
©2001 Sony Computer Entertainment Europe

High-Level Game
Development for PlayStation2

Hemal Hemal BodasingBodasing (SCEE)(SCEE)

Confidential Information of Sony Computer Entertainment Europe
1

High-Level Game Development for PlayStation2
2

©2001 Sony Computer Entertainment Europe

Overview

• Problems with starting PS2 development
• Overview of high-level library (HiG) +

demos
• HiG Art production pipeline
• HiG Usability issues
• Game demo
• Further work

High-Level Game Development for PlayStation2
3

©2001 Sony Computer Entertainment Europe

Introduction

• Will NOT talk about:
– Algorithms used for specific effects
– PS2 hardware architecture details
– Low-level PS2 optimisation techniques

High-Level Game Development for PlayStation2
4

©2001 Sony Computer Entertainment Europe

Problems with starting PS2
development

High-Level Game Development for PlayStation2
5

©2001 Sony Computer Entertainment Europe

Problems with starting PS2
development
• I found it ****** hard!
• No exporters or engine available as part

of the standard libs (or so I thought)
• Lack of a standard graphics file format
• Forces you to optimise from the start of

the development cycle (eg VU coding)
• Sample Code vs Game Code

High-Level Game Development for PlayStation2
6

©2001 Sony Computer Entertainment Europe

HiG (HiHigh-level GGraphics
Library) Overview

High-Level Game Development for PlayStation2
7

©2001 Sony Computer Entertainment Europe

HiG (HiHigh-level GGraphics
Library) Overview

• Developed by SCEI (Japan)
• Open-source (to PS2 developers)
• Target users:

– Beginner-level PS2 users

High-Level Game Development for PlayStation2
8

©2001 Sony Computer Entertainment Europe

HiG (High-level Graphics
Library): Goals

HiG aims are:
• Usability
• Efficiency
• Extensibility

High-Level Game Development for PlayStation2
9

©2001 Sony Computer Entertainment Europe

HiG (High-level Graphics
Library): Goals

• Usability:
– Abstraction
– Reduce effort

• Efficiency
– VU1-based

High-Level Game Development for PlayStation2
10

©2001 Sony Computer Entertainment Europe

HiG (High-level Graphics
Library): Goals

• Extensibility
– Data format
– Plugin architecture

High-Level Game Development for PlayStation2
11

©2001 Sony Computer Entertainment Europe

Relationship with Middleware

• “Free” to all PS2 developers
• PS2-specific
• Less comprehensive than middleware
• HiG is currently purely a rendering solution
• HiG architecture designed to allow middleware

companies to develop plugins
• No dedicated support channel

High-Level Game Development for PlayStation2
12

©2001 Sony Computer Entertainment Europe

High-level Functionality

High-Level Game Development for PlayStation2
13

©2001 Sony Computer Entertainment Europe

High-level Functionality

Fundamental operations:
• Loads mesh, texture and animation data
• Performs transformation (rotation, translation

and perspective correction) and rendering
• Handles hierarchical meshes and keyframe

animation

High-Level Game Development for PlayStation2
14

©2001 Sony Computer Entertainment Europe

High-level Functionality

Advanced operations:
• Reflection
• Refraction
• Shadow-mapping
• Fish-eye lens rendering
• Clut-based bump-mapping

High-Level Game Development for PlayStation2
15

©2001 Sony Computer Entertainment Europe

HiG Demos

• Shadow mapping
• Reflection mapping
• Real-time environment mapping

High-Level Game Development for PlayStation2
16

©2001 Sony Computer Entertainment Europe

Plugin System

• A plugin system is used to implement most of
HiG’s functionality

• HiG allows you to create your own plugins
• Plugins can be used in combination, eg for

multipass effects

High-Level Game Development for PlayStation2
17

©2001 Sony Computer Entertainment Europe

Plugin System

• Fundamental:
– shape (vertex + face data), microcode, texture,

hierarchy, animation

• Advanced:
– reflection, refraction, shadow-mapping, fish-eye

lens rendering, clut-based bump-mapping

High-Level Game Development for PlayStation2
18

©2001 Sony Computer Entertainment Europe

Low-level Functionality

• HiG ”Service” functions can be used to
create your own plugins

• Service functionality covers:
– Data format
– Memory management
– DMA
– GS (Graphics Synthesiser)

High-Level Game Development for PlayStation2
19

©2001 Sony Computer Entertainment Europe

Art Pipeline

• Exporters
• File formats
• Art Production Process

High-Level Game Development for PlayStation2
20

©2001 Sony Computer Entertainment Europe

Art Pipeline - Exporters

• Exporters are available for 3DS Max,
Maya and Lightwave

• Export to “ES” format

High-Level Game Development for PlayStation2
21

©2001 Sony Computer Entertainment Europe

Art Pipeline - File formats

• All HiG file formats contain the following
information:
– Mesh data
– Hierarchy data
– Animation data
– Texture data
– Texture context data

High-Level Game Development for PlayStation2
22

©2001 Sony Computer Entertainment Europe

Art Pipeline - File formats

• HiG File formats (all contain equivalent
information):
– .es : Readable ASCII
– .s : Less readable ASCII

ASM pre-processor
– .bin : Binary - used in-game

High-Level Game Development for PlayStation2
23

©2001 Sony Computer Entertainment Europe

Art Pipeline: Production
Process

• Export from art package in .ES format
• If reqd, edit .es file to customise for specific

features, eg shadow mapping. (Additional
tools can be created to perform this)

• Use provided converter (esConv) to convert
from .es to .bin file

• If problems exist with .bin file, .s file can be
generated and inspected

High-Level Game Development for PlayStation2
24

©2001 Sony Computer Entertainment Europe

HiG VCL Macro-Library

High-Level Game Development for PlayStation2
25

©2001 Sony Computer Entertainment Europe

•HiG VCL Macro-Library

• What is VCL?
• What is the HiG macro-library?
• Macro-library functionality
• Macro-library implementation

High-Level Game Development for PlayStation2
26

©2001 Sony Computer Entertainment Europe

What is VCL?

• Text pre-processor for VU (Vector Unit) micro
code.
– Note: Vector Units are are vector processors that

perform high-speed floating-point operations such
as vertex transformations

– VU coding requires dual-pipeline assembler
• VCL takes a single stream of instructions
• Produces optimised vu code.
• Basic support for macros and structs

High-Level Game Development for PlayStation2
27

©2001 Sony Computer Entertainment Europe

VCL Macro-Library

• Functionality:
– Gives VU implementations of basic and

advanced techniques (eg reflection /
refraction mapping, real-time shadow
mapping and fish-eye lens rendering)

High-Level Game Development for PlayStation2
28

©2001 Sony Computer Entertainment Europe

VCL Macro-Library

• Implementation:
– Macros used for individual units of functionality, eg

transformation, lighting, backface culling
– Each macro is about 10-20 lines long which makes

for easy readability
– Number of microprograms available which use the

macros as building blocks
– Excellent example of how VU code can be

developed in a modular fashion
– Useful for non-HiG developers to look at

High-Level Game Development for PlayStation2
29

©2001 Sony Computer Entertainment Europe

Game Demo

High-Level Game Development for PlayStation2
30

©2001 Sony Computer Entertainment Europe

Game Demo

• Objectives
• Design & Implementation
• HiG Usability issues
• Techniques used
• Stats and performance

High-Level Game Development for PlayStation2
31

©2001 Sony Computer Entertainment Europe

Game Demo - Objectives

• To investigate the usability of HiG within a
game architecture

• To produce a simple game demonstrating
HiG’s functionality

• If I can write this anyone can!

High-Level Game Development for PlayStation2
32

©2001 Sony Computer Entertainment Europe

Game Demo - Design &
Implementation

• Use of C++ for:
– Modularity, re-usability, maintainability, etc
– Map HiG functionality to game entities

• Fundamental classes for meshes, cameras,
etc

• Instruction cache thrashing issue

High-Level Game Development for PlayStation2
33

©2001 Sony Computer Entertainment Europe

HiG Usability - Problems
Encountered

• Data generation (Art pipeline)
– Much time spent resolving MAX exporter problems
– Conversion to and from intermediate formats

• Documentation
– Lack of English docs initially!
– Consists mainly of a lib reference
– Lack of “How to...” docs
– Other sources of documentation are scattered
– Have created a HiG overview doc which hopefully will

address these issues

High-Level Game Development for PlayStation2
34

©2001 Sony Computer Entertainment Europe

HiG Usability

• Using HiG in a game architecture
– HiG works by building DMA chains
– Doesn't map easily to game objects / entities
– Mesh instancing

• Combining different functionality, eg reflections
with shadow mapping

High-Level Game Development for PlayStation2
35

©2001 Sony Computer Entertainment Europe

Game Demo - Techniques

• Problem with “true” reflection-mapping:
– Area of the world seen in reflection is dependent

upon the orientation of the reflecting object
– Often this is the “uninteresting” area of the world!

High-Level Game Development for PlayStation2
36

©2001 Sony Computer Entertainment Europe

Game Demo - Techniques
“Game reflection" effect:

– Real-time reflection map used with refraction microcode
– ”Interesting" area of the world can always be seen as a reflection,

regardless of the orientation of the reflecting object
– Although the resulting effect is inaccurate, it works well in a game

environment
– Small refraction index used to give discontinuity at edges
– Large missiles used for off-screen render!

High-Level Game Development for PlayStation2
37

©2001 Sony Computer Entertainment Europe

ToDo: Game Demo -
Techniques

• Static texture used for reflection effect on
player ship

• Simple ship physics
– Interpolation used to give smooth motion

• Skydome
– Large hemisphere fixed relative to the camera

• Gameplay designed to show off effects
– Shadow mapping: ship pitching and rolling
– Reflection mapping: Large enemy character

High-Level Game Development for PlayStation2
38

©2001 Sony Computer Entertainment Europe

Game Demo - Stats

• Note: All models are triangle-stripped

Mesh Num Triangles Texture
Player ship 1163 256x256 32 bit
Enemy ship 368 256x256 32 bit
Landscape 8015 256x256 32 bit
Skydome 640 256x256 32 bit
Missile 66 Untextured

High-Level Game Development for PlayStation2
39

©2001 Sony Computer Entertainment Europe

HiG Microcode Performance

Micro name Shading
type

Back-face
culling

Volume
clip

Light type Vertices/sec

vu1basicVo vertex
color

N N directional 15,668,800

vu1basicClip vertex
color

N Y directional 12,379,976

vu1cullVo vertex
color

Y Y directional 10,188,080

vu1fisheye vertex
color

Y Y directional 8,204,112

vu1reflectR - N Y - 7,057,624
vu1refractR - N Y - 7,057,624

High-Level Game Development for PlayStation2
40

©2001 Sony Computer Entertainment Europe

Performance - PA Scan

High-Level Game Development for PlayStation2
41

©2001 Sony Computer Entertainment Europe

Performance - PA Scan
CPU cycles

Data Cache miss
DMA Transfer

VU activity
(micromode)

GS Idle

High-Level Game Development for PlayStation2
42

©2001 Sony Computer Entertainment Europe

Performance

• PA scans:
– DMA bound
– Sends all the data which may be reqd -

XYZ, normal, ST, colour
– Some data may be redundant, eg ST's not

reqd for reflection / refraction mapping
– Data is uncompressed
– I-cache trashing

High-Level Game Development for PlayStation2
43

©2001 Sony Computer Entertainment Europe

Performance

• Tip:
– HiG clears DMA buffer every time a chain is

sent
– Fixed cost per frame
– => Keep DMA buffer small (buffer size

specified in sceHiDMAInit)
– Game demo uses 0.5K

High-Level Game Development for PlayStation2
44

©2001 Sony Computer Entertainment Europe

Further Work - Optimisation

• Application-level:
– Use low level-of-detail meshes for off-screen render
– Reduce texture sizes
– Double buffering DMA chains

• Library-level:
– VIF compression of mesh data
– Currently DMA’s 4 quadwords per vertex

High-Level Game Development for PlayStation2
45

©2001 Sony Computer Entertainment Europe

Further Work - Functionality

• Hierarchical animation
• Scene culling
• Multiple shadows
• Bump mapping (clut-based)

High-Level Game Development for PlayStation2
46

©2001 Sony Computer Entertainment Europe

Summary - 1

• VCL-macro library worthwhile examining
• Demo and doc on PS2 website soon
• Where to start: sce\ee\sample\graphics\hig

High-Level Game Development for PlayStation2
47

©2001 Sony Computer Entertainment Europe

Summary - 2

• Game demo achieved in a few months
• Most of the problems I encountered have

now been resolved
• By re-using code and tools, completely

different demo using same techniques
could be achieved in a few days
=> High-level libs do exist and are
usable!

	High-Level Game Development for PlayStation2
	Overview
	Introduction
	Problems with starting PS2 development
	Problems with starting PS2 development
	HiG (High-level Graphics Library) Overview
	HiG (High-level Graphics Library) Overview
	HiG (High-level Graphics Library): Goals
	HiG (High-level Graphics Library): Goals
	HiG (High-level Graphics Library): Goals
	Relationship with Middleware
	High-level Functionality
	High-level Functionality
	High-level Functionality
	HiG Demos
	Plugin System
	Plugin System
	Low-level Functionality
	Art Pipeline
	Art Pipeline - Exporters
	Art Pipeline - File formats
	Art Pipeline - File formats
	Art Pipeline: Production Process
	HiG VCL Macro-Library
	HiG VCL Macro-Library
	What is VCL?
	VCL Macro-Library
	VCL Macro-Library
	Game Demo
	Game Demo
	Game Demo - Objectives
	Game Demo - Design & Implementation
	HiG Usability - Problems Encountered
	HiG Usability
	Game Demo - Techniques
	Game Demo - Techniques
	ToDo: Game Demo - Techniques
	Game Demo - Stats
	HiG Microcode Performance
	Performance - PA Scan
	Performance - PA Scan
	Performance
	Performance
	Further Work - Optimisation
	Further Work - Functionality
	Summary - 1
	Summary - 2

