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What I’ll be covering

• Me
• “Performance Analyser” Introduction
• Specific PS2 Performance Issues

– EE Problems
– GS Problems
– Case studies



Introduction

• My background
– 7 years in development

• Most recent title “Dropship” on PS2
– >1 year in Sony R&D

• Support
• Technology development
• Consultancy



Performance Analyser

• Customised PS2 devkit
• Captures over 100 signals

– EE and GS debug output
• Cycle accurate

– ~100ms capture duration
– ~7.5 frames at 60Hz

• Software analysis package



What the PA doesn’t do

• No data buses captured
– Internal states only

• No true address bus capture
– “most” long jumps captured, nothing else

• No IOP information at all
– At least not in the prototype…



What the PA does



What the PA does

• CPU signal capture
– CPU pipeline activity

• Single or dual issue
• Interrupt display hack

– Main bus
• CPU
• DMA



What the PA does (continued…)

– GIF usage
• 3 Paths

– Vector unit status
• Running
• XGKICK stall



What the PA does (continued…)

• GS signal capture
– Primitives rendered

• Doesn’t count zero-area polys
– Pixels output

• Half-full for textured ops
• Only those drawn, not 

scissored



What the PA does (continued…)

• DDA void
– Busy, but no pixels

• Scissor, narrow poly

• Non polygonal data
• Pixel unit stalls

– Many reasons!
• GS idle time



Balance

• PS2 designed for parallelism
– EE and GS
– CPU and DMA

• Shared memory bus, VIF, GIF etc.
– CPU and VUs

• Simultaneous independent processing units
– CPU and VU pipelines

• 2 instructions per cycle



Common Problems

• Poor CPU efficiency
– Code generation
– Memory utilisation

• Drawing stalls
– Bad texture usage
– Frame buffer page misses



Memory Access

• Memory performance 
lower than in theory

• Single cache miss
– 4 QW, should be 4 cycles
– Actually takes 13!
– 9 cycles setup cost!



Bad (and good) CPU performance



Code generation

• Compilers do not take advantage of PS2
• Typical CPU performance very low



Dealing With Poor Code

• Look at the output
– Try to rearrange code to help the compiler

• Investigate other code generators
• Inline assembler

– Sometimes there is no substitute



Instruction Cache Problems

• Lots of jumps
• Call overhead

• Too much inline
• Too much code



Specific Code Generation Problems

• Data cache thrashing
– Organise data to minimise random access
– Frequently accessed memory good

• Alternatives
– Uncached / Uncached accelerated
– Scratchpad

• Only ~100% efficient memory access available!



Uncached Accelerated Usage



VU0 abuse

• VU0 heavily underused
• Macro-mode is evil



What can you do with VU0?

• Anything maths related
– Matrix and vector operations are ideal
– Consider even scalar operations

• But think about vectorising them ☺

• Use VU0 memory for lookup tables
– Or for a matrix stack



Look! VU0!



What Slows Down the GS?

• Polygon Size
• Pixel Engine Stalls

– Texturing
• Size
• Filtering options

– Vertex fogging



Polygon Size

• Frame buffer “swizzled”
• Arranged in 2d pages

– Scan converting can cross pages
– Pages are buffered

• Minimise stalls by “stripping”
– Use vertical strips 32 pixels wide



Pixel Engine Stalls

• Texture Size
– Page buffer is 8k
– Effectively 2D
– Minimum page size varies per format

• See manuals!
– Frequent texture page hits very expensive



More Pixel Engine Stalls

• Bilinear shrink
– Bilinear expand is “free”
– Bilinear shrink is not

• Pixel units arranged 4x2
• Fetching more than ~16 texels per cycle stalls
• Rapidly drops to 50% performance

– Trilinear even worse



Optimising VU1 Usage

• Optimise VU1 code
– Obvious, I know…

• Or move work outside VU1
– VU0
– EE core

• If it’s not stressed already…



Optimise Your DMA Data

• Compressed data
– Let the VIF do the work

• Instancing
– Make artists do the work ☺
– Can dramatically reduce DMA usage



Meet a VU1 Bound Renderer



Textures

• PATH 2 easy
– But rubbish

• PATH 3
– Mask path 3 syncing

• Complex, naïve, no CPU
– Interrupt based syncing

• Easy, potentially expensive
• GIF PATH1 / PATH3 clashing



Texture Uploading



Particle Systems

• Mostly simple primitives
– Sprites, billboard polys

• VU code very basic
• Fine when distant
• Expensive up close

– GS fill-rate increases dramatically



Particles continued…



It is possible… honest.

• Remember this?
– 10..20 million polys
– >50% CPU usage
– >80% dual issue



Summary

• Balance
– Get everything working together

• Use more VU0
– More micro-mode, less macro-mode

• Make better use of the GS
– Smaller textures, controlled filtering, subdivide

• Make better use of the bus
– Use scratchpad, instancing, etc.



Questions?
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