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Overview

• Problems with starting PS2 development
• Overview of high-level library (HiG) + 

demos
• HiG Art production pipeline
• HiG Usability issues
• Game demo
• Further work
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Introduction

• Will NOT talk about:
– Algorithms used for specific effects
– PS2 hardware architecture details
– Low-level PS2 optimisation techniques
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Problems with starting PS2 
development
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Problems with starting PS2 
development
• I found it ****** hard!
• No exporters or engine available as part 

of the standard libs (or so I thought)
• Lack of a standard graphics file format
• Forces you to optimise from the start of 

the development cycle (eg VU coding)
• Sample Code vs Game Code 



High-Level Game Development for PlayStation2
6

©2001 Sony Computer Entertainment Europe 

HiG (HiHigh-level GGraphics 
Library) Overview
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HiG (HiHigh-level GGraphics 
Library) Overview

• Developed by SCEI (Japan) 
• Open-source (to PS2 developers) 
• Target users:

– Beginner-level PS2 users
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HiG (High-level Graphics 
Library): Goals

HiG aims are:
• Usability
• Efficiency
• Extensibility
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HiG (High-level Graphics 
Library): Goals

• Usability:
– Abstraction
– Reduce effort

• Efficiency
– VU1-based
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HiG (High-level Graphics 
Library): Goals

• Extensibility
– Data format
– Plugin architecture
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Relationship with Middleware

• “Free” to all PS2 developers
• PS2-specific
• Less comprehensive than middleware
• HiG is currently purely a rendering solution
• HiG architecture designed to allow middleware 

companies to develop plugins 
• No dedicated support channel
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High-level Functionality
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High-level Functionality

Fundamental operations:
• Loads mesh, texture and animation data
• Performs transformation (rotation, translation 

and perspective correction) and rendering 
• Handles hierarchical meshes and keyframe

animation
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High-level Functionality

Advanced operations:
• Reflection
• Refraction
• Shadow-mapping
• Fish-eye lens rendering
• Clut-based bump-mapping
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HiG Demos

• Shadow mapping
• Reflection mapping
• Real-time environment mapping
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Plugin System

• A plugin system is used to implement most of 
HiG’s functionality

• HiG allows you to create your own plugins
• Plugins can be used in combination, eg for 

multipass effects



High-Level Game Development for PlayStation2
17

©2001 Sony Computer Entertainment Europe 

Plugin System

• Fundamental:
– shape (vertex + face data), microcode, texture, 

hierarchy, animation

• Advanced:
– reflection, refraction, shadow-mapping, fish-eye 

lens rendering, clut-based bump-mapping
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Low-level Functionality

• HiG ”Service” functions can be used to 
create your own plugins

• Service functionality covers:
– Data format
– Memory management
– DMA
– GS (Graphics Synthesiser)
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Art Pipeline

• Exporters
• File formats
• Art Production Process
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Art Pipeline - Exporters

• Exporters are available for 3DS Max, 
Maya and Lightwave

• Export to “ES” format
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Art Pipeline - File formats

• All HiG file formats contain the following 
information:
– Mesh data
– Hierarchy data
– Animation data
– Texture data
– Texture context data
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Art Pipeline - File formats

• HiG File formats (all contain equivalent 
information):
– .es : Readable ASCII
– .s : Less readable ASCII

ASM pre-processor
– .bin : Binary - used in-game
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Art Pipeline: Production 
Process

• Export from art package in .ES format
• If reqd, edit .es file to customise for specific 

features, eg shadow mapping. (Additional 
tools can be created to perform this)

• Use provided converter (esConv) to convert 
from .es to .bin file

• If problems exist with .bin file, .s file can be 
generated and inspected
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HiG VCL Macro-Library
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•HiG VCL Macro-Library

• What is VCL?
• What is the HiG macro-library?
• Macro-library functionality
• Macro-library implementation
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What is VCL?

• Text pre-processor for VU (Vector Unit) micro 
code.
– Note: Vector Units are are vector processors that 

perform high-speed floating-point operations such 
as vertex transformations

– VU coding requires dual-pipeline assembler
• VCL takes a single stream of instructions
• Produces optimised vu code.
• Basic support for macros and structs



High-Level Game Development for PlayStation2
27

©2001 Sony Computer Entertainment Europe 

VCL Macro-Library

• Functionality:
– Gives VU implementations of basic and 

advanced techniques (eg reflection / 
refraction mapping, real-time shadow 
mapping and fish-eye lens rendering)
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VCL Macro-Library

• Implementation:
– Macros used for individual units of functionality, eg

transformation, lighting, backface culling
– Each macro is about 10-20 lines long which makes 

for easy readability
– Number of microprograms available which use the 

macros as building blocks 
– Excellent example of how VU code can be 

developed in a modular fashion 
– Useful for non-HiG developers to look at
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Game Demo
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Game Demo

• Objectives
• Design & Implementation
• HiG Usability issues
• Techniques used
• Stats and performance
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Game Demo - Objectives

• To investigate the usability of HiG within a 
game architecture

• To produce a simple game demonstrating 
HiG’s functionality

• If I can write this anyone can!
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Game Demo - Design & 
Implementation

• Use of C++ for:
– Modularity, re-usability, maintainability, etc
– Map HiG functionality to game entities

• Fundamental classes for meshes, cameras, 
etc

• Instruction cache thrashing issue
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HiG Usability - Problems 
Encountered

• Data generation (Art pipeline)
– Much time spent resolving MAX exporter problems
– Conversion to and from intermediate formats

• Documentation
– Lack of English docs initially!
– Consists mainly of a lib reference
– Lack of “How to...” docs 
– Other sources of documentation are scattered
– Have created a HiG overview doc which hopefully will  

address these issues
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HiG Usability

• Using HiG in a game architecture
– HiG works by building DMA chains
– Doesn't map easily to game objects / entities
– Mesh instancing

• Combining different functionality, eg reflections 
with shadow mapping
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Game Demo - Techniques

• Problem with “true” reflection-mapping:
– Area of the world seen in reflection is dependent 

upon the orientation of the reflecting object
– Often this is the “uninteresting” area of the world!
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Game Demo - Techniques
“Game reflection" effect:

– Real-time reflection map used with refraction microcode
– ”Interesting" area of the world can always be seen as a reflection, 

regardless of the orientation of the reflecting object
– Although the resulting effect is inaccurate, it works well in a game 

environment
– Small refraction index used to give discontinuity at edges
– Large missiles used for off-screen render!
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ToDo: Game Demo -
Techniques

• Static texture used for reflection effect on 
player ship 

• Simple ship physics
– Interpolation used to give smooth motion

• Skydome
– Large hemisphere fixed relative to the camera

• Gameplay designed to show off effects
– Shadow mapping: ship pitching and rolling
– Reflection mapping: Large enemy character
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Game Demo - Stats

• Note: All models are triangle-stripped

Mesh Num Triangles Texture
Player ship 1163 256x256 32 bit
Enemy ship 368 256x256 32 bit
Landscape 8015 256x256 32 bit
Skydome 640 256x256 32 bit
Missile 66 Untextured
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HiG Microcode Performance

Micro name Shading
type

Back-face
culling

Volume
clip

Light type Vertices/sec

vu1basicVo vertex
color

N N directional 15,668,800

vu1basicClip vertex
color

N Y directional 12,379,976

vu1cullVo vertex
color

Y Y directional 10,188,080

vu1fisheye vertex
color

Y Y directional 8,204,112

vu1reflectR - N Y - 7,057,624
vu1refractR - N Y - 7,057,624
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Performance - PA Scan
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Performance - PA Scan
CPU cycles

Data Cache miss
DMA Transfer

VU activity 
(micromode)

GS Idle 
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Performance

• PA scans:
– DMA bound
– Sends all the data which may be reqd -

XYZ, normal, ST, colour
– Some data may be redundant, eg ST's not 

reqd for reflection / refraction mapping
– Data is uncompressed
– I-cache trashing
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Performance

• Tip:
– HiG clears DMA buffer every time a chain is 

sent
– Fixed cost per frame
– => Keep DMA buffer small (buffer size 

specified in sceHiDMAInit)
– Game demo uses 0.5K
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Further Work - Optimisation

• Application-level:
– Use low level-of-detail meshes for off-screen render
– Reduce texture sizes
– Double buffering DMA chains

• Library-level:
– VIF compression of mesh data
– Currently DMA’s 4 quadwords per vertex
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Further Work - Functionality

• Hierarchical animation
• Scene culling
• Multiple shadows
• Bump mapping (clut-based)
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Summary - 1

• VCL-macro library worthwhile examining
• Demo and doc on PS2 website soon
• Where to start: sce\ee\sample\graphics\hig
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Summary - 2

• Game demo achieved in a few months
• Most of the problems I encountered have 

now been resolved 
• By re-using code and tools, completely 

different demo using same techniques 
could be achieved in a few days
=> High-level libs do exist and are 
usable!
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