
Copyright © 2003 Vertigo Software, Inc.

Quake II .NET

Ralph Arvesen, Vertigo Software, Inc.
July 2003

In 1997, the computer gaming company id Software released a watershed first-
person shooter game called QUAKE II, which went on to sell over one million copies
and earn industry accolades as Game of the Year. Later, in December 2001, id
Software generously made the QUAKE II 3-D engine available to the public under the
GNU General Public License (“GPL”).

Now, in July 2003, Vertigo Software, Inc. is releasing Quake II .NET, a port of the
C-language based engine to Visual C++ with a .NET managed heads-up display. We
did this to illustrate a point: one can easily port a large amount of C code to C++,
and then run the whole application as a managed .NET application using the
Microsoft Common Language Runtime (CLR) without noticeable performance delays.
Once running as a .NET managed application, adding new features is easy and fun.

This paper discusses what was involved in porting and extending the Quake II engine
to Quake II .NET.

Copyright © 2003 Vertigo Software, Inc.

Source Code and Files

The complete source code for the Quake II engine is available from id Software at
ftp://ftp.idsoftware.com/idstuff/source/quake2.zip. The source code is released
under the terms of the GNU General Public License (“GPL”). You should read the
accompanying readme.txt and gnu.txt files for more information on the GPL.

There are two parts to the Quake game: the engine and the data.

Game engine
The engine is the code that runs the game and is composed of the following files:

File Description

quake2.exe The main game executable.

ref_soft.dll The software rendering engine.

ref_gl.dll The OpenGL rendering engine.

gamex86.dll The core game engine.

The managed version of Quake II .NET contains an additional file that implements
the radar extension:

File Description

Radar.dll Managed C++ radar extension.

Game data
Maps, monsters, weapons, and other game essentials are contained in a data file
(often packaged in a single PAK file) in the baseq2 folder. Multiplayer data is stored
in the baseq2\players folder.

How to Run Quake II .NET

Vertigo provides the five files above. However, you need just one more file,
pak0.pak in order to run Quake II .NET. The PAK file contains id Software’s
copyrighted 3-D models and images and they’d prefer that you get that file from
them:

All of the Q2 data files remain copyrighted and licensed under the original
terms, so you cannot redistribute data from the original game… -John
Carmack, id Software, from the readme.txt in the GPL’d source code

Therefore, you need to get the PAK file from the official Quake II demo. Here’s what
you need to do:

1. Install the Quake II .NET.msi from www.vertigosoftware.com/quake2. This
installs the files for the native and managed versions.

Copyright © 2003 Vertigo Software, Inc.

2. Download and open the Quake II demo from
ftp://ftp.idsoftware.com/idstuff/quake2/q2-314-demo-x86.exe. This unpacks
files to your system (default folder is c:\windows\desktop\Quake2 Demo).

3. Copy the pak0.pak file from the Quake2 Demo\Install\Data\baseq2

folder to the %ProgramFiles%\Quake II .NET\managed\baseq2 and
%ProgramFiles%\Quake II.NET\native\baseq2 folders. This file is big—
about 48MB and you’re making two copies. If you uninstall Quake II .NET,
you have to remove these two copies by hand.

4. Run the managed or native version by clicking the shortcut in the Start menu.

How to Build the Code

Building the code is straightforward but you need to copy the generated EXE and
DLLs to the runtime before running the app. The steps are outlined below:

1. Unzip the Quake II .NET source ZIP file. This contains the Quake engine code

ported to Microsoft® Visual C++® .NET 2003.

2. Open the quake2.sln file.

3. Select the target configuration (release or debug, native or managed) and
build the solution. Files are generated in the specified build configuration
(Release Managed for example).

4. Copy the engine files from the source location to the Quake II .NET runtime
installation (the default folder is %ProgramFiles%\Quake II .NET). The
following table shows what files to copy:

File Copy To

quake2.exe \Program Files\Quake II .NET\

ref_soft.dll \Program Files\Quake II .NET\

ref_gl.dll \Program Files\Quake II .NET\

gamex86.dll \Program Files\Quake II .NET\baseq2

Radar.dll \Program Files\Quake II .NET\ (only required for the
managed version)

Copying the files could be automated with a custom post build step.

How We Ported the Code

The source code was downloaded from id Software’s FTP site as discussed above.
This code contains a Visual Studio 6 workspace file named quake2.dsw. When

Copyright © 2003 Vertigo Software, Inc.

opening this file, Visual Studio prompts you to update the project files and generates
a solution file named quake2.sln. The following changes were made to the projects:

• Platform-specific code was removed by removing assembly files and disabling
inline assembly routines.

• The project configurations were modified to include Debug Managed, Debug
Native, Release Managed and Release Native builds.

• All of the files had the Compile as C code (/TC) switch specified. Instead of
renaming all of the source files with a CPP extension, the Compile as C++
code (/TP) switch was specified.

Once the build environment was set up, it was time to port the code to C++.

Porting to Native C++

The following issues were encountered during the port from C to C++.

Keywords
The C++ language reserves keywords that are not reserved in the C language. For
example, the Quake code uses a variable called new which was renamed to
new_cpp for the C++ version.

// C
qboolean new;

// C++
qboolean new_cpp;

The Quake code defined its own boolean type with true and false. These are
reserved keywords in C++ so this was typedefed as a bool as shown below.

// C
typedef enum {false, true} qboolean;

// C++
typedef bool qboolean;

Strong typing
The C++ language is strongly typed so assignment and function arguments require
casting if the types don’t match. This was the largest portion of the port. Though
tedious, it was easy to port since the compiler identified the exact problem including
source file, line number, and the required cast. An example is shown below.

// C
pmenuhnd_t* hnd = malloc(sizeof(*hnd));

// C++
pmenuhnd_t* hnd = (pmenuhnd_t*)malloc(sizeof(*hnd));

Copyright © 2003 Vertigo Software, Inc.

The Quake code uses GetProcAddress to dynamically retrieve the address of
functions in other DLLs. All of the calls required casting and it was quickly noted that
there were a lot of these calls. A script was created for the portion of the code that
read the build log and modified the source code with the proper cast. An example of
the required cast is shown below.

// C
qwglSwapBuffers = GetProcAddress (
 glw_state.hinstOpenGL, "wglSwapBuffers");

// C++
qwglSwapBuffers = (BOOL (__stdcall *)(HDC)) GetProcAddress (
 glw_state.hinstOpenGL, "wglSwapBuffers");

The C language does not require that declarations exactly match definitions or
declarations in other source files and this caused compiler errors: C2371
(redefinition; different basic types) and C2556 (overloaded functions only differ by
return type). Function declarations and definitions were modified to resolve any
conflicts. For example, the function declaration below was changed to return an
rserr_t instead of an int.

// C
int GLimp_SetMode(int *pwidth, int *pheight,
 int mode, qboolean fullscreen);

// C++
rserr_t GLimp_SetMode(int *pwidth, int *pheight,
 int mode, qboolean fullscreen);

If extern was used to declare the function that was defined in another file, this error
was not caught until link time and appeared as an unresolved external.

Using COM objects
The calling convention for COM interfaces is different between C and C++ because
vtables (virtual function table) are supported in the C++ language. For the C
language, the vtable of the COM interface is explicitly accessed and a ‘this pointer’ is
passed as the first argument. An example that calls the Unlock method of a COM
object is shown below.

// C
sww_state.lpddsOffScreenBuffer->lpVtbl->Unlock(
 sww_state.lpddsOffScreenBuffer, vid.buffer);

// C++
sww_state.lpddsOffScreenBuffer->Unlock(
 vid.buffer);

Porting to Managed C++
Managed code runs within the context of the .NET run-time environment. It is not
compulsory to use managed code, but there are many advantages to doing so. A
program written with managed code using Managed Extensions for C++, for

Copyright © 2003 Vertigo Software, Inc.

example, can operate with the common language runtime to provide services such
as memory management, cross-language integration, code access security, and
automatic lifetime control of objects.

The first step required when porting native C++ to managed C++ is to set the /CLR
compile switch by enabling Managed Extensions for C++. Depending on your project,
this might be the only step required, but the following errors were also encountered
when porting Quake to managed C++.

Incompatible switches
The /clr and /YX (Automatic Use of Precompiled Headers) switches are incompatible
so the /YX switch was turned off for managed builds.

Mixed DLL loading problem
The code compiled but all of the projects that generated DLLs had the following link
warning.

LINK : warning LNK4243: DLL containing objects compiled with /clr is
not linked with /NOENTRY; image may not run correctly

This warning occurs when a managed C++ DLL contains an entry point and the
linker is letting you know a deadlock scenario could occur during the loading process.
This was fixed by doing the following:

• Add the /NOENTRY link switch.
• Link with the msvcrt.lib library.
• Include the symbol reference DllMainCRTStartup@12.
• Call __crt_dll_initialize and __crt_dll_terminate in the DLL.

The following articles explain the details of this issue:

• PRB: Linker Warnings When You Build Managed Extensions for C++ DLL
Projects - http://support.microsoft.com/?id=814472.

• Mixed DLL Loading Problem -
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vstechart/html/vcconMixedDLLLoadingProblem.asp.

Forward declaration problem
The Quake2 executable contains forward declarations to structures that are defined
in other DLLs. The Visual C++ compiler fails to emit the necessary metadata for
these structures and a System.TypeLoadException is thrown at runtime indicating
that the structure could not be found in the assembly.

This occurs for the image_s and model_s structures and can be fixed by defining
the structs in the main executable assembly. More information on this can be found
at http://www.winterdom.com/mcppfaq/archives/000262.html.

// in cl_parse.c

// empty definitions for structs that are forward declared
// this causes the compiler to emit the proper metadata
// and not throw a System.TypeLoadException exception
struct image_s {};

Copyright © 2003 Vertigo Software, Inc.

struct model_s {};

Extending Quake

Now that we had Quake II running inside in the .NET run-time environment, we
wanted to add a significant new feature, written solely in .NET. After looking at the
games we play today (namely Halo) we settled on a heads-up radar display that
shows enemies, power-ups and other interesting objects in birds-eye view.

The radar extension was created in managed C++. Since this is a managed class,
GDI features of the .NET Framework are used, including arrow caps, gradient
brushes, antialiasing, and window transparency and opacity. Radar items are rotated
around the center of the window using Matrix.RotateAt instead of calculating each
item’s position with trig functions. A context menu allows visual items, crosshair and
field of view for example, to be shown or hidden.

The last menu item (Overlay on Quake) overlays the radar on top of the Quake
window; the radar hides the window frame and status bar, sets window transparency
and opacity, and resizes itself to fit over the Quake window.

Copyright © 2003 Vertigo Software, Inc.

Radar items are stored in an STL vector list. The code snippet below shows how an
iterator is used to loop through the list and draw each item on the radar.

// draw each item in the list
ItemVector::iterator i;
for (i = m_items->begin(); i != m_items->end(); i++)
{
 // calculate location on radar
 rc.X = (int)center.X +
 ((*i).x/Const::Scale) - (Const::MonsterSize/2);

 rc.Y = (int)center.Y –
 ((*i).y/Const::Scale) - (Const::MonsterSize/2);

 switch ((*i).type)
 {
 case RadarTypeHealth:
 g->FillRectangle(Brushes::Green, rc);
 break;

 case RadarTypeMonster:
 g->FillEllipse(Brushes::Firebrick, rc);
 break;

 . . .

 }
}

Copyright © 2003 Vertigo Software, Inc.

A couple of build issues were encountered when using the STL vector class in the
extension:

Compiler error C3633
The first issue was a compiler error when an std::vector class member was added
to the managed class.

private __gc class RadarForm : public System::Windows::Forms::Form
{
. . .
private:
 std::vector<RadarItem> m_items;
. . .
};

\quake2-3.21\Radar\RadarForm.h(92): error C3633: cannot define
'm_items' as a member of managed 'Radar::RadarForm'

This error indicates that you cannot define m_items as a member of the managed
class RadarForm because std::vector contains a copy constructor. This was solved
by using a pointer for the vector list.

private __gc class RadarForm : public System::Windows::Forms::Form
{
. . .
private:
 std::vector<RadarItem>* m_items;
. . .
};

Compiler error C3377 and C3635
The next issue involved passing an unmanaged type to the extension. The Quake
code passes a std::vector pointer to the extension to update the radar but this
created the following compiler errors.

// update method in the radar extension class
static void Update(int x, int y, float angle,
 std::vector<RadarItem>* items)
{
 . . .
}

\quake2-3.21\client\cl_ents.c(1612): error C3377:
'Radar::Console::Update' : cannot import method - a parameter type or
the return type is inaccessible

\quake2-3.21\client\cl_main.c(305): error C3635:
'std::vector<RadarItem,std::allocator<RadarItem> >': undefined native
type used in 'Radar::Console'; imported native types must be defined in
the importing source code

Copyright © 2003 Vertigo Software, Inc.

This was fixed by defining an empty class that derives from std::vector as shown
below.

__nogc class ItemVector : public std::vector<RadarItem>
{
};

// pass an ItemVector instead of std::vector
static void Update(int x, int y, float angle,
 ItemVector* items)
{
}

Integrating with Quake

There are three integration points with the Quake code: displaying the radar,
updating the radar, and notifying the radar when the window position has changed.

Displaying the radar
A new command was added to the Quake vocabulary called radar. The following
code toggles the visible state of the radar when the radar command is entered in the
Quake command window.

// check for our new radar command
if (Q_stricmp(cmd, "radar") == 0)
{
 // toggle the visible state of the radar
 cl_radarvisible = !cl_radarvisible;
 Radar::Console::Display(cl_radarvisible, cl_hwnd);
 return;
}

Updating the radar
The radar is updated after a certain interval expires (500 ms). The code below
constructs an STL vector list with radar items and passes the list to the extension.

void UpdateRadar(frame_t *frame)
{
 // see if enough time has elapsed to update the radar
 static int oldTime;
 int newTime = timeGetTime();
 if (newTime - oldTime < UPDATE_RADAR_MS)
 return;

 // update time so can detect next interval
 oldTime = newTime;

 // store radar items in an STL vector list
 ItemVector* items = new ItemVector();
 RadarItem item;

 // get the players info

Copyright © 2003 Vertigo Software, Inc.

 int playernum = cl.playernum+1;
 entity_state_t* player = &cl_entities[playernum].current;

 // loop through list and add items to the radar list
 entity_state_t* s;
 int pnum, num;
 for (pnum = 0 ; pnum<frame->num_entities ; pnum++)
 {
 // get item entity_state
 num = (frame->parse_entities + pnum)&(MAX_PARSE_ENTITIES-1);
 s = &cl_parse_entities[num];

 // make sure this is not the player
 if (s->number != player->number)
 {
 // add item to the radar list
 item.x = s->origin[0] - player->origin[0];
 item.y = s->origin[1] - player->origin[1];
 item.type = GetRadarType(s);
 items->push_back(item);
 }
 }

 // pass to the radar extension so it can update the display
 Radar::Console::Update(
 player->origin[0], player->origin[1],
 player->angles[1], items);

 // clean up list
 delete items;
}

Window position changed
The radar needs to know if the Quake window position or size has changed when it is
displayed in overlay mode. The Quake code processes the
WM_WINDOWPOSCHANGED message and passes the event to the radar extension.

case WM_WINDOWPOSCHANGED:
 // pass along to the radar
 Radar::Console::WindowPosChanged(hWnd);
 return DefWindowProc (hWnd, uMsg, wParam, lParam);

The _MANAGED macro
The Visual Studio C++ compiler contains the Microsoft-specific predefined macro
_MANAGED. This macro is set to 1 when the /clr switch is specified and was used
to wrap managed-specific code.

// setting the title of the window
#if _MANAGED
 "Quake II (managed)",
#else
 "Quake II (native)",
#endif

Copyright © 2003 Vertigo Software, Inc.

Performance

Getting existing projects into managed code is useful since it offers a lot of design
freedom, for example:

• Use garbage collection or manage memory yourself.
• Use .NET Framework methods or Window API calls directly.
• Use .NET Framework classes or existing libraries (STL for example).

However, usefulness only matters if the managed application has the performance
you require. Running Quake II.NET in the timedemo test indicates the managed
version performs about 85% as fast as the native version. The performance of the
managed version was acceptable and testers did not notice a difference between the
two versions. You can run the timedemo test by doing the following:

1. Display the command window by pressing the tilde (~) key.
2. Enter disconnect if currently playing a game. This is not necessary if Quake

is in demo mode.
3. Enter timedemo 1 and press enter.
4. Press the tilde (~) key again to close the command window. Quake runs

through the demo measuring the frame rate.
5. Press the tilde (~) key to stop the test. The frame rate is displayed in the

command window.
6. Enter timedemo 0 to turn off the test.

Summary

Porting the C code to native C++ took about 4 days, and porting to managed C++
took another day. The extension took about two days to implement, as did poking
around the Quake code to figure out the integration points. The experience overall
was very good and we felt productive porting and extending the code. It’s nice to
mix native and managed code, to have control over memory management, and to
use existing libraries as well as .NET Framework classes, all in the same application.

