Hard-Tuning the PS2

Jason G Doig Senior Engineer, SCEE R&D

What I'll be covering

- Me
- "Performance Analyser" Introduction
- Specific PS2 Performance Issues
 - EE Problems
 - GS Problems
 - Case studies

Introduction

- My background
 - -7 years in development
 - Most recent title "Dropship" on PS2
 - ->1 year in Sony R&D
 - Support
 - Technology development
 - Consultancy

Performance Analyser

- Customised PS2 devkit
- Captures over 100 signals
 EE and GS debug output
- Cycle accurate
 - ~100ms capture duration
 - ~7.5 frames at 60Hz
- Software analysis package

What the PA doesn't do

- No data buses captured
 Internal states only
- No true address bus capture

 "most" long jumps captured, nothing else
- No IOP information at all
 - At least not in the prototype...

What the PA does

What the PA does

- CPU signal capture
 CPU pipeline activity
 - Single or dual issue
 - Interrupt display hack
 - Main bus
 - CPU
 - DMA

What the PA does (continued...)

- GIF usage
 - 3 Paths
- Vector unit status
 - Running
 - XGKICK stall

What the PA does (continued...)

- GS signal capture
 - Primitives rendered
 - Doesn't count zero-area polys
 - Pixels output
 - Half-full for textured ops
 - Only those drawn, not scissored

What the PA does (continued...)

- DDA void
 - Busy, but no pixels
 - Scissor, narrow poly
- Non polygonal data
- Pixel unit stalls
 - Many reasons!
- GS idle time

Balance

- PS2 designed for parallelism
 - EE and GS
 - CPU and DMA
 - Shared memory bus, VIF, GIF etc.
 - CPU and VUs
 - Simultaneous independent processing units
 - CPU and VU pipelines
 - 2 instructions per cycle

Common Problems

- Poor CPU efficiency
 - Code generation
 - Memory utilisation
- Drawing stalls
 - Bad texture usage
 - Frame buffer page misses

Memory Access

- Memory performance lower than in theory
- Single cache miss
 - 4 QW, should be 4 cycles
 - Actually takes 13!
 - 9 cycles setup cost!

Bad (and good) CPU performance

Code generation

- Compilers do not take advantage of PS2
- Typical CPU performance very low

Dealing With Poor Code

- Look at the output

 Try to rearrange code to help the compiler
- Investigate other code generators
- Inline assembler
 - Sometimes there is no substitute

Instruction Cache Problems

- Lots of jumps
 - Call overhead
- Too much inline
- Too much code

Specific Code Generation Problems

- Data cache thrashing
 - Organise data to minimise random access
 - Frequently accessed memory good
- Alternatives
 - Uncached / Uncached accelerated
 - Scratchpad
 - Only ~100% efficient memory access available!

Uncached Accelerated Usage

VU0 abuse

- VU0 heavily underused
- Macro-mode is evil

What can you do with VU0?

- Anything maths related
 - Matrix and vector operations are ideal
 - Consider even scalar operations
 - But think about vectorising them ③
- Use VU0 memory for lookup tables
 Or for a matrix stack

Look! VU0!

What Slows Down the GS?

- Polygon Size
- Pixel Engine Stalls
 - Texturing
 - Size
 - Filtering options
 - Vertex fogging

Polygon Size

- Frame buffer "swizzled"
- Arranged in 2d pages
 - Scan converting can cross pages
 - Pages are buffered
- Minimise stalls by "stripping"
 Use vertical strips 32 pixels wide

Pixel Engine Stalls

- Texture Size
 - Page buffer is 8k
 - Effectively 2D
 - Minimum page size varies per format
 - See manuals!
 - Frequent texture page hits very expensive

More Pixel Engine Stalls

- Bilinear shrink
 - Bilinear expand is "free"
 - Bilinear shrink is not
 - Pixel units arranged 4x2
 - Fetching more than ~16 texels per cycle stalls
 - Rapidly drops to 50% performance
 - Trilinear even worse

Optimising VU1 Usage

- Optimise VU1 code – Obvious, I know...
- Or move work outside VU1
 - -VU0
 - EE core
 - If it's not stressed already...

Optimise Your DMA Data

- Compressed data
 Let the VIF do the work
- Instancing
 - Make artists do the work ©
 - Can dramatically reduce DMA usage

Meet a VU1 Bound Renderer

	l and and and and an all and the	، التحقيلية أل ال التلية التلية .
VU1		
Polys		
Pixels		
GS Idle	у таур та	· · · · · · · · · · · · · · · · · · ·

Textures

- PATH 2 easy
 But rubbish
- PATH 3
 - Mask path 3 syncing
 - Complex, naïve, no CPU
 - Interrupt based syncing
 - Easy, potentially expensive
- GIF PATH1 / PATH3 clashing

Texture Uploading

Particle Systems

- Mostly simple primitives

 Sprites, billboard polys
- VU code very basic
- Fine when distant
- Expensive up close
 - GS fill-rate increases dramatically

Particles continued...

It is possible... honest.

- Remember this?
 - 10..20 million polys
 - >50% CPU usage
 - >80% dual issue

Pipeline 540 05+ 364 05+
Cruster and Access Cruster and Access Cruste
256 DMA_
GEPT S MENTER S SECTION S SECTION S SECTION S SECTION S MAIN EUS (FIFC
PATE (000 page million)
MPD (nemory read
MMD (memory mos

Summary

- Balance
 - Get everything working together
- Use more VU0
 - More micro-mode, less macro-mode
- Make better use of the GS
 - Smaller textures, controlled filtering, subdivide
- Make better use of the bus
 - Use scratchpad, instancing, etc.

Game Developers

Questions?

