[image: image1.png]VINCR0 4

A Division of the UNICOM Group of Companies

	
	How to…

	
	

	Title
	Configuring Core Dumps

	Number
	0.1

	Date
	3rd December 2012

	Author
	Ian Cowburn

	Approval
	Neil Evans, Mark Thompson, Martin Bland

	Abstract
	This document describes the steps required to enable core dumps on various flavours of UNIX.

	
	

	
	© 2012 Macro 4
Company use only.

Use this template for general technical reports where none of the standard reports is appropriate.

Template revised by RQF on 26Oct99.

Revision History
	 Revision and date
	 By
	 Reason

	0.1 03 Dec 2012
	IXC
	 First Draft

Contents

31 Introduction

31.1 What is a core dump?

31.2 Generating a core dump

42 Enabling Core Dumps

42.1 Enabling Core Dumps Per User

52.2 Enabling Core Dumps System-Wide

52.3 Enabling Core Dumps for systems using limits.conf

62.4 Enabling Core Dumps with PAM

73 Configuring Core Dumps

73.1 Solaris

83.2 AIX

83.3 HP-UX

83.4 GNU/Linux

83.4.1 sysctl

93.4.2 Adding a PID to the Core Dump (Kernel 2.4 and above)

93.4.3 More complex Core Dump naming (Kernel 2.6 and 2.4.21 and above)

1 Introduction
This document describes the steps required to enable and configure core dumps (often referred to as core files) and their debugging.

It is assumed you will have:

· Some UNIX or GNU/Linux knowledge. From now on both environments will be referred to as UNIX, unless there is information specific to GNU/Linux.
· Root access to the server if core file configuration is needed.
1.1 What is a core dump?
A core dump is simply a copy of a process’s memory at a point in time.

A diagnostic core dump will be generated for particular conditions that cause a process to abnormally abort following the delivery of a signal. The common signals that cause these issues are:
	SIGSEGV
	The process has attempted to access a portion of memory where it has nothing mapped, or access a portion of memory that it does not have the permissions to access.

	SIGILL
	The process has attempted to execute an illegal instruction.

	SIGBUS
	On some machines memory access has to be aligned to certain boundaries. On these machines this signal indicates an alignment has been broken.

	SIGFPE
	An erroneous arithmetic operation has been carried out; for example, divide by zero.

1.2 Generating a core dump

While generating this document a small one line C program was used to generate a core dump. It's repeated here in case it's useful during your own investigations.

int main(void) {char *p=0; *p=1; return 0;}

Building this and running the resulting executable will generate a SIGSEGV.
2 Enabling Core Dumps
All UNIX implementation have a command called ulimit, which is used to query the limits of some system settings, for example how many files a process is allowed to have open at once. Each limit has two settings:
· A hard limit, which only the root user can modify.

· A soft limit which a user can modify, up to the hard limits specified by the root user.

While POSIX
 defines no standard switch for querying core dump limits (or even that there are hard and soft limits), all implementations commonly use the -c switch to display the current core dump setting. If unsure check the man page for the ulimit command on the platform itself.

For example:
$ ulimit -c

unlimited
Here UNIX has indicated that a core dump is allowed to be created of any size. Generally there are only two sensible settings for this, the other being:
$ ulimit -c

0

Here we’ve been told that a core dump is not allowed to take up any room; in effect they have been disabled. The following sections describe how to enable core dumps in this situation.
2.1 Enabling Core Dumps Per User
To enable core dumps for a single user, simply edit the user's .profile (or .login if the C‑shell is being used) in the home directory, and add the following line at the end:
ulimit -c unlimited
This asks UNIX to allow us to use as many disk blocks as we need to generate a core dump. To check this has worked, log in as the user and run the following command:
$ ulimit -c

If the result is unlimited then core dumps have now been enabled.
If the result is a zero then either:

· The system has a hard limit applied, preventing a user reconfiguring the limit. See section 2.2 for instructions on how to alter system-wide limits.

· Your operating system may be using PAM
, which requires further configuration as it can be used to setup such limits prior to logon. PAM is especially prevalent on GNU/Linux operating systems. See section 2.3 for additional details.

2.2 Enabling Core Dumps System-Wide
To enable core dumps system-wide first we need to find out where the current limit is being set, and whether any hard limits have been set.
To find if any hard limits have been set, do the following:
cd /etc

grep -l "ulimit *-.*H " *
This will list out any files that have a command to set a hard limit. The files that will be of interest are the ones that are system-wide files read during login, such as profile, bashrc, bash.bashrc, login, csh.cshrc or csh.login.

If any files are listed view them and see if a command like the following is being used:
ulimit -H -c 0
This command is settings the hard limit for core dumps to zero. Simply replace it with.
ulimit -H -c unlimited

If searching for hard limits reveals nothing, repeat the process but searching for settings of both the hard and soft limits:

cd /etc

grep -l "ulimit *-c" *

Again this lists out any files that have a command to set a limit, this time explicitly on core dumps. Replace them with the following command:
ulimit -c unlimited
To check this has worked, log in as the user and run the following command:

$ ulimit -c

If the result is unlimited then core dumps have now been enabled. If zero is still returned then try sections 2.3 and 2.4.
2.3 Enabling Core Dumps for systems using limits.conf

Not many UNIX operating systems still use limits.conf, but it is still prevalent in BSD
 based systems, for example FreeBSD, OpenBSD or NetBSD. If your system does not have a /etc/limits.conf file then it is not in use.
For systems which do use this the file may contain an entry along these lines:

coredumpsize = size
Size will be a number followed by a letter indicating whether it’s in kilobytes (k), or bytes (b). Some implementations also allow different characters that can represent blocks, gigabytes, and terabytes and so on. To check what is allowed look at the man page:
$ man limits.conf

On these systems then, to set the core dump size we need to amend or add a core dump size that's suitably big, for example:

coredumpsize = 2000m
Also on BSD systems a database file must be updated once the limits are set, by running the command:

cap_mkdb /etc/login.conf

2.4 Enabling Core Dumps with PAM
PAM is a commonly used system to define authentication modules on a UNIX system, and is quite often used on a GNU/Linux system.
PAM will be used to define limits for when a user logs onto the system. This information is held in the file /etc/security/limits.conf. This file lists a set of limits and to which domain they apply, for example an individual user, a group or everybody.

In this file we are looking for lines like this:

domain
hard

core

number
domain
soft

core

number
The domain can be anything, but the number will undoubtedly be zero if so far we've been unable to set an unlimited limit to core dump size.

All we want to do is remove any current lines regulating the core dump settings and then add these:

*
hard

core

unlimited

*
soft

core

unlimited

Here we've set the domain to everyone, and set the maximum core dump size to unlimited.

To check this has worked, log in as the user and run the following command:

$ ulimit -c

If the result is unlimited then core dumps have now been enabled. If zero is still returned then it may be that the UNIX kernel has had core dumps disabled or limited for some reason. The resolution of this is outside the scope of this document, so seek help from a system administrator with intimate knowledge of the operating system in these instances.
3 Configuring Core Dumps

Historically a core dump is simply generated as a file called core in the working directory of the process in question.

This can be a difficulty as if you have multiple crashes, or multiple processes crashing in the same place, you can only get the last core dump written. To solve this issue some UNIX implementations allow you configure the filename that will be used when a core dump is produced.
The following sections give system specific details on setting this up where such changes can be made.

3.1 Solaris

Since Solaris 8 a command called coreadm has been provided which is used to administer the settings for core files by the root user. If you type it on its own then you will get the current settings, e.g.

coreadm

 global core file pattern:

 global core file content: default

 init core file pattern: core.%f.%p

 init core file content: default

 global core dumps: disabled

 per-process core dumps: enabled

 global setid core dumps: disabled

 per-process setid core dumps: disabled

 global core dump logging: disabled
Here we can see that the init core file pattern (which is the default one a process will inherit) has been set to core.%f.%p, which means that a core file will be produced in the following format:

core.process_name.process_id
The meaning of the special tokens is as follows:

	%p
	Process ID

	%u
	Effective user ID

	%g
	Effect group ID

	%f
	Executable file name

	%n
	System node name (the same as uname ‑n)

	%m
	Machine name (the same as uname ‑m)

	%t
	The number of seconds since the UNIX epoch.

	%%
	A literal percentage sign.

To set this up we simply issue the command:

coreadm -i core.%f.%p
Note that the coreadm command records the settings in a file called /etc/coreadm.conf so the settings will be preserved over reboots.

3.2 AIX

Since AIX 4.3 we can generate unique core dumps by setting the environment variable CORE_NAMING to true.

It is suggested to put this setting in /etc/profile by adding the following lines:

CORE_NAMING=true

export CORE_NAMING

The settings will then be picked up the next time a user logs on. With this variable set core dumps will now be produced using the following naming convention:

core.pid.ddhhmmss
Where pid is the process ID of the generating process and dd, hh, mm and ss are the day of the month, hour, minute and second respectively when the process crashed.
3.3 HP-UX

Since HP-UX version 11.31 HP have adopted the Solaris coreadm command, so simply follow the instructions in section 3.1 for these systems.
For older versions (11.11 and 11.23) there are solutions available that modify the running kernel using the absolute debugger, but we cannot recommend these solutions due to the danger of interfering at a low level with a running kernel.
3.4 GNU/Linux

While there are always differences between each GNU/Linux distribution, thankfully the kernel remains, and it is in the kernel that the core dump file name is set.

3.4.1 sysctl

You can control the running kernel on GNU/Linux by using the sysctl command. The form of this command for setting a value is:
sysctl -w setting=value
To make this setting remain over reboots we need to update the file /etc/sysctl.conf. This file specifies custom kernel settings that will be applied during start-up. Using the same example:

setting = value
If you're system doesn't have this file, try creating it and place the setting in there. After a reboot the setting can be checked with the following command:

sysctl setting
setting = value
If value is the expected value then one of the start-up scripts has run sysctl to pick up the default settings.
If this doesn't work then the easiest solution is to place the sysctl command in a local script that will be run during system start-up. Locating this script is outside the scope of this document as such a file has no fixed place, and different implementations manage system startup quite differently. If you need to set it this way seek help from a system administrator with intimate knowledge of the operating system if you cannot locate a suitable script.

3.4.2 Adding a PID to the Core Dump (Kernel 2.4 and above)
To specify that core dumps are generated with the process ID of the crashing process attached, simply run the following as root:

sysctl -w kernel.core_uses_pid=1
See section 3.4.1 for details on making this setting permanent.
3.4.3 More complex Core Dump naming (Kernel 2.6 and 2.4.21 and above)
These more recent versions of the kernel allow a more complex naming convention, for example:
sysctl -w kernel.core_pattern=core.%e.%p
See section 3.4.1 for details on making this setting permanent. This example would generate core dumps with the following name due to the %e and %p tokens:

core.executable.process_id
The meaning of these special tokens is as follows:

	%p
	Process ID

	%u
	Real user ID

	%g
	Real group ID

	%e
	Executable file name

	%h
	Hostname

	%s
	The signal number causing the dump

	%t
	The number of seconds since the UNIX epoch.

	%%
	A literal percentage sign.

Note that if %p is not specified, and the setting in section 3.4.2 is enabled, then the process ID is automatically added to the end of the pattern.
However, the really exciting possibility with this scheme is that since kernel 2.6.24 the core_pattern setting allows a program to be specified that can take parameters by using a pipe character as the first character:
sysctl -w kernel.core_pattern=|/path/to/program
In this scheme the core file is passed via the standard input of the program. A possibility would be to have some program that alerts people depending on the executable that caused the crash, e.g.

sysctl -w kernel.core_pattern=|/sbin/alert %e
Where alert could be a program that emailed certain users dependent on the passed executable name.
� POSIX is the standard that an operating system must adhere to in order to be called UNIX.

� Pluggable Authentication Modules

� Berkeley Software Distribution

Configuring Core Dumps
0.1

1 of 10

[image: image1.png][image: image2.jpg]VINCR0 4

A Division of UNICOM Global

