
Hard-Tuning the PS2

Jason G Doig
Senior Engineer, SCEE R&D



What I’ll be covering

• Me
• “Performance Analyser” Introduction
• Specific PS2 Performance Issues

– EE Problems
– GS Problems
– Case studies



Introduction

• My background
– 7 years in development

• Most recent title “Dropship” on PS2
– >1 year in Sony R&D

• Support
• Technology development
• Consultancy



Performance Analyser

• Customised PS2 devkit
• Captures over 100 signals

– EE and GS debug output
• Cycle accurate

– ~100ms capture duration
– ~7.5 frames at 60Hz

• Software analysis package



What the PA doesn’t do

• No data buses captured
– Internal states only

• No true address bus capture
– “most” long jumps captured, nothing else

• No IOP information at all
– At least not in the prototype…



What the PA does



What the PA does

• CPU signal capture
– CPU pipeline activity

• Single or dual issue
• Interrupt display hack

– Main bus
• CPU
• DMA



What the PA does (continued…)

– GIF usage
• 3 Paths

– Vector unit status
• Running
• XGKICK stall



What the PA does (continued…)

• GS signal capture
– Primitives rendered

• Doesn’t count zero-area polys
– Pixels output

• Half-full for textured ops
• Only those drawn, not 

scissored



What the PA does (continued…)

• DDA void
– Busy, but no pixels

• Scissor, narrow poly

• Non polygonal data
• Pixel unit stalls

– Many reasons!
• GS idle time



Balance

• PS2 designed for parallelism
– EE and GS
– CPU and DMA

• Shared memory bus, VIF, GIF etc.
– CPU and VUs

• Simultaneous independent processing units
– CPU and VU pipelines

• 2 instructions per cycle



Common Problems

• Poor CPU efficiency
– Code generation
– Memory utilisation

• Drawing stalls
– Bad texture usage
– Frame buffer page misses



Memory Access

• Memory performance 
lower than in theory

• Single cache miss
– 4 QW, should be 4 cycles
– Actually takes 13!
– 9 cycles setup cost!



Bad (and good) CPU performance



Code generation

• Compilers do not take advantage of PS2
• Typical CPU performance very low



Dealing With Poor Code

• Look at the output
– Try to rearrange code to help the compiler

• Investigate other code generators
• Inline assembler

– Sometimes there is no substitute



Instruction Cache Problems

• Lots of jumps
• Call overhead

• Too much inline
• Too much code



Specific Code Generation Problems

• Data cache thrashing
– Organise data to minimise random access
– Frequently accessed memory good

• Alternatives
– Uncached / Uncached accelerated
– Scratchpad

• Only ~100% efficient memory access available!



Uncached Accelerated Usage



VU0 abuse

• VU0 heavily underused
• Macro-mode is evil



What can you do with VU0?

• Anything maths related
– Matrix and vector operations are ideal
– Consider even scalar operations

• But think about vectorising them ☺

• Use VU0 memory for lookup tables
– Or for a matrix stack



Look! VU0!



What Slows Down the GS?

• Polygon Size
• Pixel Engine Stalls

– Texturing
• Size
• Filtering options

– Vertex fogging



Polygon Size

• Frame buffer “swizzled”
• Arranged in 2d pages

– Scan converting can cross pages
– Pages are buffered

• Minimise stalls by “stripping”
– Use vertical strips 32 pixels wide



Pixel Engine Stalls

• Texture Size
– Page buffer is 8k
– Effectively 2D
– Minimum page size varies per format

• See manuals!
– Frequent texture page hits very expensive



More Pixel Engine Stalls

• Bilinear shrink
– Bilinear expand is “free”
– Bilinear shrink is not

• Pixel units arranged 4x2
• Fetching more than ~16 texels per cycle stalls
• Rapidly drops to 50% performance

– Trilinear even worse



Optimising VU1 Usage

• Optimise VU1 code
– Obvious, I know…

• Or move work outside VU1
– VU0
– EE core

• If it’s not stressed already…



Optimise Your DMA Data

• Compressed data
– Let the VIF do the work

• Instancing
– Make artists do the work ☺
– Can dramatically reduce DMA usage



Meet a VU1 Bound Renderer



Textures

• PATH 2 easy
– But rubbish

• PATH 3
– Mask path 3 syncing

• Complex, naïve, no CPU
– Interrupt based syncing

• Easy, potentially expensive
• GIF PATH1 / PATH3 clashing



Texture Uploading



Particle Systems

• Mostly simple primitives
– Sprites, billboard polys

• VU code very basic
• Fine when distant
• Expensive up close

– GS fill-rate increases dramatically



Particles continued…



It is possible… honest.

• Remember this?
– 10..20 million polys
– >50% CPU usage
– >80% dual issue



Summary

• Balance
– Get everything working together

• Use more VU0
– More micro-mode, less macro-mode

• Make better use of the GS
– Smaller textures, controlled filtering, subdivide

• Make better use of the bus
– Use scratchpad, instancing, etc.



Questions?


	Hard-Tuning the PS2
	What I’ll be covering
	Introduction
	Performance Analyser
	What the PA doesn’t do
	What the PA does
	What the PA does
	What the PA does (continued…)
	What the PA does (continued…)
	What the PA does (continued…)
	Balance
	Common Problems
	Memory Access
	Bad (and good) CPU performance
	Code generation
	Dealing With Poor Code
	Instruction Cache Problems
	Specific Code Generation Problems
	Uncached Accelerated Usage
	VU0 abuse
	What can you do with VU0?
	Look! VU0!
	What Slows Down the GS?
	Polygon Size
	Pixel Engine Stalls
	More Pixel Engine Stalls
	Optimising VU1 Usage
	Optimise Your DMA Data
	Meet a VU1 Bound Renderer
	Textures
	Texture Uploading
	Particle Systems
	Particles continued…
	It is possible… honest.
	Summary
	Questions?

