MATHEMATICS fr
3D GAME PROGRAMMING
& COMPUTER GRAPHICS

Second Edition

Mathematics for
3D Game Programming
and Computer Graphics

Second Edition

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

CHARLES RIVER MEDIA, INC. (“CRM”) AND/OR ANYONE WHO HAS BEEN IN-
VOLVED IN THE WRITING, CREATION, OR PRODUCTION OF THE ACCOMPANYING
CODE IN THE TEXTUAL MATERIAL IN THE BOOK, CANNOT AND DO NOT WARRANT
THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE CON-
TENTS OF THE BOOK. THE AUTHOR AND PUBLISHER HAVE USED THEIR BEST EF-
FORTS TO ENSURE THE ACCURACY AND FUNCTIONALITY OF THE TEXTUAL
MATERIAL AND PROGRAMS DESCRIBED HEREIN. WE, HOWEVER, MAKE NO WAR-
RANTY OF ANY KIND, EXPRESS OR IMPLIED, REGARDING THE PERFORMANCE OF
THESE PROGRAMS OR CONTENTS. THE BOOK IS SOLD “AS IS” WITHOUT WAR-
RANTY (EXCEPT FOR DEFECTIVE MATERIALS USED IN MANUFACTURING THE
BOOK OR DUE TO FAULTY WORKMANSHIP).

THE AUTHOR, THE PUBLISHER, AND ANYONE INVOLVED IN THE PRODUCTION
AND MANUFACTURING OF THIS WORK SHALL NOT BE LIABLE FOR DAMAGES OF
ANY KIND ARISING OUT OF THE USE OF (OR THE INABILITY TO USE) THE PRO-
GRAMS, SOURCE CODE, OR TEXTUAL MATERIAL CONTAINED IN THIS PUBLICA-
TION. THIS INCLUDES, BUT IS NOT LIMITED TO, LOSS OF REVENUE OR PROFIT, OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THE PRODUCT.

THE SOLE REMEDY IN THE EVENT OF A CLAIM OF ANY KIND IS EXPRESSLY
LIMITED TO REPLACEMENT OF THE BOOK, AND ONLY AT THE DISCRETION OF
CRM.

THE USE OF “IMPLIED WARRANTY” AND CERTAIN “EXCLUSIONS” VARY FROM
STATE TO STATE, AND MAY NOT APPLY TO THE PURCHASER OF THIS PRODUCT.

Team LRN

Mathematics for
3D Game Programming

and Computer Graphics

Second Edition

Eric Lengyel

CHARLES RIVER MEDIA, INC.
Hingham, Massachusetts

Team LRN

Copyright 2004 by CHARLES RIVER MEDIA, INC.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any type, or trans-
mitted by any means or media, electronic or mechanical, including, but not limited to, photocopy, recording,
or scanning, without prior permission in writing from the publisher.

Editor: David Pallai
Production: Eric Lengyel
Cover Design: The Printed Image

CHARLES RIVER MEDIA, INC.
10 Downer Avenue

Hingham, Massachusetts 02043
781-740-0400

781-740-8816 (FAX)
info@charlesriver.com
www.charlesriver.com

This book is printed on acid-free paper.

Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics, Second Edition.
ISBN: 1-58450-277-0

All brand names and product names mentioned in this book are trademarks or service marks of their respec-
tive companies. Any omission or misuse (of any kind) of service marks or trademarks should not be regarded
as intent to infringe on the property of others. The publisher recognizes and respects all marks used by com-
panies, manufacturers, and developers as a means to distinguish their products.

Library of Congress Cataloging-in-Publication Data

Lengyel, Eric.
Mathematics for 3D game programming & computer graphics / Eric Lengyel.—2nd ed.
p. cm.
ISBN 1-58450-277-0 (alk. paper)
1. Computer games—Programming. 2. Three-dimensional display systems—Mathematics.
3. Computer graphics—Mathematics. 1. Title.
QA76.76.C672 L46 2003
794.8'16693—dc22
2003019938

Printed in the United States of America
03765432 First Edition

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user groups,
corporations, etc. For additional information, please contact the Special Sales Department at 781-740-0400.

Team LRN

Chapter 0

Chapter 1

Chapter 2

Contents

Preface

What’s New in the Second Edition
Contents Overview
Notational Conventions

The Rendering Pipeline

0.1 Graphics Processors
0.2 Vertex Transformation
0.3 Rasterization and Fragment Operations

Vectors

1.1 Vector Properties
1.2 Dot Products

1.3 Cross Products

1.4 Vector Spaces
Chapter 1 Summary
Exercises for Chapter |

Matrices
2.1 Matrix Properties

Team LRN

xiii
X1V
X1V

XVil

vi Mathematics for 3D Game Programming and Computer Graphics

Chapter 3

Chapter 4

2.2 Linear Systems

2.3 Matrix Inverses

2.4 Determinants

2.5 Eigenvalues and Eigenvectors
2.6 Diagonalization

Chapter 2 Summary

Exercises for Chapter 2

Transforms

3.1 Linear Transformations
3.1.1 Orthogonal Matrices
3.1.2 Handedness
3.2 Scaling Transforms
3.3 Rotation Transforms
3.3.1 Rotation About an Arbitrary Axis
3.4 Homogeneous Coordinates
3.4.1 Four-Dimensional Transforms
3.4.2 Points and Directions
3.4.3 Geometrical Interpretation of the w-Coordinate
3.5 Transforming Normal Vectors
3.6 Quaternions
3.6.1 Quaternion Mathematics
3.6.2 Rotations with Quaternions
3.6.3 Spherical Linear Interpolation
Chapter 3 Summary
Exercises for Chapter 3

3D Engine Geometry

4.1 Lines in 3D Space
4.1.1 Distance between a Point and a Line
4.1.2 Distance between Two Lines

4.2 Planes in 3D Space
4.2.1 Intersection of a Line and a Plane
4.2.2 Intersection of Three Planes
4.2.3 Transforming Planes

4.3 The View Frustum
4.3.1 Field of View
4.3.2 Frustum Planes

4.4 Perspective-Correct Interpolation
4.4.1 Depth Interpolation
4.4.2 Vertex Attribute Interpolation

Team LRN

37
43
49
56
60
65
67

71

71
73
74
75
76
78
81
81
83
83
85
86
86
88
92
96
98

101

101
102
103
105
107
108
110
111
112
115
116
117
119

Contents

Chapter 5

Chapter 6

4.5 Projections
4.5.1 Perspective Projections
4.5.2 Orthographic Projections
4.5.3 Extracting Frustum Planes

Chapter 4 Summary

Exercises for Chapter 4

Ray Tracing

5.1 Root Finding
5.1.1 Quadratic Polynomials
5.1.2 Cubic Polynomials
5.1.3 Quartic Polynomials
5.1.4 Newton’s Method
5.1.5 Refinement of Reciprocals and Square Roots
5.2 Surface Intersections
5.2.1 Intersection of a Ray and a Triangle
5.2.2 Intersection of a Ray and a Box
5.2.3 Intersection of a Ray and a Sphere
5.2.4 Intersection of a Ray and a Cylinder
5.2.5 Intersection of a Ray and a Torus
5.3 Normal Vector Calculation
5.4 Reflection and Refraction Vectors
5.4.1 Reflection Vector Calculation
5.4.2 Refraction Vector Calculation
Chapter 5 Summary
Exercises for Chapter 5

IMlumination

6.1 RGB Color

6.2 Light Sources
6.2.1 Ambient Light
6.2.2 Directional Light Sources
6.2.3 Point Light Sources
6.2.4 Spot Light Sources

6.3 Diffuse Lighting

6.4 Texture Mapping
6.4.1 Standard Texture Maps
6.4.2 Projective Texture Maps
6.4.3 Cube Texture Maps
6.4.4 Filtering and Mipmaps

6.5 Specular Lighting

Team LRN

vii

120
121
125
127
128
131

133

133
134
135
138
139
142
143
143
145
146
148
149
151
152
152
154
156
157

161

162
163
163
163
163
164
165
166
167
168
170
172
175

viii

Mathematics for 3D Game Programming and Computer Graphics

Chapter 7

6.6 Emission

6.7 Shading
6.7.1 Calculating Normal Vectors
6.7.2 Gouraud Shading
6.7.3 Phong Shading

6.8 Bump Mapping
6.8.1 Bump Map Construction
6.8.2 Tangent Space
6.8.3 Calculating Tangent Vectors
6.8.4 Implementation

6.9 A Physical Reflection Model

6.9.1 Bidirectional Reflectance Distribution Functions

6.9.2 Cook-Torrance Illumination
6.9.3 The Fresnel Factor

6.9.4 The Microfacet Distribution Function
6.9.5 The Geometrical Attenuation Factor

6.9.6 Implementation
Chapter 6 Summary
Exercises for Chapter 6

Visibility Determination

7.1 Bounding Volume Construction
7.1.1 Principal Component Analysis
7.1.2 Bounding Box Construction
7.1.3 Bounding Sphere Construction
7.1.4 Bounding Ellipsoid Construction
7.1.5 Bounding Cylinder Construction
7.2 Bounding Volume Tests
7.2.1 Bounding Sphere Test
7.2.2 Bounding Ellipsoid Test
7.2.3 Bounding Cylinder Test
7.2.4 Bounding Box Test
7.3 Spatial Partitioning
7.3.1 Octrees
7.3.2 Binary Space Partitioning Trees
7.4 Portal Systems
7.4.1 Portal Clipping
7.4.2 Reduced View Frustums
Chapter 7 Summary
Exercises for Chapter 7

Team LRN

178
178
179
180
181
182
182
183
184
187
189
189
194
195
198
200
203
210
214

217

218
218
221
223
225
226
227
227
229
232
234
237
237
238
241
242
245
247
251

Contents

Chapter 8

Chapter 9

Chapter 10

Collision Detection

8.1 Plane Collisions

8.1.1 Collision of a Sphere and a Plane

8.1.2 Collision of a Box and a Plane
8.1.3 Spatial Partitioning

8.2 General Sphere Collisions

8.3 Sliding

8.4 Collision of Two Spheres

Chapter 8 Summary

Exercises for Chapter 8

Polygonal Techniques

9.1 Depth Value Offset
9.1.1 Projection Matrix Modification
9.1.2 Offset Value Selection
9.1.3 Implementation

9.2 Decal Application
9.2.1 Decal Mesh Construction
9.2.2 Polygon Clipping

9.3 Billboarding
9.3.1 Unconstrained Quads
9.3.2 Constrained Quads
9.3.3 Polyline Quadstrips

9.4 Polygon Reduction

9.5 T-Junction Elimination

9.6 Triangulation

Chapter 9 Summary

Exercises for Chapter 9

Shadows

10.1 Algorithm Overview

10.2 Infinite View Frustums

10.3 Silhouette Determination

10.4 Shadow Volume Construction
10.5 Determining Cap Necessity
10.6 Rendering Shadow Volumes
10.7 Scissor Optimization

Chapter 10 Summary

Exercises for Chapter 10

Team LRN

253

254
254
256
258
259
264
265
269
271

273

273
274
275
277
277
278
280
282
282
285
287
289
294
296
304
306

307

308
313
317
322
326
330
333
338
339

Mathematics for 3D Game Programming and Computer Graphics

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Linear Physics

11.1 Position Functions

11.2 Second-Order Differential Equations
11.2.1 Homogeneous Equations
11.2.2 Nonhomogeneous Equations
11.2.3 Initial Conditions

11.3 Projectile Motion

11.4 Resisted Motion

11.5 Friction

Chapter 11 Summary

Exercises for Chapter 11

Rotational Physics

12.1 Rotating Environments
12.1.1 Angular Velocity
12.1.2 The Centrifugal Force
12.1.3 The Coriolis Force
12.2 Rigid Body Motion
12.2.1 Center of Mass
12.2.2 Angular Momentum and Torque
12.2.3 The Inertia Tensor
12.2.4 Principal Axes of Inertia
12.3 Oscillatory Motion
12.3.1 Spring Motion
12.3.2 Pendulum Motion
Chapter 12 Summary
Exercises for Chapter 12

Fluid Simulation

13.1 The Wave Equation

13.2 Approximating Derivatives

13.3 Evaluating Surface Displacement
13.4 Implementation

Chapter 13 Summary

Exercises for Chapter 13

Numerical Methods

14.1 Linear Systems
14.1.1 Triangular Systems
14.1.2 Gaussian Elimination

Team LRN

341

341
343
343
348
350
352
357
359
362
364

367

367
368
370
371
373
373
376
377
385
389
389
393
395
397

401

401
405
408
411
416
417

419

419
420
421

Contents

Chapter 15

Appendix A

Appendix B

14.1.3 LU Decomposition
14.1.4 Error Reduction
14.1.5 Tridiagonal Systems
14.2 Eigenvalues and Eigenvectors
14.3 Ordinary Differential Equations
14.3.1 Euler’s Method
14.3.2 Taylor Series Method
14.3.3 Runge-Kutta Method
14.3.4 Higher-Order Differential Equations
Chapter 14 Summary
Exercises for Chapter 14

Curves and Surfaces

15.1 Cubic Curves

15.2 Hermite Curves

15.3 Bézier Curves
15.3.1 Cubic Bézier Curves
15.3.2 Bézier Curve Truncation
15.3.3 The de Casteljau Algorithm

15.4 Catmull-Rom Splines

15.5 Cubic Splines

15.6 B-Splines
15.6.1 Uniform B-Splines
15.6.2 B-Spline Globalization
15.6.3 Nonuniform B-Splines
15.6.4 NURBS

15.7 Bicubic Surfaces

15.8 Curvature and Torsion

Chapter 15 Summary

Exercises for Chapter 15

Complex Numbers

A.1 Definition

A.2 Addition and Multiplication
A.3 Conjugates and Inverses
A.4 The Euler Formula

Trigonometry Reference

B.1 Function Definitions
B.2 Symmetry and Phase Shifts
B.3 Pythagorean Identities

Team LRN

xi

424
431
433
437
444
444
445
447
449
450
452

453

453
456
458
460
463
464
467
468
472
473
478
480
484
486
488
493
496

499

499
500
500
501

505

505
506
507

xii Mathematics for 3D Game Programming and Computer Graphics

Appendix C

Appendix D

Appendix E

B.4 Exponential Identities 508
B.5 Inverse Functions 509
B.6 Laws of Sines and Cosines 510
Coordinate Systems 513
C.1 Cartesian Coordinates 513
C.2 Cylindrical Coordinates 514
C.3 Spherical Coordinates 517
C.4 Generalized Coordinates 520
Taylor Series 525
D.1 Derivation 525
D.2 Power Series 527
D.3 The Euler Formula 529
Answers to Exercises 531
Chapter 1 531
Chapter 2 531
Chapter 3 532
Chapter 4 532
Chapter 5 533
Chapter 6 533
Chapter 7 534
Chapter 8 534
Chapter 9 534
Chapter 10 534
Chapter 11 535
Chapter 12 535
Chapter 13 536
Chapter 14 536
Chapter 15 536
Bibliography 539
Index 543

Team LRN

Preface

his book illustrates mathematical techniques that a software engineer

would need to develop a professional-quality 3D graphics engine. Particu-

lar attention is paid to the derivation of key results in order to provide a
complete exposition of the subject and to encourage a deep understanding of the
mechanics behind the mathematical tools used by game programmers.

Most of the material in this book is presented in a manner that is independent
of the underlying 3D graphics system used to render images. We assume that the
reader is familiar with the basic concepts needed to use a 3D graphics library and
understands how models are constructed out of vertices and polygons. However,
the book begins with a short review of the rendering pipeline as it is implemented
in the OpenGL library. When it becomes necessary to discuss a topic in the con-
text of a 3D graphics library, OpenGL is the one that we choose due to its avail-
ability across multiple platforms.

Code examples in this book are presented in standard C++. In various places,
we also demonstrate certain techniques using vertex programs and fragment pro-
grams. These programs use the assembly-like vector instruction sets exposed by
the GL_ARB vertex programand GL ARB fragment program exten-
sions to OpenGL.

Each chapter ends with a summary of the important equations and formulas
derived within the text. The summary is intended to serve as a reference tool so
that the reader is not required to wade through long discussions of the subject

xiii

Team LRN

Xiv

Mathematics for 3D Game Programming and Computer Graphics

matter in order to find a single result. There are also several exercises at the end
of each chapter. Answers to exercises requiring a calculation are given in Appen-
dix E.

What’s New in the Second Edition

In the second edition, four new chapters have been added, and original chapters
have been updated to reflect advances in 3D rendering technology. First, a pre-
liminary chapter about the rendering pipeline provides a review of the tasks per-
formed by modern graphics hardware and establishes the context in which later
rendering discussions occur. Next, the presentation of the stencil shadow tech-
nique appearing in the first edition has been greatly expanded and now occupies
its own chapter. Finally, two chapters covering entirely new material have been
appended to the book. The first of these chapters discusses numerical methods
useful for solving problems that arise in the course of 3D graphics engine devel-
opment. The second chapter describes several classes of parametric curves and
surfaces.

Many discussions have been updated to reflect advances in graphics technol-
ogy. In Chapter 6, the original implementation of the Cook-Torrance illumination
model has been replaced with vertex and fragment programs that make use of
newer hardware capabilities. As already mentioned, the discussion of the stencil
shadow algorithm has been updated, and its implementation also takes advantage
of recently created OpenGL extensions. Other more minor updates have been
made throughout the book.

Contents Overview

Chapter 0: The Rendering Pipeline. This is a preliminary chapter that provides
an overview of the rendering pipeline in the context of the OpenGL library.
Many of the topics mentioned in this chapter are examined in higher detail else-
where in the book, so mathematical discussions are intentionally avoided here.

Chapter 1: Vectors. This chapter begins the mathematical portion of the book
with a thorough review of vector quantities and their properties. Vectors are of
fundamental importance in the study of 3D computer graphics, and we make ex-
tensive use of operations such as the dot product and cross product throughout
the book.

Team LRN

Preface XV

Chapter 2: Matrices. An understanding of matrices is another basic necessity of
3D game programming. This chapter discusses elementary concepts such as ma-
trix representation of linear systems as well as more advanced topics, including
eigenvectors and diagonalization, which are required later in the book.

Chapter 3: Transforms. In Chapter 3, we investigate matrices as a tool for per-
forming transformations such as translations, rotations, and scales. We introduce
the concept of four-dimensional homogeneous coordinates, which are widely
used in 3D graphics systems to move between different coordinate spaces. We
also study the properties of quaternions and their usefulness as a transformation
tool.

Chapter 4: 3D Engine Geometry. It is at this point that we begin to see material
presented in the first three chapters applied to practical applications in 3D game
programming and computer graphics. After analyzing lines and planes in 3D
space, we introduce the view frustum and its relationship to the virtual camera.
This chapter includes topics such as field of view, perspective-correct interpola-
tion, and projection matrices.

Chapter 5: Ray Tracing. Ray tracing methods are useful in many areas of game
programming, including light map generation, line-of-sight determination, and
collision detection. This chapter begins with analytical and numerical root-
finding techniques, and then presents methods for intersecting rays with common
geometrical objects. Finally, calculation of reflection and refraction vectors is
discussed.

Chapter 6: Illumination. Chapter 6 discusses a wide range of topics related to
illumination and shading methods. We begin with an enumeration of the different
types of light sources and then proceed to simple reflection models. Later, we
inspect methods for adding detail to rendered surfaces using texture maps, gloss
maps, and bump maps. The chapter closes with a detailed explanation of the
Cook-Torrance physical illumination model.

Chapter 7: Visibility Determination. The performance of a 3D engine is heav-
ily dependent on its ability to determine what parts of a scene are visible. This
chapter presents methods for constructing various types of bounding volumes and
subsequently testing their visibility against the view frustum. Large-scale visibil-
ity determination enabled through spatial partitioning and the use of portal sys-
tems is also examined.

Chapter 8: Collision Detection. Collision detection is necessary for interaction
between different objects in a game universe. This chapter presents general

Team LRN

XVi

Mathematics for 3D Game Programming and Computer Graphics

methods for determining whether moving objects collide with the static environ-
ment and whether they collide with each other.

Chapter 9: Polygonal Techniques. Chapter 9 presents several techniques in-
volving the manipulation of polygonal models. The first topic covered is decal
application to arbitrary surfaces and includes a related method for performing
vertex depth offset. Other topics include billboarding techniques used for various
special effects, a polygon reduction technique, T-junction elimination, and poly-
gon triangulation.

Chapter 10: Shadows. This chapter contains an extensive investigation of the
stencil shadow algorithm. The theoretical basis of the algorithm is examined, and
details of the engineering techniques necessary for a robust implementation are
presented in detail.

Chapter 11: Linear Physics. At this point in the book, we begin a two-chapter
survey of various topics in classical physics that pertain to the motion that objects
are likely to exhibit in a 3D game. Chapter 11 begins with a discussion of posi-
tion functions as solutions to second-order differential equations. We then inves-
tigate projectile motion both through empty space and through a resistive
medium, and close with a look at frictional forces.

Chapter 12: Rotational Physics. Chapter 12 continues the treatment of physics
with a rather advanced exposition on rotation. We first study the forces experi-
enced by an object in a rotating environment. Next, we examine rigid body mo-
tion and derive the relationship between angular velocity and angular momentum
through the inertia tensor. Also included is a discussion of the oscillatory motion
exhibited by springs and pendulums.

Chapter 13: Fluid Simulation. We continue with the theme of physical simula-
tion by presenting a physical model for fluid motion based on the two-
dimensional wave equation. We develop a method for evaluating the positions of
the vertices on a regular grid representing the surface of a fluid and discuss the
conditions necessary for stability.

Chapter 14: Numerical Methods. In this chapter, we examine numerical tech-
niques for solving three particular types of problems. We first discuss effective
methods for finding the solutions to linear systems of any size. Next, we present
an iterative technique for determining the eigenvalues and eigenvectors of a 3x 3
symmetric matrix. Finally, we study methods for approximating the solutions to
ordinary differential equations.

Team LRN

Preface xvii

Chapter 15: Curves and Surfaces. The book finishes with an examination of a
broad variety of cubic curves, include Bézier curves and B-splines. We also dis-
cuss how concepts pertaining to two-dimensional curves are extended to three-
dimensional surfaces.

Appendix A: Complex Numbers. Although not used extensively, complex
numbers do appear in a few places in the text. Appendix A reviews the concept
of complex numbers and discusses the properties that are used elsewhere in the
book.

Appendix B: Trigonometry Reference. Appendix B reviews the trigonometric
functions and quickly derives many formulas and identities that are used through-
out this book.

Appendix C: Coordinate Systems. Appendix C provides a brief overview of
Cartesian coordinates, cylindrical coordinates, and spherical coordinates. These
coordinate systems appear in several places throughout the book, but are used
most extensively in Chapter 11.

Appendix D: Taylor Series. The Taylor series of various functions are em-
ployed in a number of places throughout the book. Appendix D derives the Tay-
lor series and reviews power series representations for many common functions.

Appendix E: Answers to Exercises. This appendix contains the answer to every
exercise in the book whose solution can represented by a mathematical expres-
sion.

Notational Conventions

We have been careful to use consistent notations throughout this book. Scalar
quantities are always represented by italic Roman or Greek letters. Vectors, ma-
trices, and quaternions are always represented by boldface letters. A single com-
ponent of a vector, matrix, or quaternion is a scalar quantity, so it is italic. For
example, the x component of the vector v is written v_. These conventions and
other notational standards used throughout the book are summarized in the fol-
lowing table.

Team LRN

xviii

Mathematics for 3D Game Programming and Computer Graphics

Quantity/Operation Notation/Examples
Scalars Italic letters: x, ¢, 4, a, @
Angles Italic Greek letters: 6, ¢, &
Vectors Boldface letters: V, P, x, ®
Quaternions Boldface letters: q, q,, q,
Matrices Boldface letters: M, P
RGB Colors Script letters: A, B, C, o

Magnitude of a vector

Double bar: [P

Conjugate of a complex number
Z Or a quaternion ¢

Overbar: z, q

Transpose of a matrix

Superscript T: M"

Determinant of a matrix

detM or single bars: M|

Time derivative

Dot notation: %x(t) =x(?)

Binomial coefficient

{k]: K(n—h)!

Floor of x | x|
Ceiling of x [X[]
Fractional part of x frac(x)
1, ifx>0
Sign of x sgn(x)=40, ifx=0
-1, ifx<0

Closed interval

a,b]={x|a< x<b}

Open interval

Interval closed at one end and
open at the other end

[

(a,b)={x|a<x<b}
[a,b)={x]|a< x<b}
(a,b]={x|a<x<b}

Set of real numbers R
Set of complex numbers C
Set of quaternions H

Team LRN

Chapter

The Rendering Pipeline

covers general functions, such as vertex transformation and primitive

rasterization, which are performed by modem 3D graphics hardware.
Readers who are familiar with these concepts may safely skip ahead. We inten-
tionally avoid mathematical discussions in this chapter and instead provide point-
ers to other parts of the book where each particular portion of the rendering
pipeline is examined in greater detail.

g I Yhis chapter provides a preliminary review of the rendering pipeline. It

0.1 Graphics Processors

A typical scene that is to be rendered as 3D graphics is composed of many sepa-
rate objects. The geometrical forms of these objects are each represented by a set
of vertices and a particular type of graphics primitive that indicates how the ver-
tices are connected to produce a shape. Figure 0.1 illustrates the ten types of
graphics primitive defined by the OpenGL library. Graphics hardware is capable
of rendering a set of individual points, a series of line segments, or a group of
filled polygons. Most of the time, the surface of a 3D model is represented by a
list of triangles, each of which references three points in a list of vertices.

Team LRN

Mathematics for 3D Game Programming and Computer Graphics

0
o 2
®
1@
3
®
Points
1 0 |
0 — 1
2 2
0
5 4 3
4 5 S
3 3 4
Lines Line Strip Line Loop
0 3 0 5 4 5
0§ 4
1
2
4 1
5 3 5 I 2
Triangles Triangle Strip Triangle Fan
3 4 1 0
0 0__ 2 6
2 2
> 6
A 3
1 5
56 3 7 4 5
Quads Quad Strip Polygon

Figure 0.1 The OpenGL library defines ten types of graphics primitive. The numbers
indicate the order in which the vertices are specified for each primitive type.

The usual modern 3D graphics board possesses a dedicated Graphics Proc-
essing Unit (GPU) that executes instructions independently of the Central Proc-
essing Unit (CPU). The CPU sends rendering commands to the GPU, which then
performs the rendering operations while the CPU continues with other tasks. This
is called asynchronous operation. When geometrical information is submitted to
a rendering library such as OpenGL, the function calls used to request the render-
ing operations typically return a significant amount of time before the GPU has
finished rendering the graphics. The lag time between the submission of a render-
ing command and the completion of the rendering operation does not normally
cause problems, but there are cases when the time at which drawing completes

Team LRN

Chapter 0 The Rendering Pipeline 3

needs to be known. There exist OpenGL extensions that allow the program run-
ning on the CPU to determine when a particular set of rendering commands have
finished executing on the GPU. Such synchronization has the tendency to slow
down a 3D graphics application, so it is usually avoided whenever possible if
performance is important.

An application communicates with the GPU by sending commands to a ren-
dering library, such as OpenGL, which in turn sends commands to a driver that
knows how to speak to the GPU in its native language. The interface to OpenGL
is called a Hardware Abstraction Layer (HAL) because it exposes a common set
of functions that can be used to render a scene on any graphics hardware that
supports the OpenGL architecture. The driver translates the OpenGL function
calls into code that the GPU can understand. A 3D graphics driver usually im-
plements OpenGL functions directly to minimize the overhead of issuing render-
ing commands. The block diagram shown in Figure 0.2 illustrates the
communications that take place between the CPU and GPU.

(D
Main Memory
¢ :

Application

Rendering
Commands

OpenGL
HAL

h 4 Vertex Pixel
Graphics Data Data

Driver
A4
VRAM

GPU <|:> Image Depth/Stencil Texture
Buffers Buffer Maps

Figure 0.2 The communications that take place between the CPU and GPU.

Team LRN

Mathematics for 3D Game Programming and Computer Graphics

A 3D graphics board has its own memory core, which is commonly called
VRAM (Video Random Access Memory). The GPU may store any information in
VRAM, but there are several types of data that can almost always be found in the
graphics board’s memory when a 3D graphics application is running. Most im-
portantly, VRAM contains the front and back image buffers. The front image
buffer contains the exact pixel data that is visible in the viewport. The viewport is
the area of the display containing the rendered image and may be a subregion of
a window, the entire contents of a window, or the full area of the display. The
back image buffer is the location to which the GPU actually renders a scene. The
back image buffer is not visible and exists so that a scene can be rendered in its
entirety before being shown to the user. Once an image has been completely ren-
dered, the front and back image buffers are exchanged. This operation is called a
buffer swap and can be performed either by changing the memory address that
represents the base of the visible image buffer or by copying the contents of the
back image buffer to the front image buffer. The buffer swap is often synchro-
nized with the refresh frequency of the display to avoid an artifact known as
tearing. Tearing occurs when a buffer swap is performed during the display re-
fresh interval, causing the upper and lower parts of a viewport to show data from
different image buffers.

Also stored in VRAM is a block of data called the depth buffer or z-buffer.
The depth buffer stores, for every pixel in the image buffer, a value that repre-
sents how far away the pixel is or how deep the pixel lies in the image. The depth
buffer is used to perform hidden surface elimination by only allowing a pixel to
be drawn if its depth is less than the depth of the pixel already in the image
buffer. Depth is measured as the distance from the virtual camera through which
we observe the scene being rendered. The name z-buffer comes from the conven-
tion that the z-axis points directly out of the display screen in the camera’s local
coordinate system. (See Section 4.3.)

An application may request that a stencil buffer be created along with the
image buffers and the depth buffer. The stencil buffer contains an integer mask
for each pixel in the image buffer that can be used to enable or disable drawing
on a per-pixel basis. The operations that can be performed in the stencil buffer
are described in Section 0.3, later in this chapter. An advanced application of the
stencil buffer used to generate real-time shadows is discussed in Chapter 10.

For the vast majority of 3D rendering applications, the usage of VRAM is
dominated by texture maps. Texture maps are images that are applied to the sur-
face of an object to give it greater visual detail. In advanced rendering applica-
tions, texture maps may contain information other than a simple pixel image. For
instance, a bump map contains vectors that represent varying slopes at different
locations on an object’s surface. Texture mapping details, including the process
of bump mapping, are discussed in detail in Chapter 6.

Team LRN

Chapter 0 The Rendering Pipeline 5

0.2 Vertex Transformation

Geometrical data is passed to the graphics hardware in the context of a three-
dimensional space. One of the jobs performed by the graphics hardware is to
transform this data into geometry that can be drawn into a two-dimensional
viewport. There are several different coordinate systems associated with the ren-
dering pipeline—their relationships are shown in Figure 0.3. The vertices of a
model are typically stored in object space, a coordinate system that is local to the
particular model and used only by that model. The position and orientation of
each model are often stored in world space, a global coordinate system that ties
all of the object spaces together. Before an object can be rendered, its vertices
must be transformed into camera space (also called eye space), the space in
which the x and y axes are aligned to the display and the z-axis is parallel to the
viewing direction. (See Section 4.3.) It is possible to transform vertices from
object space directly into camera space by concatenating the matrices represent-
ing the transformations from object space to world space and from world space to
camera space. The product of these transformations is called the model-view
transformation.

Once a model’s vertices have been transformed into camera space, they un-
dergo a projection transformation that has the effect of applying perspective so
that geometry becomes smaller as the distance from the camera increases. (Pro-
jections are discussed in Section 4.5.) The projection is performed in four-
dimensional homogeneous coordinates, described in Section 3.4, and the space in
which the vertices exist after projection is called homogeneous clip space. Ho-
mogeneous clip space is so named because it is in this space that graphics primi-
tives are clipped to the boundaries of the visible region of the scene, ensuring that
no attempt is made to render any part of a primitive that falls outside the view-
port.

In homogeneous clip space, vertices have normalized device coordinates.
The term normalized pertains to the fact that the x-, y-, and z-coordinates of each
vertex fall in the range [—1,1], but reflect the final positions in which they will
appear in the viewport. The vertices must undergo one more transformation,
called the viewport transformation, that maps the normalized coordinates to the
actual range of pixel coordinates covered by the viewport. The z-coordinate is
usually mapped to the floating-point range [0,1], but this is subsequently scaled
to the integer range corresponding to the number of bits per pixel utilized by the
depth buffer. After the viewport transformation, vertex positions are said to lie in
window space.

Team LRN

Mathematics for 3D Game Programming and Computer Graphics

World
Space
Object Camera
Space Space
Model-view
Transformation
Projection
v
Homogeneous
Clip Space
Viewport
Transformation
Window
Space

Figure 0.3 The coordinate spaces appearing in the rendering pipeline. Vertex posi-
tions are submitted to the graphics library in object space and are eventually trans-
formed into window space for primitive rasterization.

A graphics processor usually performs several per-vertex calculations in ad-
dition to the transformation from object space to window space. For instance, the
OpenGL lighting model determines the color and intensity of light reaching each
vertex and then calculates how much of that is reflected toward the camera. The
reflected color assigned to each vertex is interpolated over the area of a graphics
primitive in the manner described in Section 4.4.2. This process is called per-
vertex lighting. More-advanced graphics applications may perform per-pixel
lighting to achieve highly detailed lighting interactions at every pixel covered by
a graphics primitive. Per-vertex and per-pixel lighting are discussed in Sections
6.7 and 6.8.

Each vertex may also carry with it one or more sets of fexture coordinates.
Texture coordinates may be explicitly specified by an application or automati-
cally generated by the GPU. When a graphics primitive is rendered, the texture
coordinates are interpolated over the area of the primitive and used to look up
colors in a texture map. These colors are then combined with other interpolated
data at each pixel to determine the final color that appears in the viewport.

Team LRN

Chapter 0 The Rendering Pipeline 7

0.3 Rasterization and Fragment Operations

Once a model’s vertices have been clipped and transformed into window space,
the GPU must determine what pixels in the viewport are covered by each graph-
ics primitive. The process of filling in the horizontal spans of pixels belonging to
a primitive is called rasterization. The GPU calculates the depth, interpolated
vertex colors, and interpolated texture coordinates for each pixel. This informa-
tion, combined with the location of the pixel itself, is called a fragment.

The process through which a graphics primitive is converted to a set of frag-
ments is illustrated in Figure 0.4. An application may specify that face culling be
performed as the first stage of this process. Face culling applies only to polygonal
graphics primitives and removes either the polygons that are facing away from
the camera or those that are facing toward the camera. Ordinarily, face culling is
employed as an optimization that skips polygons facing away from the camera
(backfacing polygons) since they correspond to the unseen far side of a model.

Graphics
Primitives

Face P Rasterization

Culling V]

il Fragments
Fragment :> Fragment
Shading Operations

Figure 0.4 A graphics primitive is converted to a set of fragments during rasteriza-
tion. After shading, fragments undergo the operations shown in Figure 0.5.

A graphics application specifies how the fragment data is used to determine
the final color and final depth of each pixel during rasterization. This process is
called fragment shading or pixel shading. The final color may simply be given by
the product of an interpolated vertex color and a value fetched from a texture
map, or it may be the result of a complex per-pixel lighting calculation. The final
depth is ordinarily just the unaltered interpolated depth, but advanced 3D graph-
ics hardware allows an application to replace the depth with the result of an arbi-
trary calculation.

Team LRN

Mathematics for 3D Game Programming and Computer Graphics

Figure 0.5 illustrates the operations performed for each fragment generated
during rasterization. Most of these operations determine whether a fragment
should be drawn to the viewport or discarded altogether. Although these opera-
tions occur logically after fragment shading, most GPUs perform as many tests as
possible before performing fragment shading calculations to avoid spending time
figuring out the colors of fragments that will ultimately be discarded.

The first fragment operation performed, and the only one that cannot be dis-
abled, is the pixel ownership test. The pixel ownership test simply determines
whether a fragment lies in the region of the viewport that is currently visible on
the display. A possible reason that the pixel ownership test fails is that another
window is obscuring a portion of the viewport. In this case, fragments falling
behind the obscuring window are not drawn.

Next, the scissor test is performed. An application may specify a rectangle in
the viewport, called the scissor rectangle, to which rendering should be re-
stricted. Any fragments falling outside the scissor rectangle are discarded. A par-
ticular application of the scissor rectangle in the context of the stencil shadow
algorithm is discussed in Section 10.7.

If the scissor test passes, a fragment undergoes the alpha test. When the final
color of a fragment is calculated, an application may also calculate an alpha
value that usually represents the degree of transparency associated with the frag-
ment. The alpha test compares the final alpha value of a fragment to a constant
value that is preset by the application. The application specifies what relationship
between the two values (such as less than, greater than, or equal to) causes the
test to pass. If the relationship is not satisfied, then the fragment is discarded.

After the alpha test passes, a fragment moves on to the stencil test. The sten-
cil test reads the value stored in the stencil buffer at a fragment’s location and
compares it to a value previously specified by the application. The stencil test
passes only if a specific relationship is satisfied (e.g., the stencil value is equal to
a particular value); otherwise, the stencil test fails, and the fragment is discarded.
An application is able to specify actions to be taken in the stencil buffer when the
stencil test passes or fails. Additionally, if the stencil test passes, the value in the
stencil buffer may be affected in a way that depends on the result of the depth test
(described next). For instance, an application may choose to increment the value
in the stencil buffer if the stencil test passes and the depth test fails. This func-
tionality is used extensively by the shadow-rendering technique described in
Chapter 10.

The final test undergone by a fragment is the depth test. The depth test com-
pares the final depth associated with a fragment to the value currently residing in
the depth buffer. If the fragment’s depth does not satisfy an application-specified
relationship with the value in the depth buffer, then the fragment is discarded.
Normally, the depth test is configured so that a fragment passes the depth test

Team LRN

Chapter 0 The Rendering Pipeline

only if its depth is less than or equal to the value in the depth buffer. When the
depth test passes, the depth buffer is updated with the depth of the fragment to

facilitate hidden surface removal for subsequently rendered primitives.

Once the pixel ownership test, scissor test, alpha test, stencil test, and depth
test have all passed, a fragment’s final color is blended into the image buffer. The
blending operation calculates a new color by combining the fragment’s final
color and the color already stored in the image buffer at the fragment’s location.
The fragment’s alpha value and the alpha value stored in the image buffer may
also be used to determine the color that ultimately appears in the viewport. The
blending operation may be configured to simply replace the previous color in the

image buffer, or it may produce special visual effects such as transparency.

Fragment —»

Pixel
Ownership
Test

AV

Scissor
Test

i

Alpha
Test

—
=

Stencil
Test

b 4

Depth
Test

!

Blending

> Image
Buffer

Figure 0.5 Operations performed before a fragment is written to the image buffer.

Team LRN

Team LRN

Chapter

Vectors

ectors are of fundamental importance in any 3D game engine. They are

used to represent points in space, such as the locations of objects in a

game or the vertices of a triangle mesh. They are also used to represent
spatial directions, such as the orientation of the camera or the surface normals of
a triangle mesh. Understanding how to manipulate vectors is an essential skill of
the successful 3D programmer.

Throughout this book, we encounter vectors of various types, usually repre-
senting two-dimensional, three-dimensional, or four-dimensional quantities. For
now, we make no distinction between vectors representing points and vectors
representing directions, nor do we concern ourselves with how vectors are trans-
formed from one coordinate system to another. These topics are extremely im-
portant in 3D engine development, however, and are addressed in Chapter 3.

1.1 Vector Properties

We assume that the reader possesses a basic understanding of vectors, but it is
beneficial to provide a quick review of properties that are used extensively
throughout this book. Although more abstract definitions are possible, we usually

11

Team LRN

12

Mathematics for 3D Game Programming and Computer Graphics

restrict ourselves to vectors defined by n-tuples of real numbers, where n is typi-
cally 2, 3, or 4. An n-dimensional vector V can be written as

V=V, V), (1.1)

where the numbers V, are called the components of the vector V. We have used
numbered subscripts here, but the components will usually be labeled with the
name of the axis to which they correspond. For instance, the components of a
three-dimensional point P could be written as F,, P,, and F,.

The vector V in Equation (1.1) may also be represented by a matrix having a
single column and n rows:

v=| | (12)

RA
We treat this column vector as having a meaning identical to that of the comma-
separated list of components written in Equation (1.1). Vectors are normally ex-
pressed in these forms, but we sometimes need to express vectors as a matrix
consisting of a single row and n columns. We write row vectors as the transpose
of their corresponding column vectors:

Vi=[v, ¥, - V). (13)

A vector may be multiplied by a scalar to produce a new vector whose com-
ponents retain the same relative proportions. The product of a scalar ¢ and a vec-
tor V is defined as

aV =Va={(aV,,aV,,...,aV,). (1.4)

In the case that a =—1, we use the slightly simplified notation —V to represent the
negation of the vector V.

Vectors add and subtract componentwise. Thus, given two vectors P and Q,
we define the sum P+ Q as

P+Q=(P+Q,P+0,,...P+0,). (1.5)

The difference between two vectors, written P—Q, is really just a notational
simplification of the sum P +(-Q).

Team LRN

Chapter 1 Vectors 13

With the above definitions in hand, we are now ready to examine some fun-
damental properties of vector arithmetic.

Theorem 1.1. Given any two scalars @ and b, and any three vectors P, Q, and
R, the following properties hold.

(a) P+Q=Q+P

() (P+Q)+R=P+(Q+R)
(¢) (ab)P=a(bP)

d) a(P+Q)=aP+aQ

() (a+b)P=aP+bP

Using the associative and commutative properties of the real numbers, these
properties are easily verified through direct computation.
The magnitude of an n-dimensional vector V is a scalar denoted by ||V| and is

given by the formula
IVI= 27 (1.6)
i=1

The magnitude of a vector is also sometimes called the norm or the length of a
vector. A vector having a magnitude of exactly one is said to have unit length, or
may simply be called a unit vector. When V represents a three-dimensional point
or direction, Equation (1.6) can be written as

“V” = V I/.rz + Vy2 + I/zz ° (1 7)

A vector V having at least one nonzero component can be resized to unit
length through multiplication by 1/|V|. This operation is called normalization and
is used often in 3D graphics. It should be noted that the term fo normalize is in no
way related to the term normal vector, which refers to a vector that is perpen-
dicular to a surface at a particular point.

The magnitude function given in Equation (1.6) obeys the following rules.

Theorem 1.2. Given any scalar ¢ and any two vectors P and Q, the following
properties hold.

(@) [P[>0
(b) ||P|=0 if and only if P =(0,0,...,0)

Team LRN

14

Mathematics for 3D Game Programming and Computer Graphics

(©) [aP|=lal|P]
@ [P+Q[<[P|+]Q]
Proof.

(a) This follows from the fact that the radicand in Equation (1.6) is a sum of
squares, which cannot be less than zero.

(b) Suppose that P=(0,0,...,0). Then the radicand in Equation (1.6) evalu-
ates to zero, so ||P|=0. Conversely, if we assume |P|=0, then each
component of P must be zero, since otherwise the sum in Equation (1.6)
would be a positive number.

(c) Evaluating Equation (1.6), we have the following.

|ap|= > "7
i=1
— aZZn:RZ
i=]

=lal,[> B
i=l1
=|al[P] (1.8)

(d) This is known as the triangle inequality since a geometric proof can be
given if we treat P and Q as two sides of a triangle. As shown in Figure
1.1, P+Q forms the third side of the triangle, which cannot have a
length greater than the sum of the other two sides. B

We will be able to give an algebraic proof of the triangle inequality after intro-
ducing the dot product in the next section.

1.2 Dot Products

The dot product of two vectors, also known as the scalar product or inner prod-
uct, is one of the most heavily used operations in 3D graphics because it supplies
a measure of the difference between the directions in which the two vectors
point.

Team LRN

Chapter 1 Vectors 15

Figure 1.1 The triangle inequality states that [P+ Q| < |P|+|Q|. Geometrically, this
follows from the fact that the length of one side of a triangle can be no longer than the
sum of the lengths of the other two sides.

Definition 1.3. The dot product of two n-dimensional vectors P and Q, writ-
ten as P- Q, is the scalar quantity given by the formula

P-Q=Y PO, (1.9)

This definition states that the dot product of two vectors is given by the sum of
the products of each component. In three dimensions, we have

P-Q=FQ +PQ, +FQ.. (1.10)
The dot product P- Q may also be expressed as the matrix product

0]

0,
P P

PTQ=[R P (1.11)

[—

L0

Team LRN

16 Mathematics for 3D Game Programming and Computer Graphics

which yields a 1x 1 matrix (i.e., a scalar) whose single entry is equal to the sum in
Equation (1.9).

Now for an important theorem that reveals the ubiquitous utility of the dot
product.

Theorem 1.4. Given two n-dimensional vectors P and Q, the dot product
P- Q satisfies the equation

P-Q=|P|[Q[cosa, (1.12)

where « is the planar angle between the lines connecting the origin to the
points represented by P and Q.

Proof. Let o be the angle between the vectors P and Q, as shown in Figure
1.2. By the law of cosines (see Appendix B, Section B.6), we know

[P-QI* = [IP|* +QJ* - 2[P[lQ] cose (1.13)

This expands to

S(P-0) =Y P'+Y 07 —2|P||Q|cosa. (1.14)

i=l i=] i=]

All the P* and O’ terms cancel, and we are left with

> 2P0, =-2|P[|Q]cosa. (1.15)
i=]

Dividing both sides by —2 gives us the desired result. B

A couple of important facts follow immediately from Theorem 1.4. The first
is that two vectors P and Q are perpendicular if and only if P-Q=0. This fol-
lows from the fact that the cosine function is zero at an angle of 90 degrees. Vec-
tors whose dot product yields zero are called orthogonal. We define the zero
vector, 05(0,0,...,0}, to be orthogonal to every vector P, since 0-P always
equals zero.

The second fact is that the sign of the dot product tells us how close two vec-
tors are to pointing in the same direction. Referring to Figure 1.3, we can con-
sider the plane passing through the origin and perpendicular to a vector P. Any
vector lying on the same side of the plane as P yields a positive dot product with
P, and any vector lying on the opposite side of the plane from P yields a negative
dot product with P.

Team LRN

Chapter 1 Vectors 17

>
Q

Figure 1.2 The dot product is related to the angle between two vectors by the equa-
tion P-Q = |P||lQ|cosa.

Several additional properties of the dot product are presented by the follow-
ing theorem.

Theorem 1.5. Given any scalar ¢ and any three vectors P, Q, and R, the fol-
lowing properties hold.

(@) P-Q=Q-P

(b) (aP)-Q=a(P-Q)

(c) P-(Q+R)=P-Q+P-R
(d P-P=[P|’

(© [P-Q[<[P[lQ]

Proof. Parts (a), (b), and (c) are easily verified using the associative and
commutative properties of the real numbers. Part (d) follows directly from
the definition of |P| given in Equation (1.6) and the definition of the dot
product given in Equation (1.9). Part (e) is implied by Theorem 1.4 since
|cosa|<1. W

We use the notation P> when we take the dot product of a vector P with it-
self. Thus, by part (d) of Theorem 1.5, we can say that P-P, P?, and |P|* all
have identical meanings. We use italics instead of boldface in the expression P’
because it is a scalar quantity.

Team LRN

18 Mathematics for 3D Game Programming and Computer Graphics

P-Q<0 \

Q

Figure 1.3 The sign of the dot product tells us whether two vectors lie on the same
side or on opposite sides of a plane.

Part (e) of Theorem 1.5 is known as the Cauchy-Schwarz inequality and
gives us a tool that we can use to provide the following algebraic proof of the
triangle inequality.

Proof of Theorem 1.2(d). (Triangle Inequality) Beginning with |P+Q|?,
we can calculate

[P+Q|* =(P+Q) (P+Q)

=P’+Q°+2P-Q
<P’+Q’+2[P[[Q]
=([IP]+1Qll)*, (1.16)

where Theorem 1.5(e) has been used to attain the inequality. Taking square
roots, we arrive at the desired result. B

Team LRN

Chapter 1 Vectors 19

P-Q |
Q| !

-7
\d

Figure 1.4 The length of the projection of the vector P onto the vector Q is given by
P-Q/|Q| because P-Q =|P||Q]cosa.

The situation often arises in which we need to decompose a vector P into
components that are parallel and perpendicular to another vector Q. As shown in
Figure 1.4, if we think of the vector P as the hypotenuse of a right triangle, then
the perpendicular projection of P onto the vector Q produces the side adjacent to
the angle o between P and Q.

Basic trigonometry tells us that the length of the side adjacent to « is given
by |P||cose. Theorem 1.4 gives us a way to calculate the same quantity without
knowing the angle o

|P[cose _PQ (1.17)

el

To obtain a vector that has this length and is parallel to Q, we simply multiply by
the unit vector Q/|Q|. We now have the following formula for the projection of
P onto Q, which we denote by proj, P.

P-Q
Q|

proj, P = Q (1.18)

The perpendicular component of P with respect to Q, denoted by perp, P, is sim-
ply the vector left over when we subtract away the parallel component given by
Equation (1.18) from the original vector P:

Team LRN

20

Mathematics for 3D Game Programming and Computer Graphics

perpy P =P —proj, P

P-Q
=P-— Q. (1.19)
lQll

The projection of P onto Q is a linear transformation of P and can thus be
expressed as a matrix-vector product. In three dimensions, proj, P can be com-
puted using the alternative formula

0 00, 00.P]
pronP=@ 00, 00 00ol|r|. (120)
00. 00. 0 l|rl

1.3 Cross Products

The cross product of two three-dimensional vectors, also known as the vector
product, returns a new vector that is perpendicular to both of the vectors being
multiplied together. This property has many uses in computer graphics, one of
which is a method for calculating a surface normal at a particular point given two
distinct tangent vectors.

Definition 1.6. The cross product of two 3D vectors P and Q, written as
Px Q, is a vector quantity given by the formula

PxQ=(PQ.-PQ,.PO,-P.Q..P.O,-F0.). (1.21)

A commonly used tool for remembering this formula is to calculate cross prod-
ucts by evaluating the pseudodeterminant

i j K
PxQ=|P. P P|. (1.22)
0. 9 0

where i, j, and k are unit vectors parallel to the x-, y-, and z-axes:

Team LRN

Chapter 1 Vectors 21

i =(1,0,0)
j=1(0,1,0)
k =(0,0,1). (1.23)

We call the right side of Equation (1.22) a pseudodeterminant because the top
row of the matrix consists of vectors, whereas the remaining entries are scalars.
Nevertheless, the usual method for evaluating a determinant does produce the
correct value for the cross product, as shown below.

i j kK
P. P, P|=i(PQ.-PQ,)-i(PO.-PO)+k(PO,~F0,) (1.24)
0. 9 0

The cross product Px Q can also be expressed as a linear transformation derived
from P that operates on Q as follows.

o -2 P 1ol
PxQ= P 0 -P||Q, (1.25)

z

-5 £ 02

As mentioned previously, the cross product Px Q produces a vector that is
perpendicular to both of the vectors P and Q. This fact is summarized by the fol-
lowing theorem.

Theorem 1.7. Let P and Q be any two 3D vectors. Then (Px Q)- P =0 and
(PxQ)-Q=0.

Proof. Applying the definitions of the cross product and the dot product, we
have the following for (Px Q)- P:

(PxQ)-P=(P,Q.-PQ,.PO,~PQ.,P.O,~P0,) P
=PPQ.-PLPQ,+PPQO, ~PPQO, +PLQO,— PP,
=0. (1.26)

The fact that (Px Q)- Q=0 is proven in a similar manner. ®

Team LRN

22

Mathematics for 3D Game Programming and Computer Graphics

The same result arises when we consider the fact that given any three 3D vectors
P, Q, and R, the expression (Px Q)- R may be evaluated by calculating the de-
terminant

F K K
(PxQ)-R=10. 0, 0. (1.27)
R, R, R

X z

<

If any one of the vectors P, Q, or R can be expressed as a linear combination of
the other two vectors, then this determinant evaluates to zero. This includes the
cases in which R=P or R=Q.

Like the dot product, the cross product has trigonometric significance.

Theorem 1.8. Given two 3D vectors P and Q, the cross product P x Q satis-
fies the equation

[P Q= [P|Q]sin, (1.28)

where « is the planar angle between the lines connecting the origin to the
points represented by P and Q.

Proof. Squaring |P x Q||, we have

|PxQ|* =|(F0. - PO,.PO, - PO..P.O, - PO,)
=(PQ.-P0O,)* +(PO,-P0.) +(PQ,-PO,)
=(B+ P10} +(P + P2)O; +(P +)0
~2P0.P,0, ~2P0,P.0. ~2P,0,P0,. (1.29)

2

5 : 22 212 212 : : :
By addmg and sub.tractmg PO+ PO, +P’Q; on the right side of this
equation, we can write

IPxQ|* =(P’+P!+P)(Q: + 0l +)
~(PO.+PQ,+PQO.)’
=[P|’lQ]* -(P-Q)*. (1.30)

Replacing the dot product with the right side of Equation (1.12), we have

Team LRN

Chapter 1 Vectors 23

IPx Q[* =P *|Q]* ~[P]*|Q] *cos’ &
= [PI*lQI*(1-cos’)
= [P|*|Q]’sin* & (1.31)

Taking square roots proves the theorem. B

As shown in Figure 1.5, Theorem 1.8 demonstrates that the magnitude of the
cross product Px Q is equal to the area of the parallelogram whose sides are
formed by the vectors P and Q. As a consequence, the area 4 of an arbitrary
triangle whose vertices are given by the points V|, V,, and V, can be calculated
using the formula

A_l

_EH(VZ_VI)X(V}_VI)”' (1-32)

[[P]| sin a

|
|
|
|
|
|
|
|
|
|
|
|
|
|
[>

Q

Figure 1.5 This parallelogram has base width |Q| and height ||P|sina. The product of
these two lengths is equal to [Px Q| and gives the area of the parallelogram.

We know that any nonzero result of the cross product must be perpendicular
to the two vectors being multiplied together, but there are two possible directions
that satisfy this requirement. It turns out that the cross product follows a pattern
called the right hand rule. As shown in Figure 1.6, if the fingers of the right hand
are aligned with a vector P, and the palm is facing in the direction of a vector Q,
then the thumb points along the direction of the cross product Px Q.

Team LRN

24

Mathematics for 3D Game Programming and Computer Graphics

PxQ
A

Q =«

Q PxQ

Figure 1.6 The right hand rule provides a way for determining in which direction the
cross product points. When the vectors P and Q are interchanged, their cross product
is negated.

The unit vectors i, j, and k, which point in the directions of the positive x-, y-,
and z-axes, respectively, behave as follows. If we order the axes in a circular
fashion so that i precedes j, j precedes k, and k precedes i, then the cross product
of two of these vectors in order yields the third vector as follows.

ixj =k
jxk =i (1.33)
kxi=j

The cross product of two of the vectors in reverse order yields the negation of
the third vector as follows.

jxi =-k
kxj=-i (1.34)
ixk =—j

Several additional properties of the cross product are presented by the fol-
lowing theorem.

Theorem 1.9. Given any two scalars a and b, and any three 3D vectors P, Q,
and R, the following properties hold.

(a) QxP=—(PxQ)

Team LRN

Chapter 1 Vectors 25

(b) (aP)xQ=a(PxQ)

() Px(Q+R)=PxQ+PxR

(d) PxP=0=(0,0,0)

(e) (PxQ) R=(RxP)-Q=(QxR)-P
() Px(QxP)=PxQxP=PQ-(P-Q)P

Proof. Parts (a) through (d) follow immediately from the definition of the
cross product and the associative and commutative properties of the real
numbers. Part (e) can be directly verified using Equation (1.27). For part (f),
we first observe that

Px(QxP)=Px—(PxQ)
= [~(PxQ)xP]
=PxQxP. (1.35)

Direct computation of the x-component gives us

(PxQxP) =((PQO.~PQ PO, ~PO. PO, ~ PO,)xP),
=(PQ,-PQ.)P.-(PQ,-PO,)P,
=(P'+F*)0.~(RO, + PQ.)P., (1.36)

which isn’t quite what we need, but we can add and subtract a P’Q, term to
achieve our desired result, as follows:

(P +P)0, - (RO, + RO.)F,
=(B +P’)Q,+ P, ~(PQ, + PO.)P.~ F’0,
=(P'+ B+ P)Q,~(PQ, + PO, + PQ.)P,
=P'Q,~(P-Q)P.. (1.37)

The y- and z-components can be checked in a similar manner. B

By part (a) of Theorem 1.9, the cross product is not a commutative operation.
Because reversing the order of the vectors has the effect of negating the product,
the cross product is labeled anticommutative. Additionally, it is worth noting that
the cross product is not an associative operation. That is, given any three 3D vec-

Team LRN

26

Mathematics for 3D Game Programming and Computer Graphics

tors P, Q, and R, it may be true that (Px Q)x R# Px(Qx R). As an example,
let P =(1,1,0), Q=(0,1,1), and R =(1,0,1). First calculating (Px Q)x R, we have

PxQ=|l

(PxQ)xR=|l

Now calculating Px(Qx R), we have

QxR=

Px(QxR)=

which yields a different result.

1.4 Vector Spaces

j k
1 0|=(,-L1)
11
j k
-1 1|=(-10,1) (1.38)
0 1
i j k
0 1 1]=(1-1)
1 0 1
j k
1 0|=(-110), (1.39)
11 -1

The vectors we have dealt with so far belong to sets called vector spaces. An ex-
amination of vector spaces allows us to introduce concepts that are important for

our study of matrices in Chapter 2.

properties hold.

Definition 1.10. A vector space is a set ¥, whose elements are called vectors,
for which addition and scalar multiplication are defined, and the following

(a) Vis closed under addition. That is, for any elements P and Q in V, the
sum P+ Q is an element of V.

Team LRN

Chapter 1 Vectors 27

(b) ¥V is closed under scalar multiplication. That is, for any real number a
and any element P in ¥, the product aP is an element of V.

(c) There exists an element in ¥ called 0 such that for any element P in V,
P+0=0+P=P.

(d) For every element P in V, there exists an element Q in ¥ such that
P+Q=0.

(e) Addition is associative. That is, for any elements P, Q, and R in 7,
(P+Q)+R=P+(Q+R).

(f) Scalar multiplication is associative. That is, for any real numbers a and
b, and any element P in V, (ab)P = a(bP).

(g) Scalar multiplication distributes over vector addition. That is, for any
real number a, and any elements P and Q in ¥, a(P + Q)= aP + aQ.

(h) Addition of scalars distributes over scalar multiplication. That is, for any
real numbers a and b, and any element P in V, (a+b)P = aP + bP.

Many of the properties required of vector spaces are mentioned in Section
1.1 and are easily shown to be satisfied for vectors having the form of n-tuples of
real numbers. We denote the vector space consisting of all such n-tuples by R”.
For instance, the vector space consisting of all 3D vectors is denoted by R’.

Every vector space can be generated by linear combinations of a subset of
vectors called a basis for the vector space. Before we can define exactly what a
basis is, we need to know what it means for a set of vectors to be linearly inde-
pendent.

Definition 1.11. A set of n vectors {e,e,,...,e } is linearly independent if
there do not exist real numbers a,,a,,...,a,, where at least one of the g, is not
zero, such that

n>

ae +ae,+---+ae =0. (1.40)

n-n

Otherwise, the set{e ,e,,...,e } is called linearly dependent.

An n-dimensional vector space is one that can be generated by a set of n line-
arly independent vectors. Such a generating set is called a basis, whose formal
definition follows.

Definition 1.12. A basis B for a vector space V is a set of n linearly inde-
pendent vectors B={e ,e,,...,e,} for which, given any element P in V, there
exist real numbers a,,a,,...,a, such that

Team LRN

28

Mathematics for 3D Game Programming and Computer Graphics

| P=ae +ae,++aye,. (1.41)
Every basis of an n-dimensional vector space has exactly n vectors in it. For in-
stance, it is impossible to find a set of four linearly independent vectors in R’
and a set of two linearly independent vectors is insufficient to generate the entire
vector space.

There are an infinite number of choices for a basis of any of the vector spaces
R”. We assign special terms to those that have certain properties.

Definition 1.13. A basis B={ee,,...,e,} for a vector space is called or-
thogonal if for every pair (i, /) withi# j, we have e,- e, =0.

The fact that the dot product between two vectors is zero actually implies that the
vectors are linearly independent, as the following theorem demonstrates.

Theorem 1.14. Given two nonzero vectors e, and e,, if e, - e, =0, then e, and
e, are linearly independent.

Proof. We suppose that e, and e, are not linearly independent and arrive at a
contradiction. If e, and e, are linearly dependent, then there exist scalars a,
and a, such that ae, +a,e, =0. Note that @, cannot be zero since it would
require that g, also be zero. Thus, we can write e, =—(q,/a,)e,. But then
e-e,=—(q/a,)el #0,acontradiction. B

This theorem shows that if we can find any » orthogonal vectors in a vector space
¥, then they form a basis for V.

A more specific term is given to a basis whose elements all have unit length.
For convenience, we introduce the Kronecker delta symbol 6, which is defined
as

[1, ifi=J;
ﬂO, ifi#].

H Definition 1.15. A basis B={e ,e,,...,e,} for a vector space is called ortho-

normal if for every pair (i, j) we have ;- e, =&,.

0. =

y

(1.42)

The set {i,j,k} is obviously an orthonormal basis for R’. A slightly less trivial
example of an orthonormal basis for R’ is given by the three vectors <§,§, >,
(—LZ,2,0), and (0,0,1).

There is a simple method by which a linearly independent set of n vectors
can be transformed into an orthogonal basis for R”. The basic idea is to subtract
away the projection of each vector onto the vectors preceding it in the set. What-

Team LRN

Chapter 1 Vectors 29

ever vector is left over must then be orthogonal to its predecessors. The exact
procedure is as follows.

Algorithm 1.16. Gram-Schmidt Orthogonalization. Given a set of n line-
arly independent vectors B ={e e,,...,e, }, this algorithm produces a set
B’ ={€,¢,,...,€,} such that €, - €, = 0 whenever i # ;.

A. Sete =e,.

B. Begin with the index i = 2.

C. Subtract the projection of e, onto the vectors €|,€,,...,€,_, from e, and
store the result in €. That is,

e €
e =e —Z'eTe;. (1.43)
k=1 k

D. Ifi<n,increment i and loop to step C.

Chapter 1 Summary

Dot Products

The dot product between two n-dimensional vectors P and Q is a scalar defined
by
PQ= P:Qx:PlQl+P2Q2++PI1Qn
=]

i

The dot product is related to the angle between the vectors P and Q by the for-
mula

P-Q=[P[|Q]cosa.

Vector Projections

The projection of a vector P onto a vector Q is given by

P-Q
QI

projo P = Q,

and the component of P that is perpendicular to Q is given by

Team LRN

30

Mathematics for 3D Game Programming and Computer Graphics

perp,, P =P —proj, P
_P-Q
lQI°

Q.

Cross Products

The cross product between two 3D vectors P and Q is a 3D vector defined by
PxQ=(PQ.-PQ, PO, - PO,.PO,-PQ,).

This can also be written as the matrix-vector product

o -2 P10l
PxQ=| P 0 -P||Q,[l.
- P 010

The magnitude of the cross product is related to the angle a between the vectors
P and Q by the formula

[P Q= |Pll|Q]sine.

Gram-Schmidt Orthogonalization

A basis B={e,,e,,...,e,} for an n-dimensional vector space can be orthogonal-
ized by constructing a new set of vectors B’ ={¢|,¢),...,€, } using the formula

!

i—
€ -€
r_ i Yk
€ =e -y ~—te .
k=1 k

Exercises for Chapter 1

1. Let P=(2,2,1) and Q=(1,-2,0). Calculate the following.
(a) P-Q
(b) PxQ

() proj,Q

Team LRN

Chapter 1 Vectors 31

2. Orthogonalize the following set of vectors.

€ :<%’%’0>

e, = <—1,1,—1>
e, =(0,-2,-2)

3. Calculate the area of the triangle whose vertices lie at the points <1,2,3>,
(-2,2,4), and (7,-8,0).

4. Prove that for any three 3D vectors P, Q, and R,
PxQxR=(P-R)Q-(Q-R)P.

5. Prove that for any two vectors P and Q,
[P —Qf=[P|-[Ql,

and show that this implies the extended triangle inequality,

IP|-lQl <[P +Q[<{P]+]Q].

6. Implement a C++ class that encapsulates a 3D vector. The class should pos-
sess floating-point data members for the vector’s x-, y-, and z-components.
In addition to a default constructor, which should not perform any initializa-
tion, the class should have a constructor that takes three floating-point num-
bers as arguments and initializes the vector’s components to those values.
The class should also include overloaded operators for vector addition and
subtraction, multiplication and division by scalars, the dot product, and the
cross product. Finally, write a function that calculates the magnitude of a 3D
vector object.

Team LRN

Team LRN

Chapter

Matrices

ferent Cartesian coordinate spaces. Moving from one coordinate space to an-

other requires the use of transformation matrices. We casually referred to
matrices at various places in Chapter 1; and in this chapter, we acknowledge the
importance of matrices in 3D graphics programming by presenting a more formal
exposition of their properties. The process of transforming points and direction
vectors from one coordinate space to another is described in Chapter 3.

In a 3D graphics engine, calculations can be performed in a multitude of dif-

2.1 Matrix Properties

An nxm matrix M is an array of numbers having n rows and m columns. If
n=m, then we say that the matrix M is square. We write M, to refer to the entry
of M that resides at the i-th row of the j-th column. As an example, suppose that
F is a 3x 4 matrix. Then we could write

F, F, Fy F,]

F=|F, F, F, F,l. 2.1)
Fy, Fy, Fy Bl
33

Team LRN

34

Mathematics for 3D Game Programming and Computer Graphics

The entries for which i = j are called the main diagonal entries of the matrix. A
square matrix whose only nonzero entries appear on the main diagonal is called a
diagonal matrix.

The transpose of an nx m matrix M, which we denote by M, is an mxn
matrix for which the (i, j) entry is equal to M, (i.e., M; =M). The transpose of
the matrix F in Equation (2.1) is

-Fil FZ] F;l—l
T FIZ F22 32
F = (2.2)
FI3 F‘23 33
_FI4 F24 F‘34J

As with vectors (which can be thought of as nx | matrices), scalar multiplica-
tion is defined for matrices. Given a scalar a and an nx m matrix M, the product
aM is given by

_aMll aMlZ aMlm-l
aM,, aM,, --- aM,,
aM=Ma=| ‘ _ e (2.3)
_aMnl aMnZ T aMnmJ

Also in a manner similar to vectors, matrices add entrywise. Given two nxm
matrices F and G, the sum F + G is given by

-F11+G11 F12+G12 E,N+G1nz—|
le +Gzl F22+G22 F2m+G2m

F+G=| ‘ _ . (2.4)
_Ell + Gnl F:xZ + GNZ T El/)l + GnmJ

Two matrices F and G can be multiplied together, provided that the number
of columns in F is equal to the number of rows in G. If F is an nx m matrix and
G is an mx p matrix, then the product FG is an nx p matrix whose (i, j) entry is
given by

Team LRN

Chapter 2 Matrices

(FG)ij =ZF:'kaj‘
k=1

35

2.5)

Another way of looking at this is that the (i,) entry of FG is equal to the dot

product of the i-th row of F and the j-th column of G.

There is an nx n matrix called the identity matrix, denoted by I, for which

MI, =1 M =M for any nx n matrix M. The identity matrix has the form

1
0

10

0
1

0

0]
0

1]

(2.6)

We usually drop the subscript # and denote the identity matrix simply by I, since

the size of the matrix can be inferred from the context.

Several additional properties of matrices are given by the two theorems that

follow.

(a) F+G=G+F

(b)y (F+G)+H=F+(G+H)
(c) a(bF)=(ab)F

(d) a(F+G)=aF+aG

() (a+b)F=aF+bF

Theorem 2.1. Given any two scalars a and b and any three nx m matrices F,
G, and H, the following properties hold.

As with vectors, these properties are easily verified through direct computation

using the associative and commutative properties of the real numbers.

(a) (aF)G=4a(FG)
(b) (FG)H=F(GH)
(¢) (FG)"=G'F"

Team LRN

Theorem 2.2. Given any scalar a, an nx m matrix F, an mx p matrix G, and
a px q matrix H, the following properties hold.

36

Mathematics for 3D Game Programming and Computer Graphics

Proof.

(a) Using the definition for matrix multiplication given by Equation (2.5),
the (7, j) entry of (aF)G is

[(aF)G]ij =Z(aF)ika/

k=1

Q2.7)

2.8)

(c) Applying Equation (2.5), and reversing the indexes whenever a trans-
pose operation is added or removed, we have for the (i, ;) entry of
(FG)*

T
(FG)ij =(FG)//
= z F}kai
k=1

n

-3 EG;
k=1

=(G'F"),. = (2.9)

Team LRN

Chapter 2 Matrices 37

2.2 Linear Systems

Matrices provide a compact and convenient way to represent systems of linear
equations. For instance, the linear system given by the equations

3x+2y-3z=-13
4x-3y+6z=7
x—z=-5 (2.10)
can be represented in matrix form as
32 3 x] [-13]
4 -3 6||y=|T]|. (2.11)
10 =l zl] [-5]]
The matrix preceding the vector (x,y,z) of unknowns is called the coefficient
matrix, and the column vector on the right side of the equals sign is called the
constant vector. Linear systems for which the constant vector is nonzero (like the
example above) are called nonhomogeneous. Linear systems for which every en-
try of the constant vector is zero are called homogeneous.
Finding solutions to a system of linear equations can be achieved by per-

forming elementary row operations on the matrix formed by concatenating the
coefficient matrix and the constant vector.

Definition 2.3. An elementary row operation is one of the following three
operations that can be performed on a matrix.

(a) Exchange two rows.

(b) Multiply a row by a nonzero scalar.

(¢) Add amultiple of one row to another row.

For the example given by Equation (2.11), the augmented matrix formed by con-
catenating the coefficient matrix and constant vector is

Team LRN

38 Mathematics for 3D Game Programming and Computer Graphics

3 2 -31-13]
|

4 3 61 7], (2.12)
|

1 0 -1 -5

Elementary row operations modify the augmented matrix representation of a
linear system in such a way that the solution to the system is not affected, but it
becomes much easier to calculate. When solving a linear system using elemen-
tary row operations, our goal is to transform the coefficient matrix into its re-
duced form, defined as follows.

Definition 2.4. A matrix is in reduced form if and only if it satisfies the fol-
lowing conditions.

(a) For every nonzero row, the leftmost nonzero entry, called the leading

entry, is 1.

(b) Every nonzero row precedes every row of zeros. That is, all rows of ze-
ros reside at the bottom of the matrix.

(c) If a row’s leading entry resides in column j, then no other row has a
nonzero entry in column ;.

(d) For every pair of nonzero rows #, and i, such that i, > i, the columns j,
and j, containing those rows’ leading entries must satisty j, > j.

This definition tells us that the leading entries of a matrix in reduced form move
to the right as we move downward through its rows. Furthermore, any column
containing a leading entry of a row has a 1 at that location and zeros everywhere
else.

Example 2.5. The following matrix is in reduced form.

10 -3 0]
01 2 0
(2.13)
00 0 I
00 0 ol

However, the matrix

Team LRN

Chapter 2 Matrices 39

10 0 3]
0010
(2.14)
0200
00 0 1l

is not in reduced form because the leading entry of the third row does not fall
to the right of the leading entry of the second row. Furthermore, the fourth
column, which contains the leading entry of the fourth row, is not zero every-
where else. B

Algorithm 2.6 describes which elementary row operations to apply to the
augmented matrix representation of a linear system in order to transform its coef-
ficient matrix into its reduced form.

A.
B.
C.

G.
H.

Algorithm 2.6. This algorithm transforms an nx(n+1) augmented matrix M
representing a linear system into its reduced form. At each step, M refers to
the current state of the matrix, not the original state.

Set the row i equal to 1.
Set the column j equal to 1. We will loop through columns 1 to n.

Find the row k with k > for which M, has the largest absolute value. If
no such row exists for which M, # 0, then skip to step H.

If k # i, then exchange rows & and 7 using elementary row operation (a)
under Definition 2.3.

Multiply row i by 1/M,. This sets the (i,) entry of M to 1 using ele-
mentary row operation (b).

For each row r, where 1< r<n and r#i, add -M J times row I to row r.
This step clears each entry above and below row i in column j to 0 using
elementary row operation (c).

Increment i.

If j < n, increment j and loop to step C.

The procedure performed by steps C and D is known as pivoting. In addition to
its ability to remove zeros from the main diagonal, pivoting is absolutely essen-
tial for numerical stability. The following example demonstrates the application
of Algorithm 2.6 to the nonhomogeneous linear system given by Equation (2.11).

Team LRN

40

Mathematics for 3D Game Programming and Computer Graphics

After the augmented coefficient matrix is reduced, the solution to the system be-
comes obvious.

Example 2.7. Solve the nonhomogeneous linear system

302 -3x] [-13

4 =3 6|y =|T]|. (2.15)
10 =l zl] | -5
Solution. We first form the augmented matrix
3 2 -31-13]
4 3 6 i 7. (2.16)
1 0 -1 i =51

We must now pivot (using steps C and D) so that the row containing the
largest entry in the first column appears in the first row. We therefore ex-
change the first two rows. To produce a leading entry of 1, we then multiply
the first row by +, as follows.

_3 31 1
14214—|

t
3113 (2.17)

Exchangerows land2 3
7

Multiply new row 1 by -L-

2 f
I
10 -1}-5l]

Applying step G of Algorithm 2.6, we now eliminate the other nonzero en-
tries in the first column.

_3 R
1 4 2 1 4 —l
|
Add -3 x row I to row 2 17 _ 15 ! _n
Add -1 x row I torow3 0 4 2 : 4 (218)
|
3 sz
0 3 2 | 4J

Moving to the second row, we multiply by £ to obtain a leading entry of 1.

Team LRN

Chapter 2 Matrices 41

1

W
|
—_

|

|

. |

Multiply row 2 by - '

ultiply row 2 by —3 >0 1 _ 30 : _n3 (219)

|

|

|

0

PN
|
[NV

Again applying step G, we eliminate the other nonzero entries in the second
column.

3 | _25

1 0 17 1 17
|

Add —2% x row 2 to row 1 30 ! 73

3 y — 22 — 2

Add -} x row 2torow3 0 1 17 : 17 (220)

|

_20 ! _ 60

0 0 17 | 17.]

Lo lom]
|
Multiply row 3 by - !
|
00 1 | 31
1 0 0!-2]
|
Add —-]‘7><row3torowl R |
Add%.'}xrow}lorowz 4 0 1 0: 1 (221)
|
00 1]3]

The coefficient matrix has now been completely transformed into its reduced
form. The reduced augmented matrix represents the equation

1 0 Offx] [-2]
01 oy =|1], (2.22)
0 0 MUjzl] [31

from which the solution to the original system is immediate:

z=3. ® (2.23)

Team LRN

42

Mathematics for 3D Game Programming and Computer Graphics

In the previous example, we found that the reduced form of the coefficient
matrix was equal to the identity matrix. In such a case, the corresponding linear
system has exactly one solution. When the reduced coefficient matrix has one or
more rows of zeros, however, the corresponding system may have no solution at
all, or may have infinitely many solutions. If the entry in the constant vector cor-
responding to a row of zeros in the coefficient matrix is not zero, then the system
has no solution because that row equates zero to a nonzero number. In the re-
maining case that the entry in the constant vector is zero, there are infinitely
many solutions to the linear system that must be expressed in terms of arbitrary
constants. The number of arbitrary constants is equal to the number of rows of
zeros, and arbitrary constants are assigned to variables corresponding to columns
of the reduced coefficient matrix that do not contain a leading entry.

Example 2.8. Solve the following homogeneous linear system.

2x+y+3z=0
y—z=0
x+3y—z=0 (2.24)

Solution. The augmented matrix representation of this system is given by

2 1 310]
]

0 1 —1§0. (2.25)
]

1 3 —1,0[

Using Algorithm 2.6 to calculate the reduced form gives us the matrix

10 210]
|

01 -110. (2.26)
|

00 0 0]

Since this matrix has a row of zeros, we can assign an arbitrary value to the
variable corresponding to the third column since it does not contain a leading
entry; in this case we set z=a. The first two rows then represent the equa-
tions

x+2a=0
y—a=0, (2.27)

Team LRN

Chapter 2 Matrices 43

so the solution to the system can be written as
x 2]
y| =a| 1.1 (2.28)
zl] 1]

Homogeneous linear systems always have at least one solution—the zero
vector. Nontrivial solutions exist only when the reduced form of the coefficient
matrix possesses at least one row of zeros.

2.3 Matrix Inverses

An nx n matrix M is invertible if there exists a matrix, which we denote by M,
such that MM~ =M 'M=1. The matrix M is called the inverse of M. Not
every matrix has an inverse, and those that do not are called singular. An exam-
ple of a singular matrix is any one that has a row or column consisting of all
Zeros.

Theorem 2.9. A matrix possessing a row or column consisting entirely of ze-
ros is not invertible.

Proof. Suppose every entry in row r of an nx n matrix F is 0. For any nxn
matrix G, the (r,r) entry of the product FG is given by 2;_ F,G,,. Since
each of the F, is 0, the (r,r) entry of FG is 0. Since the inverse of F would
need to produce a 1 in the (r,r) entry, F cannot have an inverse. A similar
argument proves the theorem for a matrix possessing a column of zeros. B

Using this theorem, we will be able to show later in this section that any matrix
possessing a row that is a linear combination of the other rows of the matrix is
singular. The same is true for the columns of a matrix due to the following fact.

Theorem 2.10. A matrix M is invertible if and only if M" is invertible.
Proof. Assume M is invertible. Then M exists, so we can write

M (M) =(M"'M)"=I"=1I (2.29)

and

Team LRN

44

Mathematics for 3D Game Programming and Computer Graphics

(M) ™" =(MM™)"=I"=1. (2.30)

Therefore, (M‘l T is the inverse of M. Similarly, if we assume that M is
invertible, then (MT)’l exists, so we can write

M[(M")"]"=[(M")"M"]"=1"=1 (231)
and

[(MT) ™M =[M"(M")"]"=1"=1L (232)

Therefore, [(MT)'IJ T is the inverse of M. B

Before proceeding to a method for calculating inverses, we make one more
observation.

Theorem 2.11. If F and G are nx n invertible matrices, then the product FG
is invertible, and (FG)™' = G™'F ™",

Proof. We can verify this theorem through direct computation using the fact
that matrix multiplication is associative:

G'F'(FG)=G'(F'F)G=G'G=1. 1 (2.33)

A method similar to that used to transform a matrix into its reduced form (see
Algorithm 2.6) can also be used to calculate the inverse of a matrix. To find the
inverse of an nx n matrix M, we first construct an nx 2n matrix M by concate-
nating the identity matrix to the right of M, as shown below.

_Mn M12 Mln ;1 0 - 0—|
~ le Mzz Mzn iO I -0
M = | (2.34)
| .
l
_Mnl Mﬂ2 Mnn iO 0 1J

Performing elementary row operations on the entire matrix M until the left side
nx n matrix becomes the identity matrix I yields the inverse of M in the right
side nx n matrix. This process is known as Gauss-Jordan elimination and is
illustrated in Algorithm 2.12.

Team LRN

Chapter 2 Matrices 45

A.

G.

Algorithm 2.12. Gauss-Jordan Elimination. This algorithm calculates the
inverse of an nx n matrix M.

Construct the augmented matrix M given in Equation (2.34). Through-
out this algorithm, M refers to the current state of the augmented ma-
trix, not the original state.

Set the column j equal to 1. We will loop through columns 1 to n.

Find the row i with i > ;j such that A;[‘.j has the largest absolute value. If
no such row exists for which M ; 20, then M is not invertible.

If i# j, then exchange rows i and j using elementary row operation (a)
under Definition 2.3. This is the pivot operation necessary to remove ze-
ros from the main diagonal and to provide numerical stability.

Multiply row j by 1/]\;[].1.. This sets the (/,) entry of M to | using ele-
mentary row operation (b).

For each row r where 1< r<n and r # j, add —A;[,j times row j to row r.
This step clears each entry above and below row j in column j to 0 using
elementary row operation (c).

If j < n, increment j and loop to step C.

The implementation of Algorithm 2.12 is straightforward and has the benefit
that it can determine whether a matrix is invertible. The following example dem-
onstrates the inner workings of the algorithm.

Example 2.13. Calculate the inverse of the 3x 3 matrix M given by

2 3 8]
M=|6 0 -3|. (2.35)
-1 3 2]

Solution. Concatenating the identity matrix to M, we have

2 3 811 0 0]

01 0. (2.36)

M=|6 0 -3

We now apply steps C through F of the algorithm for j =1.

Team LRN

46

Mathematics for 3D Game Programming and Computer Graphics

1 0 —%!0 1 0]
Xchange rows | an N !
l\fu[l?p[ynewro»\]'l:yz-% > 2 3 8 : 100
|
-1'3 2,70 0 1
10 -+lo L 0]
|
—2 x row | o row N |
Ad?\ddzrowl!olr‘ow} : 0 3 9 : 1 _% 0 (237)
|
03 170 & 1
Applying the same steps for j =2 gives us the following.
10 3]0 ¢ 0]
|
Multiply row 2 by + NI 3 i% _(])_ 0
|
03 310 & 1]
10 -+1o L 0]
|
Add -3 x row 2 torow 3 N 0 1 3 i % _é_ 0 (238)
|
0 0 -%;-1 L 1
Finally, we apply the algorithm for j =3.
(1o -+lo + 0]
|
Multiply row 3 by —% 510 1 3 i_:l;_ —’é' 0
|
00 1% —% -l
I
Add%x row 3 to row | |
Add —3><row3ttorow2 4 0 1 0 : _% % % (239)
|
00 1) & -% -]
The right side 3x 3 matrix is now equal to the inverse of M:
3 6 -3
M"=~1——3 4 18/.1 (2.40)
45
6 -3 -0

Team LRN

Chapter 2 Matrices 47

To understand why Algorithm 2.12 supplies the inverse of a matrix, we need
the following theorem.

(a)

(b)

Theorem 2.14. Let M’ be the nx n matrix resulting from the performance of
an elementary row operation on the nx n matrix M. Then M’ = EM, where E
is the nx n matrix resulting from the same elementary row operation per-
formed on the identity matrix.

Proof. We shall give separate proofs for each of the three elementary row
operations listed in Definition 2.3.

Let E be equal to the identity matrix after rows r and s have been ex-
changed. Then the entries of E are given by

{5{7, ifizrandi#s;

E, =45, ifi=r; 2.41)

i R

‘[5,]., ifi=s,

where 6, is the Kronecker delta symbol defined by Equation (1.42). The
entries of the product EM are then given by

y

(M.., ifi#randi#s;

(EM), =Y E M, =4M, ifi=r; (2.42)
k=1
|M,, ifi=s.

Thus, rows and s of the matrix M have been exchanged.

Let E be equal to the identity matrix after row » has been multiplied by a
scalar a. Then the entries of E are given by

(50, ifizr;
E; =3 N (2.43)
| ad;, ifi=r.

The entries of the product EM are then given by

g Afi#Er;

it (M
(EM), =D EM, ={ (2.44)
k=1

aM,, ifi=r.

Thus, row r of the matrix M has been multiplied by a.

Team LRN

48

Mathematics for 3D Game Programming and Computer Graphics

(c) Let E be equal to the identity matrix after row » has been multiplied by a
scalar ¢ and added to row s. Then the entries of E are given by
(S5, ifi#s;
E; =1 (2.45)
|[5,.j+a5,]., ifi=s.

The entries of the product EM are then given by

n [Mij’ 1fl¢S,
(EM), =ZE,kM,g. =1 (2.46)
k=1

M.+aM_, ifi=s.
L iy i

Thus, row r of the matrix M has been multiplied by a and added to
row s. H

The matrix E that represents the result of an elementary row operation per-
formed on the identity matrix is called an elementary matrix. If we have to apply
k elementary row operations to transform a matrix M into the identity matrix,
then

I=EE, -—-EM, (2.47)

where the matrices E|,E,,...,E, are the elementary matrices corresponding to the
same k row operations applied to the identity matrix. This actually shows that the
product E,E, ,---E, is equal to the inverse of M, and it is exactly what we get
when we apply the k& row operations to the identity matrix concatenated to the
matrix M in Equation (2.34).

If a matrix M is singular, then finding elementary matrices E ,E,,...,E, that
satisty Equation (2.47) is impossible. This is true because singular matrices are
exactly those whose rows form a linearly dependent set, as the following theorem
states.

Theorem 2.15. An nx n matrix M is invertible if and only if the rows of M
form a linearly independent set of vectors.

Proof. Let the rows of M be denoted by R]T,R;,..‘,R,Tl. We prove this theo-
rem in two parts.

(a) We prove that if M is invertible, then the rows of M form a linearly in-
dependent set of vectors by proving the contrapositive, which states that
if the rows of M form a linearly dependent set of vectors, then M must
be singular. So assume that the rows of M are linearly dependent. Then

Team LRN

Chapter 2 Matrices 49

(b)

there exists a row r that can be written as a linear combination of & other
rows of the matrix as follows.

R =aR] +a,R] +--+aR] (2.48)
The values of g, are scalars, and the values of s, index k rows in the ma-
trix M other than row r. Let the nx n matrix E, be equal to the elemen-

tary matrix representing the addition of a, times row s, to row r. Then
we can write

M=EE, -—-EM, (2.49)

where M’ is equal to M, except that row r has been replaced by all ze-
ros. By Theorem 2.9, the matrix M’ is singular, and thus M is singular.

Now assume that the rows of M form a linearly independent set of vec-
tors. We first observe that performing elementary row operations on a
matrix does not alter the property of linear independence within the
rows. Running through Algorithm 2.12, if step C fails, then rows j
through n of the matrix at that point form a linearly dependent set since
the number of columns for which the rows RI through R] have at least
one nonzero entry is less than the number of rows itself. This is a con-
tradiction, so step C of the algorithm cannot fail, and M must be
invertible.

This theorem tells us that every singular matrix can be written as a product of
elementary matrices and a matrix that has a row of zeros. With the introduction
of determinants in the next section, this fact allows us to devise a test for singu-

larity.

2.4 Determinants

The determinant of a square matrix is a scalar quantity derived from the entries of
the matrix. The determinant of a matrix M is denoted by det M. When displaying
the entries of a matrix, we replace the brackets on the left and right of the matrix
with vertical bars to indicate that we are evaluating the determinant. For example,
the determinant of a 3x 3 matrix M is written as

Team LRN

50

Mathematics for 3D Game Programming and Computer Graphics

Mll M12 M13
detM=|M, M, M,|. (2.50)
M31 M32 M33

The value of the determinant of an nx n matrix is given by a recursive for-
mula. For notational convenience, let the symbol M'*// denote the (n—1)x (n—1)
matrix whose entries consist of the original entries of M after deleting the i-th
row and the j-th column. For example, suppose that M is the following 3x 3 ma-
trix.

1 2 3]
M=[4 5 6 (2.51)
7 8 9
Then M*¥ is the following 2x 2 matrix.
1 2]

‘ (2.52)
7 8|

Mi2® = {

The formula for the determinant is recursive and can be expressed in terms of the
following definition.

Definition 2.16. Let M be an nx n matrix. We define the cofactor C;(M) of
the matrix entry M, as follows.

C,(M)=(-1)"/detM""/). (2.53)

Using cofactors, a method for calculating the determinant of an #x » matrix can
be expressed as follows. First, define the determinant of a 1x1 matrix to be the
entry of the matrix itself. Then the determinant of an nx n matrix M is given by
both the formula

detM =>"M,C,(M) (2.54)
i=]

and the formula

Team LRN

Chapter 2 Matrices 51

detM =Y M, C (M), (2.55)
J=1

where £ is an arbitrarily chosen constant such that 1< 4 <. Remarkably, both
formulas give the same value for the determinant regardless of the choice of .
The determinant of M is given by the sum along any row or column of products
of entries of M and their cofactors.

An explicit formula for the determinant of a 2x 2 matrix is easy to extract
from Equations (2.54) and (2.55):

a b
=ad—bc. (2.56)

c d

We also give an explicit formula for the determinant of a 3x 3 matrix. The fol-
lowing is written as one would evaluate Equation (2.55) with £ =1.

=4a (a22a33 — Qy305,) —ap (0y 033 — A0y,)

+a13(a21a32 _azzasl) (2'57)

Clearly, the determinant of the identity matrix I, is 1 for any » since choos-
ing k =1 reduces Equation (2.55) to detI =/, detI _,.

We can derive some useful information from studying how elementary row
operations (see Definition 2.3) affect the determinant of a matrix. This provides a
way of evaluating determinants that is usually more efficient than direct applica-
tion of Equations (2.54) and (2.55).

Theorem 2.17. Performing elementary row operations on a matrix has the
following effects on the determinant of that matrix.

(a) Exchanging two rows negates the determinant.
(b) Multiplying a row by a scalar ¢ multiplies the determinant by a.

(¢) Adding a multiple of one row to another row has no effect on the deter-
minant.

Team LRN

52

Mathematics for 3D Game Programming and Computer Graphics

Proof.

(a) We prove this by induction. The operation does not apply to 1x1 matri-
ces, but for a 2x 2 matrix, we can observe the result through direct com-
putation.

¢ d a b

=cb—ad=—(ad —cb)=— (2.58)

a b c

Now, for an nx n matrix, we can assume that the result is true for all
matrices up to size (n—1)x(n—1). Let G represent the result of ex-
changing rows r and s of a matrix F. Choosing another row & such that
k# r and k # s, evaluation of Equation (2.55) gives us

detG =) G,C(G)=> (-1)"/G, detG"/ . (2.59)
j=l Jj=

Since G{"’f} is an (n—1)x(n—1) matrix, we know by induction that
detG'*/' =—det F**/! for each j. Thus, detG = —detF.

(b) Let G represent the result of multiplying row & of a matrix F by the sca-
lar a. Then evaluation of Equation (2.55) gives us

detG =) G,C(G)
J=1

=3 aF,C,(F). (2.60)
J=1

Thus, detG =adetF. &
Before we can prove part (c), we need the following corollary to part (a).

Corollary 2.18. The determinant of a matrix having two identical rows is
Zero.

Proof. Suppose the matrix M has two identical rows. If we exchange these
rows, then no change has been made to the matrix, but the determinant has
been negated. So detM =—det M, and we must therefore have detM =0. B

Proof of Theorem 2.17(c). Let G represent the result of adding the scalar a
times row » of a matrix F to row & of F. Then evaluating Equation (2.55)
gives us

Team LRN

Chapter 2 Matrices 53

detG =Y G,C(G)
=
=2 (F +aF,)Cy(F)
j=1
=detF +a)_ F,C(F). (2.61)
j=1

The sum Z'j‘.zl F,C,(F) is equivalent to the determinant of the matrix F with
the entries in row k replaced by the entries from row r. Since this matrix has
two identical rows, its determinant is zero by Corollary 2.18. Therefore,
detG=detF. H

Since elementary matrices are representative of elementary row operations
performed on the identity matrix, we can deduce their determinants from Theo-
rem 2.17. An elementary matrix that represents an exchange of rows has a deter-
minant of —1, an elementary matrix that represents a row multiplied by a scalar a
has a determinant of a, and an elementary matrix that represents a multiple of one
row added to another row has a determinant of 1. These are the exact numbers by
which the determinant of any matrix is multiplied when the corresponding ele-
mentary row operations are performed on them. We can therefore conclude that
if E is an nx n elementary matrix, then det EM =det Edet M for any nx n matrix
M since multiplication by E performs the elementary row operation on M. This
result leads us to the following two important theorems.

Theorem 2.19. An nx n matrix M is invertible if and only if detM = 0.

Proof. Suppose that M is invertible. Then M can be written as a product of
elementary matrices, each having a nonzero determinant. Since the determi-
nant of a product of elementary matrices is equal to the product of the deter-
minants of those matrices, the determinant of M cannot be zero. Now
suppose that M is singular. Then M can be written as a product of elementary
matrices and a matrix having a row of zeros because the rows of M must be
linearly dependent. Since the determinant of a matrix possessing a row of ze-
ros is zero, the determinant of the product is also zero. B

Theorem 2.20. For any two nx n matrices F and G, det FG =detFdetG.

Proof. If either F or G is singular, then FG is singular and the equation holds
since both sides are zero. Otherwise, both F and G can be factored com-
pletely into elementary matrices. Since the determinant of a product of ele-
mentary matrices is the product of the determinants, the equation holds. B

Team LRN

54

Mathematics for 3D Game Programming and Computer Graphics

Theorem 2.19 gives us a test for singularity. Once we know that the determi-
nant of an nx n matrix M is not zero, we can use the following formula to calcu-
late the entries of M~

Theorem 2.21. Let F be an nx n matrix and define the entries of an nx n ma-
trix G using the formula

. G
Y detF’

(2.62)

where C (F) is the cofactor of (F"). Then G =F~".

Proof. Using the multiplication formula for FG, we have

(FG)ij = ZFikaj
k=1

“SF Cu(F)
* detF

k=1

1 n
=——) F,C.(F). 2.63
detFk=1 ik jk() ()

If i = j, then the summation gives the determinant of F equivalently to Equa-
tion (2.54), so multiplying by 1/detF gives us (FG), =1. If i# j, then the
summation gives the determinant of a matrix equal to F except that row j has
been replaced by the entries in row i. Since the matrix has two identical rows,
its determinant is zero, and thus (FG), = 0. Since the main diagonal entries
of FG are 1 and all the remaining entries are 0, FG is the identity matrix. A
similar argument proves that GF is the identity matrix,so G=F"'. &

Using Equation (2.62), we can derive explicit formulas for the inverses of
matrices having sizes that are commonly used in computer graphics. The inverse
of a 2x 2 matrix A is given by

1 I:Azz _Alz_l
(2.64)

_detA A, A4, J

The inverse of a 3x 3 matrix B is given by

Team LRN

Chapter 2 Matrices 55

322333 - 323332 313332 - 312333 312323 - BISB22—|
_ 1
B = detB 823831 - 321333 Bnst - BI3B3I BlsBZI - BnBzz : (2'65)
BmB}z _322331 BIZB31 _BnBzz BnBzz _312321J

The inverse of a matrix M can be expressed as M /det M, where the notation
M€ is used to denote the matrix of cofactors of the entries of M'. That is,
(MC)U = CU(MT). Since calculating detM also requires that we calculate the
cofactor of every entry of M, we can use the entries of the matrix M to evaluate
the determinant of M more efficiently. Equation (2.55) can be written as

detM =" M, C,(M)
j=1
=2 M,Cy(M7)
=1
=> M (M), (2.66)
j=1

Thus, the determinant can be evaluated by choosing any row k of the matrix M
and summing the products with the entries of the k-th column of the matrix M€
For the 3x 3 matrix B, we have the following expression for B™' in which we
have chosen £ =1.

322333 - Bz3B32 BBB}Z - BIZB33 Blsz3 - BISBZZ—l
BC = Bz3B31 - leBss BIIB33 - BI3B31 313321 - 311323
B21B32 _BzzB31 B12B31 _BHB32 BnBzz _BIZBZIJ

BC

Z;Blj(BC)jl
=

B (2.67)

One final observation that we make in this section concerns linear systems of
the form Mx =r, where x is a vector of n unknowns and r is a vector of n con-
stants. If the matrix M is invertible, then the solution to this system is given by
x=M"'r. Again using the notation M to denote the matrix of cofactors of the
entries of M", we can write

Team LRN

56

Mathematics for 3D Game Programming and Computer Graphics

C
X= M r. (2.68)
detM
The k-th component of x is thus given by the formula
1 n

X, = M) r

k detM ;()k) i
1 C,(M)r,. (2.69)

- detM “5

By the definition given in Equation (2.53), the quantity C, (M) does not depend
on any entries in the k-th column of the matrix M. Comparing the summation
>, C. (M)r, to Equation (2.54), we see that it is equal to the determinant of the
matrix whose k-th column is equal to the vector r and whose other columns are
equal to those of the matrix M. Defining the notation

M, (r)=[M, - M, r M, - M,] (2.70)
where M, represents the j-th column of M, we can write Equation (2.69) as

‘M
nzgliﬂi .71
detM

Equation (2.71) is known as Cramer’s rule. Since it requires a determinant
calculation for each unknown in a linear system, using Cramer’s rule is far less
efficient than simply inverting the coefficient matrix and multiplying it by the
constant vector. Cramer’s rule does, however, tell us that if the coefficients and
constants in a linear system are all integers and detM ==1, then the unknowns
must all be integers.

2.5 Eigenvalues and Eigenvectors

For every invertible square matrix, there exist vectors that, when multiplied by
the matrix, are changed only in magnitude and not in direction. That is, for an
nx n matrix M, there exist nonzero n-dimensional vectors V,,V,,...,V, such that

MV =AV.. 2.72)

Team LRN

Chapter 2 Matrices 57

The scalars 4, are called the eigenvalues of the matrix M, and the vectors V, are
called the eigenvectors that correspond to those eigenvalues.

The eigenvalues of a matrix can be determined by first rearranging Equation
(2.72) to read

(M_Z’il)vi =0, (2.73)

where I is the nx n identity matrix. For this equation to be true for nonzero vec-
tors V,, the matrix M — A1 must be singular. This is necessary because otherwise
we could invert M — 4.1 and write

V,=(M-41)"'0=0, (2.74)

contradicting the assumption that V, #0. Since M - Al is singular, its determi-
nant must be zero, so we can calculate the eigenvalues A, by solving the equation

det(M — A1) =0. (2.75)

The degree n polynomial in A given by Equation (2.75) is called the charac-
teristic polynomial of the matrix M. The roots of this polynomial yield the eigen-
values of the matrix M.

Example 2.22. Calculate the eigenvalues of the matrix

1 1]
M= ‘ : (2.76)
3 -1
Solution. The matrix M — Al is given by
1-1 1
M-Al= ‘ :
3 —1-4l

Evaluating the determinant of M — AI produces the characteristic polynomial
(1-A)(—-1-4)-3. (2.77)
Simplifying this polynomial and setting it equal to zero gives us

AP —4=0, (2.78)

from which it follows that the eigenvalues of M are 4, =2 and 4, =-2. B

Team LRN

58

Mathematics for 3D Game Programming and Computer Graphics

Once the eigenvalues have been determined, the corresponding eigenvectors
are calculated by solving the homogeneous system given by Equation (2.73).
Since the matrix M — A1 is singular, its reduced form has at least one row of ze-
ros, so there are infinitely many solutions. An obvious property of Equation
(2.72) is that if V, is an eigenvector corresponding to the eigenvalue 4, then any
scalar multiple aV, is also an eigenvector. Thus, eigenvectors are always written
in terms of an arbitrary constant, which if desired, may be chosen so that the
eigenvector has unit length.

Example 2.23. Calculate the eigenvectors of the matrix

11
M:{ ‘1 (2.79)
3 1]

Solution. In Example 2.22, we found that the matrix M has the eigenvalues
A, =2 and A, =-2. Corresponding eigenvectors are found by solving the lin-
ear system (M — A1)V, = 0. For the eigenvalue 4, =2 we have

{—1 1] {01
v=| |, (2.80)
3 -3 (o]

and for the eigenvalue 1, = -2 we have

3017 0]
v,= | (231)
Ll

These systems yield the solutions
L
V,=a

]
Vv, = b{ , (2.82)

where the scalars a and b are arbitrary nonzero constants. B

In general, the eigenvalues of a matrix, given by the roots of its characteristic
polynomial, are complex numbers. This means that the corresponding eigen-
vectors can also have complex entries. A type of matrix that is guaranteed to

Team LRN

Chapter 2 Matrices 59

have real eigenvalues and therefore real eigenvectors, however, is the symmetric
matrix.

Definition 2.24. An nx n matrix M is symmetric if and only if M, = M , for
all 7 and j. That is, a matrix whose entries are symmetric about the main di-
agonal is called symmetric.

The eigenvalues and eigenvectors of symmetric matrices possess the proper-
ties given by the following two theorems.

Theorem 2.25. The eigenvalues of a symmetric matrix M having real entries
are real numbers.

Proof. Let A be an eigenvalue of the matrix M, and let V be a corresponding
eigenvector such that MV = AV. Multiplying both sides of this equation on
the left by the row vector V' gives us

VIMV =V AV=4AVTV, (2.83)

where the overbar denotes complex conjugation, which for vectors and ma-
trices is performed componentwise. Since the product of a complex number
a+bi and its conjugate a — bi is equal to the real number a” + b°, the product
V'V is a real number. By showing that the product V' MV is also a real
number, we can conclude that 1 is real. We can examine the conjugate of
VIMYV to get

VMV =V'MV, (2.84)
where we have used the fact that M =M because the matrix M has real en-

tries. Since the quantity V'MV is a 1x 1 matrix, it is equal to its own trans-
pose. We may thus write

VIMV =(VIMV)'=V'M'V. (2.85)
Because the matrix M is symmetric, M" = M, so we now have
VIMV=V'MV, (2.86)

showing that the quantity V"MV is equal to its own conjugate and is there-
fore a real number. This proves that the eigenvalue A must be real. B

Team LRN

60

Mathematics for 3D Game Programming and Computer Graphics

Theorem 2.26. Any two eigenvectors associated with distinct eigenvalues of
a symmetric matrix M are orthogonal.

Proof. Let 4, and A, be distinct eigenvalues of the matrix M, and let V, and
V, be the associated eigenvectors. Then we have the equations MV, =4V,
and MV, = 1,V,. We can show that 4, V'V, = 1,V]V, by writing
ZﬁVlTvz = (llVI)TV2
=(MV,)Tvz
=V/'MV,
=,V'V,, (2.87)
where we have used the fact that M" = M. This tells us that
(4, —4,)V]V,=0, (2.88)
but the eigenvalues A, and A, are distinct, so we must have V"V, = 0. Since

this quantity is simply the dot product V,-V,, the eigenvectors are orthog-
onal. B

2.6 Diagonalization

Recall that a diagonal matrix is one that has nonzero entries only along the main
diagonal. That is, an nx n matrix M is a diagonal matrix if M =0 whenever
i# j. Given a square matrix M, if we can find a matrix A such that A" MA is a
diagonal matrix, then we say that A diagonalizes M. Although not true in gen-
eral, the following theorem states that any nx n matrix for which we can find n
linearly independent eigenvectors can be diagonalized.

Theorem 2.27. Let M be an nx n matrix having eigenvalues 4,,4,,...,4,, and

suppose that there exist corresponding eigenvectors V,,V,,...,V that form a
linearly independent set. Then the matrix A given by

A=[V, V, - V] (2.89)

(i.e., the columns of the matrix A are the eigenvectors V,V,,...,V,) diag-
onalizes M, and the main diagonal entries of the product A"'MA are the
eigenvalues of M:

Team LRN

Chapter 2 Matrices 61

A0 0]
0 4 - 0

A'™MA=| | (2.90)
00 - 4

Conversely, if there exists an invertible matrix A such that A"'MA is a di-
agonal matrix, then the columns of A must be eigenvectors of M, and the
main diagonal entries of A”MA are the corresponding eigenvalues of M.

Proof. We first examine the product MA. Since the j-th column of A is the
eigenvector V,, the j-th column of MA is equal to MV,. Since V, is an
eigenvector, we have MV, = 1.V, so the product MA can be written as

MA = [ﬂ“lVl ﬂ'ZVZ T ﬂ’nVn]
_l] 0 0—|
=[V, V, \A
L0 0 - Al
(40 - 0]
0 4 - 0
=Al] (2.91)
0 0 - A

Since the eigenvectors V, are linearly independent, the matrix A is invertible,
and the product A”MA can be written as

(24,0 - 0] [4 O - 0]

0 4 = 0 |0 2, - 0
A'MA=A"A =] (2.92)

L0 0 o A L0 0 e A

Now we prove the converse assertion that any invertible matrix A that diag-
onalizes M must be composed of the eigenvectors of M. Suppose that D is an

Team LRN

62

Mathematics for 3D Game Programming and Computer Graphics

nx n diagonal matrix such that D= A"MA for some nx n matrix A. Then
we may write

AD=MA. (2.93)

Let V, denote the j-th column of A, and let &,,d,,...,d, be the main diagonal
entries of D. The product AD is given by

d, 0 0]
0 d, 0
AD=[V, V, A
100 - dl
=[d]V] d2V2 ngn]’ (294)
and the product MA is given by
MA=[MV, MV, - MV | (2.95)

Equating the j-th column of AD with the j-th column of MA demonstrates
that MV, =d 'V, and thus each V, is an eigenvector of M corresponding to
the eigenvalue d,. B

Since the eigenvectors of a symmetric matrix M are orthogonal, the matrix A
whose columns are composed of unit-length eigenvectors of M is an orthogonal
matrix and therefore satisfies A = A". The diagonal matrix D consisting of the
eigenvalues of a symmetric matrix M can thus be expressed as

D=ATMA. (2.96)

Example 2.28. Find a matrix that diagonalizes the matrix

21 0]
M=1 1 0. (2.97)
0 0 -1

Solution. The characteristic polynomial for M is

Team LRN

Chapter 2 Matrices 63

det(M—-Al)=-2>+24*+21-1
=—(A+1)(A* =31 +1). (2.98)

The roots of this polynomial give us the eigenvalues

2 =-1
4= 3+5
,13=¥_ (2.99)

The eigenvector V, corresponding to the eigenvalue 4, is given by the solu-
tion to the homogeneous linear system

31 0] [0]
1 2 0 V,=0. (2.100)
00 o] |ol]

Reducing the coefficient matrix gives us

1 0 0] [0]
01 0 V=0, (2.101)
0 0 o] [o]

and the solution is thus given by
0]
V,=a|0]. (2.102)
1]

For the eigenvalue 4,, we need to solve the system

Team LRN

64

Mathematics for 3D Game Programming and Computer Graphics

-5 o |
1 _1_26 0 |V,=0. (2.103)
0
-5-5 :
0 0
L 2]
This reduces to
L v5 01
2 0]
0 0 1| V,=]0], (2.104)
ol
0 0 0
i |
and our second eigenvector is given by
1+5]
2
V,=b 1 |. (2.105)
0
Similarly, the eigenvector V, is equal to
1-+/5]
2
V,=c¢c| 1 |. (2.1006)
0

We choose the constants «a, b, and ¢ so that the eigenvectors have unit length.

A quick test verifies that the eigenvectors are orthogonal as expected since
the matrix M is symmetric. Define the matrix A as

Team LRN

Chapter 2 Matrices 65

A=—L VZ i
LIV vl (vl

[0 0.851 -0.526]

v, |

ll

0 0526 0.851]. (2.107)

10 0 |

A is an orthogonal matrix that diagonalizes M:

10 o |
A"MA=ATMA=| 0 3+2f5 0 |.m (2.108)
0 0 ﬂ
i 2 1

Chapter 2 Summary

Matrix Products

If F is an nx m matrix and G is an mXx p matrix, then the product FG is an nx p
matrix whose (i, /) entry is given by

(FG),; =2 F,Gy.
k=1
Determinants
The determinant of an nx n matrix M is given by the formulas

detM =) M,C,(M)

i=1

and

Team LRN

66 Mathematics for 3D Game Programming and Computer Graphics

detM =) M, C (M),

j=1
where C,(M) is the cofactor of M, defined by C,(M)=(-1)""/detM""/).
The determinant of a 2x 2 matrix is given by

a b
=ad —bc,

c d

and the determinant of a 3x 3 matrix is given by
a, 4 4

Ay Gy Ay|= 4, (pay — ay05,) — A, (4505, — 0a5)

Ay 43 Ay +a13(a2]a32—a22a31).

Matrix Inverses

An nx n matrix M is invertible if and only if the columns of M form a linearly
independent set. Equivalently, M is invertible if and only if detM # 0.

The entries of the inverse G of an nx n matrix F can be calculated by using the
explicit formula

Cji(F)

G,= .
Y detF

Using this formula, the inverse of a 2x 2 matrix A is given by

A = 1 ‘:Azz _A12—|
detA _AZI AII J

and the inverse of a 3x 3 matrix B is given by

BzzB33 - stBzz BI3B32 - 312833 Blszz - BISBZZ—l
1

B'=——
detB

stle_leBss BnBss_Blsle 313821_B11323 :

321332 - Bzszl BlzB3l - BnBzz BnBzz - 312321J

Team LRN

Chapter 2 Matrices 67

Eigenvalues and Eigenvectors

The eigenvalues of an nx n matrix M are equal to the roots of the characteristic
polynomial given by

det(M - AI).

An eigenvector V associated with the eigenvalue A4 of the matrix M is given by
the solution to the homogeneous linear system

(M-21)V=0.

The eigenvalues of a real symmetric matrix are real, and the eigenvectors corre-
sponding to distinct eigenvalues of a real symmetric matrix are orthogonal.

Diagonalization

If V,V,,...,V, are linearly independent eigenvectors of an nx n matrix M, then
the matrix A given by

A:[Vl V2 V/I]

diagonalizes M, meaning that

40 - 0]

] 0 A, - 0
AMA = i
10 0 A

where A,,4,,...,4, are the eigenvalues of M.

Exercises for Chapter 2

1. Calculate the determinants of the following matrices.

00 1

2 7]
(a){] (b)y |0 1 0
2 1 0 ol

Team LRN

68

Mathematics for 3D Game Programming and Computer Graphics

L5 o] 5 7 1]
) |-& 1 0 (d |17 2 64
0 o 1 10 14 2]

Calculate the inverses of the following matrices.

2 0 0] (1 0 0]
(@) (0 3 0 (b) |0 2 2
10 0 4 13 0 8l
) [1 0 0 4]
cos@ 0 —sind]
0 1 0 3
© | 0 1 0 (d)
0 0 1 7
| sind 0 cos@ ||
10 0 0 1]

Solve the following homogeneous linear system.

4x+3y+2z=0
x—y-3z=0
2x+3y+4z=0

Calculate the eigenvalues of the following matrix.

2 0 0]
5 23
-4 3 2]

Let M be an nxn matrix whose rows are given by the vectors
RT,RL...,RI. Prove that if the rows of M form a linearly independent set,
then the rows of the matrix EM, where E is an elementary matrix, also form
a linearly independent set.

An upper triangular matrix M is one for which M, =0 whenever i > ;. That
is, all the entries below the main diagonal are zero. Prove that the determi-

Team LRN

Chapter 2 Matrices 69

nant of an upper triangular matrix is equal to the product of the entries on
the main diagonal.

7. Let D be an nxn diagonal matrix whose main diagonal entries are

d.d,,...d,;
(d, 0 - 0]
0 d, - 0

D=
0 0 - d

Show that the inverse of D is also a diagonal matrix, and that its main di-
agonal entries are given by 1/d,,1/d,,...,1/d,.

8. Implement a C++ class that encapsulates a 3x 3 matrix. The class should
possess storage for the nine entries of the matrix. In addition to the default
constructor, which should not perform any initialization, the class should
have a constructor that takes nine floating-point numbers as arguments and
initializes the matrix’s entries to those values. The class should also include
overloaded operators for addition, subtraction, multiplication, and division
by scalars, multiplication by another 3x 3 matrix, and multiplication by a 3D
vector object (see Chapter 1, Exercise 6). Provide a function that initializes a
matrix to the identity. Finally, write functions that calculate the determinant
of a 3x 3 matrix and calculate the inverse of a 3x 3 matrix.

Team LRN

Team LRN

Chapter

Transforms

hroughout any 3D graphics engine architecture, it is often necessary to

transform a set of vectors from one coordinate space to another. For in-

stance, vertex coordinates for a model may be stored in object space, but
need to be transformed to camera space before the model can be rendered. In this
chapter, we concern ourselves with linear transformations among different Carte-
sian coordinate frames. Such transformations include simple scales and transla-
tions, as well as arbitrary rotations.

3.1 Linear Transformations

Suppose that we have established a 3D coordinate system C consisting of an ori-
gin and three coordinate axes, in which a point P has the coordinates (x,y,z).
The values x, y, and z can be thought of as the distances that one must travel
along each of the coordinate axes from the origin in order to reach the point P.
Suppose now that we introduce a second coordinate system C' in which coordi-
nates (x',)’,z') can be expressed as linear functions of coordinates (x, y,z) in C.
That is, suppose we can write

7

Team LRN

72

Mathematics for 3D Game Programming and Computer Graphics

X(x,y,z)=Ux+Vy+Wz+T,
V(x,p,2)=Upx+Vyy+ Wyz+1T,
2(x,,2)=Ux+V,y+ W,z +T,. 3.

This constitutes a linear transformation from C to C' and can be written in ma-
trix form as follows.

X1 [0 v wix] [T]
Yi=\U, ¥V, Wy +| T (3.2)
2l LU, ¥ willLzl] LT

The coordinates x', y', and z' can be thought of as the distances that one must
travel along the axes in C' to reach the point P. The vector T represents the trans-
lation from the origin of C to the origin of C’, and the matrix whose columns are
the vectors U, V, and W represents how the orientation of the coordinate axes is
changed when transforming from C to C'. Assuming the transformation is invert-
ible, the linear transformation from C’ to C is given by

U v BT [T
y=\U, v, w, VI -1} (3.3)
zZl] U, vy W Zl] T

In Section 3.4, we will combine the 3x 3 matrix and translation vector T into
a single 4x 4 transformation matrix. Before we reach that point, we will focus
solely on linear transformations for which T =0, in which case the vectors U, V,
and W represent the images in C' of the basis vectors (1,0,0), (0,1,0), and (0,0,1)
in C.

Multiple linear transformations can be concatenated and represented by a
single matrix and translation. For example, vertex coordinates may need to be
transformed from object space to world space and then from world space to cam-
era space. The two transformations are combined into a single transformation that
maps object-space coordinates directly to camera-space coordinates.

Team LRN

Chapter 3 Transforms 73

3.1.1 Orthogonal Matrices

Most 3x 3 matrices arising in computer graphics applications are orthogonal. An
orthogonal matrix is simply one whose inverse is equal to its transpose.

H Definition 3.1. An invertible nx n matrix M is called orthogonal if and only
iftM™'=M".

As the following theorem demonstrates, any matrix whose columns form an or-
thonormal set of vectors is orthogonal.

Theorem 3.2. If the vectors V,,V,,...,V, form an orthonormal set, then the
nxn matrix constructed by setting the j-th column equal to V, for all
1< j< n is orthogonal.

Proof. Suppose that the vectors V|, V,,...,V, form an orthonormal set, and let
M be the nx n matrix whose columns are given by the V,’s. Since the V,’s
are orthonormal, V-V, =6, where ¢, is the Kronecker delta symbol. Since
the (i, /) entry of the matrix product M"M is equal to the dot product V- V.,
we have M"M =1. Therefore, M' =M™ B

Orthogonal matrices also possess the property that they preserve lengths and an-
gles when they are used to transform vectors. A matrix M preserves length if for
any vector P we have

[MP]| = [[P]. (3.4)

A matrix that preserves lengths also preserves angles if for any two vectors P,
and P, we have

(MP1)'(MP2)=P1‘P2- (3.5

The following theorem proves that an orthogonal matrix satisfies Equations (3.4)
and (3.5).

Theorem 3.3. If the nx n» matrix M is orthogonal, then M preserves lengths
and angles.

Proof. Let M be orthogonal. We will first show that the dot product between
two vectors P, and P, is preserved by a transformation by M, and then use
that result to show that M preserves lengths. Examining the dot product be-
tween the transformed vectors gives us

Team LRN

74

Mathematics for 3D Game Programming and Computer Graphics

(MP,)- (MP,)=(MP,)"MP, = P'M"MP, . (3.6)
Since M is orthogonal, M™' = M, so
P'M'MP,=P'P,=P,-P,. 3.7

This also implies that the length of a vector P is preserved when transformed
by the matrix M since |P||*=P-P. B

Since orthogonal matrices preserve lengths and angles, they preserve the
overall structure of a coordinate system. Orthogonal matrices can thus represent
only combinations of rotations and reflections. Rotations are discussed in detail
in Section 3.3. A reflection transform (also called an inversion transformation)
refers to the operation performed when points are mirrored in a certain direction.
For example, the matrix

1 0 0]
01 0 (3.8)
0 0 -1

reflects the z-coordinate of a point across the x-y plane.

3.1.2 Handedness

In three dimensions, a basis B3 for a coordinate system given by the 3D vectors
V,, V,, and V, possesses a property called handedness. A right-handed basis is
one for which (V,xV,)- V; > 0. That is, in a right-handed coordinate system, the
direction in which the cross product between V, and V, points (which follows the
right hand rule) forms an acute angle with the direction in which V;, points. If B is
an orthonormal right-handed basis, we have V,xV, =V, If (V,xV,) - V,<0,
then the basis B is left-handed.

Performing an odd number of reflections reverses handedness. An even
number of reflections is always equivalent to a rotation, so any series of reflec-
tions can always be regarded as a single rotation followed by at most one reflec-
tion. The existence of a reflection within a 3x3 matrix can be detected by
examining the determinant. If the determinant of a 3x 3 matrix M is negative,
then a reflection is present, and M reverses the handedness of any set of basis
vectors transformed by it. If the determinant is positive, then M preserves hand-
edness.

Team LRN

Chapter 3 Transforms 75

An orthogonal matrix M can only have a determinant of 1 or —1. If detM =1,
the matrix M represents a pure rotation. If detM =—1, then the matrix M repre-
sents a rotation followed by a reflection.

3.2 Scaling Transforms

To scale a vector P by a factor of a, we simply calculate P’ = aP. In three dimen-
sions, this operation can also be expressed as the matrix product

a 0 0] ~F]
P=/0 a O P . (3.9)
0 0 4l Pl

This is called a uniform scale. If we wish to scale a vector by different amounts
along the x-, y-, and z-axes, as shown in Figure 3.1, then we can use a matrix that
is similar to the uniform scale matrix, but whose diagonal entries are not neces-
sarily all equal. This is called a nonuniform scale and can be expressed as the
matrix product

>|::> >

Figure 3.1 Nonuniform scaling.

Team LRN

76 Mathematics for 3D Game Programming and Computer Graphics

a 0 0]~]
P'=10 b 0O|P|. (3.10)
0 0 cl Pl

A slightly more complex scaling operation that one may wish to perform is a
nonuniform scale that is applied along three arbitrary axes. Suppose that we want
to scale by a factor a along the axis U, by a factor b along the axis V, and by a
factor ¢ along the axis W. Then we can transform from the (U, V, W) coordinate
system to the (i, j,k) coordinate system, apply the scaling operation in this sys-
tem using Equation (3.10), and then transform back into the (U,V, W) coordinate
system. This gives us the following matrix product.

U, V., W.a 0 olfU, v, W.T'P]
P=(U, v, w|lo b olU Vv, W |P 3.11)

Y Y Y)

u. v, Wi o du. v, wl LR

3.3 Rotation Transforms

We can find 3x 3 matrices that rotate a coordinate system through an angle 4
about the x-, y-, or z-axis without much difficulty. We consider a rotation by a
positive angle about the axis A to be that which performs a counterclockwise ro-
tation when the axis A is pointing toward us.

First, we will find a general formula for rotations in two dimensions. As
shown in Figure 3.2, we can perform a 90-degree counterclockwise rotation of a
2D vector P in the x-y plane by exchanging the x- and y-coordinates and negating
the new x-coordinate. Calling the rotated vector Q, we have Q= <—Py,PX>. The
vectors P and Q form an orthogonal basis for the x-y plane. We can therefore
express any vector in the x-y plane as a linear combination of these two vectors.
In particular, as shown in Figure 3.3, any 2D vector P’ that results from the rota-
tion of the vector P through an angle # can be expressed in terms of its compo-
nents that are parallel to P and Q. Basic trigonometry lets us write

P’ =Pcosf +Qsind. (3.12)

This gives us the following expressions for the components of P’.

Team LRN

Chapter 3 Transforms

(=, %)

77

(x,)

Figure 3.2 Rotation by 90 degrees in the x-y plane.

[Pl cos &
-7 \

\

\ .
v 11Ql sin @

Figure 3.3. A rotated vector can be expressed as the linear combination of the origi-
nal vector and the 90-degree counterclockwise rotation of the original vector.

Team LRN

78

Mathematics for 3D Game Programming and Computer Graphics

P =P, cosf — P,sin¢
P, =P, cosf+ P, sind (3.13)

We can rewrite this in matrix form as follows.

{cose —sind |
(3.14)

sind cosd ‘J

The 2D rotation matrix in Equation (3.14) can be extended to a rotation about
the z-axis in three dimensions by taking the third row and column from the iden-
tity matrix. This ensures that the z-coordinate of a vector remains fixed during a
rotation about the z-axis, as we would expect. The matrix R, (&) that performs a
rotation through the angle 4 about the z-axis is thus given by

cos@ -—sin@ O]
R, (0)=|sin@ cos@ 0. (3.15)
o o0 1l

Similarly, we can derive the following 3x 3 matrices R (¢) and R () that
perform rotations through an angle @ about the x- and y-axes, respectively.

10 0 7
R (0)=|0 cosf® -—sinf
|0 sin€d cos@]

[cos® 0 siné |
R(O)=| 0 1 0 (3.16)
| —sind 0 cosé|

3.3.1 Rotation About an Arbitrary Axis

Suppose that we wish to rotate a vector P through an angle @ about an arbitrary
axis whose direction is represented by a unit vector A. We can decompose the
vector P into components that are parallel to A and perpendicular to A as shown
in Figure 3.4. Since the parallel component (the projection of P onto A) remains

Team LRN

Chapter 3 Transforms 79

unchanged during the rotation, we can reduce the problem to that of rotating the
perpendicular component of P about A.

Since A is a unit vector, we have the following simplified formula for the
projection of P onto A.

proj, P=(A-P)A (3.17)
The component of P that is perpendicular to A is then given by
perp, P=P—-(A-P)A. (3.18)

Once we rotate this perpendicular component about A, we will add the constant
parallel component given by Equation (3.17) to arrive at our final answer.

A
A
P

(A-P)AA‘r :

|

|

|

|

|

|

:

|

a |

|

P-(A-PA

Figure 3.4 Rotation about an arbitrary axis.

The rotation of the perpendicular component takes place in the plane perpen-
dicular to the axis A. As before, we express the rotated vector as a linear combi-
nation of perp, P and the vector that results from a 90-degree counterclockwise
rotation of perp, P about A. Fortunately, such an expression is easy to find. Let
a be the angle between the original vector P and the axis A. Note that the length

Team LRN

80 Mathematics for 3D Game Programming and Computer Graphics

of perp, P is equal to |[P|sina because it forms the side opposite the angle «
shown in Figure 3.4. A vector of the same length that points in the direction that
we want is given by Ax P.

We can now express the rotation of perp, P through an angle 6 as

[P-(A-P)A]cosd+(AxP)sind. (3.19)

Adding proj, P to this gives us the following expression for the rotation of the
original vector P about the axis A.

P'=PcosO+(AxP)sind+ A(A-P)(1-cosd) (3.20)

Replacing AxP and A(A-P) in Equation (3.20) with their matrix equivalents
given by Equations (1.25) and (1.20) respectively, we have

10 0] 0 -4, 4]
P'=|0 1 O0fPcosf+| 4, 0 -4| Psing
0 0 11 -4, A4, 01
40 A4, A4l
+| 4,4, A AA[P(1-cosh). (3.21)
AA, A4, A
Combining these terms and setting ¢ = cos@ and s =sinf gives us the following

formula for the matrix R, (@) that rotates a vector through an angle @ about the
axis A.

c+(l-c)d; (1-c)A, A, —sd, (1-c)A A, +s4,]
R, (0)=|(1-c)A4,4,+s4, c+(1-c)4; (1-c)A4,A4, -s4, (3.22)
(1-c)A,4,—s4, (1-c)A, 4 +s4, c+(1-c)4 ||

Team LRN

Chapter 3 Transforms 81

3.4 Homogeneous Coordinates

Up to this point, we have dealt only with transforms that can be expressed as the
operation of a 3x 3 matrix on a three-dimensional vector. A series of such trans-
forms could be represented by a single 3x 3 matrix equal to the product of the
matrices corresponding to the individual transforms. An important transform that
has been left out is the translation operation. A coordinate system is translated in
space without otherwise affecting the orientation or scale of the axes by simply
adding an offset vector. This operation cannot be expressed in terms of a 3x 3
matrix. Thus, to transform a point P from one coordinate system to another, we
usually find ourselves performing the operation

P'=MP+T, (3.23)

where M is some invertible 3x 3 matrix and T is a 3D translation vector. Per-
forming two operations of the type shown in Equation (3.23) results in the rather
messy equation

P=M,(MP+T)+T,
=(M,M,)P+M,T, +T,, (3.24)

requiring that we keep track of the matrix component M, M, _, as well as the
translation component M, T _ + T, at each stage when concatenating n trans-
forms.

3.4.1 Four-Dimensional Transforms

Fortunately, there is a compact and elegant way to represent these transforms
within a single mathematical entity. We can do this by extending our vectors to
four-dimensional homogeneous coordinates and using 4x 4 matrices to transform
them. A 3D point P is extended to four dimensions by setting its fourth coordi-
nate, which we call the w-coordinate, equal to 1. We construct a 4x 4 transforma-
tion matrix F corresponding to the 3x 3 matrix M and the 3D translation T as
follows.

Team LRN

82

Mathematics for 3D Game Programming and Computer Graphics

1M, M, T
| |
M : T M, M, M, | T)
F= : = | (3.25)
| M, M, M, : T,
________ L S S
0 Dl 0 0 0 |1
L 1L L

Multiplying this matrix by the vector <PX,P),,PZ,1> transforms the x-, y-, and
z-coordinates of the vector in exactly the same way as Equation (3.23) and leaves
a | in the w-coordinate. Furthermore, multiplying two transformation matrices of
the form shown in Equation (3.25) yields another matrix of the same form that is
equivalent to the pair of transforms performed in Equation (3.24).

If we solve Equation (3.23) for P, we have

P=M'P-M'T. (3.26)

We would therefore expect the inverse of the 4x 4 matrix F from Equation (3.25)
to be

S T M ()]
—_ I _ —_ —_ —_ I —_
; M? O -MTT| (M My My —(MT'T
F'= ! = L o | , (327
: M31 M3z M3 :_(M T z
e N I O (I Z
0 bl 0 0 0]
L I 1L I |

and the following computation verifies that this is true.

T

|
|
|
FF' = |
i
|
|
|

Team LRN

Chapter 3 Transforms 83

[| 1
MM” M(-MTT)+T
e
[]
I, 10
- =1, (3.28)
LY

3.4.2 Points and Directions

We have now come to a point where it is necessary to make a distinction between
vectors that represent points in three-dimensional space and vectors that represent
directions in three-dimensional space. Unlike points, direction vectors should
remain invariant under translation.

To transform direction vectors using the same 4x 4 transformation matrices
that we use to transform points, we extend direction vectors to four dimensions
by setting the w-coordinate to 0. This nullifies the fourth column of the matrix F
in Equation (3.25), leaving only the upper left 3x 3 portion of the matrix to affect
the direction vector.

The difference between two points P and Q having a w-coordinate of 1 re-
sults in a direction vector Q—P having a w-coordinate of 0. This makes sense
because Q— P represents the direction pointing from P to Q, which we would
expect not to be affected by a translation.

3.4.3 Geometrical Interpretation of the w-Coordinate

The w-coordinates of the four-dimensional vectors with which we have been
working so far have a meaning that goes beyond their utility during transforma-
tions using 4x 4 matrices. Before, we extended a three-dimensional point to four-
dimensional space by adding a 1 in the w-coordinate position. Now, we define a
mapping that works in the reverse direction. Suppose we have a 4D point
P =(x,y,z,w) whose w-coordinate is not 0. Then we define the image of P in

Team LRN

84

Mathematics for 3D Game Programming and Computer Graphics

three-dimensional space, which we denote by P, as the projection of P into the
three-dimensional space in which w =1 using the formula

f’=<i,l,i>. (3.29)
w w w

As shown in Figure 3.5 (but without the z-axis to make visualization easier), the
3D point P corresponds to the point where the line connecting the point P to the
origin intersects the space where w=1. Thus, any scalar multiple of the 4D vector
P represents the same point in three-dimensional space. The importance of this
projection in 3D graphics is discussed in detail in Section 4.5.

P={x,y,z,w)

gl

X

Figure 3.5 A 4D point P is projected into three-dimensional space by calculating the
point where the line connecting the point to the origin intersects the space where
w=1.

Team LRN

Chapter 3 Transforms 85

3.5 Transforming Normal Vectors

In addition to its position in space, a vertex belonging to a polygonal model usu-
ally carries additional information about how it fits into the surrounding surface.
In particular, a vertex may have a tangent vector and a normal vector associated
with it. When we transform a model, we need to transform not only the vertex
positions, but these vectors as well.

Tangent vectors can often be calculated by taking the difference between one
vertex and another, and thus we would expect that a transformed tangent vector
could be expressed as the difference between two transformed points. If M is a
3x 3 matrix with which we transform a vertex position, then the same matrix M
can be used to correctly transform the tangent vector at that vertex. (We limit
ourselves to 3x 3 matrices in this section since tangent and normal directions are
unaffected by translations.) Some care must be taken when transforming normal
vectors, however. Figure 3.6 shows what can happen when a nonorthogonal ma-
trix M is used to transform a normal vector. The transformed normal can often
end up pointing in a direction that is not perpendicular to the transformed surface.

MN

=

Figure 3.6 Transforming a normal vector N with a nonorthogonal matrix M.

Since tangents and normals are perpendicular, the tangent vector T and the
normal vector N associated with a vertex must satisfy the equation N- T=0. We
must also require that this equation be satisfied by the transformed tangent vector
T and the transformed normal vector N'. Given a transformation matrix M, we

Team LRN

86

Mathematics for 3D Game Programming and Computer Graphics

know that T'=MT. We would like to find the transformation matrix G with
which the vector N should be transformed so that

N-T' =(GN)-(MT)=0. (3.30)
A little algebraic manipulation gives us

(GN)-(MT)=(GN)"(MT)
=N'G'MT. (3.31)

Since N"T =0, the equation N'G™™T =0 is satisfied if G'™M =I. We therefore
conclude that G =(M")T. This tells us that a normal vector is correctly trans-
formed using the inverse transpose of the matrix used to transform points. Vec-
tors that must be transformed in this way are called covariant vectors, and
vectors that are transformed in the ordinary fashion using the matrix M (such as
points and tangent vectors) are called contravariant vectors.

If the matrix M is orthogonal, then M~ =M", and thus (M'l)T =M. There-
fore, the inverse transpose operation required to transform normal vectors can be
avoided when M is known to be orthogonal, as is the case when M is equal to
one of the rotation matrices R, R , R, or R, presented earlier in this chapter.

3.6 Quaternions

A quaternion is an alternative mathematical entity that 3D graphics programmers
use to represent rotations. The use of quaternions has advantages over the use of
rotation matrices in many situations because quaternions require less storage
space, concatenation of quaternions requires fewer arithmetic operations, and
quaternions are more easily interpolated for producing smooth animation.

3.6.1 Quaternion Mathematics

The set of quaternions, known by mathematicians as the ring of Hamiltonian qua-
ternions and denoted by H, can be thought of as a four-dimensional vector space
for which an element q has the form

q={(w,x,y,z)=w+xi+ yj+ zk. (3.32)

Team LRN

Chapter 3 Transforms 87

A quaternion is often written as q = s+ v, where s represents the scalar part cor-
responding to the w-component of q, and v represents the vector part correspond-
ing to the x-, y-, and z-components of q.

The set of quaternions is a natural extension of the set of complex numbers.
Multiplication of quaternions is defined using the ordinary distributive law and
adhering to the following rules when multiplying the “imaginary” components i,

Jj,and k.
=)=k =-1
j’;‘_j];:fi (333)
ki=—ik=j

Multiplication of quaternions is not commutative, and so we must be careful to
multiply terms in the correct order. For two quaternions q, =w, +x,i+y,j+zk
and q, = w, + x,i+ y, j + z,k, the product q,q, is given by

99, = (ww,—x%, -3y, —22,)
+(wx, + 0w, + 3,2, — 2,1,)i
+(wy, —xz,tyw, +z,x,))
+(wz, + xy, — yx, +zw,) k. (3.34)

When written in scalar-vector form, the product of two quaternions q, = s, + v,
and q, = s, + v, can be written as

qq, =55V, V, 8§V, + 5V, +V X V,. (3.35)

Like complex numbers (see Appendix A), quaternions have conjugates, and
they are defined as follows.

Definition 3.4. The conjugate of a quaternion q=s+v, denoted by q, is
givenby q=s-v.

A short calculation reveals that the product of a quaternion q and its conjugate q
is equal to the dot product of q with itself, which is also equal to the square of the
magnitude of q. That is,

qa=99=q-9=a*=¢". (3.36)

This leads us to a formula for the multiplicative inverse of a quaternion.

Team LRN

88

Mathematics for 3D Game Programming and Computer Graphics

Theorem 3.5. The inverse of a nonzero quaternion ¢, denoted by q', is
given by

o' =3 (3.37)
q

qq"=‘;—?=%=l (3.38)
and
— 2
q“q=g—?=g—2=1, (3.39)

thus proving the theorem. B

3.6.2 Rotations with Quaternions

A rotation in three dimensions can be thought of as a function ¢ that maps R’
onto itself. For ¢ to represent a rotation, it must preserve lengths, angles, and
handedness. Length preservation is satisfied if

o (P = [P (3.40)

The angle between the line segments connecting the origin to any two points P,
and P, is preserved if

@(P) ¢(P,)=P-P,. (341)
Finally, handedness is preserved if
@(P)xp(P,)=p(PxP,). (3.42)

Extending the function ¢ to a mapping from H onto itself by requiring that
p(s+v)=s+¢(v) allows us to rewrite Equation (3.41) as

o(P,) ¢(P,)=0(P-P,). (3.43)

Team LRN

Chapter 3 Transforms 89

Treating P, and P, as quaternions with zero scalar part enables us to combine
Equations (3.42) and (3.43) since PP, =—P,- P, + P, x P,. We can therefore write
the angle preservation and handedness preservation requirements as the single
equation

@(Pl)(p(Pz):(/’(Ple)- (3.44)

A function ¢ that satisfies this equation is called a homomorphism.
The class of functions given by

9,(P)=qPq"", (3.45)

where q is a nonzero quaternion, satisfies the requirements stated in Equations
(3.40) and (3.44), and thus represents a set of rotations. This fact can be proven
by first observing that the function ¢, preserves lengths because

|y¢q<P>u=|\qPq-lu=||qu||P||Hq-'u=||P||”‘*L'IM=||P||. (3.46)

Furthermore, ¢, is a homomorphism since
24 (P)0y (P,)=qPq 'qP,q" =qPPyq ' =, (PP,). (3.47)

We now need to find a formula for the quaternion q corresponding to a rota-
tion through the angle & about the axis A. A quick calculation shows that ¢,, =,
for any nonzero scalar g, so to keep things as simple as possible, we will concern
ourselves only with unit quaternions.

Let q=s+ v be a unit quaternion. Then q~' =s - v, and given a point P, we
have

qPq ' =(s+V)P(s-v)
=(-v-P+sP+vxP)(s—-v)
=—sv-P+5'P+svx P+(v-P)v—sPv—(vxP)v
=5’P+2svxP+(v-P)v—vx Pxv. (3.48)

After applying Theorem 1.9(f) to the cross product vx Px v, this becomes
qPq ™' =(s’ = v’)P+ 2svx P+2(v-P)v. (3.49)

Setting v=tA, where A is a unit vector, lets us rewrite this equation as

Team LRN

90

Mathematics for 3D Game Programming and Computer Graphics

qPq " =(s’ = 1*)P+ 25stAx P+ 21* (A- P)A. (3.50)

When we compare this to the formula for rotation about an arbitrary axis given in
Equation (3.20), we can infer the following equalities.

s> —1* =cos6
25t =sind
21> =1-cos® (3.51)

t=4/1—cosﬁ =sin€. (3.52)
2 2

The first and third equalities together tell us that s*+¢* =1, so we must have
s=cos(0/2). (The fact that sin20 = 2sinfcosé verifies that the second equality
is satisfied by these values for s and ¢.)

We have now determined that the unit quaternion g corresponding to a rota-
tion through the angle & about the axis A is given by

The third equality gives us

q=cos§+ Asin% (3.53)

It should be noted that any scalar multiple of the quaternion q (in particular, —q)
also represents the same rotation since

(aq)P(aq)™ = aqqu=qPq“- (3.54)

The product of two quaternions q, and q, also represents a rotation. Specifi-
cally, the product q,q, represents the rotation resulting from first rotating by q,
and then by q,. Since

q,(q,Pq;')q;"' =(q,9,)P(q,q,)", (3.55)

we can concatenate as many quaternions as we want to produce a single quater-
nion representing the entire series of rotations. Multiplying two quaternions to-
gether requires 16 multiply-add operations, whereas multiplying two 3x3
matrices together requires 27. Thus, some computational efficiency can be gained
by using quaternions in situations in which many rotations may be applied to an
object.

Team LRN

Chapter 3 Transforms 91

It is often necessary to convert a quaternion into the equivalent 3x 3 rotation
matrix, for instance, to pass the transform for an object to a 3D graphics library.
We can determine the formula for the matrix corresponding to the quaternion
q = s+ A by using Equations (1.25) and (1.20) to write Equation (3.50) in matrix
form. (This is nearly identical to the technique used in Section 3.3.1.) This gives

us
sS—t8 0 0 | 0 -2std, 2std, |
qPq'=| 0 -7 0 | P+| 2st4, 0 —2std| P
0 0 =2l |-2s14, 2std, 0]

204 2044, 2044,]
2 2 42 2
+|2004.4, 2047 2044, P. (3.56)
20044, 2044, 204! |

Writing the quaternion q as the four-dimensional vector q =(w,x,y,z), we have
w=s,x=14, y=1tA, and z =t4,. Since A is a unit vector,

Xyt =4 =1 (3.57)
Rewriting Equation (3.56) in terms of the components w, x, y, and z gives us
w—x -y’ -2 0 0]
qPq' = 0 w —x’ -y’ -2 0 P
0 0 wz—xz—y2—22J
0 2wz 2wy | 2x% 2xy 2xz |
+| 2wz 0 —2wx| P+|2xy 2y 2yz P. (3.58)
2wy 2wx 0 1 2xz 2yz 222J
Since q is a unit quaternion, we know that w” + x* + y* + z* =1, so we can write
w—x*—y? -zt =1-2x* - 2y* - 22", (3.59)

Using this equation and combining the three matrices gives us the following for-
mula for the matrix R, the rotation matrix corresponding to the quaternion q.

Team LRN

92 Mathematics for 3D Game Programming and Computer Graphics

1-2y*—2z> 2xy-2wz 2xz+ 2wy |
R _=| 2xy+2wz 1-2x"-2z" 2yz-2wx (3.60)

q

2xz—2wy 2yz+2wx 1—2x2—2y2J

3.6.3 Spherical Linear Interpolation

Because quaternions are represented by vectors, they are well suited for interpo-
lation. When an object is being animated, interpolation is useful for generating
intermediate orientations that fall between precalculated key frames.

The simplest type of interpolation is /inear interpolation. For two unit qua-
ternions q, and q,, the linearly interpolated quaternion q(¢) is given by

q(2)=(1-1)q,+2q,. (3.61)

The function q(¢) changes smoothly along the line segment connecting q, and q,
as ¢ varies from 0 to 1. As shown in Figure 3.7, q(¢) does not maintain the unit
length of q, and q,, but we can renormalize at each point by instead using the
function

~(1-1)q,+1,
=41)g, +] (62

Now we have a function that traces out the arc between q, and q,, shown in Fig-
ure 3.7 as a two-dimensional cross-section of what is actually occurring on the
surface of the four-dimensional unit hypersphere.

Although linear interpolation is efficient, it has the drawback that the func-
tion q(¢) given by Equation (3.62) does not trace out the arc between q, and q, at
a constant rate. The graph of cos™(q(#)-q,) shown in Figure 3.8 demonstrates
that the rate at which the angle between q(¢) and q, changes is relatively slow at
the endpoints where ¢ = 0 and ¢ =1, and is the fastest where # = .

We would like to find a function q(#) that interpolates the quaternions q, and
q,, preserves unit length, and sweeps through the angle between q, and q, at a
constant rate. If ¢, and q, are separated by an angle @, then such a function would
generate quaternions forming the angle 8¢ between q(¢) and q, as ¢ varies from 0
to 1.

Team LRN

Chapter 3 Transforms 93

q(?)
llq()l|

Figure 3.7 Linear interpolation of quaternions.

>

cos™ (q() - q;)

> !

Figure 3.8 Graph of cos™'(q(t)- q,), where q(t) is the normalized linear interpolation
function given by Equation (3.62).

Team LRN

94

Mathematics for 3D Game Programming and Computer Graphics

Figure 3.9 shows the quaternion q(#) lying on the arc connecting q, and q.,,
forming the angle 8¢ with q,, and forming the angle @(1-¢) with q,. We can
write () as

q(t)=a(t)q]+b(t)q2 (3.63)

by letting a(¢) and b(t) represent the lengths of the components of q(¢) lying
along the directions q, and q,. As shown in Figure 3.9(a), we can determine the
length a(¢) by constructing similar triangles. The perpendicular distance from q,
to the line segment connecting the origin to q, is equal to |q,||sin@. The perpen-
dicular distance from q(¢) to this line segment is equal to ||q(#)||sin@(1—1¢). Us-
ing similar triangles, we have the relation

a(t) _Ja(?)]sin0(1-1)
- : : (3.64)
. la,[sin@

Since |q,| =1 and |q(¢)| =1, we can simplify this to

a(t):w. (3.65)

sind

Figure 3.9(b) shows the same procedure used to find the length b(¢), which is
given by

sin gt
sing

b(t)= (3.66)

We can now define the spherical linear interpolation function q(t) as fol-
lows.

_sin@(1-1¢) N sin @t

q(?) g T (3.67)
The angle @is given by
f=cos"'(q,q,), (3.68)
and thus, siné can be replaced by
sinf=+1-(q,-q,) (3.69)

Team LRN

Chapter 3 Transforms 95

if desired. Since the quaternions q and —q represent the same rotation, the signs
of the quaternions q, and q, are usually chosen such that q, - q, > 0. This also en-
sures that the interpolation takes place over the shortest path.

q;

(a)

-sin O(1 - 1)

q

(b)

Figure 3.9 Similar triangles can be used to determine the length of (a) the compo-
nent of q(t) that lies along the direction of q, and (b) the component of q(¢) that lies
along the direction of q,.

Team LRN

96

Mathematics for 3D Game Programming and Computer Graphics

Chapter 3 Summary

Orthogonal Matrices

An invertible nx n matrix M is called orthogonal if and only if M~ =M". A ma-
trix whose columns form an orthonormal set of vectors is orthogonal. Orthogonal
matrices preserve lengths and angles, and thus perform only rotations and reflec-
tions.

Scaling Transforms

A scaling operation in three dimensions is performed using the transformation
matrix

a 0 0]
0 b 0.
0 0

If a=b=c, then this matrix represents a uniform scale, which can also be per-
formed using scalar multiplication.

Rotation Transforms

Rotations through an angle 6 about the x-, y-, and z-axes are performed using the
following transformation matrices.

10 0]
R (6)=|0 cosd —sinf

10 sin@ cos@
[cos® 0 sind

—1

R,(6)=| 0 1 0

 —

|—sin@ 0 cosf

[cos® —sinf 0

—

R,(0)=|sin@ cos@ O

0 0 1]

Team LRN

Chapter 3 Transforms 97

A rotation through an angle 8 about an arbitrary axis A is performed using the
transformation matrix

c+(l-c)d2 (1-c)A,4,—sd, (1-c)A,A4, +s4,]

R, (0)=|(1-c)4,4,+s4, c+(1-c)4; (1-c)A,4, 54,
2

(1-c)AA4,-s4, (1-c)A,4,+s4, c+(l-c)4 ||

where ¢ =cos@ and s =sin6.

Homogeneous Coordinates

A vector P representing a three-dimensional point is extended to four-
dimensional homogeneous coordinates by setting the w-coordinate to 1. A vector
D representing a three-dimensional direction is extended to homogeneous coor-
dinates by setting the w-coordinate to 0.

A 3x 3 transformation matrix M and a 3D translation vector T can be combined
using the 4x 4 transformation matrix

—Mn M, M; !Tx—l
|
M, M, My :T)
F= e
M, My, M, :‘Tz
T i
0 0 0 11
L o

Normal vectors must be transformed using the inverse transpose of the matrix
used to transform points.
Quaternions

The unit quaternion corresponding to a rotation through an angle @ about the unit
axis A is given by

q =cos€+ Asing.
2 2

A quaternion q applies a rotation transformation to a point P using the homo-
morphism P’ =qPq~'. The transformation performed by the quaternion
q=(w,x,y,z) is equivalent to the transformation performed by the 3x 3 matrix

Team LRN

98

Mathematics for 3D Game Programming and Computer Graphics

1-2y* =22 2xy-2wz 2xz+ 2wy |
2 2
R, = 2xy+2wz 1-2x" -2z 2yz —2wx

2xz—2wy 2yz+2wx 1—2x2—2y2J
Spherical Linear Interpolation
Two quaternions q, and q, are spherically interpolated using the formula

_sin@(1-1¢) . sin 0t

q(1)=

. 1 . 27
sin@ sin@

where 0<¢< 1.

Exercises for Chapter 3

1. Calculate the 3x 3 rotation matrices that perform a rotation of 30 degrees
about the x-, y-, and z-axes.

2. Exhibit a unit quaternion that performs a rotation of 60 degrees about the
axis (0,3,4).

3. Prove Equation (3.35).

4. Let N be the normal vector to a surface at a point P, and let S and T be tan-
gent vectors at the point P such that Sx T =N. Given an invertible 3x 3 ma-
trix M, show that (MS)x (MT)=(detM)(M™')"(Sx T), supporting the fact
that normals are correctly transformed by the inverse transpose of the matrix
M. [Hint. Use Equation (1.25) to write the cross product (MS)x (MT) as

0 -(MS), (MS), |
(MS)x(MT)=| (MS), 0 ~(MS) | MT.
—(MS), (MS), 0]

Then find a matrix G such that

Team LRN

Chapter 3 Transforms 99

0 =S, S,] 0 ~(MS), (MS), |
G| S, 0 -5|=|(MmMS), 0 —(MS)|M,
=S, S, 0l [-(MS), (MS), 0

and finally use Equation (2.65) to show that G = (detM)(M’I)T.]

5. Implement a C++ class that encapsulates a quaternion. The class should pos-
sess data members for the quaternion’s w-, x-, y-, and z-components. In ad-
dition to a default constructor, which should not perform any initialization,
the class should have a constructor that takes four floating-point numbers as
arguments and initializes the quaternion’s components to those values. The
class should also include overloaded operators for addition, subtraction,
multiplication, and division by scalars, and the quaternion product defined
by Equation (3.34). Include a function that takes an angle 6 and an axis A as
parameters and returns the unit quaternion representing the rotation through
the angle @ about the axis A. Also include a function that converts a quater-
nion into a 3x 3 rotation matrix using Equation (3.60). Finally, write func-
tions that calculate the magnitude of a quaternion and the inverse of a
quaternion.

Team LRN

Team LRN

Chapter

3D Engine Geometry

to begin our study of its practical applications to the art and science of 3D

game programming. After a treatment of the nature of lines and planes in
three-dimensional space, we introduce the view frustum and examine some of the
important mathematics governing the virtual camera through which we see our
game universe.

In this chapter, we draw upon the material presented in the first three chapters

4.1 Lines in 3D Space

Given two 3D points P, and P,, we can define the line that passes through these
points parametrically as

P(¢)=(1-¢)P +1{P,, 4.1)

where the parameter ¢ ranges over all real numbers. The line segment connecting
P, and P, corresponds to values of ¢ between 0 and 1.

A ray is a line having a single endpoint S and extending to infinity in a given
direction V. Rays are typically expressed by the parametric equation

101

Team LRN

102

Mathematics for 3D Game Programming and Computer Graphics

P(¢)=S+1V, (4.2)

where ¢ is allowed to be greater than or equal to zero. This equation is often used
to represent lines as well. Note that this equation is equivalent to Equation (4.1) if
weletS=P and V=P, -P,.

4.1.1 Distance between a Point and a Line

The distance d from a point Q to a line defined by the endpoint S and the direc-
tion V can be found by calculating the magnitude of the component of Q —S that
is perpendicular to the line, as shown in Figure 4.1.

Q-S|

[>V

——— lproiy(Q - §)] ———|

Figure 4.1 The distance d from a point Q to the line S+ fV is found by calculating the
length of the perpendicular component of Q — S with respect to the line.

Using the Pythagorean theorem, the squared distance between the point Q and
the line can be obtained by subtracting the square of the projection of Q —S onto
the direction V from the square of Q—S. This gives us

d*=(Q-8)" —[proj, (Q-S)]*

=(Q—S)2—{£Q—_I/iz)¥Y—V|J : (4.3)

Simplifying a bit and taking the square root gives us the distance d that we de-
sire:

Team LRN

Chapter 4 3D Engine Geometry 103

dz\/(Q—S)Z—M. (4.4)

4.1.2 Distance between Two Lines

In two dimensions, two lines are either parallel or they intersect at a single point.
In three dimensions, there are more possibilities. Two lines that are not parallel
and do not intersect are called skew. A formula giving the minimum distance be-
tween points on skew lines can be found by using a little calculus.

1P (2)) = Py(tr)l]

Py(ty)
Figure 4.2 The distance between skew lines P,(t,) and P,(t,) is calculated by find-

ing the parameters ¢, and £, minimizing |P, (¢,)— P, (£,)]

Suppose that we have two lines, as shown in Figure 4.2, defined by the pa-
rametric functions

Pl(tl)zsl +t1V|
P,(¢,)=8,+1,V,, 4.5

where 7, and #, range over all real numbers. Then the squared distance between a
point on the line P,(¢,) and a point on the line P, (¢,) can be written as the follow-
ing function of the parameters ¢, and ¢,.

f(tl’ZZ)z||Pl(tl)_P2(t2)||2 (4.6)

Expanding the square and substituting the definitions of the functions P, (7) and
P,(t,) gives us

Team LRN

104 Mathematics for 3D Game Programming and Computer Graphics

F(t,t)=P (1) +P,(£,)> =2P,(1,)- P,(1,)
=(S,+4V,)? +(S,+4,V,)’
-2(S,-S,+4V,-S,+1,V,-S, +11,V,- V)
=S +1 V2 +2t8,-V, + S2+ V] +248, -V,
=2(S,-S,+4V,-S, +1,V,- S, +4,,V,- V,). 4.7

The minimum value attained by the function f'can be found by setting partial de-
rivatives with respect to ¢, and ¢, equal to zero. This provides us with the equa-

tions
Z—{—=2tll/12+ZS]~V] -2V,-S,-2t,V,-V, =0 (4.8)
1
and
-ZTf=Zt2V22+2SZ-V2—2V2~SI—2thl~V2=O. 4.9)
2
After removing a factor of two, we can write these equations in matrix form as
follows.
V12 _Vl'V2—| t1—| (SZ_S]).VI—l
X = (4.10)
VJ’Vz _Vz J tzJ (Sz_sl)'V2J
Solving this equation for ¢, and ¢, gives us
[tl-l [V12 _Vl'Vle[(Sz_Sl)'Vl—l
tzJ V-V, _V22 J (Sz_sl)'V2J
1 _V22 Vl'Vz-l (Sz_sl)'vl—l
= s : 4.11)
(Vi Vo) =V =y, 12) (S,-8) V]

Plugging these values of ¢, and ¢, back into the function f gives us the minimum
squared distance between the two lines. Taking a square root gives us the actual
distance that we want. If the direction vectors V, and V, have unit length, then
Equation (4.11) simplifies a bit since ¥;* =1 and ¥’ =1.

If the quantity (V,-V,)* =¥} is zero, then the lines are parallel, in which
case the distance between the two lines is equal to the distance between any point

Team LRN

Chapter 4 3D Engine Geometry 105

on one of the lines and the other line. This is illustrated in Figure 4.3. In particu-
lar, we can use Equation (4.3) to measure the distance from the point S, to the
line P, (¢,) or the distance from the point S, to the line P, ().

P(t))

Py(ty)

Figure 4.3 The distance between parallel lines is given by the distance from a point
on one line to the other line.

4.2 Planes in 3D Space

Given a 3D point P and a normal vector N, the plane passing through the point P
and perpendicular to the direction N can be defined as the set of points Q such
that N-(Q—P)=0. As shown in Figure 4.4, this is the set of points whose differ-
ence with P is perpendicular to the normal direction N. The equation for a plane
is commonly written as

Ax+By+Cz+ D=0, (4.12)

where A, B, and C are the x-, y-, and z-components of the normal vector N, and
D=-N-P. As shown in Figure 4.5, the value |D|/|N|| is the distance by which
the plane is offset from a parallel plane that passes through the origin.

The normal vector N is often normalized to unit length because in that case
the equation

d=N-Q+D (4.13)

Team LRN

106 Mathematics for 3D Game Programming and Computer Graphics

N
A

ke, /

Figure 4.4 A plane is defined by the set of points Q whose difference with a point P,
known to lie in the plane, is perpendicular to the normal direction N.

IDI/IN|

9
O‘

Figure 4.5 The value of D in Equation (4.12) is proportional to the perpendicular dis-
tance from the origin to the plane.

Team LRN

Chapter 4 3D Engine Geometry 107

gives the signed distance from the plane to an arbitrary point Q. If d = 0, then the
point Q lies in the plane. If d > 0, we say that the point Q lies on the positive side
of the plane since Q would be on the side in which the normal vector points.
Otherwise, if d <0, we say that the point Q lies on the negative side of the plane.

It is convenient to represent a plane using a four-dimensional vector. The
shorthand notation (N, D) is used to denote the plane consisting of points Q satis-
fying N-Q+ D =0. If we treat our three-dimensional points instead as four-
dimensional homogeneous points having a w-coordinate of 1, then Equation
(4.13) can be rewritten as d = L- Q, where L = (N, D). A point Q lies in the plane
ifL-Q=0.

4.2.1 Intersection of a Line and a Plane

Finding the point where a line intersects a plane is a common calculation per-
formed by 3D engines. In particular, it is used extensively during polygon clip-
ping, which is discussed in detail in Sections 7.4.1 and 9.2.2.

Let P(¢)=S+1V represent a line containing the point S and running parallel
to the direction V. For a plane defined by the normal direction N and the signed
distance D from the origin, we can find the point where the line intersects the
plane by solving the equation

N-P(t)+D=0 (4.14)
for ¢. Substituting S + ¢V for P(¢) gives us
N-S+(N-V)t+ D=0, (4.15)
and after solving this for ¢, we arrive at

_~(N-S+D) (4.16)
NV

Plugging this value of ¢ back into the line equation P(#)=S+V produces the
point of intersection. If N- V =0, then the line is parallel to the plane (the plane
normal N is perpendicular to the line direction V). In this case, the line lies in the
plane itself if N- S+ D =0; otherwise, there is no intersection.

We may also express the value of ¢ given in Equation (4.16) in terms of the
four-dimensional representation of a plane. Given a plane L = (N, D), we have

LS
f=—— 4.17
v (4.17)

Team LRN

108

Mathematics for 3D Game Programming and Computer Graphics

Since S is a point, its w-coordinate is 1. However, since V is a direction vector,
its extension to homogeneous coordinates requires that we assign it a
w-coordinate of 0 (as discussed in Section 3.4.2). This confirms that Equation
(4.17) 1s equivalent to Equation (4.16).

4.2.2 Intersection of Three Planes

Regions of space are often defined by a list of planes that form the boundary of a
convex polyhedron. The edges and vertices belonging to this polyhedron can be
found by performing a series of calculations that determine the points at which
sets of three planes intersect.

Let L, =(N,,D,), L, =(N,,D,), and L, =(N,,D,) be three arbitrary planes.
We can find a point Q that lies in all three planes by solving the following sys-
tem.

il
000
o<”:C>

, Q= (4.18)
This can be written in matrix form as
_Dl '|
MQ=|-D,|, (4.19)
-D,l]

where the matrix M is given by

(N), (N), (N),]
M= (Nz)x (NZ)y (Nz)z : (4.20)

(N3), (Ny), (Ny).]]

Assuming that the matrix M is invertible, solving for the point Q as follows pro-
duces the unique point where the three planes intersect.

Team LRN

Chapter 4 3D Engine Geometry 109

_D1—|
Q=M"|-D, (4.21)
_Dzj

If M is singular (i.e., detM = 0), then the three planes do not intersect at a point.
This happens when the three normal vectors all lie in the same plane, an example
of which is shown in Figure 4.6.

Figure 4.6 Three planes do not necessarily intersect at a point.

When two nonparallel planes L, =(N,,D,) and L, =(N,,D,) intersect, they
do so at a line. As shown in Figure 4.7, the direction V in which the line of inter-
section runs is perpendicular to the normals of both planes and can thus be ex-
pressed by V=N, x N,. To form a complete description of a line, we also need to
provide a point that lies on the line. This can be accomplished by constructing a
third plane L, = (V,0) that passes through the origin and whose normal direction
is V. We can then solve for the point where all three planes intersect, which is
guaranteed to exist in this situation.

Using Equation (4.21), we can compute a point Q that lies on the line of in-
tersection as follows.

Team LRN

110 Mathematics for 3D Game Programming and Computer Graphics

(N), (N), (N).T-p,]

Q= (NZ)X (NZ)y (NZ)Z _DZ (422)
V. Vy v, l 0 |

The line where the two planes L, and L, intersect is given by P(¢)=Q+ V.

>
|_‘ V=N, xN,

Figure 4.7 Two planes having normal vectors N, and N, intersect at a line running in
the direction V. A point on this line can be found by finding the intersection point with
a third plane passing through the origin and having normal V.

4.2.3 Transforming Planes

Suppose that we wish to transform a plane using a 3x 3 matrix M and a 3D trans-
lation vector T. We know that we can transform the normal direction N using the
inverse transpose of M, but we also have the signed distance from the origin D to
worry about. If we know that a point P lies in the original plane, then we can cal-
culate the signed distance D' from the transformed plane to the origin using the
equation
D'=—((M")'N)-(MP+T)

==((M7)"N)™™MP - ((M")"N)"T

=-N'M"'MP-N'"M"'T

=D-N-M'T. (4.23)

Team LRN

Chapter 4 3D Engine Geometry 111

Recall from Equation (3.27) that the inverse of the 4x 4 matrix F constructed
from the 3x 3 matrix M and the 3D translation vector T is given by

|
F'= | : (4.24)
I

(F')" = (4.25)

The quantity D—N-M™'T is exactly the dot product between the fourth row of
(F")T and the 4D vector <Nx,Ny,NZ,D>. This shows that we may treat planes as
four-dimensional vectors that transform in the same manner as three-dimensional
normal vectors, except that we use the inverse transpose of the 4x 4 transforma-
tion matrix. Thus, the plane L = (N, D) transforms using the 4x 4 matrix F as

L'=(F")'L. (4.26)

4.3 The View Frustum

Figure 4.8 shows the view frustum, the volume of space containing everything
that is visible in a three-dimensional scene. The view frustum is shaped like a
pyramid whose apex lies at the camera position. It has this shape because it
represents the exact volume that would be visible to a camera that is looking
through a rectangular window—the computer screen. The view frustum is
bounded by six planes, four of which correspond to the edges of the screen and
are called the left, right, bottom, and top frustum planes. The remaining two
planes are called the near and far frustum planes, and define the minimum and
maximum distances at which objects in a scene are visible to the camera.

Team LRN

112

Mathematics for 3D Game Programming and Computer Graphics

Figure 4.8 The view frustum encloses the space bounded by the near plane lying at
a distance n from the camera, the far plane lying at a distance f from the camera, and
four side planes that pass through the camera position C.

The view frustum is aligned to camera space. Camera space, also called eye
space, is the coordinate system in which the camera lies at the origin, the x-axis
points to the right, and the y-axis points upward. The direction in which the z-axis
points depends on the 3D graphics library being used. Within the OpenGL li-
brary, the z-axis points in the direction opposite that in which the camera points.
This forms a right-handed coordinate system and is shown in Figure 4.9. (Under
Direct3D, the z-axis points in the same direction that the camera points and forms
a left-handed coordinate system.)

4.3.1 Field of View

The projection plane, shown in Figure 4.10, is a plane that is perpendicular to the
camera’s viewing direction and lies at the distance e from the camera where the
left and right frustum planes intersect it at x =—1 and x =1. The distance e, which
is sometimes called the focal length of the camera, depends on the angle «
formed between the left and right frustum plane. The angle « is called the
horizontal field of view angle.

Team LRN

Chapter 4 3D Engine Geometry 113

\/

z

Figure 4.10 The distance e from the camera to the projection plane depends on the
horizontal field of view angle a.

Team LRN

114

Mathematics for 3D Game Programming and Computer Graphics

For a desired horizontal field of view «, the distance e to the projection plane
is given by the trigonometric relation

1

e an(a)2) 4.27)
Larger fields of view are equivalent to shorter focal lengths. A camera can be
made to “zoom in” by diminishing the field of view angle, thus causing a longer
focal length.

The aspect ratio of a display screen is equal to its height divided by its width.
For example, a 640x 480 pixel display has an aspect ratio of 0.75. Since most
displays are not square, but rectangular, the vertical field of view is not equal to
the horizontal field of view. The bottom and top frustum planes intersect the pro-
jection plane at y =*a, where a is the aspect ratio of the display. This forms the
triangle shown in Figure 4.11, and thus the vertical field of view angle f is given
by

B =2tan"'(afe). (4.28)

The four side planes of the view frustum carve a rectangle out of the projec-
tion plane at a distance e from the camera whose edges lie at x =11 and y=za.
The OpenGL function glFrustum () requires that we specify a rectangle at the
distance n from the camera, where n is the near plane distance. Scaling our rec-
tangle by a factor of n/e, we place the left edge at x =—n/e, the right edge at
x = n/e, the bottom edge at y = —an/e, and the top edge at y = an/e.

B2

y=-a

Figure 4.11 The vertical field of view angle 8 depends on the aspect ratio a.

Team LRN

Chapter 4 3D Engine Geometry 115

4.3.2 Frustum Planes

The camera-space normal directions for the six view frustum planes are shown in
Figure 4.12. The inward-pointing normal directions for the four side planes are
found by rotating the directions along which the sides point 90 degrees toward
the center of the frustum. The four side planes each pass through the origin, so
they each have D =0. The near plane lies at a distance n from the origin in the
same direction in which its normal points, so it has D =—n. The far plane lies at a
distance f from the origin in the opposite direction in which its normal points, so
it has D= f. The four-dimensional plane vectors corresponding to the six sides
of the view frustum are summarized in Table 4.1. In this table, the normal direc-
tions for the four side planes have been normalized to unit length.

l

(0,0, 1)

Far Plane

(e,0,-1) (-e,0,-1)

Left Plane Right Plane

(0,0, -1)
A

Near Plane

Figure 4.12 View frustum plane normal directions in OpenGL camera space.

Team LRN

116

Mathematics for 3D Game Programming and Computer Graphics

Table 4.1 View frustum plane vectors in OpenGL camera space in terms of the focal
length e, the aspect ratio a, the near plane distance n, and the far plane distance f.

Plane (N, D)
Near (0,0,~-1,-n)
Far (0,0,1, 1)
e 1
Leﬁ < 70’_ 70>
\/62 +1 \/62 +1
e 1
Right - ,0,— ,0>
‘£ < \/62 +1 \/e2 +1
e a
Bottom <0’ Jo+a Ne+ad ’0>

Top <0,— ze =,— 2a 2,0>
Jel+a® Jel+a

4.4 Perspective-Correct Interpolation

When a 3D graphics processor renders a triangle on the screen, it rasterizes it one
scanline at a time. The vertices of a triangle, in addition to their positions in cam-
era space, carry information such as lighting colors and texture mapping coordi-
nates, which must be interpolated across the face of the triangle. When a single
scanline of a triangle is drawn, the information at each pixel is an interpolated
value derived from the values known at the left and right endpoints.

As shown in Figure 4.13, correct interpolation across the face of a triangle is
not linear since equally spaced steps taken on the projection plane correspond to
larger steps taken on the face of a triangle as the distance from the camera in-
creases. Graphics processors must use a nonlinear method of interpolation for
texture-mapping coordinates to avoid distortion of the texture map. Although
modern hardware now interpolates other types of information associated with a
vertex, such as lighting colors, older graphics cards simply use linear interpola-
tion since the difference is not as noticeable as it is with texture maps.

Team LRN

Chapter 4 3D Engine Geometry 117

N

Figure 4.13 Equally spaced steps taken on the projection plane correspond to larger
steps taken on the face of a triangle as the distance from the camera increases.
Thus, correct interpolation across the face of a triangle is not linear.

4.4.1 Depth Interpolation

It is important to note that the z-coordinates (representing the depth) of points on
the face of a triangle are interpolated linearly by 3D graphics hardware, contrary
to the perspective-correct method presented in this section. An explanation for
this follows in Section 4.5.1, which discusses the perspective projection matrix.
Figure 4.14 shows a line segment lying in the x-z plane that corresponds to a
single scanline of a triangle. During rasterization, points on this line segment are
sampled by casting rays through equally spaced points on the projection plane,
which represent pixels on the display screen.
Assuming that the segment does not belong to a line that passes through the ori-
gin (in which case the triangle would be viewed edge-on and would thus not be
visible), we can describe the line with the equation

ax+bz=c, (4.29)

where ¢ # 0.

Team LRN

118

Mathematics for 3D Game Programming and Computer Graphics

<x|,Z1)

(X5 25)

v

z

Figure 4.14 The line segment corresponding to a single scanline of a triangle is
sampled by casting rays through equally spaced points on the projection plane.

Given a point (x,z) that lies on the line, we can cast a ray from the origin (the
camera position) to the point {x,z) and determine where it intersects the projec-
tion plane. The z-coordinate at the projection plane is always equal to —e. We can
find the x-coordinate p on the projection plane corresponding to the point (x,z)
by using the following relationship derived from the similar triangles shown in
Figure 4.14.

P_—¢ (4.30)
X

Solving this for x and it plugging back into Equation (4.29) lets us rewrite our
line equation as follows.

Team LRN

Chapter 4 3D Engine Geometry 119

(—%+bJZ=C (4.31)

e

It is convenient for us to manipulate this equation further by writing it in such a
way that 1/z appears on one side:

LI (4.32)

Let us call the endpoints of the line segment (x,,z,) and (x,,z,), and their
images on the projection plane (p,,—e) and (p,,—e). Let p, =(1—1) p, +1p,, for
some ¢ satisfying 0 <¢ <1, be the x-coordinate of an interpolated point on the pro-
jection plane. We would like to find the z-coordinate of the point (x;,z,) where
the ray cast through the point (p;,—e) intersects the face of the triangle. Plugging
p; =(1—1) p, + tp, and z, into Equation (4.32) gives us

L__a b
Z, ce ¢
__ WP, 0
ce ce C
(-2 Ya-ne (- 2242,
ce C ce C
1 1
=—(1-t)+—t¢. (4.33)
2y Zy

This result demonstrates that the reciprocal of the z-coordinate is correctly inter-
polated in a linear manner across the face of a triangle.

4.4.2 Vertex Attribute Interpolation

Vertices carry information such as lighting colors and texture mapping coordi-
nates that from here on are collectively referred to as vertex attributes. Each ver-
tex attribute must be interpolated across the face of a triangle when it is
rasterized. Suppose that the endpoints of a scanline have depth values of z, and
z,, and possess scalar attributes b, and b,, respectively. We would expect the in-
terpolated attribute value b, to form the same proportion with the total difference
along the line segment as does the interpolated depth value z,. That is, the
equation

Team LRN

120

Mathematics for 3D Game Programming and Computer Graphics

bhob _zoa (434)
b,—b z,-z
should be satisfied. Substituting the value
1
=T (4.35)
—(1-t)+—1
Z 2
given by Equation (4.33) and solving for b, gives us
bz, (1-t)+b,zt
L = 1 2() 271 . (436)

z,(1-t)+zt

Multiplying the numerator and denominator by 1/zz, allows us to extract a factor
of z, from the right-hand side of the equation as follows.

ﬁ(1—t)+b—2t
z z
b3= 11 12
—(1—t)+—t
Z) Z
b1
z, |

This demonstrates that the value b/z can be linearly interpolated across the face
of a triangle. Graphics processors first calculate the linearly interpolated value of
1/z when rasterizing a scanline. The reciprocal is then calculated and multiplied
by the linearly interpolated value of b/z to obtain the perspective-correct interpo-
lated value of any vertex attribute b.

. {b—‘(l—t)+ (4.37)
zZ

4.5 Projections

To render a three-dimensional scene on a two-dimensional display screen, we
need to determine where on the screen each vertex in the scene should be drawn.
As we have already seen, we can determine where a vertex located at a position P
falls on the projection plane by calculating where the ray cast from the origin
toward the point P intersects it. The x- and y-coordinates of the projected point
are given by the formulas

Team LRN

Chapter 4 3D Engine Geometry 121

y

e e
x=——PFP and y=——2~P,. 4.38
5 b y=-7 (4.38)

z z

(Remember that the value of P, is negative since the camera points in the nega-
tive z direction.)

Applying the above formula to the z-coordinate would always result in a pro-
jected depth of —e. Useful depth information is needed, however, to perform hid-
den surface removal, so 3D graphics systems instead use homogeneous
coordinates to project vertices in four-dimensional space.

4.5.1 Perspective Projections

A perspective projection that maps x- and y-coordinates to the correct place on
the projection plane while maintaining depth information is achieved by mapping
the view frustum to a cube, as shown in Figure 4.15. This cube is the projection
into 3D space of what is called homogeneous clip space. 1t is centered at the ori-
gin in OpenGL and extends from negative one to positive one on each of the x-,
¥-, and z-axes. The mapping to homogenous clip space is performed by first us-
ing a 4x4 projection matrix that, among other actions, places the negative
z-coordinate of a camera-space point into the w-coordinate of the transformed
point. Subsequent division by the w-coordinate produces a three-dimensional
point having normalized device coordinates.

Let P= <PX,P),,PZ,1> be a homogeneous point in camera space that lies inside
the view frustum. The OpenGL function glFrustum () takes as parameters the
left edge x =/, the right edge x =, the bottom edge y = b, and the top edge y =¢
of the rectangle carved out of the near plane by the four side planes of the view
frustum. The near plane lies at z=—n, so we can calculate the projected x- and
y-coordinates of the point P on the near plane using the equations

y

n n
x=——P and y=——P,. 4.39
L Y="% (4.39)

z 2z

Any point in lying in the view frustum satisfies / < x<r and b < y < ¢ on the near
plane. We want to map these ranges to the [—1,1] range needed to fit the view
frustum into homogeneous clip space. This can be accomplished using the simple
linear functions

Team LRN

122

Mathematics for 3D Game Programming and Computer Graphics

Figure 4.15 The perspective projection maps the view frustum to the cube represent-

ing homogeneous clip space.

¥ = (x-1)———1
r—1
and

2
= (y-b)———1.
y=(y=b—,

(4.40)

(4.41)

Substituting the values of x and y given in Equation (4.39) and simplifying yields

, 2n{ P) r+l
X=—) - |-—
r—I{ P r—1

2z

and

,_2n(B t+b
R

2

(—b

(4.42)

(4.43)

Mapping the projected z-coordinate to the range [—1,1] involves somewhat
more complex computation. Since the point P lies inside the view frustum, its
z-coordinate must satisfy — /< P, <—n, where n and f are the distances from the
camera to the near and far planes, respectively. We wish to find a function that
maps —n — —1 and —f — 1. (Note that such a mapping reflects the z-axis; there-

Team LRN

Chapter 4 3D Engine Geometry 123

fore, homogeneous clip space is left-handed.) Since z-coordinates must have
their reciprocals interpolated during rasterization, we construct this mapping
function so that it is a function of 1/z, consequently allowing projected depth val-
ues to be interpolated linearly. Our mapping function thus has the form

24 (4.44)
zZ

We can solve for the unknowns 4 and B by plugging in the known mappings
—-n—>—-land -/ —1 to get

=g and 1=, (4.45)
—n -f

A little algebra yields the following values for 4 and B:

A=Y and B2/t (4.46)
f-n f=n
The z-coordinate is thus mapped to the range [—1,1] by the function
PN L (4.47)
f-nl"B) fon

Equations (4.42), (4.43), and (4.47) each contain a division by —F,. The 3D
point P'=(x, ', 2"} is equivalent to the 4D homogeneous point

P'=(-XP.~yP.~ZP.P) (4.48)

after division by the w-coordinate. Since the values of —x'P,, —y'P,, and —z'P,
given by the equations

wp=p Il (4.49)
r=1 ° r—
yp =2 b (4.50)

Y A

and

Team LRN

124 Mathematics for 3D Game Programming and Computer Graphics

—z’P:—f+nP 2nf

S Sl s (451)

are linear functions of the coordinates of the point P, we can use a 4x 4 matrix
M; ... to calculate the point P’ as follows.

2n 0 r+l 0]
r—1 r—1
[P]
0 2n t+b 0
, t-b t—b g
P =MfruslumP= (452)
0 0 Stn 2nf || P,
-n f-n 1]
0 0 -1 0
L i

The matrix M . in Equation (4.52) is the OpenGL perspective projection
matrix generated by the glFrustum() function. Camera-space points are
transformed by this matrix into homogeneous clip space in such a way that the
w-coordinate holds the negation of the original camera-space z-coordinate. When
interpolating vertex attributes (see Section 4.4.2), it is actually this w-coordinate
whose reciprocal is interpolated, serving as the value of z in Equation (4.37).

It is possible to construct a view frustum that is not bounded in depth by al-
lowing the far plane distance f'to tend to infinity. The resulting projection matrix

M, . .. 1s given by
2n 0 r+l 0]
r—1 r—1
. 0 2n t+b 0
M inie = }l_ianfmsrum = t—b t-b : (4.52)
0 0 -1 -2n
. 0 0 -1 0 |

This is a perfectly valid projection matrix that allows objects to be rendered at
any depth greater than or equal to n. Furthermore, it allows vertices having a
w-coordinate of 0 to be rendered correctly. The interpretation of a camera-space

Team LRN

Chapter 4 3D Engine Geometry 125

point Q = <QX,Q ,QZ,0> is that of a point that lies infinitely far from the camera
in the direction QX,Q),,QZ>. Transforming Q with the matrix M, . gives us

[2n r+l] [2n r+l]

— 0 — 0 —Q +—
r—1 r—1 o r—le =17

2n t+b 0 2n t+b

|0 — — 0 | =0 +—

MinﬁniteQ_ t_b t_b Q - t_b y t_sz N (453)
0 0 -1 24| -
ol] 0.

.0 0 -1 0] i -0, |

which produces a projected point having the maximum z-coordinate of 1 after
division by its w-coordinate. This ability to project points lying at infinity is re-
quired by the shadow-rendering technique described in Chapter 10.

4.5.2 Orthographic Projections

An orthographic projection, also known as a parallel projection, is one in which
no perspective distortion occurs. As shown in Figure 4.16, camera-space points
are always mapped to the projection plane by casting rays that are parallel to the
camera’s viewing direction.

The view volume for an orthographic projection is defined by a rectangle
lying in the x-y plane and near and far plane distances. Since there is no perspec-
tive distortion, depth values for a triangle in an orthographic projection can be
interpolated linearly. Thus, our mapping to normalized device coordinates can be
performed linearly on all three axes. The functions mapping the x- and
y-coordinates from the ranges [/,r] and [b,¢] to the range [—1,1] are given by

R (4.54)
r—1 r—1
and
2 t+b
=yt 4.55
Y t—by t—b ()

In a similar manner, but negating z so that —-n — —1 and — /' — 1, we can map the
z-coordinate from the range [/,—n] to the range [-1,1] using the function

Team LRN

126 Mathematics for 3D Game Programming and Computer Graphics

x=1 X=r
z=—f
|
|
|
|
|
|
| |
| |
| |
|
Y y
X
VA
zZ=-n
Figure 4.16 An orthographic projection.
O S L5 (4.56)
f-n [f-n
Writing these three functions in matrix form gives us
2, o _r*l]
r—1 r—1
0 2 _t+b P
t—b t=b||P,
P=M_, P= . (4.57)
0 0 -2 _f+n g
f—-n —nl I
0 0 0 1
L I

Team LRN

Chapter 4 3D Engine Geometry 127

The matrix M, in Equation (4.57) is the OpenGL orthographic projection
matrix generated by the glOrtho () function. Note that the w-coordinate re-
mains 1 after the transformation, and thus no perspective projection takes place.

4.5.3 Extracting Frustum Planes

It is remarkably simple to extract the four-dimensional vectors corresponding to
the six camera-space view frustum planes from an arbitrary projection matrix M.
The technique presented here derives from the fact that the planes are always the
same in clip space. They are actually rather trivial since, as shown in Figure 4.17,
each plane’s normal is parallel to one of the principal axes.

x=-1 x=1
. l Z=1
0,0, -1)
(1,0, 0) {-1,0,0)
—> —
(0,0, 1)
z=-1

Figure 4.17 The four-dimensional plane vectors bounding the cube-shaped homo-
geneous clip space.

Let L' be one of the six planes that bound clip space. The inverse of the ma-
trix M transforms from clip space into camera space. Since planes are trans-
formed by the inverse transpose of a matrix, the camera-space plane L
corresponding to the clip space plane L' is given by

L=[(M")"]'"L'=M"L". (4.58)

The clip-space plane vectors are listed in Table 4.2. Since each plane vector con-
tains two nonzero entries, and these entries are all 1, we can write each camera-

Team LRN

128 Mathematics for 3D Game Programming and Computer Graphics

space view frustum plane as a sum or difference of two columns of the matrix
M', which is equivalent to the sum or difference of two rows of the matrix M.

Table 4.2 Clip-space plane vectors.

Plane (N,D)
Near (0,0,1,1)
Far {0,0,-1,1)
Left (1,0,0,1)

Right (-1,0,0,)
Bottom (0,1,0,1)
Top {0,—1,0,1)

Using the notation M, to represent row i of the matrix M, we have the fol-
lowing formulas for the camera-space view frustum planes. These do not produce
plane vectors having unit normals, so they need to be rescaled.

near =M, + M,

far=M,-M,
left=M, + M,
right=M, - M,
bottom=M,+M,
top=M,-M, (4.59)

These equations are valid for any projection matrix, with the exception of the far
plane for the infinite projection matrix given by Equation (4.52). It should be
noted, however, that if the focal length and aspect ratio are known for a particular
view frustum, then the formulas in Table 4.1 provide a significantly more effi-
cient way of calculating the frustum planes.

Chapter 4 Summary

Lines

A line passing through the point P, and running parallel to the direction V is ex-
pressed as

P(t)=P,+1V.

Team LRN

Chapter 4 3D Engine Geometry 129

The distance from a point Q to the line P(¢) is given by

_ » [(Q-P) V]’
d_\/(Q_Po) - Vz .
Planes

A plane having normal direction N and containing the point P, is expressed as

N-P+D=0,

where D=-N-P, . This can also be expressed as L-P =0, where L is the 4D
vector (N, D) and P is a homogeneous point with a w-coordinate of 1. The dis-
tance from a point Q to a plane L is simply L- Q.

Planes must be transformed using the inverse transpose of a matrix used to trans-
form points.

Intersection of a Line and a Plane

The parameter ¢ where a line P(¢) = Q +¢V intersects a plane L is given by

_LQ
LV

The View Frustum
The focal length e of a view frustum having a horizontal field of view angle & is

given by

_ 1
" tan(a/2)

For a display having an aspect ratio a, the rectangle carved out of the near plane
at a distance n from the camera is bounded by x =+ n/e and y = tan/e.

Perspective-Correct Interpolation

In a perspective projection, depth values z, and z, are correctly interpolated by
linearly interpolating their reciprocals:

in(l—z)+Lt.

Zy %)

Perspective-correct vertex attribute interpolation uses the similar formula

Team LRN

130

Mathematics for 3D Game Programming and Computer Graphics

5={ﬁ(1—1)+b—2tﬂ,

Z; L& z, |
where b, and b, are vertex attribute values.

Perspective Projections

The perspective projection matrix M

e that transforms points from camera
space into clip space is given by

2n 0 r+l 0 1
r—1 r—1
0 2n t+b 0
t—b t-b
Mfrusrum: >
o o _JSftn _2nf
f-n -n
0 0 -1 0

i I

where n and f are the distances from the camera to the near and far planes, and /,

r, b, and ¢ are the left, right, bottom, and top edges of the viewing rectangle
carved out of the near plane.

An infinite view frustum can be constructed by allowing the far plane distance f

to tend to infinity. The corresponding projection matrix M, . . is given by

2n 0 r+l 0 1
r—1 r—1
2n t+b
— i - 0 0
Minﬁnire_}l_r)anrmsmm_ t—b t-b
0 0 -1 -2n
L O 0 -1 0 |

Team LRN

Chapter 4 3D Engine Geometry 131

Exercises for Chapter 4

1. Determine a 4D vector (N,D) corresponding to the plane that passes
through the three points (1,2,0), (2,0,—1), and (3,-2,1).

2. Find an expression for the parameter ¢ representing the point on the line
P(¢)=S+ 1V that is closest to another point Q.

3. Show that the distance d from a point Q to the line P(¢)=S+V can be ex-
pressed as

4 le=s)<v|
Vi
4. The horizontal field of view angle for a particular view frustum is 75 de-

grees. Calculate the corresponding vertical field of view angle for a
1280x 1024 pixel display.

5. Calculate the left, right, bottom, and top planes for a view frustum having a
horizontal field of view of 90 degrees and an aspect ratio of 0.75.

6. Suppose that z-coordinates in homogeneous clip space occupied the range
[0,1] instead of [—1,1]. In a manner similar to that used to derive the matrix
in Equation (4.52), derive a perspective projection matrix that maps —n — 0
and —f —> 1.

Team LRN

Team LRN

Chapter

Ray Tracing

determine with which objects they interact in the world. Applications in-

clude light map generation, visibility determination, collision detection,
and line-of-sight testing. This chapter describes how the points of intersection
where a ray strikes an object can be found and how to alter the path of a ray when
it strikes a reflective or refractive surface.

F I Yhe term ray tracing refers to any algorithm that follows beams of light to

5.1 Root Finding

The problem of finding the points at which a line defined by the equation
P(t)=S+1tV (5.1

intersects a surface generally requires finding the roots of a degree n polynomial
in t. For planar surfaces, the degree of the polynomial is one, and a solution is
easily found. For quadric surfaces, such as a sphere or cylinder, the degree of the
polynomial is two, and a solution can be found using the quadratic equation. For
more complex surfaces, such as splines and tori, the degree of the polynomial is

133

Team LRN

134

Mathematics for 3D Game Programming and Computer Graphics

three or four, in which case we can still find solutions analytically, but at much
greater computational expense.

Analytic solutions to polynomials of degrees two, three, and four are pre-
sented in this section. Complete derivations of the solutions to cubic and quartic
equations are beyond the scope of this book, however. We also examine a nu-
merical root-finding technique known as Newton’s method.

5.1.1 Quadratic Polynomials

The roots of a quadratic polynomial in ¢ can be found by using a little algebraic
manipulation to solve the equation

at’> +bt+c=0. (5.2)

Subtracting ¢ from both sides and then dividing by a gives us

t2+ét=—£. (5.3)
a a

We can complete the square on the left side of the equation by adding b2/4a2 to
both sides as follows.

, b b? c b
Ut —t+t—=——+—
a 4a a 4a

(5.4)

Writing the left side of the equation as a square and using a common denomina-
tor on the right side gives us

bY b -4
(sz: 4a2"c. (5.5)

Taking square roots and then subtracting b/2a from both sides yields

B —b+b* —4dac
2a)

t (5.6)

This is the well-known quadratic equation. The quantity D =b*—4ac is called
the discriminant of the polynomial and reveals how many real roots it has. If
D >0, then there are two real roots. If D =0, then there is one real root, and it is
given by t=-b/2a. For the remaining case in which D <0, there are no real

Team LRN

Chapter 5 Ray Tracing

135

roots. Evaluating the discriminant allows us to determine whether a ray intersects
an object without actually calculating the points of intersection.

5.1.2 Cubic Polynomials

A cubic equation having the form

Prat> +bt+c=0 (5.7)

(where we have performed any necessary division to produce a leading coeffi-
cient of 1) can be shifted to eliminate the quadratic term by making the substitu-

tion

This gives us the equation

where

a
t=x——. 5.8
=3 (5.8)
X +px+qg=0 (5.9)
1,
=——a +b
p 361
2,1
=—a ——ab+ 5.10
q 27a ab+c ()

Once a solution x to Equation (5.9) is found, we subtract a/3 to obtain the solu-

tion ¢ to Equation (5.7).

The discriminant D of a cubic polynomial is given by

By setting

=-4p’-27q>. (5.11)

_Jl i
2 108
\/1 1
so3_L

21

RV >

(5.12)

we can express the three complex roots of Equation (5.9) as

Team LRN

136

Mathematics for 3D Game Programming and Computer Graphics

X, =r+s
x,=pr+p’s
X, =p’r+ps, (5.13)

where p is the primitive cube root of unity given by p=—-1+ i?. (Note that

2 .
pr=—4-iL)

We can simplify our arithmetic significantly by making the substitutions

, P 1, 1
=—=——qg"+-b
P=3779% 73
Cog 1o, 11
=—=—a ——ab+—c. 5.14
7 2 27 6 2 ()

The discriminant is then given by

D=-108(p" +4"*). (5.15)
Setting
' D 13 12
T08 (P’+4?) (5.16)

lets us express » and s as

s=3—q —~-D". (5.17)

As with quadratic equations, the discriminant gives us information about how
many real roots exist. In the case that D' <0, the value of x, given in Equation
(5.13) represents the only real solution of Equation (5.9).

In the case that D' =0, we have » =s, so there are two real solutions, one of
which is a double root:

x, =2r
xz,x3=(p+p2)r=—r. (5.18)
In the remaining case that D' >0, Equation (5.13) yields three distinct real
solutions. Unfortunately, we still have to use complex numbers to calculate these

solutions. An alternative method can be applied in this case that does not require
complex arithmetic. The method relies on the trigonometric identity

Team LRN

Chapter 5 Ray Tracing 137

4cos’@ —3cosd =cos 36, (5.19)
which can be verified using the Euler formula (see Exercise 1 at the end of this
chapter). Making the substitution x = 2mcosé in Equation (5.9) with m=/—p/3,
gives us

8m’ cos’ @ + 2 pmcosd + q=0. (5.20)

(Note that p must be negative in order for D) to be positive.) Replacing p with
—3m” and factoring 2m’ out of the first two terms yields

2m3(4cos39—3cost9)+q=0. (5.21)

Applying Equation (5.19) and solving for cos38 gives us

—q -q/2 -4
cos3d = = = . (5.22)
2w -p'f21 -p°

Since D' >0, Equation (5.16) implies that ¢'*> <—p"*, thereby guaranteeing that

the right side of Equation (5.22) is always less than 1 in absolute value. The in-
verse cosine is thus defined, and we can solve for @to arrive at

6= %cos’l[4] (5.23)

_pr3
Therefore, one solution to Equation (5.9) is given by

X, =2mcos@ =2./—-p' cosf. (5.24)

Since cos(36 + 27k) = cos(3@) for any integer k, we can write

9k=%cos'l{ 4]—z—ﬁk. (5.25)

_pr3 3

Distinct values of cosé, are generated by choosing three values for & that are
congruent to 0, 1, and 2 modulo 3. Using k =x1, we can express the remaining
two solutions to Equation (5.9) as

Team LRN

138 Mathematics for 3D Game Programming and Computer Graphics

x, =2y-p cos[0+ 27”)
X, =247 cos[& - 2%) (5.26)

5.1.3 Quartic Polynomials
A quartic equation having the form
tvat’ +bt* +et+d=0 (527

(where again we have performed any necessary division to produce a leading
coefficient of 1) can be shifted to eliminate the cubic term by making the substi-

tution
a
f=x——. 5.28
1 (5.28)
This gives us the equation
X+ px* +gx+r=0, (5.29)
where
3 5
=—=a +b
P 8

1 5 1
=—a ——ab+c
787 2

—ia4+La2b—lac+d. (5.30)
256 16 4

Once a solution x to Equation (5.29) is found, we subtract a/4 to obtain the solu-
tion ¢ to Equation (5.27).

The roots of the quartic equation are found by first finding a solution to the
cubic equation

2

(RIS T il S (5.31)

Team LRN

Chapter 5 Ray Tracing 139

Let y be any real solution to this equation. If g > 0, then the solutions to the quar-
tic equation are equal to the solutions to the two quadratic equations

x2+x\/2y—p+y—\/y2—r=0
xz—x\/2y—p+y+\/y2—r=0. (5.32)

If ¢ < 0, then the solutions to the quartic equation are equal to the solutions to the
two quadratic equations

x2+x\/2y—p+y+\/y2—r=0
xz—x\/Zy—p+y—\/y2—r=O. (5.33)

5.1.4 Newton’s Method

The Newton-Raphson iteration method, usually just called Newton’s method, is a
numerical technique that can find roots of an arbitrary continuous function by
iterating a formula that depends on the function and its derivative.

Suppose that we wish to find the root of the function f graphed in Figure 5.1.
For now, let us assume that we have an initial guess x, for the root of the function
(more is said about how to choose this value shortly). The slope of the tangent
line to the curve at the point (x,, f(x,)) is given by the derivative f"(x,). We
can write the equation for this tangent line as follows.

y=S(x)=S"(x)(x—x,) (5.34)

Notice that this line intersects the x-axis at a point that is much closer to the ac-
tual root of /'than our initial guess x,. Solving Equation (5.34) for x when y =0
gives us the refinement formula

— _f(xi) 535
Xisl i .f’(xi)’ ()

where we have relabeled x with x,,, and x, with x,. Applying this formula multi-
ple times produces a sequence x,,x,,x,,... whose values, under the right condi-

tions, approach the root of 1.

Team LRN

140

Mathematics for 3D Game Programming and Computer Graphics

<

<xn’ /(xﬂ)>

Figure 5.1 The tangent to a function tends to intersect the x-axis closer to a root of
the function.

Newton’s method converges extremely quickly and thus requires very few
iterations to exceed any desired precision. We can in fact show that Newton’s
method converges quadratically, which means that with each iteration, the num-
ber of significant digits in an approximated root roughly doubles. We prove this
claim by first setting

g(x)= /() (5.36)

Let r be the actual root of the function f to which we are converging. We define
&, to be the error between the i-th approximation x, and the root r:

& =X —r. (5.37)
Using this in Equation (5.35) allows us to write
€in =5i_g(xi)- (5.38)

We can approximate the function g(x,) with the first three terms of its Taylor
series (see Appendix D) as follows.

Team LRN

Chapter 5 Ray Tracing 141

2
g(x)=g(r+e)=g(r)+eg (r)+ g (r) (5:39)

The first and second derivatives of g(x) are given by

, S(x) [(x
g (x) =1- (I) (2)
[/ (%)]
vy 2O LS)= TS () ")+ S (x) f" ()]
g (x)_ ' 4 .
[/ (%)]
Since f(r)=0, these expressions simplify greatly when evaluated at r. The func-
tion g and its first two derivatives produce the following values at r.

(5.40)

g(r)=0
g(r)=1
g”(r):—f,(r) (5.41)
f(r)
Plugging these into Equation (5.39) gives us
2 "
g(x,.)zgi—g—‘&. (5.42)
2 /'(r)
Finally, substituting this into Equation (5.38) yields
L L0 (5.43)

gi+1 ~ 2 f’(l‘).

Newton’s method is not guaranteed to converge to a solution. In particular, if
the initial guess is chosen at a point where the derivative of the function is zero,
then the tangent line is horizontal and does not intersect the x-axis, preventing us
from proceeding any further. The initial guess has to be somewhat close to the
actual root to guarantee a convergence. When searching for the intersection of a
ray with a complex object, we can usually find a good initial guess by first inter-
secting the ray with the surface of a relatively simple bounding volume. For ex-
ample, to find where a ray defined by P(#)=S+¢V intersects a torus, we can first
find a value of ¢ where the ray intersects a box bounding the torus, and then use
this value of ¢ as our initial guess for the torus intersection.

Team LRN

142

Mathematics for 3D Game Programming and Computer Graphics

5.1.5 Refinement of Reciprocals and Square Roots

Most modern graphics hardware can approximate the reciprocal of a number as
well as the reciprocal square root of a number to at least a few bits of precision.
For instance, the G ARB _vertex program extension to OpenGL exposes
the vertex program instructions RCP and RSQ. These instructions produce an ap-
proximation to a reciprocal and reciprocal square root, respectively, that can be
refined to greater precision using Newton’s method.

The reciprocal of a number r can be found by calculating the root of the func-
tion

f(x)=x"-r (5.44)

since f(1/r)=0. Plugging this function into Equation (5.35) gives us

X =X,

n+1
=x,(2-rx,). (5.45)

This formula can be iterated to produce a high-precision reciprocal of the number
r, provided that each x; > 0. This is due to the fact that the function f(x) attains a
singularity at x = 0. Enforcing this condition on the first refinement x, allows us
to determine the interval inside which our initial approximation x, must fall.
Since x, must be greater than zero, we have

x,(2-rx,)>0, (5.46)

which yields the following restriction on x,.

0<x <2 (5.47)
r

Thus, the initial approximation cannot be worse than double the reciprocal of r.
The reciprocal of the square root of a number » can be found by calculating
the positive root of the function
f(x)=x7=r. (5.48)

Plugging this function into Equation (5.35) gives us

Team LRN

Chapter 5 Ray Tracing 143

X, —r
xn+l = xn —2)6;3
=%xﬂ(3—rx§). (5.49)

This sequence converges as long as each x, >0, so our initial approximation x,

must satisfy
0< x0<,/§. (5.50)
r

Once the reciprocal square root has been calculated to acceptable precision, the
square root of r can be calculated using a single multiplication because

\/7=r~(1/\/;).

5.2 Surface Intersections

Computing the point at which a ray intersects a surface is central to ray tracing.
We define a ray P(¢) using the equation

P(t)=S+1¢V, (5.51)

where S represents the ray’s starting position and V represents the direction in
which the ray points. In this section, we present specific solutions for the inter-
section of a ray with a few common types of objects (additional objects are left as
exercises). With the exception of the triangle, intersections are computed in
object space, the space in which the natural center of an object coincides with the
origin and the object’s natural axes are aligned to the coordinate axes. Intersec-
tions with arbitrarily oriented objects are performed by first transforming the ray
into object space. Once an intersection is detected, information such as the point
of intersection and the normal vector at that point can be transformed back into
world space.

5.2.1 Intersection of a Ray and a Triangle

A triangle is described by the position in space of its three vertices P,, P, and P,.
We determine the plane in which the triangle lies by first calculating the normal
vector N as follows.

Team LRN

144

Mathematics for 3D Game Programming and Computer Graphics

N=(P —P,)x(P,—P,)) (5.52)

The signed distance d to the origin is given by the negative dot product of N with
any point in the plane, so we choose the vertex P, to construct the 4D plane vec-
tor L=(N,—N- P,). As discussed in Section 4.2.1, the value of ¢ corresponding to
the point where the ray in Equation (5.51) intersects the plane L is given by

LS
L-V

(5.53)

If L- V=0, then no intersection occurs. Otherwise, plugging this value of ¢ back
into Equation (5.51) produces the point P where the ray intersects the plane of
the triangle.

We now have the problem of determining whether the point P lies inside the
triangle’s edges. We do so by calculating the barycentric coordinates of P with
respect to the triangle’s vertices P,, P,, and P,. The barycentric coordinates repre-
sent a weighted average of the triangle’s vertices and are expressed as the scalars
W,, W;, and w, such that

P=wP, +wP +w,P,, (5.54)
where w, + w, + w, =1. Replacing w, with 1 —w, —w,, we can write

P=(1-w, —w,)P,+wP +w,P,
=P, +w (P -P)+w,(P,—P). (5.55)

We perform the remainder of our calculations relative to the point P, by defining

R=P-P,
Q=P -F
Q,=P,-P,. (5.56)
Equation (5.55) now becomes
R=wQ, +w,Q,. (5.57)

Taking the dot product of both sides of Equation (5.57) first with Q, and then
with Q, gives us the two equations

R-Q = WIQIZ + WZ(QI) Qz)
R'QZZWI(QI'QZ)+W2szv (5.58)

Team LRN

Chapter 5 Ray Tracing 145

which are written in matrix form as

{ o QI.Q2—||:W1—| |:R.Ql-|
= . (5.59)
Q-Q, 0; llwl [R-Q,l
We can now easily solve for w, and w, as follows.
[W]—l_|: Q]2 Q]'Qz—|_1|:R'Q1-|
WzJ Q]'Qz sz J R'QzJ
1 0 Q- QlRQl
= 22 2 (5.60)
00 -(Q-Q;) -Q,-Q, Q! 1[R-Q,l|

The point R lies inside the triangle if and only if all three weights w,, w,, and w,
are nonnegative. Since w, = 1—w, — w,, this implies that w, + w, <1.

If the vertices P,, P, and P, have any associated attributes, such as a color or
texture coordinate set, then the interpolated value of those attributes at the point
R can be calculated using the weights w,, w,, and w,. For instance, if the texture
coordinates (s,,,), (s,,t,), and (s,,t,) are associated with the vertices P,, P,, and
P,, then the texture coordinates (s,) at the point R are given by

S = WpSy + WS, + WS,

L= wyty + Wi+ w,t,. (5.61)

5.2.2 Intersection of a Ray and a Box

A box is described by the six plane equations

x=0 X=r,
y=0 y=r,
z=0 z=r,, (5.62)

where r,, r,, and r, represent the dimensions of the box. At most three of these
planes need to be considered for intersection by the ray since at least three planes
must face away from the ray’s direction V. We can determine which planes need
to be tested by examining the components of V one at a time. For instance, if
V. =0, then we know that the ray cannot intersect either of the planes x=0 or
x=r, because V is parallel to them. If ¥ >0, then we do not need to test for an

Team LRN

146

Mathematics for 3D Game Programming and Computer Graphics

intersection with the plane x = r, since it represents a back side of the box from
the ray’s perspective. Similarly, if ¥, < 0, then we do not need to test for an inter-
section with the plane x=0. The same principle applies to the y- and
z-components of V.

Once we have found the point where a ray intersects a plane, we must check
that the point falls within the face of the box by examining the two coordinates
corresponding to the directions parallel to the plane. For instance, the value of ¢
corresponding to the point where the ray given by Equation (5.51) intersects the
plane x = r_is given by

t="—= (5.63)
To lie within the corresponding face of the box, the y- and z-coordinates of the
point P(¢) must satisfy
0<[P(8)], <r,
0<[P(2)].<r,. (5.64)

If either of these conditions fails, then no intersection takes place within the face.
If both conditions pass, then an intersection has been found, in which case there
is no need to test any other planes since no closer intersection can occur.

5.2.3 Intersection of a Ray and a Sphere

A sphere of radius » centered at the origin is described by the equation
X+ y i =r. (5.65)

Substituting the components of the ray P(z) in Equation (5.51) for x, y, and z
gives us

(S, +1V,) +(S,+1V,) +(S. +1V.)* =r". (5.66)

Expanding the squares and collecting on ¢ yields the following quadratic equa-
tion.

(VI+V 4V)P +2(S Y, +SV, +SV)+S:+S2+82-r'=0 (5.67)

Team LRN

Chapter 5 Ray Tracing 147

The coefficients «, b, and ¢ used in Equation (5.2) can be expressed in terms of
the vectors S and V as follows.

a=V?
b=2(S-V)
c=8"-r? (5.68)

Calculating the discriminant D =b* —dac tells us whether the ray intersects the
sphere. As illustrated in Figure 5.2, if D <0, then no intersection occurs; if D =0,
then the ray is tangent to the sphere; and if D >0, then there are two distinct
points of intersection. If the ray intersects the sphere at two points, then the point
closer to the ray’s origin S, which corresponds to the smaller value of ¢, is always
given by

t_—b—\/ﬁ

> (5.69)

because a is guaranteed to be positive.
D<0

D>0

Figure 5.2 The discriminant D indicates whether a ray intersects a sphere. If D <0,
then no intersection occurs. If D = 0, then the ray is tangent to the sphere at a single
point. If D > 0, then the ray intersects the sphere at two distinct points.

Team LRN

148

Mathematics for 3D Game Programming and Computer Graphics

The intersection of a ray and an ellipsoid can be determined by replacing
Equation (5.65) with the equation

x> +m*y+n'z’ =17, (5.70)

where m is the ratio of the x semi-axis length to the y semi-axis length, and » is
the ratio of the x semi-axis length to the z semi-axis length. Plugging the compo-
nents of the ray into this equation yields another quadratic polynomial whose
coefficients are given by

a=V>+ sz)2 +n’V}
b=2(SV,+m’SV,+n’S.V,)
c=Sf+sz)2,+nzSzz—r2. (5.71)

Again, the discriminant indicates whether an intersection occurs. If so, the inter-
section parameter ¢ is given by Equation (5.69).

5.2.4 Intersection of a Ray and a Cylinder

The lateral surface of an elliptical cylinder whose radius on the x-axis is », whose
radius on the y-axis is s, whose height is A, and whose base is centered on the
origin of the x-y plane (see Figure 5.3) is described by the equation

x> +m’y?=r?
0<z< h, (5.72)

where m=r/s. If r=s, then the cylinder is circular and m=1. Substituting the
components of the ray P(¢) in Equation (5.51) for x and y gives us

(S, +tV,) +m’ (S, +1V,) =r". (5.73)

Expanding the squares and collecting on ¢ yields the following quadratic equa-
tion.

(P2 +m V)P +2S Y, +mS Y)1+ ST+ m’ST =12 =0 (5.74)

As with the sphere, the discriminant indicates whether an intersection occurs.
Solutions to this equation give the values of # where the ray intersects the infinite

Team LRN

Chapter 5 Ray Tracing 149

cylinder centered on the z-axis. The z-coordinates of the points of intersection
must be tested so that they satisfy 0< z < A.

In the context of collision detection, the problem arises in which we need to
know whether a moving sphere intersects a line segment representing an edge of
a polygonal model. The problem is transformed into determining whether a ray
intersects a cylinder with a given radius and arbitrary endpoints. This situation is
discussed in Section 8.2.

Figure 5.3 Object space for an elliptical cylinder.

5.2.5 Intersection of a Ray and a Torus

A cross section of the surface of a circular torus having primary radius r and sec-
ondary radius #, is shown in Figure 5.4. The circle of radius 7 lying in the x-y
plane represents the center of another circle of radius r, perpendicular to the first,
which is revolved about the z-axis. The equation describing the revolved circle is

s*+zh =1, (5.75)
where the value of s is the distance to the primary circle in the x-y plane:

s=x"+yt —r. (5.76)

Team LRN

150 Mathematics for 3D Game Programming and Computer Graphics

N

Figure 5.4 A torus and its cross section.

Substituting this into Equation (5.75) and expanding the square gives us
x2+y2+z2+r12—r22—2r,m=0. (5.77)

Isolating the radical and squaring again yields the following equation for a torus.
(xz+y2+zz+r]2—r22)2=4r,2(x2+y2) (5.78)

Substituting the components of the ray P(¢) in Equation (5.51) for x, y, and z
gives us

[(SXWLtI/X)ZWL(SyWLtVy)2 +(SZ+tVZ)2+r,2—r22:|2

=4r’ (S, +tV,) +(S,+V,)]. (5.79)
After considerable algebraic simplification, this can be expressed as the quartic
equation
at* +bt* +et* +dt+e=0, (5.80)
where
a=V*
b=4V*(S-V)

=2V} S+ 1 —r)= 4R’ (VI +V})+4(S-V)?

Team LRN

Chapter 5 Ray Tracing 151

d=8r'SV,+4(S-V)(S* -1’ - 1)
esz +S;‘ +S: +(r,2 _rzz)z
+2[SIS0+ 82 (R —r)+ (S2+82)(SE -1 -1 (5.81)
After dividing by a to obtain a leading coefficient of 1, this equation can be

solved using the method presented in Section 5.1.3. If the vector V is normalized,
then the division by a is unnecessary, and the calculations for 4 and ¢ simplify to

b=4(S-V)
c=2(S*+ 1 —1r)-4r2(1-V2)+4(S- V). (5.82)

5.3 Normal Vector Calculation

It is sometimes convenient to represent a surface using an implicit function
f(x,y,z) whose value is zero at any point (x,y,z) on the surface and whose
value is nonzero elsewhere. An example of such a function is that of an ellipsoid:

f(ryz)=+ e 1 (5.83)
a C

Using the implicit function representation, it is possible for us to derive a general
formula for the normal direction at any point on a surface.

Suppose that f(x,y,z) represents a surface S, so that f(x,y,z)=0 for any
point on S. Let C be a curve defined by differentiable parametric functions x(¢),
¥(t), and z(¢) which lies on the surface S. Then the tangent vector T to the curve
C at the point (x(¢), y(¢),z(¢)) is given by

d d d
T=<Ex(t),ay(t),gz(t)>. (5.84)

Since the curve C lies on the surface S, T is also tangent to the surface S. Also,
since f(x(t),y(¢),z(¢))=0 for any value of ¢, we know that df /dt =0 every-
where on the curve C. Using the chain rule, we can write

Ozﬂzq@ﬂd_yﬂ@:@ o %>.T_

o (5.85)
dt Oxdt 0Oydt 0zdt \oOx Oy 0Oz

Team LRN

152

Mathematics for 3D Game Programming and Computer Graphics

Because its dot product with T is always zero, the vector (0f /ox, of /0y, of [0z)
must be normal to the surface S. This vector is called the gradient of fat the point
(x,y,z) and is usually written Vf(x, y,z), where the symbol V is the del operator
defined by

V=ii+ji+kg. (5.86)
ox "0y 0Oz

We can now express the formula for the normal vector N to a surface defined
by the equation f(x,y,z)=0 as

N=Vf(x,y,z). (5.87)

Continuing the example given in Equation (5.83), we have the following expres-
sion for the normal to the surface of an ellipsoid.

N=<2—x 2 2_Z> (5.88)

27427 2
a” b” ¢

5.4 Reflection and Refraction Vectors

When a beam of light strikes the surface of an object, part of its energy is ab-
sorbed by the surface, part of its energy is reflected away from the surface, and
part of its energy may be transmitted through the object itself. Chapter 6 dis-
cusses this interaction in detail. This section explains how the direction of reflec-
tion and refraction can be calculated for a ray that intersects a shiny or
transparent surface.

5.4.1 Reflection Vector Calculation

The direction of the reflection of light on a shiny surface (such as a mirror) fol-
lows the simple rule that the angle of incidence is equal to the angle of reflection.
As shown in Figure 5.5, this is the same as saying that the angle between the
normal vector N and the direction L pointing toward the incoming light is equal
to the angle between the normal vector and the direction R of the reflected light.

Team LRN

Chapter 5 Ray Tracing 153

» Z

L-(N-L)N

L NN

Figure 5.5 The direction of reflection R forms the same angle with the normal vector
N as the direction L pointing toward the incoming light. It is found by subtracting twice
the component of L that is perpendicular to N from L itself.

We assume that the vectors N and L have been normalized to unit length. To
derive a formula that gives us the reflection direction R in terms of the light di-
rection L and the normal vector N, we first calculate the component of L that is
perpendicular to the normal direction:

perpy L=L—-(N-L)N. (5.89)

The vector R lies at twice the distance from L as does its projection onto the
normal vector N. We can thus express R as

R=L-2perpyL
=L-2[L-(N-L)N]
=2(N-L)N-L. (5.90)

Team LRN

154

Mathematics for 3D Game Programming and Computer Graphics

5.4.2 Refraction Vector Calculation

Transparent surfaces possess a property called the index of refraction. According
to Snell’s law, the angle of incidence ¢, and the angle of transmission &, (shown
in Figure 5.6) are related by the equation

1, sin@, =n,siné,, (5.91)

where 77, is the index of refraction of the material that the light is leaving, and 7,
is the index of refraction of the material that the light is entering. The index of
refraction of air is usually taken to be 1.00. Higher indexes of refraction create a
greater bending effect at the interface between two materials.

We assume that the normal vector N and the direction toward the incoming
light L have been normalized to unit length. We express the direction T in which
the transmitted light travels in terms of its components parallel and perpendicular
to the normal vector. As shown in Figure 5.6, the component of T parallel to the
normal vector is simply given by —Ncosé@,. The component of T perpendicular
to the normal vector can be expressed as —G sin@;,, where the vector G is the unit
length vector parallel to perpy L. Since L has unit length, |perpy L[| =siné,, so

_ perpNL _ L_(N'L)N

G="= : (5.92)
siné, siné,
We can now express the refraction vector T as
T=-Ncosf, —Gsind;
iné
=-Ncosf, - ~——[L—(N-L)N]. (5.93)
sin@,
Using Equation (5.91), we can replace the quotient of sines with 7, /7,
T=-Ncosf, - L{L—(N-L)N]. (5.94)

T

Replacing cos@, with \/l-sin’#, and then using Equation (5.91) again to re-
place sin@, with (n, /n;)sing, gives us

2
T=-N[1-Tsin?g, - L[L—(N-L)N]. (5.95)
My 7z

Replacing sin*@, with 1-cos’ @, =1—(N-L)? finally yields

Team LRN

Chapter 5 Ray Tracing 155

N
A
perpy L
L L]
0L
G -G sin O -
—< >
Uky
Op
-Ncos b1y
T

Figure 5.6 The angle of incidence 6_ and the angle of transmission 8, are related by
Snell’s law, given in Equation (5.91). The refraction vector T is expressed in terms of
its components parallel and perpendicular to the normal vector N.

Tz[n—LNL—\/ —”—é[l—(N.L)ﬂJN—”—LL. (5.96)
Ny v T

If n, > 7., then it is possible for the quantity inside the radical in Equation
(5.96) to be negative. This happens when light inside a medium having a higher
index of refraction makes a wide angle of incidence with the surface leading to a
medium having a lower index of refraction. Specifically, Equation (5.96) is only
valid when siné, <7, /n, . If the quantity inside the radical is negative, a phe-
nomenon known as total internal reflection occurs. This means that light is not
refracted, but is actually reflected inside the medium using Equation (5.90).

Team LRN

156

Mathematics for 3D Game Programming and Computer Graphics

Chapter 5 Summary

Analytic Root Finding
Solutions to the quadratic equation at’>+bt+c=0 are given by the quadratic
equation:

_—b+ Vb —dac
2a ‘

t

Cubic and quartic equations can also be solved analytically.

Numerical Root Finding

Roots of a function f(x) can be found numerically using Newton’s method,
which refines an approximate solution x, using the formula

)
TR

The refinement formula for the reciprocal x, of a number r is

X, =x(2-rx,)),

n+l1

and the refinement formula for the reciprocal square root x, of a number 7 is
1 2
xn+l = Exn(3 - rxn)

Intersection of a Ray and a Sphere

The points where a ray P(¢#)=S+V intersect a sphere of radius r are given by
the solutions of the quadratic equation

Vi +2(S- V)t+ S —-r*=0.

Normal Vector Calculation

The normal vector at a point (x,y,z) on a surface defined by the function
f(x,y,2)=01is given by N=Vf(x,y,z).

Reflection Vector Calculation

The reflection R of a vector L across the normal vector N is given by

Team LRN

Chapter 5 Ray Tracing 157

R=2(N-L)N-L.

Transmission Vector Calculation

The direction T in which light is transmitted when leaving a medium having in-
dex of refraction 77, and entering a medium having index of refraction 7, is given

by

2
T={-@N.L—\/1—7—;~[1—(N~L)2]}N—’l&L,
Uk e T

where L is the direction pointing toward the incident light, and N is the surface
normal.

Exercises for Chapter 5

1. Use the Euler formula (which states that e* = cosa +isina) to verify the
trigonometric identity

4cos’ @ —3cosé = cos36.
[Hint. Equate the real components of the equation (¢”)’ = "]

2. Use Newton’s method to approximate the root of the function
S(x)=nx+x-7.

3. Find a general formula that can be used to refine an approximation x, of the
p-th root of a number r using Newton’s method.

4. Let P, P, and P, be the three vertices of the triangle 7 shown in Figure 5.7.
Show that each of the barycentric coordinates w, of a point P lying inside
the triangle is given by the ratio of the area of the subtriangle U, formed us-

ing P and the two vertices P, , .5, and P, ., to the area of the triangle 7.

Team LRN

158

Mathematics for 3D Game Programming and Computer Graphics

Py

Figure 5.7 The triangle used in Exercise 4.

Let w,, w,, and w; be the barycentric coordinates of a point P with respect to
a triangle whose vertices are Py, P, and P,. Let N be the direction normal to
the triangle. Show that the barycentric coordinates of the point P+ N are
the same as those of the point P for any scalar r.

Calculate the unit length surface normal to the paraboloid defined by
f(x,y,z)=2x*+3y* —z=0 at the point (-1,2,14).

Derive the polynomial whose roots give the values of ¢ at which the ray
P(¢)=S+1V intersects a cone whose radius (at the base) is r, whose height
is &, and whose base is centered on the origin of the x-y plane as shown in
Figure 5.8.

The critical angle at the interface between two media is the smallest angle
of incidence at which total internal reflection occurs. Determine the critical
angle for a beam of light traveling upward through water toward the surface
where it meets the air. The index of refraction of water is 1.33, and the index
of refraction of air is 1.00.

Team LRN

Chapter 5 Ray Tracing 159

N

Figure 5.8 The cone used in Exercise 7.

9. Suppose that a coordinate transformation is defined by
x| x|
Y =My,
2l L]

where M is an invertible 3x 3 matrix. The del operator V' in the primed co-
ordinate system is defined as

V,:<a ,i,i>'
ox' oy o7

Show that V' = (M'I)TV. [Hint. Treat each unprimed coordinate as a func-
tion of all three primed coordinates by writing

Team LRN

160 Mathematics for 3D Game Programming and Computer Graphics

x=x(x,),z")
y=y(x,y.2)
z=z(x,y,7)

and apply the chain rule for partial differentiation, which for the
x-coordinate gives us

0 _0x0 o 0:0

= + :
ox' Ox'ox 0OxX oy ox oz

Team LRN

Chapter

IHHlumination

term illumination is often used to describe the process by which the

amount of light reaching a surface is determined. The term shading nor-
mally describes the methods used to determine the color and intensity of light
reflected toward the viewer for each pixel representing a surface. This color de-
pends on the properties of the light sources illuminating the surface as well as the
reflective characteristics of the surface itself.

The interaction between light and a surface is a complex physical process.
Photons can be absorbed, reflected, or transmitted when they strike the surface of
a material. To model this interaction using the whole of today’s knowledge of
physics would be far too computationally time-consuming. Instead, we must set-
tle for models that approximate the expected appearance of a surface. We begin
with simple models that are widely used because they are computationally effi-
cient and produce acceptable results, but really are not physically accurate. Later,
we examine more costly techniques that more closely model the true physical
interaction of light with a surface.

! I Vhis chapter describes the mathematics used to illuminate a surface. The

161

Team LRN

162

Mathematics for 3D Game Programming and Computer Graphics

6.1 RGB Color

A precise model describing the reflection of light by a surface would account for
every wavelength of light in the visible spectrum. Most computer monitors, how-
ever, display color information using a combination of only three wavelengths of
light: red, green, and blue. This system is commonly referred to as RGB color.
Intermediate wavelengths are simulated by blending these three primary colors
together in appropriate ratios. For instance, yellow is produced by blending equal
parts red and green. Colors that are made up of more than one wavelength of
light, such as brown, can also be simulated using RGB color.

The lighting models presented in this chapter utilize the RGB color system.
The intensity of reflected light at a point on a surface is calculated for red, green,
and blue wavelengths simultaneously. Since the same operations are performed
for each of these components, we express our mathematical formulas using a
three-component entity that we simply call a color.

Colors are expressed as triplets of red, green, and blue components whose
values range from 0 to 1. These colors represent both the spectral composition of
light, which determines what color the eye perceives, as well as the intensity of
light. We denote colors by script letters to distinguish them from vectors. A sin-
gle red, green, or blue component of a color C is denoted by using a subscript #,
g, or b (hence, we can write C=(C,,C,,C,)).

A color C can be multiplied by a scalar s to produce a new color:

sC=(sC,_,ng,st). (6.1)

Addition and multiplication of colors are performed componentwise. That is, for
two colors C and D, we have

C+D=(C,+D,,C,+D,,C,+D,)
c¢p=(C.D,,C,D,,C,D,). (6.2)

g g’

Color multiplication, either by another color or by a scalar, is also called
modulation. The color of a pixel belonging to a rendered triangle is usually de-
termined through some combination of colors from multiple sources. The color
of a pixel on the face of a triangle is commonly derived from the product of a
color looked up in a texture map and another color that is interpolated among the
triangle’s vertices. In this case, we say that the texture color is modulated by the
vertex color.

Team LRN

Chapter 6 lllumination 163

6.2 Light Sources

The color that we calculate for any point on a surface is the sum of contributions
from all the light sources that illuminate the surface. The standard types of light
sources supported by 3D graphics systems come in four varieties: ambient, direc-
tional, point, and spot. This section describes each of these types of light sources
and how they contribute to the radiation present at a point in space.

6.2.1 Ambient Light

The ambient light present at a certain location is the low-intensity light that arises
from the many reflections of light on all nearby surfaces in an environment. Us-
ing ambient light provides a rough approximation of the general brightness of an
area and replaces the complexities of calculating all the interobject reflections in
a scene.

Ambient light appears to come from every direction with equal intensity, and
thus illuminates every part of an object uniformly. The color A of the ambient
light is usually a constant in a scene, but it may also be a function of spatial posi-
tion. For instance, one can use a three-dimensional texture map to store samples
of the ambient light on a regular grid that permeates a region of the world.

6.2.2 Directional Light Sources

A directional light source, also known as an infinite light source, is one that radi-
ates light in a single direction from infinitely far away. Directional lights are
typically used to model light sources such as the sun, whose rays can be consid-
ered parallel. Since they have no position in space, directional lights have infinite
range, and the intensity of the light they radiate does not diminish over distance,
as does the intensity of point lights and spot lights.

6.2.3 Point Light Sources

A point light source is one that radiates light equally in every direction from a
single point in space. The intensity of light naturally decreases with distance ac-
cording to the inverse square law. OpenGL and Direct3D both implement a gen-
eralization of this concept that allows us to control the intensity of light radiated
by a point light source using the reciprocal of a quadratic polynomial.

Team LRN

164

Mathematics for 3D Game Programming and Computer Graphics

Suppose that a point light source has been placed at a point P. The intensity C
of light reaching a point in space Q is given by

1
C=————0C, 6.3
k,+kd+kd " (63)

where C, is the color of the light, d is the distance between the light source and Q
(le,d= ||P— Q|), and the constants k_, k,, and kq are called the constant, linear,
and quadratic attenuation constants.

6.2.4 Spot Light Sources

A spot light is similar to a point light but has a preferred direction of radiation.
The intensity of a spot light is attenuated over distance in the same way that it is
for a point light and is also attenuated by another factor called the spot light ef-
fect.

Suppose that a spot light source has been placed at a point P and has a spot
direction R. The intensity C of light reaching a point in space Q is given by

~ max{-R-L,0}"
k,+kd+kd

(6.4)

where C, is the color of the light; d is the distance between the light source and
Q; k,, k,, and k, are the attenuation constants; and L is the unit length direction
pointing from Q toward the light source:

P-Q
[p-Ql

(6.5)

The exponent p controls how concentrated the spot light is. As shown in Figure
6.1, a large value of p corresponds to a highly focused spot light having a sharp
falloff, whereas a smaller value of p corresponds to a less concentrated beam.
The spot light is most intense when R =—L and gradually falls off as the angle
between R and —L increases. No radiation from a spot light reaches a point for
which the angle between R and —L is greater than 90 degrees.

Team LRN

Chapter 6 lllumination 165

e e I
s

Figure 6.1 The spot light exponent p controls how concentrated the beam of a spot
light is. From left to right, the spot light exponents used to illuminate the ground are 2,
10, 50, and 100.

6.3 Diffuse Lighting

A diffuse surface is one for which part of the light incident on a point on the sur-
face is scattered in random directions. The average effect is that a certain color of
light, the surface’s diffuse reflection color, is reflected uniformly in every direc-
tion. This is called the Lambertian reflection, and because light is reflected
equally in every direction, the appearance of the Lambertian reflection does not
depend on the position of the observer.

As shown in Figure 6.2, a beam of light having a cross-sectional area A4 illu-
minates the same area 4 on a surface only if the surface is perpendicular to the
direction in which the light is traveling. As the angle between the normal vector
and the light direction increases, so does the surface area illuminated by the beam
of light. If the angle between the normal vector and light direction is €, then the
surface area illuminated by the beam of light is equal to A4/cos@. This results in a
decrease in the intensity of the light per unit surface area by a factor of cosé.

The value of cos@ is given by the dot product between the normal vector N
and the unit direction to the light source L. A negative dot product means that the
surface is facing away from the light source and should not be illuminated at all.
Thus, we clamp the dot product to zero in our illumination calculations.

We can now begin to construct a formula that calculates the color of light
that is reflected toward the viewer from a given point Q on a surface. This for-
mula is written in terms of the intensity C, of each of n lights illuminating the
point Q, which is constant for directional light sources and is given by Equations
(6.3) and (6.4) for point and spot light sources. The reflected light is modulated
by the surface’s diffuse reflection color D. Adding the contributions from n light
sources and considering the ambient intensity .4, we can express the diffuse com-
ponent of our lighting formula as

Team LRN

166

Mathematics for 3D Game Programming and Computer Graphics

Kdiffuse = DA+DZCI maX{N. Li,O}, (66)

i=l

where the unit vector L, points from Q toward the i-th light source.

0 A4

/ cos 0

Figure 6.2 The surface area illuminated by a beam of light increases as the angle 6
between the surface normal and direction to the light increases, decreasing the inten-
sity of incident light per unit area.

6.4 Texture Mapping

One or more texture maps may be applied to a surface to achieve greater detail,
as shown in Figure 6.3. At each point on a surface, a texel (texture pixel) is
looked up in each texture map and combined in some way with the lighting for-
mula. In the simplest case, a sample from a diffuse texture map is looked up and
used to modulate the diffuse reflection color. More advanced applications are
discussed later in this chapter.

Let the color 7 represent a filtered sample from a texture map at a point on a
surface. Using this color to modulate the diffuse reflection color produces the
following augmented version of Equation (6.6).

Kimse = DTA+DT Y C, max{N-L,,0} (6.7)

i=1

The actual color sampled from the texture map is determined by texture co-
ordinates applied to an object. Texture coordinates are either precomputed and

Team LRN

Chapter 6 lllumination 167

stored with each vertex of a triangle mesh or calculated at runtime to produce
some special effect. The texture coordinates are then interpolated using Equation
(4.37) across the face of a triangle when it is rendered. There may be from one to
four coordinates at each vertex, and they are labeled s, ¢, r, and ¢. The next few
sections describe the different varieties of texture maps and how texture coordi-
nates are used to look up a texel in each type.

Figure 6.3 Applying a texture map adds detail to a surface.

6.4.1 Standard Texture Maps

One, two, or three texture coordinates may be used to look up texels in one-,
two-, or three-dimensional texture maps. As shown in Figure 6.4, the entire
width, height, and depth of a texture map corresponds to coordinate values lying
between 0 and 1 in the s, ¢, and ~ directions, respectively.

@ T
00— 1|
s ©) //
/
®) /
1 1
1
11 t /
)
0 0 0
0 —— 1| 0 —— 1
S S

Figure 6.4 Texture space for (a) 1D texture maps, (b)2D texture maps, and
(c) 3D texture maps.

Team LRN

168

Mathematics for 3D Game Programming and Computer Graphics

A one-dimensional texture map can be thought of as a two-dimensional tex-
ture map that is only a single pixel in height. Likewise, a two-dimensional texture
map can be thought of as a three-dimensional texture map that is only a single
pixel in depth. When #- and r-coordinates are not specified, they are assumed to
be zero.

6.4.2 Projective Texture Maps

The fourth texture coordinate is used for projective texture mapping, an applica-
tion of which is described later in this section. The g-coordinate behaves in much
the same way the w-coordinate does for homogeneous points and is assumed to
be one when not specified. The interpolated s-, #-, and r-coordinates are divided
by the interpolated g-coordinate. For a scanline whose endpoints have texture
coordinates (s,,t,5,q,) and (s,,t,,r,,q,), we can use Equation (4.37) to calculate
interpolated values s, and g, at some intermediate parameter ue[0,1]. The quo-
tient of these two values gives the following expression for the s-coordinate used
to sample the texture map.

(1—u)i+us—2
z

s=B-_ 4 & (6.8)
9 (l—u)ﬁ+ ud
Z 2y

Similar expressions give the projected ¢ and texture coordinates.

One application of projective texture maps is the simulation of a spot light
that projects an image onto the environment. As shown in Figure 6.5, the pro-
jected image becomes larger as the distance from the spot light increases. The
effect is achieved by using a 4x 4 texture matrix to map the vertex positions of
an object to texture coordinates (s,,0,g) such that division by ¢ produces the
correct 2D texture coordinates (s,¢) used to sample the projected image.

Suppose that a spot light has been placed at the point P and points in the di-
rection R. Let the unit vectors S and T lie in the plane perpendicular to R such
that they are aligned to the directions in which the s- and f-axes of the projected
texture image should be oriented (see Figure 6.5). Each vertex position (x, y,z,1)
belonging to a surface illuminated by the spot light must first be transformed into
the coordinate system in which the spot light lies at the origin, and the x-, y-, and
z-axes correspond to the directions S, T, and R. This can be accomplished using
the inverse of the matrix whose columns are the vectors S, T, R, and P. If S and
T are orthogonal (i.e., the projected image is not skewed), the transformation is
given by

Team LRN

Chapter 6 lllumination 169

S, S, S. -S-P]
T T, T. -T-P
M, = : (6.9)
R, R, R, -R-P
L0 0 0 I
(Note that this matrix transforms into a left-handed coordinate system since

SxT=-R))

Figure 6.5 A projective texture map can be used to simulate a spot light that projects
an image onto the environment.

Now we need to multiply the matrix in Equation (6.9) by a second matrix
that performs the projection. Just as we define the focal length of the view frus-
tum, we can define the focal length of the spot light projection in terms of an
apex angle a. The focal length e is given by

1

Team LRN

170

Mathematics for 3D Game Programming and Computer Graphics

Let a be the aspect ratio of the texture map, equal to its height divided by its
width. Every vertex position should be projected onto the plane lying at a dis-
tance e from the spot light, where we want to map the interval [—1,1] in the x di-
rection to [0,1], and we want to map the interval [—a,a] in the y direction to [0,1].
The matrix

e/2 0 1/2 0]
0 ef2a 1/2 0

M, = (6.11)
0 0 0 0

Lo 0o 1 o

performs this mapping and causes the projection to occur when the s- and
t-coordinates are divided by the g-coordinate of the result. Combining the matri-
ces given in Equations (6.9) and (6.11), the 4x 4 texture matrix M used to im-
plement a projected spot light image is given by M = M,M,.

6.4.3 Cube Texture Maps

A relatively new method of texturing an object is enabled through the use of a
cube texture map. Cube texture maps are often used to approximate an environ-
mental reflection on the surface of a model. Shown in Figure 6.6, a cube texture
map consists of six two-dimensional components that correspond to the faces of a
cube. The s-, #-, and r-coordinates represent a direction vector emanating from
the center of the cube that points toward the texel to be sampled.

A?”)

rF—_————— b ————

Figure 6.6 A cube texture map consists of six components that correspond to the
faces of a cube.

Team LRN

Chapter 6 lllumination 171

Which face to sample is determined by the sign of the coordinate having the
largest absolute value. The other two coordinates are divided by the largest coor-
dinate and remapped to the range [0,1] using the formulas listed in Table 6.1 to
produce 2D texture coordinates (s',¢). These coordinates are then used to sample
the two-dimensional texture map for the corresponding face of the cube texture
map. Figure 6.7 shows the orientation of the cube map axes relative to each of
the six faces.

Table 6.1 Formulas used to calculate the 2D coordinates (s',t') used to sample a
texel in one of the six faces of a cube texture map.

Face s t

Positive x - LR
2 2s 2 2s

. 1 r t
Negative x ——— —+—
2 2s 2 2s

.. s r
Positive y —+— —+—
2 2 2 2t

1 1 r
Negative ——— —+—
BEVEY 57 2

1 1 ¢
Positive z —+ S ———

Negative z —+— —+—

Texture coordinates used in conjunction with cube texture maps are typically
generated at runtime. For instance, environment mapping can be performed by
calculating the reflection of the direction to the camera and storing it in the
<s,t,r> coordinates at each vertex of a triangle mesh. The reflection direction cal-
culation is normally implemented in hardware, so this can be done very effi-
ciently.

An invaluable application of cube texture maps is that of normalizing vec-
tors. A normalization cube map is a cube texture map that, instead of storing
color images in each of its six faces, stores an array of vectors that are encoded as
RGB colors using the following formulas.

Team LRN

172 Mathematics for 3D Game Programming and Computer Graphics

red _x_+1
y+1
reen = ——
& 2
blue=ZT+1 (6.12)

The vector stored at each pixel of a face of the cube map is the unit length vector
(s,t,r) that causes that pixel to be sampled. The use of a normalization cube map
becomes desirable when performing per-pixel lighting because interpolation of
surface normals across the face of a triangle inexorably produces normal vectors
whose length is less than unity.

+z +x -z -X

|
|
Vo
| A

Figure 6.7 Orientation of the cube map axes relative to each of the six faces.

6.4.4 Filtering and Mipmaps

When a model is rendered with a texture map applied to its surface, it is almost
never the case that the resolution of a texture map matches the resolution of the
viewport in which it is displayed. As a model moves closer to the camera, the
relative resolution of the viewport increases compared to that of the texture map.

Team LRN

Chapter 6 lllumination 173

Using only one sample from the texture map at each pixel results in a blocky ap-
pearance, so rendering hardware normally fetches four samples from the texture
map at each pixel and blends them together. In a process called bilinear filtering,
the four samples are blended using a weighted average that depends on the exact
texture coordinates corresponding to the pixel being rendered.

Suppose a two-dimensional texture map having width w and height 4 is being
sampled using the texture coordinates (s,¢) and make the following definitions.

i=ws -4

j=Lht=4]
a = frac(ws — 1)
p = frac(ht— 1) (6.13)

The bilinearly filtered texture value 7'is given by

T:(l_a)(l_ﬂ)zi,j) +a(1_ﬂ)7zi+l,j>

+(1_a)ﬂ72i,j+])+aﬂ7-((6.14)

i+, j+1) 2
where 7, , represents the value stored in the texture map at the integral texel co-
ordinates (i, /).

As a model moves away from the camera and the relative resolution of the
viewport decreases compared to that of the texture map, the area of a single pixel
can cover a region enclosing many texels in the texture map. Even if bilinear fil-
tering is applied, the low sampling resolution often leads to severe aliasing arti-
facts. The solution to this problem is to generate prefiltered versions of a texture
map at lower resolutions. As shown in Figure 6.8, each smaller image is exactly
half the width and half the height of the image that is one size larger. The array of
texture images is called a mipmap (derived from the phrase multum in parvo,
meaning many in a small place). Since the sum of the infinite series

I+—+—+—+-- (6.15)

is 4, adding mipmap images to a texture map increases the storage requirements
by only one-third of the texture map’s original size.

When using mipmaps and bilinear filtering, rendering hardware chooses a
mipmap image at each pixel by examining the derivatives dS/dx and 8S/dy,
where x and y are the viewport coordinates of the pixel, and S represents the in-
terpolated components of the texture coordinate set at the pixel. The largest im-
age in a mipmap is called level 0, and smaller images are numbered sequentially.

Team LRN

174

Mathematics for 3D Game Programming and Computer Graphics

Larger texture coordinate derivatives cause higher-numbered mipmap images
being used. Let n and m be the base-2 logarithms of the width and height of a
two-dimensional texture map (whose width and height are thus 2" and 2"). Let
s(x,y) and ¢(x,y) be functions that map viewport coordinates x and y to texture
coordinates s and ¢, and define u(x,y)=2"s(x,y) and v(x,y)=2"t(x,y). The
level-of-detail parameter A is determined by calculating

~ a_u 2 N a_v 2
P Ox Ox
5)+(5)
"Wy) "oy
A=log, [max(px,py)]. (6.16)

When using bilinear filtering (or no filtering), the value of A is rounded to the
nearest integer and clamped to the range [0 max(n m)]. Four texture samples are
then fetched from the corresponding mipmap image level and blended using
Equation (6.14).

As a model moves toward or away from the camera, abrupt changes in the
mipmap level may be unsightly, so rendering hardware provides a mode called
trilinear filtering in which two mipmap levels are sampled (using bilinear filter-
ing) and blended together. Texture values 7, and 7, are sampled from mipmap
levels | A|] and | A||+1, respectively, and blended using the formula

Figure 6.8 Mipmap images for a particular texture map. Each smaller image is ex-
actly half the width and half the height of the preceding image.

Team LRN

Chapter 6 lllumination 175

7T =(1-frac(A1))7, + frac(4)7, (6.17)

to arrive at the final texture value 7.

Mipmapping for one-dimensional and three-dimensional texture maps oper-
ates by considering one or three texture coordinates in Equation (6.16). For cube
texture maps, mipmapping operates independently for each of the six two-
dimensional faces.

6.5 Specular Lighting

In addition to the uniform diffuse reflection, surfaces tend to reflect light strongly
along the path given by the reflection of the incident direction across the surface
normal. This results in the appearance of a shiny highlight on a surface called a
specularity. Unlike the diffuse reflection, the specular reflection visible on a sur-
face depends on the position of the viewer.

Figure 6.9 shows the normal vector N at a point Q on a surface, the unit di-
rection to viewer vector V, the unit direction to light vector L, and the direct re-
flection vector R calculated using Equation (5.90). Specular highlights are the
most intense when the reflection direction R points toward the viewer and de-
crease in intensity as the angle between R and the direction to the viewer V in-
creases.

A model that produces a believable (but having almost no real physical basis)
rendition of specular highlights uses the expression

SCmax{R-V,0}"(N-L>0) (6.18)

to calculate the specular contribution from a single light source, where S is the
surface’s specular reflection color, C is the intensity of the incident light, and m is
called the specular exponent. The expression (N-L >0) is a boolean expression
that evaluates to 1 if true and 0 otherwise. This prevents specular highlights from
showing up at points on a surface that face away from the light source.

The specular exponent m controls the sharpness of the specular highlight. As
shown in Figure 6.10, a small value of m produces a dull highlight that fades out
over a relatively large distance, and a large value of m produces a sharp highlight
that fades out quickly as the vectors V and R diverge.

Team LRN

176

Mathematics for 3D Game Programming and Computer Graphics

Figure 6.9 The intensity of the specular reflection is related to the angle between the
direction to viewer vector V and the direct reflection vector R corresponding to the di-
rection to light vector L.

Figure 6.10 The specular exponent m controls the sharpness of the specular high-
light seen on a surface. From left to right, the specular exponents used to illuminate
the tori are 2, 10, 50, and 100.

An alternative formulation of specular highlights that requires less calcula-
tion in some cases makes use of a direction called the halfway vector. Shown in
Figure 6.11, the halfway vector H is the vector lying exactly halfway between the
direction to viewer vector V and the direction light vector L. Specular highlights
are the most intense when H points in the direction of the normal vector N. Using
this model, we replace the dot product R-V in Equation (6.18) with the dot
product N- H. This produces different results in terms of the rate at which the
specular highlights diminish, but still retains the general characteristics of our
original model.

Team LRN

Chapter 6 lllumination 177

» Z

Figure 6.11 The angle between the normal vector N and the halfway vector H can
also be used to determine specular intensity.

Adding the contributions from #n light sources, we can express the specular
component of our lighting formula as

K.

specular

=SZ":Cimax{N~Hi,0}'"(N~L,.>0), (6.19)

i=]
where H, is the halfway vector for the i-th light source given by

L+V

.= : (6.20)
L, + V|

Just as a texture map can be used to modulate the diffuse component of the
lighting formula, we can also use a map to modulate the specular component.
Such a map is called a gloss map and determines the intensity of the specularity
at each point on a surface. Using the color G to represent a filtered sample from
the gloss map, we can augment the formula for the specular contribution as fol-
lows.

K.

specular

=ng":c,. max{N-H,,0}"(N-L, >0) (6.21)

i=]

Team LRN

178

Mathematics for 3D Game Programming and Computer Graphics

6.6 Emission

Some objects may emit light in addition to reflecting it. To give an object the
appearance of emitting a uniform glow, we add an emission color £ to our light-
ing formula. This emission color can also be modulated by an emission map that
determines the color and intensity of the glow at each point on a surface. Using
the color M to represent a filtered sample from the emission map, the emission
component of the lighting formula is given by the simple expression

Kemission = gM (622)
Figure 6.12 demonstrates the application of an emission map to the surface of a
model in addition to an ordinary texture map.

Figure 6.12 (a) An ordinary texture map and an emission map. (b) The model on the
left has only the ordinary texture map applied to it. The model on the right includes
the emission map. Unlike the ordinary texture map, the emission map is unaffected by
the direction of the surface normal, and it determines which parts of the surface ap-
pear to give off a glow.

6.7 Shading

Information about the surface of a model, such as the positions of points on the
surface and the normal vectors at those points, are stored only for each vertex of
a triangle mesh. When a single triangle is rendered, information known at each
vertex is interpolated across the face of the triangle, as discussed in Section 4.4.2.
Conventional lighting pipelines calculate diffuse and specular illumination only

Team LRN

Chapter 6 lllumination 179

at the vertices of a mesh. More modern graphics hardware enables the calculation
of the entire illumination formula at every individual pixel drawn to the display.
The manner in which lighting is determined for the surface of a triangle, com-
bined with any number of texture maps, is called shading.

6.7.1 Calculating Normal Vectors

To apply the lighting formula to a triangle mesh, we need to have a representa-
tion of the surface normal at each vertex. We can calculate the normal vector for
a single triangle by using the cross product. The unit-length normal vector N of a
triangle whose vertices lie at the points P, P,, and P, is given by

— (Pl_Po)x(Pz_Po)
» ||(P1_P0)X(P2_Po)”‘

(6.23)

This assumes that the vertices are oriented in a counterclockwise fashion when
the normal points toward the viewer, as shown in Figure 6.13.

The normal vector at a single vertex is typically calculated by averaging the
normal vectors of all triangles that share that vertex. Using the formula

$n

i=

_ 1
vertex || k
SN

i=]

(6.24)

to calculate the normal vector N, . for a vertex shared by £ triangles results in a
vertex normal that is influenced equally by the normal vector N, of each of the
triangles surrounding it.

An alternative formulation, illustrated in Figure 6.14, makes use of the fact
that the cross product of two vectors is proportional to the area of the triangle that
they form. By using the unnormalized triangle normals calculated with the equa-
tion

N=(P,—-P,))x(P,-P)) (6.25)
instead of Equation (6.23) and then averaging using Equation (6.24), we can cal-

culate a vertex normal that is more strongly influenced by triangles with greater
area. This method produces more appealing vertex normals for some models.

Team LRN

180 Mathematics for 3D Game Programming and Computer Graphics

P,

P
P, P,

Figure 6.13 The vertices of a triangle should be oriented in a counterclockwise fash-
ion when the normal vector points toward the viewer.

N,

N;

Figure 6.14 By averaging the unnormalized normal vectors of each triangle sharing a
vertex, a vertex normal can be calculated that is influenced more strongly by triangles
with greater area.

6.7.2 Gouraud Shading

The interpolation of lighting values calculated at each vertex across the face of a
triangle is known as Gouraud shading. Before the advent of graphics hardware
capable of performing per-pixel lighting calculations, diffuse and specular colors
were calculated only at each vertex of a triangle mesh. This method calculates the

colors

Team LRN

Chapter 6 lllumination 181

=&+ DA+D) C max{N-L,0}

i=]

=8> C max{N-H,,0}"(N-L, >0) (6.26)
i=l

K

primary

K.

secondary

at each vertex and interpolates them across the face of a triangle. The color I of
a pixel is then calculated using the equation

K=K

‘primary

o']-l 07-2 o---o'Tk +]C

secondary *

(6.27)

where each 7, represents a color sampled from one of & texture maps, and the
operation o is one of several available texture combination operations, including
modulation and addition.

6.7.3 Phong Shading

Instead of interpolating lighting values calculated at each vertex, a Phong-shaded
triangle interpolates the vertex normals and evaluates the lighting formula at each
pixel. Graphics hardware that can perform complex calculations on a per-pixel
basis (a process called pixel shading or fragment shading) can be configured to
evaluate the entire expression

K=K

emission

+ ICdiffuse + IC

specular

= EM+DTA+ Y C[DT(N- L)+ SG(N-H,)"(N-L,>0)] (6.28)

at each pixel composing the face of a triangle. In the interests of simplicity, we
have omitted the maximum functions here, but it should be noted that the diffuse
and specular dot products in this equation are clamped to zero. The intensity C, of
each of the n light sources is still calculated at each vertex and interpolated across
the face of a triangle. These values and the interpolated normal vector are used to
evaluate K at each pixel. Of course, not every component of Equation (6.28)
needs to be present.

An advantage that Phong shading possesses over Gouraud shading is that it
does a far better job of modeling specularity due to the fact that the dot product
N- H is evaluated at every pixel. When a sharp specular highlight falls in the in-
terior of a triangle, Gouraud shading produces poor results because the specular
component calculated at the triangle’s vertices is unrepresentative of the true val-
ues existing elsewhere on the face of the triangle.

Team LRN

182

Mathematics for 3D Game Programming and Computer Graphics

A problem that arises when using Phong shading is that interpolated normal
vectors do not retain the unit length that they have at the vertices. Densely tessel-
lated models for which the normal vectors belonging to neighboring vertices dif-
fer in direction by only a small amount may not produce visually unacceptable
artifacts, but most models exhibit a noticeable darkening of the specularity in the
interior of each triangle. This problem is solved by using a normalization cube
map (see Section 6.4.3). Normal vectors are passed into the texture engine as
(s,t,r) mapping coordinates, which results in the output of unit vectors encoded
as RGB colors.

6.8 Bump Mapping

The surface detail that an observer perceives when an object is viewed from any
direction other than edge-on is generally determined by the way in which its sur-
face is illuminated. The illumination at each pixel rendered is determined by the
normal vector used during the evaluation of the lighting formula. So far, we have
been limited to calculating normal vectors only at the vertices of a triangle mesh
and using a smoothly interpolated normal vector elsewhere. This coarse resolu-
tion prevents us from illuminating any details that are smaller in size than a typi-
cal triangle in a mesh. Bump mapping is a technique that presents the illusion of
greater detail to the viewer by using a texture map to perturb the normal vector at
each pixel.

6.8.1 Bump Map Construction

High-resolution information about how the normal vector is perturbed is stored in
a two-dimensional array of three-dimensional vectors called a bump map or
normal map. Each vector in the bump map represents the direction in which the
normal vector should point relative to the interpolated normal vector at a point
inside the face of a triangle. The vector (0,0,1) represents an unperturbed normal,
whereas any other vector represents a modification to the normal that affects the
result of the lighting formula.

A bump map is typically constructed by extracting normal vectors from a
height map whose contents represent the height of a flat surface at each pixel. To
derive the normal vector corresponding to a particular pixel in the height map, we
first calculate tangents in the s and ¢ directions, which are based on the difference
in height between adjacent pixels. Using the notation H (i,) to represent the
value stored at coordinates (i, j) in a wx & pixel height map, we can express the

Team LRN

Chapter 6 lllumination 183

tangent vectors S(i, j) and T(i, /), aligned to the s and ¢ directions, respectively,
as follows.

S(i,j)=(1,0,aH (i+1,j)—aH(i—1,}))
T(i,j)=(0,1,aH (i,j+1)—aH(i,j—1)) (6.29)

The constant a is scale factor that can be used to vary the range of the height val-
ues, controlling how pronounced the perturbed normals are. If we let S, and T,
denote the z-components of S(i, /) and T(, j), then the normal vector N(i, /) is
calculated using the cross product

oS>,)xT(,)) (=S.,-T.1)
N = = . 6.30
(i) IS(7, j)x T(i, /)| \/SZ+T22+1 (630

The components of each normal vector are encoded as an RGB color using the
relations given in Equation (6.12). Figure 6.15 shows a grayscale height map and
the corresponding bump map calculated using Equation (6.30).

NG

Figure 6.15 A height map and the corresponding bump map containing perturbed
normal vectors. A pastel purple color is prevalent in the bump map since the unper-
turbed normal vector (0, 0, 1) corresponds to the RGB color (2 3 1).

6.8.2 Tangent Space

Since the vector (0,0,1) in a bump map represents an unperturbed normal, we
need it to correspond to the interpolated normal vector that we would ordinarily
use in the lighting formula. This can be achieved by constructing a coordinate
system at each vertex in which the vertex normal always points along the positive
z-axis. In addition to the normal vector, we need two vectors that are tangent to
the surface at each vertex in order to form an orthonormal basis. The resulting

Team LRN

184

Mathematics for 3D Game Programming and Computer Graphics

coordinate system is called tangent space or vertex space and is shown in Figure
6.16.

Once a tangent-space coordinate system has been established at each vertex
of a triangle mesh, the direction to light vector L is calculated at each vertex and
transformed into the tangent space. The tangent-space vector L is then interpo-
lated across the face of a triangle. Since the vector (0,0,1) in tangent space corre-
sponds to the normal vector, the dot product between the tangent-space direction
to light L and a sample from a bump map produces a valid Lambertian reflection
term.

The tangent vectors at each vertex must be chosen so that they are aligned to
the texture space of the bump map. For surfaces generated by parametric func-
tions, tangents can usually be calculated by simply taking derivatives with re-
spect to each of the parameters. Arbitrary triangle meshes, however, can have
bump maps applied to them in any orientation, which necessitates a more general
method for determining the tangent directions at each vertex.

N=(0,0,1)

T=(1,0,0)

Figure 6.16 Tangent space is aligned to the tangent plane and normal vector at a
vertex.

6.8.3 Calculating Tangent Vectors

Our goal is to find a 3x 3 matrix at each vertex that transforms vectors from
object space into tangent space. To accomplish this, we consider the more intui-
tive problem of transforming vectors in the reverse direction from tangent space
into object space. Since the normal vector at a vertex corresponds to 0,0,1 in
tangent space, we know that the z-axis of our tangent space always gets mapped
to a vertex's normal vector.

Team LRN

Chapter 6 lllumination 185

We want our tangent space to be aligned such that the x-axis corresponds to
the s direction in the bump map and the y-axis corresponds to the ¢ direction in
the bump map. That is, if Q represents a point inside the triangle, we would like
to be able to write

Q-Py=(s—s,)T+(t—1,)B, (6.31)

where T and B are tangent vectors aligned to the texture map, P, is the position
of one of the vertices of the triangle, and (s,,Z,) are the texture coordinates at that
vertex. The letter B is commonly meant to stand for binormal, but this is not an
intuitive term since B represents a direction that is tangent to the surface, not
normal. As discussed in Section 15.8, the term is derived from the local coordi-
nate system following the path of a curve in which there is a single tangent direc-
tion and two orthogonal normal directions. We shall instead use the term
bitangent since it provides a more accurate description of the quantity that it
represents.

Suppose that we have a triangle whose vertex positions are given by the
points P,, P,, and P,, and whose corresponding texture coordinates are given by
(8952)s (s,52,), and (s,,,). Our calculations can be made much simpler by work-
ing relative to the vertex Py, so we let

Q =P -P
Q,=P,-P, (6.32)

and

(8):,) = (8, =S558, = ;)
<Sz’t2>= <52 —Sp51, _to>- (6.33)

We need to solve the following equations for T and B.

Q =5T+:B
Q,=5T+4,B (6.34)

This is a linear system with six unknowns (three for each T and B) and six equa-
tions (the x-, y-, and z-components of the two equations). We can write this in
matrix form as follows.

|:(Ql)x (Ql)y (Ql)z-l {Sl tl—||iTr Ty];-I
= (6.35)
(QZ)X (QZ)y (QZ)ZJ SZ tZJ Bx By BZJ

Team LRN

186

Mathematics for 3D Game Programming and Computer Graphics

Multiplying both sides by the inverse of the (s,¢) matrix, we have

|:Tx Ty Tz-l_ 1 |:t2 _t1—||:(Ql)x (Q])y (Ql)z-l
B, B, B, 1(Q,), (Q), (Q.).]]

This gives us the (unnormalized) T and B tangent vectors for the triangle whose
vertices are Py, P, and P,. To find the tangent vectors for a single vertex, we av-
erage the tangents for all triangles sharing that vertex in a manner similar to the
way in which vertex normals are commonly calculated. In the case that neighbor-
ing triangles have discontinuous texture mapping, vertices along the border are
generally already duplicated since they have different mapping coordinates any-
way. We do not average tangents from such triangles because the result would
not accurately represent the orientation of the bump map for either triangle.

Once we have the normal vector N and the tangent vectors T and B for a ver-
tex, we can transform from tangent space into object space using the matrix

(6.36)

J SltZ _Sztl _Sz Sl

7—,’\’ B.\' NX-l
T, B N,. (637)
TZ BZ NZJ

To transform in the opposite direction (from object space to tangent space—what
we want to do to the light direction), we can simply use the inverse of this matrix.
It is not necessarily true that the tangent vectors are perpendicular to each other
or to the normal vector, so the inverse of this matrix is not generally equal to its
transpose. It is safe to assume, however, that the three vectors will at least be
close to orthogonal, so using the Gram-Schmidt algorithm (see Algorithm 1.16)
to orthogonalize them should not cause any unacceptable distortions. Using this
process, new (still unnormalized) tangent vectors T' and B’ are given by

T=T-(N-T)N
B =B—(N-B)N—(T-B)T. (6.38)

Normalizing these vectors and storing them as the tangent and bitangent for a
vertex lets us use the matrix

T, T
B, B B (6.39)
X Ny NzJ

Team LRN

Chapter 6 lllumination 187

to transform the direction to light from object space into tangent space. Taking
the dot product of the transformed light direction with a sample from the bump
map then produces the correct Lambertian diffuse lighting value.

It is not necessary to store an extra array containing the per-vertex bitangent
since the cross product Nx T can be used to obtain mB’, where m==1 repre-
sents the handedness of the tangent space. The handedness value must be stored
per-vertex since the bitangent B' obtained from Nx T may point in the wrong
direction. The value of m is equal to the determinant of the matrix in Equation
(6.39). One may find it convenient to store the per-vertex tangent vector T' as a
four-dimensional entity whose w-coordinate holds the value of m. Then the bi-
tangent B' can be computed using the formula

B =T/ (NxT), (6.40)

where the cross product ignores the w-coordinate. This works nicely for vertex
programs by avoiding the need to specify an additional array containing the per-
vertex m values.

6.8.4 Implementation

Bump mapping operations can be divided into those calculated for each vertex
and those calculated for each pixel. At each vertex, we must calculate the direc-
tion to light L and the halfway vector H, and transform them into tangent space
using Equation (6.39). The vertex program shown in listing 6.1 performs these
calculations for a surface illuminated by a directional light source (for which L is
constant).

Listing 6.1 This vertex program performs the calculations necessary for bump map-
ping. Program environment parameter O contains the object-space camera position,
and program environment parameter 1 contains the object-space direction to the infi-
nite light source. The orthonormalized tangent T' is read from vertex attribute array O,
and the bitangent B’ is calculated using Equation (6.40). The tangent-space direction
to light L is stored in texture coordinate set 2, and the tangent-space halfway vector H
is stored in texture coordinate set 3. The bump map is bound to texture unit 0, and the
ordinary texture map is bound to texture unit 1.

'1'ARBvpl.0

ATTRIB normal = vertex.normal;
ATTRIB tangent = vertex.attrib[0] ;

PARAM mvp[4] { state.matrix.mvp} ;

Team LRN

188 Mathematics for 3D Game Programming and Computer Graphics

PARAM camera = program.env(0] ;
PARAM light program.env(1] ;

TEMP bitangent, vdir, halfway, temp;

Transform vertex

DP4 result.position.x, mvpl 0] , vertex.position;
DP4 result.position.y, mvp[1] , vertex.position;
DP4 result.position.z, mvpl 2] , vertex.position;
DP4 result.position.w, mvp[3], vertex.position;
B=(NxT) * T.w

XPD bitangent, normal, tangent;

MUL bitangent, bitangent, tangent.w;

Compute normalized V

ADD view, camera, -vertex.position;
DP3 temp, view, view;

RSQ temp, temp.x;

MUL view, view, temp;

Compute normalized H

ADD halfway, view, light;
DP3 temp, halfway, halfway;
RSQ temp, temp.x;

MUL halfway, halfway, temp;

Transform L into tangent space

DP3 result.texcoord 2] .x, tangent, light;
DP3 result.texcoord 2] .y, bitangent, light;
DP3 result.texcoord 2] .z, normal, light;

Transform H into tangent space

DP3 result.texcoord 3] .x, tangent, halfway;
DP3 result.texcoord 3] .y, bitangent, halfway;
DP3 result.texcoord 3] .z, normal, halfway;

Copy texture coords

MOV result.texcoord 0] , vertex.texcoord 0] ;
MOV result.texcoord 1], vertex.texcoord 1] ;
END

Team LRN

Chapter 6 lllumination 189

The dot products N-L and N-H are calculated for every pixel, where the
normal vector N is sampled from the bump map and the vectors L and H are in-
terpolated among the values calculated at each vertex. Since these vectors are
interpolated, their magnitudes can become slightly reduced, which may cause the
interiors of triangles to appear darker than they should. This effect is often not
noticeable, but models lacking sufficient tessellation may require the use of nor-
malization cube maps.

The per-pixel dot products can be calculated using fragment programs or ear-
lier OpenGL extensions such as G NV _register combiners. If fragment
programs are not being used, the quantity N- H can then be raised to a power by
successively squaring it, but this allows only small power-of-two exponents.
OpenGL implementations capable of dependent texture fetches (e.g., through the
GL NV texture shader extension) enable arbitrary specular exponents to
be used by storing the values (N-H)" in a 2D texture map indexed by the
s-coordinate N- H and the ¢#-coordinate H- H, removing the need to normalize the
halfway vector. (See [LENGO03] for details.)

6.9 A Physical Reflection Model

The manner in which we have calculated the reflection of light on a surface be-
fore this point is computationally cheap and produces visually pleasing results in
many cases, but it is not an accurate model of the physically correct distribution
of reflected light. Achieving greater realism requires that we use a better model
of a surface’s microscopic structure and that we apply a little electromagnetic
theory.

6.9.1 Bidirectional Reflectance Distribution Functions

In general, our goal is to model the way in which the radiant energy contained in
a beam of light is redistributed when it strikes a surface. Some of the energy is
absorbed by the surface, some may be transmitted through the surface, and what-
ever energy remains is reflected. The reflected energy is usually scattered in
every direction, but not in a uniform manner. A function that takes the direction
L to a light source and a reflection direction R, and returns the amount of inci-
dent light from the direction L that is reflected in the direction R is called a
Bidirectional Reflectance Distribution Function (BRDF).

The precise definition of a BRDF requires that we first introduce some ter-
minology from the field of radiometry, the study of the transfer of energy via

Team LRN

190

Mathematics for 3D Game Programming and Computer Graphics

radiation. The radiant power (energy per unit time) emitted by a light source or
received by a surface is called flux and is measured in watts (W). The power
emitted by a light source or received by a surface per unit area is called flux den-
sity and is measured in watts per square meter (W-m™). The flux density emitted
by a surface is called the surface’s radiosity, and the flux density incident on a
surface is called the irradiance of the light.

ANN-L)

A

Figure 6.17 The flux density incident on an area A of a surface is equal to the flux
density of an incident light beam scaled by a factor of N- L.

Figure 6.17 illustrates a situation in which a light source is emitting P watts
of power toward a surface of area 4. The power received by the surface is equal
to the power emitted by the light source, but the flux densities received and emit-
ted are different because of the Lambertian effect. The area of the beam is equal
to A(N-L), where N is the unit surface normal and L is the unit direction-to-
light vector. The flux density @, emitted by the light source is thus given by

P

E

Since the flux density @, incident on the surface is equal to P/4, we have the
relation

®,=d_(N-L). (6.42)

Team LRN

Chapter 6 lllumination 191

The direction from which light illuminates a surface is defined in terms of
solid angles, the three-dimensional analog of planar angles. As Figure 6.18 illus-
trates, the measure of a planar angle € in radians is given by the arc length /
swept out on a circle divided by the radius r of the circle: @ =1/r. Extending this
to three dimensions, the measure of a solid angle @ corresponding to an area A4
on the surface of a sphere of radius r is defined as @ = 4/r*. The unit of solid
angle measure is the steradian, abbreviated sr. Since the surface area of a sphere
of radius is equal to 477, there are 47 steradians in the solid angle represent-
ing the entire sphere.

Figure 6.18 Planar angles are equal to the arc length that they sweep out divided by
the radius of the circle. Similarly, solid angles are equal to the surface area that sub-
tends them divided by the square of the radius of the sphere.

A differential solid angle dw can be written in terms of the differential azi-
muthal angle d@ and the differential polar angle dg. As shown in Figure 6.19,
the circle at the polar angle ¢ that lies parallel to the x-y plane and passes through
the point (r,0,¢) has radius rsing. Thus, the differential arc length in the azi-
muthal direction on this circle is equal to rsing d@. Multiplying this by the dif-
ferential arc length rd¢ in the polar direction gives us the following expression
for the differential surface area d4.

dA=r’sinpd@de (6.43)

Dividing by * gives us the expression for the corresponding differential solid
angle dw:

do=sinpd@dep. (6.44)

Team LRN

192

Mathematics for 3D Game Programming and Computer Graphics

N

\rd(pxrs'm(pdﬁ

rsin @

P x

Figure 6.19 The differential surface area at the point (r,8,¢) on a sphere is equal to
risingdéde.

Radiance is the term used to describe the flux density of radiation per unit
solid angle and is measured in watts per square meter per steradian
(W-m™-st™'). The irradiance (flux density) @, of the light received by a differ-
ential area d4 on a surface is equal to the following integral of the radiance
C,(L) received by the area, where the direction to light L ranges over the unit
hemisphere Q above the surface. (The angles § and ¢ are the azimuthal and polar
angles corresponding to the direction L.)

o, =[C(L)do

_ I:”jo”“c,(a,go)singodgode (6.45)

For the same reason that the flux density received by a surface and the flux den-
sity emitted by a light source are related by Equation (6.42), the radiance C, re-
ceived by a surface and the radiance C, emitted by a light source are related by

C,=C,(N-L)=C,cosgp. (6.46)

We can therefore rewrite Equation (6.45) as

Team LRN

Chapter 6 lllumination 193

®,=[C(L)N-L)do
27 pwf2 R
= IO IO Cr(0,p)cospsingpdpdf. (6.47)
The bidirectional reflectivity p(V,L) at a point on a surface is a function of

the direction to viewer V and the direction to light L. It is equal to the ratio of the
differential reflected radiance dC, to the differential incident irradiance d®,:

dc dc
p(V,L)=——= 3 :
dd, C,(L)(N-L)do

(6.48)

The function p(V,L) is the BRDF that we use to calculate the radiance of the
light reflected in a specific direction from a surface using the equation

dC, = p(V,L)C,(L)(N-L)dw. (6.49)

Directional, point, and spot light sources illuminate a point on a surface from a
single direction. Thus, instead of integrating Equation (6.49) to determine the
amount of light C, (V) from n sources reflected in the direction to viewer V, we
simply sum over the discrete directions to light L;:

Co(V)=Y p(V.L)C(N-L,). (6.50)

i=]

Up to this point in our discussion of BRDFs, we have not said anything about
color. In addition to the incoming and outgoing light directions, a BRDF should
be a function of the wavelength of the light. Applications requiring accurate re-
flection models across the entire spectrum typically evaluate a BRDF at several
wavelengths and then fit a curve to the resulting numbers. For real-time computer
graphics, we find it sufficient to treat our BRDFs as functions that take the RGB
color of the incident light and return the RGB color of the reflected light. From
this point on, we assume that all operations involving a BRDF take place for each
of the red, green, and blue components of light.

The diffuse and specular reflection formulas given in Equations (6.6) and
(6.19) can be reproduced by defining the RGB-color BRDF p as

(N-H)"

o(V.L)=D+S (6.51)

Team LRN

194

Mathematics for 3D Game Programming and Computer Graphics

The term bidirectional means that the function o should be invariant when the
directions V and L are exchanged. That is, o should satisfy the reciprocity prop-
erty

o(V,L)=0(L,V) (6.52)

required by the fact that reversing the direction that light travels along a certain
path should not produce different results. The function p given by Equation
(6.51) does not satisfy the bidirectional requirement, however, and therefore can-
not be physically correct.

Another physical law violated by Equation (6.51) is conservation of energy.
Any physically correct BRDF must not reflect more light from a point on a sur-
face than is incident at that point. We can divide the reflected energy given by the
BRDEF p into diffuse and specular components by writing

o(V,L)=kD+(1-k)g,(V,L), (6.53)

where D is the surface’s diffuse reflection color and & represents the fraction of
the incident light that is diffusely reflected. The remaining fraction 1-% of the
incident light is either absorbed or makes up a specular reflection. These eftects
are modeled by the function p,, which is described in the next section.

6.9.2 Cook-Torrance lllumination

The Cook-Torrance illumination model [COOKS82] produces a realistic specular
reflection by treating a surface as being composed of planar microscopic facets
called microfacets. Each microfacet is treated as a perfect reflector that obeys the
reflective laws of electromagnetic theory. The roughness of a surface is charac-
terized by the slopes of the microfacets. As shown in Figure 6.20, a rough surface
is composed of microfacets having greatly varying slopes, whereas the micro-
facets for a relatively smooth surface have only small slopes.

Figure 6.20 Surface roughness is characterized by how much the slopes of the mi-
crofacets vary.

Team LRN

Chapter 6 lllumination 195

Cook and Torrance use the following formula for the specular component g,
of the BRDF given in Equation (6.53).

D(V,L)G(V,L)
7(N-V)(N-L)

o,(V,L)=F(V,L) (6.54)

F is the Fresnel factor, which describes the amount and color of light reflected as
a function of the angle of incidence; D is the microfacet distribution function,
which returns the fraction of microfacets oriented in a given direction; and G is
the geometrical attenuation factor, which accounts for self-shadowing of the mi-
crofacets. Since the microfacets are perfect reflectors, only those microfacets
whose normal vectors point in the direction of the halfway vector H contribute to
the specular reflection.

The 7 appearing in the denominator of Equation (6.54) is a normalization
factor that accounts for the fact that the incident flux density @, at a surface for a
constant emitted radiance C; is given by

2

cos@sinpdpdfd =xC,. (6.55)

L3

~

®,=C;| (N-L)do=

ot—
S —_—y

6.9.3 The Fresnel Factor

The interaction of an electromagnetic wave and a surface results in a reflected
wave and a transmitted wave. The energy contained in the reflected wave is equal
to the energy contained in the incident wave minus the energy contained in the
transmitted wave (which is quickly absorbed by opaque materials). The electric
field of the incident light can be decomposed into components that are polarized
with respect to the plane containing the surface normal N and the direction to
light L. The component parallel to this plane is called p-polarized, and the com-
ponent perpendicular to this plane is called s-polarized. The Fresnel factors giv-
ing, for a single wavelength, the fractions F, and F, of the amount of light
reflected for these components are

P o tanz(ﬁl -0,)

= 6.56
’ tan’(6,+6,) (6.56)

and

— Sinz(el _92)

= , 6.57
' sin’(6,+6,) ()

Team LRN

196

Mathematics for 3D Game Programming and Computer Graphics

where 6, is the angle of incidence and 6, is the wavelength-dependent angle of
transmittance. For unpolarized light, we simply average these to obtain the Fres-
nel factor F, corresponding to the wavelength A:

(6.58)

Pl tanz(a,—02)+sin2(el—ez)]
* 2| tan’(6, +6,) sin2(9,+92)ul

The angle of incidence 6, is equal to cos™ (L- H) since every microfacet con-
tributing to the specular reflection is oriented such that its normal vector points
along the halfway vector H. It turns out that we can write the Fresnel factor in
terms of L- H and the indexes of refraction 7, and 7, of the two materials by ap-
plying some trigonometric identities and using Snell’s law. Factoring the sine
function out of Equation (6.58) gives us

_ 1sin’(6, —92){0082(6’. +02)+1—| (6.59)

27 2sin*(6, +6,)| cos*(6,-6,) U

Applying the trigonometric identities for sums and differences of angles to the
sine factors yields

sin(6, —6,) sinf, cosd, —cosb, sinb,
sin(6,+6,) sin6, cosb, + cosb, sinb,

1, cos8, —cosb,

) (6.60)
17, c0s8, +cosb,
where Snell’s law has been used to obtain
n, =”—2=—S.me'. (6.61)
n, sind,

We can express cos#, in terms of cosé, and 7 by writing Snell’s law in the form

n\J1—cos’ 0, =n,~/1-cos’ 6, (6.62)

and solving for cosé,:

cosé, =\/1—L2(1—cos2 6,). (6.63)
m

Defining the variable g as

Team LRN

Chapter 6 lllumination 197

g=n,c088,=n; -1+(L-H)? (6.64)
lets us express the quotient of the sine functions as

sin(6,-0,) g-L-H

_ . (6.65)
sin(6,+6,) g+L-H

A similar procedure allows us to express the cosine factors in terms of g and
L- H. We begin by applying angle sum and difference identities:

cos(f, +6,) cosd, cosb, —sinb,sind,
cos(6,—6,) cos6, cosb, +sind,sinb,

_ cosd, cosf, —n,sin’ 6,

= — (6.66)
cos@, cosb, +m,sin" 6,

Again using the variable g defined in Equation (6.64), we can write this as

cos(@l +92) gcoso, —n;(l—coszez)

cos(@, - 92) gcosé, +7; (1 —cos’ 02)

2 2
gecosh —n;+g
2

gcosf, +n—g
(L H)(g+ L H)- 1

(L-H)(g-L-H)+1 (6.67)

The Fresnel factor can now be entirely expressed in terms of L- H and 7,as fol-
lows.

F(V.L)= —L.H)Z[[(L.H) g+L.H)—1]2+1J (6.68)

1(g
2(g+L-H)>\[(L-H)(g-L-H)+1]’

The RGB color Fresnel factor 7 (V,L) simply consists of the function F, (V,L)
evaluated at red, green, and blue wavelengths.

We can make a couple of observations about the behavior of the function F,.
First, as the angle of incidence approaches 90 degrees, the value of L-H ap-
proaches 0, and thus the value of F, approaches 1. This means that at grazing
angles, all the incident light is reflected, leaving none to be absorbed by the sur-
face. Second, for normal incidence in which the incident angle is 0, the value of
L-H is 1, and F, reduces to

Team LRN

198

Mathematics for 3D Game Programming and Computer Graphics

2
17, 1
F iy =|—"—1. 6.69
()= 27 (669
This gives us a convenient way of deriving an approximate value for , if all that
is known about a material is the specular color S reflected at normal incidence.
Solving Equation (6.69) for n7, yields

7 I_V(F/L)L=H. ()

Once a value of 77, has been calculated with this equation by setting the value of
(F,) ..y at red, green, and blue wavelengths equal to the red, green, and blue
components of S, it can be used in Equation (6.68) to calculate reflectance for
any other angle of incidence.

6.9.4 The Microfacet Distribution Function

Given a halfway vector H, the microfacet distribution function returns the frac-
tion of microfacets whose normal vectors point along the direction H. For rough
surfaces, the Beckmann distribution function [BECK63] given by

B 1 (N-H)*> -1
D'"(V’L)_4m2(N-H)4 exp(mz(N-H)z} (6.71)

describes the distribution of microfacet orientations in terms of the root mean
square slope m. Large values of m correspond to rough surfaces and thus produce
a wide distribution of microfacet orientations. As shown in Figure 6.21, smaller
values of m correspond to smoother surfaces and produce relatively narrow dis-
tributions, which result in a sharper specularity.

The function given by Equation (6.71) is isotropic, meaning that it is invari-
ant under a rotation about the normal vector N. As long as the angle between the
direction to viewer V and direction to light L remains constant, and the angle
between each of these vectors and the normal vector remains constant, the distri-
bution of microfacets also remains constant. Many surfaces, however, possess
different degrees of roughness in different directions. These surfaces are called
anisotropic reflectors and include materials such as brushed metal, hair, and cer-
tain fabrics.

Team LRN

Chapter 6 lllumination 199

(a)

N
N

(®) N

e
-‘ﬂ‘_._‘.?:'-- —
— e r o5
—— -"'#"‘ =
T o — e
—— .’, .
- = e

e

Figure 6.21 Microfacet distributions given by Equation (6.71) modeling (a) a rough
surface using m= 0.6 and (b) a relatively smooth surface using m = 0.25.

We can modify the microfacet distribution function to account for
anisotropic surface roughness by changing Equation (6.71) to

D,(V.L)=————exp (T‘I:)2+1_(T'2P)2\(N'H)zzlﬂ,
4mm (N-H) m m J(N~H) |

(6.72)

X ¥y

where m is a two-dimensional roughness vector, T is the tangent to the surface
aligned to the direction in which the roughness is m , and P is the normalized
projection of the halfway vector H onto the tangent plane:

Team LRN

200

Mathematics for 3D Game Programming and Computer Graphics

H-(N-H)N
p=— 6.73)
IH-(N-H)N]|

Figure 6.22 shows a disk rendered with both isotropic and anisotropic surface
roughness values. Some surfaces exhibit roughness at multiple scales. This can
be accounted for by calculating a weighted average of microfacet distribution
functions

D(V,L)ziwiDmi (V,L), (6.74)

i=1

where multiple roughness values m, are used and the weights w, sum to unity.
Figure 6.23 shows two objects rendered with different values of m and another
object rendered using a weighted sum of those same values.

Figure 6.22 A disk rendered using the anisotropic distribution function given by
Equation (6.72). For each image m, = 0.1. From left to right the values of m, are 0.1
(isotropic), 0.12, 0.15, and 0.2. The tangent vectors are aligned to concentric rings
around the center of the disk—they are perpendicular to the radial direction at every
point on the surface.

6.9.5 The Geometrical Attenuation Factor

Some of the light incident on a single microfacet may be blocked by adjacent
microfacets before it reaches the surface or after it has been reflected. This block-
ing results in a slight darkening of the specular reflection and is accounted for by
the geometrical attenuation factor. Blocked light is essentially scattered in ran-
dom directions and ultimately contributes to the surface’s diffuse reflection.

Team LRN

Chapter 6 lllumination 201

Figure 6.23 Copper vases rendered with isotropic microfacet distributions. The first
two images use a single roughness value of m, = 0.1 (left) and m, = 0.25 (center).
The rightmost image combines these using the weights w, =0.4 and w, = 0.6.

We can derive an estimate of how much light is blocked due to surface
roughness by assuming that microfacets always form V-shaped grooves. Figure
6.24(a) illustrates a situation in which light reflected by a microfacet is partially
blocked by an adjacent microfacet. In this case, light is blocked after being re-
flected. Reversing the direction in which the light travels exhibits the case in
which light is blocked before reaching the microfacet, as shown in Figure
6.24(b).

The application of a little trigonometry leads us to a formula giving the frac-
tion of light reflected by a microfacet that still reaches the viewer after being par-
tially blocked by an adjacent microfacet. As shown in Figure 6.25, we would like
to determine the portion x of the width w of a microfacet that is visible to the
viewer. We first observe that

1

w=——, (6.75)
sina
and that by the law of sines (see Appendix B, Section B.6),
x2Sy (6.76)
sin(f +7/2)

We can express each of the sine functions in Equations (6.75) and (6.76) as co-
sine functions that have been shifted by 7/2 radians by writing

sina =cos(7/2-a)=N-H
sin(f+7z/2)=cosff=V-H
siny =cos(7z/2—-y)=N-V. (6.77)

Team LRN

202 Mathematics for 3D Game Programming and Computer Graphics

(2) (b)

Figure 6.24 (a) Light reflected by the left microfacet is partially blocked by the right
microfacet. (b) Light is blocked by the right microfacet before reaching the left micro-
facet.

A
—_
A

Figure 6.25 The fraction of light reflected from the left microfacet that reaches the
viewer is equal to x/w. The halfway vector H is normal to the microfacet surface
since only microfacets possessing that orientation contribute to the specular reflec-
tion.

Using the dot products corresponding to each of the cosine functions lets us ex-
press the fraction of light G, reaching the viewer as

x _2(N-H)(N-V)

6.78
w V-H ()

G, =

Team LRN

Chapter 6 lllumination 203

When light is blocked before reaching a microfacet, we can calculate the
fraction G, that still reaches the viewer by simply exchanging the vectors V and
L in Figure 6.25 to obtain

x _2(N-H)(N-L)

G, =
w L-H

(6.79)

The three possible cases pertaining to light reflected by a microfacet are that
the light is completely unobstructed (the fraction of light reaching the viewer is
one), that some of the reflected light is blocked, and that some of the incident
light is blocked. We account for all three cases by defining the geometrical at-
tenuation factor as the minimum fraction of light that reaches the viewer:

G(V,L)=min{1,G,,G,}
e 2(N-H)(N-V) 2(N-H)(N-L)
’ L-H ’ L-H '

(6.80)

We have changed the denominator of G, to L- H. This is allowable because, by
the definition of the halfway vector, the angle between L and H is equal to the
angle between V and H, and thus V- H=L- H.

6.9.6 Implementation

Ray tracing applications can directly apply Equation (6.54) in its entirety when-
ever a ray intersects a surface. For real-time applications where greater efficiency
is required, we need to sacrifice a little precision for better performance. For suf-
ficiently tessellated surfaces, evaluating Equation (6.54) at each vertex might
produce good results, but architectural geometry in games generally does not
possess such tessellation. Modern GPUs can evaluate Equation (6.54) at every
pixel with a fragment program. We can avoid many of the microfacet shading
calculations by using texture maps to essentially store lookup tables that are in-
dexed by quantities such as N- H and L- H.

Adding a texture map factor 7 and a gloss map factor G to Equation (6.53)
and substituting the BRDF g into Equation (6.50) gives us the following formula
for the color of light K reflected toward the viewer by a surface illuminated by a
single light source, where C is the color of the light and £ is the fraction of light
that is reflected diffusely.

K =C(N-L)kDT +(1-k)Go,(V,L)] (6.81)

Substituting Equation (6.54) for g, (V,L) gives us

Team LRN

204

Mathematics for 3D Game Programming and Computer Graphics

D,(V,L)G(V,L)
Z(N-V)

K =kCDT (N-L)+(1-k)CGF(V,L) (6.82)

The only quantity on which the Fresnel factor 7 (V,L) depends is L- H, and
the only quantity on which the isotropic microfacet distribution function
D, (V,L) depends is N- H. Given a normal-incidence specular reflection color S
and a microfacet root mean square slope m, we can construct a texture map
whose s and ¢ coordinates correspond to N- H and L- H, respectively, and whose
color values represent the product 7(V,L)D, (V,L)/7. An example of such a
texture map is shown in Figure 6.26.

Lo
L-H
0.0 —
| >
N-H
0.9 1.0

Figure 6.26 A texture map representing the product F(V,L)D, (V,L)/m. The
s-coordinate corresponds to the quantity 10(N-H)-9, and the f-coordinate corre-
sponds to the quantity L-H. This image was generated using the normal-incidence
specular reflection color § =(0.8,0.6,0.1) and the microfacet root mean square slope
m=0.2.

For small values of m, the value of the microfacet distribution function D is
significant only when N-H is near 1. To maximize the resolution of the useful
information in the texture containing the products 7 (V,L)D, (V,L)/z, we map
the range [0,1] of s texture coordinates to the range [x,1], where x is the value of
N-H for which D, (V,L)/7z =¢ for some small threshold &. We cannot find the
value of x analytically, but we can apply Newton’s method (see Section 5.1.4) to
the function

Team LRN

Chapter 6 lllumination 205

2 —_—
fn)=—>r 4exp[x2 j)-g. (6.83)
drm”x m-x
The refinement formula used to find the value of x for which f(x)=0 is given
by
Xt =% — ji(xj)
(%)
2.3 2 2.2
=5 = (1= dmemttel), (6.84)
2—4m’x

i

Using an initial value of x, =1 may require several iterations of this refinement
formula since the slope of the function f(x) may be steep at x=1. Once the
value of x for which f(x)=0 is known, we map values of N- H from the range
[x,1] to the range [0,1] using the formula

sz Hox (6.85)
l1-x
It is convenient for us to perform the microfacet lighting calculations in tan-
gent space since in this setting N =(0,0,1) and, for calculations pertaining to ani-
sotropic microfacet distributions, T=(1,0,0). The vertex program shown in
Listing 6.2 demonstrates how the tangent-space view direction V and direction to
light L can be calculated at each vertex for a point light source. These vectors are
then interpolated across the face of a triangle as it is rasterized and used to calcu-
late the halfway vector H for each fragment.

Listing 6.2 This vertex program transforms the view direction V and the direction to
light L into tangent space, and stores the results in texture coordinate sets 1 and 2.
The interpolated values of V and L are then used by a fragment program to perform
microfacet shading. Program environment parameter 0 contains the object-space
camera position, and program environment parameter 1 contains the object-space
light position. The orthonormalized tangents are read from vertex attribute array 0,
and the bitangents are calculated using Equation (6.40).

!'1ARBvpl.0

ATTRIB normal = vertex.normal;
ATTRIB tangent = vertex.attrib[0] ;
PARAM mvp[4] = { state.matrix.mvp} ;
PARAM camera = program.env| 0] ;

Team LRN

206

Mathematics for 3D Game Programming and Computer Graphics

PARAM 1ight = program.env| 1] ;
TEMP bitangent, vdir, 1dir, temp;

Transform vertex

DP4 result.position.x, mvp[0] , vertex.position;
DP4 result.position.y, mvp[1] , vertex.position;
DP4 result.position.z, mvp[2] , vertex.position;
DP4 result.position.w, mvp[3], vertex.position;
B= (NxT) * T.w

XPD bitangent, normal, tangent;

MUL bitangent, bitangent, tangent.w;

Calculate normalized V and L

ADD vdir, camera, -vertex.position;
ADD 1dir, light, -vertex.position;
DP3 temp.x, vdir, vdir;

DP3 temp.y, 1dir, 1ldir;

RSQ temp.x, temp.x;

RSQ temp.y, temp.y;

MUL vdir, vdir, temp.x;

MUL idir, 1dir, temp.y;

Transform into tangent space

DP3 result.texcoord 1] .x, tangent, vdir;
DP3 result.texcoord 1] .y, bitangent, vdir;
DP3 result.texcoord 1] .z, normal, vdir;
DP3 result.texcoord 2] .x, tangent, 1ldir;
DP3 result.texcoord 2] .y, bitangent, ldir;
DP3 result.texcoord 2] .z, normal, 1ldir;
END

In tangent space, N-L=L_, N-V=VF_, and N- H= H_. The specular compo-
nent of Equation (6.82) becomes
V,L
—(1- k)CGS(H L. H)%,

z

K (6.86)

specular

where S(H,,L- H) represents the product 7 (V,L)D, (V,L)/z that is looked
up in a texture map. The fragment program shown in Listing 6.3 calculates the
halfway vector H, performs a texture fetch to obtain the value of S(H,,L- H),
and multiplies it by the precomputed value of (1—4)C. The geometrical attenua-

Team LRN

Chapter 6 lllumination

207

tion factor G(V,L) sometimes makes a subtle contribution and may be omitted.
When present, its value is calculated in tangent space using the formula

2H

G(V.L)= "= min(V,.L,)

L-H

and using the saturation operation to clamp the result to the range [0,1].

Listing 6.3 This fragment program performs the calculations necessary for isotropic
microfacet shading. Texture coordinate set 1 contains the interpolated view direction
V, and texture coordinate set 2 contains the interpolated light direction L generated by
the vertex program in Listing 6.2. Program local parameter O contains the product
kCD, program local parameter 1 contains the product (1-k)C, and program local
parameter 2 contains the scale and bias used to map the values of N-H to the range
[0,1]. The 2D texture map containing the product F(V,L)D, (V,L)/m is bound to tex-
ture image unit 0.

'1ARBfpl.0

ATTRIB view =
ATTRIB light =
PARAM diffuse
PARAM specular
PARAM range
TEMP colr, vd

fragment.texcoord 1] ;
fragment.texcoord 2] ;

= program.locall 0] ;
= program.locall 1] ;
program.locall 2] ;

ir, 1ldir, hdir, geom, txtr,

Normalize V and L

DP3
DP3
RSQ
RSO
MUL
MUL

temp. x,
temp.y,
temp. x,
temp.y,
vdir, vi
1dir, 1i

Calculate H

ADD
DP3
RSQ
MUL

hdir, vd
temp, hd

view, view;
l1ight, light;
temp.x;
temp.y;

ew, temp.x;
ght, temp.y;

ir, 1dir;
ir, hdir;

temp, temp.x;

hdir, hd

ir, temp;

Scale and bias N*H

MAD

txtr.x,

hdir.z, range.x, range.y;

Team LRN

temp;

(6.87)

208

Mathematics for 3D Game Programming and Computer Graphics

Calculate L*H
DP3 txtr.y, 1dir, hdir;

Look up product F(V,L)D(V,L)/pi
TEX colr, txtr, texturel 0], 2D;

Divide by N*V
RCP temp, vdir.z;
MUL colr, colr, temp;

Calculate geometrical attenuation
(May be omitted)

RCP temp, txtr.y;

MIN geom, vdir.z, ldir.z;
ADD geom, geom, geom;

MUL geom, geom, hdir.z;
MUL_SAT geom, geom, temp;

MUL colr, colr, geom;

Multiply specular by (1-k)C and add kCD{(N*L)

MUL temp, diffuse, 1ldir.z;
MAD result.color, colr, specular, temp;
END

For anisotropic microfacet distributions, we can use a 3D texture map whose
r-coordinate cotresponds to the quantity (T- P)?, where P is the projection of the
halfway vector H onto the tangent plane. In tangent space, Equation (6.73) be-
comes

<}{ﬂ[{w0>
JH; +H,
and thus
HZ
T P)?=———. 6.89
(TP = (6.89)

The 3D texture map contains the product F(V,L)D, (V,L)/z, where D, (V,L)
is the anisotropic distribution function given by Equation (6.72). The fragment
program shown in Listing 6.4 implements Equation (6.89) to perform anisotropic
microfacet shading.

Team LRN

Chapter 6 lllumination

Listing 6.4 This fragment program performs the calculations necessary for aniso-
tropic microfacet shading. Texture coordinate sets and program parameters are used
in the same way as in Listing 6.3. The 3D texture map containing the product

F(V,L)D,(V,L)/m is bound to texture image unit 0.

'1'ARBfpl.0

ATTRIB view = fragment.texcoord 1];
ATTRIB light = fragment.texcoord 2] ;
PARAM diffuse = program.locall 0] ;
PARAM specular = program.locall 1] ;
PARAM range = program.locall 2] ;
TEMP colr, vdir, 1dir, hdir, geom, txtr,
Normalize V and L

DP3 temp.x, view, view;

DP3 temp.y, light, light;

RSQ temp.x, temp.x;

RSO temp.y, temp.y;

MUL vdir, view, temp.x;

MUL 1dir, light, temp.y;

Calculate H

ADD hdir, vdir, 1ldir;

DP3 temp, hdir, hdir;

RSQ temp, temp.x;

MUL hdir, hdir, temp;

Scale and bias N*H

MAD txtr.x, hdir.z, range.x, range.y;
Calculate L*H

DP3 txtr.y, 1ldir, hdir;

Calculate

(T*P)~2 = Hx"2 /

(Hx"2 + Hy"2)

MUL temp.x, hdir.x, hdir.x;

MAD temp.z, hdir.y, hdir.y, temp.x;
RCP temp.z, temp.z;

MUL txtr.z, temp.x, temp.z;

Look up product F(V,L)D(V,L)/pi

TEX colr, txtr, texture[0], 3D;

Team LRN

temp;

209

210

Mathematics for 3D Game Programming and Computer Graphics

Divide by N*V
RCP temp, vdir.z;
MUL colr, colr, temp;

Calculate geometrical attenuation
(May be omitted)

RCP temp, txtr.y;

MIN geom, vdir.z, ldir.z;
ADD geom, geom, geom;

MUL geom, geom, hdir.z;
MUL_ SAT geom, geom, temp;

MUL colr, colr, geom;

Multiply specular by (1-k)C and add kCD(N*L)

MUL temp, diffuse, 1ldir.z;
MAD result.color, colr, specular, temp;
END

Chapter 6 Summary

Point Light Source Attenuation

The intensity C of a point light source at a distance d from its position is given by

I B
k +kd+k,d

where C, is the color of the light, and the constants &, k,, and k, control the at-
tenuation.
Spot Light Source Attenuation
The intensity C of a spot light source at a point Q lying at a distance d from the
light’s position is given by
~ max{-R-L,0}"
k. +kd+kd

where C, is the color of the light; &, k,, and kq are the attenuation constants; R is
the direction in which the spot light is pointing; L is the unit vector pointing from

Team LRN

Chapter 6 lllumination 211

Q to the light position; and the exponent p controls the rate at which the intensity
falls off as the angle between R and —L increases.

Ambient and Diffuse Lighting

The ambient and diffuse contribution to the illumination color calculated at a
point Q on a surface is given by the expression

Kitnse = DA+ DZC, max{N-L,,0},

i=]

where D is the surface’s diffuse reflection color, N is the normal vector to the
surface, L, is the unit vector pointing from Q toward the i-th light, C, is the inten-
sity of the i-th light at the point Q, and A represents the ambient light color.

Specular Lighting

The specular contribution to the illumination color calculated at a point Q on a
surface is given by the expression

K.

specular

=8) Cmax{N-H,0}"(N-L,>0),

i=]

where S is the surface’s specular reflection color; H, is the unit halfway vector at
the point Q, which lies halfway between the direction to light L, and the direction
to the viewer; and m controls the sharpness of the specularity. The expression
(N-L, >0) evaluates to 1 or 0, depending on whether the surface is facing the
light.

Total Illumination Equation

The reflected color X calculated at a point Q on a surface illuminated by » lights
is given by

K=EM+DTA+Y C[DT(N-L,)+SG(N-H,)"(N-L,>0)],
i=1

where the dot products N- L, and N- H, are clamped to zero, and the quantities
involved are defined as follows.

D =diffuse reflection color
S = specular reflection color
m = specular exponent

A = ambient light color

Team LRN

212

Mathematics for 3D Game Programming and Computer Graphics

£ =emission color
7 = texture map color
G = gloss map color

M = emission map color
C. = color of i-th light at Q

i

L, = direction vector to i-th light
H, = halfway vector for i-th light
N =normal vector

Bump Mapping

The tangent T and bitangent B for a triangle whose vertices lie at the points P,
P,, and P, are calculated using the formula

|:]; T) Tz_l 1 {tz = —l{) (Ql) (Ql) —|
B, B, B, St =Sl | -, Slh(Qz) (Qz) (QZ)J

where Q, =P, -P,Q,=P,-P;, and

<S19tl>= <51 =8¢t _to>
<52>t2>= <52 —So» 1 _t0>-

The direction-to-light vector L and halfway vector H are transformed from object
space to tangent space using the matrix

T T, T
B B B,
N, N, N[

where T' and B’ are orthogonal to N and each other.

Bidirectional Reflectance Distribution Functions

The radiance C, of the light reflected in the direction V from a surface illumi-
nated by n lights is given by

CR(V)ZiQ(V7Li)Ci(N'Li)’

where C, is the radiance of the i-th light source. The BRDF p can be divided into
diffuse and specular components by writing

Team LRN

Chapter 6 lllumination 213

o(V,L)=kD+(1-k)p,(V,L),
where £ is the fraction of light that is reflected diffusely.

Cook-Torrance Illumination

The specular component of the BRDF used in the Cook-Torrance illumination
model is given by

D(V,L)G(V,L)

o.(V.L)=F(V.L) Z(N-V)(N-L) ’

where F is the Fresnel factor, D is the microfacet distribution function, and G is
the geometrical attenuation factor.

Fresnel Factor

The Fresnel factor for a single color is given by

1(g-LoH)([(L-H)(g L H)- 1]
VL= vy [[(L- H)(z L H) 1) ”]’

where g is defined by

g=xm,—1+(L-H)".

The index of refraction 77, can be calculated using the Equation

1448,
1-Js,’

where S is the specular reflection color at normal incidence.

n,=

Microfacet Distribution Functions

The microfacet distribution function D, for isotropic surfaces is given by

((N-H)Z—lj
4m*(N-H)* =P m*(N-H)* |

Dm(V’L):

where m is the root mean square slope of the microfacets. For anisotropic sur-
faces, the microfacet distribution function becomes

Team LRN

214

Mathematics for 3D Game Programming and Computer Graphics

(T-P)* 1-(T-P)’ {(N-H)’ 1]

Dm(V’L):4mey(N~H)4eXpH m? m)2)(N~H)2 lJ’

X

where m,_ and m, represent the root mean square slopes parallel and perpendicular
to the tangent direction T. The vector P is the normalized projection of the half-
way vector H onto the tangent plane.

Geometrical Attenuation Factor

The geometrical attenuation factor is given by the formula

G(V.L) = minl1, 2 H)(N-V) 2(N-H)(N-L)
L-H L-H

and accounts for the incident or reflected light for a microfacet that is blocked by
adjacent microfacets.

Exercises for Chapter 6

1. A point light source has attenuation constants k, =1, k, =0, and k, = 3. At
what distance from the light source is the radiant intensity one-fourth that of
the intensity at a distance of one meter?

2. A spot light source positioned 10 meters above the origin at the point
P =(0,0,10) and radiating energy in the direction R =(0,0,—1) is configured
so that no distance attenuation takes place by setting k, =1 and k, =k, = 0. If
the color of the light is white (C, =(1,1,1)) and the spot exponent is 8, then
what is the radius of the circle lying in the x-y plane where the intensity of
the light is 50 percent gray (C =(%,3.3))?

3. Describe how it is possible for N- H to be a positive number when N-L is a
negative number, thus necessitating the (N-L >0) term in the illumination
formula.

4. Let L be the normalized direction to the light source and V be the normal-
ized direction to the viewer at a surface point where the unit normal vector
is N. Show that

Team LRN

Chapter 6 lllumination 215

mf2

(N-L+N-V)? |
2(L-V+1) |

>

(N-H)" =

where H is the halfway vector defined by Equation (6.20), and m is an arbi-
trary specular exponent.

5. Write a program that calculates vertex normals and vertex tangents for an
arbitrary triangle mesh. Assume that the triangle mesh is specified such that
each of n triangles indexes three entries in an array of m vertices. Each entry
in the vertex array contains the position of the vertex and two-dimensional
texture-mapping coordinates.

6. Modify Listings 6.2 and 6.3 so that they perform bump mapping as well as
isotropic microfacet shading.

7. Implement a simple ray tracer that calculates diffuse and specular reflections
using Equations (6.6) and (6.19). The ray tracer should be able to model
spheres and should support directional, point, and spot light sources.

8. Extend the ray tracer from Exercise 7 to implement Cook-Torrance micro-
facet shading.

Team LRN

Team LRN

Chapter

Visibility Determination

‘ x ’ hen it comes to the performance of a real-time 3D engine, the single

most important component of the rendering architecture is visibility

determination. Given a particular camera position and orientation,

every engine must be able to efficiently determine which parts of the world are

potentially visible and therefore should be rendered. This problem is usually at-

tacked from the opposite perspective—the engine determines which parts of the
world are definitely not visible and renders whatever is left over.

Most engines perform visibility determination at multiple levels. The general
goal is to determine what world geometry cannot possibly intersect the view frus-
tum. At the smallest scale, 3D hardware performs backface culling to eliminate
individual triangles that face away from the camera. At the level above that,
bounding volume tests are usually performed to determine whether an object lies
completely outside the view frustum. Moderate-size groups of geometry can be
culled from the visible set by organizing areas of the world into tree structures
such as binary space partitioning (BSP) trees or octrees. At the largest scale, en-
tire regions of world geometry can be eliminated by using a technique known as
a portal system.

217

Team LRN

218

Mathematics for 3D Game Programming and Computer Graphics

7.1 Bounding Volume Construction

Bounding volumes are constructed so that they enclose all the vertices belonging
to a triangle mesh, thereby ensuring that every triangle in the mesh is also con-
tained in the bounding volume. The bounding volume should be made as small as
possible so that it falls completely outside the view frustum as often as possible,
thus enabling the object it contains to be culled from the visible set of geometry
as often as possible.

Figure 7.1(a) shows a box bounding a set of points that represent the vertices
of a triangle mesh. The box is aligned to the coordinate axes, but the vertices are
distributed in such a way that the box enclosing them contains a lot of empty
space. As Figure 7.1(b) demonstrates, choosing a bounding box that is aligned to
the natural axes of the data set can greatly reduce the size of the box. We present
a method for determining the natural alignment in the next section.

~<
p <

A
(@) (b)

P x » X

Figure 7.1 A bounding volume aligned to the coordinate axes is usually a poor
choice for most vertex distributions.

7.1.1 Principal Component Analysis

We can reduce the size of each of our bounding volumes by determining a coor-
dinate system that is naturally aligned to the set of vertices belonging to each tri-
angle mesh. We can calculate these coordinate axes by using a statistical method
called principal component analysis. Principal component analysis allows us to
find a coordinate space in which a set of data composed of multiple variables,
such as the x-, y-, and z-coordinates stored in an array of vertex positions, can be

Team LRN

Chapter 7 Visibility Determination 219

separated into uncorrelated components. The primary principal component of the
data is represented by the direction in which the data varies the most.

To determine the natural coordinate system for an arbitrary set of N vertices
P,P,,...,P,, where P, =(x,,y,,z,), we first calculate the mean (average) position
m using the formula

1 N
m=—) P. 7.1
NZ , (7.1)

We then construct a 3x 3 matrix C called the covariance matrix as follows.
1 N
=—> (P,—m)(P,—m)" (7.2)
N i=]

The covariance matrix is a symmetric matrix made up of the following six unique
entries.

1 N

G, = Z(xi_mx)z C,=Cy=—

11 ﬁi:l (my)
1 & 1

DS
Cn:ﬁ,-=1(yi_my)2 3]=N§x—m)(z—m)
)

C33=%;(Zi_mz)2 Cu=GC, = : ()(Z -m,) (7.3)

The entries of the covariance matrix represent the correlation between each pair
of the x-, y-, and z-coordinates. An entry of zero indicates no correlation between
the two coordinates used to calculate that entry. If C is a diagonal matrix, then all
three coordinates are completely uncorrelated, meaning that the points are dis-
tributed evenly about each axis.

We want to find a basis to which we can transform our set of vertices so that
the covariance matrix is diagonal. If we apply a transformation matrix A to each
of the points { P}, then the covariance matrix C of the transformed set of points
is given by

1 & T
C=—)> (AP.— Am)(AP. — Am
2 (AR~ Am)(AP, - Am)

:%ZN:A(PI—m)(PI.—m)TAT

i=]

=ACA". (7.4)

Team LRN

220

Mathematics for 3D Game Programming and Computer Graphics

Thus, we require an orthogonal transformation matrix A whose transpose diago-
nalizes the matrix C. Since C is a real symmetric matrix, we know by Theorem
2.26 that its eigenvectors are orthogonal. The matrix whose rows consist of the
eigenvectors of C meets our requirements and maps our vertices into a space
where their coordinates are uncorrelated.

We have now turned the problem of finding the natural axes of a set of points
into that of calculating the eigenvectors of the covariance matrix. One possible
way to do this is to first calculate the eigenvalues given by the roots of the char-
acteristic polynomial, a cubic in the case of the 3x 3 covariance matrix. Fortu-
nately, since the covariance matrix is symmetric, it has only real eigenvalues (see
Theorem 2.25), and we can therefore use the method presented in Section 5.1.2
to explicitly calculate all of them. Finding the corresponding eigenvectors is then
achieved by solving three homogeneous linear systems, as in the following ex-
ample. Alternatively, a numerical method may be used to calculate the eigenval-
ues and eigenvectors, as discussed in Section 14.2

Example 7.1. Determine the natural axes for the following set of points.

P =(-1,-2,1)
P, =(1,0,2)

P, =(2,-1,3)
P, =(2,-1,2)

SR =(1,-1,2). (75

The covariance matrix C is then given by
3 3
2 4 —l
1
4l -

gl

The eigenvalues of the covariance matrix are the roots of the characteristic
polynomial:

[

c=|! (7.6)

0=

3
3

ENE

Team LRN

Chapter 7 Visibility Determination 221

EI O
det(C-Al)=| & 1-1 1
R
=-A 4312+ L (7.7)

Explicitly solving for the roots of the characteristic polynomial using the
method presented in Section 5.1.2 gives us the following eigenvalues.

A =2.097
4, =0.3055
A, =0.09756 (7.8)

The eigenvectors, which we call R, S, and T here, are found by solving the
linear systems (C—4I)V, =0. Omitting the details of these calculations, the
unit-length eigenvectors of the matrix C are

~0.833] ~0.257] 0.489]
R=|-0330] S=| 0941| T=|-0.0675, (7.9)
~0.443)] ~0.218]] ~0.870 ||

and these represent the natural axes of the set of vertices P,. B

In the remainder of this chapter, we use the letters R, S, and T to represent
the natural axes of a set of vertices. The direction R always represents the princi-
pal axis, which corresponds to the largest eigenvalue of the covariance matrix.
The directions S and T represent the axes corresponding to the second largest and
the smallest eigenvalues, respectively. That is, if 4, 4,, and A, are the eigenval-
ues corresponding to the vectors R, S, and T, respectively, then |4,| > |4,|>|4,].

7.1.2 Bounding Box Construction

Given a set of vertex positions P,,P,,...,P, for a triangle mesh, we can now cal-
culate the directions R, S, and T corresponding to the natural axes of the object.
To construct a bounding box, we need to determine the minimum and maximum
extents of the vertex set along these three directions. These extents immediately

Team LRN

222

Mathematics for 3D Game Programming and Computer Graphics

produce the six planes of the bounding box; other types of bounding volumes
require a little more computation.

To find the extents, we simply compute the dot product of each vertex posi-
tion P, with the unit length vectors R, S, and T, and take the minimum and maxi-
mum values. The six planes of the bounding box are then given by

1

(R-min{P-R}) (-R,max{P-R})

ISiSN ISiSN
(S-minpsy) (Smax(p-s))
(T,-min{ P, T}) (-7, max{P,- T}>. (7.10)

Example 7.2. Calculate the six planes of the naturally aligned bounding box
for the set of points given in Example 7.1.

Solution. The natural axes for this set of points are given by Equation (7.9).

The dot products of each of the four points with the directions R, S, and T

are listed below.
P-R=1.05 -S=-1.84 P -T=-122

P,-R=-1.72 -§=-0.693 P,-T=-125

Pl
P2
(7.11)
P, R=-267 P,-S=-211 P,-T=-1.56
P4

P,-R=-222 -§=-189 P,-T=-0.695

Using the minimum and maximum values of P,- R, the two planes perpen-
dicular to the direction R are given by

(R,2.67) (-R,1.05). (7.12)
Similarly, the planes perpendicular to the S and T directions are given by

(8,2.11) (-8,-0.693)
(T,156) (~T,—0.695). W (7.13)

The dimensions of the bounding box are given by the differences between
the minimum and maximum dot products in each of the directions R, S, and T.
The center Q of the bounding box is the point at which the three planes lying
halfway between each pair of opposing faces intersect. We assign to the scalars
a, b, and c the average extent in the R, S, and T directions, respectively, as fol-
lows.

Team LRN

Chapter 7 Visibility Determination 223

min{ P, - R} + max{P - R}

— ISisN ISisN
2
. min{P,-S} + max{P,-S}
2
min{ P, - T} + max{ P - T}
c= I<isN 5 ISisN (7 14)

The three planes that divide the box in half are given by (R,—a), (S,-b), and
(T,—c). Using Equation (4.21) to calculate the point of intersection provides us
with the following expression for the center Q.

Q=aR+bS+cT. (7.15)

7.1.3 Bounding Sphere Construction

Bounding spheres are commonly used in tests for object visibility due to the
speed with which such a test can be performed. As with all bounding volumes,
we should construct bounding spheres that are as tight as possible so as to mini-
mize the occurrence of its intersection with the view frustum. Achieving an abso-
lutely optimal bounding sphere in all cases turns out to be a hard problem that we
do not discuss here, but we are able to construct bounding spheres that are ac-
ceptably efficient without requiring an excessively complex algorithm.

We begin constructing a bounding sphere for a set of points P,,P,,...,P, by
first calculating the principal axis R and locating the points P, and P, represent-
ing the minimum and maximum extents in that direction (i.e., we locate the
points having the least and greatest dot product with R). We then construct a
sphere whose center Q and radius » are given by

_ P +P
Q_z

r=|IP,-Q]. (7.16)

That is, the center of the sphere lies halfway between the points producing the
minimum and maximum extents in the R direction, and the radius is the distance
from the center to either of those points.

Although it is a good approximation to the final bounding sphere, the sphere
given by Equation (7.16) may not enclose all the points P,,P,,...,P,. We must
therefore test each of the points { P,} to make sure they fall inside the sphere.
Whenever a point is encountered that lies outside the sphere, we expand the

Team LRN

224

Mathematics for 3D Game Programming and Computer Graphics

sphere by adjusting the center Q and radius to enclose the previous sphere and
the exterior point, as shown in Figure 7.2. A point P, lies outside the sphere if

We expand the sphere by placing the new center Q' on the line connecting the
previous center Q and the exterior point P,. The new sphere is then tangent to the
previous sphere at a point G given by

P.-Q|*>r. (7.17)

p—t < (7.18)

which also lies on the line containing Q and P,. The new center Q' is placed
halfway between the points G and P, and the new radius 7' is the distance from
the new center to either of these points:

_G+P,

=[P - Q. (7.19)

Figure 7.2 The initial bounding sphere determined by the extents of the set of points
in the direction of the principal axis is expanded to include any points in the set that lie
outside of the sphere.

Team LRN

Chapter 7 Visibility Determination 225

7.1.4 Bounding Ellipsoid Construction

An ellipsoidal bounding volume may be appropriate for a triangle mesh having
an elongated shape. To determine a good bounding ellipsoid for a set of vertices
P.P,,....P,, we need to calculate the lengths of the three semi-axes of the ellip-
soid aligned to the natural axes R, S, and T. We can transform the problem into
that of finding a bounding sphere by scaling the vertex positions in these direc-
tions so that their bounding box becomes a cube. Once the bounding sphere of
the scaled set is known, we scale its radius by the reciprocal amount in each di-
rection to derive the semi-axis lengths.

To scale the vertex positions so that they are bounded by a cube, we need to
know the distance between the planes representing the minimum and maximum
extents in each natural axis direction. These distances are equal to the dimensions
of the standard bounding box, which are given by the differences between the
minimum and maximum dot products of the points P, with the vectors R, S, and
T. Calling these distances a, b, and ¢, respectively, we have

a=max{P -R}—min{P - R}

ISisN ISisN

b =max{Pi-S}—mi¥\1{Pi-S}
ISisN 1SN

c¢=max{P - T} —mig{ P-T}. (7.20)
ISiSN 1<ig

To transform the vertex set into one bounded by a cube, we need to scale their
positions by 1/a in the R direction, by 1/b in the S direction, and by 1/c in the T
direction. As stated in Equation (3.11), the matrix M that performs this scale is

given by
Ya 0 0]
M=[R S T]|0 1 O[R S T]T, (7.21)
0 0 1V

where we have replaced the inverse operation for the rightmost matrix by a
transpose operation since the vectors R, S, and T are orthonormal.

Once each of the points { P} has been transformed by the matrix M, we cal-
culate the bounding sphere for the set of points MP,,MP,,...,MP,,. Once the cen-
ter Q of this sphere is known, we can calculate the center of the bounding
ellipsoid of the original set of vertices by transforming Q back into the unscaled
coordinate space. The ellipsoid center is simply given by M™'Q, where the in-
verse of M is

Team LRN

226

Mathematics for 3D Game Programming and Computer Graphics

a 0 0]
M"'=[R S T][0 5 O[[R S T]". (7.22)
0 0

The lengths of the semi-axes of the bounding ellipsoid are calculated by scaling
the radius r of the bounding sphere calculated for the points { MP }. The semi-
axis lengths corresponding to the directions R, S, and T are given by ar, br, and
cr, respectively.

7.1.5 Bounding Cylinder Construction

A cylindrical bounding volume is represented by its radius and the two points
corresponding to the centers of its endcaps. The endcaps of a cylinder bounding
the set of points P, P,,...,P, coincide with the planes of the bounding box that
are perpendicular to the principal axis R. Most of the calculations involved in
determining the bounding cylinder for a triangle mesh lie in finding the circle
that bounds the projection of the points P, onto the plane containing the natural
axes S and T.

We find the bounding circle in a manner similar to the way we calculate
bounding spheres, except that the component of each point P, parallel to the R
direction is ignored. Instead of working directly with the points { P, }, we remove
the projection of each P, onto R and work with the points { H,} given by

H =P —(P-R)R. (7.23)

We first locate the points H, and H, that have the least and greatest dot products
with the vector S. (Recall that the axis S corresponds to the second largest eigen-
value of the covariance matrix.) The initial center Q and radius r of the bounding
circle are given by

_H, +H,
Q="

r=|H,-Q|. (7.24)

We then proceed exactly as we would when calculating a bounding sphere. We
check each point to make sure it falls inside the bounding circle. When a point H,
for which

IH,-Q|*>r? (7.25)

Team LRN

Chapter 7 Visibility Determination 227

is encountered, we expand the bounding circle so that it has a new center Q' and
new radius ' given by

. G+H,
Q= 2
¥ =||HI. -qQ, (7.26)
where
H -Q
G=Q-r——. (7.27)
||Hi _Q”

The radius of the bounding cylinder is the same as the radius of the circle
bounding the set of points { H,}. The center Q of the bounding circle lies in the
plane perpendicular to the direction R but passing through the origin. The centers
of the cylinder’s endcaps are found by projecting Q onto the bounding box
planes corresponding to the least and greatest dot products of the points { P} with
the direction R. Calling the endpoints Q, and Q,, we have

Q =Q+min(R-RIR

Q, =Q+max{P-R}R. (7.28)

ISiSN

7.2 Bounding Volume Tests

Now that we have seen how to construct a variety of bounding volumes, we turn
our attention to the methods used to determine whether each type is visible. All
the techniques presented in this section reduce the problem of intersecting a
bounding volume with the view frustum to that of intersecting a point or a line
segment with a properly modified view frustum. This is accomplished by moving
the planes of the view frustum outward by appropriate amounts, which are de-
termined differently for each type of bounding volume.

7.2.1 Bounding Sphere Test

A sphere of radius r intersects the view frustum if its center lies inside the view
frustum or lies within a distance » of any of the six sides of the view frustum. The
gray region shown in Figure 7.3(a) corresponds to the volume in which the

Team LRN

228

Mathematics for 3D Game Programming and Computer Graphics

sphere’s center must lie whenever it is visible. The boundary of this region,
formed by rolling the sphere around the outside edges of the view frustum, is
parallel to one of the frustum planes everywhere except at the corners, where it is
rounded. As Figure 7.3(b) shows, we can approximate the exact volume of visi-
bility by moving each of the six frustum planes outward by a distance r.

S,

(a) (b)

Figure 7.3 (a) The gray region corresponds to the volume in which the center of a
sphere of radius r must lie whenever it is visible. (b) We can approximate the exact
volume of visibility by moving each of the six frustum planes outward by a distance r.

Given a sphere of radius » whose center resides at the point Q in camera
space, we compute the 4D dot products of the homogeneous extension of Q with
the six frustum planes listed in Table 4.1. Since the frustum plane normals point
inward, a negative dot product indicates that Q lies outside the visible volume of
space. If any one of the dot products is less than or equal to —r, then the sphere
does not intersect the view frustum at all, and the object bounded by it should be
culled from the visible set of geometry. Otherwise, some part of the sphere
probably lies inside all six frustum planes, the exception being the case shown in
Figure 7.4. Near the edges of the view frustum, some spheres that are not visible
may not be culled because they do not fall far enough outside any single frustum
plane. This infrequent occurrence is normally tolerated to preserve the simplicity
of the visibility test. We examine a small enhancement that reduces this effect in
Section 7.4.2.

Team LRN

Chapter 7 Visibility Determination 229

Figure 7.4 Near the edges of the view frustum, some spheres that are not visible are
not culled because they do not fall far enough outside any single frustum plane.

7.2.2 Bounding Ellipsoid Test

When testing the visibility of a sphere, we move each of the six frustum planes
outward by the radius of the sphere and test whether the sphere’s center lies on
the positive side of these modified planes. A similar method can be used to test
the visibility of an ellipsoid, but since an ellipsoid does not possess the isotropic
symmetry that a sphere does, the effective radius of the ellipsoid is different for
each frustum plane.

Suppose that an object is bounded by an ellipsoid whose semi-axes are given
by the mutually perpendicular vectors R, S, and T, as shown in Figure 7.5, where
R, S, and T are parallel to the principal axes of the bounded object but have
magnitudes equal to the semi-axis lengths of the ellipsoid. A point P on the sur-
face of the ellipsoid can be expressed in terms of the three vectors R, S, and T as
follows.

P =Rcos@sing +Ssinésing + Tcosg (7.29)

This expression represents a spherical coordinate system aligned to the axes of
the ellipsoid. The angle ¢ represents the angle that the point P makes with the
vector T. The angle 6 represents the angle that the projection of P onto the plane
containing the vectors R and S makes with the vector R. Over the entire surface
of the ellipsoid, ¢ ranges from 0 to 7, and & ranges from 0 to 2.

Team LRN

230

Mathematics for 3D Game Programming and Computer Graphics

Z

Feff

Figure 7.5 A bounding ellipsoid whose semi-axes are given by the mutually perpen-
dicular vectors R, S, and T (where T points out of the page). The effective radius of
the ellipsoid with respect to a plane is equal to the maximum distance from the ellip-
soid’s center to any point on the surface projected onto the plane’s normal.

Given a unit direction vector N, we would like to find the point P on the sur-
face of the ellipsoid whose projection onto N has the greatest magnitude. This
would give us the effective radius r,; of the ellipsoid with respect to a plane
whose normal vector is N. Since N has unit length, the magnitude of the projec-
tion of P onto N is simply given by P- N. We wish to find the angles ¢ and 4 that
maximize this quantity, so we set partial derivatives to zero as follows.

ai(P N)=(R-N)cosfcosp+(S-N)sindcosg —(T-N)sinp=0 (7.30)
4

a%(Po N)=—(R-N)sin@sing +(S-N)cosfsing =0 (7.31)

In our derivation of an expression for the quantity P- N, we make use of the
trigonometric identity

tan’a +1=sec’a, (7.32)

which can be transformed into the identities

Team LRN

Chapter 7 Visibility Determination

tan

Vtan® a +1

1

COSQq = .
Ntan“a +1

Equation (7.31) can be rewritten as

sing =

(S-N)cos@ =(R-N)sind,
allowing us to express tan@ as

ang=> N
R-N

Equation (7.30) can be rewritten as
(T-N)sing=(R-N)cosfcosp+(S- N)sind cosp,

allowing us to express tang as

RN S-N .
tang = cosf + sind
T-N T-N

= ! (R.N+tan0—S'N]
Vtan’0+1\T-N T-N

RN 1

~ T-N<an?0+1
=%\/tan26+l

R-N (S-sz
=—— 2= +1,
T-NVLR-N

1+ tan® @
(

231

(7.33)

(7.34)

(7.35)

(7.36)

(7.37)

where Equation (7.35) has been used in two steps. Using the identities given by

Equation (7.33), the value of P- N can now be written as

P-N=(R-N)cosfsing+(S-N)sin@sing+(T-N)cosep

L |10 rpoNo(S-N)tand]+T-Nb.

B \/tanz(p+ll\/tan20+1

Team LRN

(7.38)

232

Mathematics for 3D Game Programming and Computer Graphics

Substituting expressions from Equations (7.35) and (7.37) for tanf and tang
gives us

Z

2
R—'N[R-N+(S') }LT.N
N TN R-N

JENTEN Tl

(R-N)?>+(S-N)* +(T-N)?

T~N\/[%T K%THGH

_ (R-N)?+(S-N)’+(T-N)?

= , (7.39)
JR-N)2+(S-N)> +(T-N)?
which yields the relatively simple expression
re=P-N=J(R-N)2+(S-N)2 +(T-N)>. (7.40)

Equation (7.40) provides the effective radius of an arbitrary ellipsoid with
respect to a plane having unit normal direction N. Since the near and far planes
are parallel, the ellipsoid’s effective radius for those two planes is the same.
Thus, to test whether an ellipsoid falls outside the view frustum, we need to cal-
culate at most five effective radii. As with the sphere test, we compute the four-
dimensional dot products of the ellipsoid’s center with each of the frustum plane
vectors. If any single dot product is less than or equal to —r., then the ellipsoid is
not visible. Otherwise, the object bounded by the ellipsoid should be drawn.

7.2.3 Bounding Cylinder Test

We reduced the problem of intersecting a sphere or an ellipsoid with the view
frustum to that of testing whether a point fell on the positive side of frustum
planes that were offset by the bounding volume’s effective radius. To intersect a
cylinder with the view frustum, we instead reduce the problem to determining
whether a line segment is visible in a properly expanded frustum.

As with the ellipsoid test, we must determine the effective radius of a bound-
ing cylinder with respect to each of the view frustum planes. The effective radius
depends on the cylinder’s orientation and ranges from zero (when the cylinder is
perpendicular to a plane) to the actual radius (when the cylinder is parallel to a
plane). Suppose that we are given a cylinder of radius » whose endpoints lie at Q,

Team LRN

Chapter 7 Visibility Determination 233

and Q,. We define the vector A to be the unit vector parallel to the axis of the
cylinder:

A= (7.41)

Q,-Q|

As shown in Figure 7.6, the effective radius 7, of the cylinder with respect to a
plane having unit normal direction N is given by

Iy =rsina, (7.42)

where « is the angle formed between the vectors A and N. This can also be writ-
ten as

ey =rV1—cos’a
=ryl—(A-N)?. (7.43)

We perform the visibility test by visiting each of the six view frustum planes,
beginning with the near and far planes since they are parallel and thus share the
same effective radius. For each frustum plane L, we first calculate the 4D dot
products L- Q, and L- Q,. If both dot products are less than or equal to the value
—r,; corresponding to the plane L, then we immediately know that the cylinder is
not visible, and the test exits. If both dot products are greater than or equal to
—r,, then we cannot draw any conclusions and simply proceed to the next plane.

In the remaining case that one of the dot products is less than —r,;, and the
other dot product is greater than —r,,, we calculate the point Q, such that

L Qs =—rg (7.44)

and replace the exterior endpoint with it. This effectively chops off the part of the
cylinder that is now known to lie outside the view frustum. To find the point Q,,
we use the parametric line equation

Q,(1)=Q,+1(Q,-Q,), (7.45)

where the range 0 < ¢ <1 represents the axis of the cylinder. Substituting the right
side of this equation for Q, in Equation (7.44) allows us to solve for the value
of t:

_ re+tL-Q,

- . 7.46
L-(Q-Q.) (7140

Team LRN

234

Mathematics for 3D Game Programming and Computer Graphics

Figure 7.6 The effective radius of a bounding cylinder.

(Note that the difference Q, - Q, has a w-coordinate of 0.) Plugging this back
into Equation (7.45) gives us our new endpoint Q,. After replacing the exterior
endpoint with it, we continue to the next plane.

If we visit all six planes of the view frustum and never encounter the case
that both endpoints produce a dot product less than or equal to 7, then the cyl-
inder is probably at least partially visible. Of course, this means that we do not
have to replace any endpoints for the last plane that we visit. As soon as we know
that at least one endpoint Q, satisfies L- Q, > —r,. for the final plane, we know
that part of the cylinder intersects the view frustum.

7.2.4 Bounding Box Test

When determining whether a box intersects the view frustum, we have a choice
between reducing the problem to that of testing a point or to that of testing a line
segment. If the bounding box extents in the primary axis direction R are signifi-
cantly greater than those in the S and T directions, then we may choose to test a
line segment. For bounding boxes whose dimensions are roughly equal, we favor
the point test.

We assume in this section that the magnitudes of the vectors R, S, and T rep-
resenting the principal axes of the object bounded by the box are equal to the di-
mensions of the box itself. To reduce the problem of intersecting a box with the

Team LRN

Chapter 7 Visibility Determination 235

view frustum to that of testing whether its center lies inside the expanded frustum
planes, we need a way to determine the box’s effective radius. As shown in Fig-
ure 7.7, we can calculate the effective radius 7, of a box with respect to a plane
having unit normal direction N using the formula

e =+(JR-N|+|S- N|+|T-NJ|). (7.47)

Once the effective radius is known, we proceed in exactly the same manner as we
would to test an ellipsoid. For each frustum plane L, we calculate the 4D dot
product between the plane and the center Q of the bounding box. If for any plane
L-Q < —r,, then the box is not visible.

Z

Figure 7.7 Calculating the effective radius of a box.

In the case that the length of R is much greater than the lengths of Sand T, a
box may not be rejected in many situations when it lies far outside the view frus-
tum. An instance of this case is demonstrated in Figure 7.8. To circumvent this
problem, we can reduce the box intersection test to a line segment intersection, as
is done for cylinders.

In terms of the bounding box center Q and its primary axis R, we can express
the endpoints Q, and Q, of the line segment representing the box as

Team LRN

236

Mathematics for 3D Game Programming and Computer Graphics

Figure 7.8 This example demonstrates that using the point test for a box having one
dimension much larger than the other two can result in the failure to reject a box that
lies a significant distance outside the view frustum.

Q1 =Q+%R
Q,=Q—-3R. (7.48)

The effective radius r, with respect to a plane having unit normal direction N is
given by

e =2(JS-N|+|T-N|), (7.49)

where the |R- N| term appearing in Equation (7.47) is now absent since it is rep-
resented by the line segment connecting Q, and Q,.

We now proceed in exactly the same manner as we would to test a cylinder.
For each frustum plane L, we first calculate the 4D dot products L- Q, and L- Q,.
If both dot products are less than or equal to the value —r,; corresponding to the
plane L, then we immediately know that the box is not visible, and the test exits.
If both dot products are greater than or equal to —r,;, then we cannot draw any
conclusions and simply proceed to the next plane. When one of the dot products
is less than —r,; and the other dot product is greater than —r,,, we calculate the
point Q, such that L- Q, =—r,, using Equations (7.45) and (7.46), and replace
the exterior endpoint with it. If we are able to visit all six frustum planes without
encountering the case that both endpoints produce a dot product less than or
equal to —r, then the box is probably at least partially visible.

Team LRN

Chapter 7 Visibility Determination 237

7.3 Spatial Partitioning

It is possible to increase the efficiency for which the visibility of a large number
of objects is determined by organizing them into a structure whose properties
allow large regions of space to be culled from the visible set of geometry using
very simple tests. This practice is called spatial partitioning and comes in two
popular varieties that we discuss in this section: octrees and binary space parti-
tioning trees. Both methods are usually applied only to static world geometry
since computation of the data structures involved is generally too expensive to
perform at runtime.

7.3.1 Octrees

Suppose that all the geometry belonging to an entire world or to a particular re-
gion of a world is contained within a rectangular box B. An octree is a structure
that partitions this box into eight smaller, equal-size rectangular boxes called oc-
tants. These smaller boxes are further subdivided into eight even smaller octants,
and the process continues to some maximum number of iterations called the
depth of the octree. Each octant is linked to the box from which it was parti-
tioned, and each object in the world is linked to the smallest octant that com-
pletely contains it (which may be the original box B).

Figure 7.9(a) illustrates the two-dimensional analog of an octree, called a
quadtree, constructed for an area containing a single object. Figure 7.9(b) shows
how the corresponding data structure is organized. Each node in a quadtree struc-
ture has at most four subnodes—octrees can have up to eight. As this example
demonstrates, if no world geometry intersects a quadrant (or an octant in an oc-
tree), then that quadrant is not subdivided. Furthermore, any quadrant that does
not completely contain any objects is deleted from the tree. We always assume
that any missing quadrants are empty.

Organizing geometry into a tree structure has the benefit that whenever we
can determine that a node of the tree is not visible, then we immediately know
that every subnode of that node is also not visible and can simultaneously be
culled. (Chapter 8 discusses how a similar property of tree structures benefits
collision detection.) Visibility determination for the octree begins by testing the
box surrounding the root node for intersection with the view frustum. If the cam-
era is known to always lie within the boundary of the octree, then it can be as-
sumed that the root node is always visible. When any node’s bounding box is
determined to be visible, we consider each object linked to that node by testing
its bounding volume for visibility. We then perform the same test for any existing

Team LRN

238

Mathematics for 3D Game Programming and Computer Graphics

subnodes of the visible node. When a node’s bounding box fails the visibility
test, we ignore all objects linked to that node and any subnodes belonging to that
node.

We can use the fact that the bounding boxes at each level of an octree all
have the same orientation to our advantage. For any given camera position and
orientation, we transform the axes of the octree into camera space and calculate
the five effective radii (one for the near and far planes and four corresponding to
the side planes) of the box B bounding the entire structure. If 7, is the effective
radius of the box B with respect to a particular view frustum plane, then the ef-
fective radius of any box residing one level deeper within the tree is simply
r./2. This saves us from having to use Equation (7.47) to calculate effective
radii for every octant at every level—calculating it once at the beginning is suffi-
cient.

() (b) Root

Figure 7.9 (a) A quadtree constructed for an area containing a single object. (b) The
data structure representation of the quadtree.

7.3.2 Binary Space Partitioning Trees

A Binary Space Partitioning (BSP) tree is a structure that divides space into two
regions at each level. Unlike the planes that partition octrees, the planes partition-
ing a BSP tree can be arbitrarily oriented. A BSP tree is constructed for a set of
objects by choosing a partitioning plane, sometimes called a splitting plane, and
sorting the geometry into two groups: objects lying on the positive side of the
plane (also called the positive halfspace) and objects lying on the negative side of
the plane (the negative halfspace).

Team LRN

Chapter 7 Visibility Determination 239

Traditionally, the partitioning planes of a BSP tree have been aligned to the
polygons that make up the world geometry. Figure 7.10 illustrates a two-
dimensional example of a region containing several polygons that determine the
structure of the BSP tree. One polygon is chosen to represent the splitting plane
at each level, and the remaining polygons are sorted into positive and negative
groups. Any polygons intersecting the plane are split into two polygons that lie in
the positive and negative halfspaces. The positive and negative groups are then
partitioned, and the process continues for each halfspace until no polygons re-
main.

(a) /. (b)

Figure 7.10 (a) A traditional BSP tree and (b) the associated data structure.

The large number of polygons and curved surfaces used in modern 3D en-
gines makes the traditional BSP tree impractical. In a somewhat modified ap-
proach, we create one splitting for each object instead of each polygon. As shown
in Figure 7.11, the splitting plane for an object is aligned so that it is perpendicu-
lar to the object’s principal axis T corresponding to the smallest dimension of its
bounding box. This minimizes the distance that the object extends away from the
splitting plane. After a splitting plane has been chosen for an object, the other
objects are sorted into those that lie completely within the positive halfspace and
those that lie completely within the negative halfspace. Any objects that straddle
the splitting plane are added to both the positive and negative groups. The half-
spaces are recursively partitioned until no objects remain.

Team LRN

240

Mathematics for 3D Game Programming and Computer Graphics

Figure 7.11 An object’s splitting plane is aligned so that it is perpendicular to the ob-
ject’s principal axis T corresponding to the smallest dimension of its bounding box.

For each splitting plane of a BSP tree, we need to determine the visibility of
each halfspace and the visibility of the object associated with the plane. This re-
quires that we have a way to determine whether a plane K intersects the view
frustum. The simplest approach would be to test the eight vertices of the view
frustum in world space against the plane K by calculating the 4D dot products
and comparing them to zero. If all eight dot products have the same sign (mean-
ing that all eight points lie on the same side of the plane), then the plane does not
intersect the view frustum. Fortunately, we can find a better method by trans-
forming the plane K into homogeneous clip space and utilizing the cubic symme-
try of the view frustum in that space (see Section 4.5.1).

A plane K can be transformed from world space to homogeneous clip space
using the formula

K'=[(PM)"]'K, (7.50)

where P is the projection matrix and M is the transformation from world space to
camera space. The components of each vertex of the view frustum in clip space
are 1. The vertex producing the greatest dot product with the plane K’ is the one
having component signs that match the signs of the x-, y-, and z-components of
K'. The vertex producing the least dot product with K’ is the one having compo-
nent signs opposite those of the components of K'. The greatest dot product d__
and the least dot product d_, are thus given by

Team LRN

Chapter 7 Visibility Determination 241

dmax = |K;‘ + ’Kjv + |K;‘ + K:v
d .. =—|K,|-|K)|-|K|+ K,. (7.51)

As shown in Figure 7.12, if d_, <0, then the view frustum lies entirely on
the negative side of the plane K. This means that nothing on the positive side of
the plane is visible. Similarly, if 4, >0, then the view frustum lies entirely on
the positive side of the plane K, and thus nothing on the negative side of the
plane is visible. If neither of the conditions d_, <0 or d_, >0 is satisfied, then
the plane K intersects the view frustum, and we cannot cull either halfspace.

d

min

Figure 7.12 Letd_, and d,,, be the greatest dot product and least dot product of any
frustum vertex with the plane K. If d_, <0 or d_, >0, then the view frustum lies
completely on one side of K, so the other side is not visible.

7.4 Portal Systems

A portal system is an extremely powerful technique that can be used to quickly
eliminate massive regions of world geometry from the visible set. The general
idea is surprisingly simple—the world is divided into many disjoint zones that are
connected by portals. A portal is represented by a convex polygon through which
one region can be seen from another. The advantage of a portal system is that any
region of space that cannot be seen through a series of portals is never even con-
sidered for rendering. When determining what parts of a world are visible, using

Team LRN

242

Mathematics for 3D Game Programming and Computer Graphics

a portal system allows us to touch only a small fraction of the entire data set be-
cause any geometry that lies on the opposite side of an invisible portal is ignored.

Figure 7.13 illustrates how visibility determination is carried out for a portal
system. We first locate the zone in which the camera resides—this zone is always
considered visible. We then examine each of the portals leading out of the zone
containing the camera. For each portal that intersects the view frustum, we con-
sider the zone to which it connects visible. Each portal leading out of the con-
necting zone, excluding any leading back to the first zone, is then tested for
visibility, but this time against a view frustum that has been reduced in size by
the boundary of the portal through which we are looking. This technique is ap-
plied recursively until no new portals are visible.

Figure 7.13 Only regions of space that can be seen through a series of portals are
considered visible.

The zones connected by portals may be further organized into tree structures,
and the objects residing in these regions may still have bounding volumes. The
visibility of large regions determined by the portal system is a large-scale culling

process that should be supplemented by smaller-scale visibility determination in
each zone.

7.4.1 Portal Clipping

Whenever the camera looks through a portal connecting to another zone, we
know that the volume of visibility in that zone is smaller than the whole view
frustum. Thus, we can reject a larger number of objects during smaller-scale visi-

Team LRN

Chapter 7 Visibility Determination 243

bility testing by using a smaller view frustum. The near and far planes remain the
same, but the side planes of the new view frustum are replaced by a set of planes
that represents the intersection of the original view frustum and the sides of any
polygonal portals through which we are looking.

As a convention, the plane containing a portal must have a normal direction
that points toward the camera, and the vertices of the portal must be wound coun-
terclockwise, as shown in Figure 7.14. Consequently, portals are one-way in the
sense that if a portal leads from zone X to zone Y, then the same portal does not
lead backward from zone Y to zone X. When the camera lies on the negative side
of a plane containing a portal, that portal is never considered visible. Two-way
visibility between two zones requires that each zone have a portal leading to the
other.

Figure 7.14 The vertices of a portal are wound counterclockwise about the normal of
the plane containing them. Here, the normal points out of the page.

Whenever we consider a portal leading out of a zone, we are interested only
in the visible area of that portal. The visible area of a portal is equal to the area
that intersects the current view frustum, which may be the original view frustum
or a reduced view frustum. To determine what area of a portal is visible, we clip
its polygon against the planes bounding the current view frustum. Clipping a
polygon against a plane removes the portion of the polygon lying on the negative
side of the plane, resulting in a new polygon whose interior lies completely on
the positive side of the plane. Clipping a polygon against every plane of the cur-
rent view frustum effectively chops off any part lying outside the volume of
space that is visible to the camera.

Suppose we need to clip a portal whose vertices lie at the points V|, V,,...,V,
and connect to form a convex polygon. When we clip this polygon against a
plane L, we produce a new convex polygon having at most n+1 vertices. We
begin the clipping process by classifying all of the vertices into three categories:

Team LRN

244

Mathematics for 3D Game Programming and Computer Graphics

those lying on the positive side of L, those lying on the negative side of L, and
those considered to be lying in the plane L itself. A vertex V, is classified as ly-
ing in the plane if its dot product with L satisfies

—£<L-V,<0 (7.52)

for some small constant ¢ (typically, & = 0.001). This prevents problems associ-
ated with round-off error that would otherwise wreak havoc on our visibility tests
by destroying the convexity of the view frustum. If no vertices lie on the positive
side of the plane L, then the portal is not visible, and we do not render anything
in the zone to which it connects. If no vertices lie on the negative side of the
plane L, then no clipping is necessary. Otherwise, we visit every pair of
neighboring vertices, looking for edges having one positive vertex and one nega-
tive vertex. As shown in Figure 7.15, new vertices are added to the polygon
where edges intersect the clipping plane, and vertices lying on the negative side
of the plane are removed. Vertices lying on the positive side of the clipping plane
or lying in the clipping plane itself are not affected.

Suppose that the vertex V, lies on the positive side of the clipping plane L,
and that the vertex V,, lies on the negative side of L, or equivalently,

L-V,>0
L.V, <-¢. (7.53)

i+l —
A point W lying on the line segment connecting V, and V,,, can be expressed as

W(t)=V,+t(V, -V,), (7.54)

i

where the parameter ¢ satisfies 0<#<1. Solving for the value of ¢ that yields
L- W(¢)=0, we have
L-V,

(Note that the difference V, -V, , has a w-coordinate of 0.) Substituting this
value back into Equation (7.54) gives us our new vertex W.

Team LRN

Chapter 7 Visibility Determination 245

Figure 7.15 When a portal is clipped against a plane, new vertices are added where
edges intersect the plane, and vertices lying on the negative side of the plane are re-
moved. Vertices lying on the positive side of the clipping plane or lying in the clipping
plane itself are not affected.

7.4.2 Reduced View Frustums

Given a clipped portal, we wish to calculate the planes surrounding the volume of
space visible through that portal. This enables us to perform visibility determina-
tion against a view frustum that is smaller than the original view frustum, result-
ing in a greater number of objects being culled. Fortunately, the camera-space
plane corresponding to an edge of a portal is simple to calculate. The plane L,
passing through the origin and the two portal vertices V, and V,_, is given by

L = <uo> (7.56)
Vi x Vil

i+
For a portal having n vertices, we use Equation (7.56) to calculate the n side
planes of our reduced view frustum. (For the plane L, we wrap around by setting
V... =V,.) If the distance between any two portal vertices V, and V,,, is very
small, then round-off errors can cause convexity problems, so we discard any
plane L, for which

Vi =V, “2 <é&, (7.57)

Team LRN

246

Mathematics for 3D Game Programming and Computer Graphics

where ¢ is a small constant that can be adjusted to produce acceptable results.

The side planes of a reduced view frustum can meet at highly acute angles.
As shown in Figure 7.16, this can impact the effectiveness of bounding volume
visibility tests because objects lying far from the view frustum still may not lie on
the negative side of any single frustum plane. We can eliminate this problem by
detecting cases in which adjacent frustum planes meet at a small angle and add-
ing an extra plane to the view frustum whenever such cases occurs.

Figure 7.16 Side planes of the reduced view frustum that meet at an acute angle can
impact the effectiveness of bounding volume visibility tests. The bounding sphere
shown here does not fail the visibility test even though it lies far outside the view frus-
tum.

Figure 7.16 shows a new plane having normal direction N, added to the view
frustum between two adjacent planes having normal vectors N, and N,. The vec-
tor N, is constructed by first calculating the average (unnormalized) direction
between N, and N,, which is simply given by the sum N, + N,. We then subtract
the projection of this average onto the direction N, x N, to ensure that the new
plane contains the line at which the two original planes intersect. This gives us
the following expression for N;.

A=N, +N,

B=N,xN,
A—(A-B)B

- A(A-B)B (7.58)
|A-(A-B)B|

Team LRN

Chapter 7 Visibility Determination 247

Since it passes through the origin in camera space, the new plane has a
w-coordinate of 0.

The situation demonstrated in Figure 7.16 can be avoided by constructing an
extra plane whenever two adjacent frustum planes having normals N, and N,
satisfy the condition N,- N, <a, where « represents an acuteness threshold. The
extra planes do not actually contribute to the shape of the view frustum since they
are coincident with the lines at which previously existing planes intersect. They
should be used only for visibility testing within a single zone and should not par-
ticipate in the clipping of any portals leading to other zones.

Chapter 7 Summary

Principal Components

The principal axes R, S, and T of a set of N vertices P, P,,...,P, are given by the
eigenvectors of the covariance matrix C defined by

1 N
C:—Z(Pf—m)(P,.—m)T,
N i=
where the mean position m is given by
1 &
m=—)> P.
v b

If 4,, 4,, and J, are the eigenvalues corresponding to the vectors R, S, and T,
respectively, then |4,| > |4,|>|4,].

Bounding Boxes

The two planes perpendicular to the principal axis A that bound the set of verti-
ces P,P,,...,P, are given by

(A-min{P-A}) (-Amax(P-A}).

I<iSN 1IN
The center Q of a bounding box is given by
Q=kA, +kA,+kA,,

where

Team LRN

248

Mathematics for 3D Game Programming and Computer Graphics

min{PivA/.}+max{P,.-Aj}

Jp. = lzisN ISiS N

J 2

>

and A, A,, and A, are the unit-length principal axes.

The effective radius r with respect to a plane having normal direction N of a
bounding box whose dimensions and orientation are described by the vectors R,
S, and T is given by

re=+R-N+S-N+T-N|

Bounding Spheres

A bounding sphere for the set of vertices P,,P,,...,P, is constructed by locating
the points P, and P, that produce the least and greatest dot products with the pri-
mary axis R and setting the initial center Q and radius r to

P +P
Q=

r=[P,—Ql.

For any point P, satisfying |P, - Q|| > r*, we replace the center and radius with
the values

. G+P,
Q= 2
' =[P, - Q,
where G is defined as
G=Q-r -2
P, -Q

A bounding sphere having center Q and radius r is not visible if for any view
frustum plane L we have L- Q< —r.

Bounding Ellipsoids

A bounding ellipsoid for the set of vertices P,,P,,...,P, is constructed by trans-
forming into a space in which the box bounding the set is a cube, constructing a
bounding sphere in that space, and then performing the reverse transformation to
scale the sphere to the original dimensions of the bounding box.

Team LRN

Chapter 7 Visibility Determination 249

The effective radius 7, with respect to a plane having normal direction N of a
bounding ellipsoid whose semi-axis lengths and orientations are described by the
vectors R, S, and T is given by

Fe =J(R-N)2+(S-N)2 +(T-N)>.

A bounding ellipsoid having center Q is not visible if for any view frustum plane
Lwehave L- Q< —r,.

Bounding Cylinders

A bounding cylinder for the set of vertices P,,P,,...,P, is constructed by first
calculating the points { H,} using the formula

H =P —(P-R)R,

where R is the unit vector parallel to the primary axis. After finding a bounding
circle for the points { H,} having center Q and radius r, the endpoints Q, and Q,
of the bounding cylinder are given by

Q =Q+min{P-R}R

ISisN

Q, =Q+max{P-R}R.

ISiSN

The effective radius r, with respect to a plane having normal direction N of a
bounding cylinder is given by

iy =ryl1-(A-N)?,

where A is the unit vector parallel to the axis of the cylinder given by

Qz_Ql

Q.- Q)f

A bounding cylinder is not visible if the line segment connecting the endpoints
Q, and Q, is completely clipped away by the view frustum planes.

Binary Space Partitioning (BSP) Trees

We can determine whether a world-space plane K intersects the view frustum by
transforming the plane into homogeneous clip space using the formula

K'=[(PM)"]'K,

Team LRN

250

Mathematics for 3D Game Programming and Computer Graphics

where P is the projection matrix and M is the transformation from world space to
camera space. The greatest dot product d_,and least dot product d ;. of any frus-
tum vertex with the plane K’ are given by

e = K| +|K \+|K2|+K(V

=—|K |- |K, |- K]+ K,

ll’lll‘l

Ifd <0ord_ >0, then the view frustum lies completely on one side of K, so

max

the other side is not visible.

Portal Systems

When clipping a portal having vertices V,,V,,...,V, against a plane L, we add a
new vertex between any two adjacent vertices V, and lying on opposite sides
of L. The new vertex W is given by

i+]

W=V, +t(Vi+l _Vi)7
where the parameter ¢ is given by
B L.V,
L. (Vi - Vi+1)A

The plane L, passing through the origin and the two portal vertices V, and V,_, is

given by
L - <V XV, 0>.
i+l

An extra plane may be added to the view frustum to improve bounding volume
visibility determination when planes having normal directions N, and N, meet at
an acute angle. The new plane passes through the origin and has the normal di-
rection N, given by

A=N +N,

B=N,xN,
_A-(A-B)B
P |a-(A-B)B|

Team LRN

Chapter 7 Visibility Determination 251

Exercises for Chapter 7

1. Given two spheres S, and S, centered at the points Q, and Q,, and having
radii #, and #,, respectively, determine the center Q and radius » of the small-
est single sphere that encloses both §, and S,. Account for the cases that the
two spheres are disjoint, that the two spheres intersect, and that one of the
spheres encloses the other.

2. Determine formulas for the center Q and radius » of the optimal bounding
sphere for a cone whose radius (at the base) is s, whose height is 4, and
whose base is centered on the origin of the x-y plane as shown in Figure
7.17. Consider the two cases that s < 4 and s > /.

N

Figure 7.17 The cone used in Exercise 2.

3. Determine the effective radius 7, of a box whose edges are described by the
vectors R =(2,0,1), S=(1,0,-2), and T =(0,1,0) with respect to a plane hav-

ing unit normal direction N = <%,—%,§>.

Team LRN

252

Mathematics for 3D Game Programming and Computer Graphics

Write programs that construct a bounding box, a bounding sphere, a bound-
ing ellipsoid, and a bounding cylinder given an array of » vertex positions.

Implement a portal system that can clip the view frustum to an arbitrary con-
vex polygon and perform visibility tests against the reduced frustum.

Team LRN

Chapter

Collision Detection

very 3D game is filled with the action of moving objects. Except when an
object is emitting a force field that affects its surroundings, interaction
between two objects generally occurs only when they attempt to occupy
the same space at the same time. The process by which game engines determine
when such events occur is called collision detection. With the exception of those
that take place in deep space, most games need to determine when a collision
occurs between a moving object and the environment. The complex geometrical
shapes that moving objects may possess are usually approximated by simple
bounding volumes in order to reduce the cost of collision detection calculations.
Suppose that the position of a moving object is known at the time that a
frame is rendered, and that we are able to calculate the position to which the ob-
ject would move if it is unobstructed before the next frame is rendered. Since the
time between frames is usually small, it is commonly assumed that objects travel
along straight lines during the time between frames, even if it is known that an
object is following a curved path. Thus, the general collision detection problem is
determining whether the extrusion of an object’s surface along a line segment
intersects some part of the environment. Very small moving objects are often
treated as points, reducing the collision detection problem to a ray intersection
calculation. For larger objects, finding the exact point where the object makes
contact with a complex environment can be extremely difficult. For that reason,
surfaces of moving objects are often approximated by simpler bounding volumes.

253

Team LRN

254

Mathematics for 3D Game Programming and Computer Graphics

8.1 Plane Collisions

Detecting a collision between a moving object and a single infinite plane
amounts to the problem of determining what point on the object would be in con-
tact with the plane at the time of a collision. We can then represent the entire
moving object by that point in a ray intersection calculation. Being able to detect
collisions with infinite planes is useful in environments that are partitioned in
some way (see Section 8.1.3), so we examine the calculations involved in deter-
mining when a sphere or box collides with an infinite plane in this section. Later,
we discuss the more difficult, but very practical method of determining the colli-
sion of a sphere with an arbitrary environment.

8.1.1 Collision of a Sphere and a Plane

As shown in Figure 8.1, when a sphere is in contact with a plane L (on the posi-
tive side), the distance from the center of the sphere P to the plane is r, so
L- P =r. Writing the plane L as the 4D vector

L=(N,D), (8.1)

the relationship L- P = can be written as

N-P+D=r. (8.2)

!

Figure 8.1 A sphere of radius ris in contact with a plane L when its center lies on the
plane L' that has been shifted by a distance r.

Team LRN

Chapter 8 Collision Detection 255

If we move r to the left side of the equation, then this is equivalent to
N-P+D-r=0, (8.3)

which is the same as stating that the point P lies on the plane L' given by
L'=(N,D-r). (8.4)

The plane L' is parallel to L, but it has been shifted by the distance r in the direc-
tion of its normal.

Suppose that the center of a sphere of radius » moves from the point P, at
time =0 to the point P, at the time f=1, and that we wish to determine whether
it collides with a plane L. We assume that the sphere is not initially intersecting
the plane and that the starting point P, lies on the positive side of a plane since
the negative side represents the interior of some structure. Thus, L- P, > . If it is
also the case that L- P, > r, then the sphere remains on the positive side of the
plane during the time interval 0 <¢ <1, in which case we know that no collision
occurs.

The position P(¢) of the sphere’s center at time ¢ is then given by

P(t)=P +1V, (8.5)
where V is the velocity of the sphere:
V=P,-P. (8.6)
A collision occurs between the sphere and the plane L = (N, D) if the equation
L' P(t)=0 8.7)

(where L' is defined by Equation (8.4)) has a solution ¢ such that 0 <¢ < 1. Substi-
tuting the value given by Equation (8.5) for P(¢), we have

L-P+t¢(L-V)=0. (8.8)
Solving for ¢ yields
L'-P
= — L 8.9
v (8.9)

Remember that the vector V represents a direction and therefore has a
w-coordinate of 0, so the denominator is equal to N- V. If N- V=0, then the
sphere is moving parallel to the plane, so no intersection occurs. Otherwise, the

Team LRN

256

Mathematics for 3D Game Programming and Computer Graphics

sphere collides with the plane at the time ¢ given by Equation (8.9). The point C
at which the sphere makes contact with the plane is given by

C=P(t)-N (8.10)

since this point lies at a distance » from the sphere’s center in the direction oppo-
site that of the plane’s normal N.

8.1.2 Collision of a Box and a Plane

Determining whether a moving box collides with a plane can be accomplished
using a method similar to that used to determine whether a sphere collides with a
plane. The difference is that we must offset the plane by the effective radius of
the box, introduced in Section 7.2.4. Furthermore, the box can make contact with
the plane at more than one point. It is possible that an edge of the box collides
with the plane or that the box meets the plane directly parallel to one of its faces.

Suppose that a box has edges whose lengths and orientations are described
by the vectors R, S, and T. The effective radius 7, of the box with respect to a
plane having normal direction N is given by

re = S(JR-N|+[S- N|+|T-N]). (8.11)

Let Q, be the position of the box’s center at time # =0, and let Q, be its position
at time ¢=1, as shown in Figure 8.2. Then the position Q(¢) of the box is given
by

Q(#)=Q, +1V, (8.12)
where V is the velocity of the box:
v=Q,-Q,. (8.13)

To find an intersection with the plane L = (N, D), we calculate

t= —ﬂ, (8.14)
L'V
where L is the plane parallel to L that has been offset by a distance r,;:
L'=(N,D-r,). (8.15)

Team LRN

Chapter 8 Collision Detection 257

Figure 8.2 Whether a moving box collides with a plane can be determined by shifting
the plane by the box’s effective radius.

Again, we assume that the box is not initially intersecting the plane and that its
center lies on the positive side of L at time =0 (i.e., L'- Q, >0). Therefore, if
the condition L'- Q, >0 is also satisfied, then the box remains on the positive
side of the plane L, and no collision occurs.

Once we have determined that a collision between the box and the plane has
occurred (because the value of ¢ given by Equation (8.14) satisfies 0<¢< 1), we
must determine the point or set of points at which contact has been made. If all
three of the quantities |R- N[, |S- N|, and |T- N| are nonzero, then no edge of the
box is parallel to the plane L. In this case, the collision must occur at one of the
box’s vertices. We can find a general formula for the position of the vertex that
makes contact with the plane by examining expressions for all eight of the box’s
vertices. The position Z of each vertex of the box is given by

Z=Q(t)+iR+1S+IT. (8.16)

To find the vertex closest to the plane, we choose signs such that the dot product
L- Z is minimized. This occurs when the quantities ZR- N, £S- N, and £T- N are
all negative; so if any one is positive, we choose the corresponding negative sign
in Equation (8.16). The point of contact C is then given by

C=Q(#)-3[sgn(R-N)R+sgn(S-N)S+sgn(T-N)T]. (8.17)

Team LRN

258

Mathematics for 3D Game Programming and Computer Graphics

In the case that exactly one of the quantities |[R- N/, |S- N|, and |T- N| is zero,
the corresponding axis of the box is parallel to the plane, and any collision must
occur at an edge. The endpoints C, and C, of the edge are given by modifying
Equation (8.17) so that both signs are chosen for the term containing the zero dot
product. For instance, if |T- N| = 0, then we have

C,,=Q(#)-sgn(R-N)R+sgn(S-N)S+T]. (8.18)

This modification is taken one step further when two of the quantities [R- N|,
IS- N[, and |T- N| are zero. In this case, the collision occurs at a face of the box
whose vertices are given by modifying Equation (8.17) so that both signs are
chosen for both of the terms containing zero dot products. For instance, if
|S-N|=0 and |T- N| =0, then the vertices C,, C,, C,, and C, of the face in contact
with the plane are given by

C,,,.=0Q(t)—3[sgn(R-N)R+S+T]. (8.19)

8.1.3 Spatial Partitioning

Being able to determine whether an object collides with a plane is essential to
fast collision detection in a spatially partitioned environment. Since regions of
octrees and BSP trees are separated by planes, we can usually tell that a moving
object does not collide with large parts of the world without having to perform
collision detection tests with the actual geometry in those regions.

Suppose that an object moves from the point P, to the point P, during a single
frame. Let L=(N,D) represent a plane that partitions the world geometry in
some way, and suppose that the moving object has an effective radius of 7, with
respect to that plane. We say that the object lies completely on the positive side
of the plane L if its position P satisfies

L-P>r,, (8.20)

and we say that the object lies completely on the negative side of the plane L if
its position P satisfies

L-P<—r,. (8.21)

If both of the points P, and P, represent positions of the object for which it lies
completely on the positive side of the plane, then we know that no part of the
object ever crosses into the negative side of the plane L. Similarly, if both of the
points P, and P, represent positions of the object for which it lies completely on

Team LRN

Chapter 8 Collision Detection 259

the negative side of the plane, then we know that no part of the object ever
crosses into the positive side of the plane L. When these cases occur, we can
avoid performing collision detection calculations between the moving object and
any geometry that lies on the opposite side of the plane L.

8.2 General Sphere Collisions

We now study a powerful technique for determining when a moving sphere col-
lides with an arbitrary static environment. The method presented in this section is
quite capable of serving as the entire collision detection system for a 3D game
engine, so long as it is acceptable to approximate moving objects by their bound-
ing spheres. It can also be employed to detect collisions between a moving sphere
and any other arbitrarily complex moving object by subtracting velocities.

The collision detection method is based on the fact that the center of a sphere
of radius r in contact with another object lies at exactly the distance » from the
surface of the object. If we consider a sphere in contact with a polygonal model,
the set of all possible centers forms a surface having three kinds of components.
First, the set of centers for which a sphere is in contact with a single face of the
model consists of the interior of the face moved outward in the face’s normal
direction by the radius r. Second, the center of a sphere in contact with a single
edge of the model lies on the cylinder of radius » having the edge as its axis.
Third, the center of a sphere in contact with a single vertex of the model lies on
the sphere of radius » centered at the vertex position. We can determine when a
moving sphere collides with the model by determining when the ray representing
the motion of the sphere’s center intersects the expanded surface of the model, as
illustrated in Figure 8.3.

The procedure for determining whether a sphere of radius collides with a
polygonal model is summarized by the following three steps.

A. Determine whether the sphere’s center intersects any of the faces of the
model after they have been moved outward by the distance r. If it does
intersect a face, then skip the next two steps.

B. Determine whether the sphere’s center intersects any of the cylinders of
radius r corresponding to the expanded edges of the model. If it does in-
tersect an edge, skip the third step.

C. Determine whether the sphere’s center intersects any of the spheres of
radius r corresponding to the expanded vertices of the model.

Team LRN

260

Mathematics for 3D Game Programming and Computer Graphics

Figure 8.3 A sphere of radius r collides with a polygonal model when its center C in-
tersects the expansion of the surface by the distance r.

When performing intersections with the edge cylinders, we do not have to worry
about whether the intersection occurs on the exterior surface because an intersec-
tion with the interior surface would be preceded along the ray by a face intersec-
tion (see Figure 8.4). Likewise, an interior intersection with a vertex sphere
would be preceded by either a face intersection or an edge cylinder intersection.

A ray intersection with a triangular face of a model can be accomplished us-
ing the method discussed in Section 5.2.1. Each face’s plane needs to be offset by
the distance » to determine the point of ray intersection. The barycentric coordi-
nates of that point can then be calculated using the original vertex positions of the
triangle (see Chapter 5, Exercise 5). A ray intersection with a vertex sphere can
be performed using the method discussed in Section 5.2.3 after translating the
vertex’s position to the origin. Calculating the intersection of a ray and an edge
cylinder is slightly more complicated since the cylinder can have an arbitrary
orientation.

Suppose we need to determine at what parameter value ¢ the ray given by
P(¢)=S+1V intersects a cylinder of radius r corresponding to the edge having
endpoints E, and E,. It is convenient to translate our coordinate system by —E, so
that one end of the cylinder is centered at the origin, resulting in the cylinder
shown in Figure 8.5. A point P lies on the lateral surface of the infinite cylinder
aligned to the edge if its distance from the axis A=E, —E, is equal to r. Using
the distance formula derived in Section 4.1.1, we can describe the set of points on
the surface of the infinite cylinder as follows.

Team LRN

Chapter 8 Collision Detection 261

P =P~ (proj, P)’

P-A)’
_p(PA) r)| (8.22)
Replacing P with the translated ray P(7) - E, gives us
V)-A]?
r2=(so+tV)2—M (8.23)

A? ’

where S, =S — E,. Expanding this and collecting terms, we obtain the quadratic
equation at’ + 2bt + ¢ = 0, where

2
S,-A)(V-A
SRR
2
c=s§—r2—(S°Tf‘). (8.24)

p
gl

Figure 8.4 A ray intersection with the interior surface of an edge cylinder must be
preceded by a face intersection, in which case the cylinder intersection calculation
would never have been performed. Thus, cylinder intersections can be assumed to lie
on the exterior of the expanded surface. A similar argument applies to vertex spheres.

Team LRN

262 Mathematics for 3D Game Programming and Computer Graphics

Figure 8.5 A cylinder of radius r corresponding to an edge having endpoints E, and
E,. The cylinder has been translated so that the center of one end lies at the origin,
and the center A of the other end lies at E, - E,.

The discriminant D/4 = b* — ac tells us whether the ray intersects the infinite cyl-
inder. If D/4 >0, we must also check that the point of intersection falls within
the edge. Since the value of a is always positive, the parameter ¢ corresponding to
the first intersection along the path followed by the ray is given by

— —_ 2_
tzu_ (8.25)

a
The signed length L of the projection of P(¢)— E, onto the vector A is equal to

[P(t)_El]‘ A
|A]

The ray intersects the portion of the cylinder corresponding to the edge if L is
positive and less than |A[, so we simply need to check that
0<[P(t)-E,] A< 4.

When determining whether a swept sphere collides with a complex geomet-
rical model, we want to avoid as many ray-triangle, ray-cylinder, and ray-sphere
intersects as possible. The first step should always be to determine whether a col-
lision would occur with the model’s bounding sphere. For a moving sphere of

Team LRN

Chapter 8 Collision Detection 263

radius r and a model having a bounding sphere of radius R, we need to intersect a
ray with a sphere of radius R + ». The point of intersection is irrelevant—we only
need to know whether an intersection occurs.

If the bounding sphere test passes, we must determine whether the swept
sphere collides with a face, edge, or vertex of the model. To avoid unnecessary
intersection tests, these components of a model should be sorted into some kind
of hierarchical structure, such as an octree, and stored in an efficiently traversable
format ahead of time. Creating separate structures for faces, edges, and vertices
helps reduce memory access costs since edge and vertex intersects do not need to
be performed if a face intersection is found.

Not all of a model’s edges and vertices need to be considered for collision
detection. As shown in Figure 8.6, the cylinder surrounding an edge where two
faces meet at an exterior angle of less than or equal to 180 degrees lies com-
pletely inside the expanded surface. Thus, no part of the cylinder contributes to
the collision surface, and the edge can be safely ignored. A similar principle ap-
plies to vertices. If a particular vertex is not the endpoint of any eligible edge,
then it must also lie completely inside the expanded surface.

Figure 8.6 When two faces meet at an exterior angle of less than 180 degrees, the
cylinder surrounding the shared edge lies completely inside the expanded collision
surface. In this case, the cylinder does not need to be considered for collision detec-
tion.

To determine whether two faces sharing an edge with endpoints E, and E,
meet at an exterior angle less than or equal to 180 degrees, we need to know for
which of the two faces the vertices E, and E, occur in counterclockwise order.
(For each edge structure created by the BuildEdges function shown in Listing
10.1, the triangle for which the vertices occur counterclockwise is always listed
first.) Let N, be the normal to the face for which the vertices E, and E, occur in
counterclockwise order, and let N, be the normal to the face for which the verti-

Team LRN

264

Mathematics for 3D Game Programming and Computer Graphics

ces E, and E, occur in clockwise order. The two faces meet at an exterior angle
less than or equal to 180 degrees if

[N,x(E,—E,)]-N, >0. (8.26)

8.3 Sliding

When a moving object collides with a stationary part of the environment and is
not destroyed as a consequence of the collision, most games allow the object to
slide along the surface of the geometry that it hit. This is especially useful when
the moving object is a character under user control, since sliding avoids the frus-
tration of getting stuck whenever a player runs into something.

The distance by which an object slides over a surface during the single frame
that it collides with part of the environment is determined by the angle with
which the object struck the surface. As shown in Figure 8.7, a typical sliding im-
plementation may choose to move an object to the point on the surface that is
closest to the point at which it would have reached had the surface not been there
to obstruct its motion. The difference between this point and the point at which
the object hits the surface is perpendicular to the normal direction at the point of
collision.

Suppose an object attempts to move from the point P, to the point P, during a
single frame, but collides with the expansion of some surface at the point Q. If
the unit normal direction to the surface at the point Q is N, then we can project
the untraveled portion of the object’s path onto the direction perpendicular to the
surface to find a new destination P, by calculating

P3=P2_[(P2_Q)‘N]N- (8.27)

Of course, we need to consider possible collisions between Q and P;, so the proc-
ess repeats until either no collision occurs or the sliding distance falls below
some minimum threshold.

When an object collides with a face of a model at a point Q, one may be
tempted to interpolate the vertex normal vectors using the barycentric coordinates
of the point Q to obtain the normal direction there. This should be avoided not
only because it creates a discontinuity in the normal direction at the cylindrical
edges and spherical vertices, but because it prevents the calculation of an accu-
rate sliding direction. Using a normal vector that is not truly perpendicular to the
expanded surface causes the sliding direction to either take the moving object

Team LRN

Chapter 8 Collision Detection 265

away from the surface or causes it to point inward, in which case another colli-
sion occurs immediately when attempting to slide.

Figure 8.7 The part of the path from P, to P, that lies beyond the point of collision Q
is projected onto the direction perpendicular to the normal vector N to determine how
far an object should slide.

8.4 Collision of Two Spheres

Suppose that two spheres are in motion and have a constant linear velocity during
a time interval beginning at ¢ = 0 and ending at ¢t =1. We assume that the spheres
are not already intersecting and that neither sphere contains the other. Let the
points P, and P, represent the initial and final positions of the first sphere’s cen-
ter, and let Q, and Q, be the initial and final positions of the second sphere’s cen-
ter, as shown in Figure 8.8. We define the velocity vectors V, and V,, as

V,=P,-P
V,=Q,-Q,. (8.28)

Team LRN

266

Mathematics for 3D Game Programming and Computer Graphics

Figure 8.8 Detecting a collision between two moving spheres.

The position P(¢) of the first sphere’s center and the position Q(¢) of the second
sphere’s center are then given by

P(t)=P +1V,
Q(2)=Q, +1V,. (8.29)

Let 7, and r, be the radii of the two spheres. We wish to determine whether
the distance d between the centers P(¢) and Q(¢) is ever equal to r, + 7, at some
time t€ [0,1). If so, then the spheres are tangent to each other at time ¢, and a col-
lision has taken place. We examine the squared distance between P(¢) and Q(¢)
given by

d*=[P(5)-Q()|"- (8.30)
Substituting the values given by Equation (8.29) for P(¢) and Q(¢), we have

d* =P +1V,-Q, -1V, |’ (831)

Team LRN

Chapter 8 Collision Detection 267

For convenience, we define

A=P -Q,
B=V,-V, (8.32)

so that Equation (8.31) can be written as

d*=|A+mB|’
=A*+2t(A-B)+1°B>. (8.33)

Using the quadratic formula to solve for ¢ gives us the formulas

tlZ_(A.B)_\/(A,Ezz_Bz(Az_dz)
t _—(A'B)+[(A-B)? - B* (4 -d?)
2= Bz .

(8.34)

Setting d = r, +r, gives us the times ¢, and ¢, when the two spheres are tangent, if
ever. It is possible that the value inside the radical is negative, in which case the
spheres never collide. It is also possible that B> =0, meaning that either both
spheres are stationary or that both are traveling in the same direction at the same
speed and thus cannot collide.

Since B® is not negative, the value of ¢, is always less than or equal to the
value of ¢,. The time ¢, represents the instant at which the spheres are tangent
while they are still approaching each other. The time ¢,, however, represents the
instant at which the spheres are tangent while they are moving away from each
other. Since we assume that the spheres are not intersecting to begin with, we are
only interested in the time ¢, when they first collide. Thus, we only need to calcu-
late the following time ¢ to determine when a collision occurs.

zz—(A~B>—J(A~B)ZBZBZEA2‘VP”Q)ZJ (835)

If ¢t does not fall in the range [0,1), then no collision occurs during our time inter-
val of interest.

It is possible to determine that a collision cannot occur without evaluating
Equation (8.35). The time ¢ at which the squared distance d* is minimized can be
found by setting the derivative of the right side of Equation (8.33) to zero as fol-
lows.

Team LRN

268

Mathematics for 3D Game Programming and Computer Graphics

2B°t+2(A-B)=0 (8.36)

Solving for ¢ produces the following time at which the distance between the cen-
ters of the spheres is the least.

(8.37)

Plugging this time into Equation (8.33) yields the smallest distance ever separat-
ing the centers of the two spheres:

(A-B)

d*=4" - s

(8.38)

Ifd*> (r,, +1,) ?, then we know that the two spheres can never collide.

Once we have determined that a collision has occurred at time ¢, we can cal-
culate the centers P(¢) and Q(¢) of the two spheres at that time by plugging ¢ into
Equations (8.29). As shown in Figure 8.9, the point of contact C lies on the line
segment connecting P(¢) and Q(¢) at a distance r, from P(¢), and is thus given
by

C=P(t)+N, (8.39)
where N is the unit length normal vector pointing from P(¢) to Q(¢):

N QU)-P()

= . 8.40
() P()] (840

b

Figure 8.9 The point of contact C where two spheres meet lies on the line connect-
ing their centers at the time of the collision.

Team LRN

Chapter 8 Collision Detection 269

Chapter 8 Summary

Collision of a Sphere and a Plane
A sphere of radius » whose center moves from the point P, at time =0 to the
point P, at time ¢ =1 collides with a plane L = (N, D) at time

L-P,

f=———1,
L'V
where L' =(N,D—r).

Collision of a Box and a Plane

A box described by the vectors R, S, and T whose center moves from the point
Q, at time #=0 to the point Q, at time #=1 collides with a plane L=(N,D) at
time

LQ
LV

K

where L' =(N,D—r.

e

) and . is the effective radius of the box, given by
e = 5([R-N[+S- N[+|T-NJ).

When a box collides with the plane at a point, the position C of the vertex mak-
ing contact with the plane is given by

C=Q(#)—3[sgn(R-N)R+sgn(S-N)S+sgn(T-N)T],

where Q(#)=Q, +¢(Q,-Q,).

General Sphere Collisions

Two faces sharing an edge with endpoints E, and E, meet at an exterior angle
less than or equal to 180 degrees if

[N, x(E,—E)]'N, >0,
where N, is the normal to the face for which the vertices E, and E, occur in

counterclockwise order, and N, is the normal to the face for which the vertices E,
and E, occur in clockwise order.

Team LRN

270 Mathematics for 3D Game Programming and Computer Graphics

A ray P(¢)=S+1¢V intersects an infinite cylinder of radius r representing the
edge with endpoints E, and E, at the parameter value

~b—~b* —ac

t=—

a
where
2
a =V2—7(VA‘?)
S,-A)}V-A
b ZSO'V_(0)g)
A 2
c :Sé—rz—i(SOA?)
A =E,-E,
S, =S-E,.

The intersection occurs between the edge’s endpoints if
0<[P(t)-E,]- A< 4%

Sliding

If an object traveling from the point P, to P, collides with a surface at the point
Q, then the point P, to which it should slide is given by

P, =P, —[(P,-Q) N]N,
where N is the unit normal vector at the point Q.

Collision of Two Spheres

A sphere of radius r, moving from the point P, at time =0 to the point P, at
time ¢=1 collides with another sphere of radius r, moving from the point Q, to
the point Q, at time

_—(A-B)-(A-B) B[4 —(r,+1,)’]
BZ

t

>

where

Team LRN

Chapter 8 Collision Detection 271

A=P -Q,
BZ(PZ_Pl)_(QZ_Ql)‘

Exercises for Chapter 8

1. Determine the time ¢ when a sphere having a radius of two meters collides
with the plane x=10m if its center lies at the origin at time #=0 and it
moves with a constant velocity of (2,0,1) m/s.

2. Suppose a collision occurs at the point Q on the surface of a cylinder of ra-
dius » whose ends are centered at the origin and the point A. Find an expres-
sion for the unit normal vector N at the point Q.

3. Write a program that determines whether two spheres collide within a given
time interval. The program should take as parameters the initial positions
and velocities of the two spheres. If a collision occurs, the program should
calculate the point of contact at the time of collision.

Team LRN

Team LRN

Chapter

Polygonal Techniques

polygonal models. A 3D graphics engine often needs to create polygonal

models in real-time in addition to working with models that have been
preprocessed in some way. We begin this chapter with techniques pertaining to
decal construction and billboarding, operations usually performed on the fly.
Subsequent sections discuss preprocessing methods such as polygon reduction
and triangulation, which are normally performed by a tool that generates struc-
tures used for rendering at a later time.

g I Yhis chapter discusses several techniques that involve the manipulation of

9.1 Depth Value Offset

Many games need to render special effects such as scorch marks on a wall or
footprints on the ground that are not an original part of a scene, but are created
during gameplay. (A method for creating these is discussed in Section 9.2.)
These types of decorative additions are usually decaled onto an existing surface
and thus consist of polygons that are coplanar with other polygons in a scene.
The problem is that pixels rendered as part of one polygon rarely have exactly the
same interpolated depth value as pixels rendered as part of a coplanar polygon.

273

Team LRN

274

Mathematics for 3D Game Programming and Computer Graphics

The result is an undesired pattern in which parts of the original surface show
through the decaled polygons.

The goal is to find a way to offset a polygon’s depth in a scene without
changing its projected screen coordinates or altering its texture-mapping perspec-
tive. Most 3D graphics systems contain some kind of polygon offset function to
help achieve this goal. However, these solutions generally lack fine control and
usually incur a per-vertex performance cost. In this section, we present an alter-
native method that modifies the projection matrix to achieve the depth offset ef-
fect.

9.1.1 Projection Matrix Modification

Let us first examine the effect of the standard OpenGL perspective projection
matrix on an eye space point P=(PX, P, Pz,l). To simplify the matrix given in
Equation (4.52) a bit, we assume that the view frustum is centered about the z-
axis so that the left and right planes intersect the near plane at x =+ n/e, and the
top and bottom planes intersect the near plane at y = +an/e, where e is the focal
length and « is the aspect ratio. Calling the distance to the near clipping plane n

and the distance to the far clipping plane f, we have

[e 0 0 0 —l_P_l i er —|

0 e/a 0 o || (efa)P,

0 0 ftn 2fn py:_ﬂpz_ﬂ' 9.1)
f-n f-n|| * f—n f-n

_O O -1 O J‘lJ i _Pz J

To finish the projection, we need to divide this result by its w-coordinate, which
has the value —P,. The resulting point P’ is given by

I _eh, 1
P,
| (gar
P = 7})2 (9.2)
f+n+ 2 fn
Lf-n P(f-n)]

Team LRN

Chapter 9 Polygonal Techniques 275

It is clear from Equation (9.2) that preserving the value of —P, for the
w-coordinate will guarantee the preservation of the projected x- and y-coordinates
as well. From this point forward, we shall concern ourselves only with the lower-
right 2x 2 portion of the projection matrix, since this is the only part that affects
the z- and w-coordinates.

The projected z-coordinate may be altered without disturbing the
w-coordinate by introducing a factor of 1+ &, for some small ¢, as follows.

f+n 2fn] f+n 2fn]

—(1 P 1 =
(+a)f_n Fon { Al +a) — P f—n‘ ©3)

. 0 - P J

After dividing by w, we arrive at the following value for the projected
z-coordinate.

_(l+¢)f+n 2 fn
f=n P(f-n)
L B (9.4)

f=n P(f=n) [f-n

Comparing this to the z-coordinate in Equation (9.2), we see that we have found a
way to offset projected depth values by a constant € ; -

9.1.2 Offset Value Selection

Due to the nonlinear nature of the z-buffer, the constant offset given in Equation
(9.4) corresponds to a larger difference far from the camera than it does near the
camera. Although this constant offset may work well for some applications, there
is no single solution that works for every application at all depths. The best we
can do is choose an appropriate &, given a camera-space offset o and a depth
value P, that collectively represents the object that we are offsetting. To deter-
mine a formula for & we examine the result of applying the standard projection
matrix from Equation (9.1) to a point whose z-coordinate has been offset by some
small ¢ as follows.

f+n 2/n] f+n 2/n
_Lxn vs1 |- L P s 2
f—n f—n‘ {P L i Sy e 9.5)
N

Team LRN

276

Mathematics for 3D Game Programming and Computer Graphics

Dividing by w, we have the following value for the projected z-coordinate.

PZ,=f+n+ 2fn
f=n" (B+8)(f—n)
=f+n+ 2 fn N 2 fn 11 (9.6)
f=n P(f-n) f-n\P.+6 P
Equating this result to Equation (9.4) and simplifying a bit, we end up with
po_ 2 ° | (9.7)
f+n P(P+5)

A good value of ¢ for a particular application can be found with a little ex-
perimentation. It should be kept in mind that ¢ is a camera-space offset, and thus
becomes less effective as P, gets larger. For an m-bit integer depth buffer, we
want to make sure that

L ([=n
el 2" —1[f+ n] 3

since smaller values of ¢ will not yield an offset significant enough to alter the
integer depth value. Substituting the right side of Equation (9.7) for ¢ and solving
for d gives us

kP;
P 99
= (99)
or
_ 2
< M (9.10)
1+ kP,
where the constant & is given by
PR el 9.11)
2fm(2" 1)

Equation (9.9) gives us the minimum effective value for & when offsetting a
polygon toward the camera (the usual case), and Equation (9.10) gives us the
maximum effective value for 6 when offsetting a polygon away from the camera.

Team LRN

Chapter 9 Polygonal Techniques 277

9.1.3 Implementation

Listing 9.1 demonstrates how the projection matrix shown in Equation (9.3) may
be implemented under OpenGL. The function LoadOffsetMatrix takes the
same six values that are passed to the OpenGL function g1lFrustum (). It also
takes the values for o and P, that are used to calculate &.

Listing 9.1 This code modifies the OpenGL projection matrix so that it offsets depth
values by the constant € given by Equation (9.7).

void LoadOffsetMatrix (GLdouble 1, GLdouble r,
GLdouble b, GLdouble t,
GLdouble n, GLdouble £,
GLfloat delta, GLfloat pz)

GLfloat matrix[16] ;

// Set up standard perspective projection
glMatrixMode (GL_PROJECTION) ;
glFrustum(l, r, b, t, n, £f);

// Retrieve the projection matrix
glGetFloatv (GL_PROJECTION MATRIX, matrix) ;

// Calculate epsilon with Equation (9.7)
GLfloat epsilon = -2.0F * £ * n * delta /
((£ + n) * pz * (pz + delta));

// Modify entry (3,3) of the projection matrix
matrix[10] *= 1.0F + epsilon;

// Send the projection matrix back to OpenGL
glloadMatrix (matrix) ;

9.2 Decal Application

Effects such as scorch marks on walls or footprints on the ground are commonly
implemented by creating a new object, called a decal, that coincides with an ex-
isting surface and rendering it using a depth offset technique such as that dis-
cussed in Section 9.1. Applying a decal to the interior of a planar surface is

Team LRN

278

Mathematics for 3D Game Programming and Computer Graphics

simple, but difficulties arise when applying decals to the more complex surfaces
used in today’s games to represent curved objects and terrain patches. In this sec-
tion, we present a general method for applying a decal to an arbitrarily shaped
surface and concurrently clipping the decal to the surface’s boundary. An exam-
ple of the technique we present is shown in Figure 9.1.

Figure 9.1 A scorch mark decal applied to a curved surface.

9.2.1 Decal Mesh Construction

We begin with a point P that lies on an existing surface and a unit normal direc-
tion N that is perpendicular to the surface at that point. The point P represents the
center of the decal and may be the point at which a projectile has hit the surface
or the point where a character’s foot has stepped upon the ground. A unit tangent
direction T must also be chosen to determine the orientation of the decal. This
configuration is illustrated in Figure 9.2.

Given the point P and the directions N and T, we have an oriented plane that
is tangent to the surface geometry at P. We can carve a rectangle out of this plane
that represents the area of our decal by constructing four boundary planes that are
parallel to the normal direction N. Let w and % be the width and height of the de-
cal. Then the 4D vectors corresponding to the four border planes are given by

Team LRN

Chapter 9 Polygonal Techniques 279

Figure 9.2 The configuration of a decal.

bottom=| B,]%—B~ PJ
h
topz(—B,E+B~P], (9.12)

where B=NxT. We generate a triangle mesh for the decal object by clipping
nearby surfaces to the four boundary planes. We also want to clip to front and
back planes to avoid bleeding through to parts of the same surface mesh that may
be inside the boundary planes but far in front of or behind the point P. The 4D
vectors corresponding to the front and back planes are given by

front=(-N,d+N-P)
back =(N,d - N-P), (9.13)

where d is the maximum distance that any vertex in the decal may be from the
tangent plane passing through the point P.

Team LRN

280

Mathematics for 3D Game Programming and Computer Graphics

The mesh construction algorithm proceeds as follows. First, we identify
which surfaces in the world could potentially be affected by the decal. This may
be determined by locating each surface whose bounding volume reaches within a
certain distance of the point P. For each potentially affected surface, we indi-
vidually examine every triangle in the surface’s mesh. Let M denote the unit
normal direction corresponding to the plane of a triangle in the mesh. We throw
out any triangles for which N-M < ¢ for some fixed positive value ¢ since these
triangles are facing away from the decal’s normal direction N. The remaining
triangles are clipped to the planes given by Equations (9.12) and (9.13) and
stored in a new triangle mesh.

When a triangle overlaps any of the planes and needs to be clipped, we inter-
polate the normal vectors as well as the vertex positions so that we can later ap-
ply coloring to the clipped vertices that reflects the angle between each vertex’s
normal direction and the decal’s normal direction. This has the effect of smoothly
fading the decal texture in relation to each triangle’s orientation relative to the

plane of the decal. We assign an alpha value to each vertex using the equation

N-R_
alpha = M, (9.14)
1-¢

where R is the (possibly unnormalized due to interpolation) normal vector corre-
sponding to the vertex. This maps the dot product range [&,1] to the alpha value
range [0,1].

Texture mapping coordinates are applied to the resulting triangle mesh by
measuring the distance from each vertex to the planes passing through the point
P and having normal directions T and B. Let Q be the position of a vertex in the
decal’s triangle mesh. Then the texture coordinates s and ¢ are given by

(9.15)

9.2.2 Polygon Clipping

Each triangle belonging to a surface that could potentially be affected by the de-
cal is treated as a convex polygon and clipped to each of the six boundary planes,
one at a time. Clipping a convex polygon having n vertices to a plane results in a
new convex polygon having at most n+1 vertices. Thus, polygons that have been

Team LRN

Chapter 9 Polygonal Techniques 281

clipped against all six planes may possess as many as nine vertices. Once the
clipping process is complete, each polygon is treated as a triangle fan and added
to the decal’s triangle mesh.

To clip a convex polygon against an arbitrary plane, we first classify all the
vertices belonging to the polygon into two categories: those lying on the negative
side of the plane and those lying on the positive side of the plane or in the plane
itself. (This differs from the method used to clip portals in Section 7.4.1 in that
we do not have a separate classification for vertices lying in the plane.) If all the
polygon’s vertices lie on the negative side of the plane, then the polygon is dis-
carded. Otherwise, we visit every pair of neighboring vertices in the polygon
looking for edges that intersect the clipping plane. As shown in Figure 9.3, new
vertices are added to the polygon where such intersections occur, and vertices
lying on the negative side of the plane are removed.

v,

Figure 9.3 When a polygon is clipped against a plane, new vertices are added where
edges intersect the plane, and vertices lying on the negative side of the plane are re-
moved.

Suppose that the vertex V, lies on the positive side of the clipping plane K
and that the vertex V, lies on the negative side of K. A point W lying on the line
segment connecting V, and V, can be expressed as

W)=V, +¢(V,-V,), (9.16)

where the parameter ¢ satisfies 0< ¢ < 1. The value of ¢ for which K- W(¢)=0 is
given by

Team LRN

282

Mathematics for 3D Game Programming and Computer Graphics

=RV 0.17)
K-(V,-V,)

(Note that the difference V, -V, has a w-coordinate of 0.) Substituting this value

of ¢ back into Equation (9.16) gives us our new vertex W.

9.3 Billboarding

Many special effects are implemented by applying a two-dimensional texture
map to a flat polygon that is always oriented to face the camera. This technique is
called billboarding and is an effective way to create the illusion that a flat object
has volume. This section examines methods for calculating the vertices of bill-
board polygons in different situations.

9.3.1 Unconstrained Quads

An unconstrained quad is a four-sided rectangular polygon that is free to rotate in
any direction. Unconstrained quads are typically used to create special effects
such as particle systems, smoke trails, and lens flare coronas.

We billboard an unconstrained quad by forcing its vertices to lie in a plane
that is perpendicular to the direction in which the camera is pointing. Let the vec-
tors R and U denote the unit-length world space right direction and up direction
of the current camera view. (These correspond to the camera space x- and y-axes,
respectively.) The quad that we wish to billboard is defined by the following
quantities.

(a) The world space position P corresponding to the center of the quad.

(b) The width w and height 4 of the quad. These may be changed over time
to produce the effect of an expanding or shrinking billboard.

(c) The angle 6 by which the quad should be rotated relative to the camera’s
orientation. This may be changed over time to produce the effect of a
spinning billboard. If @ 1is constant, then the quad rotates with the camera
about the view direction.

Using these quantities, we define the vectors X and Y as follows.

Team LRN

Chapter 9 Polygonal Techniques 283

X= [KCOSQJR+(KSin0]U
2 2
h . h
Yz[—asm@JR+(Ecos9jU (9.18)

The rotation @ is typically quantized to some number of possible angles so that a
lookup table may be used for the sine and cosine functions. Of course, if 8 =0,
then the expressions for the vectors X and Y reduce to

X=2R
2
h
Y=—U. (9.19)
2
As illustrated in Figure 9.4, the four vertices Q,, Q,, Q;, and Q, of the quad are
given by
Q=P+X+Y Q,=P-X+Y
Q,=P-X-Y Q,=P+X-Y. (9.20)

These vertices are arranged in a counterclockwise winding order so that the front
of the quad faces the camera. The corresponding two-dimensional texture map-
ping coordinates are given by

(s1,)=(L1) (52,2,)=(0.1)
<S3’t3>=<0’0> <S4>t4>=<170>- (9.21)

Billboarded quads whose vertices derive from the vectors X and Y given by
Equation (9.18) are always aligned to the plane of the camera. As Figure 9.5
demonstrates, this alignment can differ significantly from the plane perpendicular
to the true direction from the quad’s center to the camera position. When hun-
dreds or thousands of small particles are being rendered, one may wish to use
Equation (9.18) for efficiency, but large quads may look better if oriented to face
the actual camera position instead of the plane of the camera.

We align a quad so that it faces the camera position by presenting a more
computationally expensive formulation of the vectors X and Y. Let the vector C
denote the world space camera position. Assuming that the center P of the quad
does not lie on the line containing C and running in the direction U, we can cal-
culate

Team LRN

284 Mathematics for 3D Game Programming and Computer Graphics

U
A

Qs

Figure 9.4 Calculating the vertices of an unconstrained billboarded quad.

Figure 9.5 A billboarded quad that is aligned to the plane of the camera may differ
significantly from a quad that directly faces the camera position.

Team LRN

Chapter 9 Polygonal Techniques 285

_C-P
lc-P|
Ao UxZ
[UxZ||
B=7ZxA. (9.22)

The vector Z is the unit vector that points from the quad’s center toward the
camera position. Calculating the cross product with U produces orthogonal vec-
tor A lying in the plane of the billboard. If Ux Z is close to zero, then we can use
the alternate formula

_Z><R

|ZxR|
A=BxZ. (9.23)

The vectors A and B form an orthogonal pair of unit vectors that we can use to
express the vectors X and Y:

X= [ECOSQJA + [EsinﬁjB
2 2
h . h
Y=[—5s1n0]A+(Ecos0]B. (9.24)

Using these in Equation (9.20) produces the vertices of the billboarded quad.

9.3.2 Constrained Quads

We now consider how to orient a quad that is constrained to rotate only about the
z-axis. An example of how such a quad might be used is to render the fire texture
for a torch. In this case, the fire is always pointing upward, but the plane of the
quad rotates to face the camera. As long as the camera does not view the quad
from sharply above or below, this produces the convincing illusion that the fire
has volume.

Suppose that the camera resides at the world space point C. For a quad cen-
tered at the point P, we define the vector X as

X=(P,-C,,C,-P,0). (9.25)

Team LRN

286

Mathematics for 3D Game Programming and Computer Graphics

As shown in Figure 9.6, this vector is constructed by taking the difference be-
tween the camera position and the center of the quad, projecting it onto the x-y
plane, and rotating it 90 degrees counterclockwise about the z-axis. If |X|=0,
then the camera is either directly above or directly below the quad. In this case,
the quad is being viewed on edge and therefore should not be rendered. Other-
wise, we calculate the four vertices Q,, Q,, Q,, and Q, of the quad as follows.

w X h w X h
P+——+(0,0, =P-——+(0,0,
Q-reiggrloog) emr-fi{ood)
w X h w X
—p-2 2 (002 P+ 22 (002) (926
AP og) 2IX| 00g) ©20

The texture mapping coordinates are the same as those for an unconstrained quad
given by Equation (9.21).

Y
A
X
w/2
P > x
Cy—Py
C
C,\‘_Px

Figure 9.6 Calculating the vertices of a billboarded quad that is constrained to rotate
about the z-axis.

Team LRN

Chapter 9 Polygonal Techniques 287

9.3.3 Polyline Quadstrips

A polyline defined by a series of N points P,,P,,...,P, can be given some thick-
ness r by constructing a quadstrip that traces the polyline in the manner shown in
Figure 9.7. One application of such a quadstrip is to render a lightning bolt whose
path is defined by a set of points. Another application is to render a motion-
blurred particle for which a number of intermediate positions have been calcu-
lated between its position on the previous frame and its current position.

Py

Figure 9.7 A quadstrip of radius r that traces a polyline.

For each point P, defining the polyline, we generate two quadstrip vertices
lying at a distance r from P,. The direction of the line on which these vertices and
the point P, lie should be orthogonal to both the direction to the camera position
and the tangent direction of the polyline at P,. The unit direction Z, to the camera
is given by

— C-P,

Zi —HCT, (927)

where C is the camera position. A unit tangent vector T, may be calculated for
the point P, using the formula

Team LRN

288

Mathematics for 3D Game Programming and Computer Graphics

T = @, (9.28)
||Pi+l - Pi—l
or in the case that P, is an endpoint,
_ Pz — P1
] ”Pz - Pl ”
it R (9.29)
”PN - PN—] ”

The two quadstrip vertices G, and H, corresponding to the point P, are then given
by

G, =Pi+r(TfXZ1)

H, =P -r(TxZ,). (9.30)
Each edge of the quadstrip constructed wusing the vertices

G, ,H,,G,,H,,...,G,,H, is perpendicular to the direction to the camera. Figure
9.8 demonstrates a lightning bolt generated using this technique.

Figure 9.8 A polyline quadstrip used to render a lightning bolt.

Team LRN

Chapter 9 Polygonal Techniques 289

9.4 Polygon Reduction

When a model consisting of a large number of triangles is rendered far from the
camera, it is likely that many of the triangles make no perceptible contribution to
the resulting image. By reducing the number of rendered triangles as the distance
from the camera to the model increases, we can reduce the amount of computa-
tion needed to process the mesh as well as the amount of data sent to the graphics
hardware.

A common method used to reduce the number of triangles in a mesh is the
edge collapse technique. This method works by locating edges within a triangle
mesh whose removal would not cause a large change in the shape of the model.
The process of removing an edge is called an edge collapse and is performed by
merging the edge’s two endpoints. As illustrated in Figure 9.9, one endpoint re-
mains stationary, and the other endpoint is moved to the same location as the
first. Thus, there are two ways in which an edge can be collapsed, depending on
which endpoint remains stationary. The two triangles sharing the collapsed edge
are eliminated, and any triangles using the moved vertex are stretched to fill in
the space left behind. Of course, since the two endpoints now occupy the same
location, the one that was moved can simply be eliminated. Thus, a single edge
collapse results in the removal of two triangles, one edge, and one vertex from
the mesh.

—X | =

Figure 9.9 An edge collapse merges the two endpoints of the edge and eliminates
the triangles that share the edge.

We decide which edges to collapse in a triangle mesh by calculating two
costs for each edge. A cost is assigned to each endpoint of an edge based on how
much the appearance of the triangle mesh would be altered if the edge is col-
lapsed by removing that endpoint. Endpoints having the lowest collapse cost

Team LRN

290

Mathematics for 3D Game Programming and Computer Graphics

determine which edges are the first to be eliminated. If it is known that an edge
should definitely not be eliminated, then the collapse costs of its endpoints can be
set to some large value to indicate this.

v,

v,

Figure 9.10 Calculating the collapse cost.

There are many possible ways to calculate edge collapse costs. The method
presented in this section assigns costs based on a combination of the edge’s
length and the flatness of the triangle mesh on both sides of the edge around the
endpoint being considered for elimination. Suppose that we wish to calculate the
cost of eliminating the vertex V, in Figure 9.10 by collapsing it into the vertex
V,. We first calculate the normal vector N for the vertex V, by averaging the
normals of the surrounding triangles (see Section 6.7.1). We then define the vec-
tor D to be

p-E ©.31)

INx EJ

where E is the direction pointing from V, to V,:

Team LRN

Chapter 9 Polygonal Techniques 291

E=V,-V,. (9.32)

The direction D is perpendicular to both the normal to the surface at V, and the
edge that we are considering. It will be used to determine on which side of the
edge a point lies.

It should be noted that if any of the edges leading away from the vertex V,
are not shared by two triangles, then V, should not be eliminated because doing
so would change the shape of the triangle mesh’s boundary. If V, does lie in the
interior of the mesh, then for each of the two triangles sharing the edge that con-
nects V, and V,, we examine the vertex V; of the triangle that does not lie on the
edge to determine whether the triangle lies on the positive side or negative side of
the edge. If the condition

D-(V,-V,)20 (9.33)

1s satisfied, then the triangle lies on the positive side of the edge; otherwise, it lies
on the negative side of the plane. We must have one of each, so if both triangles
lie on the positive side or both triangles lie on the negative side, then the edge
should not be collapsed.

Let T, represent the unit-length normal vector of the triangle lying on the
positive side of the edge, and let T, represent the unit-length normal vector of
the triangle lying on the negative side of the edge. We estimate the flatness of the
triangle mesh on either side of the edge being considered for collapse by compar-
ing the normal vectors T, and T, to those of the other triangles using the vertex
V,. As we examine these triangles, we maintain a value d corresponding to the
smallest dot product found between the normal of any triangle occupying space
on the positive side of the edge and the vector T, and between the normal of any
triangle occupying space on the negative side of the edge and the vector T, . A
value of d near one indicates that the mesh is mostly flat on either side of the
edge, but a small value of d indicates that large angles exist between triangles
sharing the vertex V,. If d falls below some threshold corresponding to the maxi-
mum surface roughness allowed, then the edge connecting V, and V, should not
be collapsed. Otherwise, we assign the cost ¢ to the edge using the formula

c=(1-d)[E]. (9.34)

To clarify the procedure for calculating the value of d, suppose that a triangle
has vertices V,, A, and B (where neither A nor B is equal to V,), and has the unit-
length normal vector T. We classify the vertices A and B as lying on the positive
side of the edge, on the negative side of the edge, or on the edge itself by examin-
ing the dot products

Team LRN

292

Mathematics for 3D Game Programming and Computer Graphics

a=D-(A-V))
b=D-(B-V,). (9.35)

The quantities ¢ and b represent the distances from the plane containing the edge
and having normal vector D to the points A and B. If a>¢ or b>¢ for some
small distance &, then we consider the corresponding point to lie on the positive
side of the edge. Similarly, if a<—¢ or b <—¢, then we consider the correspond-
ing point to lie on the negative side of the edge. Points lying within the distance &
of the edge are considered to be lying on the edge itself. If either A or B lies on
the positive side of the edge, then we replace the minimum dot product d with the
dot product T- T, if it is smaller:

d < min{d,T-T, }. (9.36)

If either A or B lies on the negative side of the edge, then we replace d with the
dot product T- T, if it is smaller:

€

d<—min{d,T~Tneg}. (9.37)

It is possible that both of the operations given by Equations (9.36) and (9.37) are
performed for a single triangle.

The edge collapse cost calculation presented in this section allows the col-
lapse of an edge such as that shown in Figure 9.11. As long as the triangle mesh
is reasonably flat on both sides of the edge, a collapse may occur along an edge
between two triangles having largely differing orientations.

—

Figure 9.11 The edge collapse cost calculation allows the collapse of an edge be-
tween two triangles having largely differing orientations as long as the triangle mesh
is reasonably flat on both sides of the edge.

Team LRN

Chapter 9 Polygonal Techniques 293

Figure 9.12 shows the original triangle mesh for a character model and the
same model after 30 percent of its triangles have been eliminated using the edge
collapse technique. Notice how edges in regions of high triangle concentration
and regions of relative flatness were the first edges chosen to be removed.

Figure 9.12 The top pair of images show a character model and the wireframe of its
triangle mesh. The bottom pair of images shows the same model after 30 percent of
its triangles have been eliminated.

Team LRN

294

Mathematics for 3D Game Programming and Computer Graphics

9.5 T-Junction Elimination

Suppose that a scene contains two polygons that share a common edge, as shown
in Figure 9.13(a). When two such polygons belong to the same model, the verti-
ces representing the endpoints of the common edge are not ordinarily duplicated
unless some vertex attribute (such as texture coordinates) is different for the two
polygons. Vertices shared by multiple polygons are usually stored once in an ar-
ray and referenced multiple times by the polygons that use them. Graphics hard-
ware is designed so that when adjacent polygons use exactly the same
coordinates for the endpoints of shared edges, rasterization produces sets of pix-
els that are precise complements of each other. Along the shared edge, there is no
overlap between the pixels belonging to one polygon and those belonging to the
other, and there are no gaps where pixels do not belong to either polygon.

A problem arises when adjacent polygons belong to different objects. Each
object has its own copy of the endpoint vertices for the shared edge, and these
vertices may differ greatly in each object’s local coordinate space. When the ver-
tices are transformed into world space, floating-point round-off error may pro-
duce slightly different positions for each object. Since the vertex coordinates are
no longer exactly equal, a seam may appear when the polygons are rasterized.

A larger problem occurs when two polygons have edges that fall within the
same line in space but do not share the same endpoints, as illustrated in Figure
9.13(b). In such a situation, a vertex belonging to one polygon lies within the in-
terior of an edge belonging to the other polygon. Due to the shape that the edges
form, the location at which this occurs is called a T-junction. Because the adja-
cent edges do not share identical endpoints, T-junctions are a major cause of
visible seams in any real-time graphics engine that does not take measures to
eliminate them.

(@) (b) \ \

Figure 9.13 (a) Two polygons share an edge and both endpoint vertices. (b) Two
polygons share an edge but do not share endpoint vertices. The location where a ver-
tex of one polygon lies on the edge of another polygon is called a T-junction.

Team LRN

Chapter 9 Polygonal Techniques 295

In this section, we describe how to detect possible sources of seams in com-
plex 3D scenes and how to modify static geometry so that visible artifacts are
avoided. The removal of seams is absolutely necessary in order for graphics en-
gines to employ stencil shadow techniques for global illumination (see Section
10.1). When T-junctions are eliminated, new vertices are added to existing poly-
gons. A method for triangulating arbitrary polygons is described in Section 9.6.

Given an immovable object 4 in our world, we need to determine whether
there exist any other immovable objects possessing a vertex that lies within an
edge of object 4. We consider only those objects whose bounding volumes inter-
sect the bounding volume of object 4. Let object X be an object that lies close
enough to object 4 to possibly have adjacent polygons. We treat both objects as
collections of polygons having the greatest possible number of edges. We per-
form triangulation of these polygons affer the T-junction elimination process to
avoid the creation of superfluous triangles.

Before we locate any T-junctions, we first want to find out if any of object
A’s vertices lie very close to any of object X’s vertices. We must transform the
vertices belonging to both objects into some common coordinate space and
search for vertices separated by a distance less than some small constant £. Any
vertex V, of object A that is this close to a vertex V, of object X should be
moved so that V, and V, have the exact same coordinates. This procedure is
sometimes called welding.

Once existing vertices have been welded, we need to search for vertices of
object X that lie within a small distance ¢ of an edge of object 4 but do not lie
within the distance ¢ of any vertex of object 4. This tells us where T-junctions
occur. Let P, and P, be endpoints of an edge of object 4, and let Q be a vertex of
object X. The squared distance d between the point Q and the line passing
through P, and P, is given by

d2Z(Q—Pl)z—[(Q_(I;;);(:Z)ZP])]Z. (9.38)

If d* < £°, then we know that the point Q lies close enough to the line containing
the edge of object 4, but we still need to determine whether Q actually lies be-
tween P, and P,. We can make this determination by measuring the projected
length ¢ of the line segment connecting P, to Q onto the edge formed by P, and
P,. This length is given by

t=|Q-P|cosex, (9.39)

where « is the angle between the line segment and the edge. Using a dot product
to compute the cosine, we have

Team LRN

296

Mathematics for 3D Game Programming and Computer Graphics

tz(Q_Pl).(PZ_PI)‘ (940)
[P, — P

If t<e ort>|P,—P|—¢, then the point Q does not lie within the interior of the
edge formed by P, and P,. Otherwise, we have found a T-junction, and a new
vertex should be added to the polygon of object 4 between P, and P, precisely at
Q’s location.

9.6 Triangulation

Triangulation is the process by which a polygon is divided into triangles that use
the same array of vertices and collectively cover the same area. Polygons must be
triangulated before they can be passed to the graphics hardware. A polygon hav-
ing n vertices is always decomposed into n—2 triangles. Convex polygons are
particularly easy to triangulate—we simply choose one vertex and connect edges
to every other nonadjacent vertex to form a triangle fan like the one shown in
Figure 9.14. Polygons that are not convex or possess three or more collinear ver-
tices cannot generally be triangulated in this way, so we have to employ more
complicated algorithms.

Figure 9.14 A convex polygon is triangulated by connecting edges from one arbitrar-
ily chosen vertex to every other nonadjacent vertex, creating a triangle fan.

A modeling system may produce a list of polygons that might be convex or
concave. After static world geometry has been processed by performing welding
and T-junction elimination, any polygon may also contain several vertices that

Team LRN

Chapter 9 Polygonal Techniques 297

are collinear (or at least nearly collinear) with some of its other vertices. This
prevents us from using a simple fanning approach that might ordinarily be used
to triangulate a convex polygon. We are instead forced to treat the polygon as
concave.

The algorithm that we describe takes as input a list of n vertices wound in a
counterclockwise direction and produces a list of n—2 triangles. At each itera-
tion, we search for a set of three consecutive vertices for which the corresponding
triangle is not degenerate, is not wound in the wrong direction, and does not con-
tain any of the polygon’s remaining vertices. The triangle formed by such a set of
three vertices is called an ear. Once an ear is found, a triangle is emitted, and the
middle vertex is disqualified from successive iterations. The algorithm repeats
until only three vertices remain. This process of reducing the size of the triangu-
lation problem by removing one ear at a time is called ear clipping.

In order to determine whether a set of three vertices is wound in a counter-
clockwise direction, we must know beforehand the normal direction N, of the
plane containing the polygon being triangulated. Let P,, P,, and P, represent the
positions of the three vertices. If the cross product (P, — P,)x (P, —P,) points in
the same direction as the normal N, then the corresponding triangle is wound
counterclockwise. If the cross product is near zero, then the triangle is degener-
ate. Thus, two of our three requirements for a triangle are satistied only if

(P,—P)x(P,—P) N,>¢ (9.41)

for some small value ¢ (typically, € = 0.001).

Our third requirement is that the triangle contains no other vertices belonging
to the polygon. We can construct three inward-facing normals N,, N,, and N,
corresponding to the three sides of the triangle, as follows.

N, =N, x(P,-P)
N, =Nox(P,—-P,)
N, =Ny x (P, -P,) (9.42)
As shown in Figure 9.15, a point Q lies inside the triangle formed by P,, P,, and
P, if and only if N, - (Q—P,)> —¢ for ie {1,2,3}.
Since we have to calculate the normals given by Equation (9.42) for each

triangle, we can save a little computation by replacing the condition given by
Equation (9.41) with the equivalent expression

N,-(P,—P)>¢. (9.43)

Team LRN

298

Mathematics for 3D Game Programming and Computer Graphics

This determines whether the point P, lies on the positive side of the edge con-
necting P, and P,.

The implementation shown in Listing 9.2 maintains a working set of four
consecutive vertices and at each iteration determines whether a valid triangle can
be formed using the first three vertices or the last three vertices of that group. If
only one of the sets of three vertices forms a valid triangle, then that triangle is
emitted, and the algorithm continues to its next iteration. If both sets of three ver-
tices can produce valid triangles, then the code selects the triangle having the
larger smallest angle. In the case that neither set of three vertices provides a valid
triangle, the working set of four vertices is advanced until a valid triangle can be
constructed.

The method presented in Listing 9.2 was chosen so that the output of the al-
gorithm would consist of a series of triangle strips and triangle fans. Such a tri-
angle structure exhibits excellent vertex cache usage on modemn graphics
processors. The implementation also includes a safety mechanism. If a polygon is
passed to it that is degenerate, self-intersecting, or otherwise nontriangulatable,
then the algorithm terminates prematurely to avoid becoming stuck in an infinite
loop. This happens when the code cannot locate a set of three consecutive verti-
ces that form a valid triangle.

Figure 9.15 A point Q lies in the interior of a triangle (or nearly on its boundary) if
N,-(Q-P)>—¢ forie {123}.

Team LRN

Chapter 9 Polygonal Techniques 299

Listing 9.2 The TriangulatePolygon function takes an arbitrary planar poly-
gon having n vertices and triangulates it, producing at most n — 2 triangles.

Parameters

vertexCount The number of vertices.

vertex A pointer to an array of n Point3D structures representing the
polygon’s vertices.

normal The polygon’s normal direction

triangle A pointer to an array of n—-2 Triangle structures where the

results of the triangulation are stored.

const float epsilon = 0.001F;

struct Triangle

{

unsigned short index[3] ;
b

struct Vector3D

{
float x, vy, z;

Vector3D() {}
Vector3D(float r, float s, float t)

float operator * (const Vector3D& v) const
{ // Dot product
return (x * v.x + y * v.y + z * v.z);

Vector3D operator %(const Vector3D& v) const
{ // Cross product
return (Vector3D(y * v.z - z * v.y,
zZ* v.x - X * v.z, x* v.y -y * v.x));

Vector3D& Normalize(void)

{
return (*this /= sqrt(x * x + y * y + z * 2));

Team LRN

300

Mathematics for 3D Game Programming and Computer Graphics

struct Point3D : Vector3D

{

b

Point3D() {}
Point3D(float r, float s, float t)
Vector3D(r, s, t) {(}

Vector3D operator -(const Point3D& p) const

{ // Difference between two points is a vector
return (Vector3D(x - p.X, ¥ - pP.Y, 2 - pP.2));

}

static long GetNextActive (long x, long vertexCount,

const bool *active)

for (;;)

{
if (++x == vertexCount) x = 0;
if (active[x]) return (x);

static long GetPrevActive(long x, long vertexCount,

const bool *active)

for (;;)

{
if (--x == -1) x = vertexCount - 1;
if (activel x]) return (x);

long TriangulatePolygon(long vertexCount,

const Point3D *vertex, const Vector3D& normal,
Triangle *triangle)

bool *active = new bool[vertexCount] ;
for (long a = 0; a < vertexCount; a++)
activel a] = true;

long triangleCount = 0;
long start = 0;

long pl = O;

long p2 = 1;

Team LRN

Chapter 9 Polygonal Techniques

long ml = vertexCount - 1;
long m2 = vertexCount - 2;
bool lastPositive = false;
for (;;)

{

if (p2 == m2)

{ // Only three vertices remain
triangle->index[0] = ml;
triangle->index[1] = pl;
triangle->index[2] = p2;
triangleCount++;
break;

}

const Point3D& vpl = vertex| pl];

const Point3D& vp2 = vertex[p2] ;

const Point3D& vml = vertex[ml] ;
const Point3D& vm2 = vertex[m2] ;
bool positive = false;

bool negative = false;

// Determine whether
// a valid triangle
Vector3D nl = normal

if (n1 * (vpl - vp2) > epsilon)
{
positive = true;
Vector3D n2 = (normal % (vpl - vml).Normalize()):;
Vector3D n3 = (normal % (vp2 - vpl).Normalize());
for (long a = 0; a < vertexCount; a++)
{ // Look for other vertices inside the triangle
if ((activel a])
&& (a !'= pl) && (a !'= p2) && (a !'= ml))

const Vector3D& v =
(v — vp2) .Normalize ()
(v. = vml) .Normalize() > -epsilon)
(v — vpl) .Normalize () >

if
&&
&&
{
positive =
break;

({(nl *
(n2 *
(n3 *

vpl, vp2, and vml form

% (vml - vp2).Normalize();

vertex[al ;
> —epsilon)

-epsilon))

false;

Team LRN

301

302 Mathematics for 3D Game Programming and Computer Graphics

}

// Determine whether vml, vm2, and vpl form
// a valid triangle

nl = normal % (vm2 - vpl).Normalize();

if (nl * (vml - vpl) > epsilon)

{

negative = true;

Vector3D n2 = (normal % (vml - vm2) .Normalize());
Vector3D n3 = (normal % (vpl - vml).Normalize());
for (long a = 0; a < vertexCount; a++)

{ // Look for other vertices inside the triangle
if ((activel al)
&& (a !'=ml) && (a '= m2) && (a !'= pl))

const Vector3D& v = vertex aj ;
if ((nl * (v - vpl).Normalize() > -epsilon)
&& (n2 * (v - vm2) .Normalize() > -epsilon)
&& (n3 * (v - vml).Normalize() > -epsilon))
{

negative = false;

break;

}

// If both triangles valid, choose the one
// having the larger smallest angle

if ((positive) && (negative))
{
float pd = (vp2 - vml) .Normalize() *
(vm2 - vml) .Normalize();
float md = (vm2 - vpl).Normalize() *

(vp2 - vpl) .Normalize();

if (fabs(pd - md) < epsilon)
{

if (lastPositive) positive = false;
else negative = false;

}

else

{

Team LRN

Chapter 9 Polygonal Techniques

if

}

if (pd < md) negative = false;

else positive = false;
(positive)
// Output the triangle ml, pl, p2
activel pl] = false;
triangle->index[0] = ml;
triangle->index[1] = pl;
triangle->index[2] = p2;
triangleCount++;
triangle++;

pl = GetNextActive(pl, vertexCount,
P2 GetNextActive (p2, vertexCount,
lastPositive = true;

start = -1;

I

else if (negative)

{

// Output the triangle m2, ml, pl

active[ml] = false;
triangle->index[0] = m2;
triangle->index[1] = ml;
triangle->index[2] = pl;
triangleCount++;
triangle++;
ml = GetPrevActive(ml, vertexCount,
m2 = GetPrevActive (m2, vertexCount,
lastPositive = false;
start = -1;

1

else

{

// Exit if we've gone all the way around the

active);
active) ;

active) ;
active);

// polygon without finding a valid triangle

if (start == -1) start = p2;
else if (p2 == start) break;

// Advance working set of vertices
m2 = ml;
ml = pl;
pl = p2;
p2 = GetNextActive(p2, vertexCount,

Team LRN

active);

303

304

Mathematics for 3D Game Programming and Computer Graphics

}

delete[] active;
return (triangleCount);

Chapter 9 Summary

Depth Value Offset

To offset the depth of a vertex whose z-coordinate is roughly P, by a distance 0,
the (3,3) entry of the perspective projection matrix should be multiplied by 1+ ¢,
where

oo 2fn{) j
[+ P(P+5))

Decal Application

A decal of width w and height 4 centered at the point P, having normal direction
N and tangent direction T, should be clipped to the planes

leﬁz(T,K—T‘Pj righz=(—T,K+T.Pj
2 2

h h
bottom = B,E—B~P top = —B,5+B~P
front=(-N,d +N-P) back=(N,d -N-P),

where B=NxT and d is the maximum distance that any vertex in the decal may
be from the tangent plane passing through the point P. The texture coordinates
for a decal vertex Q are given by

T-(Q-P
_T(Q-P),

s
w

1

2
B-(O-
_BQ-P) 1
h 2

Team LRN

Chapter 9 Polygonal Techniques 305

Billboarding

The vertices of an unconstrained billboarded quad of width w, height £, and ori-
entation @ centered at the point P may be calculated using

Q=P+X+Y Q,=P-X+Y
Q,=P-X-Y Q,=P+X-Y,

where
X= (Kcose)R+ [KsinQJU
2 2
h . h
Y= [——sm&jR+ (—cos& jU,
2 2

and the directions R and U are the world space right and up directions of the
camera view. The vertices of a billboarded quad constrained to rotate only about
the z-axis are given by

w X h w X h
=P+——+1(0,0,— =P-——+{(0,0,—
Q=P+ < 2> =P x| < 2>
w X h w X h
Q =P————<o,o,—> Q =P+———<0,o,—>,
’ 2 [X] 2 ' 2[x| 2

where
X=(P,=C,.C,~P,0),

and C is the world space camera position.

T-Junction Elimination
The squared distance d” between the point Q and the line passing through P, and
P, is given by

_[(Q_PI)'(PZ_PI)]Z
(PZ—P])Z .

d? :(Q_PI)2

A point Q satisfying d* < &* lies within the interior of the edge formed by P, and
P,if ¢ <t<|P, - P|—¢, where ¢ is given by

Team LRN

306

Mathematics for 3D Game Programming and Computer Graphics

(Q_Pl).(PZ_PI)‘
[P, - P,

Triangulation

A point Q lies inside (or near the boundary of) a triangle defined by the three
vertices P, P,, and P, belonging to a polygon if and only if N,- (Q - P,) > —¢ for
ie{1,2,3}, where

N1=N0><(P2—P])
N2=N0><(P3—P2)
Ny =Nyx(P —P,),

and N, is the polygon’s normal direction. The triangle is wound counterclock-
wise and is nondegenerate if

N,-(P,—P)>¢.

Exercises for Chapter 9

1. Suppose that the distance to the near plane is n=1, and the distance to the
far plane is /=100 for a particular view frustum. Calculate by what value
the (3,3) entry of the projection matrix should be multiplied in order to off-
set a model centered at a depth of z=-20 toward the camera by a distance
of 0.2.

2. Calculate the least distance d by which the model in Exercise 1 can be offset
toward the camera if a 16-bit depth buffer is used.

3. Write a program that applies a decal to a surface. Assume that the decal is
described by its center P, a normal direction N, a tangent direction T, its
width w, and its height 4. The program should construct a decal object by
clipping an arbitrary triangle mesh to the planes bounding the decal and
should then calculate texture coordinates for each vertex in the decal object.

4. Implement a particle system for which each particle is rendered as a textured
quad centered at the particle’s position. Each particle should be described by
its position P in world space, its radius r, its window-space orientation 6,
and its velocity V.

Team LRN

Chapter

Shadows

hadows are an essential component of any rendered scene that attempts to

depict a realistic environment. Due to hardware limitations, shadow gen-

eration in most real-time rendering applications was accompanied by many
restrictions for the first several years in which 3D graphics processors were
widely available.

One classical shadow-rendering technique, called light mapping, precom-
putes low-resolution texture maps for every immovable surface in an environ-
ment. Each sample stored in this /ight map represents the color and intensity of
light reaching a particular point on the surface to which it is attached. When ren-
dering a scene, multitexturing is used to modulate the surface’s reflection color
with the lighting values fetched from the light map. With the help of bilinear fil-
tering, the results are more than adequate visually, but the technique suffered
from the inescapable fact that the lighting is baked into the texture maps and can-
not be changed in real-time on anything other than small scales. Thus, world ge-
ometry cannot be moved without leaving behind a shadow that no longer has a
castor.

Greatly more-flexible shadow generation methods are now available and can
be implemented for real-time rendering applications. One such method is called
shadow mapping and is so named because a scene is rendered from the perspec-
tive of a light source to generate a shadow map that is subsequently used in the
ordinary rendering pass from the camera’s perspective. Each pixel in the shadow

307

Team LRN

308

Mathematics for 3D Game Programming and Computer Graphics

map holds the depth of the associated point in the scene with respect to the light
source. During the ordinary rendering pass, vertices are transformed into the
light’s coordinate space. The light-space depth is interpolated across the face of a
polygon and compared to the depth stored in the shadow map at the light-space x-
and y-coordinates. If the transformed depth is greater, then the point correspond-
ing to the pixel lies in shadow. Shadow mapping is performed entirely on the
graphics hardware using functionality exposed through the OpenGL extensions
GL ARB shadow and GL ARB depth texture. Unfortunately, since
shadow mapping relies on a rendered image from the light source’s location, the
technique suffers from significant aliasing problems. There are also limitations
on where the light source can reside in a scene, and additional difficulties arise
for omnidirectional lights.

In this chapter, we focus exclusively on a technique called stencil shadows.
The stencil shadow method can be used to render accurate shadows for fully dy-
namic scenes using any type of light source residing at any location. Unlike
shadow mapping, stencil shadows require a significant amount of geometrical
computation that must usually be performed by the CPU. The advantage is that
the shadows are as accurate as the polygonal representation of the models that
cast them, completely avoid aliasing artifacts.

10.1 Algorithm Overview

Using an idea that was first conceived in the 1970s [CROW77], the stencil buffer
can be employed to generate extremely accurate shadows in real time. Two dec-
ades after the algorithm’s invention, 3D graphics hardware finally advanced to
the point where stencil shadows became practical, but several unsolved problems
still existed that prevented the algorithm from working correctly under various
conditions. These problems have now been solved, and stencil shadows can be
robustly implemented to handle arbitrarily positioned point lights and infinite
directional lights having any desired spatial relationship with the camera.

The basic concept of the stencil shadow algorithm is to use the stencil buffer
as a masking mechanism that prevents pixels in shadow from being drawn during
the rendering pass for a particular light source. This is accomplished by rendering
an invisible shadow volume for each shadow-casting object in a scene using
stencil operations that leave nonzero values in the stencil buffer wherever light is
blocked. Once the stencil buffer has been filled with the appropriate mask, a
lighting pass only illuminates pixels where the value in the stencil buffer is zero.

Team LRN

Chapter 10 Shadows 309

Figure 10.1 An object’s shadow volume encloses the region of space for which light
emitted by the light source L is blocked by the object.

As shown in Figure 10.1, an object’s shadow volume encloses the region of
space for which light is blocked by the object. This volume is constructed by
finding the edges in the object’s triangle mesh representing the boundary be-
tween lit triangles and unlit triangles and extruding those edges away from the
light source. Such a collection of edges is called the object’s silhouette with re-
spect to the light source. The shadow volume is rendered into the stencil buffer
using operations that modify the stencil value at each pixel depending on whether
the depth test passes or fails. Of course, this requires that the depth buffer has
already been initialized to the correct values by a previous rendering pass. Thus,
the scene is first rendered using a shader that applies surface attributes that do not
depend on any light source, such as ambient illumination, emission, and envi-
ronment mapping.

The original stencil algorithm renders the shadow volume in two stages. In
the first stage, the front faces of the shadow volume (with respect to the camera)
are rendered using a stencil operation that increments the value in the stencil
buffer whenever the depth test passes. In the second stage, the back faces of the
shadow volume are rendered using a stencil operation that decrements the value
in the stencil buffer whenever the depth test passes. As illustrated in Figure 10.2,

Team LRN

310 Mathematics for 3D Game Programming and Computer Graphics

this technique leaves nonzero values in the stencil buffer wherever the shadow
volume intersects any surface in the scene, including the surface of the object
casting the shadow.

C

Figure 10.2 Numbers at the ends of rays emanating from the camera position C rep-
resent the values left in the stencil buffer for a variety of cases. The stencil value is
incremented when front faces of the shadow volume pass the depth test, and the
stencil value is decremented when back faces of the shadow volume pass the depth
test. The stencil value is not changed when the depth test fails.

There are two major problems with the method just described. The first is
that no matter what finite distance we extrude an object’s silhouette away from a
light source, it is still possible that it is not far enough to cast a shadow on every
object in the scene that should intersect the shadow volume. The example shown
in Figure 10.3 demonstrates how this problem arises when a light source is very

Team LRN

Chapter 10 Shadows 311

close to a shadow-casting object. Fortunately, this problem can be elegantly
solved by using a special projection matrix and extruding shadow volumes all the
way to infinity.

Figure 10.3 No matter what finite distance an object’s silhouette is extruded away
from a light source L, moving the light close enough to the object can result in a
shadow volume that cannot reach other objects in the scene.

The second problem shows up when the camera lies inside the shadow vol-
ume or the shadow volume is clipped by the near plane. Either of these occur-
rences can leave incorrect values in the stencil buffer, causing the wrong surfaces
to be illuminated. The solution to this problem is to add caps to the shadow vol-
ume geometry, making it a closed surface, and using different stencil operations.
The two caps added to the shadow volume are derived from the object’s triangle
mesh as follows. A front cap is constructed using the unmodified vertices of tri-
angles facing toward the light source. A back cap is constructed by projecting the

Team LRN

312

Mathematics for 3D Game Programming and Computer Graphics

vertices of triangles facing away from the light source to infinity. For the result-
ing closed shadow volume, we render back faces (with respect to the camera)
using a stencil operation that increments the stencil value whenever the depth test
fails, and we render front faces using a stencil operation that decrements the sten-
cil value whenever the depth test fails. As shown in Figure 10.4, this technique
leaves nonzero values in the stencil buffer for any surface intersecting the
shadow volume for arbitrary camera positions. Rendering shadow volumes in
this manner is more expensive than using the original technique, but we can de-
termine when it’s safe to use the less-costly depth-pass method without having to
worry about capping our shadow volumes.

Figure 10.4 Using a capped shadow volume and depth-fail stencil operations allows
the camera to be inside the shadow volume. The stencil value is incremented when
back faces of the shadow volume fail the depth test, and the stencil value is decre-
mented when front faces of the shadow volume fail the depth test. The stencil value
does not change when the depth test passes.

Team LRN

Chapter 10 Shadows 313

The details of everything just described are discussed throughout the remain-
der of this section. In summary, the rendering algorithm for a single frame runs
through the following steps.

A. Clear the frame buffer and perform an ambient rendering pass. Render
the visible scene using any surface shading attribute that does not depend
on any particular light source.

B. Choose a light source and determine what objects may cast shadows into
the visible region of the world. If this is not the first light to be rendered,
clear the stencil buffer.

C. For each object, calculate the silhouette representing the boundary be-
tween triangles facing toward the light source and triangles facing away
from the light source. Construct a shadow volume by extruding the sil-
houette away from the light source.

D. Render the shadow volume using specific stencil operations that leave
nonzero values in the stencil buffer where surfaces are in shadow.

E. Perform a lighting pass using the stencil test to mask areas that are not il-
luminated by the light source.

F. Repeat steps B through E for every light source that may illuminate the
visible region of the world.

For a scene illuminated by » lights, this algorithm requires at least n+1 ren-
dering passes. More than #n + 1 passes may be necessary if surface-shading calcu-
lations for a single light source cannot be accomplished in a single pass. To
efficiently render a large scene containing many lights, one must be careful dur-
ing each pass to render only objects that could potentially be illuminated by a
particular light source. An additional optimization using the scissor rectangle can
also save a significant amount of rasterization work—this optimization is dis-
cussed in Section 10.7.

10.2 Infinite View Frustums

To ensure that shadow volumes surround every last bit of space for which light is
blocked by an object, we must extrude the object’s silhouette to infinity. Using a
standard perspective projection matrix would cause such a shadow volume to be
clipped by the far plane. To avoid this unwanted effect, we can actually place the
far plane at an infinite distance from the camera.

Team LRN

314 Mathematics for 3D Game Programming and Computer Graphics

The standard OpenGL perspective projection matrix M derived in Sec-

tion 4.5.1, has the form

frustum ?

2n 0 r+l 0]
r—1 r—1
0 2_n t+b 0
Mfrustum: t_b t_b 5 (101)
o o _Jfrn _2/m
f-n f-n
L 0 0 -1 0 1

where 7 is the distance to the near plane, f'is the distance to the far plane, and /, r,
b, and ¢ represent the left, right, bottom, and top edges of the rectangle carved out
of the near plane by the view frustum. By evaluating the limit as f tends to infin-
ity, we obtain the matrix

2n 0 r+l 0]
r—1 r—1
. 0 2n t+b 0
Minﬁnite = }L_ianfrustum = t— b {— b : (102)
0 0 -1 -2n

L 0 0 -1 0]
The matrix M, .. transforms a 4D homogeneous eye-space point

P . =(x,y,z,w) to the clip-space point P, as follows.

2n 0 r+l 0 1 ﬂx+r+lz-|

r—1 r—1 x| | r-1 r—1

2n t+b y 2n t+b

— _| 0 —_— — 0 ==y
Pclip_MinﬁnitePeye_ t—-b t-b Z = t—by t—bZ (103)
0 0 -1 -2n —z—2nw
Lw]

. 0 0 -1 0 | N -z |

Assuming w> 0 (it is normally the case that w=1), the resulting z-coordinate of

P, is always less than the resulting w-coordinate of P, , ensuring that projected

Team LRN

Chapter 10 Shadows 315

points are never clipped by the far plane. A point at infinity is represented by a
4D homogeneous vector having a w-coordinate of 0 in eye space. For such a
point, (Pcup)z = (PC“P)W, and the perspective divide produces a 3D point in nor-
malized device coordinates having the maximal z-value of 1.

In practice, the limitations of hardware precision can produce points having a
normalized z-coordinate slightly greater than 1. This causes severe problems
when the z-coordinate is converted to an integer value to be used in the depth
buffer because the stencil operations that depend on the depth test to render
shadow volumes may no longer function correctly. To circumvent this undesir-
able effect, we can map the z-coordinate of a point at infinity to a value slightly
less than 1 in normalized device coordinates. The z-coordinate of a 3D point D in
normalized device coordinates is mapped from a value D, in the range [-1,1] to a
value D) in the range [-1,1—-¢], where ¢ is a small positive constant, using the
relation

D;=(DZ+1)2%€—1. (10.4)

We need to find a way to modify the z-coordinate of P, in order to perform this
mapping as points are transformed from eye space into clip space. We can re-
write Equation (10.4) as an adjustment to (P)Z by replacing D, with

(P.,.). /(P), and D\ with (P, /(P,,), as follows.

P, P, -
Epclfp))z :[((Pd‘,p))z +1}226_] (10.5)

Plugging in the values of(Pc]ip) , and (Pc“p) . given by Equation (10.3), we have

P’ —r —
(°“P)Z=[z 2”W+1}22‘9—1. (10.6)

-z -z
Solving for (PC’,ip) , and simplifying yields
(P

clip

). =z(e=1)+nw(e-2). (10.7)

We can incorporate this mapping into the projection matrix M, .. given by
Equation (10.2) as follows to arrive at the slightly tweaked matrix M ;.. that we
actually use to render a scene.

Team LRN

316 Mathematics for 3D Game Programming and Computer Graphics

[2n 0 r+l 0 1
r—1 r—1
2n t+b
’ | 0 — — 0
Minﬁni!e - t_b t— b (108)

0 0 &—-1 n(e-2)

0o 0 -1 0

For graphics hardware that supports depth clamping, the use of the matrix
M’ ... given by Equation (10.8) is not necessary. The GL NV _depth clamp
extension to OpenGL allows a renderer to force depth values in normalized de-
vice coordinates to saturate to the range [—1,1], thus curing the precision problem
at the infinite far plane. When depth clamping is enabled using the function call

glEnable (GL _DEPTH CLAMP NV) ;

the projection matrix M, .. given by Equation (10.2) can safely be used.

The question of depth buffer precision arises when using an infinite projec-
tion matrix. It is true that placing the far plane at infinity reduces the number of
discrete depth values that can occur within any finite interval along the z-axis, but
in most situations this effect is small. Consider the function d . (P) that uses
the matrix M., given in Equation (10.1) to map an eye-space point
P= <Q,R,,B ,l> to its corresponding depth in normalized device coordinates:

(MfmslumP)z — f+n+L[2fn J (109)
(Mfrus!umP)w f—l’l Pz f—n ; '

dfrusrum (P) =

We obtain a different function d, ;. (P) by using the matrix M, ;.. given by

Equation (10.2) to map an eye-space point P to its normalized depth:

M _ P
dinﬁnile(P)zwzl_*—L(zn)- (1010)
(MinﬁnileP)w Pz

Given two eye-space points P, and P,, we can compare the differences in depth
values produced by the functions d and d. as follows.

frustum infinite

B _ 2fn 11
iusan (P2) = A (P1) f—n((Pz)z (P])z]

Team LRN

Chapter 10 Shadows 317

1 1
Aiimiie (Py) = digiie (P) =21 - (10.11)
(1) o (1) (m)z (PJJ

This demonstrates that the standard projection matrix M, = maps the points P,
and P, to a range that is a factor f/(/' —n) larger than the range to which the
points are mapped by the infinite projection matrix M. . . thus equating to
greater precision. For practical values of f and n, where fis much larger than 1
and n is much smaller than 1, f/(f —n) is close to unity, so the loss of precision
is not a significant disadvantage.

10.3 Silhouette Determination

The stencil shadow algorithm requires that the models in our world be closed
triangle meshes. In mathematical terms, the surface of any object that casts a
shadow must be a two-dimensional closed manifold. What this boils down to is
that every edge in a mesh must be shared by exactly two triangles, disallowing
any holes that would let us see the interior of the mesh.

Edge connectivity information must be precomputed so that we can deter-
mine a mesh’s silhouette for shadow volume rendering. Suppose that we have an
indexed triangle mesh consisting of an array of N vertices V,,V,,...,V, and an
array of M triangles 7,,7,,...,T,,. Each triangle simply indicates which three ver-
tices it uses by storing three integer indexes i, i,, and i;. We say that an index i,
precedes an index i, if the number p immediately precedes the number g in the
cyclic chain 1 -2 — 3 — 1. For instance, i, precedes i, and i, precedes i, but i,
does not precede ;.

The indexes i, i,, and i, are ordered such that the positions of the vertices V,,
V., and V, to which they refer are wound counterclockwise about the triangle’s
normal vector. Suppose that two triangles share an edge whose endpoints are the
vertices V, and V, as shown in Figure 10.5. The consistent winding rule enforces
the property that for one of the triangles, the index referring to V, precedes the
index referring to V,, and that for the other triangle, the index referring to V, pre-
cedes the index referring to V,.

As demonstrated in Listing 10.1, the edges of a triangle mesh can be identi-
fied by making a single pass through the triangle list. For any triangle having ver-
tex indexes i, i,, and i,, we create an edge record for every instance in which
i, <i,, I, < I, or iy <i and store the index of the current triangle in the edge re-
cord. This procedure creates exactly one edge for every pair of triangles that

Team LRN

318

Mathematics for 3D Game Programming and Computer Graphics

share two vertices V, and V,, duplicating any edges that are shared by multiple
pairs of triangles.

Once we have identified all the edges, we make a second pass through the
triangle list to find the second triangle that shares each edge. This is done by lo-
cating triangles for which i, > i), i, > i, or ; > i, and matching it to an edge having
the same vertex indexes that has not yet been supplied with a second triangle in-
dex.

Vi

Figure 10.5 When consistent winding is enforced, it is always the case that the in-
dexes referring to the vertices V, and V, of exactly one of the two triangles sharing
an edge satisfies the property that the index referring to V, precedes the index refer-
ringto V,.

Armed with the edge list for a triangle mesh, we determine the silhouette by
first calculating the dot product between the light position and the plane of each
triangle. For a triangle whose vertex indexes are i, i,, and i, the (unnormalized)
outward-pointing normal direction N is given by

N=(V, -V)x(V,-V,) (10.12)

since the vertices are assumed to be wound counterclockwise. The 4D plane vec-
tor F corresponding to the triangle is then given by

Team LRN

Chapter 10 Shadows

F=(N,N, N, -N-V,). (10

319

13)

Let L represent the 4D homogeneous position of the light source. For point
light sources, L, # 0; and for infinite directional light sources, L, =0. A triangle
faces the light source if F-L>0. Otherwise, the triangle faces away from the
light source. The silhouette is equal to the set of edges shared by one triangle fac-
ing the light and one triangle facing away from the light.

Listing 10.1 This code examines an array of indexed triangles and constructs an
array of edge records that refer back to the triangles that share them. The return
value is the number of edges written to the array edgeArray.

Parameters

triangleCount

triangleArray

edgeArray

struct Edge

{

} .

struct Triangle

{

} .

The number of triangles in the array pointed to by the
triangleArray parameter.

A pointer to an array of Triangle structures describing the
polygonal mesh.

A pointer to a location in which a pointer to the edge array is
returned.

unsigned short vertexIndex[2] ;
unsigned short triangleIndex 2] ;

’

unsigned short index[3] ;

’

long BuildEdges (long triangleCount,
const Triangle *triangleArray, Edge **edgeArray)

{

// Allocate enough space to hold all edges

*edgeArray =

new Edge[triangleCount * 3] ;

long edgeCount = 0;

Edge *edge =

*edgeArray;

// First pass: find edges
const Triangle *triangle = triangleArray;

for (long a

0; a < triangleCount; a++)

Team LRN

320 Mathematics for 3D Game Programming and Computer Graphics

long i1 = triangle->index[0] ;
long 1i2 triangle->index[1] ;
long i3 = triangle->index[2] ;

if (i1 < 1i2)

{

1 = 11;
1 = 12;
[0] = a;
[1] =

edge—>vertexIndex[O
edge—>vertexIndex[1
edge->triangleIndex
edge->triangleIndex
edgeCount++;
edge++;

if (i2 < 1i3)

{
edge—>vertexIndex[O
edge->vertexIndex[1
edge->triangleIndex
edge->triangleIndex
edgeCount++;
edge++;

|
-
w
~.

0] = a;
11 = -1;

if (i3 < 1i1)

{
edge—>vertexIndex[0] = 1i3;
edge->vertexIndex| 1] il;
edge->trianglelIndex[0] = a;
edge->triangleIndex[1] = -1;
edgeCount++;
edget++;

triangle++;

// Second pass: match triangles to edges

triangle = triangleArray;
for (long a = 0; a < triangleCount; a++)
{

long il = triangle->index[0] ;

long 12 = triangle->index[1] ;

long 13 = triangle->index[2] ;

Team LRN

Chapter 10 Shadows 321

if (i1 > i2)

{
edge = *edgeArray;
for (long b = 0; b < edgeCount; b++)
{

if ((edge—>vertexIndex[0] == 1i2) &&
(edge->vertexIndex[1] == 1i1l) &&
(edge->triangleIndex[1] == -1))

{
edge->triangleIndex[1] = a;
break;

}

edge++;

if (i2 > 1i3)
{
edge = *edgeArray;
for (long b = 0; b < edgeCount; b++)
{
if ((edge->vertexIndex[0] == 13) &&
(edge—>vertexIndex[1] == 12)
(edge—>trianglelIndex[1] == -1

edge->triangleIndex[1] = a;
break;

edge++;

if (13 > i1)
{
edge = *edgeArray;
for (long b = 0; b < edgeCount; b++)
{
if ((edge->vertexIndex[0] == il) &&
(edge->vertexIndex[1] == 13)
(edge->triangleIndex| 1] == -

edge—>triangleIndex[1] = a;

Team LRN

322

Mathematics for 3D Game Programming and Computer Graphics

break;

}
edge++;
}

triangle++;

}

return (edgeCount);

10.4 Shadow Volume Construction

Once the set of an object’s silhouette edges has been determined with respect to a
light source, we must extrude each edge away from the light’s position to form
the object’s shadow volume. Such an extrusion may be accomplished by making
use of widely available vertex programming hardware exposed by the
GL ARB vertex program extension to OpenGL.

For a point light source, the extrusion of the silhouette edges consists of a set
of quads, each of which has the two unmodified vertices belonging to an edge
and two additional vertices corresponding to the extrusion of the same edge to
infinity. For an infinite directional light source, all points project to the same
point at infinity, so the extrusion of the silhouette edges can be represented by a
set of triangles that all share a common vertex. We distinguish between points
that should be treated normally and those that should be extruded to infinity by
using 4D homogeneous coordinates. A w-coordinate of 1 is assigned to the un-
modified vertices and a w-coordinate of 0 is assigned to the extruded vertices.
The vertex program performing the extrusion utilizes the information stored in
the w-coordinate to perform the appropriate vertex modifications.

Before we examine the extrusion method, we must prepare the appropriate
quad list or triangle list (depending on whether we are using a point light or infi-
nite directional light). We need to make sure that the vertices of each extrusion
primitive are wound so that the face’s normal direction points out of the shadow
volume. Suppose that a silhouette edge £ has endpoints A and B. The edge-
finding code presented in Listing 10.1 associates the triangle for which the verti-
ces A and B occur in counterclockwise order as the first triangle sharing the edge
E. Thus, if the first triangle faces toward the light source, then we want the verti-
ces A and B to occur in the opposite order for the extruded primitive so that its

Team LRN

Chapter 10 Shadows 323

vertices are wound counterclockwise. If the first triangle faces away from the
light source, then we use the vertices A and B in the same order for the extruded
primitive. Table 10.1 lists the vertices of the extrusion of the edge E for point
light sources and infinite directional light sources for the cases that the first trian-
gle associated with the edge E faces toward or away from the light source.

Table 10.1 Given a silhouette edge E having endpoints A and B, this table lists the
object-space vertices of the extruded shadow volume face corresponding to E. The
first triangle associated with the edge E is the triangle for which the vertices A and B
occur in counterclockwise order.

Facing of Point Light Source Infinite Light Source
First Triangle (Extrusion is a list of (Extrusion is a list of
quads) triangles)
V,=(B,.B,.B,.1) V,=(B..B,.B,,1)
Toward light ~ V,=(4,4,,4,,1) V2 A A A 1)
source V, = AX,A),,AZ,Og V, = 0)
V,=(B.,B,,B.,0
V,=(4,,4,,4,1) V,=(4,,4,,4,,1)
Away from V,=(B,B,,B,,1) V,=(B,,B,,B,,1)
light source V, = BX,B),,BZ,O% V, =(0,0,0,0)
V,=(A4,4,A4.,0

Using the GL_ARB vertex program extension, we can write a couple
simple vertex programs to perform edge extrusion and transformation to clip
space. In each program, we obtain the product of the projection matrix and
model-view matrix from the OpenGL state state.matrix.mvp, and we as-
sume that the object-space light position has been stored in program environment
register program.env| 0] .

For a point light source residing at the point L in object space (where L =1),
a vertex V from Table 10.1 is unmodified if its w-coordinate is 1 and is extruded
to infinity if its w-coordinate is 0 by using the formula

V=V L+(V,-L,V,-L,V,-L,0). (10.14)

The vertex program shown in Listing 10.2 applies this formula and then trans-
forms the resulting vertex position V' into clip space.

Team LRN

324

Mathematics for 3D Game Programming and Computer Graphics

Listing 10.2 This vertex program applies Equation (10.14) to extrude vertices having
a w-coordinate of 0 away from a point light source whose position is stored in pro-
gram environment parameter 0. Vertex positions are then transformed into homoge-
neous clip space.

! 'ARBvpl.0

PARAM mvp[4] = { state.matrix.mvp} ;
PARAM light = program.envi 0] ;

TEMP temp;

ADD temp, vertex.position, -light;
SWZ temp, temp, x, v, 2z, 0;

MAD temp, vertex.position.w, light, temp;
DP4 result.position.x, mvpl 0] , temp;
DP4 result.position.y, mvpl 1], temp;
DP4 result.position.z, mvp[2] , temp;
DP4 result.position.w, mvpl 3], temp;
END

In the case that shadow volume caps must be rendered (see the next section),
a vertex program similar to the one in Listing 10.2 should be used to transform
vertices belonging to triangles that face away from the light source. As demon-
strated in Listing 10.3, extruded cap vertices can be obtained by simply subtract-
ing the light’s position from the vertex’s position since such a subtraction always
yields a w-coordinate of 0.

Listing 10.3 This vertex program extrudes vertices belonging to a shadow volume
cap away from a point light source whose position is stored in program environment
parameter 0. Vertex positions are then transformed into homogeneous clip space.

!'ARBvpl1l.0

PARAM mvp[4] = { state.matrix.mvp} ;
PARAM light = program.env| 0] ;

TEMP temp;

ADD temp, vertex.position, -light;
DP4 result.position.x, mvpl 0] , temp;
DP4 result.position.y, mvpl 1] , temp;
DP4 result.position.z, mvpl 2] , temp;
DP4 result.position.w, mvp[3] , temp;
END

Team LRN

Chapter 10 Shadows 325

For an infinite light source residing at the point L in object space (where
L, =0),avertex V is unmodified or extruded by using the formula

V' =V, (V+L)-L. (10.15)

The vertex program shown in Listing 10.4 applies this formula and then trans-
forms the resulting vertex position V' into clip space. Figure 10.6 shows a cylin-
der illuminated by an infinite light source and demonstrates how its silhouette is
extruded to a point.

Figure 10.6 A cylinder illuminated by an infinite light source and the shadow volume
formed by the extrusion of its silhouette.

Team LRN

326

Mathematics for 3D Game Programming and Computer Graphics

Listing 10.4 This vertex program applies Equation (10.15) to extrude vertices having
a w-coordinate of 0 away from an infinite light source whose position is stored in pro-
gram environment parameter 0. Vertex positions are then transformed into homoge-
neous clip space.

! 'ARBvpl.0

PARAM mvp[4] = { state.matrix.mvp} ;
PARAM light = program.env| 0] ;

TEMP temp;

ADD temp, vertex.position, 1light;
MAD temp, vertex.position.w, temp, -light;
DP4 result.position.x, mvp[0] , temp;
DP4 result.position.y, mvpl 1] , temp;
DP4 result.position.z, mvpl 2] , temp;
DP4 result.position.w, mvp[3], temp;
END

10.5 Determining Cap Necessity

As mentioned earlier, a completely closed shadow volume having a front cap and
a back cap must be rendered whenever the camera lies inside the shadow volume,
or the faces of the silhouette extrusion could potentially be clipped by the near
plane. We wish to render this more expensive shadow volume as infrequently as
possible, so a test for determining when it is not necessary would be useful.

The near rectangle is the rectangle carved out of the near plane by the four
side planes of the view frustum. As shown in Figure 10.7, we can devise a test to
determine whether the shadow volume might be clipped by the near plane by
constructing the set of planes that connect the boundary of the near rectangle to
the light source. We call the volume of space bounded by these planes and by the
near plane itself the near-clip volume. Only a point inside the near-clip volume
can have an extrusion away from the light source that intersects the near rectan-
gle. Thus, if an object is known to lie completely outside the near-clip volume,
then we do not have to render a capped shadow volume.

When constructing the near-clip volume, we consider three cases: 1) the light
source lies in front of the near plane, 2) the light source lies behind the near
plane, and 3) the light source is very close to lying in the near plane. Let W be
the transformation matrix that maps eye space to world space, and suppose that
our light source lies at the 4D homogeneous point L in world space. We consider

Team LRN

Chapter 10 Shadows 327

a point light source (for which L =1) to be lying in the near plane if its distance
to the near plane is at most some small positive value &. For an infinite direc-
tional light source (for which L, =0), we consider the distance to the near plane
to be the length of the projection of the light’s normalized direction vector
<LX,L y,LZ> onto the near plane’s normal direction. In either case, we can obtain a
signed distance d from the light source to the near plane by calculating

d=(W'L)-(0,0,~1,-n). (10.16)

If d > &, then the light source lies in front of the near plane; if d <—0, then the
light source lies behind the near plane; otherwise, the light source lies in the near
plane.

C

Figure 10.7 The near-clip volume is bounded by the planes connecting the near rec-
tangle to the light position L. If an object lies completely outside the near-clip volume,
then its shadow volume cannot intersect the near rectangle, so it is safe to render it
without caps.

Team LRN

328

Mathematics for 3D Game Programming and Computer Graphics

In the case that the light source lies in the near plane, the near-clip volume is
defined by the planes K, =(0,0,—1,—n) and K, = (0,0,1,7). These two planes are
coincident but have opposite normal directions. This encloses a degenerate near-
clip volume, so testing whether an object is outside the volume amounts to de-
termining whether the object intersects the near plane.

If the light source does not lie in the near plane, we need to calculate the ver-
tices of the near rectangle. In eye space, the points R, R, R,, and R; at the four
corners of the near rectangle are given by

nle,an/e,—n)

(

Rl (—nje,anfe,—n)
(-
(

nfe,—an/e,—n)
nfe,—anfe,—n), (10.17)

R,
R

3

where 7 is the distance from the camera to the near plane; « is the aspect ratio of
the viewport, equal to its height divided by its width; and e is the camera’s focal
length, related to the horizontal field-of-view angle & by Equation (4.27). These
four points are ordered counterclockwise from the camera’s perspective. For a
light source lying in front of the near plane, the world-space normal directions
N, where 0 <i <3, are given by the cross products

N, =(R, =R, 000)% ((L,.L,, L)~ L,R}), (10.18)

where each R) is the world-space vertex of the near rectangle given by
R’ = WR,. For a light source lying behind the near plane, the normal directions
are simply the negation of those given by Equation (10.18). The corresponding
world-space planes K, bounding the near-clip volume are given by

Ki:”lwl—”<(Ni)x’(Ni)y’(Ni)z’_Ni.R;>‘ (10.19)

We close the near-clip volume by adding a fifth plane that is coincident with the

near plane and has a normal pointing toward the light source. For a light source
lying in front on the near plane, the fifth plane K, is given by

K, =(W71)70,0,-1,-n); (10.20)

and for a light source lying behind the near plane, the fifth plane is given by the
negation of this vector. (Remember that if W is orthogonal, then (W’l)T =W)

Team LRN

Chapter 10 Shadows 329

We determine whether a shadow-casting object lies completely outside the
near-clip volume by testing the object’s bounding volume against each of the
planes K,. If the bounding volume lies completely on the negative side of any
one plane, then the object’s shadow volume cannot intersect the near rectangle.
In the case that an object is bounded by a sphere having center C and radius », we
do not need to render a capped shadow volume if K, - C < —r for any i.

Figure 10.8 demonstrates that for point light sources, bounding volumes ly-
ing behind the light source from the camera’s perspective may often be mistaken
for those belonging to objects that might cast shadows through the near rectangle.
This happens when the bounding volume lies outside the near-clip volume, but
does not fall completely on the negative side of any one plane. We can improve
this situation substantially by adding an extra plane to the near-clip volume for
point lights. As shown in Figure 10.8, the extra plane contains the light position
L and has a normal direction that points toward the center of the near rectangle.
The normal direction N is given by

Figure 10.8 Adding an extra plane to the near-clip volume for point light sources en-
ables more objects to be classified as outside the near-clip volume.

Team LRN

330

Mathematics for 3D Game Programming and Computer Graphics

N, =(W™)%0,0,-n,1)- L, (10.21)

and the corresponding plane K; is given by

K, = m«m,(Ns)y(Ns)z,—Ns L), (10.22)

The plane K is added to the near-clip volume boundary for point light sources
regardless of whether the light position is in front of, behind, or in the near plane.

10.6 Rendering Shadow Volumes

Now that we can determine an object’s silhouette with respect to a light source,
construct a shadow volume by extruding the silhouette edges away from the light
source, and decide whether front and back caps are necessary, we are finally
ready to render the shadow volume into the stencil buffer. We assume that the
frame buffer has already been cleared and that an ambient rendering pass has
been performed to initialize the depth buffer. This section concentrates on the
operations necessary to illuminate the scene using a single light source, and these
operations should be repeated for all light sources that can affect the visible re-
gion of the world being rendered.

First, we must clear the stencil buffer, configure the stencil test so that it al-
ways passes, and configure the depth test so that it passes only when fragment
depth values are less than those already in the depth buffer. This can be done in
OpenGL using the following function calls.

glClear (GL_STENCIL BUFFER BIT);
glEnable (GL _STENCIL TEST);
glStencilFunc (GL ALWAYS, 0, ~O0);
glEnable (GL DEPTH TEST) ;
glDepthFunc (GL_LESS) ;

We are only going to be drawing into the stencil buffer, so we need to disable
writes to the color buffer and depth buffer as follows.

glColorMask (GL FALSE, GL FALSE, GL FALSE, GL_FALSE);
glDepthMask (GL FALSE) ;

Team LRN

Chapter 10 Shadows 331

Shadow volume faces are rendered using different stencil operations depending
on whether they face toward or away from the camera, so we need to enable face
culling with the following function call.

glEnable (GL _CULL FACE);

For a shadow volume that does not require capping because it cannot possi-
bly intersect the near rectangle, we modify the values in the stencil buffer when
the depth test passes. The stencil value is incremented for fragments belonging to
front-facing polygons and is decremented for fragments belonging to back-facing
polygons. These operations are performed by the following function calls, where
the function DrawShadowVolume () renders all of the polygons belonging to
the shadow volume.

giCullFace (GL_BACK) ;
ngtencilOp(GL_KEEP, GL_KEEP, GL_INCR);
DrawShadowVolume () ;

glCullFace (GL_FRONT) ;
ngtencilOp(GL_KEEP, GL_KEEP, GL_DECR);
DrawShadowVolume () ;

If a shadow volume does require capping, then we modify the values in the sten-
cil buffer when the depth test fails. The stencil value is incremented for frag-
ments belonging to back-facing polygons and is decremented for fragments
belonging to front-facing polygons (the opposite of the depth-pass operations).
These operations are accomplished using the following function calls. In this
case, the DrawShadowVolume () function renders the polygons belonging to
the shadow volume’s caps as well as its extruded silhouette edges.

glCullFace (GL_FRONT) ;
ngtencilOp(GL_KEEP, GL_INCR, GL_KEEP);
DrawShadowVolume () ;

glCullFace (GL_BACK) ;
ngtencilOp(GL_KEEP, GL_DECR, GL _KEEP);
DrawShadowVolume () ;

Once shadow volumes have been rendered for all objects that could poten-
tially cast shadows into the visible region of the world, we perform a lighting
pass that illuminates surfaces wherever the stencil value remains zero. We re-
enable writes to the color buffer, change the depth test to pass only when frag-
ment depth values are equal to those in the depth buffer, and configure the stencil

Team LRN

332

Mathematics for 3D Game Programming and Computer Graphics

test to pass only when the value in the stencil buffer is zero using the following
function calls.

glColorMask (GL _TRUE, GL TRUE, GL TRUE, GL TRUE);
glDepthFunc (GL_EQUAL) ;

glstencilFunc(GL EQUAL, 0, ~0);
ngtencilOp(GL_KEEP, GL_KEEP, GL KEEP);

Since the lighting pass adds to the ambient illumination already present in the
color buffer, we need to configure the blending equation as follows.

glEnable (GL BLEND) ;
nglendFunc(GL_QNE, GL ONE) ;

We also need to make the function call glCullFace (GL_BACK) justincase a
depth-pass shadow volume was most recently rendered, leaving the culling state
set to GL_FRONT. After the lighting pass has been rendered, we clean up by re-
setting a few rendering states back to those needed by the ambient pass for the
next frame using the following function calls.

glDepthMask (GL TRUE) ;
glDepthFunc (GL_ LEQUAL) ;
glstencilFunc (GL ALWAYS, 0, ~O0);

Because we needed to perform different stencil operations for front-facing
polygons and back-facing polygons in our shadow volumes, we had to render the
shadow volumes twice. Of course, each polygon was culled by the graphics
hardware on either the first pass or the second, but the vertices still had to be
processed twice. The GL EXT stencil two_ side extension to OpenGL
provides a way to avoid this suboptimal situation by allowing separate stencil
state for front faces and back faces to be specified simultaneously. When using
this extension, we render both front faces and back faces of the shadow volume
at the same time, so face culling should be disabled. We therefore prepare to ren-
der shadow volumes by making the following function calls.

glEnable (GL_STENCIL TWO SIDE EXT);
glDisable (GL_CULL FACE);

Using the GL_EXT stencil two side extension, an uncapped shadow
volume is rendered using the following code, which uses depth-pass stencil op-
erations.

glActiveStencilFaceEXT (GL_FRONT) ;
glStencilOp (GL _KEEP, GL KEEP, GL INCR WRAP EXT);

Team LRN

Chapter 10 Shadows 333

glActiveStencilFaceEXT (GL BACK) ;
glStencilOp (GL_KEEP, GL_KEEP, GL DECR _WRAP EXT);
DrawShadowVolume () ;

A capped shadow volume is rendered using the depth-fail stencil operations
shown in the code below.

glActiveStencilFaceEXT (GL_FRONT) ;

glStencilOp (GL_KEEP, GL DECR WRAP EXT, GL_KEEP);
glActiveStencilFaceEXT (GL_BACK) ;

glStencilOp (GL _KEEP, GL_INCR WRAP EXT, GL_KEEP);
DrawShadowVolume () ;

Note the use of the GL_INCR_WRAP EXT and GL_DECR_WRAP EXT stencil
operations. These are provided by the GL_EXT stencil wrap extension to
OpenGL and allow stencil values to wrap when they exceed the minimum and
maximum stencil values instead of being clamped. These operations are neces-
sary because we do not know in what order the polygons belonging to the
shadow volume will be rendered, and we must account for the possibility that the
stencil value for a particular pixel could be decremented before it is incremented.

10.7 Scissor Optimization

When using an attenuated light source, it is usually convenient to define a range
beyond which the light source does not contribute any illumination to the world.
Although this is not a physically correct model, using an attenuation function that
vanishes at a distance r from the light’s position allows us to quickly cull any
light source whose sphere of illumination does not intersect the view frustum.
When a light source’s sphere of illumination is visible, the area within the view-
port that could possibility be affected by the light source may not be the entire
viewport. By projecting the sphere of illumination to the image plane and using
the scissor rectangle to limit our drawing to the projected area of influence, we
can avoid a significant amount of superfluous rendering of both shadow volumes
and illuminated surfaces.

Suppose that we have a point light source whose center lies at the point L in
eye space and whose range is r, as shown in Figure 10.9. We wish to find four
planes, two parallel to the x-axis and two parallel to the y-axis, that pass through
the camera position (the origin in eye space) and are also tangent to the light
source’s bounding sphere. Once these planes have been determined, we can

Team LRN

334

Mathematics for 3D Game Programming and Computer Graphics

locate their intersections with the image plane to find the rectangular boundary of
the projection of the light source’s bounding sphere.

We assume that the tangent planes parallel to the y-axis have