining an abstract “parameter space” {} consisting of all values of
the parameter or parameters that we consider to be possible, such an hypothesis is represented by
a single point in €.

But testing all the simple hypotheses in {2 may be more than we need for our purposes. It may
be that we care only whether our parameter lies in some subset §2; of Q or in the complementary
set 3 = Q — Qy, and the particular value of f in that subset is uninteresting (i.e., it would make
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no difference for what we plan to do next). Can we proceed directly to the question of interest,
instead of requiring our robot to test every simple hypothesis in 47

The question is, to us, trivial; our starting point, Eq. (4-3), applies for all hypotheses H,
simple or otherwise, so we have only to evaluate the terms in it for this case. But in (4-54) we
have done almost all of that, and need only one more integration. Suppose that if f > 0.1 then we
need to take some action (stop the machine and readjust it), but if f < 0.1 we should allow it to
continue running. The space € then consists of all f in [0, 1], and we take Q4 as comprising all f
in (0.1, 1], H as the hypothesis that f is in €. Since the actual value of f is not of interest, f is
now called a nuisance parameter; and we want to get rid of it.

In view of the fact that the problem has no other parameter than f and different intervals
df are mutually exclusive, the discrete sum rule P(A; 4+ .-+ + A,|B) = >, P(A;|B) will surely
generalize to an integral as the A; become more and more numerous. Then the nuisance parameter
[ is removed by integrating it out of (4-54):

o PO = g1 )
POIDX) = T e = = g (X df (4-63)

In the case of a uniform prior pdf for f, we may use (4-54) and the result is the incomplete Beta
function: the posterior probability that f is in any specified interval (a < f < b) is

Pla< f<bDX)= % / (1= HNTdf (4-64)

and in this form computer evaluation is easy.

More generally, when we have any composite hypothesis to test, probability theory tells us
that the proper procedure is simply to apply the principle (4-1) by summing or integrating out,
with respect to appropriate priors, whatever nuisance parameters it contains. The conclusions thus
found take fully into account all of the evidence contained in the data and in the prior information
about the parameters. Probability theory used as logic enables us to test, with a single principle,
any number of hypotheses, simple or compound, in the light of the data and prior information. In
later Chapters we shall demonstrate these properties in many quantitatively worked out examples.

COMMENTS

Etymology: Our opening quotation from John Craig (1699) is from a curious work on the proba-
bilities of historical events, and how they change as the evidence changes. Craig’s work was ridiculed
mercilessly in the 19’th Century; and indeed, his applications to religious issues do seem weird to us
today. But S. M. Stigler (1986) notes that Craig was writing at a time when the term “probability”
had not yet settled down to its present technical meaning, as referring to a (0-1) scale; and if we
merely interpret Craig’s “probability of an hypothesis” as our log-odds measure (which we have
seen to have in some respects a more primitive and intuitive meaning than probability), Craig’s
reasoning was actually quite good, and may be regarded as an anticipation of what we have done
in this Chapter.

Today, the logarithm—of-odds {u = log[p/(1—p)]} has proved to be such an important quantity
that it deserves a shorter name; but we seem to have trouble finding one. 1. J. Good (1950) was
perhaps the first author to stress its importance in a published work, and he proposed the name
lods, but the term has a leaden ring to our ears, as well as a non—descriptive quality, and it has
never caught on.

Our same quantity (4-8) was used by Alan Turing and I. J. Good from 1941, in classified
cryptographic work in England during World War II. Good (1980) later reminisced about this
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briefly, and noted that Turing coined the name “deciban” for it. This has not caught on, presumably
because nobody today can see any rationale for it.

The present writer, in his lectures of 1955-1964 (for example, Jaynes, 1958), proposed the
name evidence, which is intuitive and descriptive in the sense that for given proportions, twice as
many data provide twice as much evidence for an hypothesis. This was adopted by Tribus (1969),
but it has not caught on either.

More recently, the term logit for U = log[y/(a — y)] where {y;} are some items of data and
a is chosen by some convention such as a = 100, has come into use. Likewise, graphs using U for
one axis, are called logistic. For example, in one commercial software graphics program, an axis
on which values of U are plotted is called a “logit axis” and regression on that graph is called
“logistic regression”. There is at least a mathematical similarity to what we do here, but not any
very obvious conceptual relation because U is not a measure of probability. In any event, the term
“logistic” had already an established usage dating back to Poincaré and Peano, as referring to the
Russell-Whitehead attempt to reduce all mathematics to logic.

In the face of this confusion, we propose and use the following terminology. Note that we need
two terms; the name of the quantity, and the name of the units in which it is measured. For the
former we have retained the name evidence, which has at least the merit that it has been defined,
and used consistently with the definition, in previously published works. One can then use various
different units, with different names. In this Chapter we have measured evidence in decibels because
of its familiarity to scientists, the ease of finding numerical values, and the connection with the
base 10 number system which makes the results intuitively clear.

What Have We Accomplished?

The things which we have done in such a simple way in this Chapter have been, in one sense,
deceptive. We have had an introduction, in an atmosphere of apparent triviality, into almost every
kind of problem that arises in the hypothesis testing business. But do not be deceived by the
simplicity of our calculations into thinking that we have not reached the real nontrivial problems
of the field. Those problems are only straightforward mathematical generalizations of what we
have done here, and the mathematically mature reader who has understood this Chapter can now
solve them for himself, probably with less effort than it would require to find and understand the
solutions available in the literature.

In fact, the methods of solution that we have indicated have far surpassed, in power to yield
useful results, the methods available in the conventional non—Bayesian literature of hypothesis
testing. To the best of our knowledge, no comprehension of the facts of multiple hypothesis testing,
as illustrated in Fig. 4.1, can be found in the orthodox literature (which explains why the principles
of multiple hypothesis testing have been controversial in that literature). Likewise, our form of
solution of the compound hypothesis problem (4-63) will not be found in the “orthodox” literature
of the subject.

It was our use of probability theory as logic that has enabled us to do so easily what was impos-
sible for those who thought of probability as a physical phenomenon associated with “randomness”.
Quite the opposite; we have thought of probability distributions as carriers of information. At the
same time, under the protection of Cox’s theorems, we have avoided the inconsistencies and ab-
surdities which are generated inevitably by those who try to deal with the problems of scientific
inference by inventing ad hoc devices instead of applying the rules of probability theory. For a
devastating criticism of these devices, see the book review by Pratt (1961).

However, it is not only in hypothesis testing that the foundations of the theory matter for

applications. As indicated in Chapter 1 and Appendix A, our formulation was chosen with the aim
of giving the theory the widest possible range of useful applications. To drive home how much the
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scope of solvable problems depends on the chosen foundations, the reader may try the following
exercise:

Exercise 4.6. In place of our product and sum rules, Ruelle (1991, p. 17) defines the ‘mathe-
matical presentation’ of probability theory by three basic rules, which are in our notation:

If A and B are mutually exclusive, p(A+ B) = p(A
if A and B are independent, p(AB) =p(A

Survey our last two Chapters, and determine how many of the applications that we solved in
Chapters 3 and 4 could have been solved by application of these rules. Hints: If A and B are not
independent, is p(AB) determined by them? Is the notion of conditional probability defined?
Ruelle makes no distinction between logical and causal independence; he defines ‘independence’
of A and B as meaning: “the fact that one is realized has in the average no influence on the
realization of the other.” It appears, then, that he would always accept (4-27) for all n.

This exercise makes it clear why conventional expositions do not consider scientific inference
to be a part of probability theory. Indeed, orthodox statistical theory is helpless to deal with such
problems because, thinking of probability as a physical phenomenon, it recognizes the existence
only of sampling probabilities; thus it denies itself the technical tools needed to incorporate prior
information, eliminate nuisance parameters, or to recognize the information contained in a posterior
probability. But even most of the sampling theory results that we derived in Chapter 3, are beyond
the scope of the mathematical and conceptual foundation given by Ruelle, as are virtually all of
the parameter estimation results to be derived in Chapter 6.

We shall find later that our way of treating compound hypotheses illustrated here also generates
automatically the conventional orthodox significance tests or superior ones; and at the same time
gives a clear statement of what they are testing and their range of validity, previously lacking in
the orthodox literature.

Now that we have seen the beginnings of this situation, before turning to more serious and
mathematically more sophisticated problems, we shall relax and amuse ourselves in the next Chap-
ter by examining how probability theory as logic can clear up all kinds of weird errors in the older
literature, that arose from very simple misuse of probability theory, but whose consequences were
relatively trivial. In Chapter 15 we consider some more complicated and serious errors, that are
causing major confusion in the current literature. Finally, in Chapter 17 and Section B on Ad-
vanced Applications we shall see some even more serious errors of orthodox thinking, which today
block the progress of science and endanger the public health and safety.
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CHAPTER 5
QUEER USES FOR PROBABILITY THEORY

“I cannot conceal the fact here that in the specific application of these
rules, I foresee many things happening which can cause one to be badly
mistaken if he does not proceed cautiously ...”
— James Bernoulli (1713); Part 4, Chapter 111

I. J. Good (1950) has shown how we can use probability theory backwards to measure our own
strengths of belief about propositions. For example, how strongly do you believe in extrasensory
perception?

Extrasensory Perception

What probability would you assign to the hypothesis that Mr. Smith has perfect extrasensory
perception? More specifically, he can guess right every time which number you have written down.
To say zero is too dogmatic. According to our theory, this means that we are never going to allow
the robot’s mind to be changed by any amount of evidence, and we don’t really want that. But
where is our strength of belief in a proposition like this?

Our brains work pretty much the way this robot works, but we have an intuitive feeling for
plausibility only when it’s not too far from 0 db. We get fairly definite feelings that something is
more than likely to be so or less than likely to be so. So the trick is to imagine an experiment.
How much evidence would it take to bring your state of belief up to the place where you felt very
perplexed and unsure about it? Not to the place where you believed it — that would overshoot the
mark, and again we’d lose our resolving power. How much evidence would it take to bring you just
up to the point where you were beginning to consider the possibility seriously?

We take this man who says he has extrasensory perception, and we will write down some
numbers from 1 to 10 on a piece of paper and ask him to guess which numbers we’ve written down.
We’ll take the usual precautions to make sure against other ways of finding out. If he guesses the
first number correctly, of course we will all say “you’re a very lucky person, but I don’t believe it.”
And if he guesses two numbers correctly, we’ll still say “you’re a very lucky person, but I don’t
believe it.” By the time he’s guessed four numbers correctly — well, I still wouldn’t believe it. So
my state of belief is certainly lower than —40 db.

How many numbers would he have to guess correctly before you would really seriously consider
the hypothesis that he has extrasensory perception? In my own case, I think somewhere around
10. My personal state of belief is, therefore, about —100 db. You could talk me into a 10 change,
and perhaps as much as £30, but not much more than that.

But on further thought we see that, although this result is correct, it is far from the whole
story. In fact, if he guessed 1000 numbers correctly, I still would not believe that he has ESP, for an
extension of the same reason that we noted in Chapter 4 when we first encountered the phenomenon
of resurrection of dead hypotheses. An hypothesis A that starts out down at —100 db can hardly ever
come to be believed whatever the data, because there are almost sure to be alternative hypotheses
(B1, Ba,...) above it, perhaps down at —60 db. Then when we get astonishing data that might
have resurrected A, the alternatives will be resurrected instead. Let us illustrate this by two famous
examples, involving telepathy and the discovery of Neptune. Also we note some interesting variants
of this. Some are potentially useful, some are instructive case histories of probability theory gone
wrong, in the way Bernoulli warned us about.
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Mrs. Stewart’s Telepathic Powers

Before venturing into this weird area, the writer must issue a disclaimer. I was not there, and am
not in a position to affirm that the experiment to be discussed actually took place; or if it did,
that the data were actually obtained in a valid way. Indeed, that is just the problem that you and
I always face when someone tries to persuade us of the reality of ESP or some other marvelous
thing — such things never happen to us or in our presence. All we are able to affirm is that the
experiment and data have been reported in a real, verifiable reference (Soal and Bateman, 1954).
This is the circumstance that we want to analyze now by probability theory. Lindley (1957) and
Bernardo (1980) have also taken note of it from the standpoint of probability theory, and Boring
(1955) discusses it from the standpoint of psychology.

In the reported experiment, from the experimental design the probability of guessing a card
correctly should have been p = 0.2, independently in each trial. Let H, be the “null hypothesis”
which states this, and supposes that only “pure chance” is operating (whatever that means). Ac-
cording to the binomial distribution (3-74) H, predicts that if a subject has no ESP, the number
r of successful guesses in n trials should be about (mean + standard deviation):

(F)est =mp £ /np(l —p). (5-1)
For n = 37100 trials, this is 7420 4+ 77.

But according to the report, Mrs. Gloria Stewart guessed correctly r = 9410 times in 37100
trials, for a fractional success rate of f = 0.2536. These numbers constitute our data D. At first
glance, they may not look very sensational; note, however, that her score was

9410 — 7420

= 25.8 5-2

standard deviations away from the chance expectation.

The probability of getting these data, on hypothesis H,, is then the binomial

Pl = (") - (53)

But the numbers n,r are so large that we need the Stirling approximation to the binomial, derived
in Appendix E:

P(D|H,) = Ae"H(/:p) (5-4)
where

H(f,p)= f log(p/f)+ (1 = f) log[(1 —p)/(1 = f)] = —0.008452 (5-5)

is the entropy of the observed distribution (f,1 — f) = (0.2536, 0.7464) relative to the expected
one (p, 1 —p) = (0.2000, 0.8000), and

n 1/2
A= )] = 0.00476 . (5-6)

|:27T r(n—r
Then we may take as the likelihood L, of H,, the sampling probability

L, = P(D|H,) = 0.00476 exp(—313.6) = 3.15 x 107137 , 5-7
P P
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This looks fantastically small; but before jumping to conclusions the robot should ask: are the data
also fantastically improbable on the hypothesis that Mrs. Stewart has telepathic powers? If they
are, then (5-7) may not be so significant after all.

Consider the Bernoulli class of alternative hypotheses H, (0 < ¢ < 1), which suppose that the
trials are independent, but that assign different probabilities of success ¢ to Mrs. Stewart (¢ > 0.2
if the hypothesis considers her to be telepathic). Out of this class, the hypothesis H; that assigns
g = [ = 0.2536 yields the greatest P(D|H,) that can be attained in the Bernoulli class, and for
this the entropy (5-5) is zero, yielding a maximum likelihood of

L;=P(D|Hs)= A=0.00476 . (5-8)

So if the robot knew for a fact that Mrs. Stewart is telepathic to the extent of ¢ = 0.2536, then the
probability that she could generate the observed data would not be particularly small. Therefore,
the smallness of (5-7) is indeed highly significant; for then the likelihood ratio for the two hypotheses
must be fantastically small. The relative likelihood depends only on the entropy factor:

Ly _ P(DIHp) _ um —137
— = ———~ =¢"" =exp(—313.6) = 6.61 x 10 . (5-9)
Ly P(D|Hy)

and the robot would report: “the data do indeed support Hy over H, by an enormous factor”.

Digression on the Normal Approximation

Note, in passing, that in this calculation large errors could be made by unthinking use of the normal
approximation to the binomial, also derived in Appendix E (or compare with (4-62)):

P(D|H,, X ) ~ (const.) X exp [ (5-10)

To use it here instead of the entropy approximation (5-4), amounts to replacing the entropy H(f, p)
by the first term of its power series expansion about the peak. Then we would have found instead
a likelihood ratio exp (—333.1). Thus the normal approximation would have made Mrs. Stewart
appear even more marvelous than the data indicate, by an additional odds ratio factor of

exp (19.5) = 2.94 x 10° . (5-11)

This should warn us that, quite generally, normal approximations cannot be trusted far out in
the tails of a distribution. In this case, we are 25.8 standard deviations out, and the normal
approximation is in error by over eight orders of magnitude.

Unfortunately, this is just the approximation used by the Chi-squared test discussed later,
which can therefore lead us to wildly misleading conclusions when the “null hypothesis” being
tested fits the data very poorly. Those who use the Chi-squared test to support their claims
of marvels are usually helping themselves by factors such as (5-11). In practice, as discussed in
Appendix E, the entropy calculation (5-5) is just as easy and far more trustworthy (although they
amount to the same thing within one or two standard deviations of the peak).
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Back to Mrs. Stewart

In any event, our present numbers are indeed fantastic; on the basis of such a result, ESP researchers
would proclaim a virtual certainty that ESP is real. If we compare H, and H; by probability theory,
the posterior probability that Mrs. Stewart has ESP to the extent of ¢ = f = 0.2536, is

P(DIHy, X) _ Prly
P(DIX) ~ PiL;+ P,L,

P(H/|D,X) = P(H|X) (5-12)

where P,, Py are the prior probabilities of H,, H;. But because of (5-9), it hardly matters what
these prior probabilities are; in the view of an ESP researcher who does not consider the prior
probability Py = P(Hf|X) particularly small, P(H¢|D,X) is so close to unity that its decimal
expression starts with over a hundred 9’s.

He will then react with anger and dismay when, in spite of what he considers this overwhelming
evidence, we persist in not believing in ESP. Why are we, as he sees it, so perversely illogical and
unscientific?

The trouble is that the above calculations (5-9) and (5-12) represent a very naive application
of probability theory, in that they consider only H, and H;; and no other hypotheses. If we really
knew that H, and H; were the only possible ways the data (or more precisely, the observable report
of the experiment and data) could be generated, then the conclusions that follow from (5-9) and
(5-12) would be perfectly all right. But in the real world, our intuition is taking into account some
additional possibilities that they ignore.

Probability theory gives us the results of consistent plausible reasoning from the information
that was actually used in our calculation. It can lead us wildly astray, as Bernoulli noted in our
opening quotation, if we fail to use all the information that our common sense tells us is relevant
to the question we are asking. When we are dealing with some extremely implausible hypothesis,
recognition of a seemingly trivial alternative possibility can make orders of magnitude difference in
the conclusions. Taking note of this, let us show how a more sophisticated application of probability
theory explains and justifies our intuitive doubts.

Let H,, Hy, and L,, Ly, P,, Py be as above; but now we introduce some new hypotheses
about how this report of the experiment and data might have come about, which will surely be
entertained by the readers of the report even if they are discounted by its writers.

These new hypotheses (Hy, Hy...Hy) range all the way from innocent possibilities such as
unintentional error in the record keeping, through frivolous ones (perhaps Mrs. Stewart was having
fun with those foolish people, with the aid of a little mirror that they did not notice), to less
innocent possibilities such as selection of the data (not reporting the days when Mrs. Stewart was
not at her best), to deliberate falsification of the whole experiment for wholly reprehensible motives.
Let us call them all, simply, “deception”. For our purposes it does not matter whether it is we or
the researchers who are being deceived, or whether the deception was accidental or deliberate. Let
the deception hypotheses have likelihoods and prior probabilities L;, P;, 7 = (1,2,..., k).

There are, perhaps, 100 different deception hypotheses that we could think of and are not too
far—fetched to consider, although a single one would suffice to make our point.

In this new logical environment, what is the posterior probability of the hypothesis H; that
was supported so overwhelmingly before? Probability theory now tells us that

PrLy
Pfo + Ppr + YXPL; '

P(H{|D,X)= (5-13)

Introduction of the deception hypotheses has changed the calculation greatly; in order for
P(H¢|DX) to come anywhere near unity it is now necessary that
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Ppr + X PL; << Pfo . (5*14)

Let us suppose that the deception hypotheses have likelihoods L; of the same order as Ly in (5-
8); i.e., a deception mechanism could produce the reported data about as easily as could a truly
telepathic Mrs. Stewart. From (5-7), P, L, is completely negligible, so (5-14) is not greatly different
from

Y Pi<< Py (5-15)

But each of the deception hypotheses is, in my judgment, more likely than Hy, so there is not the
remotest possibility that the inequality (5-15) could ever be satisfied.

Therefore, this kind of experiment can never convince me of the reality of Mrs. Stewart’s
ESP; not because I assert Py = 0 dogmatically at the start, but because the verifiable facts can
be accounted for by many alternative hypotheses, every one of which I consider inherently more
plausible than Hy, and none of which is ruled out by the information available to me.

Indeed, the very evidence which the ESP’ers throw at us to convince us, has the opposite effect
on our state of belief; issuing reports of sensational data defeats its own purpose. For if the prior
probability of deception is greater than that of ESP, then the more improbable the alleged data
are on the null hypothesis of no deception and no ESP, the more strongly we are led to believe, not
in ESP, but in deception. For this reason, the advocates of ESP (or any other marvel) will never
succeed in persuading scientists that their phenomenon is real, until they learn how to eliminate
the possibility of deception in the mind of the reader. As (5-15) shows, the reader’s total prior
probability of deception by all mechanisms must be pushed down below that of ESP.

It is interesting that Laplace perceived this phenomenon long ago. His Fssai Philosophique
sur les probabilités (1819) has a long chapter on the “Probabilities of Testimonies”, in which he
calls attention to “the immense weight of testimonies necessary to admit a suspension of natural
laws”. He notes that those who make recitals of miracles, “decrease rather than augment the belief
which they wish to inspire; for then those recitals render very probable the error or the falsehood
of their authors. But that which diminishes the belief of educated men often increases that of the
uneducated, always avid for the marvelous.”

We observe the same phenomenon at work today, not only in the ESP enthusiast, but in the
astrologer, reincarnationist, exorcist, fundamentalist preacher or cultist of any sort, who attracts
a loyal following among the uneducated by claiming all kinds of miracles; but has zero success in
converting educated people to his teachings. Educated people, taught to believe that a cause—effect
relation requires a physical mechanism to bring it about, are scornful of arguments which invoke
miracles; but the uneducated seem actually to prefer them.

Note that we can recognize the clear truth of this psychological phenomenon without taking
any stand about the truth of the miracle; it is possible that the educated people are wrong. For
example, in Laplace’s youth educated persons did not believe in meteorites, but dismissed them as
ignorant folklore because they are so rarely observed. For one familiar with the laws of mechanics
the notion that “stones fall from the sky” seemed preposterous, while those without any conception
of mechanical law saw no difficulty in the idea. But the fall at Laigle in 1803, which left fragments
studied by Biot and other French scientists, changed the opinions of the educated — including
Laplace himself. In this case the uneducated, avid for the marvelous, happened to be right: c¢’est
la vie.

Indeed, in the course of writing this Chapter, the writer found himself a victim of this phe-
nomenon. In the Ph. D. thesis of G. L. Bretthorst (1987), reported in Chapter 21 below and more
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fully in Bretthorst (1988), we applied Bayesian analysis to estimation of frequencies of nonstation-
ary sinusoidal signals, such as exponential decay in nuclear magnetic resonance (NMR) data, or
chirp in oceanographic waves. We found — as was expected on theoretical grounds — an improved
resolution over the previously used fourier transform methods.

If we had claimed a 50% improvement, we would have been believed at once, and other re-
searchers would have adopted this method eagerly. But in fact we found orders of magnitude
improvement in resolution. It was, in retrospect, foolish of us to mention this at the outset, for in
the minds of others the prior probability that we were irresponsible charlatans was greater than the
prior probability that a new method could possibly be that good; and we were not at first believed.

Fortunately, we were able, by presenting many numerical analyses of data and distributing free
computer programs so that doubters could check our claims for themselves on whatever data they
chose, to eliminate the possibility of deception in the minds of our audience, and the method did find
acceptance after all. The Bayesian analyses of free decay NMR signals now permits expermentalists
to extract much more information from their data than was possible by taking fourier transforms.

However, the reader should be warned that our probability analysis (5-13) of Mrs. Stewart’s
performance is still rather naive in that it neglects correlations; having seen a persistent deviation
from the chance expectation p = 0.2 in the first few hundred trials, common sense would lead us
to form the hypothesis that some unknown systematic cause is at work, and we would come to
expect the same deviation in the future. This would alter the numerical values given above, but
not enough to change our general conclusions. More sophisticated probability models which are
able to take such things into account are given in our discussions of advanced applications below;
relevant topics are Dirichlet priors, exchangeable sequences, and autoregressive models.

Now let us return to that original device of I. J. Good, which started this train of thought. After
all this analysis, why do we still hold that naive first answer of —100 db for my prior probability of
ESP, as recorded above, to be correct? Because Jack Good’s imaginary device can be applied to
whatever state of knowledge we choose to imagine; it need not be the real one. If I knew that true
ESP and pure chance were the only possibilities, then the device would apply and my assignment
of —100 db would hold. But knowing that there are other possibilities in the real world does not
change my state of belief about ESP; so the figure of —100 db still holds.

Therefore, in the present state of development of probability theory, the device of imaginary
results is usable and useful in a very wide variety of situations, where we might not at first think
it applicable. We shall find it helpful in many cases where our prior information seems at first
too vague to lead to any definite prior probabilities; it stimulates our thinking and tells us how
to assign them after all. Perhaps in the future we shall have more formal principles that make it
unnecessary.

Exercise 5.1. By applying the device of imaginary results, find your own strength of belief in
any three of the following propositions: (1) Julius Caesar is a real historical person (i.e., not a
myth invented by later writers); (2) Achilles is a real historical person; (3) The Earth is more
than a million years old; (4) Dinosaurs did not die out; they are still living in remote places; (5)
Owls can see in total darkness; (6) The configuration of the planets influences our destiny; (7)
Automobile seat belts do more harm than good; (8) High interest rates combat inflation; (9)
High interest rates cause inflation. [Hint: Try to imagine a situation in which the proposition
Hy being tested, and a single alternative Hq, would be the only possibilities, and you receive
new “data” D consistent with Ho: P(D|Hg) ~ 1. The imaginary alternative and data are to be
such that you can calculate the probability P(D|Hy). Always use an Hy that you are inclined
not to believe; if the proposition as stated seems highly plausible to you, then for Hg choose its
denial.]
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Much more has been written about the Soal experiments in ESP. The deception hypothesis,
already strongly indicated by our probability analysis, is supported by additional evidence (Hansel,
1980; Kurtz, 1985). Altogether, an appalling amount of effort has been expended on this incident,
and it might appear that the only result was to provide a pedagogical example of the use of
probability theory with very unlikely hypotheses. Can anything more useful be salvaged from it?

We think that this incident has some lasting value both for psychology and for probability
theory, because it has made us aware of an important general phenomenon which has nothing to
do with ESP; a person may tell the truth and not be believed, even though the disbelievers are
reasoning in a rational, consistent way. To the best of our knowledge it has not been noted before
that probability theory as logic automatically reproduces and explains this phenomenon. This
leads us to conjecture that it may generalize to other more complex and puzzling psychological
phenomena.

Converging and Diverging Views

Suppose that two people, Mr. A and Mr. B have differing views (due to their differing prior
information) about some issue, say the truth or falsity of some controversial proposition 5. Now
we give them both a number of new pieces of information or “data”, Dy, Ds,...D,, some favorable
to 5, some unfavorable. As n increases, the totality of their information comes to be more nearly
the same, therefore we might expect that their opinions about 5 will converge toward a common
agreement. Indeed, some authors consider this so obvious that they see no need to demonstrate it
explicitly, while Howson & Urbach (1989, p. 290) claim to have demonstrated it.

Nevertheless, let us see for ourselves whether probability theory can reproduce such phenomena.
Denote their prior information by I4, Ig respectively; and let Mr. A be initially a believer, Mr. B
a doubter:

P(S|I4)~1, P(S|Ig)~0 (5-16)

and after receiving data D, their posterior probabilities are changed to

P(S|DI4) = P(S|14) %
(5-17)
P(5|D1p) = P(5|Ip) %

If D supports S5, then since Mr. A already considers 5 almost certainly true, we have P(D|S14) ~
P(D|14), and so

P(S|DI) ~ P(S|14) (5-18)

Data D have no appreciable effect on Mr. A’s opinion (at least, on the probability scale; it might
have on the evidence scale). But now one would think that if Mr. B reasons soundly, he must
recognize that P(D|SIg) > P(D|Ip), and thus

P(S|DIg) > P(S|Ig) (5-19)

Mr. B’s opinion should be changed in the direction of Mr. A’s. Likewise, if D had tended to refute
S, one would expect that Mr. B’s opinions are little changed by it, while Mr. A’s will move in the
direction of Mr. B’s.

From this we might conjecture that, whatever the new information D, it should tend to bring
different people into closer agreement with each other, in the sense that.
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|P(5|D1a)) = P(S[DIg)| < [P(S]1a) = P(5]IB)] (5-20)

But although this can be verified in special cases, it is not true in general.

Is there some other measure of “closeness of agreement” such as log[P(S|D14)/P(S|DIg)], for
which this converging of opinions can be proved as a general theorem? Not even this is possible; the
failure of probability theory to give this expected result tells us that convergence of views is not a
general phenomenon. For robots and humans who reason according to the desiderata of Chapter 1,
something more subtle and sophisticated is at work.

Indeed, in practice we find that this convergence of opinions usually happens for small children;
for adults it happens sometimes but not always. For example, new experimental evidence does cause
scientists to come into closer agreement with each other about the explanation of a phenomenon.

Then it might be thought (and for some it is an article of faith in democracy) that open
discussion of public issues would tend to bring about a general concensus on them. On the contrary,
we observe repeatedly that when some controversial issue has been discussed vigorously for a few
years, society becomes polarized into opposite extreme camps; it is almost impossible to find anyone
who retains a moderate view. The Dreyfus affair in France, which tore the nation apart for 20 years,
is one of the most thoroughly documented examples of this (Bredin, 1986). Today, such issues as
nuclear power, abortion, criminal justice, etc. are following the same course. New information
given simultaneously to different people may cause a convergence of views; but it may equally well
cause a divergence.

This divergence phenomenon is observed also in relatively well-controlled psychological exper-
iments. Some have concluded that people reason in a basically irrational way; prejudices seem to
be strengthened by new information which ought to have the opposite effect. Kahneman & Tversky
(1972) draw the opposite conclusion from such psychological tests, and consider them an argument
against Bayesian methods.

But now, in view of the above ESP example, we wonder whether probability theory might also
account for this divergence and indicate that people may be, after all, thinking in a reasonably
rational, Bayesian way (i.e., in a way consistent with their prior information and prior beliefs).
The key to the ESP example is that our new information was not

S = “Fully adequate precautions against error or deception were taken, (5-21)
and Mrs. Stewart did in fact deliver that phenomenal performance.”

It was that some ESP researcher has claizmed that S is true. But if our prior probability for 5 is
lower than our prior probability that we are being deceived, hearing this claim has the opposite
effect on our state of belief from what the claimant intended.

But the same is true in science and politics; the new information a scientist gets is not that
an experiment did in fact yield this result, with adequate protection against error. It is that some
colleague has claimed that it did. The information we get from the TV evening news is not that a
certain event actually happened in a certain way; it is that some news reporter has claimed that it
did. Even seeing the event on our screens can no longer convince us, after recent revelations that
all major U.S. networks had faked some videotapes of alleged news events.

Scientists can reach agreement quickly because we trust our experimental colleagues to have
high standards of intellectual honesty and sharp perception to detect possible sources of error. And
this belief is justified because, after all, hundreds of new experiments are reported every month,
but only about once in a decade is an experiment reported that turns out later to have been
wrong. So our prior probability of deception is very low; like trusting children, we believe what
experimentalists tell us.
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In politics, we have a very different situation. Not only do we doubt a politician’s promises, few
people believe that news reporters deal truthfully and objectively with economic, social, or political
topics. We are convinced that virtually all news reporting is selective and distorted, designed not
to report the facts, but to indoctrinate us in the reporter’s socio—political views. And this belief is
justified abundantly by the internal evidence in the reporter’s own product — every choice of words
and inflection of voice shifting the bias invariably in the same direction.

Not only in political speeches and news reporting, but wherever we seek for information on
political matters, we run up against this same obstacle; we cannot trust anyone to tell us the truth,
because we perceive that everyone who wants to talk about it is motivated either by self-interest
or by ideology. In political matters, whatever the source of information, our prior probability of
deception is always very high. However, it is not obvious whether this alone can prevent us from
coming to agreement.

With this in mind, let us reexamine the equations of probability theory. To compare the
reasoning of Mr. A and Mr. B we could write Bayes’ theorem (5-17) in the logarithmic form

| [P(S|DIA)]:1 [P(S|IA)] | [P(D|SIA)P(D|IB)

P(S|DIp) P(S|Ip) P(D|I1) P(D|STg)

(5-22)

which might be described by a simple hand-waving mnemonic like

“log posterior = log prior + log likelihood”

Note, however, that (5-22) differs from our log-odds equations of Chapter 4, which might be
described by the same mnemonic. There we compared different hypotheses, given the same prior
information, and some factors P(D|I) cancelled out. Here we are considering a fixed hypothesis
S, in the light of different prior information and they do not cancel, so the “likelihood” term is
different.

In the above we supposed Mr. A to be the believer, so log (prior) > 0. Then it is clear that
on the log scale their views will converge as expected, the left-hand side of (5-22) tending to zero
monotonically (i.e., Mr A will remain a stronger believer than Mr. B) if

—log prior < log likelihood < 0,

and they will diverge monotonically if

log likelihood > 0 .

But they will converge with reversal (Mr. B becomes a stronger believer than Mr. A) if
—2log prior < log likelihood < —log prior ,
and they will diverge with reversal if
log likelihood < —2log prior .

Thus probability theory appears to allow, in principle, that a single piece of new information D
could have every conceivable effect on their relative states of belief.

But perhaps there are additional restrictions, not yet noted, which make some of these outcomes
impossible; can we produce specific and realistic examples of all four types of behavior? Let us
examine only the monotonic convergence and divergence by the following scenario, leaving it as an
exercise for the reader to make a similar examination of the reversal phenomena.

The new information D is: “Mr. N has gone on TV with a sensational claim that a commonly
used drug is unsafe” and three viewers, Mr. A, Mr. B, and Mr. C, see this. Their prior probabilities
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P(S|I) that the drug is safe are (0.9, 0.1, 0.9) respectively; i.e., initially, Mr. A and Mr. C were
believers in the safety of the drug, Mr. B a disbeliever.

But they interpret the information D very differently, because they have different views about
the reliability of Mr. N. They all agree that, if the drug had really been proved unsafe, Mr. N
would be right there shouting it: that is, their probabilities P(D|ST) are (1, 1, 1); but Mr. A
trusts his honesty while Mr. C does not; their probabilities P(D]ST) that, if the drug is safe, Mr.
N would say that it is unsafe, are (0.01, 0.3, 0.99) respectively.

Applying Bayes’ theorem P(S|DI)= P(S|1)P(D|SI)/P(D|I)and expanding the denominator
by the product and sum rules: P(D|I) = P(S|I) P(D|ST)+P(S|I) P(D|ST), we find their posterior
probabilities that the drug is safe to be (.083, .032, .899) respectively. Put verbally, they have
reasoned as follows:

A: “Mr. N is a fine fellow, doing a notable public service. I had thought the drug to be
safe from other evidence, but he would not knowingly misrepresent the facts; therefore
hearing his report leads me to change my mind and think that the drug is unsafe after
all. My belief in safety is lowered by 20.0db, so I will not buy any more.”

B: “Mr. N is an erratic fellow, inclined to accept adverse evidence too quickly. 1 was
already convinced that the drug is unsafe; but even if it is safe he might be carried
away into saying otherwise. So hearing his claim does strengthen my opinion, but
only by 5.3 db. I would never under any circumstances use the drug.”

C: “Mr. N is an unscrupulous rascal, who does everything in his power to stir up trouble
by sensational publicity. The drug is probably safe, but he would almost certainly
claim it is unsafe whatever the facts. So hearing his claim has practically no effect
(only .005db) on my confidence that the drug is safe. I will continue to buy it and
use it.”

The opinions of Mr. A and Mr. B converge in about the way we conjectured in (5-20) because both
are willing to trust Mr. N’s veracity to some extent. But Mr. A and Mr. C diverge because their
prior probabilities of deception are entirely different. So one cause of divergence is, not merely that
prior probabilities of deception are large, but that they are greatly different for different people.

However, this is not the only cause of divergence; to show this we introduce Mr. X and Mr.
Y, who agree in their judgment of Mr. N:

P(D|SIx)= P(D|SIy)=a, P(D|SIx)= P(D|SIy)=10 (5-23)

If @ < b, then they consider him to be more likely to be telling the truth than lying. But they have
different prior probabilities for the safety of the drug:

P(S|Ix) =2, P(S|Iy)=y. (5-24)

Their posterior probabilities are then

ax ay

P(SIDIx) = wtb(i—a) P(S|DIy) = PR ER—

(5-25)

from which we see that not only are their opinions always changed in the same direction, on the
evidence scale they are always changed by the same amount, log(a/b):
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P( |D1x) = log o —I—logg
* P(S|DIy) L=z b (5-26)
log LOIDIY) 00 9 4o @
*PEDIy) =y °b

But this means that on the probability scale, they can either converge or diverge (Exercise 5.2).
These equations correspond closely to those in our sequential widget test in Chapter 4, but have
now a different interpretation. If @ = b, then they consider Mr. N totally unreliable and their views
are unchanged by his testimony. If @ > b, they distrust Mr. N so much that their opinions are
driven in the opposite direction from what he intended. Indeed, if b — 0, then loga/b — oo; they
consider it certain that he is lying, and so they are both driven to complete belief in the safety of
the drug: P(S|DIx) = P(5|DIy) =1, independently of their prior probabilities.

Exercise 5.2. From these equations, find the exact conditions on (z, y, a, b) for divergence

on the probability scale; that is, |P(S|DIx) — P(S|DIy)| > |P(S|Ix)— P(S|Iy)|.

Exercise 5.3. It is evident from (5-26) that Mr. X and Mr. Y can never experience a reversal
of viewpoint; that is, if initially Mr. X believes more strongly than Mr. Y in the safety of the
drug, this will remain true whatever the values of a, b. Therefore, a necessary condition for
reversal must be that they have different opinions about Mr. N; a, # a, and/or b, # b,. But
this does not prove that reversal is actually possible, so more analysis is needed. If reversal is
possible, find a sufficient condition on (z, y, ay, ay, by, by) for this to take place, and illustrate
it by a verbal scenario like the above. If it is not possible, prove this and explain the intuitive
reason why reversal cannot happen.

We see that divergence of opinions is readily explained by probability theory as logic, and
that it is to be expected when persons have widely different prior information. But where was
the error in the reasoning that led us to conjecture (5-20)? We committed a subtle form of the
Mind Projection Fallacy by supposing that the relation: “D supports 57 is an absolute property
of the propositions D and 5. We need to recognize the relativity of it; whether D does or does
not support 5 depends on our prior information. The same D that supports S for one person may
refute it for another. As soon as we recognize this, then we no longer expect anything like (5-20)
to hold in general. This error is very common; we shall see another example of it in “Paradoxes of
Intuition” below.

Kahneman & Tversky claimed that we are not Bayesians, because in psychological tests people
often commit violations of Bayesian principles. However, this claim is seen differently in view of
what we have just noted. We suggest that people are reasoning according to a more sophisticated
version of Bayesian inference than they had in mind.

This conclusion is strengthened by noting that similar things are found even in deductive
logic. Wason & Johnson-Laird (1972) report psychological experiments in which subjects erred
systematically in simple tests which amounted to applying a single syllogism. It seems that when
asked to test the hypothesis “A implies B”, they had a very strong tendency to consider it equivalent
to “B implies A” instead of “not—B implies not—A”. Even professional logicians could err in this
way.™

* A possible complication of these tests — semantic confusion — readily suggests itself. We noted in Chapter 1
that the word “implication” has a different meaning in formal logic than it has in ordinary language; “A
implies B” does not have the usual colloquial meaning that B is logically deducible from A, as the subjects
may have supposed.
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Strangely enough, the nature of this error suggests a tendency toward Bayesianity, the op-
posite of the Kahneman—Tversky conclusion. For, if A supports B in the sense that for some
X, P(B|AX) > P(B|X), then Bayes’ theorem states that B supports A in the same sense:
P(A|BX) > P(A|X). But it also states that P(A|BX) > P(A]X), corresponding to the syllo-
gism, and in the limit P(B|AX) — 1, Bayes’ theorem does not give P(A|BX) — 1, but gives
P(A|BX) — 1, in agreement with the syllogism, as we noted in Chapter 2.

Errors made in staged psychological tests may indicate only that the subjects were pursuing
different goals than the psychologists; they saw the tests as basically foolish, and did not think it
worth making any mental effort before replying to the questions — or perhaps even thought that the
psychologists would be more pleased to see them answer wrongly. Had they been faced with logically
equivalent situations where their interests were strongly involved (for example, avoiding a serious
accidental injury), they might have reasoned better. Indeed, there are stronger grounds — Natural
Selection — for expecting that we would reason in a basically Bayesian way.

Visual Perception — Evolution into Bayesianity?

Another class of psychological experiments fits nicely into this discussion. In the early 20’th Cen-
tury, Adelbert Ames Jr. was Professor of Physiological Optics at Dartmouth College. He devised
ingenious experiments which fool one into ‘seeing’ something very different from the reality — one
misjudges the size, shape, distance of objects. Some dismissed this as idle optical illusioning, but
others who saw these demonstrations — notably including Alfred North Whitehead and Albert
Einstein — saw their true importance as revealing surprising things about the mechanism of vi-
sual perception.? His work was carried on by Professor Hadley Cantrell of Princeton University,
who discussed these phenomena in his book “The Why of Man’s Experience” and produced movie
demonstrations of them.

The brain develops already in infancy certain assumptions about the world based on all the
sensory information it receives. For example, nearer objects appear larger, have greater parallax,
and occlude distant objects in the same line of sight; a straight line appears straight from whatever
direction it is viewed, etc. These assumptions are incorporated into the artist’s rules of perspective
and in 3—d computer graphics programs. We hold tenaciously onto them because they have been
successful in correlating many different experiences. We will not relinquish successful hypotheses as
long as they work; the only way to make one change these assumptions is to put one in a situation
where they don’t work. For example, in that Ames room where perceived size and distance correlate
in the wrong way; a child in walking across the room doubles in height.

The general conclusion from all these experiments is less surprising to our relativist generation
than it was to the absolutist generation which made the discoveries. Seeing is not a direct apprehen-
sion of reality, as we often like to pretend. Quite the contrary: Seeing is Inference from Incomplete
Information, no different in nature from the inference that we are studying here. The information
that reaches us through our eyes is grossly inadequate to determine what is “really there” before
us. The failures of perception revealed by the experiments of Ames and Cantrell are not mechanical
failures in the lens, retina, or optic nerve; they are the reactions of the subsequent inference process
in the brain when it receives new data that are inconsistent with its prior information. These are
just the situations where one is obliged to resurrect some alternative hypothesis; and that is what

“

we “see.” We expect that detailed analysis of these cases would show an excellent correspondence
with Bayesian inference, in much the same way as in our ESP and diverging opinions examples.

Active study of visual perception has continued, and volumes of new knowledge have accumu-
lated, but we still have almost no conception of how this is accomplished at the level of the neurons.

T One of his most impressive demonstrations has been recreated at the Ezploratorium in San Francisco,
the full-sized “Ames room” into which visitors can look to see these phenomena at first hand.
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Workers note the seeming absence of any organizing principle; we wonder whether the principles
of Bayesian inference might serve as a start. We would expect Natural Selection to produce such
a result; after all, any reasoning format whose results conflict with Bayesian inference will place a
creature at a decided survival disadvantage. Indeed, as we noted long ago (Jaynes, 1957b), to deny
that we reason in a Bayesian way is to assert that we reason in a deliberately inconsistent way; we
find this very hard to believe. Presumably, a dozen other examples of human and animal perception
would be found to obey a Bayesian reasoning format as its “high level” organizing principle, for
the same reason. With this in mind, let us examine a famous case history.

The Discovery of Neptune

Another potential application for probability theory, which has been discussed vigorously by
philosophers for over a century, concerns the reasoning process of a scientist, by which he ac-
cepts or rejects his theories in the light of the observed facts. We noted in Chapter 1 that this
consists largely of the use of two forms of syllogism,

If A, then B If A, then B
one strong : B false and one weak : B true (5-27)
A false A more plausible

In Chapter 2 we noted that these correspond to the use of Bayes’ theorem in the forms

P(B|AX)
P(B|X) "’

P(B|AX)

P(A[BX) = P(A|X) P(B|X)

P(A|BX) = P(A]X) (5-28)

respectively and that these forms do agree qualitatively with the syllogisms.

Interest here centers on the question whether the second form of Bayes’ theorem gives a
satisfactory quantitative version of the weak syllogism, as scientists use it in practice. Let us
consider a specific example given by Pélya (1954; Vol. II, pp. 130-132). This will give us a more
useful example of the resurrection of alternative hypotheses.

The planet Uranus was discovered by Wm. Herschel in 1781. Within a few decades (i.e., by
the time Uranus had traversed about one third of its orbit), it was clear that it was not following
exactly the path prescribed for it by the Newtonian theory (laws of mechanics and gravitation).
At this point, a naive application of the strong syllogism might lead one to conclude that the
Newtonian theory was demolished.

However, its many other successes had established the Newtonian theory so firmly that in
the minds of astronomers the probability of the hypothesis: “Newton’s theory is false” was already
down at perhaps —50 db. Therefore, for the French astronomer Urbain Jean Joseph Leverrier (1811—
1877) and the English scholar John Couch Adams (1819-1892) at St. John’s College, Cambridge,
an alternative hypothesis down at perhaps —20 db was resurrected: there must be still another
planet beyond Uranus, whose gravitational pull is causing the discrepancy.

Working unknown to each other and backwards, Leverrier and Adams computed the mass and
orbit of a planet which could produce the observed deviation and predicted where the new planet
would be found, with nearly the same results. The Berlin observatory received Leverrier’s prediction
on September 23, 1846, and on the evening of the same day, the astronomer Johann Gottfried Galle
(1812-1910) found the new planet (Neptune) within about one degree of the predicted position.
For many more details, see Smart (1947) or Grosser (1979).



514 Digression on Alternative Hypotheses 514

Instinctively, we feel that the plausibility of the Newtonian theory was increased by this little
drama. The question is, how much? The attempt to apply probability theory to this problem will
give us a good example of the complexity of actual situations faced by scientists, and also of the
caution one needs in reading the rather confused literature on these problems.

Following Pélya’s notation, let T" stand for the Newtonian theory, V for the part of Leverrier’s
prediction that was verified. Then probability theory gives for the posterior probability of T,

P(N|TX)

P(TINX) = P(T|X) PVIE)

(5-29)

Suppose we try to evaluate P(N|X). This is the prior probability of NV, regardless of whether T is
true or not. As usual, denote the denial of 7" by T'. Since N = N(T'+ 1) = NT + NT', we have,
by applying the sum and product rules

P(N|X)= P(NT+ NT|X)= P(NT|X)+ P(NT|X)

= P(N|TX)P(T|X)+ P(N|TX) P(T|X) (5-30)
and P(N|TX) has intruded itself into the problem. But in the problem as stated this quantity is
not defined; the statement 7" = “Newton’s theory is false” has no definite implications until we
specify what alternative we have to put in place of Newton’s theory.

For example, if there were only a single possible alternative according to which there could
be no planets beyond Uranus, then P(N|TX) = 0, and probability theory would again reduce to
deductive reasoning, giving P(T|N X ) =1, independently of the prior probability P(7|.X).

On the other hand, if Einstein’s theory were the only possible alternative, its predictions do
not differ appreciably from those of Newton’s theory for this phenomenon, and we would have
P(N|TX)= P(N|T'X), whereupon P(T|NX)= P(T|X).

Thus, verification of the Leverrier—Adams prediction might elevate the Newtonian theory to
certainty, or it might have no effect at all on its plausibility. It depends entirely on this: Against
which specific alternatives are we testing Newton’s theory?

Now to a scientist who is judging his theories, this conclusion is the most obvious exercise of
common sense. We have seen the mathematics of this in some detail in Chapter 4, but all scientists
see the same thing intuitively without any mathematics.

For example, if you ask a scientist, “How well did the Zilch experiment support the Wilson
theory?” you may get an answer like this: “Well, if you had asked me last week I would have said
that it supports the Wilson theory very handsomely; Zilch’s experimental points lie much closer to
Wilson’s predictions than to Watson’s. But just yesterday I learned that this fellow Woffson has a
new theory based on more plausible assumptions, and his curve goes right through the experimental
points. So now I'm afraid I have to say that the Zilch experiment pretty well demolishes the Wilson
theory.”

Digression on Alternative Hypotheses

In view of this, working scientists will note with dismay that statisticians have developed ad hoc
criteria for accepting or rejecting theories (Chi-squared test, etc.) which make no reference to
any alternatives. A practical difficulty of this was pointed out by Jeffreys (1939); there is not the
slightest use in rejecting any hypothesis Hg unless we can do it in favor of some definite alternative
H, which better fits the facts.

Of course, we are concerned here with hypotheses which are not themselves statements of
observable fact. If the hypothesis Hg is merely that z < y, then a direct, error—free measurement of
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x and y which confirms this inequality constitutes positive proof of the correctness of the hypothesis,
independently of any alternatives. We are considering hypotheses which might be called ‘scientific
theories’ in that they are suppositions about what is not observable directly; only some of their
consequences — logical or causal — can be observed by us.

For such hypotheses, Bayes’ theorem tells us this: Unless the observed facts are absolutely
impossible on hypothesis Hy, it is meaningless to ask how much those facts tend “in themselves” to
confirm or refute Hy. Not only the mathematics, but also our innate common sense (if we think
about it for a moment) tells us that we have not asked any definite, well-posed question until we
specify the possible alternatives to Hg. Then as we saw in Chapter 4, probability theory can tell
us how our hypothesis fares relative to the alternatives that we have specified; it does not have the
creative imagination to invent new hypotheses for us.

Of course, as the observed facts approach impossibility on hypothesis Hy, we are led to worry
more and more about Hg; but mere improbability, however great, cannot in itself be the reason for
doubting Hy. We almost noted this after Eq. (5-7); now we are laying stress on it because it will
be essential for our later general formulation of significance tests.

Early attempts to devise such tests foundered on the point we are making. John Arbuthnot
(1710) noted that in 82 years of demographic data more boys than girls were born in every year.
On the “null hypothesis” Hy that the probability of a boy is 1/2, he considered the probability of
this result to be 2782 = 107247 [in our measure, —247 db], so small as to make Hy seem to him
virtually impossible, and saw in this evidence for “Divine Providence”. He was, apparently, the
first person to reject a statistical hypothesis on the grounds that it renders the data improbable.
However, we can criticize his reasoning on several grounds.

Firstly, the alternative hypothesis Hy = “Divine Providence” does not seem usable in a proba-
bility calculation because it is not specific. That is, it does not make any definite predictions known
to us, and so we cannot assign any probability for the data P(D|H;) conditional on Hy. [For this
same reason, the mere logical denial H; = H is unusable as an alternative.] In fact, it is far from
clear why Divine Providence would wish to generate more boys than girls; indeed, if the number
of boys and girls were exactly equal every year in a large population, that would seem to us much
stronger evidence that some supernatural control mechanism must be at work.

Secondly, Arbuthnot’s data told him not only the number N of years with more boys than
girls, but also in which years each possibility occurred. So whatever the observed N, on the null
hypothesis (independent and equal probability for a boy or girl at each birth) the probability
P(D|Hy) of finding the observed sequence would have been just as small, so by his reasoning
the hypothesis would have been rejected whatever the data. Furthermore, had he calculated the
probability of the actual data instead of merely aggregating them into two bins labelled “more boys
than girls” and “more girls than boys”, he would have found a probability very much smaller still,
whatever the actual data, so the mere smallness of the probability is not in itself the significant
thing.

As a simple, but numerically stronger example illustrating this, if we toss a coin 1000 times,
then no matter what the result is, the specific observed sequence of heads and tails has a probability
of only 271990 or —3010 db, on the hypothesis that the coin is honest. If, after having tossed it
1000 times, we still believe that the coin is honest, it can be only because the observed sequence is
even more improbable on any alternative hypothesis that we are willing to consider seriously.

Without having the probability P(D|H;) of the data on the alternative hypothesis and the
prior probabilities of the hypotheses, there is no well-posed problem and just no rational basis for
passing judgment. However, it is mathematically trivial to see that those who fail to introduce prior
probabilities at all are led thereby, automatically, to the results that would follow from assigning
equal prior probabilities. Failure to mention prior probabilities is so common that we overlook it
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and suppose that the author intended equal prior probabilities (if he should later deny this, then
he can be charged with giving an arbitrary solution to an undefined problem).

Finally, having observed more boys than girls for ten consecutive years, rational inference
might have led Arbuthnot to anticipate it for the eleventh year. Thus his hypothesis Hy was not
only the numerical value p = 1/2; there was also an implicit assumption of logical independence
of different years, of which he was probably unaware. On an hypothesis that allows for positive
correlations, for example H., which assigns an exchangeable sampling distribution, the probability
P(D|H.,) of the aggregated data could be very much greater than 2732, Thus Arbuthnot took one
step in the right direction, but to get a usable significance test required a conceptual understanding
of probability theory on a considerably higher level, as achieved by Laplace some 100 years later.

Another example occurred when Daniel Bernoulli won a French Academy prize of 1734 with
an essay on the orbits of planets, in which he represented the orientation of each orbit by its polar
point on the unit sphere and found them so close together as to make it very unlikely that the
present distribution could result by chance. Although he too failed to state a specific alternative,
we are inclined to accept his conclusion today because there seems to be a very clearly implied
null hypothesis Hg of “chance” according to which the points should appear spread all over the
sphere with no tendency to cluster together; and Hy of “attraction”, which would make them tend
to coincide; the evidence rather clearly supported Hy over Hy.

Laplace (1812) did a similar analysis on comets, found their polar points much more scattered
than those of the planets, and concluded that comets are not “regular members” of the solar system
like the planets. Here we finally had two fairly well-defined hypotheses being compared by a correct
application of probability theory. (It is one of the tragedies of history that Cournot (1843), failing
to comprehend Laplace’s rationale, attacked it and reinstated the errors of Arbuthnot, thereby
dealing scientific inference a setback from which it is not yet fully recovered).

Such tests need not be quantitative. Even when the application is only qualitative, probability
theory is still useful to us in a normative sense; it is the means by which we can detect inconsistencies
in our own qualitative reasoning. It tells us immediately what has not been intuitively obvious to all
workers: that alternatives are needed before we have any rational criterion for testing hypotheses.

This means that if any significance test is to be acceptable to a scientist, we shall need to
examine its rationale to see whether it has, like Daniel Bernoulli’s test, some implied if unstated
alternative hypotheses. Only when such hypotheses are identified are we in a position to say
what the test accomplishes; i.e. what it is testing. But not to keep the reader in suspense: a
statisticians’ formal significance test can always be interpreted as a test of a specified hypothesis
Hy against a specified class of alternatives, and thus it is only a mathematical generalization of
our treatment of multiple hypothesis tests in Chapter 4, Equations (4-28) — (4-44). However,
the standard orthodox literature, which dealt with composite hypotheses by applying arbitrary ad
hockeries instead of probability theory, never perceived this.

Back to Newton

Now we want to get a quantitative result about Newton’s theory. In Pélya’s discussion of the feat of
Leverrier and Adams, once again no specific alternative to Newton’s theory is stated; but from the
numerical values used (loc. cit, p. 131) we can infer that he had in mind a single possible alternative
Hy according to which it was known that one more planet existed beyond Uranus, but all directions
on the celestial sphere were considered equally likely. Then, since a cone of angle 1 degree fills in
the sky a solid angle of about 7/(57.3)? = 1072 steradians, P(N|H; X ) ~ 107%/47 = 1/13,000 is
the probability that Neptune would have been within one degree of the predicted position.

Unfortunately, in the calculation no distinction was made between P(N|X) and P(N|TX);
that is, instead of the calculation (5-18)indicated by probability theory, the likelihood ratio actually
calculated by Pélya was, in our notation,



517 Chap. 5: QUEER USES FOR PROBABILITY THEORY 517

P(N|ITX)  P(N|TX)
P(N|ITX)  P(N|HX)

(5-31)

Therefore, according to the analysis in Chapter 4, what Pélya obtained was not the ratio of posterior
to prior probabilities, but the ratio of posterior to prior odds:

O(N|TX) _ P(N|TX)

ONE] = POVEX) © 13, 000. (5-32)

The conclusions are much more satisfactory when we notice this. Whatever prior probability
P(T)|X) we assign to Newton’s theory, if H; is the only alternative considered, then verification of
the prediction increased the evidence for Newton’s theory by 10log;4(13,000) = 41 decibels.

Actually, if there were a new planet it would be reasonable, in view of the aforementioned
investigations of Daniel Bernoulli and Laplace, to adopt a different alternative hypothesis Hs,
according to which its orbit would lie in the plane of the ecliptic, as Pdlya again notes by implication
rather than explicit statement. If, on hypothesis Hs, all values of longitude are considered equally
likely, we might reduce this to about 10log,,(180) = 23 decibels. In view of the great uncertainty
as to just what the alternative is (i.e., in view of the fact that the problem has not been defined
unambiguously), any value between these extremes seems more or less reasonable.

There was a difficulty which bothered Pélya: if the probability of Newton’s theory were in-
creased by a factor of 13,000, then the prior probability was necessarily lower than (1/13,000);
but this contradicts common sense, because Newton’s theory was already very well established
before Leverrier was born. Pélya interprets this in his book as revealing an inconsistency in Bayes’
theorem, and the danger of trying to apply it numerically. Recognition that we are, in the above
numbers, dealing with odds rather than probabilities, removes this objection and makes Bayes’
theorem appear quite satisfactory in describing the inferences of a scientist.

This is a good example of the way in which objections to the Bayes—Laplace methods which you
find in the literature, disappear when you look at the problem more carefully. By an unfortunate
slip in the calculation, Pdélya was led to a misunderstanding of how Bayes’ theorem operates. But
I am glad to be able to close the discussion of this incident with a happier personal reminiscence.

In 1956, two years after the appearance of Pdlya’s work, I gave a series of lectures on these
matters at Stanford University, and George Pdlya attended them, sitting in the first row and paying
the most strict attention to everything that was said. By then he understood this point very well —
indeed, whenever a question was raised from the audience, Pélya would turn around and give the
correct answer, before I could. It was very pleasant to have that kind of support, and I miss his
presence today (George Pélya died, at the age of 97, in September 1985).

But the example also shows clearly that in practice the situation faced by the scientist is so
complicated that there is little hope of applying Bayes’ theorem to give quantitative results about
the relative status of theories. Also there is no need to do this, because the real difficulty of the
scientist is not in the reasoning process itself; his common sense is quite adequate for that. The
real difficulty is in learning how to formulate new alternatives which better fit the facts. Usually,
when one succeeds in doing this, the evidence for the new theory soon becomes so overwhelming
that nobody needs probability theory to tell him what conclusions to draw.
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Exercise 5.4. Our story has a curious sequel. In turn it was noticed that Neptune was not
following exactly its proper course, and so one naturally assumed that there is still another planet
causing this. Percival Lowell, by a similar calculation, predicted its orbit and Clyde Tombaugh
proceeded to find the new planet (Pluto), although not so close to the predicted position. But
now the story changes: modern data on the motion of Pluto’s moon indicated that the mass
of Pluto is too small to have caused the perturbation of Neptune which motivated Lowell’s
calculation. Thus the discrepancies in the motions of Neptune and Pluto were unaccounted for
(We are indebted to Dr. Brad Schaefer for this information). Try to extend our probability
analysis to take this new circumstance into account; at this point, where did Newton’s theory
stand? For more background information, see Whyte (1980) or Hoyt (1980). But more recently
it appears that the mass of Pluto had been estimated wrongly and the discrepancies were after
all not real; then it seems that the status of Newton’s theory should revert to its former one.
Discuss this sequence of pieces of information in terms of probability theory; do we update by
Bayes’ theorem as each new fact comes in? Or we just return to the beginning when we learn
that a previous datum was false?

At present we have no formal theory at all on the process of “optimal hypothesis formulation”
and we are dependent entirely on the creative imagination of individual persons like Newton,
Mendel, Finstein, Wegener, Crick. So, we would say that in principle the application of Bayes’
theorem in the above way is perfectly legitimate; but in practice it is of very little use to a scientist.

However, we should not presume to give quick, glib answers to deep questions. The question
of exactly how scientists do, in practice, pass judgment on their theories, remains complex and not
well analyzed. Further comments on the validity of Newton’s theory are offered at the end of this
Chapter.

Horseracing and Weather Forecasting

The above examples noted two different features common in problems of inference; (a) Asin the ESP
and psychological cases, the information we receive is often not a direct proposition like S in (5-21);
it is an indirect claim that 5 is true, from some “noisy” source that is itself not wholly reliable; and
(b) As in the example of Neptune, there is a long tradition of writers who have misapplied Bayes’
theorem and concluded that Bayes’ theorem is at fault. Both features are present simultaneously in
a work of the Princeton philosopher Richard C. Jeffrey (1983), hereafter denoted by RCJ to avoid
confusion with the Cambridge scholar Sir Harold Jeffreys.

RCJ considers the following problem. With only prior information I, we assign a probability
P(A|I) to A. Then we get new information B, and it changes as usual via Bayes’ theorem to

P(A|BI) = P(A|I) P(B|AI)/P(B|I) . (5-33)

But then he decides that Bayes’ theorem is not sufficiently general, because we often receive new
information that is not certain; perhaps the probability of B is not unity but, say, ¢. To this we
would reply: “If you do not accept B as true, then why are you using it in Bayes’ theorem this
way?” But RCJ follows that long tradition and concludes, not that it is a misapplication of Bayes’
theorem to use uncertain information as in (5-33), but that Bayes’ theorem is itself faulty, and it
needs to be generalized to take the uncertainty of new information into account.

His proposed generalization (denoting the denial of B by B) is that the updated probability
of A should be taken as a weighted average:

P(A); = qP(A|BI)+ (1 -q) P(A|BI) (5-34)
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But this is an adhockery that does not follow from the rules of probability theory unless we take ¢
to be the prior probability P(B|I), just the case that RCJ excludes [for then P(A); = P(A|l) and
there is no updating].

Since (5-34) conflicts with the rules of probability theory, we know that it necessarily violates
one of the desiderata that we discussed in Chapters 1 and 2. The source of the trouble is easy to find,
because those desiderata tell us where to look. The proposed ‘generalization’ (5-34) cannot hold
generally because we could learn many different things, all of which indicate the same probability
g for B; but which have different implications for A. Thus (5-34) violates desideratum (1-23b);
it cannot take into account all of the new information, only the part of it that involves (i.e., is
relevant to) B.

The analysis of Chapter 2 tells us that, if we are to salvage things and recover a well-posed
problem with a defensible solution, we must not depart in any way from Bayes’ theorem. Instead,
we need to recognize the same thing that we stressed in the ESP example; if B is not known with
certainty to be true, then B could not have been the new information; the actual information
received must have been some proposition C' such that P(B|CI) = g. But then, of course, we
should be considering Bayes’ theorem conditional on €', rather than B:

P(A|CT) = P(A|I) P(C|AL/P(C|I) (5-35)

If we apply it properly, Bayes’ theorem automatically takes the uncertainty of new information into
account. This result can be written, using the product and sum rules of probability theory, as

P(A|CI) = P(AB|CI)+ P(AB|CI)= P(A|BCI)P(B|CI)+ P(A|BCI)P(B|CI)
and if we define ¢ = P(B|C1I) to be the updated probability of B, this can be written in the form
P(A|CT) = ¢ P(A|BCT) + (1 — q) P(A[BCI) (5-36)

which resembles (5-34) but is not in general equal to it, unless we add the restriction that the
probabilities P(A|BCI) and P(A|BCI) are to be independent of C'. Intuitively, this would mean
that the logic flows thus:

(C— B — A) rather than (C— Ay, (5-37)

That is, C' is relevant to A only through its intermediate relevance to B (C'is relevant to B and B
is relevant to A).

RCJ shows by example that this logic flow may be present in a real problem, but fails to
note that his proposed solution (5-34) is then the same as the Bayesian result. Without that logic
flow, (5-34) will be unacceptable in general because it does not take into account all of the new
information. The information which is lost is indicated by the lack of an arrow going directly
(C'— A) in the logic flow diagram; information in C' which is directly relevant to A, whether or
not B is true.

If we think of the logic flow as something like the flow of light, we might visualize it thus: at
night we receive sunlight only through its intermediate reflection from the moon; this corresponds
to the RCJ solution. But in the daytime we receive light directly from the sun whether or not the
moon is there; this is what the RCJ solution has missed. (In fact, when we study the maximum
entropy formalism in statistical mechanics and the phenomenon of “generalized scattering”, we
shall find that this is more than a loose analogy; the process of conditional information flow is in
almost exact mathematical correspondence with the Huygens principle of optics.)
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Exercise 5.5. We might expect intuitively that when ¢ — 1 this difference would disappear;
i.e., P(A|BI) — P(A|CI). Determine whether this is or is not generally true. If it is, indicate
how small 1 — ¢ must be in order to make the difference practically negligible. If it is not,
illustrate by a verbal scenario the circumstances which can prevent this agreement.

We can illustrate this in a more down—to—earth way by one of RCJ’s own scenarios:

A = “My horse will win the race tomorrow”,
B = “The track will be muddy”,
I = “Whatever I know about my horse and jockey in particular, and about horses,

jockeys, races, and life in general.”

and the probability P(A|Il) gets updated as a result of receiving a weather forecast. Then some
proposition C' such as:

(' = “The TV weather forecaster showed us today’s weather map, quoted some
of the current meteorological data, and then by means unexplained assigned
probability ¢’ to rain tomorrow.”

is clearly present, but it is not recognized and stated by RCJ. Indeed, to do so would introduce
much new detail, far beyond the ambit of propositions (A, B) of interest to horse racers.

If we recognize proposition €' explicitly, then we must recall everything we know about the
process of weather forecasting, what were the particular meteorological data leading to that fore-
cast, how reliable weather forecasts are in the presence of such data, how the officially announced
probability ¢' is related to what the forecaster really believes (i.e., what we think the forecaster
perceives his own interest to be), etc., etc.

If the above—defined C' is the new information, then we must consider also, in the light of all
our prior information, how €' might affect the prospects for the race A through other circumstances
than the muddiness B of the track; perhaps the jockey is blinded by bright sunlight, perhaps the
rival horse runs poorly on cloudy days, whether or not the track is wet. These would be logical
relations of the form (C' — A) that (5-34) cannot take into account.

Therefore the full solution must be vastly more complicated than (5-34); but this is, of course,
as it should be. Bayes’ theorem, as always, is only telling us what common sense does; in general
the updated probability of A must depend on far more than just the updated probability ¢ of B.

Discussion

This example illustrates what we have noted before in Chapter 1; that familiar problems of everyday
life may be more complicated than scientific problems, where we are often reasoning about carefully
controlled situations. The most familiar problems may be so complicated — just because the result
depends on so many unknown and uncontrolled factors — that a full Bayesian analysis, although
correct in principle, is out of the question in practice. The cost of the computation is far more than
we could hope to win on the horse.

Then we are necessarily in the realm of approximation techniques; but since we cannot apply
Bayes’ theorem exactly, need we still consider it at all? Yes, because Bayes’ theorem remains the
normative principle telling us what we should aim for. Without it, we have nothing to guide our
choices and no criterion for judging their success.

It also illustrates what we shall find repeatedly in later Chapters; generations of workers
in this field have not comprehended the fact that Bayes’ theorem is a wvalid theorem, required
by elementary desiderata of rationality and consistency, and have made unbelievably persistent
attempts to replace it by all kinds of intuitive ad hockeries. Of course, we expect that any sincere
intuitive effort will capture bits of the truth; yet all of these dozens of attempts have proved on
analysis to be satisfactory only in those cases where they agree with Bayes’ theorem after all.
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But we are at a loss to understand what motivates these anti—Bayesian efforts, because we
can see nothing unsatisfactory about Bayes’ theorem, either in its theoretical foundations, its
intuitive rationale, or its pragmatic results. The writer has devoted some 40 years to the analysis
of thousands of separate problems by Bayes’ theorem, and is still being impressed by the beautiful
and important results it gives us, often in a few lines, and far beyond what those ad hockeries can
produce. We have yet to find a case where it yields an unsatisfactory result (although the result
is often surprising at first glance and it requires some meditation to educate our intuition and see
that it is correct after all).

Needless to say, the cases where we are at first surprised are just the ones where Bayes’
theorem is most valuable to us; because those are the cases where intuitive ad hockeries would
never have found the result. Comparing Bayesian analysis with the ad hoc methods which saturate
the literature, whenever there is any disagreement in the final conclusions, we have found it easy
to exhibit the defect of the ad hockery, just as the analysis of Chapter 2 led us to expect and as we
saw in the above example.

In the past, many man—years of effort were wasted in futile attempts to square the circle; had
Lindemann’s theorem (that 7 is transcendental) been known and its implications recognized, all of
this might have been averted. Likewise, had Cox’s theorems been known, and their implications
recognized, 100 years ago, many wasted careers might have been turned instead to constructive
activity. This is our answer to those who have suggested that Cox’s theorems are unimportant,
because they only confirm what James Bernoulli and Laplace had conjectured long before.

Today, we have five decades of experience confirming what Cox’s theorems tell us. It is clear
that, not only is the quantitative use of the rules of probability theory as extended logic the only
sound way to conduct inference; it is the failure to follow those rules strictly that has for many
years been leading to unnecessary errors, paradoxes, and controversies.

Paradoxes of Intuition

A famous example of this situation, known as Hempel’s paradox, starts with the premise: “A case
of an hypothesis supports the hypothesis”. Then it observes: “Now the hypothesis that all crows
are black is logically equivalent to the statement that all non—black things are non—crows, and this
is supported by the observation of a white shoe”. An incredible amount has been written about
this seemingly innocent argument, which leads to an intolerable conclusion.

But the error in the argument is apparent at once when one examines the equations of prob-
ability theory applied to it: the premise, which was not derived from any logical analysis, is not
generally true, and he prevents himself from discovering that fact by trying to judge support of an
hypothesis without considering any alternatives.

I. J. Good (1967), in a note entitled “The White Shoe is a Red Herring”, demonstrated the
error in the premise by a simple counterexample: In World 1 there are one million birds, of which
100 are crows, all black. In World 2 there are two million birds, of which 200,000 are black crows
and 1,800,000 are white crows. We observe one bird, which proves to be a black crow. Which world
are we in?

Evidently, observation of a black crow gives evidence of

200, 000/2, 000, 000
100/1, 000, 000

or an odds ratio of 1000:1, against the hypothesis that all crows are black; that is, for World 2

against World 1. Whether an “instance of an hypothesis” does or does not support the hypothesis
depends on the alternatives being considered and on the prior information. We learned this in
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finding the error in the reasoning leading to (5-20). But incredibly, Hempel (1967) proceeded to
reject Good’s clear and compelling argument on the grounds that it was unfair to introduce that
background information about Worlds 1 and 2.

In the literature there are perhaps a hundred “paradoxes” and controversies which are like this,
in that they arise from faulty intuition rather than faulty mathematics. Someone asserts a general
principle that seems to him intuitively right. Then when probability analysis reveals the error,
instead of taking this opportunity to educate his intuition, he reacts by rejecting the probability
analysis. We shall see several more examples of this in later Chapters.

As a colleague of the writer once remarked, “Philosophers are free to do whatever they please,
because they don’t have to do anything right”. But a responsible scientist does not have that
freedom; he will not assert the truth of a general principle, and urge others to adopt it, merely on
the strength of his own intuition. Some outstanding examples of this error, which are not mere
philosophers’ toys like the RCJ tampering with Bayes’ theorem and the Hempel paradox, but have
been actively harmful to Science and Society, are discussed in Chapters 15 and 17.

Bayesian Jurisprudence

It is interesting to apply probability theory in various situations in which we can’t always reduce it
to numbers very well, but still it shows automatically what kind of information would be relevant
to help us do plausible reasoning. Suppose someone in New York City has committed a murder,
and you don’t know at first who it is, but you know that there are 10 million people in New York
City. On the basis of no knowledge but this, e(Guilty|X) = —70 db is the plausibility that any
particular person is the guilty one.

How much positive evidence for guilt is necessary before we decide that some man should be
put away? Perhaps +40 db, although your reaction may be that this is not safe enough, and the
number ought to be higher. If we raise this number we give increased protection to the innocent,
but at the cost of making it more difficult to convict the guilty; and at some point the interests of
society as a whole cannot be ignored.

For example, if a thousand guilty men are set free, we know from only too much experience
that two or three hundred of them will proceed immediately to inflict still more crimes upon society,
and their escaping justice will encourage a hundred more to take up crime. So it is clear that the
damage to society as a whole caused by allowing a thousand guilty men to go free, is far greater
than that caused by falsely convicting one innocent man.

If you have an emotional reaction against this statement, I ask you to think: if you were a
judge, would you rather face one man whom you had convicted falsely; or a hundred victims of
crimes that you could have prevented? Setting the threshold at +40 db will mean, crudely, that on
the average not more than one conviction in ten thousand will be in error; a judge who required
juries to follow this rule would probably not make one false conviction in a working lifetime on the
bench.

In any event, if we took 440 db starting out from —70, this means that in order to get conviction
you would have to produce about 110 db of evidence for the guilt of this particular person. Suppose
now we learn that this person had a motive. What does that do to the plausibility of his guilt?
probability theory says
P(Motive|Guilty)

(Motive| N ot Guilty) (5-38)

e(Guilty|Motive) = e(Guilty| X)) 4+ 10logy, 2

~ —70 — 10log,, P(M otive|N ot Guilty)

since P(M otive|Guilty) ~ 1, i.e., we consider it quite unlikely that the crime had no motive at
all. Thus, the significance of learning that the person had a motive depends almost entirely on the
probability P(M otive|N ot Guilty) that an innocent person would also have a motive.
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This evidently agrees with our common sense, if we ponder it for a moment. If the deceased
were kind and loved by all, hardly anyone would have a motive to do him in. Learning that,
nevertheless, our suspect did have a motive, would then be very significant information. If the
victim had been an unsavory character, who took great delight in all sorts of foul deeds, then a
great many people would have a motive, and learning that our suspect was one of them, is not
so significant. The point of this is that we don’t know what to make of the information that our
suspect had a motive, unless we also know something about the character of the deceased. But
how many members of juries would realize that, unless it was pointed out to them?

Suppose that a very enlightened judge, with powers not given to judges under present law, had
perceived this fact and, when testimony about the motive was introduced, he directed his assistants
to determine for the jury the number of people in New York City who had a motive. This number
was N,,. Then

Ny —1

P(Motive| N ot Guilty) = =
(Motive|Not Guilty) (Numberof people in NewYork) — 1

1077 (N, — 1)

and equation (5-38) reduces, for all practical purposes, to

e(Guilty|Motive) ~ —10log(N,, — 1) (5-39)

You see that the population of New York has cancelled out of the equation; as soon as we know
the number of people who had a motive, then it doesn’t matter any more how large the city was.
Note that (5-39) continues to say the right thing even when N,, is only 1 or 2.

You can go on this way for a long time, and we think you will find it both enlightening and
entertaining to do so. For example, we now learn that the suspect was seen near the scene of the
crime shortly before. From Bayes’ theorem, the significance of this depends almost entirely on how
many innocent persons were also in the vicinity. If you have ever been told not to trust Bayes’
theorem, you should follow a few examples like this a good deal further, and see how infallibly it
tells you what information would be relevant, what irrelevant, in plausible reasoning.’

Even in situations where we would be quite unable to say that numerical values should be
used, Bayes’ theorem still reproduces qualitatively just what your common sense (after perhaps
some meditation) tells you. This is the fact that George Pdlya demonstrated in such exhaustive
detail that the present writer was convinced that the connection must be more than qualitative.

T Note that in these cases we are trying to decide, from scraps of incomplete information, on the truth of
an Aristotelian proposition; whether the defendant did or did not commit some well-defined action. This
is the situation — an issue of fact — for which probability theory as logic is designed. But there are other
legal situations quite different; for example, in a medical malpractice suit it may be that all parties are
agreed on the facts as to what the defendant actually did; the issue is whether he did or did not exercise
reasonable judgment. Since there is no official, precise definition of “reasonable judgment”, the issue is
not the truth of an Aristotelian proposition (however, if it were established that he wilfully violated one of
our Chapter 1 desiderata of rationality, we think that most juries would convict him). It has been claimed
that probability theory is basically inapplicable to such situations, and we are concerned with the partial
truth of a non—Aristotelian proposition. We suggest, however, that in such cases we are not concerned with
an issue of truth at all; rather, what is wanted is a value judgment. We shall return to this topic later
(Chapters 13, 18).
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COMMENTS

There has been much more discussion of the status of Newton’s theory than we indicated above.
For example, it has been suggested by Charles Misner that we cannot apply a theory with full
confidence until we know its limits of validity — where it fails.

Thus relativity theory, in showing us the limits of validity of Newtonian mechanics, also con-
firmed its accuracy within those limits; so it should increase our confidence in Newtonian theory
when applied within its proper domain (velocities small compared to that of light). Likewise, the
first law of thermodynamics, in showing us the limits of validity of the caloric theory, also confirmed
the accuracy of the caloric theory within its proper domain (processes where heat flows but no work
is done). At first glance this seems an attractive idea, and perhaps this is the way scientists really

should think.

Nevertheless, Misner’s principle contrasts strikingly with the way scientists actually do think.
We know of no case where anyone has avowed that his confidence in a theory was increased by its
being, as we say, “overthrown”. Furthermore, we apply the principle of conservation of momentum
with full confidence, not because we know its limits of validity, but for just the opposite reason; we
do not know of any such limits. Yet scientists believe that the principle of momentum conservation
has real content; it is not a mere tautology.

Not knowing the answer to this riddle, we pursue it only one step further, with the observation
that if we are trying to judge the validity of Newtonian mechanics, we cannot be sure that relativity
theory showed us all its limitations. It is conceivable, for example, that it may fail not only in the
limit of high velocities, but also in that of high accelerations. Indeed, there are theoretical reasons
for expecting this; for Newton’s F' = ma and Einstein’s £ = mc? can be combined into a perhaps
more fundamental statement:

F=(E/*)a. (5-40)

Why should the force required to accelerate a bundle of energy E depend on the velocity of light?

We see a plausible reason at once, if we adopt the — almost surely true — hypothesis that
our allegedly “elementary” particles cannot occupy mere mathematical points in space, but are
extended structures of some kind. Then the velocity of light determines how rapidly different parts
of the structure can “communicate” with each other. The more quickly all parts can learn that a
force is being applied, the more quickly they can all respond to it. We leave it as an exercise for
the reader to show that one can actually derive Eq. (5-40) from this premise (Hint: the force is
proportional to the deformation that the particle must suffer before all parts of it start to move).

But this embryonic theory makes further predictions immediately. We would expect that when
a force is applied suddenly, a short transient response time would be required for the acceleration
to reach its Newtonian value. If so, then Newton’s F' = ma is not an exact relation, only a final
steady state condition, approached after the time required for light to cross the structure. It is
conceivable that such a prediction could be tested experimentally.

Thus the issue of our confidence in Newtonian theory is vastly more subtle and complex than
merely citing its past predictive successes and its relation to relativity theory; it depends also on
our whole theoretical outlook.

It appears to us that actual scientific practice is guided by instincts that have not yet been
fully recognized, much less analyzed and justified. We must take into account not only the logic of
science, but also the sociology of science (perhaps also its soteriology). But this is so complicated
that we are not even sure whether the extremely skeptical conservatism with which new ideas are
invariably received, is in the long run a beneficial stabilizing influence, or a harmful obstacle to
progress.
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What is Queer? In this Chapter we have examined some applications of probability theory
that seem “queer” to us today, in the sense of being “off the beaten track”. Any completely new
application must presumably pass through such an exploratory phase of queerness. But in many
cases, particularly the Bayesian jurisprudence and psychological tests with a more serious purpose
than ESP, we think that queer applications of today may become respectable and useful applications
of tomorrow. Further thought and experience will make us more aware of the proper formulation of
a problem — better connected to reality — and then future generations will come to regard Bayesian
analysis as indispensable for discussing it. Now we return to the many applications that are already
advanced beyond the stage of queerness, into that of respectability and usefulness.



cc06q, 2/24/96
CHAPTER 6

ELEMENTARY PARAMETER ESTIMATION

“A distinction without a difference has been introduced by certain writers who distinguish
‘Point estimation’, meaning some process of arriving at an estimate without regard to
its precision, from ‘Interval estimation’ in which the precision of the estimate is to some
extent taken into account.” — R. A. Fisher (1956)

Probability theory as logic agrees with Fisher in spirit; that is, it gives us automatically both
point and interval estimates from a single calculation. The distinction commonly made between
hypothesis testing and parameter estimation is considerably greater than that which concerned
Fisher; yet it too is, from our point of view, not a real difference. When we have only a small
number of discrete hypotheses {Hy --- H,} to consider, we usually want to pick out a specific one
of them as the most likely in that set, in the light of the prior information and data. The cases n = 2
and n = 3 were examined in some detail in Chapter 4, and larger n is in principle a straightforward
and rather obvious generalization.

However, when the hypotheses become very numerous, a different approach seems called for. A
set of discrete hypotheses can always be classified by assigning one or more numerical indices which
identify them, asin H;,1 <t < n, and if the hypotheses are very numerous one can hardly avoid
doing this. Then deciding between the hypotheses H; and estimating the index ¢ are practically the
same thing, and it is a small step to regard the index, rather than the hypotheses, as the quantity
of interest; then we are doing parameter estimation. We consider first the case where the index
remains discrete.

Inversion of the Urn Distributions

In Chapter 3 we studied a variety of sampling distributions that arise in drawing from an Urn.
There the number N of balls in the Urn, and the number R of red balls and N — R white ones, were
considered known in the statement of the problem, and we were to make “pre—data” inferences
about what kind of mix of r red, n — r white we were likely to get on drawing n of them. Now
we want to invert this problem, in the way envisaged by Bayes and Laplace, to the “post—-data”
problem: the data D = (n, r) are known but the contents (N, R) of the Urn are not. From the data
and our prior information about what is in the Urn, what can we infer about its true contents? It
is probably safe to say that every worker in probability theory is surprised by the results — almost
trivial mathematically, yet deep and unexpected conceptually — that one finds in this inversion. In
the following we note some of the surprises already well known in the literature, and add to them.

We found before [Eq. (3-18)] the sampling distribution for this problem; in our present notation
this is the hypergeometric distribution

N\'/R\ (N-R
DIN, R, I)=h(r|N,R,n)= 6-1
sy =nelva = (1) (1) (000 (6-1)
where I now denotes the prior information, the general statement of the problem as given above.

Both N and R Unknown

In general neither N nor R is known initially, and the robot is to estimate both of them. If we
succeed in drawing n balls from the Urn, then of course we know deductively that N > n. It seems
to us intuitively that the data could tell us nothing more about N; how could the number r of
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red balls drawn, or the order of drawing, be relevant to N7 But this intuition is using a hidden
assumption that we can hardly be aware of until we see the robot’s answer to the question.

The joint posterior probability distribution for N and R is

p(NRIDI) = p(N|1) p(RIN D) PO

~p(DD) (6-2)

in which we have factored the joint prior probability by the product rule: p(NR|I) =
p(N|I)p(R|NI), and the normalizing denominator is a double sum:

p(D|I) = 53 > p(NII)p(RINT)p(D|N RI) (6-3)

in which, of course, the factor p(D|N RI) is zero when N < n,or R <r,or N — R <n—r. Then
the marginal posterior probability for N alone is

N
> rP(RINI)p(D|NRI)
p(N|DI) = p(NR|DI) N|T 64
D1)= 3 pNRIDE) = oD T (6-4)
We could equally well apply Bayes’ theorem directly:
p(D|NT)
p(N|DI)=p(N|I) ——F 6-5
(VD1 = v BT (65)

and of course (6-4) and (6-5) must agree, by the product and sum rules.

These relations must hold whatever prior information I we may have about N, R that is to
be expressed by p(NR|I). In principle, this could be arbitrarily complicated and conversion of
verbally stated prior information into p(N R|[) is an open—ended problem; you can always analyze
your prior information more deeply. But usually our prior information is rather simple, and these
problems are not difficult mathematically.

Intuition might lead us to expect further that, whatever prior p(N|I) we had assigned, the
data can only truncate the impossible values, leaving the relative probabilities of the possible values
unchanged:

Ap(N|1 N>n
pvipny = § I (5:6)
0, 0<N<n
where A is a renormalization constant. Indeed, the rules of probability theory tell us that this must
be true if the data tell us only that N > n and nothing else about N. For, define the proposition:

Z=%N>n" (6-7)

Then
MMND:{§ "SN} (6)

, n>N

and Bayes’ theorem reads:
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MZMU)_{AMN”% NZ"} (6-9)

p(N|ZI):P(N|I)W_ 0 N<n

so if the data tell us only that Z is true, then we have (6-6) and the above renormalization constant
is A =1/p(Z|I). Bayes’ theorem confirms that if we learn only that N > n, the relative probability
of the possible values of N are not changed by this information; only the normalization must be
readjusted to compensate for the values N < n that now have zero probability. Laplace considered
this result intuitively obvious, and took it as a basic principle of his theory.

However, the robot tells us in (6-5) that this will not be the case unless p(D|N 1) is independent
of N for N > n. And on second thought we see that (6-6) need not be true if we have some kind of
prior information linking N and R. For example, it is conceivable that one might know in advance
that R < 0.06 N. Then necessarily, having observed the data (n,r) = (10,6) we would know not
only that N > 10; but that N > 100. Any prior information that provides a logical link between
N and R makes the datum r relevant to estimating NV after all. But usually we lack any such prior
information, and so estimation of N is uninteresting, reducing to the same result (6-6).

From (6-5), the general condition that the data can tell us nothing about N except to truncate
values less than n, is a nontrivial condition on the prior probability p(R|NI):

p@WW)zEIMDWRDMMND:{f”{* ﬁfj} (6-10)

where f(n,r) may depend on the data, but is independent of N. Since we are using the standard
hypergeometric Urn sampling distribution (6-1), this is explicitly,

i (f) (Nn _ f) P(RINT) = f(n,r) (JZ) Nzn (6-11)

R=0

This is that hidden assumption that our intuition could hardly have told us about. It is a kind
of discrete integral equation? which the prior p(R|NT) must satisfy as the necessary and sufficient
condition for the data to be uninformative about V. The sum on the left—hand side is necessarily
always zero when N < n, for the first binomial coeflicient is zero when R < r, and the second is
zero when R > r and N < n. Therefore the mathematical constraint on p(R|NI) is only, rather
sensibly, that f(n,r)in (6-11) must be independent of N when N > n.

In fact, most “reasonable” priors do satisfy this condition, and as a result estimation of N is
relatively uninteresting. Then, factoring the joint posterior distribution (6-2) in the form

P(NR|DI) = p(N|I) p(RINDI), (6-12)

our main concern is with the factor p(R|N, D, I), drawing inferences about R or about the ratio
R/N with N supposed known. The posterior probability distribution for R is then, by Bayes’
theorem,

p(D|N, R, T)

PRID. N.1) = p(RIN, 1) P i

(6-13)

Different choices of the prior probability p(R|N,I) will yield many quite different results, and we
now examine a few of them.

T This peculiar name anticipates what we shall find later, in connection with marginalization theory; very
general conditions of ‘uninformativeness’ are expressed by similar integral equations that the prior for one
parameter must satisfy in order to make the data uninformative about another parameter.
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Uniform Prior

Consider the state of prior knowledge denoted by Iy, in which we are, seemingly, as ignorant as we
could be about R while knowing N: the uniform distribution

1
———, 0<R<N
P(RIN, Ig) = ¢ N +1 - : (6-14)
0, R>N

Then a few terms cancel out and (6-13) reduces to

p(R|D,N,Ij) =51 (R) (N B R) : (6-15)

T n-—rT

where § is a normalization constant. For several purposes, we need the general summation formula

=005

whereupon the correctly normalized posterior distribution for R is

p(R|D, N, 1) = (N * 1) B (R) (N - R) : (6-17)

n+1 r n-—r

This is not a hypergeometric distribution like (6-1) because the variable is now R instead of r.
The prior (6-14) yields, using (6-16),

éﬁ(f)(i:f):%ﬂ(fif):ni1(f) (6-18)

so the integral equation (6-11) is satisfied; with this prior the data can tell us nothing about N
beyond the fact that N > n.

Let us check (6-17) to see whether it satisfies some obvious common—sense requirements. We
see that it vanishes when R < r, or R > N — n + r, in agreement with what the data tell us by
deductive reasoning. If we have sampled all the balls, n = N, then (6-17) reduces to 6( R, r), again
agreeing with deductive reasoning. This is another illustration of the fact that probability theory
as extended logic automatically includes deductive logic as a special case.

But if we obtain no data at all, n = r = 0, then (6-17) reduces, as it should, to the prior
distribution: p(R|D, N, Iy) = p(R|N,Iy) = 1/(N + 1). If we draw only one ball which proves to be
red, n = r =1, then (6-17) reduces to

2R
N(N+1)°
The vanishing when R = 0 again agrees with deductive logic. From (6-1) the sampling probability
p(r = 1ln = 1,N,R,Iy) = R/N that our one ball would be red is our original Bernoulli Urn
result, proportional to R; and with a uniform prior the posterior probability for R must also be
proportional to R. The numerical coefficient in (6-19) gives us an inadvertent derivation of the
elementary sum rule

p(R|D, N, lo) = (6-19)
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];R:w. (6-20)

These results are only a few of thousands now known, indicating that probability theory as extended
logic is an exact mathematical system. That is, results derived from correct application of our rules
without approximation have the property of exact results in any other area of mathematics; you
can subject them to arbitrary extreme conditions and they continue to make sense.’

What value of R does the robot estimate in general? The most probable value of R is found
within one unit by setting p(R') = p(R' — 1) and solving for R’. This yields

R =(N+1) (6-21)

r
n
which is to be compared to (3-22) for the peak of the sampling distribution. If R’ is not an integer,
the most probable value is the next integer below R’. The robot anticipates that the fraction of
red balls in the original Urn should be about equal to the fraction in the observed sample, just as
you and I would from intuition.

For a more refined calculation let us find the mean value, or expectation of R over this posterior
distribution:
N
(R) = E(R|D,N,Io) =Y Rp(R|D,N,I). (6-22)
R=0
To do the summation, note that

(R+1) (f) —(r41) (f:) (6-23)

and so, using (6-16) again,

N+1)‘1 (N+2) (N+2)(r+1)

-~ 7N 7 —24
n+1 n+2 (n+2) (6 )

<R>-|—1:(7‘—|-1)(
When (n,r, N) are large, the expectation of R is very close to the most probable value (6-21),
indicating either a sharply peaked posterior distribution or a symmetric one. This result becomes
more significant when we ask: “What is the expected fraction F’ of red balls left in the Urn after
this drawing?” This is
(Ry—r r+1

e e R (6-25)

Predictive Distributions: Instead of using probability theory to estimate the unobserved con-
tents of the Urn, we may use it as well to predict future observations. We ask a different question:
after having drawn a sample of r red balls in » draws, what is the probability that the next one
drawn will be red? Defining the propositions:

R; = “Red on the ¢’th draw”, 1<i<N
this is

t By contrast, the intuitive ad hockeries of current “orthodox” statistics generally give reasonable results
within some ‘safe’ domain for which they were invented; but invariably they are found to yield nonsense
in some extreme case. This, examined in Chapter 17, is what one expects of results which are only
approximations to an exact theory; as one varies the conditions the quality of the approximation varies.
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N
p(Rn+1|D7N7[0) = Z p(Rn-I-l R|D7N7]0) = Z p(Rn+1|R7D7N7[0) ) p(R|Dvn7]0) (6726)
R=0 R

or,

N -1
R—r N+1 R N-R
o vm =3 = (ED (N () e
R=0

Using the summation formula (6-16) again, we find after some algebra,

r+1

Rn Dval = 5>
P(Rnt] 0) e

(6-28)

the same as (6-25). This agreement is another example of the rule noted before: a probability is
not the same thing as a frequency; but under quite general conditions the predictive probability of
an event at a single trial is numerically equal to the expectation of its frequency in some specified
class of trials.

Eq. (6-28) is a famous old result known as Laplace’s Rule of Succession. It has played a major
role in the history of Bayesian inference, and in the controversies over the nature of induction and
inference. We shall find it reappearing many times; finally, in Chapter 18 we examine it carefully
to see how it became controversial, but also how easily the controversies can be resolved today.

The result (6-28) has a greater generality than would appear from our derivation. Laplace
first obtained it, not in consideration of drawing from an Urn, but from considering a mixture of
binomial distributions, as we shall do presently in (6-70). The above derivation in terms of Urn
sampling had been found as early as 1799 (see Zabell, 1989), but became well known only through
its rediscovery in 1918 by C. D. Broad of Cambridge University, Fngland, and its subsequent
emphasis by Wrinch and Jeffreys (1919), W. E. Johnson (1924, 1932), and Jeffreys (1939). It was
initially a great surprise to find that the Urn result (6-28) is independent of N.

But this is only the point estimate; what accuracy does the robot claim for this estimate of

R? The answer is contained in the same posterior distribution (6-17) that gave us (6-28); we may
find its variance (R*) — (R)*. Extending (6-23), note that

(B+1)(R+2) (f) =(r+1)(r+2) (fj;) (6-29)
The summation over R is again simple, yielding
(e = e (7)) (1)) = CEEREEIEED (o)

Then noting that var(R) = (R*) — (R)* = {((R+1)?) = ((R+1))? and writing for brevity p = (F) =
(r4+1)/(n+2), from (6-24), (6-30) we find

p(1—p)
n+ 3

Therefore, our (mean) + (standard deviation) combined point and interval estimate of R is

var(R) = (N+2)(N—-n). (6-31)
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(R)est:r—l—(N—n)p:t\/Z%(N—I-Q)(N—n). (6-32)
The factor (N —n) inside the square root indicates that, as we would expect, the estimate becomes
more accurate as we sample a larger fraction of the contents of the Urn. Indeed, when n = N
the contents of the Urn are known and (6-32) reduces as it should to (r £ 0), in agreement with
deductive reasoning.

But looking at (6-32) we note that R — r is the number of red balls remaining in the Urn, and
N — n is the total number of balls left in the Urn; so an analytically simpler expression is found if
we ask for the (mean) £ (standard deviation) estimate of the fraction of red balls remaining in the
Urn after the sample is drawn. This is found to be

R—17)es 1- N +2
(F)est:%:pi\/p(n_l_;))]vjna 0<n< N (6*33)

and this estimate gets less accurate as we sample a larger portion of the balls. In the limit N — oo

this goes into
[p(1—p
(Flest =p=+ % ) (6-34)

which corresponds to the binomial distribution result.

As an application of this, while preparing this Chapter we heard a news report that a “random
poll” of 1600 voters was taken, indicating that 41% of the population favored a certain candidate in
the next election, and claiming a +3% margin of error for this result. Let us check the consistency
of these numbers against our theory. To obtain (F).s; = (#)(14.03) we require according to (6-34)
a sample size n given by

1—p 1 1—.41

nta= (032~ 41

x 1111 = 1598.9 (6-35)

or, n = 1596. The close agreement suggests that the pollsters are using this theory (or at least
giving implied lip service to it in their public announcements).

These results, found with a uniform prior for p(R|N, Iy) over 0 < R < N, correspond very well
with our intuitive common—sense judgments. Other choices of the prior can affect the conclusions
in ways which often surprise us at first glance; then after some meditation we see that they were
correct after all. Let us put probability theory to a more severe test by considering some increasingly
surprising examples.

Truncated Uniform Priors

Suppose our prior information had been different from the above Ip; our new prior information Iy
is that we know from the start that 0 < R < N; there is at least one red and one white ball in the
Urn. Then the prior (6-14) must be replaced by

1
. 1<R<N-1
p(RIN,[1)=¢ N -1 (6-36)

0, otherwise

and our summation formula (6-16) must be corrected by subtracting off the two terms R = 0, R =

N. Note that if R = 0, then
R R+1
= :(S
(r) (r+1) 0
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and if R = N, then
(N B R) = 6(r,n),

n-—rT

so we have the summation formulas

T B ) R EE T

() (- (D) - (e (e o

R=1

What seems surprising at first is that as long as the observed r is in 0 < r < n the new terms
vanish, and so the previous posterior distribution (6-17) is unchanged:

p(RID,N,I}) = p(R|D,N,Io), 0<r<n. (6-39)

Why does the new prior information make no difference? Indeed, it would certainly make a differ-
ence in any form of probability theory that uses only sampling distributions; for the sample space
is changed by the new information.

Yet on meditation we see that the result (6-39) is correct, for in this case the data tell us by
deductive reasoning that R cannot be 0 or N; so whether the prior information does or does not
tell us the same thing cannot matter; our state of knowledge about R is the same and probability
theory as logic so indicates. We discuss this further under “optional stopping” below.

But suppose that our data were r = 0; now the sum S in (6-15) is different:

N+1 N
(1))
n+1 n
and in place of (6-17) the posterior probability distribution for R is found to be, after some
calculation,

N \ (N-R
p(R|r:0,N,Il):(n+1)( . ) 1<R<N-1 (6-41)

and zero outside that range. But still, within that range the relative probabilities of different values
of R are not changed; we readily verify that the ratio

p(R|T:07N7[1) _ N+1
p(Rlr=0,N,I,) N -—n’

1<R<N-1 (6-42)

is independent of R. What has happened here is that the datum r = 0 gives no evidence against
the hypothesis that R = 0 and some evidence for it; so on prior information Iy which allows this,
R = 0 is the most probable value. But the prior information Iy now makes a decisive difference;
it excludes just that value, and thus forces all the posterior probability to be compressed into a
smaller range, with an upward adjustment of the normalization coefficient. We learn from this
example that different priors do not necessarily lead to different conclusions; and whether they do
or do not can depend on which data set we happen to get — which is just as it should be.



609 Chap. 6: ELEMENTARY PARAMETER ESTIMATION 609

Exercise 6.1. Find the posterior probability distribution p(R|r = n, N, I;) by a derivation
like the above. Then find the new (mean) £ (standard deviation) estimates of R from this
distribution, and compare it with the above results from p(R|r = n, N, Iy). Explain the differ-
ence so that it seems obvious intuitively. Now show how well you understand this problem by
describing in words, without doing the calculation, how the result would differ if we had prior
information that (3 < R < N); the Urn had initially at least three red balls, but there was no
prior restriction on large values.

A Concave Prior

The rule of succession, based on the uniform prior {p(R|NI) x const., 0 < R < N}, leads to a
perhaps surprising numerical result, that the expected fraction (6-25) of red balls left in the Urn
is not the fraction r/n observed in the sample drawn, but slightly different, (r 4+ 1)/(n + 2). What
is the reason for this small difference? The following argument is hardly a derivation, but only a
line of free association. Note first that Laplace’s rule of succession can be written in the form

r+1 n-(r/n)+2-(1/2)
n+2 n-+ 2

(6-43)

which exhibits the result as a weighted average of the observed fraction r/n and the prior expecta-
tion 1/2, the data weighted by the number n of observations, the prior expectation by 2. It seems
that the uniform prior carries a weight corresponding to two observations. Then could that prior
be interpreted as a posterior distribution resulting from two observations (n,r) = (2,1)? If so, it
seems that we must start from a still more uninformative prior than the uniform one. But is there
any such thing as a still more uninformative prior?

Mathematically, this suggests that we try to apply Bayes’ theorem backwards, to find whether
there is any prior that would lead to a uniform posterior distribution. Denote this conjectured still
more primitive state of “pre—prior” information by Iyg. Then Bayes’ theorem would read:

p(D|RI()0)

p(R[DIoo) = p(R[Ioo) p(D|Ino)

= const., 0<R<N (6-44)

and the sampling distribution is still the hypergeometric distribution (6-1), because when R is
specified it renders any vague information like oo irrelevant: p(D|RIy) = p(D|RIpp). With the
assumed sample, n = 2, r = 1 the hypergeometric distribution reduces to

h(r=1/N,R,n=2)= 0<R<N (6-45)

from which we see that there is no pre—prior that yields a constant posterior distribution over the
whole range (0 < R < N); it would be infinite for R = 0 and R = N. But we have just seen that
the truncated prior, constant in (1 < R < N —1), yields the same results if it is known that the Urn
contains initially at least one red and one white ball. Since our presupposed data (n,7) = (2,1)
guarantees this, we see that we have a solution after all: consider the prior that emphasizes extreme
values:

A

P(R|Ioo) = ma

I<R<N-1 (6-46)
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where A stands for a normalization constant, not necessarily the same in all the following equations.
Given new data D = (n,r),if 1 <7 < n — 1 this yields, using (6-1), the posterior distribution

oo = g (1) (L 2F) - o) G2)) o
From (6-16) we may deduce the summation formula
Nl( )(N—R—l):(N—l) 1<R<N -1, (6-48)
—\r—1 n—r—1 n—1) 1<r<n-1
so the correctly normalized posterior distribution is
P(RIDN Iop) = (]Z—_ y ) i (f__ | ) (]Z } f—_11) Zeeat (6-49)

which is to be compared with (6-17). As a check, if n = 2,7 = 1 this reduces to the desired prior
(6-36):

1
P(R|DNIoo) = p(RIN 1) = 1 I<R<N-1 (6-50)

N —

At this point, we can leave it as an exercise for the reader to complete the analysis for the concave
prior with derivations analogous to (6-22) — (6-34):

Exercise 6.2. Using the general result (6-49), repeat the calculations analogous to (6-22) — (6—
34) and prove two exact results: (a) The integral equation (6-11) is satisfied, so (6-6) still holds.
(b) For general data compatible with the prior in the sense that 0 <n < N, 1 <r<n-1
(so that the sample drawn includes at least one red and one white ball), the posterior mean
estimated fractions R/N,(R —r)/(N — n) are both equal simply to the observed fraction in the
sample, f = r/n; the estimates now follow the data exactly and the concave prior (6-46) is given
zero weight. (¢) The (mean) :E (standard deviation) estimate is given by

est f n
= ()

also a simpler result than the analogous (6-32) found previously for the uniform prior.

Exercise 6.3. Now note that if » = 0 or 7 = n, the step (6-47) is not valid. Go back to the
beginning and derive the posterior distribution for these cases. Show that if we draw one ball
and find it not red, the estimated fraction of red in the Urn now drops from 1/2 to approximately
1/log N (whereas with the uniform prior it drops to (r +1)/(n+2) = 1/3).

The exercises show that the concave prior gives many results simpler than those of the uniform
one, but has also some near instability properties that become more pronounced with large V.
Indeed, as N — oo the concave prior approaches an improper (non-normalizable) one, which must
give absurd answers to some questions, although it still gives reasonable answers to most questions
(those in which the data are so informative that they remove the singularity associated with the
prior).
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The Binomial Monkey Prior

Suppose prior information I is that the Urn was filled by a team of monkeys who tossed balls in
at random, in such a way that each ball entering had independently the probability ¢ of being red.
Then our prior for R will be the binomial distribution (3-79): in our present notation,

p(R|N, L) = (g) gf (11— gV R, 0<R<N (6-52)

and our prior estimate of the fraction of red ones in the Urn will be the (mean) £ (standard

deviation) over this distribution:
(R)est:Ngj: ng(l—g) (6*53)
The sum (6-10) is readily evaluated for this prior, with the result that

p(D|NI) = (Z) g (l—g)"™",  N>n (6-54)

Since this is independent of N, this prior also satisfies our integral equation (6-11), so

p(NR|IDL) = p(N|DL) p(R|N DI) (6-55)

in which the first factor is the relatively uninteresting standard result (6-6). We are interested
in the factor p(R|NDIy) in which N is considered known. We are interested also in the other
factorization

p(NR|DIL) = p(R|DL) p(N|RDI) (6-56)

in which p(R|DI) tells us what we know about R, regardless of N (here let the reader try to guess
intuitively how p(R|DNI) and p(R|DI) would differ for any I, before seeing the calculations).
Likewise, the difference between p(N|RDIy) and p(N|DIy) tells us how much we would learn
about N if we were to learn the true R; and again our intuition can hardly anticipate the result of
the calculation.

We have set up quite an agenda of calculations to do. Using (6-52) and (6-1), we find

ki Ng) = () oo (1) (71 (6-57)

T n—rT

where A is another normalization constant. To evaluate it, note that we can rearrange the binomial

T DOED-006)

Therefore we find the normalization by

1= ;p(RIDvNJz) =A (JZ) (Z) XR: (]Xz ) Z) gt (1 —g)N-R

N
:A( )(n)gr(l—g)”_r, r<R<N-n+r

n T

(6-59)

and so our normalized posterior distribution for R is
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N—-n —r —R—n+r
i vt = (T 1) g - g ¥ (6-60)

from which we would make the (mean) + (standard deviation) estimate

(R)est = 7+ (N —n)g £ v/g(1 - g)(N —n) (6-61)
But the resemblance to (6-32) suggests that we again look at it this way: we estimate the fraction

of red balls left in the Urn to be

(R_T)est g(l_g)
Noa IEV T (6-62)
At first glance, (6-61) and (6-62) seem to be so much like (6-32) and (6-33) that it was hardly
worth the effort to derive them. But on second glance we notice an astonishing fact: the parameter
p in the former equations was determined entirely by the data; while ¢ in the present ones is
determined entirely by the prior information. In fact, (6-62) is exactly the prior estimate we would
have made for the fraction of red balls in any subset of N — n balls in the Urn, without any data
at all. Tt seems that the binomial prior has the magical property that it nullifies the data! More
precisely, with that prior the data can tell us nothing at all about the unsampled balls.

Such a result will hardly commend itself to a survey sampler; the basis of his profession would
be wiped out. Yet the result is correct and there is no escape from the conclusion; if your prior
information about the population is correctly described by the binomial prior, then sampling is
futile (it tells you practically nothing about the population) unless you sample practically the
whole population.

How can such a thing happen? Comparing the binomial prior with the uniform prior, one
would suppose that the binomial prior, being moderately peaked, expresses more prior information
about the proportion R/N of red balls; therefore by its use one should be able to improve his
estimates of R. Indeed, we have found this effect; for the uncertainties in (6-61) and (6-62) are
smaller than that those in (6-32) and (6-33) by a factor of \/(n + 3)/(N + 2). What is intriguing
is not the magnitude of the uncertainty; but the fact that (6-33) depends on the data; while (6-62)
does not.

It is not surprising that the binomial prior is more informative about the unsampled balls than
are the data of a small sample; but actually it is more informative about them than are any amount
of data; even after sampling 99% of the population, we are no wiser about the remaining 1%.

So what is the invisible strange property of the binomial prior? It is in some sense so “loose”
that it destroys the logical link between different members of the population. But on meditation we
see that this is just what was implied by our scenario of the Urn being filled by monkeys tossing in
balls in such a way that each ball had independently the probability g of being red. Given that filling
mechanism, then knowing that any given ball is in fact red, gives one no information whatsoever
about any other ball. That is, P(R1Rs|I) = P(R1|l) P(Ry|I). This logical independence in the
prior is preserved in the posterior distribution.

Exercise 6.4. Investigate this apparent “law of conservation of logical independence”. If
the propositions: “{i’th ball is red, 1 < i < N}”7 are logically independent in the prior in-
formation, what is the necessary and sufficient condition on the sampling distribution and the
data, that the factorization property is retained in the posterior distribution: P(RqR2|DI) =
P(R1|DI) P(R:|DI)?

This sets off another line of deep thought. In conventional probability theory, the binomial
distribution is derived from the premise of causal independence of different tosses. In Chapter 3
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we found that consistency requires one to reinterpret this as logical independence. But now, can
we reason in the opposite direction? Does the appearance of a binomial distribution already imply
logical independence of the separate events? If so, then we could understand the weird result just
derived, and anticipate many others like it. We shall return to these questions in a later Chapter,
after acquiring some more clues.

Metamorphosis into Continuous Parameter Estimation

As noted in the Introduction, if our hypotheses become so “dense” that neighboring hypotheses (i.e.,
hypotheses with nearly the same values of the index t) are barely distinguishable in their observable
consequences, then whatever the data, their posterior probabilities cannot differ appreciably. So
there cannot be one sharply defined hypothesis that is strongly favored over all others. Then it may
be appropriate and natural to think of ¢ as a continuously variable parameter 8, and to interpret
the problem as that of making an estimate of the parameter 8, and a statement about the accuracy
of the estimate.

A common and useful custom is to use Greek letters to denote continuously variable parameters,
Latin letters for discrete indices or data values. We shall adhere to this except when it would conflict
with a more deeply entrenched custom.?

The hypothesis testing problem has thus metamorphosed into a parameter estimation one.
But it can equally well metamorphose back; for the hypothesis that a parameter # lies in a certain
interval @ < 6 < b is, of course, a compound hypothesis as defined in Chapter 4, so an interval
estimation procedure (i.e., one where we specify the accuracy by giving the probability that the
parameter lies in a given interval) is automatically a compound hypothesis testing procedure.

Indeed, we followed just this path in Chapter 4 and found ourselves, at Eq. (4-57), doing
what is really parameter estimation. It seemed to us natural to pass from testing simple discrete
hypotheses, to estimating continuous parameters, and finally to testing compound hypotheses at
Eq. (4-64), because probability theory as logic does this automatically. As in our opening remarks,
we do not see parameter estimation and hypothesis testing as fundamentally different activities —
one aspect of the greater unity of probability theory as logic.

But this unity has not seemed at all natural to some others. Indeed, in orthodox statistics
parameter estimation appears very different from hypothesis testing, both mathematically and
conceptually, largely because it has no satisfactory way to deal with compound hypotheses or prior
information. We shall see some specific consequences of this in Chapter 17. Of course, parameters
need not be one—dimensional; but let us consider first some simple cases where they are.

Estimation with a Binomial Sampling Distribution

We have already seen an example of a binomial estimation problem in Chapter 4, but we did not
note its generality. There are hundreds of real situations in which each time a simple measurement
or observation is made, there are only two possible results. The coin will show either heads or tails,
the battery will or will not start the car, the baby will be a boy or a girl, the check will or will
not arrive in the mail today, the student will pass or flunk the examination, etc.. As we noted in
Chapter 3, the first comprehensive sampling theory analysis of such an experiment was by James
Bernoulli (1713) in terms of drawing balls from an Urn, so such experiments are commonly called
Bernoulli trials.

Traditionally, for any such binary experiment we call one of the results, arbitrarily, a “success”
and the other a “failure”. Generally, our data will be a record of the number of successes and

t Thus for generations the charge on the electron and the velocity of light have been denoted by e,c¢
respectively. No scientist or engineer could bring himself to represent them by Greek letters, even when
they are the parameters being estimated.
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the number of failures;* the order in which they occur may or may not be meaningful, and if it
is meaningful, it may or may not be known; and if it is known, it may or may not be relevant to
the question we are asking. Presumably, the conditions of the experiment will tell us whether the
order is meaningful or known; and we expect probability theory to tell us whether it is relevant.

For example, if we toss 10 coins simultaneously, then we have performed 10 Bernoulli trials,
but it is not meaningful to speak of their ‘order’. If we toss one coin 100 times and record each
result, then the order of the results is meaningful and known; but in trying to judge whether the
coin is ‘honest’, common sense probably tells us that the order is not relevant. If we are observing
patient recoveries from a disease and trying to judge whether resistance to the disease was improved
by a new medicine introduced a month ago, this is much like drawing from an Urn whose contents
may have changed. Intuition then tells us that the order in which recoveries and non-recoveries
occur is not only highly relevant; it is the crucial information without which no inference about a
change is possible.T

To set up the simple general binomial sampling problem, define

1, if the ¢'th trial yields success
x; = . . (6-63)
0, otherwise
Then our data are D = {xy,--,2,}. The prior information I specifies that there is a parameter

such that at each trial we have, independently of anything we know about other trials, the probabil-
ity 6 of a success, therefore probability (1 — @) of a failure. As discussed before, by ‘independent’ we
mean logical independence. There may or may not be causal independence, depending on further
details of I that do not matter at the moment. The sampling distribution is then (mathematically,
this is our definition of the model to be studied):

p(DI6, 1) =[] plede. 1) = 6" (1—8)" , (6-64)
=1
in which r is the number of successes observed, (n — r) the number of failures. Then with any prior
probability density function p(#|I) we have immediately the posterior pdf

pO|)p(D|0,1) Ap()1)6" (1 —6)"~ ", (6-65)

PO = e Dl D B

where A is a normalizing constant. With a uniform prior for 6,

p(0l1)=1, 0<6<1 (6-66 )
the normalization is determined by an Fulerian integral:

rl(n—r)!

(0t 1) (6-67)

1
A7l = / 0" (1—6)""" df =
0

and the normalized pdf is

* However, there are important problems involving censored data, to be considered later, in which only the
successes can be recorded (or only the failures), and one does not know how many trials were performed.
For example, a highway safety engineer knows from the public record how many lives were lost in spite of
his efforts; but not how many were saved because of them.

T of course, the final arbiter of relevance is not our intuition, but the equations of probability theory. But
as we shall see later, judging this can be a tricky business. Whether a given piece of information is or is
not relevant depends not only on what question we are asking, but also on the totality of all of our other
information.
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identical with Bayes’ original result, noted in Chapter 4, Eq. (4-57). Its moments are

p(0|D,I) =

(n+ 1! (r+m)!
(n+m+1)! 7!

1
(0™ = E(0"|D. 1) = A / o (1 — 0) =
0

(6-69)
(D4 2)- - (r +m)
(n+2)(n+3)---(n+m+1)
leading to the predictive probability of success at the next trial of
= (0) = /10 @ p1ydo =~ (6-70)
P= —Jo P Con42

in which we see Laplace’s rule of succession in its original derivation. Likewise the (mean + standard
deviation) estimate of 8 is:

Ouse = (0) £ J102) — (0 = p /22 (6-71)

Indeed, the continuous results (6-70) and (6-71) must be derivable from the discrete ones (6-28)
and (6-34) by passage to the limit N — oco; but since the latter equations are independent of N,
the limit has no effect.

In this limit the concave pre—prior distribution (6-46) would go into an improper prior for :

A do
RIN-R)  6(1-6)

(6-72)

for which some sums or integrals would diverge; but that is not the strictly correct method of
calculation. For example, to calculate the posterior expectation of any function f(R/N) in the
limit of arbitrarily large N, we should take limit of the ratio (f(R/N)) = Num/Den, where

2

-1

Num=Y %p(D|N,R,I),
e (6-73)
N-1 1

D@n = 2 mp(DUV,R,I)

and under very general conditions this limit is well-behaved, leading to useful results. The limiting
improper pre-prior (6-72) was advocated by Haldane (1932) and Jeffreys (1939), in the innocent
days before the marginalization paradox, when nobody worried about such fine points. We were
almost always lucky in that our integrals converged in the limit, so we used them directly, thus
actually calculating the ratio of the limits rather than the limit of the ratio; but nevertheless getting
the right answers. With this fine point now clarified, all this and its obvious generalizations seem
perfectly straightforward; however, note the following point, important for a current controversy.
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Digression on Optional Stopping

We did not include n in the conditioning statements in p( |6, I') because, in the problem as defined,
it is from the data D that we learn both n and r. But nothing prevents us from considering a
different problem in which we decide in advance how many trials we shall make; then it is proper
to add n to the prior information and write the sampling probability as p(D|n, 8, ). Or, one might
decide in advance to continue the Bernoulli trials until we have achieved a certain number r of
successes, or a certain log-odds u = log[r/(n — r)]; then it would be proper to write the sampling
probability p(D|r,0,1) or p(D|u,8,1); and so on. Does this matter for our conclusions about 7

Now in deductive logic (Boolean algebra) it is a triviality that AA = A; if you say: “A is true”
twice, this is logically no different from saying it once. This property is retained in probability
theory as logic, since it was one of our basic desiderata that, in the context of a given problem,
propositions with the same truth value are always assigned the same probability. In practice this
means that there is no need to ensure that the different pieces of information given to the robot
are independent; our formalism has automatically the property that redundant information is not
counted twice.

Thus in our present problem the data, as defined, tell us n. Then, since p(n|n,0,1) = 1, the
product rule may be written

p(n,r,order|n, 8, 1) = p(r,order|n,8, 1) p(n|n,8,1)= p(r,order|n,8,1). (6-74)

If something is known already from the prior information, then whether the data do or do not tell
us the same thing cannot matter; the likelihood function is the same. Likewise, write the product
rule as

p(0,n|D,1)=p(@n,D,I)p(n|D,I)=p(n|8,D,I)p6|D,I) (6-75)
or, since p(n|0, D, I)= p(n|D,I)=1,
p(0|n7D7[) Ip(0|D,I) (6776)

In this argument we could replace n by any other quantity [such as 7, or (n—7), or u = log[r/(n—r)]
that was known from the data; if any part of the data happens to be included also in the prior
information, then that part is redundant and it cannot affect our final conclusions.

Yet some statisticians (for example, Armitage, 1960) who look only at sampling distributions,
claim that the stopping rule does affect our inference. Apparently, they believe that if a statistic
such as r is not known in advance, then parts of the sample space referring to false values of r
remain relevant to our inferences even after the true value of » becomes known from the data D,
although they would not be relevant (they would not even be in the sample space) if the true
value were known before seeing the data. Of course, that does violence to the principle AA = A of
elementary logic; it is astonishing that such a thing could be controversial in the twentieth Century.

It is evident that this same comment applies with equal force to any function f(D) of the data,
whether or not we are using it as an estimator. That is, whether f was or was not known known in
advance can have a major effect on our sample space and sampling distributions; but as redundant
information it cannot have any effect on any rational inferences from the data. Furthermore,
inference must depend on the data set that was observed, not on data sets that might have been
observed but were not — because merely noting the possibility of unobserved data sets gives us
no information that was not already in the prior information. Although this conclusion might
have seemed obvious from the start, it is not recognized in much of orthodox statistics; we shall
see in Chapter 9 not only some irrational conclusions, but some absolutely spooky consequences
(psychokinesis, black magic) this has had, and in later applictions how much real damage this has
caused. This is a cogent lesson showing the importance of deriving the rules of inference from the
requirements of logical consistency, instead of intuitive guesswork.
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But what if a part of the data set was actually generated by the phenomenon being studied,
but for whatever reason we failed to observe it? This is a major difficulty for orthodox statistics,
because then the sampling distributions for our estimators are wrong, and the problem must be
reconsidered from the start. But for us it is only a minor detail, easily taken into account. We
show next that probability theory as logic tells us uniquely how to deal with true but unobserved
data; they must be relevant in the sense that our conclusions must depend on whether they were
or were not observed; so they have a mathematical status somewhat like that of a set of nuisance
parameters.

Compound Estimation Problems

We now consider in some depth a class of problems more complicated in structure, where more
than one process is occurring but not all the results are observable. We want to make inferences
not only about parameters in the model, but about the unobserved data. The mathematics to be
developed next is applicable to a large number of quite different real problems. To form an idea of
the scope of the theory, consider these scenarios:

(A) In the general population, there is a probability p that any given person will contract a certain
disease within the next year; and then a probability € that anyone with the disease will die
of it within a year. From the observed variations {cy,¢y,...} of deaths from the disease in
successive years (which is a matter of public record), estimate how the incidence of the disease
{n1,n2,...} is changing in the general population (which is not a matter of public record).

(B) Each week, a large number N of mosquitos is bred in a stagnant pond near this campus, and
we set up a trap on the campus to catch some of them. Each mosquito lives less than a week,
during which it has a probability p of flying onto the campus, and once on the campus, it has
a probability 8 of being caught in our trap. We count the numbers {cy,cq,...} caught each
week. From these data and whatever prior information we have, what can we say about the
numbers {ny,ny,...} on the campus each week, and what can we say about N?

(C) We have a radioactive source (say Sodium 23 for example) which is emitting particles of
some sort (say the positrons from Na??). Each radioactive nucleus has the probability p of
sending a particle through our counter in one second; and each particle passing through has
the probability 6 of producing a count. From measuring the number {¢y, ¢s,...} of counts in
different seconds, what can we say about the numbers {ny,no,...} actually passing through
the counter in each second, and what can we say about the strength of the source?

The common feature in these problems is that we have two “binary games” played in succession,
and we can observe only the outcome of the last one. From this, we are to make the best inferences
we can about the original cause and the intermediate conditions. This could be described also as
the problem of trying to recover, in one special case, censored data.

We want to show particularly how drastically these problems are changed by various changes
in the prior information. For example, our estimates of the variation in incidence of a disease are
greatly affected, not only by the data, but by our prior information about the process by which
one contracts that disease.’

In our estimates we will want to (1) state the “best” estimate possible on the data and prior
information; and (2) make a statement about the accuracy of the estimate, giving again our versions

T of course, in this first venture into the following kind of analysis, we shall not take into account all the
factors that operate in the real world, so some of our conclusions may be changed in a more sophisticated
analysis. However, nobody would see how to do that unless he had first studied this simple introductory
example.
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of “point estimation” and “interval estimation” about which Fisher commented. We shall use the
language of the radioactive source scenario, but it will be clear enough that the same arguments
and the same calculations apply in a hundred others.

A Simple Bayesian Estimate: Quantitative Prior Information

First, we discuss the parameter 6, which a scientist would call the “efficiency” of the counter. By
this we mean that, if  is known, then each particle passing through the counter has independently
the probability € of making a count. Again we emphasize that this is not mere causal independence
(which surely always holds, as any physicist would assure us); we mean logical independence; i.e. if
8 is known, then knowing anything about the number of counts produced by other particles would
tell us nothing more about the probability of the next particle making a count.?

We have already stressed the distinction between logical and causal dependence many times;
and now we have another case where failure to understand it could lead to serious errors. The
point is that causal influences operate in the same way independently of your state of knowledge
or mine; thus if @ is not known, then everybody still believes that successive counts are causally
independent. But they are no longer logically independent; for then knowing the number of counts
produced by other particles tells us something about 8, and therefore modifies our probability that
the next particle will produce a count. The situation is much like that of sampling with replacement,
discussed above, where each ball drawn tells us something more about the contents of the Urn.

From the independence, the probability that n particles will produce exactly ¢ counts in any
specified order, is (1 — #)"~°, and there are (Z) possible sequences producing ¢ counts, so the
probability of getting ¢ counts regardless of order is the binomial distribution

n

p(c|n, ) = ( ) 6°(1—-6)""°, 0<c<n (6-78)

C

From the standpoint of logical presentation in the real world, however, we have to carry out a kind
of bootstrap operation with regard to the quantity #; for how could it be known? Intuitively, you
may have no difficulty in seeing the procedure you would use to determine # from measurements
with the counter. But logically, we need to have the calculation about to be given before we can
justify that procedure. So, for the time being we’ll just have to suppose that 8 is a number given to
us by our teacher in assigning us this problem; and have faith that in the end we shall understand
how our teacher determined it.

Now let us introduce a quantity p which is the probability, in any one second, that any par-
ticular nucleus will emit a particle that passes through the counter. We assume the number of
nuclei N so large and the half — life so long, that we need not consider N as a variable for this
problem. So there are N nuclei, each of which has independently the probability p of sending a
particle through our counter in any one second. The quantity p is also, for present purposes, just
a number given to us in the statement of the problem, because we have not yet seen in terms of
probability theory, the line of reasoning by which we could convert measurements into a numerical

value of p (but again, you see intuitively without any hesitation, that p is a way of describing the
half — life of the source).

Fn practice, there is a question of resolving time; if the particles come too close together we may not be
able to see the counts as separate, because the counter experiences a “dead time” after a count, during
which it is unable to respond to another particle. We have disregarded those difficulties for this problem
and imagined that we have infinitely good resolving time (or, what amounts to the same thing, that the
counting rate is so low that there is negligible probability of missing a count). After we have developed the
theory, the reader will be asked (Exercise 6.6) to generalize it to take these factors into account.
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Suppose we were given N and p; what is the probability, on this evidence, that in any one
second exactly n particles will pass through the counter? That is the same binomial distribution
problem, so the answer is

b(n|N,p) = (]Z) pr(1—-pN" (6-79)

But in this case there’s a good approximation to the binomial distribution, because the number
N is enormously large and p enormously small. In the limit N — oo, p — 0 in such a way that
Np — s = const., what happens to (6-79)7 To find this, write p = s/N, and pass to the limit
N — oo. Then

(NNf!n)!pn:N(N_n...(N—nJrl)(%)n:Sn (1_%) (1_%)"'(1_71];1)

which goes into s™ in the limit. Likewise,

N-n
(1-p)N "= (1—%) — e

and so the binomial distribution (6-79) goes over into the simpler Poisson distribution:

n

P(n|N.p) — plnls) = 7 = (6-80)

and it will be handy for us to take this limit. The number s is essentially what the experimenter
calls his “source strength,” the expectation of number of particles per second.

Now we have enough “formalism” to start solving useful problems. Suppose we are not given
the number of particles n in the counter, but only the source strength s. What is the probability, on
this evidence, that we shall see exactly ¢ counts in any one second? Using our method of resolving
the proposition ¢ into a set of mutually exclusive alternatives, then applying the sum rule and the
product rule:

plc|s) = Z plen|s) = Z pc|ns) p(nls) = Z p(c|n) p(n|s) (6-81)

n n

since p(c|ns) = p(c|n); i.e. if we knew the actual number n of particles in the counter, it would
not matter what s was. This is perhaps made clearer by a diagram, Fig. 6.1 rather like the logic
flow diagrams of Fig. (4.3). In this case, we think of the diagram as indicating not only the logical
connections, but also the causal ones; s is the physical cause which partially determines n; and
then n in turn is the physical cause which partially determines ¢. Or, to put it another way, s can
influence ¢ only through its intermediate influence on n. We saw the same logical situation in the
Chapter 5 horseracing example.
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Since we have worked out both p(c|n) and p(n|s), we need only substitute them into (8-4);
after some algebra we have

n! c!

pels) = i -] [ (6-52)

This is again a Poisson distribution with expectation

(c) = Z cplcls) = sb (6-83)

c=0

Our result is hardly surprising. We have a Poisson distribution with a mean value which is the
product of the source strength times the efficiency of the counter. Without going through the
analysis, that is just the estimate of ¢ that we would make intuitively, although it is unlikely that
anyone could have guessed from intuition that the distribution still has the Poissonian form.

In practice, it is ¢ that is known, and n that is unknown. If we knew the source strength s,
and also the number of counts ¢, what would be the probability, on that evidence, that there were
exactly n particles passing through the counter during that second? This is a problem which arises
all the time in physics laboratories, because we may be using the counter as a “monitor”, and have
it set up so that the particles, after going through the counter, then initiate some other reaction
which is the one we’re really studying. It is important to get the best possible estimates of n,
because that is one of the numbers we need in calculating the cross—section of this other reaction.
Bayes’ theorem gives

p(c|ns) _ p(nls) p(cln)
plels) plcls)

p(nles) = p(nls) (6-84)

and all these terms have been found above, so we just have to substitute (6-80) — (6-82) into
(6-84). Some terms cancel, and we are left with:

e—s(1-8) I4 _ n—c
p(nfes) = (TE _(16)! ) (6-85)

It is interesting that we still have a Poisson distribution, now with parameter s(1 — ), but shifted
upward by ¢; because of course, n could not be less than ¢. The expectation over this distribution
is

(n) = Z np(nles) = ¢+ s(1 —6) (6-86)

n

So, now what is the best guess the robot can make as to the number of particles responsible for
those ¢ counts? Since this is the first time we have faced this issue in a serious way, let us take
time for some discussion.
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From Posterior Distribution Function to Estimate

Given its posterior pdf for some general parameter 8, continuous or discrete, what “best” estimate
of 8 should the robot make, and what accuracy should it claim? There is no one “right” answer;
the problem is really one of decision theory which asks, “What should we do?” This involves value
judgments and therefore goes beyond the principles of inference, which ask only “What do we
know?” We shall return to this in Chapters 13 and 14, but for now we give a preliminary discussion
adequate for the simple problems being considered.

Laplace (1774) already encountered this problem. The unknown true value of a parameter
is 8, and given some data D and prior information [ we are to make an estimate 8*(D,I) which
depends on them in some way. In the jargon of the trade, 8* is called an “estimator”, and nothing
prevents one from considering any function of (D, ) whatsoever as a potential estimator. But
which estimator is ‘best’? Our estimate will have an error e = (6* — @), and Laplace gave as a
criterion that we should make that estimate which minimizes the expected magnitude |e|. He called
this the “most advantageous” method of estimation.

Laplace’s criterion was generally rejected for 150 years in favor of the least squares method
of Gauss and Legendre; we seek the estimate that minimizes the expected square of the error. In
these early works it is not always clear whether this means expected over the sampling pdf for 6*
or over the posterior pdf for 8; the distinction was not always recognized, and the confusion was
encouraged by the fact that in some cases considerations of symmetry lead us to the same final
conclusion from either. Some of the bad consequences of using the former are noted in Chapter
13. It is clear today that the former ignores all prior information about # while the latter takes it
into account and is therefore what we want; taking expectations over the posterior pdf for 6, the
expected squared error of the estimate is

(60— 07)%) = (0%) — 207(0) +

) ) ) (6-87)
= (0" =(0)" + ((67) - (6)")

The choice
6" = (0) = / Op(6|D,I)do (6-88)

that is, the posterior mean value, therefore always minimizes the expected square of the error, over
the posterior pdf for 6, and the minimum achievable value is the variance of the posterior pdf. The
second term is the expected square of the deviation from the mean:

var(9) = {(0 - (0))2) = ((6%) - (6)*). (6-89)

often miscalled the variance of 6; of course, it is really the variance of the probability distribution
that the robot assigns to #. In any event, the robot can do nothing to minimize it. But the first
term can be removed entirely by taking as the estimate just the mean value 8* = (), which is the
optimal estimator by the mean square error criterion.

Evidently, this result holds generally whatever the form of the posterior distribution p(8|DI);
provided only that (#) and (#?) exist, the mean square error criterion always leads to taking the
mean value (), (i.e., the “center of gravity” of the posterior distribution) as the “best” guess. The
posterior (mean + standard deviation) then recommends itself to us as providing a more or less
reasonable statement of what we know and how accurately we know it; and it is almost always the
easiest to calculate. Furthermore, if the posterior pdf is sharp and symmetrical, this cannot be very
different pragmatically from any other reasonable estimate. So in practice we use this more than
any other. In the Urn inversion problems we simply adopted this procedure without comment.

But this may not be what we really want. We should be aware that there are valid arguments
against the posterior mean, and cases where a different rule would better achieve what we want.
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The squared error criterion says that an error twice as great is considered four times as serious.
Therefore, the mean value estimate in effect concentrates its attention most strongly on avoiding
the very large (but also very improbable) errors, at the cost of possibly not doing as well as it might
with the far more likely small errors.

Because of this, the posterior mean value estimate is quite sensitive to what happens far out
in the tails of the pdf. If the tails are very unsymmetrical, our estimate could be pulled far away
from the central region where practically all the probability lies and common sense tells us the
parameter is most likely to be. In a similar way, a single very rich man in a poor village would pull
the average wealth of the population far away from anything representative of the real wealth of
the people. If we knew this was happening, then that average would be a quite irrational estimate
of the wealth of any particular person met on the street.

This concentration on minimizing the large errors leads to another property that we might
consider undesirable. Of course, by “large errors” we mean errors that are large on the scale of
the parameter 0. If we redefined our parameter as some nonlinear function A = A(#) (for example,
A =63 or X\ = log #), an error that is large on the scale of § might seem small on the scale of A;
and vice versa. But then the posterior mean estimate

/\*E</\>://\p(/\|D,I)d/\:/ O) p(8|D, ) db (6-90)

would not in general satisfy A* = A(6*). Minimizing the mean square error in # is not the same
thing as minimizing the mean square error in A(8).

Thus the posterior mean value estimates lack a certain consistency under parameter changes.
When we change the definition of a parameter, if we continue to use the mean value estimate, then
we have changed the criterion of what we mean by a “good” estimate.

Now let us examine Laplace’s original criterion. If we choose an estimator 6% (D, I) by the
criterion that it minimizes the expected absolute error

gt

E= {0+ —0)) = / O+ — 8)/(9) d + /Oo(o —6+)[(8) d (6-91)
we require
dE 6+t o]
e N f(8)do — " f(8)dd =0 (6-92)

or, P(§ > 6%|DI) = 1/2; Laplace’s “most advantageous” estimator is the median of the posterior
pdf.

But what happens now on a change of parameters A = A(6)? Suppose that A is a strict
monotonic increasing function of @ (so that € is in turn a single-valued function of A and the
transformation is reversible). Then it is clear from the above equation that the consistency is
restored: AT = A\(6T).

More generally, all the percentiles have this invariance property: for example, if 635 is the 35
percentile value of 6:

035

£(6)do = 0.35 (6-93)

then we have at once

Ass = A(f35) (6-94)
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Thus if we choose as our point estimate and accuracy claim the median and interquartile span over
the posterior pdf, these statements will have an invariant meaning, independent of how we have
defined our parameters. Note that this remains true even when (8) and (8*) diverge, so the mean
square estimator does not exist.

Furthermore, it is clear from their derivation from variational arguments, that the median
estimator considers an error twice as great to be only twice as serious, so it is less sensitive to what
happens far out in the tails of the posterior pdf than is the mean value. In current technical jargon,
one says that the median is more robust with respect to tail variations. Indeed, it is obvious that
the median is entirely independent of all variations that do not move any probability from one side
of the median to the other; and an analogous property holds for any percentile. One very rich man
in a poor village has no effect on the median wealth of the population.

Robustness, in the general sense that the conclusions are insensitive to small changes in the
sampling distribution or other conditions, is often held to be a desirable property of an inference
procedure, and some authors criticize Bayesian methods, because they suppose that they lack
robustness. However, robustness in the usual sense of the word can always be achieved merely
by throwing away cogent information! It is hard to believe that anyone could really want this if
he were aware of it; but those with only orthodox training do not think in terms of information
content and so do not realize when they are wasting information. Evidently, the issue requires a
much more careful discussion, to which we return later in connection with Model comparison.®

In at least some problems, then, Laplace’s “most advantageous” estimates have indeed two
significant advantages over the more conventional (mean + standard deviation). But before the
days of computers they were prohibitively difficult to calculate numerically, so the least squares
philosophy prevailed as a matter of practical expedience.

Today, the computation problem is relatively trivial, and we can have whatever we want. It is
easy to write computer programs which give us the option of displaying either the first and second
moments or the quartiles (225, ¥50, #75) and only the force of long habit makes us continue to
cling to the former.?

Still another principle for estimation is to take the peak é; or as it is called, the “mode” of
the posterior pdf. If the prior pdf is a constant (or is at least constant in a neighborhood of this
peak and not sufficiently greater elsewhere), the result is identical with the “maximum likelihood”
estimate (MLE) ¢’ of orthodox statistics. It is usually attributed to R. A. Fisher, who coined
that name in the 1920’s, although Laplace and Gauss used the method routinely 100 years earlier
without feeling any need to give it a special name other than “most probable value”. As explained
in Chapter 16, Fisher’s ideology would not permit him to call it that. The merits and demerits
of the MLE are discussed further in Chapters 13 and 17; for the present we are not concerned
with philosophical arguments, but wish only to compare the pragmatic results of MLE and other

t But to anticipate our final conclusion: robustness with respect to sampling distributions is desirable only
when we are not sure of the correctness of our model. But then a full Bayesian analysis will take into
account all the models considered possible and their prior probabilities. The result automatically achieves
the robustness previously sought in intuitive ad hoc devices; and some of those devices, such as the ‘jackknife’
and the ‘redescending Psi function’ are derived from first principles, as first order approximations to the
Bayesian result. The Bayesian analysis of such problems gives us for the first time a clear statement of
the circumstances in which robustness is desirable; and then, because Bayesian analysis never throws away
information, it gives us more powerful algorithms for achieving robustness.

' But in spite of all these considerations, the neat analytical results found in our posterior moments from
Urn and binomial models, contrasted with the messy appearance of calculations with percentiles, show
that moments have some kind of theoretical significance that percentiles lack. This appears more clearly
in Chapter 7.
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procedures.* This leads to some surprises, as we see next.

Back to the Problem

At this point, a statistician of the “orthodox” school of thought pays a visit to our laboratory. We
describe the properties of the counter to him, and invite him to give us his best estimate as to the
number of particles. He will, of course, use maximum likelihood because his textbooks have told
him that (Cramér, 1946; p. 498): “From a theoretical point of view, the most important general
method of estimation so far known is the method of maximum likelihood.” His likelihood function
is, in our notation, p(¢|n). The value of n which maximizes it is found, within one unit, from setting

peln) _n(1-6)
ple|n—1) n—c

or
C

(n)MLE = 5 (6*95)

You may find the difference between the two estimates (6-86) and (6-95) rather startling, if we put
in some numbers. Suppose our counter has an efficiency of 10 percent; in other words, 8 = 0.1, and
the source strength is s = 100 particles per second, so that the expected counting rate according
to Equation (6-83) is (¢) = s = 10 counts per second. But in this particular second, we got 15
counts. What should we conclude about the number of particles?

Probably the first answer one would give without thinking is that, if the counter has an
efficiency of 10 per cent, then in some sense each count must have been due to about 10 particles;
so if there were 15 counts, then there must have been about 150 particles. That is, as a matter of
fact, exactly what the maximum likelihood estimate (6-95) would be in this case. But what does
the robot tell us? Well, it says the best estimate by the mean—square error criterion is only

(n) =15+ 100(1 — 0.1) = 154 90 = 105. (6-96 )
More generally, we could write Equation (6-86) this way:

(n) = s+ (c={e)), (6-97)

so if you see k more counts than you “should have” in one second, according to the robot that is
evidence for only k more particles, not 10k.

This example turned out to be quite surprising to some experimental physicists engaged in
work along these lines. Let’s see if we can reconcile it with our common sense. If we have an
average number of counts of 10 per second with this counter, then we would guess, by rules well
known, that a fluctuation in counting rate of something like the square root of this, 3, would not
be at all surprising even if the number of incoming particles per second stayed strictly constant.
On the other hand, if the average rate of flow of particles is s = 100 per second, the fluctuation in
this rate which would not be surprising is £v/100 = £10. But this corresponds to only 1 in the
number of counts.

* One evident pragmatic result is that the MLE fails altogether when the likelihood function has a flat top;
then nothing in the data can give us a reason for preferring any point in that flat top over any other. But
this is just the case we have in the “generalized inverse” problems of current importance in applications;
and only prior information can resolve the ambiguity.
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This shows that you cannot use a counter to measure fluctuations in the rate of arrival of
particles, unless the counter has a very high efficiency. If the efficiency is high, then you know
that practically every count corresponds to one particle, and you are reliably measuring those
fluctuations. If the efficiency is low and you know that there is a definite, fixed source strength,
then fluctuations in counting rate are much more likely to be due to things happening in the counter
than to actual changes in the rate of arrival of particles.

The same mathematical result, in the disease scenario, means that if a disease is mild and
unlikely to cause death, then variations in the observed number of deaths are not reliable indicators
of variations in the incidence of the disease. If our prior information tells us that there is a constantly
operating basic cause of the disease (such as a contaminated water supply), then a large change in
the number of deaths from one year to the next is not evidence of a large change in the number of
people having the disease. But if practically everyone who contracts the disease dies immediately,
then of course the number of deaths tells us very reliably what the incidence of the disease was,
whatever the means of contracting it.

What caused the difference between the Bayes and maximum likelihood solutions? It’s due to
the fact that we had prior information contained in this source strength s. The maximum likelihood
estimate simply maximized the probability of getting ¢ counts, given n particles, and that gives
you 150. In Bayes’ solution, we will multiply this by a prior probability p(n|s) which represents
our knowledge of the antecedent situation, before maximizing, and we’ll get an entirely different
value for the estimate. As we saw in the inversion of Urn distributions, simple prior information
can make a big change in the conclusions that we draw from a data set.

Exercise 6.5. Generalize the above calculation to take the dead time effect into account; that
is, if we know that two or more particles incident on the counter within a short time interval
At can produce at most only one count, how is our estimate of n changed? These effects are
important in many practical situations and there is a voluminous literature on the application
of probability theory to them (see the works of Takacs and Bortkiewicz in the References).

Now let’s extend this problem a little bit. We are now going to use Bayes’ theorem in four
problems where there is no quantitative prior information, but only one qualitative fact; and again
see the effect that prior information has on our conclusions.
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Effects of Qualitative Prior Information.

The situation is depicted in Fig. 6.2:

Two robots, which we shall humanize by naming them Mr. A and Mr. B, have different prior
information about the source of the particles. The source is hidden in another room which they
are not allowed to enter. Mr. A has no knowledge at all about the source of particles; for all he
knows, it might be an accelerating machine which is being turned on and off in an arbitrary way,
or the other room might be full of little men who run back and forth, holding first one radioactive
source, then another, up to the exit window. Mr. B has one additional qualitative fact; he knows
that the source is a radioactive sample of long lifetime, in a fixed position. But he does not know
anything about its source strength (except, of course, that it is not infinite because, after all, the
laboratory is not being vaporized by its presence. Mr. A is also given assurance that he will not
be vaporized during the experiment). They both know that the counter efficiency is 10 per cent:
f = 0.1. Again, we want them to estimate the number of particles passing through the counter,
from knowledge of the number of counts. We denote their prior information by I4, I'g respectively.

All right, we commence the experiment. During the first second, ¢; = 10 counts are registered.
What can Mr. A and Mr. B say about the number n; of particles? Bayes’ theorem for Mr. A reads,

pleilnils) _ pnalla) plesfna)

p(nylerdla) = p(nqg|l = 6-98
( 1| 1 A) ( 1| A) p(C1|IA) p(cl|IA) ( )
The denominator is just a normalizing constant, and could also be written,
pleilla) = Zp(Cﬂnl)P(nﬂfA)- (6-99)
n1

But now we seem to be stuck, for what is p(nq|/4)? The only information about ny contained in
14 is that ny is not large enough to vaporize the laboratory. How can we assign prior probabilities
on this kind of evidence? This has been a point of controversy for a long time, for in any theory
which regards probability as a real physical phenomenon, Mr. A has no basis at all for determining
the ‘true’ prior probabilities p(nq).
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Choice of a Prior. Now, of course, Mr. A is programmed to recognize that there is no such thing
as an “objectively true” probability. As the notation p(n1|/4) indicates, the purpose of assigning
a prior is to describe his own state of knowledge I4, and on this he is the final authority. So he
does not need to argue the philosophy of it with anyone. We consider in Chapters 11 and 12 some
of the general formal principles available to him for translating verbal prior information into prior
probability assignments, but in the present discussion we wish only to demonstrate some pragmatic
facts, by a prior that represents reasonably the information that ny is not infinite, and that for
small ny there is no prior information that would justify any great variations in p(nq|l4). For
example, if as a function of ny the prior p(ny|l4) exhibited features such as oscillations or sudden
jumps, that would imply some very detailed prior information about ny that Mr. A does not have.

Mr. A’s prior should, therefore, avoid all such structure; but this is hardly a formal principle,
and so the result is not unique. But it is one of the points to be made from this example, noted by
Jeffreys (1939), that it does not need to be unique because, in a sense, “almost any” prior which is
smooth in the region of high likelihood, will lead to substantially the same final conclusions.?

So Mr. A assigns a uniform prior probability out to some large but finite number N,

(6-100)

1N, 0<m <N
p(n1|fA):{ / ! }

0, N§n1

which seems to represent his state of knowledge tolerably well. The finite upper bound N is
an admittedly ad hoc way of representing the fact that the laboratory is not being vaporized.
How large could it be? If N were as large as 10%°, then not only the laboratory, but our entire
galaxy, would be vaporized by the energy in the beam (indeed, the total number of atoms in our
galaxy is of the order of 10°°). So Mr. A surely knows that N is very much less than that. Of
course, if his final conclusions depend strongly on N, then Mr. A will need to analyze his exact
prior information and think more carefully about the value of V and whether the abrupt drop in
p(n1|l4) at n;y = N should be smoothed out. Such careful thinking would not be wrong, but it
turns out to be unnecessary, for it will soon be evident that details of p(ni|l4) for large ny are
irrelevant to his conclusions.

On With the Calculation! Nicely enough, the 1/N cancels out of Equations (6-98), (6-99),
and we are left with

A , 0<n <N
plerlm) =" } . (6-101)

pmlerls) = { 0 N <y

where A is a normalization factor:

AT = i pleln). (6-102)

We have noted, in Equation (6-95), that as a function of n, p(¢|n) attains its maximum at n = ¢/6
(=100, in this problem). For nf >> ¢, p(c|n) falls off like n°(1 — )" ~ n°e~". Therefore, the
sum (6-102) converges so rapidly that if N is as large as a few hundred, there is no appreciable
difference between the exact normalization factor (6-102) and the sum to infinity.

T We have seen already that in some circumstances, a prior can make a very large difference in the
conclusions; but to do this it necessarily modulates the likelihood function in the region of its peak, not its
tails.
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In view of this, we may as well take advantage of a simplification; after applying Bayes’
theorem, pass to the limit N — oo. But let us be clear about the rationale of this; we pass to the
limit, not because we believe that N is infinite; we know that it is not. We pass to the limit rather
because we know that this will simplify the calculation without affecting the final result; after this
passage to the limit, all our calculations pertaining to this model can be performed exactly with
the aid of the general summation formula

= (m+a nom d\" 1
Z( m )mx —($%) m, |$|<1 (6 103)

m=0

Thus, writing m = n — ¢, we replace (6-102) by

AL~ ni:;)p(dn) yr i (m;; C)(1 _ gy = {[1 . (1_10)](C+1)} _ % (6-104)

m=0

Exercise (6.6). To better appreciate the quality of this approximation, denote the ‘missing’
terms in (6-102) by

S(N)= ) pleln)
n=N
and show that the fractional discrepancy between (6-102) and (6-104) is about

e—Né (NO)C

c!

6= S5(N)/S5(0)~ , if NO>>1.

From this, show that in the present case (§ = 0.1, ¢ = 10), unless the prior information can
justify an upper limit N less than about 270, the exact value of N — or indeed, all details of
p(n1|l4) for ny > 270 — can make less than one part in 10* difference in his conclusions. But
it is hard to see how anyone could have any serious use for more than three figure accuracy in
the final results; and so this discrepancy would have no effect at all on that final result. What
happens for ny > 340, can affect the conclusions less than one part in 10°, and for ny > 400 it
is less than one part in 105.

This is typical of the way prior range matters in real problems, and it makes ferocious arguments
over this seem rather silly. It is a valid question of principle, but its pragmatic consequences are
almost always not just negligibly small; but strictly nil. Yet some writers have claimed that a
fundamental qualitative change in the character of the problem occurs between N = 10'° and
N = oo. The reader may be amused to estimate how much difference this makes in the final
numerical results; to how many figures would we need to calculate before it made any difference at
all?

Of course, if the prior information should start encroaching on the region ny; < 270, it would
then make a difference in the conclusions; but in that case the prior information was indeed cogent
for the question being asked, and this is as it should be. Being thus reassured and using the
approximation (6-104), we get the result

p(nilerla) = Op(ei|ny) = (

"1) gt (1 — gy, (6-105)

4]
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So, for Mr. A, the most probable value of n; is the same as the maximum-likelihood estimate:

(ﬁl)A,::éi = 100 (6-106)

while the posterior mean value estimate is calculated as follows:

o0

(m)a—er = 2:ml—qnmqugzewHu—m@y+n§:(

ni=cy ni

m

)(1-—0)”1—01—1

nl—cl—l

From (6-103) the sum is equal to

> m+c+1 m 1
Z ( m )(1_ o) = geit2 (6-107)

m=0

and, finally, we get

1-0 c+1-0
(m)a=crt(e+1)—5—= o — = 109. (6-108)

Now, how about the other robot, Mr. B? Does his extra knowledge help him here? He knows that
there is some definite fixed source strength s. And, because the laboratory is not being vaporized,
he knows that there is some upper limit So. Suppose that he assigns a uniform prior probability
density for 0 < s < 5y. Then he will obtain

o 1 So 1 So sMe—s
p(ni|lp) = p(na|s)p(s|ip)ds = — p(nqls)ds = — ds. (6-109)
0 o Jo o Jo

n1!

Now, if ny is appreciably less than Sg, the upper limit of integration can for all practical purposes,
be taken as infinity, and the integral is just unity. So, we have

1
p(ny|Ig) = p(s|ip) = 5= const., ny < So. (6-110)

In putting this into Bayes’ theorem with ¢; = 10, the significant range of values of ny will be of the
order of 100, and unless his prior information indicates a value of Sy lower than about 300, we will
have the same situation as before; Mr. B’s extra knowledge didn’t help him at all, and he comes
out with the same posterior distribution and the same estimates:

p(nileidp) = p(nilerda) = 0 p(ei|ng). (6-111)
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The Jeffreys Prior. Harold Jeffreys (1939; Chap. 3) proposed a different way of handling
this problem. He suggests that the proper way to express “complete ignorance” of a continuous
variable known to be positive, is to assign uniform prior probability to its logarithm; ¢.e., the prior
probability density is

p(s|1y) = % (0<s< o). (6-112)

Of course, you can’t normalize this, but that doesn’t stop you from using it. In many cases,
including the present one, it can be used directly because all the integrals involved converge. In
almost all cases we can approach this prior as the limit of a sequence of proper (normalizable)
priors, with mathematically well-behaved results. If even that does not yield a proper posterior
distribution, then the robot is warning us that the data are too uninformative about either very
large s or very small s to justify any definite conclusions, and we need to get more evidence before
any useful inferences are possible.

Jeffreys justified (6-112) on the grounds of invariance under certain changes of parameters;
i.e. instead of using the parameter s, what prevents us from using ¢ = s%, or u = s*? Evidently, to
assign a uniform prior probability density to s, is not at all the same thing as assigning a uniform
prior probability to ¢; but if we use the Jeffreys prior, we are saying the same thing whether we use
s or any power s” as the parameter.

There is the germ of an important principle here; but it was only recently that the situation
has been fairly well understood. When we take up the theory of transformation groups in Chapter
12, we will see that the real justification of Jeffreys’ rule cannot lie merely in the fact that the
parameter is positive; but that our desideratum of consistency in the sense that equivalent states
of knowledge should be represented by equivalent probability assignments, uniquely determines the
Jeffreys rule in the case when s is a “scale parameter.” Then marginalization theory will reinforce
this by deriving it uniquely — without appealing to any principles beyond the basic product and sum
rules of probability theory — as the only prior for a scale parameter that is completely uninformative
about other parameters that may be in the model.

These arguments and others equally cogent all lead to the same conclusion: the Jeffreys prior
is the only correct way to express complete ignorance of a scale parameter. The question then
reduces to whether s can properly be regarded as a scale parameter in this problem. However, this
line of thought has taken us beyond the present topic; in the spirit of our current problem, we shall
just put (6-112) to the test and see what results it gives. The calculations are all very easy, and
we find these results:

1 1 c
p(nilly) = py (cilly) = o p(nileidy) = n—llp(cllm)- (6-113)

This leads to the most probable and mean value estimates:

Cl—l—|-0_

(in)s = = 91, (n1)y = g = 100. (6-114)
The amusing thing emerges that Jeffreys’ prior probability rule just lowers the most probable and
posterior mean value estimates by 9 each, bringing the mean value right back to the maximum

likelihood estimate!

This comparison is valuable in showing us how little difference there is numerically between
the consequences of different prior probability assignments which are not sharply peaked, and helps
to put arguments about them into proper perspective. We made a rather drastic change in the
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prior probabilities, in a problem where there was really very little information contained in the
meager data, and it still made less than 10 per cent difference in the result. This is, as we shall
see, small compared to the probable error in the estimate which was inevitable in any event. In a
more realistic problem where we have more data, the difference would be even smaller.

A useful rule of thumb, illustrated by the comparison of (6-106), (6-108) and (6-114), is that
changing the prior probability p(a|l) for a parameter by one power of a has in general about
the same effect on our final conclusions as does having one more data point. This is because the
likelihood function generally has a relative width 1/4/n, and one more power of o merely adds
an extra small slope in the neighborhood of the maximum, thus shifting the maximum slightly.
Generally, if we have effectively n independent observations, then the fractional error in an estimate
that was inevitable in any event is about 1/,/n,T while the fractional change in estimate due to one
more power of a in the prior is about 1/n.

In the present case, with ten counts, thus ten independent observations, changing from a
uniform to Jeffreys prior made just under ten percent difference. If we had 100 counts, the error
which is inevitable in any event would be about ten percent, while the difference from the two
priors would be less than one percent.

So, from a pragmatic standpoint, arguments about which prior probabilities correctly express
a state of “complete ignorance”, like those over prior ranges, usually amount to quibbling over
pretty small peanuts.” From the standpoint of principle, however, they are important and need
to be thought about a great deal, as we shall do in Chapter 12 after becoming familiar with the
numerical situation. While the Jeffreys prior is the theoretically correct one, it is in practice a
small refinement that makes a difference only in the very small sample case. In the past these
issues were argued back and forth endlessly on a foggy philosophical level, without taking any note
of the simple facts of actual performance; that is what we are trying to correct here.

The Point of It All

Now we are ready for the interesting part of this problem. For during the next second, we see
ca = 16 counts. What can Mr. A and Mr. B now say about the numbers ny, ny of particles
responsible for ¢1, o7 Well, Mr. A has no reason to expect any relation between what happened in
the two time intervals, and so to him the increase in counting rate is evidence only of an increase in
the number of incident particles. His calculation for the second time interval is the same as before,
and he will give us the most probable value

(a)a = %2 = 160 (6-115)
and his mean value estimate is
1-86
(na)a = % = 169. (6-116)

Knowledge of ¢; doesn’t help him to get any improved estimate of ny, which stays the same as
before.

But now, Mr. B is in an entirely different position than Mr. A; his extra qualitative information
suddenly becomes very important. For knowledge of ¢5 enables him to improve his previous estimate
of ny. Bayes’ theorem now gives

t However, as we shall see later, there are two special cases where the 1/\/ﬁ rule fails: if we are trying to
estimate the location of a discontinuity in an otherwise continuous probability distribution, and if different
data values are strongly correlated.

* This is most definitely not true if the prior probabilities are to describe a definite piece of prior knowledge,
as the next example shows.
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p(ea|nilp)
pleslenlp)

P(C2|n1011B)

eslerln) (6-117)

p(nilescrlp) = p(nilerdp) = p(ni|erdp)

Again, the denominator is just a normalizing constant, which we can find by summing the numerator
over ny. We see that the significant thing is p(cz|n1,Ig). Using our method of resolving ¢, into
mutually exclusive alternatives, this is

o0

plezlnilp) = /Ooop(025|n1[]3)d5:/0 p(ea|sng) p(s|ng) ds = /Ooop(02|s)p(s|n1)ds. (6-118)

We have already found p(¢|s) in (6-82), and we need only

p(nls)

= p(nyls), if ny <€ 5 6-119
p(n1|IB) p( 1| ) 1 0 ( )

p(sln1) = p(s|ip)

where we have used Equation (6-110). We have found p(n4|s) in Equation (6-80), so we have

00 6—59(80)02 e~ SgMm ny 1+ s ge2
Ig) = ds = _ 6120
p(ealni i) /0 [ o ] [ - ] E ( o ) Aot ( )

Substituting (6-111) and (6-120) into (6-117) and carrying out an easy summation to get the
denominator, the result is (not a binomial distribution):

ny + ¢ 20 c1tca+1 1\
p(nilezerIp) = (Cll+cj) : (1+—0) (17 . (6-121)

Note that we could have derived this equally well by direct application of the resolution method:

p(n1|0201[B):/ p(n15|0201]B)d5:/ p(n1|ser) p(s|eaeq )ds. (6-122)
0 0

We have already found p(nq|sci) in (6-85), and it is easily shown that p(s|caeq) o p(ea|s) p(er]s),
which is therefore given by the Poisson distribution (6-82). This, of course, leads to the same rather
complicated result (6-121); thus providing another — and rather severe — test of the consistency of
our rules.

To find Mr. B’s new most probable value of ny, we set

p(ny|eserlp) _m +ecy 1-6 _
p(ny — llezerlp)  mp—cp 146

or,

(4] 1—0_Cl—|-02+61

. — &
(nl)B: ?—F(CQ—Cl) 20 = 20 5 =127 (6*123)

His new posterior mean value is also readily calculated, and is equal to

Cl—|-1—0 1—0_Cl—|-62—|-1—0 01—62_
5 tla-a-1)—-= 50 + =5 = 1315 (6-124)

<n1>B =
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Both estimates are considerably raised, and the difference between most probable and mean value
is only half what it was before, suggesting a narrower posterior distribution as we shall confirm
presently. If we want Mr. B’s estimates for ns, then from symmetry we just interchange the
subscripts 1 and 2 in the above equations. This gives for his most probable and mean value
estimates, respectively,

(f2)p = 133, (ny)p = 137.5 (6-125)

Now, can we understand what is happening here? Intuitively, the reason why Mr. B’s extra qualita-
tive prior information makes a difference is that knowledge of both ¢; and ¢; enables him to make a
better estimate of the source strength s, which in turn is relevant for estimating n,. The situation is
indicated more clearly by the diagrams, Fig. (6.2). By hypothesis, to Mr. A each sequence of events
n; — ¢; is logically independent of the others, so knowledge of one doesn’t help him in reasoning
about any other. In each case he must reason from ¢; directly to n;, and no other route is available.
But to Mr. B, there are two routes; he can reason directly from ¢ to ny as Mr. A does, as described
by p(ni|c1la) = p(ni|eilp); but because of his knowledge that there is a fixed source strength s
“presiding over” both ny and ns, he can also reason along the route ¢; — ny — s — ny. If this
were the only route available to him (i.e., if he didn’t know ¢1), he would obtain the distribution

002+1 (n1 + 62)!
CQ!(l + 0)02+1 n1'(1 + 0)”1

p(ni|ealp) = /Ooop(n1|s)p(s|0213) ds = (6-126 )

and, comparing the above relations, we see that Mr. B’s final distribution (6-121) is, except for
normalization, just the product of the ones found by reasoning along his two routes:

p(ni|ciealp) = (const.) X p(ni|erdp) p(ni|e2lp) (6-127)

in consequence of the fact that p(ey,e2|n1) = p(er]ng) p(ea|nq). The information (6-126) about
ny obtained by reasoning along the new route ¢cs — ns — s — nq thus introduces a “correction
factor” in the distribution obtained from the direct route ¢; — nq, enabling Mr. B to improve his
estimates.

This suggests that, if Mr. B could obtain the number of counts in a great many different seconds,
(¢3,€4,...,Cm), he would be able to do better and better; and perhaps in the limit m — oo his
estimate of ny might be as good as the one we found when source strength was considered known
exactly. We will check this surmise presently by working out the degree of reliability of these
estimates, and by generalizing these distributions to arbitrary m, from which we can obtain the
asymptotic forms.

Interval Estimation.

There is still an essential feature missing in the comparison of Mr. A and Mr. B in our particle-
counter problem. We would like to have some measure of the degree of reliability which they attach
to their estimates, especially in view of the fact that their estimates are so different. Clearly, the
best way of doing this would be to draw the entire probability distributions

p(nyleaerly) and p(n1|ezerlp)

and from this make statements of the form, “90 per cent of the posterior probability is concentrated
in the interval a < ny < 8.7 But, for present purposes, we will be content to give the standard
deviations [i.e., square root of the variance as defined in Eq. (6-89)] of the various distributions we
have found. An inequality due to Tchebycheff then asserts that, if o is the standard deviation of
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any probability distribution over nq, then the amount P of probability concentrated between the
limits (ny) & to satisfies
1
P>1- 2 (6-128)
This tells us nothing when ¢ < 1, but it tells us more and more as t increases beyond unity. For
example, in any probability distribution with finite {n) and (n?), at least 3/4 of the probability is
contained in the interval (n) £ 20, and at least 8/9 is in (n) £ 3o.

Calculation of Variance. The variances o2 of all the distributions we have found above are
readily calculated. In fact, calculation of any moment of these distributions is easily performed by
the general formula (6-103). For Mr. A and Mr. B, and the Jeffreys prior probability distribution,
we find the variances

(e1+1)(1-6)

Var(nqleida) = 2 (6-129)
1)(1— 62
Var(ni|eser I) = (12 102)( ) (6-130)
1-6
Var(ni|er 1) = 61(072) (6-131)

and the variances for ny are found from symmetry.

This has been a rather long discussion, so let’s summarize all our results so far in a table. We
give, for problem 1 and problem 2, the most probable values of number of particles found by Mr. A
and Mr. B, and also the (mean value) £ (standard deviation) estimates.

From Table 6.1 we see that Mr. B’s extra information not only has led him to change his
estimates considerably from those of Mr. A, but it has enabled him to make an appreciable decrease
in his probable error. Fven purely qualitative prior information which has nothing to do with
frequencies, can greatly alter the conclusions we draw from a given data set. Now in virtually
every real problem of scientific inference, we do have qualitative prior information of more or less
the kind supposed here. Therefore, any method of inference which fails to take prior information
into account is capable of misleading us, in a potentially dangerous way. The fact that it yields a
reasonable result in one problem is no guarantee that it will do so in the next.

It is also of interest to ask how good Mr. B’s estimate of ny would be if he knew only ¢3; and
therefore had to use the distribution (6-126) representing reasoning along the route ¢; — ny — s —
ny of Fig. (6.2). From (6-126) we find the most probable, and the (mean) £ (standard deviation)
estimates

fy = %2 = 160 (6-132)

T Proof: Let p(w) be a probability density over (—OO <z < OO), a any real number, and y = x — <x>
Then

o0

a*(1—P)=a*p(|ly| > a) = a2/ p(z)dz < /| N yip(x)de < / v p(z)de = o .

ly|>a —o0

Writing a = to, this is t2(1 — P) <1, the same as Eq. (6-128). This proof includes the discrete cases,
since then p(w) is a sum of delta—functions. A large collection of useful Tchebycheff-type inequalities is
given by I. R. Savage (1961).
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Problem 1 Problem 2
c1 = 10 c1 = 10
Cy = 16
(5 (5 9
A most prob. 100 100 160
mean + s.d. 109431 109431 169£39
B most prob. 100 127 133
mean + s.d. 109431 131.54+25.9 137.54+25.9
J most prob. 91 121.5 127.5
mean=s.d. 100430 127425.4 1334+25.4

Table 6.1. The Fffect of Prior Information on Estimates of ny and ns

mean + s.d. = @ ;— ! + (e2 4 ;)(0 +1)

=170 + 43.3 (6-133)

In this case he would obtain slightly poorer estimate (i.e., a larger probable error) than Mr. A even
if the counts ¢; = ¢, were the same, because the variance (6-129) for the direct route contains a
factor (1 — @), which gets replaced by (1 + 6) if we have to reason over the indirect route. Thus, if
the counter has low efficiency, the two routes give nearly equal reliability for equal counting rates;
but if it has high efficiency, 8 ~ 1, then the direct route ¢; — ny is far more reliable. Your common
sense will tell you that this is just as it should be.

Generalization and Asymptotic Forms.

We conjectured above that Mr. B might be helped a good deal more in his estimate of ny by
acquiring still more data {¢3, ¢4, ..., ¢ }. Let’s investigate that further. The standard deviation of
the distribution (6-85) in which the source strength was known exactly, is only y/s(1 —60) = 10.8
for s = 130; and from the table, Mr. B’s standard deviation for his estimate of ny is now about 2.5
times this value. What would happen if we gave him more and more data from other time intervals,
such that his estimate of s approached 1307 To answer this, note that, if 1 <k < m, we have (now
dropping the Ip except in priors because we will be concerned only with Mr. B from now on):

p(ngler ... cm) :/ p(nk5|cl...cm)d5:/ p(ng|scy) p(sler...en)ds (6-134)
0 0

in which we have put p(ng|sci...cn) = p(ng|scy) because, from Fig. (6.2), if s is known, then
all the ¢; with ¢ # k are irrelevant for inferences about nj;. The second factor in the integrand of
(6-134) can be evaluated by Bayes’ theorem:

pler...cmls)

p(sler .. .em) = p(s|ip) e emlln) = (const.) X p(s|Ip)p(c1|s)p(ezls) - -plemls)

Using (6-82) and normalizing, this reduces to

0 c+1
p(sler...em) = %506_””6 (6-135)
c!

where ¢ = ¢y + - - -+ ¢, is the total number of counts in the m seconds. The most probable, mean,
and variance of the distribution (6-135) are respectively
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c c+1 c—|—1_<5>

§=—, <5> = mo VaI’(S) = <82> - <8>2 = m262

— 6-136
Y ( )
So it turns out, as we might have expected, that as m — oo, the distribution p(s|ec; .. .c,, ) becomes
sharper and sharper, the most probable and mean value estimates of s get closer and closer together,
and it appears that in the limit we would have just a é-function:

p(sler...cp) — 8(s—s') (6-137)
where
SI = Tr}l_l;noo Cl +C2 :};O—I_Cm (6*138)

But the limiting form (6-137) was found a bit abruptly, as was James Bernoulli’s first limit theorem.
We might like to see in more detail how the limit is approached, in analogy to the de Moivre-Laplace
limit theorem for the binomial (5-10), or the limit (4-62) of the Beta distribution.

For example, expanding the logarithm of (6-135) about its peak § = ¢/m#, and retaining only
through the quadratic terms, we find for the asymptotic formula a Gaussian distribution:

p(sler .. .em) — Aexp [— %} (6-139)

which is actually valid for all s, in the sense that the difference between the left—hand side and
right—hand side is small for all s (although their ratio is not close to unity for all s). This leads to
the estimate, as ¢ — o0,

(8)est = 4 (1 + %) (6-140)

Quite generally, posterior distributions go into a Gaussian form as the data increases, because any
function with a single rounded maximum, raised to a higher and higher power, goes into a Gaussian
function. In the next Chapter we shall explore the basis of Gaussian distributions in some depth.

So, in the limit, Mr. B does indeed approach exact knowledge of the source strength. Returning
to (6-134), both factors in the integrand are now known from (6-85) and (6-135), and so

oo —s(1-6) 1 — )]k —ck gyt
p(nk|cl o Cm) _ / € [8( )] (m ) Sce—m59d8 (6*141)
0

(ng — cp)! c!

or

(ng —cx+ )t (mO)HL(1 — g)me—cx
(ng —cp)le! (14 mb — @) —crtetl

p(ngler ... cp) = (6-142)

which is the promised generalization of (6-127). In the limit m — oo, ¢ — o0, (¢/m#) — s’ = const.,
this goes into the Poisson distribution

e—s'(l—é)

p(nk|01 . .Cm) — m

[s'(1 — @)™ (6-143)
which is identical with (6-85). We therefore confirm that, given enough additional data, Mr. B’s
standard deviation can be reduced from 26 to 10.8, compared to Mr. A’s value of 31. For finite m,
the mean value estimate of n;, from (6-142) is
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(np) = cx + (s)(1— 0) (6-144)

where (s) = (¢4 1)/m# is the mean value estimate of s from (6-136). Equation (6-144) is to be
compared to (6-86). Likewise, the most probable value of nj according to (6-142), is

nE = ¢ + §(1 — 0) (6*145)

where § is given by (6-136).

Note that Mr. B’s revised estimates in problem 2 still lie within the range of reasonable error
assigned by Mr. A. It would be rather disconcerting if this were not the case, as it would then
appear that probability theory is giving Mr. A an over—optimistic picture of the reliability of his
estimates. There is, however, no theorem which guarantees this; for example, if the counting rate
had jumped to ¢2 = 80, then Mr. B’s revised estimate of ny would be far outside Mr. A’s limits of
reasonable error. But in this case, Mr. B’s common sense would lead him to doubt the reliability
of his prior information Ip; we would have another example like that in Chapter 4, of a problem
where one of those ‘Something Else’ alternative hypotheses down at —100 db, which we don’t even
bother to formulate until they are needed, is resurrected by very unexpected new evidence.

Exercise (6.7). The above results were found using the language of the particle counter
scenario. Summarize the final conclusions in the language of the disease incidence scenario, as
one or two paragraphs of advice for a medical researcher who is trying to judge whether public
health measures are reducing the incidence of a disease in the general population, but has data
only on the number of deaths from it. This should, of course, include something about judging
under what conditions our model corresponds well to the real world; and what to do if it does
not.

Now we turn to a different kind of problem to see some new features that can appear when we use
a sampling distribution that is continuous except at isolated points of discontinuity.

Rectangular Sampling Distribution

The following “taxicab problem” has been part of the orally transmitted folklore of this field for
several decades, but orthodoxy has no way of dealing with it, and we have never seen it mentioned
in the orthodox literature. You are traveling on a night train; on awakening from sleep, you notice
that the train is stopped at some unknown town, and all you can see is a taxicab with the number
27 on it. What is then your guess as to the number N of taxicabs in the town, which would in
turn give a clue as to the size of the town? Almost everybody answers intuitively that there seems
to be something about the choice N s = 2 X 27 = 54 that recommends itself; but few can offer a
convincing rationale for this. The obvious “model” that forms in our minds is that there will be N
taxicabs, numbered respectively (1,---, N), and given N, the one we see is equally likely to be any
of them. Given that model, we would then know deductively that N > 27; but from that point on,
one’s reasoning depends on one’s statistical indoctrination.

Here we study a continuous version of the same problem, in which more than one taxi may
be in view, leaving it as an exercise for the reader to write down the parallel solution to the above
taxicab problem, and then state the exact relation between the continuous and discrete problems.
We consider a rectangular sampling distribution in [0, a] where the width a of the distribution is
the parameter to be estimated, and finally suggest further exercises for the reader which will extend
what we learn from it.
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We have a data set D = {xy---2,} of n observations thought of as “drawn from” this distri-
bution, urn—wise; that is, each datum z; is assigned independently the pdf

(@la, I) o PEmisac (6-146)
Tia, = . -
P 0, otherwise
Then our entire sampling distribution is
p(Dle, 1) = [ plzia. 1) = a~", 0< {212} <a (6-147)

where for brevity we suppose, in the rest of this section, that when the inequalities following an
equation are not all satisfied, the left—hand side is zero. It might seem at first glance that this
situation is too trivial to be worth analyzing; yet if one does not see in advance exactly how every
detail of the solution will work itself out, there is always something to be learned from studying it.
In probability theory, the most trivial-looking problems reveal deep and unexpected things.

The posterior pdf for a is by Bayes’ theorem,

p(Dla, I)
plalD.1) = plalr) B2 (6-148)
where p(a|l') is our prior. Now it is evident that any Bayesian problem with a proper (normalizable)
prior and a bounded likelihood function must lead to a proper, well-behaved posterior distribution,
whatever the data — as long as the data do not themselves contradict any of our other information.
If any datum was found to be negative, z; < 0, the model (6-147) would be known deductively
to be wrong (put better, the data contradict the prior information I that led us to choose that
model). Then the robot crashes, both (6-147) and (6-148) vanishing identically. But any data set
for which the inequalities in (6-147) are satisfied is a possible one according to the model. Must it
then yield a reasonable posterior pdf?
Not necessarily! The data could be compatible with the model, but still incompatible with the
other prior information. Consider a proper rectangular prior

plall) = (o — aoo)_l , ago < a < ag (6-149)

where agg, a1 are fixed numbers satisfying 0 < agg < ay < 00, given to us in the statement of the
problem. If any datum were found to exceed the upper prior bound: z; > «ay, then the data and
the prior information would again be logically contradictory.

But this is just what we anticipated already in Chapters 1 and 2; we are trying to reason from
two pieces of information D, I, each of may be actually a logical conjunction of many different
propositions. If there is a contradiction hidden anywhere in the totality of this, there can be no
solution (in a set theory context, the set of possibilities that we have prescribed is the empty set)
and the robot crashes, in one way or another. So in the following we suppose that the data are
consistent with all the prior information — including the prior information that led us to choose this
model.T Then the above rules should yield the correct and exact answer to the question we have

t of course, in the real world we seldom have prior information that would justify such sharp bounds on x
and « and so such sharp contradictions would not arise; but that signifies only that we are studying an ideal
limiting case. There is nothing strange about this; in elementary geometry, our attention is directed first
to such things as perfect triangles and circles, although no such things exist in the real world. There, also,
we are really studying ideal limiting cases of reality; but what we learn from that study enables us to deal
successfully with thousands of real situations that arise in such diverse fields as architecture, engineering,
astronomy, godesy, stereochemistry, and the artist’s rules of perspective. It is the same here.
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posed.
The denominator of (6-148) is

p(D|I) = /R(a1 —ag) ta"da (6-150)

where the region R of integration must satisfy two conditions:

<a<
R = { foo == } (6-151)

wmaxéaéal

and .4, = max{xy ---2,} is the greatest datum observed. If 2,,,, < ago, then in (6-151) we need
only the former condition; the numerical values of the data z; are entirely irrelevant (although the
number n of observations remains relevant). If agg < @44, then we need only the latter inequality;
the prior lower bound agg has been superceded by the data, and is irrelevant to the problem from
this point on.

Substituting (6-147), (6-149) and (6-150) into (6-148) the factor (a; — ag) cancels out, and
if n > 1 our general solution reduces to

—1Da"
p(a|D,I):%, ag <a<ap, n>1 (6-152)
o TM

where ag = max(aoo, Tmaz)-

Small samples. Small values of n often present special situations that might be overlooked in
a general derivation. In orthodox statistics, as we shall see in Chapter 17, they can lead to weird
pathological results (like an estimator for a parameter which lies outside the parameter space, and
so is known deductively to be impossible). In any other area of mathematics, when a contradiction
appears one concludes at once that an error has been made. But curiously, in the literature of
orthodox statistics such pathologies are never interpreted as revealing an error in the orthodox
reasoning. Instead they are simply passed over; one proclaims his concern only with large n. But
small n proves to be very interesting for us, just because of the fact that Bayesian analysis has no
pathological, exceptional cases. As long as we avoid outright logical contradictions in the statement
of a problem and use proper priors, the solutions do not break down but continue to make good
sense.

It is very instructive to see how Bayesian analysis always manages to accomplish this, which
also makes us aware of a subtle point in practical calculation. Thus, in the present case, if n = 1,
then (6-152) appears indeterminate, reducing to (0/0). But if we repeat the derivation from the
start for the case n = 1, the properly normalized posterior pdf for « is found to be, instead of
(6-152),

a—l

p(a|D,I) = log(al/ao)

ag < a<ar, n=1. (6-153)

The case n = 0 can hardly be of any use; nevertheless, Bayes’ theorem still gives the obviously right
answer. For then D = “No data at all”, and p(D|a,I) = p(D|I) = 1; that is, if we take no data,
we shall have no data, whatever the value of . Then the posterior distribution (6-148) reduces,
as common sense demands, to the prior distribution

pla|DI) = p(all) ag <a<ap, n=0. (6-154)
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Mathematical Trickery. But now we see a subtle point; the last two results are contained
already in (6-152) without any need to go back and repeat the derivation from the start. We need
to understand the distinction between the real world problem and the abstract mathematics. For
although in the real problem, n is by definition a non—negative integer, the mathematical expression
(6-152) is well-defined and meaningful when n is any complex number. Furthermore, as long as
aj < 0o. it is an entire function of n (that is, bounded and analytic everywhere except the point at
infinity). Now in a purely mathematical derivation we are free to make use of whatever analytical
properties our functions have, whether or not they would make sense in the real problem. Therefore,
since (6-152) can have no singularity at any finite point, we may evaluate it at n = 1 by taking the
limit as » — 1. But

n—1 _ n—1
al™ — ol ~ exp[—(n —1)logag] — exp[—(n — 1)log o]
_ n—1 (6-155)
- [I=(n—-1)logag+--]=[1—(n—1)logay + -]
1
log(ay/ag)

leading to (6-153). Likewise, putting n = 0 into (6-152), it reduces to (6-154) because now we have
necessarily ag = agp. Even in extreme, degenerate cases, Bayesian analysis continues to yield the
correct results.t And it is evident that all moments and percentiles of the posterior distribution are
also entire functions of n, so they may be calculated once and for all for all n, taking limiting values
whenever the general expression reduces to (0/0) or (co/00); this will always yield the same result
that we obtain by going back to the beginning and repeating the calculation for that particular
value of n.*

If @1 < o0, the posterior distribution is confined to a finite interval, and so it has necessarily
moments of all orders. In fact,

a1 1+m—n 1+m—n
(a™) = n—1 o oy — T 1 o — ) (6-156)
— 1-n 1-n - n—m-—1 1-n 1-n
Qp T oo Qp T

and when n — 1 or m — n— 1, we are to take the limit of this expression in the manner of (6-155),
yielding the more explicit forms:

T Under the influence of early orthodox teaching, the writer became fully convinced of this only after many
years of experimentation with hundreds of such cases, and his total failure to produce any pathology as
long as the Chapter 2 rules were followed strictly.

* Recognizing this, we see that whenever a mathematical expression is an analytic function of some pa-
rameter, we can exploit that fact as a tool for calculation with it, whatever meaning it might have in the
original problem. For example, the numbers 2 and 7 often appear, and it is almost always in an expres-
sion Q(Q) or Q(?T) which is an analytic function of the symbol ‘2’ or ‘m’. Then, if it is helpful, we are
free to replace ‘2’ or ‘m’ by ‘z’ and evaluate quantities involving ¢) by such operations as differentiating
with respect to x, or complex integration in the xz—plane, etfc, setting x = 2 or x = 7 at the end; and
this is perfectly rigorous. Once we have distilled the real problem into one of abstract mathematics, our
symbols mean whatever we say they mean; the writer learned this trick from Professor W. W. Hansen of
Stanford University, who would throw a class into an uproar when he evaluated an integral, correctly, by
differentiating another integral with respect to m.
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—a{n — n=1
mlog(ay/ag)’
(a™) = - (6-157)
(n —l)nog(?iao) : m=n—1
Qg  —

In the above results, the posterior distribution is confined to a finite region (ap < @ < ay) and
there can be no singular result. Finally, we leave it as an exercise for the reader to consider what
happens as a3 — oo and we pass to an infinite domain:

Exercise (6.8). When ay — oo, some moments must cease to exist, so some inferences must
cease to be possible, others remain possible. Examine the above equations to find under what
conditions a posterior (mean + standard deviation) or (median £ interquartile span) remains
possible, considering in particular the case of small n. State how the results correspond to
common sense.

COMMENTS

The calculations which we have done here with ease — in particular, (6-121) and (6-140) — cannot
be done with any version of probability theory which does not permit the use of the prior and
posterior probabilities needed, and consequently does not allow one to integrate out a nuisance
parameter with respect to a prior. It appears to us that Mr. B’s results are beyond the reach of
orthodox methods. Yet at every stage probability theory as logic has followed the procedures that
are determined uniquely by the basic product and sum rules of probability theory; and it has yielded
well-behaved, reasonable, and useful results. In some cases, the prior information was absolutely
essential, even though it was only qualitative. Later we shall see even more striking examples of
this.

But it should not be supposed that this recognition of the need to use prior information is a
new discovery. It was emphasized very strongly by J. Bertrand (1889); he gave several examples,
of which we quote the last (he wrote in very short paragraphs):

“The inhabitants of St. Malo [a small French town on the English channel] are convinced;
for a century, in their village, the number of deaths at the time of high tide has been
greater than at low tide. We admit the fact.

“On the coast of the English channel there have been more shipwrecks when the wind
was from the northwest than for any other direction. The number of instances being
supposed the same and equally reliably reported, still one will not draw the same
conclusions.

“While we would be led to accept as a certainty the influence of the wind on shipwrecks,
common sense demands more evidence before considering it even plausible that the tide
influences the last hour of the Malouins.

“The problems, again, are identical; the impossibility of accepting the same conclusions
shows the necessity of taking into account the prior probability of the cause.”

Clearly, Bertrand cannot be counted among those who advocate R. A. Fisher’s maxim: “Let the
data speak for themselves!” which has so dominated statistics in this Century. The data cannot
speak for themselves; and they never have, in any real problem of inference.

For example, Fisher advocated the method of maximum likelihood for estimating a parameter;
in a sense, this is the value that is indicated most strongly by the data alone. But that takes note
of only one of the factors that probability theory (and common sense) requires. For, if we do not
supplement the maximum likelihood method with some prior information about which hypotheses
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we shall consider possible, then it will always lead us inexorably to favor the ‘sure thing’ hypothesis
ST, according to which every tiny detail of the data was inevitable; nothing else could possibly
have happened. For the data always have a much higher probability [namely p(D]ST) = 1], on ST
than on any other hypothesis; ST is always the maximum likelihood solution over the class of all
hypotheses. Only our extremely low prior probability for ST can justify our rejecting it.T

Orthodox practice deals with this in part by the device of specifying a model, which is, of
course, a means of incorporating some prior information about the phenomenon being observed.
But this is incomplete, defining only the parameter space within which we shall seek that maximum;
without a prior probability over that parameter space one has no way of incorporating further prior
information about the likely values of the parameter, which we almost always have and which is
often highly cogent for any rational inference. For example, although a parameter space may
extend formally to infinity, in virtually every real problem we know in advance that the parameter
is enormously unlikely to be outside some finite domain. This information may or may not be
crucial, depending on what data set we happen to get.

As the writer can testify from his student days, steadfast followers of Fisher often interpret ‘Let
the data speak for themselves’ as implying that it is somehow unethical — a violation of ‘scientific
objectivity’ — to allow one’s self to be influenced at all by prior information. It required a few years
of experience to perceive, with Bertrand, what a disastrous error this is in real problems. Fisher
was able to manage without mentioning prior information only because, in the problems he chose
to work on, he had no very important prior information anyway, and plenty of data. Had he worked
on problems with cogent prior information and sparse data, we think that his ideology would have
changed rather quickly.

Scientists in all fields see this readily enough — as long as they rely on their own common sense
instead of orthodox teaching. For example, Stephen J. Gould (1989) describes the bewildering
variety of soft—bodied animals that lived in early Cambrian times, preserved perfectly in the famous
Burgess shale of the Canadian Rockies. Two paleontologists examined the same fossil, named
Aysheaia, and arrived at opposite conclusions regarding its proper taxonomic classification. One
who followed Fisher’s maxim would be obliged to question the competence of one of them; but
Gould does not make this error. He concludes (p. 172), “We have a reasonably well-controlled
psychological experiment here. The data had not changed, so the reversal of opinion can only
record a revised presupposition about the most likely status of Burgess organisms.”

Prior information is essential also for a different reason, if we are trying to make inferences
concerning which mechanism is at work. Fisher would, presumably, insist as strongly as any other
scientist that a cause—effect relation requires a physical mechanism to bring it about. But as in St.
Malo, the data alone are silent on this; they do not speak for themselves.? Only prior information
can tell us whether some hypothesis provides a possible mechanism for the observed facts, consistent
with the known laws of physics. If it does not, then the fact that it accounts well for the data may
give it a high likelihood, but cannot give it any credence. A fantasy that invokes the labors of
hordes of little invisible elves and pixies to generate the data would have just as high a likelihood.

t Psychologists have noted that small children, when asked to account for some observed fact such as the
exact shape of a puddle of spilled milk, have a strong tendency to invent ‘sure thing’ hypotheses; they
have not yet acquired the worldly experience that makes educated adults consider them too unlikely to be
considered seriously. But a scientist, who knows that the shape is determined by the laws of hydrodynamics
and has vast computing power available, is no more able than the child to predict that shape, because he
lacks the requisite prior information about the exact initial conditions.

1 Statisticians, even those who profess themselves disciples of Fisher, have been obliged to develop adages
about this, such as ‘Correlation does not imply causation.” or ‘A good fit is no substitute for a reason.” to
discourage the kind of thinking that comes automatically to small children, and to adults with untrained
minds.
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It seems that it is not only orthodox statisticians who have denigrated prior information in
the twentieth Century. The fantasy writer H. P. Lovecraft once defined ‘common sense’ as “merely
a stupid absence of imagination and mental flexibility.” Indeed, it is just the accumulation of
unchanging prior information about the world that gives the mature person the mental stability
that rejects arbitrary fantasies (although we may enjoy diversionary reading of them).

Today, the question whether our present information does or does not provide credible evidence
for the existence of a causal effect is a major policy issue, arousing bitter political, commercial,
medical, and environmental contention, resounding in courtrooms and legislative halls.* Yet cogent
prior information — without which the issue cannot possibly be judged — plays little role in the
testimony of ‘expert witnesses’ with orthodox statistical training, because their standard procedures
have no place to use it. We note that Bertrand’s clear and correct insight into this appeared the
year before Fisher was born; the progress of scientific inference has not always been forward.

Thus this Chapter begins and ends with a glance back at Fisher, about whom the reader may
find more in Chapter 16.

* For some frightening examples, see Gardner (1981). Deliberate suppression of inconvenient prior infor-
mation is also the main tool of the scientific charlatan.
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CHAPTER 7

THE CENTRAL GAUSSIAN, OR NORMAL, DISTRIBUTION

“My own impression --- is that the mathematical results have outrun their in-
terpretation and that some simple explanation of the force and meaning of the
celebrated integral - - - will one day be found - -- which will at once render useless
all the works hitherto written.” - - - Augustus de Morgan (1838)

Here, de Morgan was expressing his bewilderment at the “curiously ubiquitous” success of methods
of inference based on the gaussian, or normal, “error law” (sampling distribution), even in cases
where the law is not at all plausible as a statement of the actual frequencies of the errors. But the
explanation was not forthcoming as quickly as he expected.

In the middle 1950’s the writer heard an after—dinner speech by Professor Willy Feller, in
which he roundly denounced the practice of using gaussian probability distributions for errors,
on the grounds that the frequency distributions of real errors are almost never gaussian. Yet in
spite of Feller’s disapproval, we continued to use them, and their ubiquitous success in parameter
estimation continued. So 145 years after de Morgan’s remark the situation was still unchanged, and
the same surprise was expressed by George Barnard (1983): “Why have we for so long managed
with normality assumptions?”

Today we believe that we can, at last, explain (1) the inevitably ubiquitous use, and (2) the
ubiquitous success, of the gaussian error law. Once seen, the explanation is indeed trivially obvious;
yet to the best of our knowledge it is not recognized in any of the previous literature of the field,
because of the universal tendency to think of probability distributions in terms of frequencies. We
cannot understand what is happening until we learn to to think of probability distributions in
terms of their demonstrable information content instead of their imagined (and as we shall see,
irrelevant) frequency connections.

A simple explanation of these properties — stripped of past irrelevancies — has been achieved
only very recently, and this development changed our plans for the present work. We decided that it
is so important that it should be inserted at this somewhat early point in the narrative, even though
we must then appeal to some results that are established only later. In the present Chapter, then,
we survey the historical basis of gaussian distributions and get a quick preliminary understanding
of their functional role in inference. This understanding will then guide us directly — without the
usual false starts and blind alleys — to the computational procedures which yield the great majority
of the useful applications of probability theory.

The Gravitating Phenomenon

We have noted an interesting phenomenon several times in previous Chapters; in probability theory
there seems to be a central, universal distribution

exp(—2?/2) (7-1)

toward which all others gravitate under a very wide variety of different operations — and which,
once attained, remains stable under an even wider variety of operations. The famous Central
Limit Theorem, derived below, concerns one special case of this. In Chapter 4, we noted that a
binomial or beta sampling distribution goes asymptotically into a gaussian when the number of trials
becomes large. In Chapter 6 we noted a virtually universal property, that posterior distributions
for parameters go into gaussians when the number of data values increases.
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In physics these gravitating and stability properties have made this distribution the universal
basis of kinetic theory and statistical mechanics; in biology, it is the natural tool for discussing
population dynamics in ecology and evolution. We cannot doubt that it will become equally
fundamental in economics, where it already enjoys ubiquitous use, but somewhat apologetically, as
if there were some doubt about its justification. We hope to assist this development by showing
that its range of validity for such applications is far wider than usually supposed.

This distribution is called the Gaussian, or Normal distribution for historical reasons discussed
in our closing Comments. Both names are inappropriate and misleading today; all the correct
connotations would be conveyed if we called it, simply, the Central distribution of probability
theory.T We consider first three derivations of it that were important historically and conceptually,
because they made us aware of three important properties of the gaussian distribution.

The Herschel-Maxwell Derivation

One of the most interesting derivations, from the standpoint of economy of assumptions, was
given by the astronomer John Herschel (1850). He considered the two-dimensional probability
distribution for errors in measuring the position of a star. Let x be the error in the longitudinal
(east—west) direction and y the error in the declination (north-south) direction, and ask for the
joint probability distribution p(z,y). Herschel made two postulates (P1, P2) that seemed required
intuitively by conditions of geometrical homogeneity:

(P1): Knowledge of z tells us nothing about y. That is, probabilities of errors in orthogonal
directions should be independent; so the undetermined distribution should have the functional
form

ple,y)dedy = f(x)de- f(y)dy. (7-2)

We can write the distribution equally well in polar coordinates r, 8 defined by 2 = rcos@, y =
rsin §:

plz,y)dedy = g(r,0)rdrdd . (7-3)

(P2): This probability should be independent of the angle: g(r,0) = g(r). Then (7-2), (7-3) yield
the functional equation

f@) fy) = g(Va? +y?), (7-4)

and setting y = 0, this reduces to ¢g(z) = f(2) f(0), so (7-4) becomes the functional equation

@) LI ) )
R B ) . (75)

But the general solution of this is obvious; a function of = plus a function of y is a function only
of 2% + y?. The only possibility is that log[f(z)/f(0)] = az?. We have a normalizable probability
only if @ is negative, and then normalization determines f(0); so the general solution can only have
the form

+ log

log

f(z) = %e—w’ . a>0 (7-6)

with one undetermined parameter. The only two—dimensional probability density satisfying Her-
schel’s invariance conditions is a circular symmetric gaussian:

t However, it is general usage outside probability theory to denote any function of the general form
eXp(—axQ) as a gaussian function, and we shall follow this.
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ple.y) = = expl-a(a” + 7). (7-7)

Ten years later, James Clerk Maxwell (1860) gave a three-dimensional version of this same argument
to find the probability distribution p(vy, vy, v,) < exp[—a(vZ+ vf/ + v2)] for velocities of molecules
in a gas, which has become well known to physicists as the ‘Maxwellian velocity distribution law’
fundamental to kinetic theory and statistical mechanics.

The Herschel-Maxwell argument is particularly beautiful because two qualitative conditions,
incompatible in general, become compatible for just one quantitative distribution, which they
therefore uniquely determine. Einstein (1905) used the same kind of argument to deduce the
Lorentz transformation law from his two qualitative postulates of relativity theory.?

The Herschel-Maxwell derivation is economical also in that it does not actually make any use
of probability theory; only geometrical invariance properties which could be applied equally well in
other contexts. Gaussian functions are unique objects in their own right, for purely mathematical
reasons. But now we give a famous derivation that makes explicit use of probabilistic intuition.

The Gauss Derivation

We estimate a location parameter 6 from (n 4 1) observations (zg - - -z, ) by maximum likelihood.
If the sampling distribution factors: p(aq---2,|0) = f(20l8) - - - f(2,]0), the likelihood equation is

n

0
> g el =0 (78)
or, writing
log f(10) = g(0 — ) = g(u) (7-9)

the maximum likelihood estimate 6 will satisfy
d g0 -2)=0. (7-10)

Now intuition may suggest to us that the estimate ought to be also the arithmetic mean of the

observations:
. 1 n
=7 = >, (7-11)

n—l_l =0

but (7-10) and (7-11) are in general incompatible [(7-11) is not a root of (7-10)]. Nevertheless,
consider a possible sample, in which only one observation z¢ is nonzero: if in (7-11) we put

zo=(n+ Du, r1=a3=--=2,=0, (—00 < u < o0), (7-12)
then 6 = u, § — xg = —nu, whereupon (7-10) becomes g¢'(—nu) + ng'(u) = 0
)

The case n = 1 tells us that ¢'(u) must be an antisymmetric function: ¢'(—u
reduces to

n=1,2,3,--.
—g'(u), so this

b

¥ These are: (1) The laws of physics take the same form for all moving observers; and (2) The velocity of
light has the same constant numerical value for all such observers. These are also contradictory in general,
but become compatible for one particular quantitative law of transformation of space and time to a moving
coordinate system.
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g'(nu) =ng'(u), (—o<u<o0), n=1,2,3---. (7-13)
Evidently, the only possibility is a linear function:
1
g'(u) = au, g(u) = 3 au® +b. (7-14)

Converting back by (7-9), a normalizable distribution again requires that a be negative, and
normalization then determines the constant b. The sampling distribution must have the form

Jxl6) = \/2E B0 (0 <a < oo) (7-15)

Since (7-15) was derived assuming the special sample (7-12), we have shown thus far only that
(7-15) is a necessary condition for the equality of maximum likelihood estimate and sample mean.
Conversely, if (7-15) is satisfied, then the likelihood equation (7-8) always has the unique solution
(7-11); and so (7-15) is the necessary and sufficient condition for this agreement. The only freedom
is the unspecified scale parameter «.

Historical Importance of Gauss’ Result

This derivation was given by Gauss (1809), as little more than a passing remark in a work concerned
with astronomy. It might have gone unnoticed but for the fact that Laplace saw its merit and
the following year published a large work calling attention to it and demonstrating the many
useful properties of (7-15) as a sampling distribution. Ever since, it has been called the ‘gaussian
distribution’.

Why was the Gauss derivation so sensational in effect? Because it put an end to a long —
and, it seems to us today, scandalous — psychological hangup suffered by some of the greatest
mathematicians of the time. The distribution (7-15) had been found in a more or less accidental
way already by de Moivre (1733), who did not appreciate its significance and made no use of it.
Throughout the 18°th Century it would have been of great value to astronomers faced constantly
with the problem of making the best estimates from discrepant observations; yet the greatest minds
failed to see it. Worse, even the qualitative fact underlying data analysis — cancellation of errors
by averaging of data — was not perceived by so great a mathematician as Leonhard Fuler.

FEuler (1749) trying to resolve the ‘Great Inequality of Jupiter and Saturn’ found himself
with what was at the time a monstrous problem (described briefly in our closing Comments).
To determine how the longitudes of Jupiter and Saturn had varied over long times he had 75
observations over a 164 year period (1582-1745), and eight orbital parameters to estimate from
them.

Today, a desk—top microcomputer could solve this problem by an algorithm to be given in
Chapter 19, and print out the best estimates of the eight parameters and their accuracies, in about
one minute [the main computational job is the inversion of an (8 x 8) matrix]. Euler failed to
solve it, but not because of the magnitude of this computation; he failed even to comprehend the
principle needed to solve it. Instead of seeing that by combining many observations their errors tend
to cancel, he thought that this would only ‘multiply the errors’ and make things worse. In other
words, Fuler concentrated his attention entirely on the worst possible thing that could happen, as
if it were certain to happen — which makes him perhaps the first really devout believer in Murphy’s
Law.T

Yet practical people, with experience in actual data taking, had long perceived that this
worst possible thing does not happen. On the contrary, averaging our observations has the great

LI T anything can go wrong, it will go wrong.”
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advantage that the errors tend to cancel each other.t Hipparchus, in the second Century B. C.,
estimated the precession of the equinoxes by averaging measurements on several stars. In the late
sixteenth Century, taking the average of several observations was the routine procedure of Tycho
Brahe. Long before it had any formal theoretical justification from mathematicians, intuition had
told observational astronomers that this averaging of data was the right thing to do.

But some thirty years after Euler’s effort another competent mathematician, Daniel Bernoulli
(1777), still could not comprehend the procedure. Bernoulli supposes an archer is shooting at a
vertical line drawn on a target, and asks how many shots land in various vertical bands on either
side of it:

“Now is it not self-evident that the hits must be assumed to be thicker and more numerous on any given
band the nearer this is to the mark? If all the places on the vertical plane, whatever their distance from
the mark, were equally liable to be hit, the most skillful shot would have no advantage over a blind
man. That, however, is the tacit assertion of those who use the common rule [the arithmetic mean] in
estimating the value of various discrepant observations, when they treat them all indiscriminately. In
this way, therefore, the degree of probability of any given deviation could be determined to some extent
a posteriori, since there is no doubt that, for a large number of shots, the probability is proportional
to the number of shots which hit a band situated at a given distance from the mark.”

We see that Daniel Bernoulli (1777), like his uncle James Bernoulli (1713), saw clearly the distinc-
tion between probability and frequency. In this respect his understanding exceeded that of John
Venn 100 years later. Yet he fails completely to understand the basis for taking the arithmetic
mean of the observations as an estimate of the true ‘mark’. He takes it for granted (although a
short calculation, which he was easily capable of doing, would have taught him otherwise) that if
the observations are given equal weight in calculating the average, then one must be assigning equal
probability to all errors, however great. Presumably, many others made intuitive guesses like this,
unchecked by calculation, making this part of the folklore of the time. Then one can appreciate
how astonishing it was when Gauss, 32 years later, proved that the condition

(maximum likelihood estimate) = (arithmetic mean)

uniquely determines the gaussian error law, not the uniform one.

In the meantime, Laplace (1783) had investigated this law as a limiting form of the binomial
distribution, derived its main properties, and suggested that it was so important that it ought to be
tabulated; yet lacking the above property demonstrated by Gauss, he still failed to see that it was
the natural error law (the Herschel derivation was still 77 years in the future). Laplace persisted
in trying to use the form f(2) x exp(—alz|) which caused no end of analytical difficulties. But he
did understand the qualitative principle that combination of observations improves the accuracy of
estimates, and this was enough to enable him to solve, in 1787, the problem of Jupiter and Saturn,
on which the greatest minds had been struggling since before he was born.

Twenty—two years later, when Laplace saw the Gauss derivation, he understood it all in a
flash — doubtless mentally kicked himself for not seeing it before — and hastened (Laplace, 1810,
1812) to give the Central Limit Theorem and the full solution to the general problem of reduction
of observations, which is still how we analyze it today. Not until the time of Einstein did such a
simple mathematical argument again have such a great effect on scientific practice.

The Landon Derivation

A derivation of the gaussian distribution that gives us a very lively picture of the process by which
a gaussian frequency distribution is built up in Nature was given in 1941 by Vernon D. Landon, an
electrical engineer studying properties of noise in communication circuits. We give a generalization
of his argument, in our current terminology and notation.

L 1§ positive and negative errors are equally likely, then the probability that ten errors all have the same

sign is (0.5)% ~ 0.002.
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The argument was suggested by the empirical observation that the variability of the electrical
noise voltage v(t) observed in a circuit at time ¢ seems always to have the same general properties
even though it occurs at many different levels (say, mean square values) corresponding to different
temperatures, amplifications, impedance levels, and even different kinds of sources — natural, as-
trophysical, or man—-made by many different devices such as vacuum tubes, neon signs, capacitors,
resistors made of many different materials, etc. Previously, engineers had tried to characterize the
noise generated by different sources in terms of some “statistic” such as the ratio of peak to RMS
(Root Mean Square) value, which it was thought might identify its origin. Landon recognized that
these attempts had failed, and that the samples of electrical noise produced by widely different

sources “ - - cannot be distinguished one from the other by any known test.” ¥

Landon reasoned that if this frequency distribution of noise voltage is so universal, then it
must be better determined theoretically than empirically. To account for this universality but for
magnitude, he visualized not a single distribution for the voltage at any given time, but a hierarchy
of distributions p(v|o) characterized by a single scale parameter o, which we shall take to be the
expected square of the noise voltage. The stability seems to imply that if the noise level o? is
increased by adding a small increment of voltage, the probability distribution still has the same
functional form, but only moved up the hierarchy to the new value of . He discovered that for
only one functional form of p(v|o) will this be true.

Suppose the noise voltage v is assigned the probability distribution p(v|o). Then it is incre-
mented by a small extra contribution ¢, becoming »" = v 4+ ¢ where ¢ is small compared to o, and
has a probability distribution ¢(¢)de, independent of p(v|o). Given a specific €, the probability for
the new noise voltage to have the value v’ would be just the previous probability that v should have
the value (v’ — €). Thus by the product and sum rules of probability theory, the new probability
distribution is the convolution

f') = /p(v' — €lo) q(e) de. (7-16)

Expanding this in powers of the small quantity ¢ and dropping the prime, we have

_ dp(vlo) 19%p(vlo) [ -
f(v) =p(v]|o) - 50 /6(](6) de + 5 907 /6 q(e)de + - (7-17)
or, now writing for brevity p = p(v|o),
B op 1,, 0% 3
f(”)—P—<€>%+§<€>W+”' (7-18)

This shows the general form of the expansion; but now we assume that the increment is as likely to
be positive as negative; (¢) = 0.* At the same time, the expectation of v? is increased to o2 + (€?),
so Landon’s invariance property requires that f(v) should be equal also to

' This universal, stable type of noise was called “grass” because that is what it looks like on an oscilloscope.
To the ear, it sounds like a smooth hissing without any discernible pitch; today this is familiar to everyone
because it is what we hear when a television receiver is tuned to an unused channel. Then the automatic
gain control turns the gain up to the maximum, and both the hissing sound and the flickering ‘snow’ on
the screen are the greatly amplified noise generated by random thermal motion of electrons in the antenna
according to the Nyquist law noted below.

* If the small increments all had a systematic component in the same direction, one would build up a large
“D. C.” noise voltage, which is manifestly not the present situation. But the resulting solution might have
other applications; see Exercise 7.1.
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dp
_ 2
Ty =p+{) 55 (7-19)
Comparing (7-18) and (7-19), we have the condition for this invariance:
ap 1 9%p
g _ 2P -2
do? 2 0v? (7-20)

But this is a well-known differential equation (the “diffusion equation”), whose solution with the
obvious initial condition p(vjoc = 0) = é6(v) is

p(vlo) = = exp [—%] , (7-21)

2no

the standard Gaussian distribution. By minor changes in the wording, the above mathematical
argument can be interpreted either as calculating a probability distribution, or as estimating a
frequency distribution; in 1941 nobody except Harold Jeffreys and John Maynard Keynes took
note of such distinctions. As we shall see, this is, in spirit, an incremental version of the Central
Limit Theorem; instead of adding up all the small contributions at once, it takes them into account
one at a time, requiring that at each step the new probability distribution has the same functional
form (to second order in ¢).

This is just the process by which noise is produced in Nature — by addition of many small
increments, one at a time (for example, collisions of individual electrons with atoms, each collision
radiating another tiny pulse of electromagnetic waves, whose sum is the observed noise). Once a
gaussian form is attained, it is preserved; this process can be stopped at any point and the resulting
final distribution still has the Gaussian form. What is at first surprising is that this stable form is
independent of the distributions ¢(€) of the small increments; that is why the noise from different
sources could not be distinguished by any test known in 1941.%

Today we can go further and recognize that the reason for this independence was that only
the second moment (€?) of the increments mattered for the updated point distribution (that is, the
probability distribution for the voltage at a given time that we were seeking). Even the magnitude
of the second moment did not matter for the functional form; it determined only how far up
the o®~hierarchy we moved. But if we ask a more detailed question, involving time—dependent
correlation functions, then noise samples from different sources are no longer indistinguishable.
The second order correlations of the form (e(?)e(t')) are related to the power spectrum of the
noise through the Wiener—Khinchin theorem, which was just in the process of being discovered in
1941; they give information about the duration in time of the small increments. But if we go to
fourth order correlations (€(?1)e(?s)e(t3)e(ts)) we obtain still more detailed information, different
for different sources even though they all have the same Gaussian point distribution and the same
power spectrum.i

T Landon’s original derivation concerned only a special case of this, in which ¢(¢) = [1Va? — 62]_1, le| <
a corresponding to an added sinusoid of amplitude ¢ and unknown phase. But the important thing was his
tdea of the derivation, which anyone can generalize once it is grasped. In essence he had discovered inde-
pendently, in the expansion (7-18), what is now called the Fokker—-Planck equation of statistical mechanics,
a powerful method which we shall use later to show how a nonequilibrium probability distribution relaxes
into an equilibrium one. It is now known to have a deep meaning, in terms of continually remaximized
entropy.

1 Recognition of this invalidates many naive arguments by physicists who try to prove that “Maxwell
Demons” are impossible by assuming that thermal radiation has a universal character, making it impossible
to distinguish the source of the radiation. But only the second order correlations are universal; a demon
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Exercise 7.1. The above derivation established the result to order {¢?). Now suppose that
we add n such small increments, bringing the variance up to o + n{e*). Show that in the limit
n — oo, (¢¢) — 0, n(e?) — const., the gaussian distribution (7-21) becomes exact (the higher
terms in the expansion (7-17) become vanishingly small compared to the terms in (€?)).

Exercise 7.2. Repeat the above derivation without assuming that (¢) = 0 in (7-18). The
resulting differential equation is a Fokker—Planck equation. Show that there is now a super-
imposed steady drift, the solutions having the form exp[—(v — ao?)?/20?%]. Suggest a possible
useful application of this result. Hint: o? and v may be given other interpretations, such as
time and distance.

Why the Ubiquitous Use of Gaussian Distributions?

We started this Chapter by noting the surprise of de Morgan and Barnard at the great and ubiq-
uitous success that is achieved in inference — particularly, in parameter estimation — through the
use of gaussian sampling distributions, and the reluctance of Feller to believe that such success was
possible. It is surprising that to understand this mystery requires almost no mathematics — only a
conceptual re—orientation toward the idea of probability theory as logic.

Let us think in terms of the information that is conveyed by our equations. Whether or not
the long—run frequency distribution of errors is in fact gaussian is almost never known empirically;
what the scientist knows about them (from past experience or from theory) is almost always simply
their general magnitude. For example, today most accurate experiments in physics take data
electronically, and a physicist usually knows the mean—square error of those measurements because
it is related to the noise energy and temperature by the well-known Nyquist thermal fluctuation
law.* But he seldom knows any other property of the noise. If one assigns the first two moments
of a noise probability distribution to agree with such information, but has no further information
and therefore imposes no further constraints, then a gaussian distribution fit to those moments
will, according to the Principle of Maximum Entropy as discussed in Chapter 11, represent most
honestly his state of knowledge about the noise.

But we must stress a point of logic concerning this. It represents most honestly his state of
knowledge about the particular samples of noise for which he had data. This never includes the
noise in the measurement which he is about to make! If we suppose that knowledge about some past
samples of noise applies also to the specific sample of noise that we are about to encounter, then we
are making an inductive inference that might or might not be justified; and honesty requires that
we recognize this. Then past noise samples are relevant for predicting future noise only through
those aspects that we believe should be reproducible in the future.

who perceives fourth order correlations in thermal radiation is far from blind about the details of his
surroundings. Indeed, the famous Hanbury Brown—Twiss interferometer (1956), invokes just such a fourth—
order demon, in space instead of time and observing <€2(x1)€2($2)> to measure the angular diameters of
stars. Conventional arguments against Maxwell demons are logically flawed and prove nothing.

* A circuit element of resistance R(w) ohms at angular frequency w develops across its terminals in a small
frequency band Aw = 27Af a fluctuating mean-square open-—circuit voltage V? = 4kTRAf, where f
is the frequency in Hz (cycles per second), k = 1.38 X 10723 joules/degree is Boltzmann’s constant, and
T is the Kelvin temperature. Thus it can deliver to another circuit element the maximum noise power
P =V?/4R = kKTAf. At room temperature, T = 300K, this is about 4 X 1071® watts per megahertz
bandwidth. Any signal of lower intensity than this will be lost in the thermal noise and cannot be recovered,
ordinarily, by any amount of amplification. But prior information about the kind of signal to be expected
will still enable a Bayesian computer program to extract weaker signals than this, as the work of Bretthorst
(1988) demonstrates. We study this in Chapter 23.
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In practice, common sense usually tells us that any observed fine details of past noise are
irrelevant for predicting fine details of future noise; but that coarser features, such as past mean—
square values, may be expected reasonably to persist, and thus be relevant for predicting future
mean—square values. Then our probability assignment for future noise should make use only of
those coarse features of past noise which we believe to have this persistence. That is, it should
have maximum entropy subject to the constraints of the coarse features that we retain because we
expect them to be reproducible. Probability theory becomes a much more powerful reasoning tool
when guided by a little common—sense judgment of this kind about the real world, as expressed in
our choice of a model and assignment of prior probabilities.

Thus we shall find in studying Maximum Entropy below that when we use a gaussian sampling
distribution for the noise, we are in effect telling the robot: “The only thing I know about the noise
is its first two moments; so please take that into account in assigning your probability distribution,
but be careful not to assume anything else about the noise.” We shall see presently how well the
robot obeys this instruction.’

This does not mean that the full frequency distribution of the past noise is to be ignored if
it happens to be known. Probability theory as logic does not conflict with conventional orthodox
theory if we actually have the information (that is, perfect knowledge of limiting frequencies, and no
other information) that orthodox theory presupposes; but it continues to operate using whatever
information we have. In the vast majority of real problems we lack this frequency information
but have other information (such as mean square value, digitizing interval, power spectrum of the
noise); and a correct probability analysis readily takes this into account.

Exercise 7.3. Suppose that the long—run frequency distribution of the noise has been found
empirically to be the function f(e) (never mind how one could actually obtain that information)
and we have no other information about the noise. Show, by reasoning like that leading to
(4-48) and using Laplace’s Rule of Succession (6-70), that in the limit of a very large amount
of frequency data, our probability distribution for the noise becomes numerically equal to the
observed frequency distribution: p(e|l) — f(e). This is what Daniel Bernoulli conjectured in
the above quotation. But state very carefully the exact conditions for this to be true.

In other fields such as analysis of economic data, knowledge of the noise may be more crude,
consisting of an approximate general magnitude of the noise and nothing else. But for reasons
noted below (Central Limit Theorem) we still have good reasons to expect a gaussian functional
form; so a gaussian distribution fit to that magnitude is still a good approximation to one’s state
of knowledge. If even that knowledge is lacking, we still have good reason to expect the gaussian
functional form, so a sampling distribution with ¢ an undetermined nuisance parameter to be
estimated from the data is an appropriate and useful starting point. Indeed, as Bretthorst (1988)
demonstrates, this is often the safest procedure even in a physics experiment, because the noise
may not be the theoretically well understood Nyquist noise [No source has ever been found which
generates noise below the Nyquist value — and from the second law of thermodynamics we do not
expect to find such a source — but a defective apparatus may generate noise far above the Nyquist
value. One can still conduct the experiment with such an apparatus, taking into account the greater
noise magnitude; but of course, a wise experimenter who knows that this is happening, will try to
improve his apparatus before proceeding.]

We shall find, in the Central Limit Theorem, still another strong justification for using gaussian
error distributions. But if the gaussian law is nearly always a good representation of our state of
knowledge about the errors in our specific data set, it follows that inferences made from it are

T If we have further pieces of information about the noise, such as a fourth moment or an upper bound,
the robot can take these into account also by assigning generalized gaussian — that is, general maximum
entropy — noise probability distributions. Examples of the use of the fourth moment in economics and
physical chemistry are given by Zellner (19XX) and Chris (19XX).
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nearly always the best ones that could have been made from the information that we actually have.
Now as we note presently, the data give us a great deal of information about the noise, not usually
recognized. But Bayes’ theorem automatically takes into account whatever can be inferred about
the noise from the data. Therefore Bayesian inferences using a gaussian sampling distribution
could be improved upon only by one who had additional information about the actual errors in his
specific data set, beyond its first two moments and beyond what is known from the data.

For this reason, whether our inferences are successful or not, unless such extra information is
at hand there is no justification for adopting a different error law; and indeed, no principle to tell
us which different one to adopt. This explains the ubiquitous use. Since the time of Gauss and
Laplace, the great majority of all inference procedures with continuous probability distributions
have been conducted — necessarily and properly — with gaussian sampling distributions. Those
who disapproved of this, whatever the grounds for their objection, have been unable to offer any
alternative that was not subject to a worse objection; so already in the time of de Morgan, some
25 years after the work of Laplace, use of the gaussian rule had become ubiquitous by default, and
this continues today.

Recognition of this considerably simplifies our expositions of Bayesian inference; 95% of our
analysis can be conducted with a gaussian sampling distribution, and only in special circumstances
(unusual prior information such as that the errors are pure digitizing errors or that there is an
upper bound to the possible error magnitude) is there any reason for adopting a different one. But
even in those special circumstances, the gaussian analysis usually leads to final conclusions so near
to the exact ones that the difference is hardly worth the extra effort.

It is now clear that the most ubiquitous reason for using the gaussian sampling distribution is
not that the error frequencies are known to be — or assumed to be — gaussian; but rather because
those frequencies are unknown. One sees what a totally different outlook this is than that of Feller
and Barnard; ‘normality’ was not an assumption of physical fact at all. It was a valid description
of our state of information. In most cases, had we done anything different we would be maki